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Abstract

One-dimensional models for multiphase flow in pipelines are commonly discretised using first-order Finite Volume (FV)
schemes, often combined with implicit time-integration methods. While robust, these methods introduce much numerical
diffusion depending on the number of grid points. In this paper we propose a high-order, space-time Discontinuous
Galerkin (DG) Finite Element method with h-adaptivity to improve the efficiency of one-dimensional multiphase flow
simulations. For smooth initial boundary value problems we show that the DG method converges with the theoretical
rate and that the growth rate and phase shift of small, harmonic perturbations exhibit superconvergence. We employ
two techniques to accurately and efficiently represent discontinuities. Firstly artificial diffusion in the neighbourhood
of a discontinuity suppresses spurious oscillations. Secondly local mesh refinement allows for a sharper representation
of the discontinuity while keeping the amount of work required to obtain a solution relatively low. The proposed DG

method is shown to be superior to FV.
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1. Introduction

Multiphase flow plays an important role in many in-
dustrial applications, such as in the petroleum and nu-
clear industry. In the petroleum industry a typical ex-
ample of multiphase flow is the transport of oil and gas
through long multiphase pipeline systems. For the design
and optimization of such systems it is important to accu-
rately predict the pressure and flow rate of both oil and
gas along the pipeline as a function of time. An impor-
tant example is the prediction of slug flow, which has a
large influence on the sizing of receiving facilities at the
outlet of the pipeline such as slug catchers or separators.
A slug is a pocket of liquid that fully covers the pipe cross
sectional area and that moves with relatively high veloc-
ity along the pipeline. Some slugs are initiated due to a
flow instability at the gas/liquid interface of stratified flow
in the pipeline, which marks the transition from strati-
fied flow to hydrodynamic slug flow. The motion of these
slugs, and of oil and gas in general, is governed by partial
differential equations describing conservation of mass, mo-
mentum and energy. However, for oil and gas pipelines the
numerical solution of these equations in three dimensions
is prohibitively expensive due to the multi-scale nature
of the problem: the pipeline length can be of the order
of 100 kilometre, whereas the size of oil droplets or gas
bubbles can be of the order of millimetres. In order to
obtain a computationally tractable model which retains

the most important physical effects, averaging techniques
are typically applied to the governing equations, leading to
a one-dimensional model. The one-dimensional two-fluid
model [1, 2] is the most commonly used model to simulate
two-phase flow in pipelines or channels. It is capable of
describing the transition from stratified flow to slug flow
[3]. As such, the two-fluid model is a slug-capturing model
in which slugs are a result of growing hydrodynamic insta-
bilities.

Numerical solutions to the two-fluid model equations
are in general obtained by finite difference methods or
finite volume methods, both in commercial codes such
as OLGA [4] and LedaFlow as well as in academic re-
search codes [3, 5, 6, 7, 8]. These finite difference and
finite volume methods are almost exclusively first order
in space and time. For example, the slug capturing code
TRIOMPH from Issa and Kempf [3] uses a finite volume
method on a staggered grid, being first order accurate both
in space and time. A main reason for the use of first order
schemes is related to the ill-posedness of the basic two-
fluid model (when surface tension or hydrostatic pressure
variation are not taken into account) and its non-con-
servative nature. These properties make the application
of high-order methods as developed for single-phase flow
(such as Essentially Non-Oscillatory (ENO) schemes) non-
trivial. The artificial diffusion introduced by first order
methods effectively regularizes the differential equations
through damping non-physical instabilities associated with



ill-posedness [9]. However, a major disadvantage of first
order methods is that any physical instabilities will also
be damped due to excessive numerical diffusion [6]. As
a result, very fine meshes are required (see e.g. Issa and
Kempf [3]); Bonizzi and Issa [10] recommend that the grid
size should be less than half of the diameter of the pipe
to capture the natural growth of disturbances. For prac-
tical pipeline simulations this is computationally far too
expensive.

A few studies on the use of high-order methods for the
numerical solution of the two-fluid model have been per-
formed. Holmaés et al. [11] use a pseudo-spectral Fourier
method to solve the two-fluid model and indicate a gain
in computational time of several orders of magnitude with
respect to classical finite difference schemes; especially the
first order upwind method has excessive numerical dif-
fusion. Fullmer et al. [9] show improved accuracy of a
second order method over a first order method, although
the second order method leads to non-monotone results.
In all cases, these high-order upwind schemes can have
unfavourable stability properties [6], giving a numerical
growth rate which is quite different from the physical growth
rate of instabilities. Consequently, high-order methods are
not yet commonly applied for solving the two-fluid model
equations.

The purpose of this paper is to present an efficient high-
order numerical method that can simulate stratified and
slug flow by solving the compressible two-fluid model. To
overcome the common issues associated with high-order

methods we propose an h-adaptive space-time Discontinuous-

Galerkin Finite Element Method (DGFEM) scheme. This
method allows a mesh to be refined locally (h-refinement).
In smooth regions of the flow a coarse mesh is used, while
a fine mesh is used to resolve the physics around sharp
gradients, such as near a slug front or tail, or when the
flow becomes locally single phase. This is believed to lead
to a more efficient numerical method compared to clas-
sical low-order finite difference or finite volume methods
on fixed grids. The scheme can be extended to include
p-coarsening near discontinuities.

Several quite different adaptive space-time DG meth-
ods with adaptive refinement have been described. The
tent-pitcher algorithm [12, 13] creates a partial ordering
of unstructured elements in space-time such that a dis-
crete system can be solved on each element solely based
on boundary data from lower elements in the partial order-
ing. Multiple elements can be solved for simultaneously if
they are independent of each other. Since all characteris-
tics should exit an element face in the same direction, this
would yield very flat elements (in time) if the eigenval-
ues of the system have a very large positive and negative
component.

Another technique proposed by Gassner et al. [14] in-
volves a set elements of that are unstructured in space and
extruded in time, where the time length of an element is
variable. The flux contribution to an element is applied
seperately from the volume contribution after the volume

contributions of all neighbouring elements have been com-
puted. The scheme allows local h- and p-adaptation. Since
this method is essentially explicit, the time length restric-
tion is severe for problems with very large characteristic
speeds.

For a multidimensional multiphase flow application Sol-
lie et al. [15] use a structured space-time base mesh subdi-
vided in time-slabs, a sequence of sets of elements with the
same time interval. A discrete system is solved per time-
slab using an explicit integration scheme for pseudo time.
Coarse elements in which there is an interface, described
by a level set on the coarse mesh, are subdivided, allow-
ing locally unstructured elements, such that the interface
matches element boundaries. This front tracking scheme
requires several iterations to recompute the refinement as
the level set depends on the flow field and vice versa. In
one-dimensional multiphase flow applications this scheme
requires, in absence of a level set, a non-trivial mechanism
to locate jumps in the liquid hold-up within an element.

Fidkowski and Luo [16] describe an adjoint based adap-
tive space-time DG scheme for the compressible Navier-
Stokes equations. The space-time mesh is the tensor prod-
uct of an unstructured spatial mesh and time-slabs. Both
the spatial mesh and the set of time-slabs can be refined
locally, maintaining the tensor product structure of the
space-time mesh. The refinement decision is based on the
solution of an adjoint problem and requires storing the so-
lution on all time-slabs, which is infeasible for long running
simulations.

