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Preface

This master’s thesis is the culmination of my tertiary education. Throughout my academic journey, I have
learned a lot and not just limited to what was in the curriculum. To draw a parallel with reinforcement learning;:
I came to TU Delft’s Aerospace Engineering as a young man untrained in many ways and through many trials
will leave this institution a confident fully trained engineer ready to play their part in helping solve some of the
world’s problems. I would like to thank my supervisors Erik-Jan and Isabelle for their guidance, expertise and
support throughout my thesis. As usual, a special thanks to my family and friends for their continued support
and motivation.

For readers interested in the implementation details, the GitHub repository containing the code used to generate
the results presented in the scientific article is available at https://github.com/gabCodes/RL_FlightControl.

Gabriel Alayén Blanco
Delft, 2025
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Chapter 1

Introduction

1.1 Motivation

The development of aerial vehicle technology has transformed the way in which humans travel, transport goods
and defend themselves. Passenger air transport, which suffered a plunge due to the COVID-19 crisis, has recov-
ered the crisis and reached an all time high as of December 2024 with a forecasted growth of 6.2% in 2025 [1].
Historically, pilots played a crucial role in the operating of manned aerial vehicles across all levels of control. To-
day, pilots reap the rewards of technological innovations by delegating some of, if not all, control tasks to a flight
control system. These flight augmentation and automation systems conventionally operate by using linearised
aircraft models to decide on actuator control gains to augment or automate many control tasks. However, due to
the linearisation, the control gains calculated are only valid near fixed operation points and so most augmenta-
tion/automation systems deploy some form of gain scheduling to obtain the appropriate gain across the vehicle’s
flight envelope.

Conventional flight control techniques that use linearised models to calculate control gains at fixed operating
points present two main issues. Firstly, there is a reliance on having a high fidelity model of the aerial vehicle in
order to calculate the necessary control gains which needs to be derived, verified and validated thoroughly due
to the expensive and rigorous nature of aviation. This is of particular trouble for experimental and innovative
vehicles whose dynamics and designs might differ enough from the other vehicles where there’s no easy reference
model to begin from. Secondly, control systems that use gain scheduling are confined by the regions which have
been scheduled, meaning that if for whatever reason the vehicle finds itself outside this region the augmenta-
tion/automation control systems will not be appropriately calibrated. Not only that, but as technology advances
and aerial vehicles become more capable their flight envelope is likely to broaden and require more calculations
once again.

The need for a high fidelity model and a schedule for control gains across multiple operating points can be
solved with reinforcement learning (RL). RL refers to a class of machine learning techniques where an agent acts
and explores their environments in clever ways to maximise the notion of cumulative reward. For flight control
systems, this notion of reward can refer to how well a certain reference is tracked and the actions of the agent
would correspond to the commands given to the actuators which has shown to be achievable via RL [2]. Higher
level control tasks like autonomous navigation have also been posed as RL problems successfully [3]. Though
some RL methods can make use of models to better the agent’s decision making, they are not strictly needed
and have been shown to work in a model free fashion [4]. These tend to be simpler to use due to their black
box approach as no model identification is necessary but come at the expense of solution opaqueness as inferring
knowledge from black box solutions is difficult. Finally, if the agent’s learned policy generalises sufficiently, gain
scheduling would be unnecessary. This is because the policy could operate across the entire flight envelope.

Naturally, RL methods have their disadvantages. Given their exploratory nature they can be data hungry and
unsafe. The data hunger problem is so prevalent across RL that there’s a term used to describe the performance
of different algorithms in terms of their data needs; this term is the sample efficiency and it is a measure of how
many interactions agent-environment interactions are necessary for acceptable performance of the algorithm.
Much research has gone into how to improve the sample efficiency of RL as it can lower the training data cost
of obtaining good solutions, of particular interest is the RED(Q method which has shown impressive model free
sample efficiency performance in some benchmarks that beats model based approaches [5]. This thesis will look
to help RL find more use in civil aviation flight control tracking applications by making use of more sample
efficient developments that have not been tested in the field.



1.2 Research objective & research questions

Now that the research gap and motivation have been established, the direction of the thesis can be locked by
formulating the research questions and objectives. The objective of the thesis is encapsulated as follows:

Research Objective

To improve the sample efficiency of model free flight control reinforcement learning approaches.

As the research objective states, knowledge must be acquired in order to propose a methodology that tackles
the problem of sample efficiency in RL flight control applications. With the aim of acquiring this knowledge and
achieving the research objective, the following three research questions (RQ) and accompanying sub-questions
are proposed as areas to be covered in this thesis:

Research Questions

Q1 How can reinforcement learning with a focus on sample efficiency be used for flight control
applications?

1. How can RL be used to solve control problems?

2. What are some relevant performance metrics to keep in mind when developing RL for flight
control purposes?

3. What is a suitable methodology to tackle sample efficiency improvement?

Q2 How can a preliminary analysis investigating sample efficiency be implemented on benchmark
environments?

1. What learning environments will be used to test the methodology?
2. What baseline algorithms will be used in the preliminary analysis for comparison?

3. How will the sample efficiency of the preliminary analysis be computed?

Q3 How does the proposed methodology perform on the Cessna Citation PH-LAB Model?
1. How can the RL algorithm be interfaced with the PH-LAB model?
2. What algorithms will be used as comparisons in the methodology?
3. How will the proposed methodology improve sample efficiency?

4. What are the safety implications for the proposed methodology?

1.3 Thesis structure

The structure of this thesis is broken into three parts. Part I contains a standalone scientific article detailed the
experiment conducted. Part IT contains the literature study and preliminary analysis. Part III contains additional
results not discussed in the paper. Part IV contains the conclusion and recommendations. The breakdown of
the chapters is as follows: Chapter 1 gives the motivation for the research and outlines the research direction via
the research objective and questions. Chapter 2 will give the necessary background to understand RL, go over
some of the common approaches, discuss the different classifications used in RL taxonomy and introduce some
benchmarks. Chapter 3 narrows in on the information necessary to tackle the research objective, extending the
general knowledge and tailoring it for the flight control applications. Chapter 4 will give a preliminary analysis of
the REDQ method, this was done on the “Pendulum-v1” and “InvertedPendulum-v4” environments to get a sense
of the effect of the REDQ algorithm and familiarise with the author with the procedures that will be necessary
during the thesis exercise. Chapter 5 summarises the literature study by giving an overview of the literature



study and some recommendations on how to connect the knowledge from the study to the thesis assignment.
Chapter 6 discusses the hyperparameter tuning procedure done for the flight control attitude tracking agents to
ensure both policy smoothness and good tracking performance. Chapter 7 presents some visualisations which
were omitted on the research article to prevent clutter, it includes additional information regarding the fault
scenarios tested during the experiment. Chapter 8 discusses how the verification and validation of the research
experiment was addressed. Chapter 9 will conclude by building on all the knowledge gathered from the thesis
in order to answer the research questions. Chapter 10 contains the recommendations suggested by the author.
The planning proposed for the literature study and thesis can be seen in Appendix A where the study is broken
down into work packages and scheduled as seen in the Gantt chart.



Part 1

Scientific Article
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Sample efficiency is a critical metric in intelligent control systems as it directly influences the

feasibility and effectiveness of learning-based approaches. This paper presents the study of how

Randomized Ensemble Double Q-Learning (REDQ), a sample-efficient model free algorithm,

can be used in flight control applications. Three controllers were developed for: pitch, roll

and combined biaxial attitude tracking tasks and tested on a high fidelity Cessna Citation 550

model. For each control task, three agents were trained offline: two using REDQ enhanced Soft

Actor Critic (SAC) architectures and one using a standard SAC architecture for comparison.

REDQ agents showed statistically significant improvements in sample efficiency during initial

learning. Average accurate tracking convergence (error < 1°) occurred within 5,500 training

steps for pitch, 6,400 for roll and 11,500 for biaxial control. The gains in sample efficiency

were shown to have drawbacks in learning stability and robustness when deviated too far from

nominal conditions.
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I. Introduction

The development of aerial vehicle technology has transformed the way in which humans travel, transport goods
and defend themselves. Passenger air transport, which suffered a plunge due to the COVID-19 crisis, has recovered
from the crisis and reached an all time high as of December 2024 with a forecasted growth of 6.2% in 2025 [1]. Today,
pilots reap the rewards of technological innovations by delegating some of, if not all, control tasks to a flight control
system. These systems conventionally operate by using linearized aircraft models to decide on actuator control gains to
augment or automate many control tasks. However, due to the linearization, the control gains calculated are only valid
near fixed operation points, so most systems turn to gain scheduling to obtain the appropriate gains across the vehicle’s
flight envelope.

