

Delft University of Technology

Benchmarking model-free and model-based optimal control

Koryakovskiy, Ivan; Kudruss, Manuel; Babuška, Robert; Caarls, Wouter; Kirches, Christian; Mombaur,
Katja; Schlöder, Johannes P.; Vallery, Heike
DOI
10.1016/j.robot.2017.02.006
Publication date
2017
Document Version
Accepted author manuscript
Published in
Robotics and Autonomous Systems

Citation (APA)
Koryakovskiy, I., Kudruss, M., Babuška, R., Caarls, W., Kirches, C., Mombaur, K., Schlöder, J. P., & Vallery,
H. (2017). Benchmarking model-free and model-based optimal control. Robotics and Autonomous Systems,
92, 81-90. https://doi.org/10.1016/j.robot.2017.02.006

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.robot.2017.02.006
https://doi.org/10.1016/j.robot.2017.02.006

Benchmarking model-free and model-based optimal controlI

Ivan Koryakovskiya, Manuel Kudruss∗,b, Robert Babuškae, Wouter Caarlsc,d, Christian Kirchesb, Katja Mombaurb, Johannes P.
Schlöderb, Heike Vallerya

aDelft Biorobotics Lab, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands
bInterdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

cDepartment of Computer Science, Federal University of Rio de Janeiro, 22451-900 Rio de Janeiro, RJ Brazil
dDepartment of Electrical Engineering, Pontifical Catholic University of Rio de Janeiro, 21941-909 Rio de Janeiro, RJ Brazil

eDelft Center for Systems and Control, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract

Model-free reinforcement learning and nonlinear model predictive control are two different approaches for controlling a dynamic
system in an optimal way according to a prescribed cost function. Reinforcement learning acquires a control policy through ex-
ploratory interaction with the system, while nonlinear model predictive control exploits an explicitly given mathematical model of
the system. In this article, we provide a comprehensive comparison of the performance of reinforcement learning and nonlinear
model predictive control for an ideal system as well as for a system with parametric and structural uncertainties. The comparison
is based on two different criteria, namely the similarity of trajectories and the resulting rewards. The evaluation of both methods
is performed on a standard benchmark problem: a cart-pendulum swing-up and balance task. We first find suitable mathematical
formulations and discuss the effect of the differences in the problem formulations. Then, we investigate the robustness of reinforce-
ment learning and nonlinear model predictive control against uncertainties. The results demonstrate that nonlinear model predictive
control has advantages over reinforcement learning if uncertainties can be eliminated through identification of the system parame-
ters. Otherwise, there exists a break-even point after which model-free reinforcement learning performs better than nonlinear model
predictive control with an inaccurate model. These findings suggest that benefits can be obtained by combining these methods for
real systems being subject to such uncertainties. In the future, we plan to develop a hybrid controller and evaluate its performance
on a real seven-degree-of-freedom walking robot.

Key words: Reinforcement Learning, Optimal Control, Nonlinear Model Predictive Control, Parametric Uncertainties, Structural
Uncertainties

1. Introduction

In robotics, one cannot expect to work with ideal models of
the systems under control, or of their environments. Rather,
we have to face unforeseen situations and unknown conditions,
and aim for reactions that are feasible and, ideally, optimal with
respect to given task performance criteria. A typical task is
bipedal locomotion, where a robot needs to maintain stabil-
ity and pace on an uneven floor with uncertain roughness and
slope [1].

Two common approaches to control dynamic systems are
Nonlinear Model Predictive Control (NMPC) and Reinforce-
ment Learning (RL). Both approaches can cope with uncertain-
ties in the form of model-plant mismatch. Reinforcement learn-
ing has been proven suitable as a real-time closed-loop con-
trol concept in robotics [2], and NMPC in industry [3]. How-
ever, the use of NMPC in robotic applications, especially hu-
manoid robotics and bipedal walking, is still an open research
field [4, 5, 6].

IThe first two authors contributed equally to this work.
∗Corresponding author

In this article, we use a swing-up and balancing problem for
a cart-pendulum system [7, 8] to quantitatively assess both con-
trol approaches. Our choice of this benchmark problem is moti-
vated by the fact that main features of passive dynamic walking
can be modeled by an inverted pendulum [9]. The same equiv-
alence holds for the upper body of a more detailed model of a
bipedal walker. The study presented in this article highlights the
differences in performance of NMPC and RL under structural
and parametric uncertainties for this benchmark problem.

Nonlinear model predictive control. Nonlinear model predic-
tive control is a closed-loop control strategy in which the con-
trol action at the current sampling instant is computed by solv-
ing an open-loop optimal control problem over a finite predic-
tion horizon. NMPC, as a model-based optimal control method,
relies on a given mathematical model of the real-world system
to be controlled. In this context, advanced direct methods of
optimal control, see the survey [10], are the methods of choice
for computing NMPC feedback control actions in real-time.

For NMPC, full state and parameter information of the model
is required to compute the control action. Whenever the full
state is not measurable or model parameters are not exactly
known, methods of on-line state and parameter estimation have

© 2017 Manuscript version made available under CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/
Link to formal publication in Robotics and Autonomous Systems (Elsevier): http://dx.doi.org/10.1016/j.robot.2017.02.006

to be applied. For this purpose, extended Kalman filters [11] or
Moving Horizon Estimation (MHE) techniques [12, 13] have
been successfully applied. In this article, MHE is used to esti-
mate uncertain parameters in the model.

Reinforcement learning. Reinforcement learning is an active
research area in the field of artificial intelligence and machine
learning, with applications in control. The most important fea-
ture of RL is its ability to learn without prior knowledge about
the system. The goal of the learning task is supplied externally
in the form of a reward function. RL is a trial-and-error method,
which generally takes many iterations before it finds an optimal
solution. To reduce the number of interactions with the sys-
tem, model-learning methods such as Dyna [14], learning from
demonstration [15, 16], or optimized control policy parameter-
izations [17] can be applied. Because RL does not require an
explicitly given model, it can naturally adapt to uncertainties of
the real system. In this sense, RL can be viewed as a model-free
adaptive optimal control approach [18].

Related work of comparison and combination of RL and
NMPC. In this article, we provide a comprehensive compar-
ison of the performance of RL and NMPC both for an ideal
system as well as in the presence of parametric and structural
uncertainties. To our knowledge, this is the first time this is
done in a systematic and quantitative way for uncertain sys-
tems. Based on the presented comparison results, we identify
the strong and weak points of both algorithms, which suggests
a presence of mutual benefits for their combination.

A related comparative study for ideal systems can be found
in [19]. The authors highlight similarities of NMPC and RL,
including optimality of methods, truncation of a time horizon,
and continuous vs. discrete actions. They show that, for an elec-
trical power oscillations damping problem, NMPC slightly out-
performs RL, yet both policies were essentially similar. Fur-
thermore, the authors propose the idea of combining RL and
NMPC. In an on-line (local) mode, NMPC could start optimiza-
tion from the initial guess of the optimal trajectory precomputed
by RL in an off-line (globally optimal) mode. Our conclusions
go beyond the validation of similarity of solutions or computa-
tional benefits for ideal models. We provide numerical evidence
that under uncertainties, situations may arise in which one or
the other method can be favorable for performance.