In this paper we use a structured coarse space-time
mesh, divided into time-slabs, and allow repeated, struc-
tured refinements in space and time of individual elements.
Per element the decision to refine is based on a smooth-
ness indicator. Spurious oscillations in the neighbourhood
of discontinuities are suppressed by adding artificial vis-
cosity to the model [17, 18].

The outline of this paper is as follows. In section 2
we recall the governing equations of the compressible two-
fluid model, and introduce a new term associated with the
hydrostatic pressure variation which is generally neglected
in the literature. In section 3 the new h-adaptive DGFEM
discretisation for the compressible two-fluid model is in-
troduced. In section 4 a second order Finite Volume dis-
cretisation of the same compressible two-fluid model is
given, which will be used to assess the performance of the
new DGFEM. In Section 5 we analyse the stability of the
two-fluid model and the DGFEM discretisation. Section 6
shows the results for two representative test cases.

2. Governing equations of the compressible two-
fluid model

We employ two different one-dimensional models for
the simulation of two-phase flow. We label the two phases
with G for gas and L for liquid, but the following also
applies to a lighter liquid and a heavier liquid. For both
models we assume that at least one phase is compressible.
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Figure 1: Illustration of phase areas and perimeters as used in the
two-fluid model

2.1. Two-fluid model

The first, and most general, of the two models is a
two-fluid model for stratified flow in a horizontal, round
pipe. Each phase is represented by a mass and momentum
balance equation, respectively given by

0y (Appp) + 0s (Agppus) = 0, (1)

and

0 (Appgup) + 0s (Apppul + AgPav.s — Appint)

+ApOspin + D Ty Poy =0, (2)
~€{L,G,W}
v#B

where § € {L, G} denotes a phase, ¢ [s] is time, s [m] is
the pipe longitudinal distance, pg [kg m~3] is the density
of phase 3, ug [m s7!] is the average velocity of phase
B in longitudinal direction, Ag [m?] is the area occupied
by phase 8 and Pg, [m] is the length of the interface of
phase 8 with v € {L, G, W}, where W denotes the pipe
wall, pay g [Pa] is the average pressure of phase /3, pint [Pa]
is the pressure at the interface, hiny [m] is the height of
the interface with respect to the centre of the pipe, r [m]
is the radius of the pipe and 75, [N m~2] is the average
interface stress between phase 8 and phase or wall v. For
an illustration of some quantities, see Figure 1.

The model is the result of applying cross-sectional av-
eraging per phase of the three-dimensional conservation of
mass and the Navier-Stokes equations. See Van Zwieten
et al. [19] for the derivation of this model. The model is
similar to the models used by Liao et al. [6] and Fullmer
et al. [8]. A difference worth noting is the hydrostatic pres-
sure term puy g in the momentum equation (2), which is
present due to the compressibility of the phases.

The areas of the liquid and gas phase cross sections are
respectively given by

hint
Ar, = r? arccos <— . ) + Nint M’ (3)
2 hint 2 2
Ac =r7arccos | — | — hing\/ 7% — R, (4)
r

The perimeters of the liquid-gas, liquid-wall and gas-wall
interfaces are respectively given by

Prg = PoL = 24/72 — h,, (5)

and

hin
Prw = 2r arccos (— t) , (6)
T

o). )

The hydrostatic pressure integrated over the liquid and
gas phase areas are respectively given by

and

Paw = 2rarccos <

1
ALDav,l, = Pint AL + pLG (hintAL + B 3@) , o (8)

and

1
AG’pav,G = pintAG + PGY (hintAG - 12PL3G> ) (9)

where g [m s72] is the gravitational acceleration.
The shear stress term 73,,8 € {G,L} is physically
modelled by the correlations of Taitel and Dukler [20]:

o :{ . 2fepsuslusl if y =W
7 2 fimepa (up —uqy) lug —uy| if v € {G,L},
(10)
where pug [Pa s] is the dynamic viscosity of phase 3, the
friction factor f at the phase-wall interfaces and the gas-
liquid interface are respectively given by

0.2
jg:QM6<m%me) , Bed{L,G}, (11)

and
fint = max{fg,0.014}, (12)

and the hydraulic diameters Dg are given by

HLo o ifg=L
Dg = o ’ (13)
{amﬁmﬁﬂg

The two-fluid model is closed by defining the density pg
and the viscosity us for each phase 3 and the pipe radius r.
Those values are specific to a test case and are defined in
Section 6 where the numerical results are discussed. The
remaining unknowns are the interface pressure pj,, the
interface height hi,; and the phase velocities uy, and ug.

2.2. Homogeneous equilibrium model

The second model considered is the homogeneous equi-
librium model. That model is based on the assumption
that the two phases are mixed and flow with a single mix-
ture velocity, uy [m s™1]. Let Ay[m?] denote the area of
the pipe cross section,

AM :7'(7"2, (14)

and ag the holdup of phase §, with the constraint that
the holdups sum to one,

oy, +aq = 1. (15)



The mass balance equations will then read:

9¢ (Apps) + 0s (Agpsun) =0, (16)
with the phase areas defined by
Aﬁ = AMOAﬁ. (17)

Compared to the two-fluid model only one, total momen-
tum balance equation remains:

O (Anpaunt) + 05 (Anpauiy + Avpat) = —maw Pu,

(18)
where myw [N m™2] is the wall friction of the mixture,
pum [Pa) is the mixture pressure and py [kg m™3] is the

mixture density, an area-weighted average of the phase
densities,

pPM = aLpL + aGgpc- (19)

The total momentum equation (18) is conservative, whereas
the momentum equations (2) for the two-fluid model are
not conservative.

For the wall friction we use Churchill’s friction factor.
The wall shear stress is given by

1
™MW = ifMWPMUM |, (20)
with friction factor fyrw given by
1
12 12
_ 3 ~15
faw =2 ((Re) + (01 + 02) > ; (21)

parameters ©; and ©9 given by

7\ 09 . 16
0, = (—2.457ln ((Re> +0.27 ;;)) . (22)

and )
o, _ 37530\ "
>7  Re ’
where €pipe is the pipe roughness. The Reynolds number
of the mixture is defined as

(23)

27‘pM UM
HM

Re = : (24)

and the mixture dynamic viscosity is defined as the area-
weighted average of the phase viscosities,

HM = oL pr, + agpc- (25)
The Homogeneous equilibrium model is closed by defining
the density pg and the viscosity ug for each phase 3, the
pipe radius r and the pipe roughness €yipe. Those values
are specific to a test case and are defined in Section 6
where the numerical results are discussed. The remaining
unknowns are the mixture pressure pyr, the liquid holdup
ar, and the mixture velocity uys.

3. Discontinuous Galerkin discretisation of the two-
fluid model

In this section we derive the space-time DG discreti-
sation for both models given in Section 2, expressed in
general form as

8tftj ( ) + a fsg

+ ZFsyk st

s (Djasftj (9)) +g;(q) =0, (26)

where s € § C R refers to space and t € T := [0,T] to
time, ¢ : S x T — RY is the vector of unknowns as a func-
tion of space-time position, f; : RV — R the mapping
from unknowns to conserved quantities, fs : RY — R the
conservative part of the spatial flux, Fy : RN — RVXN the
non-conservative part of the spatial flux and g : RN — RY
the source term. For brevity the arguments s and ¢ of ¢
are omitted here and in the following. The diffusion co-
efficients D : RY are introduced for stability and will be
discussed in subsection 3.4.