Reinforcement learning (RL) is a machine learning technique that offers an alternative to gain scheduling by using
agents to learn control tasks. RL refers to a class of machine learning techniques in which agents act and explore
their environments through trial and error with the aim of maximizing the notion of discounted cumulative reward
[2]. For flight control systems, this notion of reward can be defined to reflect how well a reference is tracked and the
actions of the agent the commands given to actuators. This has been shown to be achievable via RL for tracking tasks
[3] and for higher level control tasks like autonomous navigation [4]. RL is further partitioned into model based and
model free approaches. Model based refers to methods where the agent has access to a partial/complete representation
(whether learned or given) of its environment. Model free approaches are those where agents do not have access to an
environment and learn solely based on interactions. Model free RL has been successfully used for flight control-relevant
applications such as optimal control tracking [5].

RL methods have disadvantages, such as data hunger and safety concerns. Sample efficiency is the term used
to quantify the number of steps needed to converge to a good solution. Randomized Ensemble Double Q Learning
(REDQ) [6] is a technique used to boost the sample efficiency of actor critic architectures like Soft Actor Critic (SAC),
Twin Delayed Deep Deterministic Policy Gradient (TD3) or Deep Deterministic Policy Gradient (DDPG) [7-9] that
has seen success across benchmarks. The sample efficiency gains are achieved by introducing an ensemble of critics,
minimizing over a random subset of them and increasing the update-to-data (UTD) ratio (which controls how many
updates are performed per given batch update step).

The contribution of this paper is to study sample-efficient model free algorithms for flight control use by developing
sample-efficient model free attitude tracking controllers using REDQ. It will focus on three control tasks: pitch control,
roll control and a combination of the two. The combined roll and pitch attitude tasks will hereafter be referred to as the
biaxial control task. Furthermore, the fault tolerance behavior of the more sample-efficient controllers was analyzed
under three conditions to investigate potential drawbacks. The experiments were conducted on the CitAST, a high
fidelity Cessna Citation 500 model representative of the dynamics of TU Delft’s PH-LAB [10].

The paper is structured as follows. Firstly, section II details the background for this paper: a brief recap of RL



and Markov Decision Processes (MDPs), an explanation of how REDQ is used on actor critic architectures, how the
entropy will be automatically tuned and the policy smoothing approach for future potential use in real systems. Secondly,
section III discusses the methodology used for the attitude tracking controllers and the way the experiment was setup
and evaluated. Third, section IV shows the results obtained from the experiment. Lastly, section V wraps up with a

conclusion.

I1. Background
This section will give a brief description of the necessary knowledge that was used in the methodology. First, Re-
inforcement Learning (RL) and Markov Decision Processes (MDPs) are discussed. Secondly, actor critic architectures
are explained with a focus on Randomized Ensemble Double Q Learning (REDQ) [6]. Third, since a Soft Actor Critic
(SAC) [7] was the base algorithm chosen, the automatic temperature procedure will be explained. Lastly, to ensure the
actuator control signals are apt for real system applications, Conditioning for Action Policy Smoothness (CAPS) [11]

is discussed.

A.RL & MDPs

RL is a way of approaching problems using an agent and environment paradigm where the agent navigates sequen-
tially popularized by Sutton and Barto [2]. The agent procedurally selects actions based on a mix of exploration and
evaluative feedback without the need to rely on knowledge of what the correct action should be, with the idea that some
actions in certain states are more desirable than others and should be more favored if the state were to recur. Figure 1

illustrates the agent environment paradigm where the ¢ subscripts denote a discrete timestep.

'_l Agent Il
state reward action
Sr Rr AI

iRy [
i S | Environment J<7
i \_

Fig.1 Agent environment interface [2]

MDPs are a mathematical framework used in reinforcement learning whose formulation can be deterministic or
probabilistic. In deterministic MDPs, the environments define the landscape for the agent’s learning by means of the
state transition function f : § X A — § and shape the learning via the reward function r : S X A — R. Agents are said
to move through a subset of states S, take actions a@ € A(s) depending on a state s € S based on some policy 7. Agents

evaluate states using a learned value function such as the state-action value function Q (s, a) (will be used throughout



the rest of this paper). Policy optimization methods are those that aim to directly improve an agent’s decision-making
process and value-based methods aim to improve the agent’s evaluation of states and then indirectly arrive at a good
policy through selecting actions that maximize value function estimates. In flight control applications where the states

and/or action space are continuous, the policies and value functions are often approximated by neural networks.

B. Actor Critic Architectures & REDQ

Actor critic architectures are a hybrid between policy optimization methods and value based methods. They dele-
gate the learning into two coupled roles: the actor which is in charge of the policy and the critic which is in charge of
the value function. These two are coupled as the actor’s policy takes into account the evaluation estimates of the critic
during updates. In continuous state-action space, the policies and value functions tend to be approximated by separate

neural networks which are updated based on some loss objective.

SAC is a commonly used actor critic algorithm which uses a stochastic policy that samples from a normal distribu-
tion while training. Equation 1 and Equation 2 describe the network update steps for the critic and actor respectively,
where d(s) ~ mq(+|s) denotes an action taken by the actor with policy g constructed with neural network weights Q.
In essence, the critic updates its network parameters A based on the error relative to a target and the actor updates its
network parameters Q based on the critic evaluations on the actor’s previous actions at given states with an entropy
penalty to encourage exploration. The weight of the entropy penalty is fixed by hyperparameter k known as the tem-
perature. Two critics are usually used for better performance compared to a single critic [12]. The B representing the

batch size is present because these updates are usually performed with batches of state transitions.

e Y (Qa(sa)—y) (M

|B| (s,a,r,s’)eB

N
mﬁz %ZQ/L-(S,d(s))—Klogﬂg(d(s)LV) . a(s) ~ malls) @

SEB i=1

REDAQ is a technique that builds on actor critic algorithms by layering three extra concepts on regular actor critic
architectures to boost their sample efficiency. Firstly, it generalizes the number of critics in the architecture controlled
by the hyperparameter N denoting the number of critics. Secondly, it defines a hyperparameter M that is the subset
size over which the minimization will be done (used when computing the target to avoid overestimating the values of
state-action pairs). The minimization will then be done over a subset M critics which will be chosen randomly from
the N total critics. Lastly, a hyperparameter U is defined as the update-to-data ratio (UTD) which sets how often the
networks are updated per training step. The REDQ approach can technically be used in any actor critic architectures

such as SAC, TD3 or DDPG [8, 9]. Algorithm 1 shows the REDQ implementation used during the experiment.



C. Automatic Entropy Tuning

The weight of the entropy regularization term « is a hyperparameter that determines how much exploration is
encouraged. Naturally, the importance of exploring depends on the stage of learning. Haarnoja et al. [13] proposed
a procedure to automatically adjust x based on the certainty of the agent’s actions and a fixed target entropy. The
update steps for k follow Equation 3, where H is the target entropy determined by the action space dimension. Since
automatic tuning is formulated as an optimization problem, it introduces a learning rate hyperparameter. For simplicity,

the learning rate for the entropy tuning was the same as for the actor and the critic.

ViEg-r[—klog(d(s)|s) —kH], H =-dim(A) 3)

D. Policy Smoothing - CAPS

Policies that are capable of successfully performing tasks are not always suitable for use on real-world systems.
Often policies are too aggressive in their actions that pose energy, safety and actuator wear concerns. To combat this
Mysore et al. [11] demonstrated how penalizing temporal and spacial differences in the actor objective function can
yield smooth policies more suitable for real world systems. Temporal loss is defined as the difference in action between
two subsequent states. Spacial loss is defined as the difference in action between a state and its surrounding states.

These are shown mathematically in Equation 4 and Equation 5.

Ly =nda(s) —a'(s')] “ Ly =nsla(s) —a(s +e)| (&)

The actions in a given state are given by the policy d(s) ~ mq(-|s). Subsequent actions are also given by the policy
using the subsequent state d@(s’) ~ mq(-|s’) where ’ is used to signify subsequent actions or states. The noise added to
the state in the spacial loss was sampled from a normal distribution € ~ N (0,0.01) for the experiments in this paper.

This approach introduces two new hyperparameters to be tuned: 7, and 7.

II1. Methodology
To investigate the sample efficiency and robustness of using REDQ on flight control tasks, three tasks were chosen.
These were a pitch tracking task, a roll tracking control task and a task where both these angles were tracked simultane-
ously termed the biaxial control task. For performance comparison, a standard SAC agent was also implemented. This

section discusses how this was accomplished and evaluated.

A. Cessna Citation Model
The control tasks were performed on the CitAST, a non-linear high fidelity model of TU Delft’s PH-LAB (Cessna

Citation 550) which has been validated using real flight data [10]. The aircraft model consists of twelve states and



three actuators given in Equation 6. The relevant sign convention of the states/actuators subset used throughout the

experiment is depicted in Figure 2.
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Fig. 2 Relevant aircraft states and actuators sign convention adapted from Cook [14]

The experiment occurred in a trimmed system starting at a 2000 m altitude, 4000 kg aircraft weight, 90 m/s true
airspeed and a 0° flight path angle operating point. The system had an already implemented auto-throttle for speed
control and a yaw damper. The actuator dynamics were modelled as a saturated first order lag dynamics and ideal

sensors were assumed. The simulation update rate of the system was 100 Hz.