A distinction of both methods was observed and successfully
realized in a hybrid approach, a variant of the Guided Policy
Search algorithm [20]. The approach was able to learn obstacle
avoidance policies for a quadrotor [21]. It adopted a collec-
tion of MPC roll-outs obtained under full state observation and
trained a deep control policy that required only the on-board
sensors of the vehicle.

A study of the influence of the RL reward function on steady-
state error was performed in [22]. It was shown that direct trans-
lation of a quadratic objective function used in standard linear
quadratic regulators (LQR) resulted in a consistent, though not
acceptable steady-state error. In contrast, using the absolute-
value reward function yielded a response with negligible error.

I
Optimal
reference
solutions

(no uncertainties)

II
Frozen

methods
(structural

uncertainties)

III
Adaptive
methods

(parametric
uncertainties)

MHE

Ideal
system

An ideal
system with

known
parameters

A system
with

unknown
parameters

NMPC
(iNMPC)

Baseline
(OC) RL

+5% of online
learning

NMPC
(iNMPC)

Baseline
(OC) RL

NMPC-
adapt

(iNMPC-
adapt)

Baseline
(OC) RL

An ideal
system with

known
parameters

RL-adapt

A system
with

unknown
parameters

Figure 1: Overview of the computational study. Step I corresponds to a veri-
fication of state and control trajectories when problem formulations are equiv-
alent. In steps II and III uncertainties of a varied magnitude are introduced.
In the former case “NMPC”, “iNMPC” and “RL” are not equipped with an
adaptation mechanism while in the latter case they are. In “NMPC-adapt”
and “iNMPC-adapt” adaptation is accomplished by means of MHE, and for
“RL-adapt” we allow 5 % of additional interaction with the real system.

Computational study. The study conducted in this article is set
up as follows, see Figure 1. In the first step (I), we estab-
lish optimal control (“OC”) solutions for the ideal benchmark
problem. Then we consider the NMPC formulation and derive
the corresponding RL formulation from it. We highlight the
changes introduced in both formulations and discuss their ef-
fects.

Subsequently, we address the strengths and weaknesses of
NMPC and RL in terms of their ability to adapt to structural
and parametric uncertainties. In the second step (II), we in-
vestigate NMPC and RL methods that are explicitly unable to
adapt to uncertainties. We introduce the term frozen to refer to
this inability. In the third step (III), the effect of uncertainties
and the ability to adapt to them is analyzed for NMPC methods
that have explicitly been equipped with the knowledge about
the uncertainties and for RL that is allowed to interact with the
real system for an additional 5 % of the learning time. We in-
troduce the term adaptive to distinguish these from the frozen
methods.

In the remainder of the article, we use a single RL method de-
noted as “RL”, and two NMPC versions denoted as “iNMPC”
and “NMPC”. “iNMPC” is an ideal NMPC controller that ne-
glects computational time and returns an optimal control signal
immediately. In turn, “NMPC” represents an actual NMPC im-
plementation tuned for real-time feasible control.

2

2. Model-based and model-free optimal control methods

2.1. Optimal control
The optimal solutions used as baseline for the comparison are

the solutions of the open-loop optimal control problem given by

min
x(·),u(·)

∫ T
0 L(x(t), u(t)) dt + M(x(T)) (1a)

s.t. ẋ(t) = f (x(t), u(t), p), t ∈ T , (1b)
x(0) = x0, (1c)

0 ≤ g(x(t), u(t)), t ∈ T , (1d)

where we strive to find a control trajectory u : [0,T] → Rnu

such that an objective function composed of a Lagrange term
L : Rnx×Rnu → R and a Mayer term M : Rnx → R is minimized
on a finite time interval T = [0,T] ⊂ R. The state trajectory
x : T → Rnx is characterized by the dynamic system defined
by a set of ordinary differential equations with right hand side
f : Rnx ×Rnu ×Rnp → Rnx , which depends in particular on the
model parameters p ∈ Rnp of the system. In addition, mixed
state-control path constraints g : Rnx × Rnu → Rng are imposed
on the system.

We follow a direct and all-at-once approach to optimal con-
trol and discretize the control trajectory u(·) on a time grid
0 = t0 < t1 < · · · < tK < tK+1 = T by means of basis func-
tions parametrized by piecewise constant control parameters.
A direct multiple shooting approach to optimal control [23]
then further parametrizes the state trajectory x(·) by introduc-
ing K + 1 variables χi ∈ Rnx and by solving initial value prob-
lems separately on the time grid. From this discretization and
parametrization, a large but structured nonlinear programming
problem is obtained that can be solved efficiently with tailored
structure-exploiting sequential quadratic programming meth-
ods. The evaluation of sensitivities requires L,M, f , g, h in the
OC problem (1) to be at least twice continuously differentiable
with respect to the optimization variables x and u.

2.2. Nonlinear model predictive control
NMPC is a closed-loop control strategy in which the control

action is computed from the current system state by solving an
open-loop optimal control problem on a finite prediction hori-
zon TNMPC ⊆ T on-line, therefore NMPC is also denoted as
receding horizon control. In contrast to objective function (1a)
of the OC problem, the tracking NMPC minimizes a nonlinear
least-squares function composed of

L(x(t), u(t)) = ‖x(t) − x̄(t)‖2W + ‖u(t)‖2V , (2)

which minimizes the distance to given reference trajectories
x̄ : TNMPC → Rnx by means of a weighted L2-norm ‖x‖W =
√

xT Wx with a positive definite weighting matrix W.
At the current time instant t = 0, the full state x̂0 ∈ Rnx

and parameter vector p̂ ∈ Rnp of the system are embedded into
the open-loop optimal control problem by additional constraints
replacing (1c) of the OC problem

0 = x̂0 − x(0), (3a)
0 = p̂ − p. (3b)

In contrast to the OC problem, the parameters p ∈ Rnp are part
of the optimization variables for the NMPC problem and we
denote an estimate of the respective quantity by .̂

State-of-the-art NMPC methods based on nonlinear pro-
gramming rely on the real-time iteration scheme due to [24, 25]
to compute feedback in real-time. This is achieved by careful
initialization of the sequential quadratic programming method
by separating each iteration into three phases, i.e. 1) prepa-
ration (setup of quadratic program), 2) feedback (solution of
quadratic program) as soon as the current system information
x̂0, p̂ is estimated and 3) transition (perform step and shifting).
In this way, computationally expensive parts can be separated
from time-critical ones and the computational delay of the feed-
back is reduced to the time required to solve a single quadratic
program. Advanced methods further these ideas by dividing
the real-time iteration into sub steps that can provide feedback
even faster by evaluating only parts of the required Jacobian in-
formation, c.f. [26, 27], or applying specialized iterative linear
algebra, as in [28].

Moving horizon state and parameter estimation. For the state
and parameter estimates, i.e. x̂0, p̂ in (3), we apply moving hori-
zon estimation (MHE), c.f. [13]. After the estimates for x̂0 and
p̂ have been obtained, they are embedded in the NMPC problem
via the constraints (3) and are considered in the computation of
the next feedback control action. In this way, model-plant mis-
match and uncertainties can be tackled by including parameters
in the NMPC formulation and computing an estimate in every
pass of the control loop. Approaches similar to those used to
achieve real-time feedback control for NMPC can be used to
solve the MHE problem on-line.