3.1. Weak formulation

Let (sq,8p) X (ta,ts) €S x T be a rectangular space-
time element. Let v : § X 7 — R be a function on the
space-time domain. Multiplying the general PDE (26)
with test function v and integrating over the element gives

/ / (atfw 0ty (@) + > P (9) asqk> dt ds
k

RS

Integration by parts of the first, second and fourth term
yields

Sp tb
[ Conts@
Sa ta
Sp ty
+ / / v Z Fyjr (q) Osqidt ds
Sa ta k
Sp ty
+ / / (0svD;0s frj (q) + vg; (q)) dt ds
Sa ta
Sp X X tb tb . .
+ |:/ vmftj (qm) d8:| + |:/ vmfsj (qm) dt:|
Sa t=t, ta

ty . . Sb
+ |:/ Uijasftj (qm) dt:|
ta

The superscript ‘in’ denotes the trace of a function from
within the element, formally

(D;0s fi; () + g5 (q)) dt ds = 0. (27)

Osvfs; (q)) dt ds

Sb

S=Sq

0. (28)

S=Sq

¢ (s,t) := lim q(s —eng (s,t),t —eng (s,1)),  (29)
e—0t

with ng,n¢ the unit outward normal of the element. The

value at the opposite side of the element boundary is de-

noted with superscript ‘out’:

" (s,t) := lim q(s+eng(s,t),t+eng (s,t)).  (30)
e—0t



3.1.1. Temporal flux

For the temporal flux at the time boundary we use
plain upwinding. This amounts to replacing ¢'™ in the t,-
boundary integral of Equation (28) with ¢°**. The total
time flux boundary contribution becomes

Rt = * inft (4in d :|
' |:/3a ° ! (q ) ’ t=tp
_ |:/ 'Uinftj (qout) ds] ; (31)

=la

replacing the second term in Equation (28).

3.1.2. Spatial fluz

The treatment of the spatial flux at the spatial el-
ement boundaries is based on an approximate Riemann
solver. Since the system of PDEs is non-conservative, at
least for the first model described in Section 2, standard
Riemann solvers cannot be applied. Vol'pert [21] studied
non-conservative systems and interpreted the non-conser-
vative product as a product of a function with a measure.
Dal Maso et al. [22] generalised this interpretation of the
non-conservative product, known as the DLM-measure. At
a discontinuity the non-conservative product is defined as
the integral of F'°*a! gver a path connecting both ends
of the discontinuity. Given a family of integration paths,
this gives a rigorous definition of weak solutions to the
non-conservative system. These weak solutions, however,
depend on the chosen integration path. See for example
Chalmers and Lorin [23] for a discussion on chosing appro-
priate integration paths. Several conservative numerical
schemes and approximate Riemann solvers have been gen-
eralised to non-conservative systems based on the theory
by Dal Maso et al. [22]: Lax-Friedrichs and Lax-Wendroff
[24], Roe’s approximate Riemann solver [25], HLL [26] and
the Osher Riemann solver [27]. Parés [28] introduced the
concept of path-conservative numerical schemes, as a gen-
eralisation of conservative schemes.

Due to the rather complex spatial flux of the two-fluid
model defined in Section 2 we did not consider deriving
an analytical expression of the eigenvalues and eigenvec-
tors of Ftotal Instead we rely on numerical computation.
Since the Osher Riemann solver [27] requires the eigen-
structure to be known along the integration paths connect-
ing both ends of discontinuities, we deemed this method
too expensive. The simpler Lax-Friedrichs method is in
our experience not stable enough for the PDEs considered
in this article. We settled for a linearised Riemann solver
based on Roe’s approach [25], which requires a single nu-
merical evaluation of the eigenvalues and eigenvectors per
spatial boundary point, but we replace Roe’s matrix with
Fotal(gav) where ¢*" is the average value of the inner and
outer trace,

w1 ,
¢ =5 (4" + ™) V. (32)

Let Ffotal . RN — RNXN be the total spatial flux ma-
trix, combining the conservative flux Jacobian with the

non-conservative flux matrix:

F;ﬁtal (Q) = 8qz fsj (Q) + Iy (Q) s (33)
and let Fyj; - RN — RV¥*N he the temporal flux Jacobian:
Fiji (q) = O frj (Q) (34)

Let A\, and X be the k-th eigenvalue and eigenvector of
the generalised eigenvalue problem:

DSOS (™) X =Y Foi (¢%) Xjrde VE. - (35)
l l

Solving the linearised Riemann problem and selecting the
centre state yields

G =a't >

K, if Apns<0

XX (@™ —q) . (36)

This definition of ¢* only applies for internal element bound-
aries. The domain boundary conditions are described in
Section 3.3. Before continuing we need the following defi-
nition of integration paths:

Definition 1 (Integration paths, multidimensional ver-
sion [22]). A Lipschitz continuous path ¢ : [0,1] x RV x
RY — RN s called an integration path if it satisfies the
following properties:

e The path defined by states ¢~ and g begins and ends
in those states respectively:
¢ (05¢7,q¢%) = q; and ¢; (L;q",¢") =qf
Vi,Va ¢t € RN, (37)

o If both states are equal, the path is constant:
¢; (T:¢,9) = ¢; Vj,Yg € RV, 7 € [0,1].  (38)

e For every bounded set U of RY, there exists k > 1
such that

’aTgb (T;q_7q+) - ar(b (T;w_,w+)| <
kl(am —w™) = (¢7 —w")|
Vg gt wT,wt €U, T ae. €10,1). (39)

e Reversing the arguments reverses the path:

o (r5q a7 ) =0 (1—75¢",q7)
Vg ,qt e RN, 7 €0,1]. (40)

Proceeding with Roe’s approximate Riemann solver
the contribution of the spatial flux flowing inward is given
by the following term

Sb

tp 1
[ [ o [ S @oasaral
a %

S=Sq



with ¢ = ¢(7;¢™, ¢*). By Definition 1 and Equation (33)
this can be simplified to

ty . . b
Ry — [/ " fsj (qm) dt} =
ta s=s

Sa

[/: v (fi (@) = f (a™)) dt}

Sb

5=S8gq

ty 1 b
/ o / SRy (¢>8s¢kdrdt] - (42)
ta 07 e

a

_|_

This term is to be added to the left hand side of Equation
(28).

We assume a linear path connecting the states ¢'™ and
*

q: ) .
b (T; q™, q*) =gq; (1—7)+gqjT. (43)

The choice of the integration path affects the solution to
the discrete system. Rhebergen et al. [26] have investi-
gated the effect of the path on the numerical solution, in
particular the shock speed, for a similar two-fluid model
and have concluded that different paths lead only to min-
imal changes in the solution. Furthermore, they note that
for a linear path a low-order Gauss integration scheme
is sufficient and yields the most computationally efficient
scheme.

3.1.8. Diffusion

Following the DGFEM formulation of Baumann and
Oden [29] for a convection-diffusion model the last term of
Equation (28) is replaced by

Ry =

to 1 . i *
[/ =5 D505 (v +0") (fiy (¢™) = fus (¢™)) dt}

ta s=54

B . ) 5o
+|: t iDjas (ftj (qout) 4 ftj (qln)) (,Uout o Uln) dt:| .

a =Sa

(44)

Bassi and Rebay [30] have compared the stabilisation of
the diffusion term from Equation (44) with a more elabo-
rate local DG type treatment [31] and they concluded that
the latter is superior with respect to the accuracy on coarse
meshes. However, due to the additional computational
complexity we have chosen for the simpler option. For an
overview of stabilisation methods for diffusion terms we
refer the reader to Arnold et al. [32].