B. MDP Formulation
To apply RL theory to the control task, it must first be framed as an MDP. This subsection discusses how each
control task was mapped to an MDP formulation. The running example used will be for a REDQ biaxial tracking task

since the SAC controllers were constructed similarly.

1. Biaxial control

Figure 3 shows the control diagram for a REDQ biaxial tracking controller. The plant dynamics corresponds to the
aforementioned Cessna Citation model, it serves as the environment and gives the reward function (via the reference
error). The agent corresponds to the REDQ controller. Training or evaluation was terminated either at the end of an

episode or when the agent’s actions caused the environment to go out of bounds, resulting in NaN values.
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Fig. 3 REDQ controller diagram for biaxial tracking task

The agent states are a four dimensional vector that use the trim condition as starting point. The actions correspond
to elevator and aileron commands. The reward is calculated as a weighted sum of the reference errors with respect to
each axis where the coefficients were experimentally found based on initial manual changes and looking at the tracking
performance on both pitch and roll axes. This is summed up mathematically in Equation 7 and Equation 8. The
maximum action was chosen to be constrained within é., 6, € [—15°, 15°].

s=[0 q ¢ ql"
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a=16. o' a ®
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r=-0.6x10.]—0.4X|¢e|
The REDQ controller or agent consists of an actor network and multiple critic networks, their respective architec-

tures are illustrated in Figure 4. Note that since the number of critics is a hyperparameter for REDQ agents (SAC agents

just uses two), there will be more than two critic networks working in parallel but only one actor network.
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Fig. 4 Network architecture for the actor and the critics



The process of formulating the pitch tracking task and roll tracking task as MDPs is analogous to the process
described above but with a reduced state and action space. Mathematically, this is summed up as seen in Equation 9

and Equation 10 for the pitch tracking task and the roll tracking task respectively.

s=[6. q]t s=1[¢e pI”
a=[6.] ) a=[64] (10)
r=—|6| r=—|gel

2. Training reference function creation
To train the agent in a generalizable way, the generated reference signal was randomly generated at the beginning of
every episode. Equation 11 shows how the pitch reference function was defined, it was designed to prevent unrealistic

amplitudes, frequency demands and pitch rate references (its derivative).

4 4
0,(1) = Z crsin(wit), Z lex] = 0.26,  0.05 < wy < 0.2 [rad/s] (11)
k k

It is a four term sum of sines reference signal where ¢y and wy are randomly generated with the conditions that the
sum of the coefficients be 0.26 and the frequencies bounded. The ¢y is allowed to be negative to allow for reference
signals that start by pitching down. The coefficient sum condition ensures that under maximum constructive interference
the maximum amplitude would be 15° or 0.26 rad. The frequencies are bounded within values that the PH-LAB
can respond to (found experimentally by probing the model with difference frequencies). Since the sum of different
frequencies can lead to unexpected effective frequencies along it’s trajectory, a lowpass Butterworth filter with corner
frequency 0.2 rad/s is used on the signal to ensure that the model can always respond to the reference signal. The roll

reference signal ¢, (¢) was constructed identically.

C. Algorithm Configuration

The version of REDQ SAC that was implemented for the controllers can be seen in Algorithm 1. Most notably
when compared with the reference REDQ algorithm, there is no hyperparameter defining the subset size over which to
minimize the critics. Additionally, automatic entropy tuning is added and the actor loss function has the added CAPS

regularization terms.



Algorithm 1 REDQ SAC Algorithm based on Chen et al. [6]

1: Initialise policy parameters 2, N Q-function parameters A;,i = 1, ..., N, empty replay buffer D.
2: Set target parameters Aarg,; < A;, fori =1,2,..., N

3: loop

4: Take one action a; ~ mq(+|s;). Observe reward r;, new state ;4

5 Add data to buffer: D « DU {(s;, ar, s, S141) }

6: for U updates do do

7 Sample a mini-batch B = {(s, a,r, s")} from D

8: Compute the Q target y (same for all of the N Q-functions):

y=rey (mN Qi (') - KIOgJTQ(a’IS’)) . @~ maCls)
LE

9: fori=1,...,Ndodo
10: Update A; with gradient descent using

V/lllfl Z (0 (s,a) - Y}Z

(s,a,r,s")€EB

11: end for
12: Update target networks with Airg,i < pA; + (1 = p) dtarg,i
13 end for
14: Update policy parameters €2 with gradient ascent using
N
1 1 ~ - - ‘oo ~ ~
VQE Z v 22Q4(s5.4(s)) — logma(a(s)ls) —mild(s) - a’(s")| = nsla(s) - (s +e)l| .
SEB i=1
a(s) ~ ma(:ls), a'(s) ~ma(ls’), €~ N(0,0.01)
15: Update temperature « using gradient descent using
ViEa~z[—«log(a(s)|s) — kH], H =-dim(A)

16: end loop

The rationale for discarding the critic minimization subset size M as a hyperparameter for REDQ was done because
the number of critics was kept low due to computational considerations. As such, any minimization over a subset of the
critics would not have as big an impact as if there were more critics. Additionally, Hiraoka et al. [15] demonstrated that
minimizing over the full number of critics yields sample efficient performance in conjunction with the use of dropout

on several benchmarks.

Given how sensitive the performance of agents can be to hyperparameters, a study was conducted to find a good
selection of hyperparameters for the SAC agent pitch tracking task using Optuna’s TPE sampling [16] with objective:
maximizing the asymptotic return. These same hyperparameters were used for the roll tracking task and biaxial tracking
task as they were found to work well for those too. A separate hyperparameter study for REDQ agents was performed
but ultimately not used. This is because the objective for the hyperparameter studies was tied to the average asymptotic
return instead of the sample efficiency. Instead, to isolate the impact REDQ hyperparameters had on sample efficiency,
two agents were proposed RED3Q and RED5Q. These agents had a matching number of UTD and number of critics set
by the number in the name. RED3Q was proposed as a minimal incremental step to SAC, only increasing the number

of critics by one and tripling the UTD ratio. RED5Q constituted a larger step with respect to SAC, adding three more



can be seen in Table 1 and Table 2 respectively.

critics and quintupling the UTD ratio. A summary of the hyperparameters used for the SAC and REDQ SAC agents

Table 2 Hyperparameters REDQ agents

Table 1 Hyperparameters SAC agents Parameter Value

Parameter Value Optirpizer. Adam [17]

Optimizer Adam [17] Nor.lhneanty ReL.U

Nonlinearity ReL.U # hldde.n layers. 2

# hidden layers 2 # of units per hidden .64

# of units per hidden 64 Target entropy : —dim(A)

Target entro —dim(A) Spacial smoothness coeff. 5130

g Py 1

Spacial smoothness coeff.! 5130 Temp9ral smoothness coeff. 15160 .

Temporal smoothness coeff.! 15160 Lclzarmng rate 6.3 x 10~

Learning rate 63x10°% Discount facto.r 0.99

Discount factor 0.99 Target smoothlng coeff. 0.076

Target smoothing coeff. 0.076 Batch size 64

Batch size 64 Buffer size 50k

——

Buffer size 50k # of critics 315

ILeft was for pitch or roll tasks. Right for biaxial task. UTD ratio 315

ILeft was for pitch or roll tasks. Right for biaxial task.
2For RED3Q and RED5Q respectively.

The choice of keeping the base hyperparameters the same was done in order to attribute the performance differences
to the REDQ hyperparameters as much as possible. The reason both RED3Q and RED5Q were used for evaluation was
to get a wider view of how these hyperparameters affect performance. Note that the hyperparameter study was only
conducted on the third group of hyperparameters in the table, the parameters for the first group were based on Dally

[18] and the CAPS hyperparameters were found experimentally.

D. Experiment Setup
This subsection will discuss how the agents were trained and evaluated. Evaluation involved performing statistical

analysis on the learning curves, as well as performing a fault tolerance analysis.