In contrast to NMPC, the MHE horizon TMHE refers to the
passed time and the objective function minimizes the squared
error between the model response h and measurements η =

h(x(p∗), p∗) + ε from the real system defined by the true but
unknown parameters p∗, subject to an additive measurement
error ε ∼ N(0,Ξ) with zero-mean and covariance matrix Ξ =

diag(ξ0, . . . , ξnh) given by

0∑
k=−K

‖(hk(x(tk), p) − ηk)‖2
Ξ−1

k
.

Here, the parameters p are part of the optimization variables
and the control actions u are fixed to the ones applied to the
system in the past.

2.3. Reinforcement learning
A common approach in RL is to model the task as a Markov

decision process. The process is defined as a quadruple
〈X,U,P,R〉, where X ⊂ Rnx is a set of possible states, U ⊂ Rnu

is a set of possible control actions, P : X × U × X → [0, 1] is
a transition function that defines the probability of ending up in
state xk+1 ∈ X after executing action uk ∈ U in state xk ∈ X.
The reward function R : X ×U × X → R gives a real-valued re-
ward rk+1 = R(xk, uk, xk+1) for the particular transition between
states. A Markov decision process satisfies the Markov prop-
erty, which assumes that the next state xk+1 depends only on

3

the current state xk and action uk, but not on previous states or
actions.

A deterministic control policy π : X → U defines an action
uk taken in a state xk. The goal of the learning process is to
find an optimal control policy π∗ that maximizes the discounted
return

Rk = E

 K∑
i=0

γirk+i+1

 ,
where immediate rewards r are exponentially decayed by the
discount rate γ ∈ [0, 1] the further they lie in the future. The
task that we consider in this article is a continuing task, for
which the final time step is infinite, K → ∞. This requires the
use of γ < 1 to avoid infinite returns.

The value function Vπ(x) denotes the expected return assum-
ing that the system starts in the state x and then follows a pre-
scribed control policy π. The optimal control policy π∗ max-
imizes the value for each state. Therefore, an optimization of
the control policy is tightly coupled with the maximization of
the value function in RL.

For real-world systems, continuous control is preferred. This
requires a parametrization of the policy π(x), e.g. using a set
of basis functions and their associated weights. The weights
are usually optimized by gradient-descent methods [29, 30],
or by global gradient-free methods [31, 32]. In this article we
use a standard gradient-descent method because the latter meth-
ods require a substantial number of interactions with the robot
which can be especially damaging in case of walking tasks.
Since the estimation of policy gradients often results in a high
variance, the policy update is often coupled with an explicit
estimation of a parametrized value function Vπ(x). This combi-
nation is known as the actor-critic method, where the policy is
referred to as the actor, and the value function is referred to as
the critic.

The method we use is the standard model-free temporal-
difference-based method described in [29]. Since RL is a trial-
and-error learning method, the quality of the policy as well as
the learning speed depend on the exploration method. Explo-
ration is commonly achieved either by perturbation of the so far
optimal action, or by optimistic initialization, or by both. Op-
timistic initialization is a method of initializing the value func-
tion with a value equal to or greater than the maximum possible
value of a state. This causes the visited states to become less
attractive than the states that have not been visited yet [33]. Op-
timistic initialization can speed up the learning in the absence
of negative rewards. For the parametrization of the policy and
value-function we use a linear in parameters tile coding approx-
imator [34].

3. Benchmark system

The two-dimensional benchmark example studied in this ar-
ticle is a pendulum attached to a cart [7, 8], which is shown in
Figure 2. The system consists of a cart with mass mM and a
pendulum that is attached to the cart’s center of mass CM .

mM

mm

CM

Cm

x

y

0

l

s

φ

Fs

Figure 2: The inverted pendulum on a movable cart.

The pendulum is a point mass mm attached at the end of a
massless rod of length l. The system has two degrees of free-
dom, namely the linear motion of the cart along the x-axis, de-
scribed here by the coordinate s ∈ R, and the rotary motion
of the pendulum with respect to the cart, described by the an-
gle φ ∈ R. The only actuation is realized by a horizontal force
Fs ∈ R acting on the cart body.

The system’s state is given as x =
[
s, φ, ṡ, φ̇,

]T
∈ R4. Here,

s, ṡ denote the cart position and velocity, and φ, φ̇ denote the
pendulum’s angle and angular velocity, respectively. The con-
trol u = Fs is the force acting on the cart body.

In an ideal scenario, both the cart and the pendulum can move
without friction along their respective degrees of freedom. For
our second and third experiment, we employ uncertainty in the
form of viscous friction at the rotary joint, i.e. in the pendu-
lum joint bearing. This produces an internal torque τφ = −κµφ̇
applied to the pendulum, where κ is a coefficient that depends
on the configuration of the rotary joint, and µ is a viscous fric-
tion coefficient. Depending on whether or not this friction is
included in the model, uncertainty in friction can be considered
as a parametric or as a structural uncertainty.

More details of the benchmark implementation are given in
Appendix A.

4. Problem formulation

In this section, we provide formulations of the objective func-
tion used in the OC, NMPC and RL problems.

We investigate control scenarios for swing-up motions of
the cart-pendulum system from the given initial state x(0) =

[s(0), φ(0), ṡ(0), φ̇(0)]T = [0, π, 0, 0]T , which implies the sys-
tem starts from rest, with the cart in the origin of the coor-
dinate system and the pendulum pointing downwards. The
goal of the task is to swing the pendulum up and to drive the
cart back to the origin, i.e. to reach the final state x(T) =

[s(T), φ(T), ṡ(T), φ̇(T)]T = [0, 0, 0, 0]T . This is realized for
both the OC and the NMPC problem by the Lagrange term in
the objective function

L(x(t), u(t)) = ‖x(t) − x̄(t)‖2W + ‖u(t)‖2V (4)

as defined in (2), where the weights W = diag(1, 0.5, 2, 0.2)
and V = diag(0.0005) were chosen to scale the state elements
to approximately the same range. Set-point x̄ ≡ [0, 0, 0, 0]T

4

is set according to the definition of the task. The benchmark
constraints defined in Appendix A can be directly formulated
as path constraints (1d) on both states and controls, while the
prediction horizon of the NMPC controller is a subinterval of
the problem horizon.

The discount rate γ, which is inevitable for solving a contin-
uing task in RL, affects the obtained RL solution. Therefore,
to make the NMPC and RL results comparable, we include the
same discount rate value into the objective function of OC and
NMPC. The effect of the discount on the NMPC formulation
is that it increases the focus on the beginning of the horizon by
providing a weighting over time, i.e. the further the event lies
in the future of the horizon, the less it will be considered for the
computation of the optimal behavior.

To allow solving the control problem in real-time using
NMPC alone and together with MHE, the problem formulation
has to be adapted for the current algorithmic setup in the opti-
mal control software package MUSCOD-II [35, 36]. Due to the
nonlinear behavior of the cart-pendulum system, at least a con-
trol rate of 40Hz has to be chosen to generate sufficient contrac-
tion in the real-time iteration scheme and to enable the standard
structure exploitation for the sequential quadratic programming
method. However, this increases the number of shooting nodes
and the computational time. Therefore, the horizon was set to
3 s.