8.1.4. Result
Combining all additions and replacements defined above,
the resulting weak formulation is given by

Sb ty
/ / (=0 fij (q) — Osvfsj (q)) dt ds
Sa tg
Sb ty
* / / 0 Fyk (q) sqndt ds
Sa ta B

Sp ty
n / / (—0,0D;0, fi; (a) + vg; (@) dt ds
Sa ta
+ Rt + Ryt + Raig = 0. (45)

3.2. Mesh and basis

We use a structured partition £ of the space-time do-
main S X T as (coarse) mesh. For each element E € £ we
define a local basis as a tensor product of one-dimensional
Legendre basis functions with maximum order p for space
and time, with support limited to element E. The basis
Q is defined as union of all element bases.

Given a space-time mesh £ and basis, solving the com-
plete discrete system at once is in general too expensive
and also unnecessary. We create a possibly finite sequence
{€0,&1,&, ...} of subsets of £, such that the sequence is
a partition of £ and all elements of & are a subset of
time-interval S x [tg,tr,]. Let Qr be the subset of basis
functions with support on time slab k. Given a sequence
of time slabs, we can solve each time slab one after another
due to upwinding in time (Section 3.1.1).

8.8. Boundary conditions

For the boundary conditions, if present, we use the
same machinery as introduced in Section 3.1.2 for the in-
ternal element boundaries. In absence of an outer value
g°"", the linearisation state ¢V, introduced in Section 3.1,
is chosen equal to the inner value ¢'™.

Assume that there are Ny, problem specific (external)
boundary conditions at the left boundary and Ny at the
right boundary, respectively given by the following roots

ij (C]*) =0, je€ {0717~ ., NL — ]-}7 (46)

and
fir (@) =0,

These boundary conditions are supplemented with the fol-
lowing (internal) outflow boundary conditions:

je{0,1,...,Ng —1}. (47)

Z X (4 — ¢") =0 for all k satisfying Agng > 0,
J

(48)
where eigenvalues A, and eigenvectors X, are defined by
Equation (35) and ny is the spatial component of the unit
outward normal. Note that the number of boundary condi-
tions being the sum of all internal and external conditions,
should equal the number of equations n.
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Figure 2: DGFEM solver algorithm with a maximum of K adaptive
mesh refinements

3.4. Artificial viscosity

To incorporate artificial viscosity, we use the technique
described by Persson and Peraire [17]. For each time-slab
we initially solve the system without artificial viscosity.
Then we add a sufficient amount of viscosity, via parameter
D of Equation (26), such that the smoothness is above a
threshold for all elements. The algorithm is illustrated in
Figure 2 with K set to zero.

The smoothness indicator is given by [17]

Sp ty A2
/ / 19 =01 4y 4, (49)
sq Jt |Qj|

a

where § is equal to the solution ¢ projected onto a solution
space with degree p— 1, one degree lower than the solution
space for ¢, hence the difference ¢; —¢§; represents the high-
frequency part of the solution ¢; only.

3.5. Local refinement

Discontinuities reduce the (uniform) scheme to first or-
der in mesh width. When using a high-order basis, uniform
refinement is less effective when discontinuities are present.
To increase the efficiency (in terms of the number of ele-
ments in time slab k, &, or the number of basis functions
in time slab k, #9Qj) we apply local mesh refinement in
the neighbourhood of discontinuities several times, yield-
ing a mesh where the element density increases gradually
towards the discontinuity. A fictive example is given in
Figure 3.

The refinement scheme works as follows. For each time-
slab we compute a solution on a coarse mesh without ar-
tificial viscosity. Based on the smoothness indicator we
refine elements where the smoothness is below a thresh-
old and recompute a solution on the refined mesh. The
refinement step is repeated a predefined number of times
K or until all elements are smooth enough, whichever is
reached first. Finally, we add viscosity to elements with
a smoothness below a threshold and recompute a solution
one more time. The complete algorithm with refinement
and artificial viscosity is illustrated in Figure 2.

discontinuity
| | | |

Figure 3: Example of multilevel h-refinement near a discontinuity
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Figure 4: Staggered grid layout of the FV scheme

3.6. Implementation details

The weak formulation is linearised by Newton’s method.
The jacobian is computed using (automated) symbolic dif-
ferentiation and the linear system, part of Newton’s method,
is solved using UMFPACK [33]. The algorithm is imple-
mented in Python and uses the finite element package Nu-
tils. The implementation is available online. [34]

4. Finite volume discretisation

4.1. Spatial discretization

We discretise the two-fluid model, i.e. equations (1)
and (2), by using a finite volume method on a staggered
grid. As indicated in figure 4, the staggered grid consists
of both p-volumes, O, and u-volumes, 2". Each volume
consists of a liquid and a gas phase: 2 = Qp, U Qg, for
both u- and p-volumes.

We start with conservation of mass for a phase 3, (8
is liquid or gas). Integration of equation (1) in s-direction
gives:

) ((9’5) p}é) + (Agpp) T a1
—(Appp) ™2 =0, (50)

with the finite volume size approximated by

() = A58, (51)



The finite volume size can be used to rewrite the semi-
discrete equation for conservation of mass into:

o (Appe) TP — (Agpg) Tl
at ( ’ Pl ) + - = 0
BrB Ast
P
(52)
The term (Aﬁp,@)i+1/2 requires interpolation from neigh-
bouring values, which is described below. For conservation
of momentum we proceed in a similar way. Integration of
(2) in s-direction gives:

w12 ;
TR

+ (Agpp)'™ ( g“) ~ (Appg)" (uh)” =
B A;H/z (pi+1 7pi) - (pi+1LGi+1 _ p;'aLGf;)

z+1/2 i+1/2 1+1 2
h Z Tay Ly As 2, (53)
ve{L,G,W}
v#B
where 172 P
(25) " = AP As 2, (54)

and the level gradient terms are given by

LGg = hAg + iwi", LGy, = hA;, — iw?’. (55)
12 12

The discretisation of the homogeneous equilibrium model,

equations (16) and (18), makes use of the same staggered

grid layout. The semi-discrete equations for conservation

of mass and momentum for this model will then read:

31&( Zﬁpi\/l)
(AQPM)iHﬁ u;{s—l/z B (AﬁpM)iﬂ/z ;/[1/2 -
+ 4 =0, (56)
As;
and

o, (Aﬁr1/2pﬁr1/2uﬁr1/2)
(Cuamm)™" ()" +
+ AgiT1/?

((AMPM) (UM) + (AMP)i>
- ASLH/Q

(Awp) ™)

_ *T&+\;]/2P&+1/2. (57)

Several terms in equations (52), (53) (56) and (57) require
approximation. All terms that are not part of the con-
vective terms are interpolated using a central scheme, e.g.
A?lp = %(A}a + A;;Ll). The convective terms, on the
other hand, require more care in order to prevent numeri-
cal oscillations. They are computed in an upwind fashion
using a high resolution scheme as follows. Let ¢ denote a
generic quantity on a cell face (either u? or pA) and let 6
be a smoothness indicator, given by

[
¢d - ¢c

9i+1/2 (58)

where

s dus6a) = {

if wit1/2 >0,
if uit1/2 < 0.