1. Training

The training was divided into 18 different blocks and used randomly generated attitude reference signals. The 18
blocks are a result of the combination of the three control tasks, the three agents (SAC, RED3Q, RED5Q) and two
training scopes: a short term analysis with more granularity in the beginning where most of the learning happens to
compare sample efficiency and a long term analysis for a lower resolution picture of the asymptotic performance when
the learning has converged. Table 3 details the scope specifications per task for each agent. The short scope was used
for the learning curves as this encompassed the first 12,500 steps where most of the learning took place. The network

weights at the end of the 25,000 step long scope were used to compare the fault tolerance between the agents when the
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learning had converged. Note that 30 agents are trained to get a better estimate of the performance of a given agent per

task per scope.
Table 3 Scope specification for agent training per control task

Scope ‘ Num. of agents ‘ Num. of episodes ‘ Ep. length [steps] ‘ Resolution [steps]
Long 30 10 2500 250

Short 30 5 2500 50

To monitor the agent’s tracking performance, a function is used to evaluate the agent’s performance at every check-
point. When evaluating, the mean action of the agent is used (as opposed to the stochastic action used during training).
The function used to evaluate the performance of the agent at every snapshot is given in Equation 12 (the roll references
are constructed identically but with its respective initial trim offset). The tracking performance was evaluated with re-
spect to the reference for twenty seconds with a system update rate of 100 Hz, which results in a 2000 step evaluation

episode.

0y, (1) = 0.12s5in(0.41) + 6y, ¢ € [0,20] (12)

The learning curves were constructed by plotting the evaluation performance against the number of steps the agent
trained. They show the mean and 95% confidence intervals of all snapshots across the 30 agents per given task and
scope. Although all 30 agents eventually converged to good solutions, a few of them were not used during the analysis

as some training episodes were terminated due to going out of bounds, resulting in NaN values.

2. Statistical analysis

To fairly compare performance between SAC and REDQ agents, two benchmark performance objectives were set
as seen in Equation 13 and Equation 14 with 7 representing the number of steps. The first threshold of -5000 was
chosen as at this point agents already have a decent policy. For some intuition, given the evaluation episodes were 2000
steps long a reward of -5000 would mean on average the agent was off reference by |% = |2.5°| since the reward

function was directly tied to the reference error. Similar reasoning was used for the -2000 threshold which meant being

off reference by |1°| on average, typical of fully trained agent performance.

Jso00 = min || s.t. 7, (1) > =5000 (13)
J2000 = min |7| s.t. 7, (T) > =2000 (14)

To make meaningful observations about the learning tasks, a statistical analysis of the agents was performed. For

this, two metrics were used. Firstly, a Welch t-test was used to determine whether the differences in the learning
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curves were statistically significant. The associated p values were then used in combination with the learning curves
to determine which agent performs best. Secondly, to analyse whether the differences are practically meaningful, the
mean error (ME) relative to the reference per evaluation is logged. These are calculated as seen in Equation 15 where

T is the length of the evaluation.

1 T
ME, = — Z 9,
= (15)

1 T
ME, = > ¢
t=1

3. Fault tolerance analysis

To test the robustness of the agents, their fault tolerance behavior was analyzed under three conditions. The nominal
condition consisted of no faults introduced and evaluated the agent performance on a sinusoid for 2 minutes with the
aim of seeing how agents perform over longer time horizons. The quarter actuator efficiency condition consisted of
multiplying the actuator command by 37 and evaluating its performance on randomly generated reference signals with
diminished actuator control. The purpose of this scenario was to test whether the agents were robust to large changes
in actuator effectiveness. The actuator jolt condition pushed the actuator to a maximum deflection for a second in each
direction with the aim of testing if the agent was able to recover from sudden large disturbances. The mean error for
each agent was recorded for every condition and presented in a box plot showing their interquartile range (IQR).

The mathematical formulation for each of the conditions are detailed hereafter. For brevity, it is exemplified as if
it was for a pitch control task. The roll and biaxial task were constructed in the same manner so their definitions are
analogous. For the nominal condition, the reference function is defined as seen in Equation 16 and the actuator will
follow Equation 17. The u subscript is used to signify that the mean action is used for evaluation as opposed to the

stochastic one used during training.
0, (t) = 0.125in(0.4¢) + 6y, ¢t € [0, 120] (16)

e = au(s) ~ ma(:ls) a7

For the quarter actuator efficiency condition, the randomly generated reference was constructed, as previously dis-

cussed, using Equation 11 for ¢ € [0, 60] and the actuator will follow Equation 18.

1
de = 7 Xau(s) ~ ma(ls) (18)

For the actuator jolt condition, the definitions for reference and actions are given in Equation 19 and Equation 20.

12



15° 55t<6

0r(1) =0, 1€0,20] (19 Se(r) =1 -15° 0<r<it Q0

a,(s) ~ma(-|s) otherwise

IV. Results and Discussion
As discussed in the methodology, the results will be divided in two sections. The results relating to sample efficiency

and learning curves are given in subsection IV.A and the fault tolerance analysis will be discussed in subsection I'V.B.

A. Sample Efficiency Analysis

The learning curve for the pitch tracking task and the SAC vs. RED3Q Welch t-test are shown in Figure 5. The
t-test was conducted between SAC and RED3Q as both REDQ agents showed similar initial performance, with RED3Q
showing better asymptotic stability. After initial randomness in early learning, both REDQ agents learn faster as seen
in their fast rise towards the settling region in approximately 1000 steps, with the differences between SAC and RED3Q
seen being statistically significant (p value < 0.05). After approximately 2000 steps, SAC agents reached comparable

performance levels, at which point the differences between RED3Q and SAC were no longer statistically significant.
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Fig. 5 Top: Pitch tracking learning curves for SAC, RED3Q, and RED5Q (each with N = 30)
Bottom: Unpaired t-test p-values comparing SAC vs. RED3Q (both with N = 30)

SAC exhibits more stable asymptotic stability, as the learning curve trajectory remains more leveled after reaching

the settling region. In contrast, both RED3Q and RED5Q show higher variance in performance in the settling region.
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This pattern is consistent with the benchmark results presented in Table 4, where the number of steps for Jsgg is
improved by ~ 50% and ~ 25% for RED3Q and REDS5Q respectively when compared to SAC. SAC performs the best

in the number of steps for Jyggo with a ~ 30% and ~ 50% improvement over RED3Q and RED5Q respectively.
Table 4 Pitch control benchmark performance comparison

Agent | Jso00 (steps) | Jaooo (steps)

SAC 2200 2600
RED3Q 1000 3600
RED5Q 1500 5500

*] is the number of steps until subscript level mean performance is achieved.

The roll control learning curve and SAC vs. RED3Q Welch t-test shown in Figure 6 showed characteristics similar
to those discussed for pitch. After the initial randomness, the REDQ agents quickly rose to near settling region within
800 steps, demonstrating better sample efficiency. Performance differences were statistically significant between steps
300-1400 and then towards the tail of the learning curves between 4300-5800 steps. RED5Q once again demonstrated

volatile asymptotic stability.
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Fig. 6 Top: Roll tracking learning curves for SAC (N = 30), RED3Q (N = 27), and RED5Q (N = 30)
Bottom: Unpaired t-test p-values comparing SAC (N = 30) vs. RED3Q (N =27)

The first statistically significant signal is due to the gains in sample efficiency. The second signal was due to the
SAC agents demonstrating better asymptotic performance during this part of the settling region. Although statistically
significant, the second signal was not numerically meaningful with a difference in the average return of ~ 100.

The benchmark comparison for the roll control task is given Table 5. In terms of agent performance, it tracked with

the performance shown on the pitch task. Given that both pitch and roll benchmarks were met in approximately the
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same number of steps, this indicates that longitudinal and asymmetric dynamics present comparable levels of learning

complexity for the agents.

Table 5 Roll control benchmark performance comparison

Agent | Jsooo (steps) | Jao0o (steps)

SAC 2550 2750
RED3Q 1400 3150
RED5Q 1450 6400

*J is the number of steps until subscript level mean performance is achieved.

The biaxial learning curve and SAC vs. RED3Q Welch t-test are shown in Figure 7. The climb to near settling

region for all agents occurs within 2000 steps, with REDQ agents showing higher return within this period. Compared

to previous control tasks, the biaxial task showed higher volatility at the beginning of learning and a higher number of

steps required to learn the tasks. The gains in performance for the biaxial task were less pronounced, but still significant

statistically and meaningful in terms of numerical magnitude.
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Fig. 7 Top: Biaxial tracking learning curves for SAC, RED3Q, and RED5Q (each with N = 30)

Bottom: Unpaired t-test p-values comparing SAC vs. RED3Q (both with N = 30)

The first statistically significant signal occurred between 500-1000 steps, during which REDQ agents consistently

outperformed SAC, as agents learned faster after the initial randomness. The second signal took place between 2300-

3400 steps, where RED3Q climbed to asymptotic performance faster after the learning had begun to level. Between

these two intervals, RED3Q exhibited a temporary drop in performance around 1500 steps. This local mismatch with

the general trend is attributed to outliers causing a large drop in relative performance.