In RL, we construct the reward from the same Lagrange
term (4), but we additionally add a negative reward and a shap-
ing function S (xk, xk+1):

r(xk, xk+1) =

{
−1000 if xk+1 ∈ Xa,
−L(xk+1, uk) + S (xk, xk+1) otherwise, (5)

where Xa is a set of absorbing states that lie outside of the cart’s
position constraints defined in Appendix A.

The shaping function denoted by S (xk, xk+1) leaves the tar-
get objective unchanged but allows to reduce steady-state error.
Due to the quadratic terms in the definition of L(xk+1, uk), re-
wards become small for balancing states where all elements
of the state are close to zero, except possibly the cart posi-
tion sk. This effect has previously been described in [22],
where authors noticed that the quadratic reward, the L2-norm,
penalized large velocities much more than small steady-state
errors. They solved the issue by showing that the absolute
value reward, the L1-norm, yielded a response with negligible
errors. This solution is not directly applicable here, because
our aim is to obtain results as similar to OC as possible, which
uses a quadratic cost function. Instead, inspired by [22], we
introduce a potential-based shaping function [37] encoded as
S (xk, xk+1) = γΨ(xk+1) − Ψ(xk), where Ψ(xk) = ψ‖Wxk‖1 is the
sum of absolute values of weighted state elements multiplied
by a shaping weight ψ. The purpose of this shaping function is
to provide a stronger guidance towards x = [0, 0, 0, 0]T in the
region of the state space where the quadratic reward function
fails to do so. Influence of the shaping function is analyzed in
Appendix B.

It is possible to include hard constraints directly into the OC
formulation by (1d). However, in the RL formulation, they have

to be reformulated as soft constraints, which is done by includ-
ing them directly in the reward function in the form of a nega-
tive reward as in (5). This essentially changes the original opti-
mization problem by introducing a trade-off between receiving
positive rewards and avoiding negative ones. For example, once
a very large negative reward is received, it will force the system
to never violate this constraint again, even at a price of obtain-
ing lower positive rewards. On the contrary, a small negative
reward will allow infrequent violation of the constraint, which
will slow down learning and may even damage a real-world sys-
tem. In this benchmark example, the trade-off has a mild effect,
because the cart position constraints are rather loose. While
constraints are violated a few times in the process of learning,
the final result is free of constraint violations.

For the cart-pendulum benchmark, the optimal combina-
tion of parameters can be found in Table 1. For NMPC, the
tolerances were chosen according to best practices, the hori-
zon length as well as the sampling period were chosen such
that “iNMPC” uses the same formulation as “OC” and that
“NMPC” computes feedback in less than 5 ms. The discount
rate γ was chosen according to the RL formulation. For RL, we
found the parameters using the exhaustive grid search. It gen-
erated tuples of candidate parameters by selecting them from a
set of predefined parameter values commonly used in the actor-
critic literature, c.f. [29].

For the RL policy and value function approximation, we used
tile coding with 16 tilings, each of size [2.5, 0.1π, 2.5, 0.5π]T .
However, pendulum states close to the state x = [0, 0, 0, 0]T ∈

Rnx require a finer resolution of the function approximator.
Therefore, before projecting a state on the tiles, we rescale each
state element to the interval [−1, 1], and then apply a squashing
function with the parameter ρ = 5:

Ω(x j, ρ) =
(1 + ρ)x j

1 + ρ|x j|
, ∀ j ∈ {1, . . . , nx} ,

where x j denotes a scaled element. This effectively controls
resolution by a multiplier that varies continuously, from (1 +

ρ)−1 in the downward position of the pendulum, to 1 + ρ in the
balancing state x = [0, 0, 0, 0]T .

5. Evaluation protocol

5.1. Notations and methodology

As summarized in Figure 1, we use the “OC” notation to de-
note the optimal solution obtained by off-line optimal control.
The cost of this solution serves as a baseline for all subsequent
methods. As structural uncertainties, we consider uncertainties
that originate from the lack of knowledge about the true physics
of the underlying dynamic system. Examples in walking robots
might include model-plant mismatch due to uneven floor, fric-
tion in joints, softness of the ground, etc. Being unaware of
possible uncertainties in a system, the following three frozen
methods are not explicitly equipped with an ability to adapt to
the system:

5

Table 1: Parameters of OC, NMPC and RL for the cart-pendulum problem.
The first group of parameters is relevant to OC and NMPC, where the value
in brackets is given for real-time NMPC. The second group of parameters is
relevant only to RL.

Parameter Value

OC/NMPC:
Horizon length T 5 s (3 s)
Discount rate γ 0.99

Sampling period T OC/NMPC
s 0.05 s

KKT-Tolerance 10−7

Integration accuracy 10−6

RL:
Episode length T 5 s
Discount rate γ 0.99

Sampling period T RL
s 0.05 s

Number of learning episodes 2.0 · 105

Additional learning episodes 5%
Eligibility discount rate 0.65

Exploration variance Σu 0.202 u2
max

Critic learning rate αc 0.10
Actor learning rate αa 0.01

• “iNMPC” denotes an ideal NMPC controller that neglects
computational time constraints and returns an optimal con-
trol signal immediately.

• “NMPC” denotes an NMPC controller tuned to real-time
performance for the specific task.

• “RL” denotes an RL controller that plays the optimal pol-
icy π∗ after having learned on an ideal system.

Neither “iNMPC” nor “NMPC” apply MHE for state and pa-
rameter estimation.

As parametric uncertainties, we consider parameters which
are included in the dynamic model of the system and whose
values are not known a priori, but can be inferred from inter-
actions with the real system, i.e. the parameters are observable.
Accordingly, by the term adaptive we denote methods that have
(in the case of NMPC) been explicitly equipped with knowl-
edge about the uncertainties and an algorithm to adapt to them,
or that are (in the case of RL) given additional time to interact
with the system:

• “iNMPC-adapt” denotes a controller of a combination of
both MHE and NMPC. The controller is able to estimate
a specified unknown parameter of a model and adjust its
control signal accordingly.

• “NMPC-adapt” denotes a combination of both MHE and
NMPC tuned to real-time performance for the specific
task.

• “RL-adapt” denotes the RL controller that is initialized us-
ing the optimal policy π∗ learned by “RL” on the ideal
system. To cope with uncertainties in the system, we al-
low “RL-adapt” to learn for an additional small number of
episodes, c.f. Table 1.

Note that the NMPC approach requires explicit specification of
the parameters to be estimated in the model, while RL can cope
with them without explicit consideration.

5.2. Description of experiment and measures

For the benchmark problem, we provide a comprehensive
comparison of the described methods for an ideal system, and
for a system with structural and parametric uncertainties.

First, we investigate whether the three frozen methods pro-
duce similar trajectories on our benchmark system. For that we
employ the coefficient of determination, R2, as a similarity mea-
sure of trajectories. The measure quantifies the deviation of the
trajectories obtained by “RL”, “iNMPC”, and “NMPC” from
an optimal trajectory. Denoting a trajectory ζ as a sequence of
states and controls, ζ = {ζk}, 0 ≤ k ≤ K and ζk = (xT

k , u
T
k)T ,

we measure similarity between corresponding components by
means of R2. Formally, the R2 measure is defined as

R2 = 1 −
∑K

i (ζ‡i − ζ
OC
i)2∑K

i (ζ‡i − ζ̄)2
, ζ̄ =

1
K

K∑
i

ζ‡i ,

where ‡ is a wildcard for one of {“RL”, “RL-adapt”,
“iNMPC”, “iNMPC-adapt”, “NMPC”, “NMPC-adapt”}. For
the “RL” method, which exhibits variability in trajectories, we
compute both the R2 measure of the mean trajectory, and the
mean of R2 values obtained across individual trajectories.