[qbi_l, Qsi, ¢i+1]
[¢i+2’ ¢i+1’ ¢z]
and ¢g4, ¢, and ¢. denote the downstream, upstream and
central quantities of the face under consideration. The
smoothness indicator is used to compute a slope-limiter
1(9), from which the face quantity follows as:

(59)

. 1.
G2 = g+ SIHY2 (60— 60). (60)
In the current study the van Albada limiter,
62+ 0
(0) = 211 (61)

has been used, mainly because of its continuous differen-
tiability, which is a favourable property when the fully
discrete equations are solved with a Newton solver.

4.2. Boundary conditions

Boundary conditions are set based on the characteris-
tics of the system at the boundary [35]. To determine the
characteristic equations, the system is written in quasi-
linear form:

total
8tft] § : sjl

Defining A\, and X, as the k-th eigenvalue and eigenvector
of F19*!(q), see equation (35), we can write equation (62)
as:

)Osq1 + g5 (¢) =0.  (62)

8tft] + ZXjkgk + g9; g ( ) 07 (63)

where

L, = Mg Z X];llasql. (64)

1

Equation (63) can now be used for time integration of
the boundary points where boundary conditions are set
through ¢, by making use of the sign of \; at the bound-
ary. At the left boundary outgoing waves are associated
with negative eigenvalues while at the right boundary out-
going waves are associated with positive eigenvalues. In
the case of outgoing waves, equation (64) can be used to
calculate ¢ by approximating 0sq; with finite differences
calculated from the interior of the domain. On the other
hand, incoming waves are associated with positive eigen-
values at the left boundary and negative eigenvalues at
the right boundary. In the case of incoming waves, £
can not be calculated from equation (64), rather it is set
through the imposed boundary conditions at the left and
right boundary. As an example we consider the homo-
geneous equilibrium model for which we can expect two
positive eigenvalues and one negative eigenvalue assuming
subsonic flow. This will lead to two incoming waves at the
left boundary (inlet), which are determined from the time
dependent boundary condition for the mass flow of the gas
and the liquid by using equation (63) to solve for £;. At
the right boundary (outlet) we have one incoming wave,
which is set by fixing the outlet pressure.



4.3. Temporal discretization

The semi-discrete equations of the two-fluid model (52)
and (53) can be written in the form

O fij (q) = G (q)- (65)

The semi-discrete equations are solved with the BDF2
scheme (Backward Differentiation Formula):

1 4 1 2
At <ftj (¢"") - gftj (¢") + gftj (qn_l)) =3
(66)
We have chosen the BDF2 scheme for the stability prop-
erties. The scheme is strongly A-stable (L-stable) which
enables us to use large time steps at the cost of damping of
fast transients. Equation (66) forms a non-linear system
of equations that is solved using a Newton approach:

5 | g 4™ = 30,6 (4™ A
k

= _it (ftj (¢™) — gftj (¢") + %ftj (qn1)>
+2a6m. @)

To solve the non-linear system, we solve for the incre-
ments in the primitive variables Ag, but the final system
that is solved is (66), and as a consequence mass and mo-
mentum will be conserved. The Jacobians d,, fir(q) and
04;G1(q) are computed automatically by using finite dif-
ferences. The constraint in the form Agq = A — Ay, is used
to close the system of equations. The time integration of
the homogeneous equilibrium model (56) and (57) is done
in the same way.

5. Stability and well-posedness

We introduce notions of stability and well-posedness in
the general setting of the following quasilinear system of
PDEs on infinite spatial domains,

Zthl atql +ZFSJI

where ¢ : R x [0,7] — R¥Y is a vector of quantities,
F,,F, : RN — RV*N are matrices and g : RV — RN a
vector. For readability the arguments (s,t) of ¢ are omit-
ted. Note that both models introduced in Section 2 can be
written in this form. We assume that matrix F} is invert-
ible. However, at the location where one phase is vanishing
the two-fluid model given above yields a singular matrix
Fi. This situation, which occurs when a full liquid slug
body is formed, is not considered in this article. Instead
we restrict the simulations to the formation and propaga-
tion of liquid hold-up waves, which never reach the top of
the pipeline.

Assume ¢ is a solution to PDE (68) and constant in
space and time. Adding a small perturbation ¢ : R x

)0sq1 + g5 (¢) =0,  (68)

Gj (qn+1) .

[0,7] — RY to ¢ and linearising the PDE in ¢ around ¢
yields
ZFt]l atq +ZFle 8 € +28qlgj € =0.
(69)

Again, for readability we omit arguments (s,t) of e. Solu-
tions to this linear system of PDEs are of the form

¢j (s,t) = rjettks=t) (70)

where r € CV is a vector, k € R a wave-number and w € C.
Substituting the solution (70) into PDE (69), moving the
first term to the right hand side and dividing by ¢ yields the
following generalised eigenvalue problem with eigenvalue w
and eigenvector r,

Z (kFgji (q) — i0q,9; (q

l

Tl —wZFt]l 7. (71)

For a fixed wave-number k all eigenvalues w and eigenvec-
tors r satisfying this equation define non-trivial solutions
to the linearised PDE (69).

Based on the solution (70) we define:

Definition 2 (growth, dissipation). Growth (in time) is
the real part of —iw, or equivalently the imaginary part of
w. Dissipation is the imaginary part of —w.

Definition 3 (dispersion). Dispersion is the imaginary
part of —iw, or equivalently the real part of —w.

The system of PDEs (68) is called stable at g if there is
no (strictly positive) growth, i.e. for all wave-numbers k all
eigenvalues w of characteristic equation (69) satisfy Imw <
0. The system is called well-posed if the growth is bounded
for all wave-numbers k. An equivalent condition is that
all eigenvalues A of the following generalised eigenvalue
problem are real,

Z Fagi(g)ri=A Z Fji(a)r (72)
! I

For models without source terms the notions of well-posedness

and stability coincide, i.e. the system is either stable and
well-posed or unstable and ill-posed. To see this, note that
the characteristic equations (71) and (72) are equivalent,
with w

A= T (73)
If ImA > 0, then Imw goes to positive infinity for the
wave-number k going to infinity, which implies unbounded
growth, hence the system is ill-posed.

Both the two-fluid model and the homogeneous equi-
librium model have no source terms in case the phases are
inviscid.

The homogenous equilibrium model is unconditionally
stable. The two-fluid model, however, is not uncondition-
ally stable. When the slip velocity, the velocity difference
between the two phases, becomes too large the model be-
comes ill-posed [6]. This is a known problem of the two-
fluid model. We refer the reader to Prosperetti [36] for an
analysis.



5.1. Analysis of the DGFEM scheme

In this section we analyse the effect of the DGFEM
scheme on eigenvalue w. We were unable to find the con-
vergence rates for the eigenvalues @ of the system obtained
by applying the spatial part of the DGFEM scheme. How-
ever, Ainsworth [37] was able to prove convergence of the
wave-number in otherwise the same setting. The imagi-
nary part of the wave number converges with order 2p + 2
in mesh width and the real part with order 2p+3. Based on
this result and because the two problems are very related
we expect similar convergence behaviour of the eigenval-
ues.

