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Abstract.
The design of an efficient propeller is limited by the harmful effects of cavitation. The

insufficient understanding of the role of vortex cavitation in noise and vibration reduces the
maximum efficiency by a necessary safety margin. The aim in the present study is to directly
relate propeller cavitation sound to tip vortex cavity dynamics. This is achieved by a dedicated
experiment in a cavitation tunnel on a specially designed two-bladed propeller using a high-speed
video camera and a hydrophone. The sound signature of a tip vortex cavity is not evidently
present in the sound spectrum above the tunnel background. The addition of a simulated wake
inflow results in a high amplitude broadband sound. With a decrease in the free-stream pressure
the centre frequency of this sound decreases as a result of a larger vortex cavity diameter. In the
near future each blade passage in the high-speed video will be analyzed in detail. The frequency
content of the cavity dynamics can then be directly related to the measured sound. An analytic
model for vortex cavity dynamics resulting in a cavity eigenfrequency using a vortex velocity
model can finally be evaluated as a design instrument for estimation of broadband sound from
propeller cavitation.

1. Introduction and experimental setup
The design of an efficient propeller is often limited by various forms of cavitation. Of these forms
sheet and cloud cavitation are closely related to the blade passage frequency and are relative well
understood. The measures taken to prevent this type of cavitation nuisance however, appear to
stimulate the occurrence of vortex cavitation. Vortex cavitation is expected to be responsible for
a broadband contribution to the pressure fluctuation spectrum, typically between 40 to 70 Hz
for a full-scale propeller [1].

A previous study on the dynamics of steady tip vortex cavitation trailing a stationary lifting
surface shows that a vortex cavity has a distinct eigenfrequency [2]. When excited by a matching
frequency this has the potential to generate high amplitude sound [3]. This principally tonal
component is expected to be spread over a range of frequencies mostly by signal variability
between blade passages [4] and changes in vortex cavity properties.

The main aim of the experiment under consideration is to show that understanding of
vortex cavity dynamics can be applied to estimate the sound production of propeller tip vortex
cavitation using a few basic properties such as cavity size and vortex strength. A simultaneous
registration of high speed video and hydrophone measurements is used to obtain the properties
of the dynamics of the tip vortex cavity and the resulting sound. As the detailed analysis of
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Figure 1. Sketch of the experimental setup with; A the propeller, B the wake generator, C the
hydrophone and D the high speed camera. Left is a side view of the test section with on the
right a cross section looking from upstream on the suction side of the propeller.

the high-speed video is not yet completed at present, some general trends based on the cavity
images and sound spectrum are presented.

A steady tip vortex cavity trailing a propeller without excitation is not expected to produce
sound with significant amplitude above the tunnel background. Therefore a simulated wake
field with a sharp dip in the axial velocity component is generated upstream using a series of
plates with narrow spacing. The flow aligned plates retard the flow locally resulting in a local
higher loading of the propeller blade passing its wake. The consequence is a locally stronger tip
vortex with a larger cavity diameter potentially followed by collapse and rebound after the blade
passage. This excitation of the vortex cavity is expected to be sufficiently strong to result in
audible pressure fluctuations. As the required excitation frequency is unknown the narrow wake
is chosen such that it contains a broad range of frequencies. The experimental results in this
study show the effect of a varying cavity size on the resulting sound by looking at the difference
in sound power density spectrum between a uniform inflow and simulated wake field.

The experiments are performed in the cavitation tunnel at Delft University of Technology.
The details of the tunnel can be found in the thesis by Foeth [5] while the recent modifications
are described in the thesis by Zverkhovskyi [6]. The tip vortex cavity is generated by a specially
designed right handed two-bladed skewed propeller with reference number 7359. The diameter
is 0.15 m with a constant pitch-to-diameter ratio of P/D = 1.0 over the span with the detailed
geometry freely available upon request. The projections of the propeller geometry can be seen
in the sketch of the experimental setup in figure 1.