Second, after the similarity of the methods is verified, we
employ regret as a measure to evaluate the performance of the
methods against uncertainty ∆Θ. This measure is commonly
used in evaluation of online machine learning and optimization
methods [38, 39]. Regret quantifies the amount of additional
cost which is incurred due to suboptimal actions taken by a
controller with respect to the optimal control actions. Lower
values of regret indicate a controller, whose behavior is closer
to the optimal one. Since the optimal controller has zero regret,
it becomes convenient to plot regrets of the methods instead of
the direct costs.

We compute the regret R‡(ζ; ∆Θ), defined as the difference
between C‡(ζ), the total cost of the method denoted by the wild-
card ‡, and the baseline COC(ζ; ∆Θ), i.e.

R‡(ζ; ∆Θ) = C‡(ζ) −COC(ζ; ∆Θ),

where we use the NMPC cost (2) for all methods directly,

C(ζ) =

K∑
i=0

γiL(xi, ui)∆ti. (6)

By means of ∆ti, we take into account the different sampling
periods of the methods. Note that all of the tested methods
are unaware of the true extent of the uncertainty introduced.

6

In this article, we pursue a generic comparison across methods
and benchmarks. Therefore, we do not include specific stability
measures, such as Lyapunov stability, orbital stability, or gait
sensitivity norm, but rather stick to a general notion of the cost
of trajectories.

Due to the stochastic nature of RL, we plot a mean value
of the regret averaged over 50 runs. If a run for a given un-
certainty ∆Θ is prematurely terminated due to the violation of
constraints, then the corresponding value is not drawn.

6. Results on the cart-pendulum

In order to assess the similarity of the frozen methods, we
analyze their performance for the cart-pendulum system with-
out uncertainties. The resulting trajectories and the R2 mea-
sure results are shown in Figure 3 and Table 2, respectively.
All three methods show a qualitatively similar behavior and
are successful in swinging the pendulum up and balancing it
there. An overall similarity between “RL” and “iNMPC” of
more than 90.3 % was achieved in terms of the R2-measure.
Comparing the R2 values of a mean trajectory with the mean
of R2 values of the individual trajectories of “RL”, we observe
that the mean trajectory is closer to “iNMPC”, while the indi-
vidual trajectories exhibit some variability around their mean.
The control trajectories Fs of “iNMPC” and “RL” differ in a
small time delay and are otherwise comparable. However, after
approximately 1.0 s, we find that “RL” demonstrates variabil-
ity between control trajectories compared to “iNMPC”. Due to
differences in control actions, the state trajectories start to differ
slightly after approximately 0.5 s and recover from that after ap-
proximately 2.0 s; only the “RL” cart position s remains to show
small steady-state errors. “NMPC” results deviate more from
“iNMPC”, and an overall similarity of approximately 48.2 %
was achieved in terms of the R2-measure.

Next, we show the behavior of both frozen and adaptive
methods under the effect of uncertainties. Simulation results
against variations of the friction parameter µ are shown in
Figure 4. To indicate the scale of the plot, we employ three
filled markers at µ = 0 N s m−2 that correspond to the trajec-
tories in Figure 3. A further reference for interpretation of
the scale: If the cart stood still and the pendulum hung down,
then the regret of the solution would be equal to 11.73. In
the absence of friction, “iNMPC” does not reach zero regret
due to numerical approximations. All of “RL”, “iNMPC” and
“NMPC” show a similar asymptotic behavior in reaction to
the variation of the friction coefficient. “iNMPC” shows the
lowest regret for low values of viscosity and “NMPC” regret
is the largest. Larger values increase the regret, and for the
value of µ = 0.09 N s m−2, “RL” yields a lower regret than
“iNMPC”. All three frozen methods violate the position con-
straints of the cart. For “RL”, this happens at µ = 0.12 N s m−2

and for “iNMPC” and “NMPC” at µ = 0.18 N s m−2 and µ =

0.19 N s m−2, respectively.
The adaptive methods, “RL-adapt”, “iNMPC-adapt”, and

“NMPC-adapt”, show a different reaction to the variation of the
friction coefficient. Both “iNMPC-adapt” and “NMPC-adapt”
show a constant performance under the effect of the variation

“RL” “iNMPC”/“OC”“NMPC”

t (s)

t (s)

t (s)

t (s)

t (s)

φ
(r

a
d
)

φ̇
(

ra
d

s−
1
)

s
(m

)
ṡ
(

m
s−

1
)

F
s
(N

)

0.0

0.0

1.5

200

−200

5

5

5

5

5

4

4

4

4

4

4

4

3

3

3

3

3

2

2

2

2

2

2

1

1

1

1

1

0

0

0

0

0

0

0

0

−2

−4

−0.8

−1.5

−3.0

−8

Figure 3: State and control trajectories obtained by the frozen methods for the
cart-pendulum system without uncertainties. For “RL” the mean and standard
deviation of 50 trajectories is shown. Y-axes variables s, ṡ denote the cart posi-
tion and velocity and φ, φ̇ are the respective quantities of the pendulum. Fs is
the force acting on the cart body.

of friction. Note the logarithmic scale; the variances in per-
formance of “iNMPC-adapt” and “NMPC-adapt” are similar,
but appear differently due to the logarithmic scale. “RL-adapt”
performs better than “NMPC-adapt” for smaller uncertainties
of up to 0.07 N s m−2 and is then outperformed by NMPC.
“RL-adapt” regret is an order of magnitude higher than the
regret of “iNMPC-adapt”, and the RL performance deterio-
rates with higher friction. For friction coefficients larger than
0.09 N s m−2, “RL-adapt” shows a much higher variance in re-
gret than for lower friction.

Comparing “RL-adapt” with the frozen method “iNMPC”,
the graphs show that “iNMPC” cannot compete with RL af-
ter the break-even point at 0.04 N s m−2. This viscous fric-
tion coefficient value corresponds to 6.1 % of the differ-
ence in energy consumed by the ideal (0.00 N s m−2) and dis-
turbed (0.04 N s m−2) system. Compared to all three frozen
methods, “RL-adapt” performs much better after the break-
even point, and the gap grows with larger uncertainties.

A summary of the main results of comparison is presented in

7

Table 2: Similarity of the cart-pendulum trajectories in terms of the coefficient
of determination (R2). For RL we first report similarity of the mean trajectory,
and second we report the mean of R2 values.

Methods s φ ṡ φ̇ Fs

“RL”- “OC”, R2

mean trajectory
(%) 98.1 99.8 96.4 98.4 92.9

“RL”- “OC”,
mean R2

(%) 93.9 99.8 95.3 98.2 90.3

“NMPC”- “OC” (%) 56.6 98.6 66.7 86.9 48.2

“iNMPC”- “OC” (%) 100.0 100.0 100.0 100.0 100.0

Table 3.