For the analysis of the temporal part we continue with
the evolution of a single characteristic wave with eigen-
value w of the spatial part,

Opw (t) = —iow (t), (74)
which admits the following solution:

w(t)=w(0)e ™ t>0. (75)
Multiplying this equation with a test function, integrating
over temporal element b with length At and multiplying
with the inverse of the mass matrix yields

> Tin 0@mp + Y Tim, —10m 51 = =i, (76)

where 1, € CP*! is the vector of coefficients representing
w in element b and matrices Ty, 0, Tim,—1 € RPHI* @+
represent the time derivative, acting respectively on the
solution of element b and the previous element. Moving
the first term to the right hand side and multiplying the
equation with the inverse of

My, = Timo + Zwélm (77)

gives
Wi =D My Tiam, —10m b1 (78)
Ilm

Since the solution at element b depends only on the solu-
tion at the downwind end of the previous element we can
restrict the discrete evolution equation (78) to downwind
ends. Let R € RPT! be the restriction of a coefficient vec-
tor @ to downwind ends and E € RP*! any expansion of
value to a coefficient vector such that the restriction of the
expansion is one,

Y RE =1. (79)
l

Multiplying Equation (78) with R and replacing w; with
the expansion of a scalar w € C gives the scalar equation

Wy = G (&, At hp—y = — Y RyM Ty Bty (80)
lm

Lesaint and Raviart [38] have analysed this DGFEM
scheme and proved the following convergence theorem:

Theorem 1 (Convergence of downwind end values [38]).

The DGFEM scheme (76) converges globally with order

2p+1 in time step size At, i.e. the error after one step is

|G (@, At) — e 2| = O (APH?). (81)

This gives the following convergence result for the eigen-
values @ of the discrete system:

Corollary 1 (Convergence of eigenvalues of discrete sys-
tem).
o — @] = O (Ar*Pth) (82)

Furthermore, Lesaint and Raviart [38] showed that the
DGFEM scheme is strongly A-stable, or L-stable.

6. Numerical Results

We analyse the proposed DGFEM scheme using two
test cases. In Section 6.1 we present a Kelvin-Helmholtz
test case and verify the theoretical stability results pre-
sented in Section 5.1. This test case refers to the wave
formation at the interface of the flow of air and water in
a horizontal pipe at atmospheric pressure. In Section 6.2
we analyse the performance of the DGFEM scheme with
and without adaptive refinement.

6.1. Stability analysis using Kelvin-Helmholtz test case

In this section we verify the theoretical results of Sec-
tion 5 for the two-fluid model discretised with the uniform
DG and FV schemes by comparing the theoretical and ob-
served growth rate and dispersion of small sinusoidal waves
on infinite domains.

As initial condition we use a constant reference state
gref € RY that satisfies the system of PDEs with a sinu-
soidal perturbation with magnitude c,

Ginitial,j (S) = Qref,j + cRe (T'jeiks) 5 (83)

where r € RY is a unit eigenvector of the system linearised
around ¢ef, see Equation (69), and k is a wave-number.
As a reference solution we use the exact solution to the
linearised model, given by

Qinj (5,1) = Qref,j + cRe (Tjei(ks_“t)) , (84)

where w € C is the eigenvalue corresponding to the eigen-
vector r. This is close to the real solution when the am-
plitude c is very small.

We start the analysis of the uniform DG and FV schemes
with the inviscid two-fluid model. We use the following
reference state,

Pint 105 Pa
o hint o 0m
Qref = ur, - 1m S—l ) (85)
UG 15ms™ !



and the following model parameters: pipe radius r = 0.039 m,

gas density pg = 1.1614 - 107%p in kg m~3, liquid den-
sity p, = 1000 kg m~3, gravitational acceleration g =
9.8 m s~2 and viscosity is set to zero. Note that any choice
for the reference state g.of would be an equilibrium solution
of the two-fluid model, because the source terms, friction
and longitudinal gravity forces, are absent. Since there
is no viscosity, the model is either stable and well-posed
or unstable and ill-posed. In this case the chosen refer-
ence state is in the stable region, but close to the ill-posed
region.

At the reference state the two-fluid model has two large
— in magnitude — eigenvalues, associated with pressure
waves, and two significantly smaller eigenvalues, associ-
ated with mass transport. For oil and gas applications —
our main interest — the latter is more relevant. Of the
remaining two small eigenvalues we choose one, but note
that the following results hold equally true for the other.

We choose k = 27 and let w and r be the third (al-
gebraically) eigenvalue and eigenvector of the system lin-
earised around qpef:

w=28.070...-10°, (86)
and
—9.980...-10"1
1.394...-107%
"= 1.294...-1073 (87)
6.255...-1072

Trailing dots indicate that the displayed value is rounded.
The amplitude of the perturbation c is chosen such that the
amplitude of the liquid holdup perturbation is 10710 for
DG and 1076 for FV. We use a smaller perturbation for
DG and quad precision arithmetic because for the high-
order DG scheme we would not able to observe the ex-
pected rate of convergence otherwise. In absence of fric-
tion the imaginary part of w is zero, hence the amplitude
of the perturbation should remain constant.

Let the relative error be the Lo-norm of the difference
between the discrete solution and the reference solution
divided by the Lo-norm of the reference solution. For
FV we use the ls-norm instead of the Ls-norm. Figure
5 shows the relative error of the liquid holdup at ¢t = 1,
obtained using the second order FV scheme and the DG
scheme with bases of order p, i.e. (p + 1)? basis functions
per element. The horizontal axis shows the square root of
the average space-time density of the number of degrees
of freedom, abbreviated as sqrtdofs, required to represent
the discrete solution on the space-time domain [0, 1]x [0, 1].
For the uniform DG scheme the number of degrees of free-
dom is inversely proportional to the area of an element
and the square root (sqrtdofs) inversely proportional to
the width of an element, assuming a fixed aspect ratio of
the elements. For both schemes we set At = As. Reduc-
ing the element width As with a factor of two increases
the sqrtdofs by a factor two. A second order scheme the-
oretically reaches second order convergence with respect

11
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Figure 5: Convergence of the relative error of the liquid holdup for
the linear, inviscid Kelvin-Helmholtz test-case

to As, hence order minus two in terms of sqrtdofs. All
schemes converge with the theoretical rate. We deliber-
ately chose sqrtdofs as measure over the mesh width As
because the former is a good indicator for the amount of
work and memory that is required to find a discrete solu-
tion, both for uniform and non-uniform meshes, and the
latter is not uniquely defined for non-uniform meshes. Us-
ing the sqrtdofs enables us to give a unified analysis for
both the uniform and non-uniform schemes.

As noted above we are interested in the rate of con-
vergence of the observed eigenvalue of the discrete sys-
tem. Let g5 be the discrete solution and ay,(gp) the liquid
holdup of the discrete solution. For DG the observed eigen-
value wy, can be computed by measuring the ratio between
the projections of ar,(gs) on the sinus e*¢ at time ¢ and 0:

wp (t) = ‘In <fok or (qn (s, 1)) e ds) |
t JoF av(an (s,0)) e~k ds

We deliberately leave out the projection error, hence the
term gp,(s,0) in the denominator instead of ginitial(s). Sim-
ilarly for F'V the observed eigenvalue wy, is given by

wh(t)—t (g; ZZE((

where n is the number of cells.