The benchmark comparison for the biaxial control task is given in Table 6. The thresholds were all met after a
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longer number of steps compared to the pitch and roll control tasks. This signals a higher learning complexity and was
expected as the agents have to identify which actuators affect the longitudinal or asymmetric states. The weak dynamic
coupling between longitudinal and asymmetric states likely played a role too. RED3Q agents took 25% less steps to
achieve J50 than SAC but took double the steps to achieve Jooo9. This is consistent with the findings of previous tasks
in which REDQ agents outperformed early on but had more volatile asymptotic stability. RED5Q agents performed
poorly across the board, with J>000 never being met within the training scope. This is possibly due to convergence to a

local minimum in this more complex task given its higher UTD ratio.
Table 6 Biaxial control benchmark performance comparison

Agent | Jsooo (steps) | Jao00 (steps)
SAC 4400 6600

RED3Q 3150 11150

RED5Q 7600 -

*J is the number of steps until subscript level mean performance is achieved.
IRED5Q did not achieve a mean performance of -2000 within the short training scope.

All agents were able to learn all three tracking tasks to a degree within the training with a 100% success rate as
all policies eventually converged, although with varying volatility in asymptotic stability. For pitch and roll tasks, the
tasks were learned to the Jsggo standard within 2600 steps and to the J>poo standard within 6400 steps. The biaxial task
showed roughly a doubling in the number of steps required to achieve benchmark performance, with Jsooo achieved in
4400 steps (excluding RED5Q) and Jooo after 11200 steps (once again excluding RED5Q).

The general trend of quicker learning at the expense of stability down the line is indicative of a trade-off between
sample efficiency and worsened asymptotic performance likely due to overfitting. Overfitting being the cause of the
worsened asymptotic performance is further supported by RED5Q showing a higher instability in the settling region
compared to RED3Q. One possible interpretation is that, despite a higher number of critics that aim to prevent overes-
timation of states, occasional overfitting occurs as a result of the higher UTD ratio once in the settling region. RED5Q
agents did not demonstrate faster initial learning either when compared to RED3Q, pointing to the idea that, at least
for tasks in which agents can learn quickly, there is a limit to the gains in sample efficiency from an increased number
of critics and UTD ratio. Intuitively, this makes sense as there must be a limit to the amount of information agents can

extract from data samples through simply increasing these two parameters.

B. Fault Tolerance Analysis

The nominal condition performance for both pitch and roll is shown in Figure 8. In the pitch plot, all agent error
values within the IQR were below 1°. Excluding outliers, REDQ agents outperformed SAC agents, with RED3Q
performing slightly better than RED5Q. Furthermore, SAC had no outliers, signaling all 30 agents had accurate tracking

performance. In contrast, both RED3Q and RED5Q showed outliers, with the worst-performing RED3Q outlier having
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an error an order of magnitude greater than the second worst.

The roll plot demonstrates similar behavior to that of pitch, all IQRs were below 1° and the REDQ agents performed
better with respect to IQR to SAC. The biggest difference between the pitch and roll plots is that the SAC agent did
have outliers, whereas the number of outliers for REDQ agents remained roughly the same. The behavior observed
across these two tasks is not unexpected, as the nominal condition is closest to the evaluation metric used to generate
the learning curves. Since all learning curves eventually converged, it makes sense for the performance of all agents to
be very close to the reference after being trained over a long scope.

These results show that the agents were able to generalize beyond the training episode duration, at least when
moving from 20-25 seconds per episode to 120 seconds. Longer episode durations could be problematic, as some
states like the yaw and the altitude remain uncontrolled and will slowly drift the further the episode goes past the initial
trim operating point at which the simulation starts. This can be compensated by introducing altitude and yaw control,

possibly through the use of additional RL agents to enable full attitude and altitude control.

Mean error (deg)
Mean error (deg)

SAC RED3Q RED5Q SAC RED3Q RED5Q
Agent Agent

Fig. 8 Nominal condition task: Pitch (left) SAC, RED3Q, RED5Q (N = 30 for each)
Roll (right) SAC (N = 30), RED3Q (N = 27), RED5Q (N = 30)

The nominal condition performance for the biaxial controller is shown in Figure 9, where the error per axis is
given for each agent. Again, the performance of all agents was very close to a 1° error on both the pitch and roll
axes. The main difference observed was a wider IQR compared to the individual pitch and roll tasks, likely due to
the increased complexity of the biaxial task. Performance was generally consistent across all agents, with SAC and
RED3Q exhibiting lower errors in roll than in pitch. Conversely, RED5Q demonstrated better performance along the
pitch axis, which is what was originally expected, as the reward function for the biaxial task penalizes pitch error more
heavily than roll error. Evidently, the penalization choice did not affect the final error performance between axes for
the nominal condition. Overall, the biaxial agents were also able to track references in both axes with similar accuracy

even when extended beyond the training episode duration.
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Fig. 9 Nominal condition task: Biaxial SAC (N = 30), RED3Q (N = 29), RED5Q (N = 30)

The quarter elevator effectiveness condition performance for the pitch and roll is shown in Figure 10. Performance
wise it was very similar to what was seen under nominal conditions, with all agents having an IQR mean error below
1°. REDQ agents once again demonstrated better performance than SAC agents. In general, the results suggest that
all agents are capable of executing control tasks at a level comparable to nominal performance, even with only 25%
actuator effectiveness. This suggests that the pitch and roll policies policies learned by the agents are not minimal in

action, as even with diminished actuator control the agents are still able to effectively control the system.

Mean error (deg)
Mean error (deg)

SAC RED3Q RED5Q SAC RED3Q RED5Q
Agent Agent

Fig. 10 Quarter actuator effectiveness condition task: Pitch (left) SAC, RED3Q, RED5Q (N = 30 for each)
Roll (right) SAC (N = 30), RED3Q (N = 27), RED5Q (N = 30)

The quarter elevator effectiveness condition performance for the biaxial controller is shown in Figure 11. The IQR
performance was similar to that of the nominal biaxial condition, staying within the 1° error range. This demonstrates

that for the biaxial agents, the policies learned were also not minimal. The most notable distinguishing feature of this
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plot is the RED5Q outlier performance, which shows mean errors ranging from 10° up to almost 100°. This is believed
to result from two factors. First, the aircraft’s ability to deviate further in roll, as indicated by the large deviations
occurring primarily along this axis. Second, overfitting to nominal conditions due to the higher UTD ratio during
training, as evidenced by the RED5Q agent exhibiting the largest magnitude of outlier errors. Overall, nearly all agents
mirrored their performance under nominal conditions, indicating that the trained agents are robust to changes in actuator

effectiveness. The exception was RED5Q, whose outliers demonstrated significantly worse performance.
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Fig. 11 Quarter elevator effectiveness condition task: Biaxial SAC (N = 30), RED3Q (N = 29), RED5Q (N = 30)

The actuator jolt condition performance for both pitch and roll are shown in Figure 12. As seen in the figure, SAC
and RED3Q performed comparably in terms of IQR with SAC showing better overall performance due to the presence
of no outliers. The results suggest that SAC agents generalized better to this fault condition than the other two types
of agents. Furthermore, the roll performance was worse for the REDQ agents, with the third quartile for both showing
a roll error higher than 10°. This once again highlights the combination of higher errors caused by the possibility of
larger deviations in roll and overfitting. Of all of the conditions, this one was expected to generate the highest number
of outliers, as it purposefully put the agents in states far away from nominal conditions. The fact that SAC agents were
able to perform the best is attributed to the slower initial learning, where SAC agents had more time to explore these
non-nominal states and sharpen their policies outside of the nominal region. In contrast, REDQ agents showed poor
robustness to large deflections, attributed to their faster initial learning and possibly overfitting. Overfitting is once

again suspected, as RED5Q performed worse relative to RED3Q in terms of mean error IQR.
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Fig. 12 Actuator jolt condition task: Pitch (left) SAC, RED3Q, RED5Q (N = 30 for each)
Roll (right) SAC (N = 30), RED3Q (N = 27), RED5Q (N = 30)

The actuator jolt condition for the biaxial controller is shown in Figure 13. Among the tested agents, SAC exhibited
the best IQR performance across both the pitch and roll axes. The outlier mean error performance in roll across all
agents was very large, with even SAC showing 100° mean error outliers. This supports once again that roll is the
more manoeuvrable axis. RED3Q showed comparable performance along the pitch axis, but with deteriorated roll axis
performance. RED5Q performed the worst by a significant margin, with median errors exceeding 10° on both axes. In
particular, the mean error on RED5Q’s roll axis was concerning, with mean errors on the third quartile approaching
80°. This suggests that RED5Q struggles to generalize to large disturbances, likely a result from overfitting to nominal
conditions as a result of the high UTD ratio once learning reaches the settling region. The results are consistent
with trends observed in the pitch and roll actuator jolt fault scenarios, where the less sample-efficient SAC agents

demonstrated a greater ability to generalize under large disturbances.
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Fig. 13 Actuator jolt condition task: Biaxial SAC (N = 30), RED3Q (N =29), RED5Q (N = 30)

No condition evaluations resulted in terminations from going out of bounds. However, this should not be inter-
preted as a measure of agent success. Some cases showed undesirable behavior. In particular, outlier performance or
those involving RED5Q under actuator jolt faults demonstrated performance that would be considered unacceptable
for deployment in a real aircraft. For the nominal and quarter elevator effectiveness conditions, all agents generally
demonstrated good tracking performance with low mean errors. In contrast, the biaxial actuator jolt condition resulted
in significantly higher mean errors for all agents. This fault scenario proved to be the most challenging, with all agents
showing their worst performance relative to the other fault conditions discussed. This outcome was expected, as the
biaxial actuator jolt introduces large disturbances and pushes the controllers into non-nominal states.