7. Discussion

Our results demonstrate that, with a proper formulation of
the optimal control task, it is possible to obtain similar re-
sults for the three frozen methods on an ideal system. For
the cart-pendulum benchmark example, a good similarity be-
tween “RL”, “OC” and “iNMPC” was achieved. However,
for “NMPC”, the expected deviation from the optimal solution
due to the tuning towards a real-time feasible controller is ob-
served in Figure 4. We have to stress that this is a problem
of the implementation and not of the approach. A speed-up
of the implementation by using a multi-level real-time iteration
scheme [26, 40], by using a state-of-the-art sequential quadratic
programming method tailored for multiple-shooting [41] and
replacing the quadratic program solver [42] could address the
current time limitations. With a speed-up of the computa-
tions, a theoretical coverage of the area between the curves of
“iNMPC” and “NMPC” is therefore possible. This will how-
ever not influence the already found break-even points, because
the asymptotic behavior of the frozen NMPC methods is deter-
mined through “iNMPC” as the best possible outcome. Con-
sidering this, only an improvement for smaller variations of the
friction coefficient is to be expected.

The adaptive methods successfully avoid constraint viola-
tions and substantially reduce regret compared to their frozen
counterparts over the whole range of viscous friction coeffi-
cients. Interestingly, when the coefficient is not present in the
system or has low values, “iNMPC-adapt” results in a higher
regret than “iNMPC”, and the same holds for the fast versions
of NMPC. The reason for this is that the combination of NMPC
and MHE in the form of “iNMPC-adapt” and “NMPC-adapt”
starts with an initial guess of the parameter that is adapted
during the actual run of the system. Any mismatch between
measurements and values predicted by the model will lead to
adaption of the parameters in MHE. This is a crucial differ-
ence to RL, which adapts to the uncertainty through multiple
trials prior to an assessment run, while NMPC is unaware of
the mismatch at first. The cart-pendulum task is very sensitive
to changes during movement initiation. Therefore, a wrongly
identified parameter in the beginning can already cause sub-
stantial differences in terms of regret, which is seen in Figure 4.

Viscous friction coefficient ∆Θ = µ
(
N s m−2

)

R
eg

re
tR
‡ (

∆
Θ

)

0 0.05 0.10 0.15 0.20
10−4

10−3

10−2

10−1

100

101

“RL”
“RL-adapt”
“NMPC”
“NMPC-adapt”
“iNMPC”
“iNMPC-adapt”

Figure 4: The graph of regrets for the cart-pendulum system that shows the
optimal performance of the described methods. The means with the upper and
lower 95% confidence limits are shown for controllers with a stochastic com-
ponent (50 samples per viscous friction coefficient were used).

This effect is amplified for “NMPC-adapt” through the men-
tioned performance loss due to the real-time feasibility tuning.
A speed-up of the computations would lead to a theoretical cov-
erage of the area between the curves of “iNMPC-adapt” and
“NMPC-adapt”, boosting performance.

In the absence of uncertainties, “iNMPC-adapt” performs su-
perior to both “RL” and “RL-adapt”. This does not come as a
surprise, as NMPC methods were running off-line, they were
using the model of the correct system and, moreover, the uncer-
tain parameter was defined explicitly. However, “iNMPC” out-
performs RL methods only for small values of uncertainties. In
case of medium and large uncertainties, there exist break-even
points after which “RL” and “RL-adapt” obtain lower regret.
We remark that the estimation of the difference between ideal
and uncertain systems in terms of energy is ad hoc, and more
generic measures for model uncertainties should be used in the
future.

In the non-ideal setting, performance of NMPC becomes
comparable to RL. Nonetheless, one cannot directly report
similarity of “NMPC-adapt” and “RL-adapt”; while regret of
“NMPC-adapt” is almost constant for the whole range of uncer-
tainties, the regret of “RL-adapt” significantly increases. The

8

explanation for this effect is twofold. First, for any value of un-
certainty, “RL-adapt” was learning for a fixed additional 5 %
of time. The larger the value of uncertainty, the more time
“RL-adapt” requires to adapt to a new parameter value. This
can be supported by the fact of an increasing variance of RL re-
gret, which indicates that the actor-critic algorithm simply did
not have enough time to converge in areas of high uncertainties.
Second, for large uncertainties, it might be necessary to signif-
icantly change the control strategy, i.e. to learn a new policy
rather than adapt an ideal one. This will probably require more
learning efforts, to first unlearn the initial policy, and then to
learn a realistic one.

Several issues were encountered while formulating the
benchmark problem with the aim of obtaining identical results.
These issues are known to OC and RL communities, but, to the
best of our knowledge, they were never explained in the same
context before.

OC-related issues:

1. In contrast to RL, the derivative-based methods of opti-
mization used to solve the discretized OC problem require
a continuously differentiable formulation of the problem.

2. The performance of the ideal NMPC-MHE combination
(“iNMPC-adapt”), for which computational time was ne-
glected, is the order of magnitude better in terms of regret
than the corresponding real-time version, mainly caused
by a shortened prediction horizon used in the latter.

RL-related issues:

1. In this paper, we use a model-free RL method, which
means that transition model of a system is unknown a pri-
ori.

2. Learning a solution with a quality comparable to OC takes
many episodes.

3. Constraints in the original OC problem are included into
the RL formulation by means of negative rewards received
for violating the constraints.

4. For the benchmark example, the OC objective function has
been modified. Formulating a reward function by simply
negating the OC objective results in a) a very slow learning
in cases when no negative reward is used, b) an inability to
learn or even a divergence of the value function if γ = 1.

5. For symmetrical problems, RL can use state space reduc-
tion techniques. For example, for the cart-pendulum ex-
ample it is possible to wrap the pendulum angle to the
[−π, π) interval, which results in two equally possible op-
timal trajectories under our objective function. OC gener-
ally does not allow implementation of such techniques if
they violate the smoothness assumptions.

6. When learning with a quadratic objective function, which
is often used in OC, it is useful to implement learning tech-
niques that are able to reduce steady-state error while leav-
ing the objective function unchanged, for example reward
shaping.

The presented quantitative comparison is particularly impor-
tant for our future plans of combining RL and NMPC to control

a more complex system with a high number of degrees of free-
dom. One possible combination could be that RL learns a real
model for NMPC, while NMPC provides a backup of an RL ex-
ploratory policy. Another scheme could be that RL receives a
control signal from NMPC as a suggestion. Initially RL passes
this suggestion to the actuators, but at a later stage it takes over
in state space areas where it is confident. Independently of
the chosen combination strategy, for value function-based RL
it is important to retain the Markov property, which may im-
pose restrictions on the NMPC controller as well. For exam-
ple, such RL methods usually avoid time as a state, hence, the
trajectory-tracking NMPC should not be used in the suggestion-
based scheme.

8. Conclusion

In this article, we provided an extensive comparison of
model-free RL and model-based NMPC methods. We began
with finding a proper formulation of NMPC and RL problems
tackling the same task of a swing-up and balancing motion of
a cart-pendulum system. The benchmark is standard and well-
known in literature. To facilitate follow-up research, we provide
the freely available source code of the benchmark online [43].

We showed that both methods were capable of solving the
benchmark problem and that the resulting trajectories for states
and controls were similar in terms of the coefficient of determi-
nation and regret.