The wake field is generated by 5 plates 2 mm thick, 100 mm high and 300 mm long with
3 mm spacing, that is mounted at 30 degrees from vertical and 10 mm upstream of the propeller
hub. The field of view of the high-speed video camera is chosen to include the propeller shaft
and tip. The hydrophone is mounted in a water filled cup to the side window of the test section
at 50 mm upward from the shaft axis at the stream-wise location of the propeller tip.

2. Results
Figure 2 shows three experimental conditions for varying the free-stream pressure while keeping
other parameters constant. At a constant blade angle the images on the left are for a uniform
inflow and on the right for the simulated wake inflow. The power density spectrum of the sound
is shown below the cavity images.

From the sound spectrum it is clear that a steady tip vortex cavity in uniform inflow does not
contribute significantly to the sound above the level of the background noise of the cavitation
tunnel. This is evident in the equal power density in the first blade passage frequency at 76 Hz
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Figure 2. Tip vortex cavity images of uniform inflow (left) and behind a simulated wake
(right), that are accompanied by a power density spectrum with reference value 10−12 Pa2/Hz.
Flow from bottom to top. Left in image; hubcap, propeller hub and a small portion of the
propeller tip trailing edge. The gap in the shaft is 42 mm downstream of the wake. Common
conditions; free-stream velocity 3.2 m/s, rotation rate 38 Hz, advance ratio J = 0.56, thrust
coefficient KT = 0.18, torque coefficient 10KQ = 0.27, Reynolds number at 70% radius 6.5 ×105.
Cavitation number at 70% radius varied from top to bottom to 1.16, 1.07 and 0.98. Arrows
indicate high amplitude contributions that decrease in frequency consequently.
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and the range between 0.6 and 1.5 kHz. The cavitation tunnel conditions do not allow a
reference measurement without cavitation on the propeller. When the sound spectrum of the
tip vortex behind the plates is considered it is observed that the cavity grows and apparently
excited the rest of the tip vortex cavity. The reduced axial flow also alters the path of the vortex
cavity centreline. The result in sound is a high amplitude broadband contribution as much as
30 dB in power density above the uniform inflow signal. The centre frequency of this feature
is related to the cavity diameter. For lower pressures thus larger cavities, a lower frequency is
found. Only the 5th and 6th blade passage frequencies increase in amplitude in the presence of
the wake but significantly less than the broadband part.

The broadband character of the high amplitude contribution varies with decreasing pressure.
The middle case shows highest amplitude and is thus expected to contribute to the sound over
a larger portion of the blade rotation resulting in a more narrow-band signature.

The simultaneous registration of the high-speed video images recorded with a frame rate
slightly above one data point per degree of rotation enables a more detailed time-frequency
analysis. This can be used to directly link the dynamics of the vortex cavity to sound emission.

3. Conclusions and future work
A tip vortex cavity in the wake of a propeller in a uniform inflow does not produce sound
with significant amplitude to be detectable above the tunnel background. The addition of an
obstruction in the inflow of the propeller results in a significant broadband contribution to the
measured sound. The range of this frequency band strongly correlates with the size of the tip
vortex cavity; for larger cavities the range shifts to lower frequencies. Finally the high-speed
video is of sufficient resolution in time and space to study in detail the cavity growth, collapse
and rebound of the vortex cavity behind and besides the wake plates.

The analysis described here is only a preliminary first step preceding a detailed analysis of
the high speed video of the individual blade passages and the corresponding contribution to
the sound by the tip vortex cavity. The main goal is to find tip vortex cavity properties which
correspond to the broadband sound centre frequency. Potential candidates are the mean cavity
size in the undisturbed section of the flow and the cavity size downstream of the wake plates.
The frequency content of the cavity will then be compared to the time-frequency sound signal to
break down the broadband sound in individual elements at several blade angle ranges. Finally
the sound generating condition of an analytic cavity wave dynamics model [2] combined with
a viscous vortex flow field will be used to form an engineering method for estimation of the
broadband sound from tip vortex cavitation.
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