All agents were trained for the same number of environment steps, but it is likely that REDQ agents would benefit
more from early stopping due to the potential for higher UTD ratios to cause overfitting once learning converges. This
demonstrates the challenge of defining a fair comparison point for fault tolerance for the different agents. The approach
taken focused on asymptotic performance after training convergence, which simplifies the comparison process and

gives an insight into the long term stability and robustness of the learned policies.

V. Conclusion
Three controllers are developed for pitch, roll and biaxial attitude tracking tasks on a high fidelity non-linear Cessna
Citation model. Two controllers use a REDQ SAC implementation, while the third uses a standard SAC architecture
for comparison purposes. All agents converge to a solution with average accurate tracking convergence (error < 1°)

occurring within 5,500 training steps for pitch, 6,400 for roll (excluding RED5Q) and 11,500 for biaxial control (ex-
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cluding RED5Q again). Similarity between number of steps to convergence between pitch and roll indicates similar
learning complexity for the agents for longitudinal and asymmetric dynamics. On the contrary, the biaxial task requir-
ing roughly double the number of steps until accurate tracking convergence is attributed to increased task complexity.
REDQ agents show statistically significant improvements in sample efficiency during initial learning across all tasks. A
trade-off between sample efficiency and asymptotic learning stability is observed in the learning curves, it is attributed
to overfitting stemming from a higher update-to-data ratio once within the settling region. This is further supported by
REDS5Q showing worse asymptotic learning stability than RED3Q.

After training is left to converge over 25,000 steps, a fault tolerance analysis is conducted. Results show compara-
ble performance in nominal conditions across all agents with a higher number of outliers being associated with REDQ
agents, particularly RED5Q. This is suspected to be due to the high update-to-data ratio causing overfitting after reach-
ing the learning settling region. The quarter actuator effectiveness condition results show comparable performance
with nominal conditions and demonstrate agents are able to track references with diminished actuator control. This is
believed to be a result of converged policies being non-minimal in terms of action. The fault scenario associated with
the highest magnitude errors and highest number of outliers is the actuator jolt condition, particularly on the biaxial
task. Surprisingly SAC agents show no outliers in the pitch and roll tasks signaling strong generalizability. Outliers are
present for SAC agents in the biaxial task but are much more pronounced in REDQ agents with RED5Q third quartile
mean error being almost 80°. This is attributed to the slower learning of SAC actually being advantageous as it spends
more time under non-nominal conditions during training.

This research demonstrates that model free offline trained reinforcement learning agents are able to learn attitude
control tasks within a low number of training steps. Furthermore, REDQ can be used to further improve the initial sam-
ple efficiency in attitude flight control tasks, but at the expense of potential learning stability and robustness drawbacks
should the learning not be halted timely. REDQ agents in this paper use matching number of critics and update-to-
data ratios, leaving how these hyperparameters affect the learning individually at large and is recommended for future
research. Additionally, the focus of this research was on the SAC variant of REDQ, the question of how REDQ per-
forms in other actor critic architectures in the tasks proposed remains open. Given the small number of training steps
necessary to learn the control tasks presented in this paper, future work should examine whether strategies similar to
REDQ could enable agents to learn entirely online. Greedier, more deterministic, methods that use a warm start or

online-offline hybrids architectures are promising candidates.
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Chapter 2

Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning (ML) field that focuses on learning through trial and error.
It takes inspiration from the way in which humans learn, by repeatedly attempting a task, observing the efficacy
of their actions by looking at their associated rewards and adapting until their decision making is good enough
to consistently achieve the desired goal. RL is a field considered separate from the other two types of learning,
namely supervised and unsupervised learning. RL approaches problems by dividing the task into an agent and
environment paradigm where the agent navigates in a sequential manner. The agent then uses trial and error in
order to procedurally select actions based on evaluative feedback, all without the need to rely on knowledge of
what the correct action should be. The idea being that some actions in certain states are more desirable than
others and should be more favoured if the state was to recur. This is fundamentally different from supervised and
unsupervised learning, which focus on generalising from labelled training data and pattern/structure recognition
of unlabelled data respectively. For a broad overview of how these sub-fields of ML can be distinguished, refer
to Figure 2.1.

(Data with labels) (Data without labels) (States and actions)

Input Input Input

Unsupervised Reinforcement
learning learning

Supervised learning

Reinforcement
signal

Critic Critic
Qutput Output Output

(Mapping) (Classes) (State/action)

Figure 2.1: ML classification [6]

This chapter will introduce the concept of reinforcement learning and address RQ1.1 - RQ1.2. The chapter will
begin by giving a brief intuition into RL in Section 2.1. This is followed by an explanation of the mathematical
framework behind RL in Section 2.2. Section 2.3 will discuss some of the common approaches used in the field
of RL. Methods aimed at dealing with continuous state-action spaces will be discussed in Section 2.4. Then
Section 2.5 will explain some of the different words that are used to classify the RL taxonomy. Lastly, Section 2.6
will discuss what benchmarking is and list some relevant metrics when discussing RL to be used in real life
applications.

2.1 The concept of reinforcement learning

In essence, RL can be seen as an exercise in which a learner, denoted agent, interacts with its surroundings,
denoted environment. The agent acts based on some decision making, termed as policy, with the aim of achieving
a certain goal or terminal condition. The agent is said to have states and these state-action transitions are
associated with rewards. Consider Figure 2.2, here the agent would be the cleaning robot and the goal would
be to either reach the power pack to recharge or reach the trash in order to throw away what it has collected.
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The goal states are awarded with the rewards in green. In this case, the agent’s state would be its horizontal
position, its policy would be the decision making in charge and the environment would be the transition function
describing all the valid moves to make together with the reward landscape.

+2 +4
Power Cleaning Trash
pack robot

Figure 2.2: Cleaning robot example

Intuitively, the best policy based on how this problem is formulated, the optimal policy would be to choose
right from the starting position in order to enter a terminal state and receive the most reward. The solution is,
however, susceptible to changes in: the reward function formulation, the environments topology, the location &
definition of the goal states and the policy the agent undertakes. Consider for example that the agent had no
access to a model of the environment or that the topology was more complicated, it would then only be able to
find a global optimal solution after fully exploring the environment. Currently there are also no penalties issued
for wasted actions, meaning that in terms of optimality starting at the position illustrated an action sequence of
— is equal to <, —, —. However, one could easily imagine that if every non-terminal state was given a penalty
of -1 the optimal solution would then solely be —. Finally, consider the case where there are no terminal states
and the goal of the robot is to keep cleaning continuously. In this case, one can imagine that the optimal solution
would have to be a compromise between picking up trash, tossing it and recharging.

All of these different scenarios demonstrate how the optimal behaviour is sensitive to different aspects of how the
task is formulated, where the more complex the system is the more non-intuitive the optimal solution will be.
With this simple formulation and the mathematics detailed hereforth the power of RL as a tool will be displayed.
Due to it’s broadness and flexibility it sees uses in tasks ranging from home energy optimisation [7] to AlphaGo’s
mastery of Go [8]. Naturally, it also extends to flight control applications which is the focus of this study.

2.2 Mathematical framework for reinforcement learning

This section will go over the mathematical framework underlying RL, for this purpose the majority of the
information and notation will be borrowed from the book Reinforcement Learning: An introduction by Richard S.
Sutton and Andrew G. Barto [9]. The notion of Markov Decision Processs will be introduced in Subsection 2.2.1.
This will be followed by the definition of returns in Subsection 2.2.2. Lastly, Subsection 2.2.3 will go over the
formal definitions of policies and value functions.