In our experiments considering uncertainties, we showed that
ideal NMPC with MHE is superior to RL for the whole range of
uncertainties, but the realistic NMPC with MHE is comparable
to RL. The major achievement is a quantification of a break-
even point after which learning in a model-free setting becomes
more beneficial than nonlinear model predictive control with an
inaccurate model.

We expect that a proper combination of these methods will
open the door to novel control strategies. In particular, we plan
to develop a hybrid NMPC-RL controller and test it on a real
seven-degree-of-freedom walking robot, specifically designed
for the purpose of learning with RL.

Acknowledgment

I. Koryakovskiy, H. Vallery, R. Babuška, M. Kudruss,
C. Kirches, J. P. Schlöder and K. Mombaur were supported by
the European project KOROIBOT FP7-ICT-2013-10/611909.
W. Caarls was funded from CAPES/BRASIL under project
number 88881.030341/2013-01. C. Kirches and M. Kudruss
were supported by DFG Graduate School 220 (Heidelberg
Graduate School of Mathematical and Computational Methods
for the Sciences) funded by the German Excellence Initiative.
C. Kirches and J. P. Schlöder were supported by the German
Federal Ministry of Education and Research program “Math-
ematics for Innovations in Industry and Service 2013–2016”,
grant no 05M13VHA-GOSSIP.

9

Table 3: Summary of results.

Category Findings

Achieved similarity of “iNMPC” and “RL” methods on the ideal system more than 90.3 %

Break-even point: the difference in energy consumed by ideal and noisy systems
after which “RL-adapt” performance becomes better then “iNMPC”

6.1 %

Best performing algorithm under parametric uncertainties “iNMPC-adapt”

Best performing algorithm under structural uncertainties “iNMPC” before the break-even point and
“RL-adapt” after the break-even point

A. Cart-pendulum benchmark details

By summarizing the positions, velocities and accelerations in
q = [s, φ]T , q̇ = [ṡ, φ̇]T and q̈ = [s̈, φ̈]T , the forward dynamics
are given by q̈ = (H(q))−1 (F −C(q, q̇)), where H ∈ R2×2 is
the system’s mass matrix and C contain Coriolis, centrifugal,
and gravitational terms and F =

[
Fs, τφ

]T
∈ R2 denotes the

actual actuation consisting of the one for the cart and for the
pendulum.

We use the Rigid Body Dynamics Library [44, 45] for the
efficient evaluation of the system’s forward dynamics using the
Articulated Body Algorithm from [46]. The respective dynamic
system in the form of an ordinary differential equation (1b) and
initial values (3a) is then retrieved from the forward dynamics.

For simulations, we use the following parameters:

mM = 10.0 kg; mm = 1 kg; l = 0.5 m; 0 s ≤ t ≤ 5 s.

The cart and the pendulum are subject to simple constraints that
enforce limits on the cart position and applicable force

−2.4 m ≤ s(t) ≤ 2.4 m, −150 N ≤ Fs(t) ≤ 150 N.

In the experiment with unknown viscous friction coefficient, the
internal torque in the rotary joint of the pendulum is τφ = −κµφ̇.
We choose κ = 1 m3, and vary µ in the range

0.0 N s m−2 ≤ µ ≤ 0.2 N s m−2.

B. Effect of shaping in RL

The results of the effect of the shaping weight ψ on the cost
are presented in Figure 5. According to the graph, for a shap-
ing weight of up to 20, the total cost reduces, and then starts
increasing again. Note that the total cost is calculated using (6),
which does not include the shaping weight ψ. The error in po-
sition is more volatile, but one may notice that it gets smaller
for higher shaping weights. We selected ψ = 20, because our
primary goal was to reduce the total cost and accept a moderate
steady-state error.

References

[1] E. Schuitema, Reinforcement Learning on autonomous humanoid robots,
Ph.D. thesis, Delft University of Technology, Netherlands (2012).

0.069 0.075 0.079 0.063 0.058 0.065 0.066 0.055 0.065 0.054 0.054

19.88 19.85 19.80
*

19.77
*

19.76
*

19.88 19.80
*

19.99 20.04 20.28

*

20.59

*

ψ

ψ

|s
|(

m
)

C
(ζ

)
∆

t

0

0
0

0.05

0.10

21

5

5

10

10

15

15

20

20

20

25

25

30

30

35

35

40

40

45

45

50

50

Figure 5: Influence of the shaping function on the results of the “RL” method.
Top: absolute error in the cart position at the end of an episode depending on the
weight ψ of the shaping function. Bottom: total cost of the trajectory. Shaping
is not used for ψ = 0. Numbers inside of the bars show the mean value of the
error averaged over 50 independent runs, while the error bars show the upper
and lower 95% confidence limits. Statistically significant result, for which the
p-value is less then 0.05, is marked with ∗ above the bars.

[2] J. Kober, J. A. D. Bagnell, J. Peters, Reinforcement Learning in Robotics:
A Survey, International Journal of Robotics Research.

[3] S. J. Qin, T. A. Badgwell, A survey of industrial model predictive control
technology, Control Engineering Practice 11 (7) (2003) 733–764.

[4] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, M. Diehl,
Online Walking Motion Generation with Automatic Foot Step Placement,
Special Issue: Section Focused on Cutting Edge of Robotics in Japan
24 (5-6) (2010) 719–737. doi:10.1163/016918610X493552.

[5] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, E. Todorov,
An integrated system for real-time Model Predictive Control of
humanoid robots, in: 2013 13th IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids, 2013, pp. 292–299.
doi:10.1109/HUMANOIDS.2013.7029990.

[6] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Perme-
nter, T. Koolen, P. Marion, R. Tedrake, Optimization-based Locomotion
Planning, Estimation, and Control Design for the Atlas Humanoid Robot,
Autonomous Robots (2015) 1–27.

[7] A. G. Barto, R. S. Sutton, C. W. Anderson, Neuronlike Adaptive Ele-
ments That Can Solve Difficult Learning Control Problems, IEEE Trans-
actions on Systems, Man, and Cybernetics SMC-13 (5) (1983) 834–846.
doi:10.1109/TSMC.1983.6313077.

[8] H. Kimura, S. Kobayashi, Stochastic real-valued reinforcement learning
to solve a nonlinear control problem, in: IEEE International Conference
on Systems, Man, and Cybernetics, Vol. 5, 1999, pp. 510–515.

[9] M. Wisse, Essentials of dynamic walking: Analysis and design of two-
legged robots, Ph.D. thesis, Delft University of Technology, Netherlands
(2004).

[10] L. T. Biegler, A Survey on Sensitivity-based Nonlinear Model Predictive
Control, in: 10th IFAC International Symposium on Dynamics and Con-
trol of Process Systems, 2013, pp. 499–510.

[11] A. H. Jazwinski, Stochastic Processes and Filtering Theory, Dover Books
on Electrical Engineering Series, Dover Publications, 2007.

10

[12] K. R. Muske, J. B. Rawlings, J. H. Lee, Receding horizon recursive
state estimation, American Control Conference 30 (1993) 900 – 904.
doi:10.1109/ACC.1993.4175983.

[13] P. Kühl, M. Diehl, T. Kraus, J. P. Schlöder, H. G. Bock, A
real-time algorithm for moving horizon state and parameter esti-
mation, Computers & Chemical Engineering 35 (1) (2011) 71–83.
doi:10.1016/j.compchemeng.2010.07.012.