Figure 6 shows the relative error of the growth rate
(see Definition 2) at ¢ = 1 s. For all DG schemes the
growth rate converges with order —(2p + 1) with respect
to sqrtdofs, or 2p+1 with respect to the element width As.
That is significantly faster than the rate with which the
discrete solution converges. The convergence rate meets
the expected convergence rate of the spatial part and the
theoretical rate for the temporal part stated in Section 5.1.
For the FV scheme, however, the amplitude converges at
a rate of —2 with respect to sqrtdofs, which is the same
rate as found for the discrete solution. Similarly, Figure

(83)

n(s1,1)) et ds

(Sl,O))e—iksl ds) ) (89)
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Figure 6: Convergence of the relative error of the growth rate at

t = 1 s for the linear, inviscid Kelvin-Helmholtz test-case

dispersion error
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Figure 7: Convergence of the error of the dispersion at t = 1 s for
the linear, inviscid Kelvin-Helmholtz test-case

7 shows the dispersion error (see Defintion 3) at ¢ = 1.
For the DG schemes the dispersion converges even faster,
with rate —(2p+2), which in accordance with the expected
rate of convergence of the spatial part, but it is better than
the theoretical rate of convergence for the temporal part.
Regarding the growth rate and dispersion the supercon-
verging DG scheme outperforms the FV.

Next, we add viscosity to the model and reiterate the
above convergence results. The gas dynamic viscosity is
set to ug = 1.8 -107° Pa s, the liquid dynamic viscosity
to pur, = 8.9-10~* Pa s and the pipe roughness to €pipe =
10~® . The turbulent wall friction and interfacial stress
is represented by the model of Taitel and Dukler as was
described in Section 2. We set the reference state to

Pint 10° Pa
. hint . 0m
Qref = ug, = 1m S_l ; (90)
e 13.978... m s~ !

and add the following artificial body force to the right hand
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Figure 8: Convergence of the relative error of the liquid holdup for
the linear, viscous Kelvin-Helmholtz test-case

side of both phase momentum equations (2)

(76.396...) Ag. (91)

The extra body force makes sure that g..f is an equilibrium
solution of the model. Both the gas velocity and artificial
body force coefficient are obtained by numerically solving
for the equilibrium condition: zero net momentum source
per phase.

Again, we use initial condition (83) with w and r equal
to the third (algebraically) eigenvalue and eigenvector, and
with the amplitude ¢ such that the amplitude of the liquid
holdup perturbation is 1071° for DG and 10~ for FV. The
third eigenvalue is given by

w=8457...-10° — 3.605i - 10~ . (92)
and the third eigenvector by
9.496...-1071 +3.062...i-107"
| —1.604...-107* - 2.132...i-107° (93)
"T | —1.852...-1073 4+ 5.960...7- 1075
—6.622...-1072-9.132...5-1073

The eigenvalue has a negative imaginary part, hence the
initial perturbation will grow in time.

Figure 8 shows the relative error of the liquid holdup
with respect to the exact solution of the linearised model
(84). The results are similar to the inviscid case. For the
DG schemes the liquid holdup converges with rate —(p +
1) in terms of sqrtdofs. For the FV scheme the rate of
convergence is —2. Also the results for the growth rate and
dispersion errors, show in Figures 9 and 10, are similar to
the inviscid case. The convergence of the dispersion error
is now on par with the growth rate error and corresponds
to the theoretical analysis of Section 5.1.

We proceed with the same viscous model, but we in-
crease the amplitude ¢ of the initial perturbation such
that the amplitude of the liquid holdup perturbation is
1072, The initial perturbation is now so large that the
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Figure 12: Second and third eigenvalue of the linearised discrete
10° system of the non-linear, viscous Kelvin-Helmholtz test case at time

steps t = nk/w,n € {0,1,...,6}
1072 +
g 10-4 non-linearity of the model becomes significant. The effect
] of the non-linearity is visible in Figure 11, which shows the
.g 10-6 liquid holdup of a discrete solution on part of the spatial
g domain at time steps nk/w,n € {0,1,...,6}. The sinu-
5 10-8 - soidal perturbation of the liquid holdup grows in time and
develops a shock. The third eigenvalue, shown in Figure
10-10 - 12 in the upper half, confirms this: there is a very rapid
drop with respect to positive s. The second eigenvalue,

shown in the lower half of the same figure, grows towards
the third eigenvalue. At the last time step displayed the
eigenvalues ‘touch’ each other and form a pair of complex
Figure 10: Convergence of the phase shift error of the liquid holdup eigenvalues, which I.narks the end of the well-posedness of
for the linear, viscous Kelvin-Helmholtz test-case the model (See Section 5).

square root of average dofs density [m~1/2 s71/2]

6.2. Convergence analysis using IF'P test case

We continue with the IFP test case, proposed by the
French Petroleum Institute and described by Omgba-FEssama
[39]. A 10 km long pipe with a diameter of 0.146 m is fed
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Figure 13: Evolution of the growth of the discrete liquid holdup of
the non-linear and linear, viscous Kelvin-Helmholtz test case

at the left side with liquid and gas at constant mass flow
rates 20 and 0.2 kg s~!, respectively. At the other side the
pipe is open at a pressure of 106 Pa. At t = 0 s the flow
is in steady state. Between ¢ = 0 and 10 s the gas mass
flow rate at the left side changes linearly in time from 0.2
to 0.4 kg s~1. In summary, at the left boundary we have

[ 20kgs™! ifB=1L,
Appgus = { 02kgs! iff=G, (94)
and at the right boundary
p = 10° Pa. (95)

We use the following equation of state for the gas phase,

pc = 1.261%5 kg m 2, (96)

and an incompressible water phase with density pr, =
1003 kg m~3. The equations of state differ from the orig-
inal problem definition.

The rapid change in the inlet mass flow rate generates
a wave that travels to the other side of the domain. The
wave consists of a transition in the liquid holdup over 20
to 30 m and travels with roughly 2 to 3 m s~! through the
pipe. After approximately 4500 s the wave has exited the
pipe and the flow slowly settles to a new steady state.

6.2.1. Analysis of the uniform DG and FV scheme

We use the Homogeneous Equilibrium Model and ap-
ply the second order Finite Volume (FV) scheme and Dis-
continuous Galerkin (DG) schemes defined earlier to sim-
ulate this test case. The ratio between the spatial and the
temporal element size, or point distance for FV, is fixed
at 16/125 s m~!, which yields a Courant number of ap-
proximately 10. This is well beyond any CFL condition
for explicit schemes. However, since we are using implicit
schemes and, for oil and gas applications, are more inter-
ested in the relatively slow transport of mass than the fast
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Figure 14: Convergence of the relative Lj-error of the liquid holdup
in terms of dofs for the IFP test case at ¢ = 3600 s

pressure waves, this choice is justified. For the DG scheme
we use a basis of degree 2 and 4.

Due to the very rapid transition in the liquid holdup
and, consequently, short distance over which the liquid
holdup changes compared to the length of the pipe, on
coarse, uniform meshes the jump is approximately a con-
tact discontinuity. In the FV scheme a limiter is applied
to dampen spurious oscillations emanating from this near-
discontinuity and in the DG scheme viscosity is added lo-
cally, using the approach described in Section 3.4.