2.2.1 Markov decision processes

A Markov Decision Process MDP is a probabilistic model that is used as the mathematical framework for
reinforcement learning. They are meant to be a direct mathematical framing of the problem of learning from
interactions to achieve a goal. For the sake of brevity and simplicity the MDPs will be discussed in the context
of finite states, actions and rewards. Figure 2.3 illustrates the agent-environment interface for MDPs where the
agent is the learner and the environment is what the learner interacts with. As the figure shows, the agent can
navigate from its current state (denoted S;) to another state S;y; by taking an action A;, upon which a reward
Ry is issued.
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Figure 2.3: Agent environment interface [9]

The entire process, can be described as seen in Equation 2.1. Here, the discrete states Sy € S refer to the state
at a discrete time ¢ € N which allows for action A; € A(s). Note the set of actions is dependent on the state as
some states might permit some actions while others do not. Once the action is taken a reward R;y; € R C R
is received and the agent arrives at a new state S;y1 after which this process is repeated ad infinitum or until a
terminal condition is met.

SU)A07R17SI7A17R2,52aA2aR37"' (21)

In a finite MDP all the state, action and reward sets are of finite magnitude which allows for the random
variables R; and S; to follow discrete probability distributions which only depend on the previous state and
action. Equation 2.2 shows this phrased mathematically. Particular values for the random variables are written
in the lower case (using s’ as an example) s’ € S. The apostrophe in s’ signifies a subsequent state after an
action relative to a given state s. The function p encapsulates the dynamics of the MDP and is defined as
p:SxRxSxA—[0,1] which reads as “the probability of moving to state Si11 and receiving reward Ry,
given the transition starts at a state S; with the associated action A;”.

p(s',r|s,a) =Pr{S; =5 Ry =71 Si—1=s,4-1=a} (2.2)

It then follows that the probability of the combination of all subsequent states and rewards should add up to one
(as they encompass all the possible combination of subsequent state reward pairs). This is shown mathematically
in Equation 2.3.

Z Zp(s',r | s,a) =1, for all s € S,a € A(s) (2.3)

s'€STER
The state transition function can then be derived from the system dynamics as seen in Equation 2.4, where
f:8%x8x%xA—10,1] is a mapping from state-action pair to a following state. In short f is found by summing
over all possible rewards in subsequent state s’ in order to find the probability of landing on that state from the
antecedent state-action pair.

f(s']s,a)=Pr{S;=518_1=5A4_1=a}= Zp(s’,r | s,a) (2.4)
reR

The expected rewards can also be computed from the system dynamics as seen in Equation 2.5. Here, the state-
action pair reward is a two dimensional function r : S x A — R which is understood as the reward collected from
all subsequent states given a state-action pair.

r(s,a) = E[R; | St—1 = s,Ai—1 =a] = Zr Z p(s',r | s,a) (2.5)

reR s'eS

The expected reward per subsequent state can also be defined from p and is done so in Equation 2.6. This is
useful for estimating the reward associated with specific state transitions, here r3 : S X A x S — R where r3 is
used to distinguish the fact that it considers the subsequent state as well.

. s',r|s,a
ra(s,a,8") ZE[R, | Sio1=5,41=0a,8=5]=> v al (5 | L o) ) (2.6)
rER

2.2.2 Returns

The formal definition for episodic return and how it’s related to reward is seen in Equation 2.7, where T is seen
as the final time step so Ry is the last reward. Here, an episode is defined as the entire sequence of interactions
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between the agent and environment until a terminal state or final goal is achieved. Note that this definition
assumes that there will be a final goal or terminal states for which the episode will end.

Gi=Ryp1+Rijo+ Riys+- -+ Rr (2.7)

Another commonly used metric for return is given in Equation 2.8. This equation depicts the discounted return,
changing the notion of return into a converging geometric series that give more value to short term rewards and
converge to a fixed value. Here 0 < v < 1 represents the discount factor for future returns, for which |y| < 1 as
the aim is to maximise the cumulative discounted reward over some horizon of upcoming states (with T being
the last timestep). Using v = 1 would reduce it to the episodic return (Equation 2.7).

T
Gt = Rip1 +YRijo + YV Rz + - = Z’Yth+k+1 (2.8)
k=0
The definition of discounted return lends itself to recursion quite nicely. Equation 2.9 demonstrates how the
return at time t can be recursively formulated in terms of future returns. The base case for the recursion being
that at whatever time T the task is terminated, a return of Gy = 0 is given.

Base case: G =0

. . (2.9)
Recursive case: Gy = Rip1 + YRipo + YV Rigs + = Ry + 7 (Rega + YRips + -+ ) = Ry +7Geqa

Finally, for applications where the task is continuously on-going and there are no expected terminal conditions in
the formulation of the problem, Equation 2.10 [10] is used. This shows the average return or return rate, which
is the definition needed in continuous on going tasks like balancing an inverted pendulum in the absence of a
terminal condition as the aim of the agent in that case would be to maximise its rate of reward indefinitely. It
essentially calculates the return at time ¢ by averaging the rewards over the next T' timesteps by effectively using
the future timestep 7" as a pseudo terminal state.

T—t-1
1

) 1
Gr = T-1-1 (Riy1+ Riyo+---+Rp) = T_1-1 kz_o Rtk (2.10)

2.2.3 Policies & value functions

The final piece to conclude the formulation of MDP is to discuss the definitions of policies and value functions.
A policy is defined as seen in Equation 2.11. Here, it is said that if an agent is following a policy at time ¢ then 7
will be a mapping 7 : S — A which describes the probabilities that the current policy chooses a possible action
a given a state s. The optimal policy, often denoted as m,, would be one that at every given state would choose
the action that would result in the highest return.

m(a|s)=Pr(Ar=al| Si=3s) (2.11)

One policy that is often used in literature is the € greedy policy which is defined as seen in Equation 2.12. Here,
the policy acts greedily as in a way that follows the maximum estimated @ value (introduced further in this
subsection but for now consider @ to be a proxy for return) with a 1 — e probability and a random action with
an e probability. Often, epsilon is scaled with the number of episodes k such that over time it converges to a
fully greedy policy limg o 1 — £ — 1 as the number of episodes increases.

(2.12)

(als) 1—€ a=argmax, Q(s,a),
w(als) =
€ random action

The value function v with its associated policy 7 represents the expected return when starting in s and following
m. This is formulated for MDPs as seen in Equation 2.13.

vﬂ(s) =E, [Gt ‘ Sy = 3} =E, lz ’Yth+k+1
k=0

Sy = s] ,forall s e S (2.13)

Similar to the discounted return function, the value function can also be defined recursively in terms of its
successor states as seen in Equation 2.14. This equation is called the Bellman equation and it plays a central
role for value based RL methods.
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vr(8) =K, [Gy | St = §]
=E; [Riy1 +7Gig1 | St = s

=3 (e | 9) 3] S b | 5,6) [+ 4B [Gos | Sivr = o] (2.14)
= Zw(a | S)Zp(s’,r | s,a) [r +v.(s")], forallseS

The action-value function ¢ with its associated policy m represents the expected return when starting in s, taking
action a and following 7. The mathematical formulation for MDPs is given in Equation 2.15.

q,r(s,a) = ]Eﬂ— [Gt | St = 8714.15 = a] = ]Eﬂ— lzkat+k+1 St = S,At =a (215)

k=0

There is also an analogous Bellman equation for ¢, seen in Equation 2.16 [10]. Note again the double sum being
abbreviated into one by collapsing the sum over the reward and successive state.

qr(s,a) = Eq [Res1 +vq(St41, Arr1) | St = s, Ay = q

= Zp(s’,r | s,a)
s'r

For value functions, optimality is defined as a value function that yields the optimal policy when the actions that
transition to the most valuable states is followed. Mathematically, this is given in Equation 2.17.

(2.16)

r —|—'yZ7r(a' | s')qw(s’,a’)] , forallse S, acA
a/

vi(8) = mTEriXUﬂ-(S) (2.17)

Similarly to v, the optimal ¢, function is defined as seen in Equation 2.18.

g«(s,a) = mgxqﬂ(s,a) (2.18)

2.3 Common approaches

In this section, some approaches for dealing with RL problems are given. A brief overview of evolutionary
methods is given in Subsection 2.3.1, policy optimisation & value-based methods in Subsection 2.3.2, dynamic
programming in Subsection 2.3.3, Monte-Carlo methods in Subsection 2.3.4, temporal difference methods in
Subsection 2.3.5 and finally a unified view of these last three methods will be given in Subsection 2.3.6.

2.3.1 Evolutionary methods

Evolutionary methods refers to the family of methods that seek to find an optimal policies through methods such
as: genetic algorithms, genetic programming, simulated annealing and other optimisation strategies [9, p. 7]. The
similarity between them is that they all start with a population of static policies from which best performing
ones are selected iteratively (exploration is done through adding randomness akin to mutation), similar to the
way evolution optimises for the organisms which are most fit. The main difference between evolutionary methods
and classic RL methods is that the evolutionary methods do not learn or update their policies based on the
interactions of the agent as it moves through it’s environment, rather they simply proceed in the direction of the
group of static policies that perform best overall. In Gavra [11] evolutionary methods are used in conjunction
with deep RL to optimise non-linear policies for fault tolerant flight control applications.