[14] W. Caarls, E. Schuitema, Parallel Online Temporal Difference Learning
for Motor Control, IEEE Transactions on Neural Networks and Learning
Systems 27 (7) (2016) 1457–1468. doi:10.1109/TNNLS.2015.2442233.

[15] P. Abbeel, A. Coates, A. Y. Ng, Autonomous Helicopter Aerobatics
Through Apprenticeship Learning, International Journal of Robotics Re-
search 29 (13) (2010) 1608–1639.

[16] W. D. Smart, L. P. Kaelbling, Practical Reinforcement Learning in Con-
tinuous Spaces, in: Proceedings of the Seventeenth International Con-
ference on Machine Learning, ICML ’00, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2000, pp. 903–910.

[17] J. Kober, J. Peters, Policy search for motor primitives in robotics, Machine
Learning 84 (1-2) (2011) 171–203.

[18] R. Sutton, A. Barto, R. J. Williams, Reinforcement learning is direct adap-
tive optimal control, Control Systems, IEEE 12 (2) (1992) 19–22.

[19] D. Ernst, M. Glavic, F. Capitanescu, L. Wehenkel, Reinforcement Learn-
ing Versus Model Predictive Control: A Comparison on a Power System
Problem, IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 39 (2) (2009) 517–529.

[20] S. Levine, V. Koltun, Guided Policy Search, in: ICML ’13: Proceedings
of the 30th International Conference on Machine Learning, 2013, pp. 1–9.

[21] T. Zhang, G. Kahn, S. Levine, P. Abbeel, Learning deep control policies
for autonomous aerial vehicles with MPC-guided policy search, in: IEEE
International Conference on Robotics and Automation (ICRA, 2016, pp.
528–535.

[22] J.-M. Engel, R. Babuska, On-line Reinforcement Learning for Nonlin-
ear Motion Control: Quadratic and Non-Quadratic Reward Functions, in:
Proceedings of the 19th IFAC World Congress, Vol. 19, Cape Town, South
Africa, 2014, pp. 7043–7048.

[23] H. G. Bock, K. J. Plitt, A Multiple Shooting Algorithm for Direct Solution
of Optimal Control Problems, in: Proceedings of the 9th IFAC World
Congress, Pergamon Press, Budapest, 1984, pp. 242–247.

[24] M. Diehl, Real-Time Optimization for Large Scale Nonlinear
Processes, Ph.D. thesis, Heidelberg University, http://www.ub.uni-
heidelberg.de/archiv/1659/ (2001).

[25] M. Diehl, H. G. Bock, J. P. Schlöder, A Real-Time Iteration
Scheme for Nonlinear Optimization in Optimal Feedback Control,
SIAM Journal on Control and Optimization 43 (5) (2005) 1714–1736.
doi:10.1137/S0363012902400713.

[26] H. G. Bock, M. Diehl, E. A. Kostina, J. P. Schlöder, Constrained Opti-
mal Feedback Control of Systems Governed by Large Differential Alge-
braic Equations, in: L. Biegler, O. Ghattas, M. Heinkenschloss, D. Keyes,
B. van Bloemen Waanders (Eds.), Real-Time PDE-Constrained Opti-
mization, SIAM, 2007, Ch. 1, pp. 3–24.

[27] J. V. Frasch, L. Wirsching, S. Sager, H. G. Bock, Mixed–Level Iteration
Schemes for Nonlinear Model Predictive Control, IFAC Proceedings Vol-
umes 45 (17) (2012) 138 – 144. doi:http://dx.doi.org/10.3182/20120823-
5-NL-3013.00085.

[28] T. Johnson, C. Kirches, A. Wächter, An Active-Set Quadratic Program-
ming Method Based On Sequential Hot-Starts, SIAM Journal on Opti-
mization 25 (2) (2015) 967–994.

[29] I. Grondman, M. Vaandrager, L. Busoniu, R. Babuska, E. Schuitema, Ef-
ficient Model Learning Methods for Actor-Critic Control, IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics 42 (3)
(2012) 591–602. doi:10.1109/TSMCB.2011.2170565.

[30] S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, M. Lee, Natural Actor-
Critic Algorithms, TR09-10, University of Alberta, Canada (Jun. 2009).

[31] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in
evolution strategies, Evolutionary Computation 9 (2) (2001) 159–195.

[32] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, P. LEcuyer, et al., The Cross-
Entropy Method for Optimization, Vol. 31, Elsevier Science, 2013.

[33] L. Matignon, G. Laurent, N. Le Fort-Piat, Reward Function and Ini-
tial Values: Better Choices for Accelerated Goal-Directed Reinforcement
Learning, in: S. D. Kollias, A. Stafylopatis, W. Duch, E. Oja (Eds.), Ar-
tificial Neural Networks ICANN 2006, Vol. 4131 of Lecture Notes in

Computer Science, Springer Berlin Heidelberg, 2006, pp. 840–849.
[34] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT

Press, 1998.
[35] D. B. Leineweber, I. Bauer, H. G. Bock, J. P. Schlöder, An efficient multi-

ple shooting based reduced SQP strategy for large-scale dynamic process
optimization. Part 1: theoretical aspects, Computers & Chemical Engi-
neering 27 (2) (2003) 157–166.

[36] D. B. Leineweber, A. Schäfer, H. G. Bock, J. P. Schlöder, An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic
process optimization: Part II: Software aspects and applications, Com-
puters & chemical engineering 27 (2) (2003) 167–174.

[37] A. Y. Ng, D. Harada, S. J. Russell, Policy Invariance Under Reward Trans-
formations: Theory and Application to Reward Shaping, in: Proceedings
of the Sixteenth International Conference on Machine Learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1999, pp. 278–287.

[38] S. Shalev-Shwartz, Online Learning and Online Convex Optimization,
Foundations and Trends in Machine Learning 4 (2) (2012) 107–194.
doi:10.1561/2200000018.

[39] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement Learning: A
Survey, Journal of Artificial Intelligence Research 4 (1) (1996) 237–285.

[40] C. Kirches, L. Wirsching, H. G. Bock, J. P. Schlöder, Efficient Direct Mul-
tiple Shooting for Nonlinear Model Predictive Control on Long Horizons,
Journal of Process Control 22 (3) (2012) 540–550.

[41] D. Janka, C. Kirches, S. Sager, A. Wächter, An SR1/BFGS SQP algo-
rithm for nonconvex nonlinear programs with block-diagonal hessian ma-
trix, Mathematical Programming Computationdoi:10.1007/s12532-016-
0101-2.

[42] L. Schork, A parametric active set method for general quadratic program-
ming, Master thesis, Heidelberg University (2015).

[43] W. Caarls, Generic Reinforcement Learning Library (2015-2017).
URL {https://github.com/wcaarls/grl}

[44] M. L. Felis, RBDL: an Efficient Rigid-Body Dynamics Library us-
ing Recursive Algorithms, Autonomous Robots 41 (2) (2017) 495–511.
doi:10.1007/s10514-016-9574-0.

[45] M. Felis, Rigid Body Dynamics Library (RBDL (2012-2017).
URL {https://bitbucket.org/MartinFelis/rbdl}

[46] R. Featherstone, Rigid Body Dynamics Algorithms, Kluwer international
series in engineering and computer science: Robotics, Springer, 2008.

11