Figure 14 shows the relative L;-error of the liquid holdup
at 3600 s for different discretisation schemes. In absence
of an exact solution we use, to compute the Li-errors, a
reference solution obtained using the DG scheme with a
sufficiently fine mesh. The horizontal axis displays the
square root of the average number of dofs in space and
time, abbreviated as sqrtdofs. For the Finite Volume and
Discontinuous Galerkin schemes with uniform meshes the
sqrtdofs is inversely proportional to the number of spatial
grid points or elements, since the ratio of the time step
size and the element width, or point distance for FV, is
held constant. Doubling the amount of spatial grid points
or elements increases the sqrtdofs by a factor two.

The FV scheme and DG schemes without local refine-
ment have a comparable performance: all converge roughly
with rate minus one in terms of sqrtdofs. Due to the dis-
continuity in the liquid holdup the theoretical order of con-
vergence in the Li-norm is one with respect to the element
width, hence minus one in terms of sqrtdofs. The DG
scheme with a fourth order basis is slightly more accurate
than DG with a second order basis for the same number
of dofs and is actually a bit higher than the theoretical
limit. This is caused by the viscous limiter being a bit to
aggressive on coarse meshes, which adds to the Ly error.

Figures 15 and 16 show the relative Li-error of the ve-
locity and pressure at 3600 s versus sqrtdofs. Contrary
to the liquid holdup there is a significant performance
difference between the Finite Volume and Discontinuous
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Galerkin schemes. The FV scheme maintains a conver-
gence rate of roughly minus one, which is similar to the
convergence rate for the liquid holdup. The DG schemes,
however, have a higher convergence rate ranging from mi-
nus one and half to slightly over minus two. Both the
velocity and pressure are continuous throughout the sim-
ulation, hence the rate of convergence is not theoretically
bounded to one in mesh width.

6.2.2. Analysis of the h-adaptive DG scheme

To improve the performance we apply local mesh re-
finement. In the neighbourhood of the discontinuity, as
sensed by the smoothness indicator, we repeatedly subdi-
vide elements in two by two parts in space and time un-
til either a predefined maximum number of refinements is
reached or the smoothness indicator drops below a thresh-
old. The order of the basis functions is unchanged.

Figure 17 shows the pointwise error of the liquid holdup
for a DG scheme with a basis of degree four, sixteen coarse
elements in space and a maximum of four levels of refine-
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Figure 17: Pointwise error of the liquid holdup for the IFP test case
with a coarse mesh of sixteen spatial elements, a basis of order four
and adaptive refinement with a maximum of four levels
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Figure 18: Local refinement level for the IFP test case with a coarse
mesh of sixteen spatial elements, a basis of order four and adaptive
refinement with a maximum of four levels

ment — the elements at the finest level coincide with a
uniform mesh with 128 spatial elements. The pointwise
error is the difference between the solution and the refer-
ence solution mentioned above. The pointwise error is in-
evitably large near the discontinuity, but rapidly decreases
away from the discontinuity. Figure 18 shows the number
of refinements: high near the discontinuity and gradually
dropping to zero away from the discontinuity, in line with
the expectations.

Figure 19 shows the pointwise error of the liquid holdup
at t = 3600 s for uniform meshes with sixteen and 128 spa-
tial elements and with an h-adaptive mesh with sixteen
coarse spatial elements and a maximum of three levels of
refinement, all with a basis of degree four. The discon-
tinuity is located approximately at s = 7500 m. For all
schemes the error is very large near the discontinuity and
several orders of magnitude smaller away from the discon-
tinuity. The errors of the fine uniform mesh and the mesh
with local refinement, having at its finest level elements
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Figure 19: Comparison of the error of the liquid holdup for the IFP
test case at t = 3600 s for uniform DG schemes with sixteen and 128
spatial elements and the adaptive DG scheme with sixteen spatial
coarse elements and a maximum of three levels of refinement, all
with a basis of degree four

of the same size as the fine uniform mesh, are quite simi-
lar, which shows that adding more elements in the smooth
region does not improve the accuracy.

The convergence results of the h-adaptive scheme with
an initial mesh of sixteen spatial elements and maximum
numbers of refinement ranging from zero to four are dis-
played in Figures 14, 15 and 16 as dashed lines, indicated
with ‘h-adaptive’. Compared to the uniform DG schemes
with bases of equal degree p, local refinement significantly
improves the performance in terms of sqrtdofs. After four
levels of local refinement the rate of convergence with re-
spect to sqrtdofs is up to twice as high as for the uniform
schemes. The relative errors of the uniform DG schemes
and of the h-adaptive DG schemes with at its finest level
elements of the same size as the uniform scheme — for ex-
ample the uniform scheme 64 spatial elements and the h-
adaptive scheme with sixteen spatial elements and a max-
imum of two levels of refinement — appear to be roughly
the same. This is expected because the error is dominated
by the discontinuity and both the uniform and h-adaptive
schemes have the same mesh width in the neighbourhood
of the discontinuity.

The h-adaptive scheme requires more work to obtain a
solution than the uniform scheme for the same amount of
dofs. This is partly because the h-adaptive scheme needs
to obtain a solution on a series meshes, increasing in level
of refinement, before reaching the final mesh. However,
when comparing the amount of work for an h-adaptive
scheme with a uniform scheme that yields the same accu-
racy we expect the former to be more efficient, given that
the difference in amount of dofs is substantial. Figure
20 shows the performance of the uniform and h-adaptive
schemes measured in wall clock time. The h-adaptive
scheme is significantly faster than the uniform scheme for
the same accuracy. It must be noted that this depends to
some extent on the implementation.
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Figure 20: Convergence of the relative Lj-error of the liquid holdup
in terms of wall clock time for the IFP test case at t = 3600 s

7. Conclusions

We have applied a space-time Discontinuous Galerkin
Finite Element Scheme to one-dimensional models for mul-
tiphase flow in pipelines and compared the performance
with a second order Finite Volume scheme. The solutions
of the DGFEM scheme converge in the Lo-norm with the
theoretically expected rate of convergence, which is order
p+ 1 in terms of element width, where p is the order of
the basis functions. The second order FV scheme shows
the expected second order convergence. A linear stability
analysis shows that the amplitude and phase shift of a sine
wave converge with a higher rate in the DG scheme, being
order 2p + 1 in terms of the mesh width, while the sec-
ond order FV scheme converges only with order 2. This
shows that a second order DGFEM scheme is superior to
a second order FV scheme, with approximately the same
number of dofs.

For problems that develop discontinuities, high-order
DGFEM methods suffer from spurious oscillations in the
neighbourhood of the discontinuities. To suppress these
oscillations we have added an artificial diffusion term to
the model. The amount of diffusion is determined by the
smoothness of the solution: no diffusion in smooth regions
and enough diffusion in irregular regions. Because the dif-
fusion term is PDE-based, no special treatment is required
on unstructured meshes.

To increase the efficiency of the DGFEM scheme, we
have applied local refinement in both space and time. In
case of discontinuities, there is a maximum rate of conver-
gence of one with respect to the uniform mesh width. By
refining the mesh only in the neighbourhood of disconti-
nuities this limit is surpassed on the global scale. While
the refinement scheme requires per time slab solving the
discrete system for each refinement level (including the
uniform initial mesh), we have shown that the calcula-
tion time for the DGFEM scheme with local refinement
is shorter compared to the uniform scheme with elements



of equal size as the finest elements in the adaptive mesh,
while maintaining the same accuracy.
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