2.3.2 Policy optimisation & value based methods

The family of methods that make use of the value function (either v,(s) or ¢-(s,a)) in order to find an optimal
policy are called value based methods. These look to refine their value functions such that the optimal policy is
then found indirectly by choosing the action that maximises the value function. Gong et al. [12] demonstrates
how Q-Learning, a value based method, was used in order to optimise the switching control strategy for a variable
sweep morphing aircraft. In contrast, policy optimisation methods look to refine the policy directly in order to
achieve optimal performance. This is usually done through a parameterised policy (for example a neural network)
which can be updated such that the return is maximised. Ramezani Dooraki and Lee [13] used an enhanced
version of Proximal Policy Optimisation (PPO) in order to fly a quadrotor drone. The remains of this section
will all focus on value based methods.
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2.3.3 Dynamic programming methods

Dynamid Programming (DP) methods is a family of methods that given a true model of the environment, is able
to arrive at optimal solutions. The overarching idea behind DP consists of two steps, policy evaluation and policy
improvement. Policy evaluation consists of estimating the value function under a specific policy, this is done by
converting the Bellman equation (Equation 2.14) into an iterative form. This is done by initialising the value
function and using the full model to loop over all states to estimate their value (making use of the reward and
transition functions). Policy evaluation terminates when either the value function stops changing or the change
is considered smaller than some threshold A. Step 2 of Algorithm 1 shows the code of how a value function v
under 7 is estimated, note how the value estimation V'(s) is just an iterative way of writing Equation 2.14.

Algorithm 1 Policy iteration algorithm for estimating 7 ~ 7, [9]

1. Initialisation

V(s) € R and 7(s) € A(s) arbitrarily for all s € S; V(terminal) =0 evaluation
Vs v,
2. Policy Evaluation /—\
repeat
A0 s V
loopeach s € S
v+ V(s) m ~ greedy(V)
Vi(s) < Xy, p(s 1| s,7(s))[r + V()]
A+ max(A, [v — V(s)|) improvement
end loop

until A < 6 (a small positive number determining the accuracy of estima-
tion) .
L]
3. Policy Improvement
policy-stable < true
for each s € S do T, ——>
old-action «+ (s) * — %
7(s)  argmax, Y, p(s',7 | 5,a)[r + 7V (s")]
if old-action # 7(s) then
policy-stable < false

end if

end for ) )

if policy-stable then Figure 2.4: Generalised pol-
return V ~ V, and 7 =~ 7,; else go to step 2 icy iteration [9]

end if

In Algorithm 1 the policy improvement step occurs in step 3, here in essence it says that if choosing a greedy
action for the value function at a given state leads to different outcome than the original policy, then the original
policy has room for improvement if at the very least at that given state. If there is room for improvement for any
state, the policy will be improved and evaluated once again. If there’s no room for improvement, this means that
the current policy is the optimal policy 7 & 7, which directly implies V' = v,. In this example of policy iteration,
evaluation and improvement are done sequentially but this is not strictly necessary. In general, algorithms may
alternate between the two steps as they please and still converge to an optimal policy and value function as seen
in Figure 2.4.

2.3.4 Monte-Carlo methods

Monte-Carlo (MC) methods are a family of methods where the agent does not have access to a complete model
of its environment (as opposed to DP) and whose key characteristic is that they are updated episodically. This
means MC methods must perform policy evaluation and control through exploratory sampling. The value function
update rule for MC is given in Equation 2.19, where value function V'(S;) is an estimate calculated for the value
of state S; under a policy 7, 7 is the learning rate and G; denotes the episodic return (see Equation 2.1 for
definition).

The pseudo code seen in Algorithm 2 demonstrates how MC methods work. Note how the value of all the states
are only updated once the episode has finished.
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Algorithm 2 First-visit MC prediction, for estimating V' = v, [9]

Input: a policy 7 to be evaluated
Initialise:
V(s) € R, arbitrarily, for all s € S
Returns(s) < an empty list, for all s € S
loop forever (for each episode):
Generate an episode following m: So, Ag, R1,S1, A1, Ra, -+, S7—1, Ap—1, R
G<+0
repeat for each step of episode, t =T — 1,7 —2,--- ,0:
G+ vG + Ry
if S; does not appear in Sy, S1,- - ,.S;—1 then
Append G to Return(S;)
V(S;¢) < average(Return(S:))
end if
until all steps have been covered
end loop

The associated control problem, or how the policy is improved, is analogous and attempts to estimate the associ-
ated state-action function Q(s, a). The policy would then be updated to follow the actions most associated with
a maximum reward at a given state (highest Q(s, a) value), while also maintaining some chance for exploration.
This allows for a more optimal global policy for which m — 7, as the number of episodes sampled grows.

2.3.5 Temporal difference methods

Temporal Difference (TD) methods are a group of methods where the agent does not have access to a complete
model of the environment and operates very similarly to MC methods. The difference being that while MC
updates only occur once the episode has terminated, TD updates occur using current estimates as the agent
explores which is known as bootstrapping. This is exemplified in Equation 2.20, note how instead of the episodic
return it instead uses the current value of the next state.

V(St) <= V(S¢) + 7 [Reg1 + 7V (Se41) — V(Sy)] (2.20)

The pseudo code seen in Algorithm 3 illustrates an example of TD in action. Here, the name TDO corresponds to
the fact that it uses only the next immediate state in its update. In general, more than one future state might be
used in the update rule and some known methods that utilise this are called n-step bootstrap or TD(n) methods.
Here, the n represents the number of states that are considered in the update step for bootstrap methods.

Algorithm 3 Tabular TD(0) for estimating v, [9]

Input: the policy 7 to be evaluated
Algorithm parameter: step size 7 € (0,1]
Initialise V'(s), for all s € S+, arbitrarily except that V(terminal) = 0
loop for each episode:
Initialise S
repeat for each step of episode:
A + action given by 7 for S
Take action A, observe R, S’
V(S)«+ V(S)+7[R+~V(S) —V(9)]
S5
until S is terminal
end loop

Similarly to the MC control problem, policy improvement in TD is done by learning the Q(s, a) function with some
greedification while maintaining some compromise of exploration and exploitation to achieve a global optimal
policy. Algorithm 5 shows how such an algorithm looks like.

2.3.6 Unified view of DP, MC & TD

The relationship between DP, MC and TD can be considered as shown in Figure 2.5. Here, the methods
are distinguished by their width and depth, with full backups being associated with a wider search approach
relative to those with sample backups and deep backups with a deeper search approach. Multi step methods like
bootstrapping act as a bridge between pure MC and TDO methods to balance out the need to arrive at the final
outcome before updating while still propagating the future rewards across more than just the immediate next
state.

36



Dynamic Exhaustive
programming search

full |
backups ¥
sample Monte Carlo
backfps Y Temporal
difference
learning

— T

shallow bootstrapping, 2 deep :
backups backups

Figure 2.5: Unified view of DP, MC & TD [10]

2.4 Reinforcement learning for continuous state-action spaces

The discussion so far has dealt with discrete tabular problems that have finite sized state-action spaces. By this, it
is meant that the set of states S and actions at every state A(s) were of a countable nature and could reasonably
be included in a look up table for a policy or value function. This does not hold for problems whose state-
action space is either too large or continuous, as this would correspond to making an unreasonably large table or
simply not being able to make one as the state-action space is not discrete finite. For these sort of problems, the
discussion must be extended to include the following two here-forth discussed approaches: discretisation methods
(Subsection 2.4.1) and approximation methods (Subsection 2.4.2).

2.4.1 Discretisation methods

The idea of discretisation methods is to lower the resolution of the state-action space by defining a grid for which
finite discrete tabular solutions are still applicable. Note that it is not always the case that both the states and
actions need to be discretised, there are scenarios where a state action space is only problematic along only one
of them such as when there is a continuous state space but a small discrete number of actions (like balancing an
inverted pendulum with bi-lateral fixed thrust inputs).

Ideally, a discretisation scheme should be constructed such that the optimal policy of the discretised case is also
the optimal policy of the original problem. However, it can be the case that the discretisation can alter the
formulation of the problems to a degree from which the original problem’s optimal policy cannot be retrieved.
To combat this, Sinclair et al. [14] designed an adaptive discretisation scheme for continuous state-action spaces
that utilises tree based partition rules to go from an initial low resolution partition to a more refined ones as the
agent explores the environment. The decision to split a partition is based on the certainty of the estimates of
the value functions relative to the size of the partitions dimension. Figure 2.6 shows the result of the adaptive
discretisation scheme, here the green regions in the diagonal are associated with a higher true value function
value (as opposed to the estimates). It is clear from the figure that partition refinement only occurs in locations
the agent has been to and where it’s beneficial to do so, unexplored areas or where the certainty for the value
function estimates is high remain the same size.
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Figure 2.6: Resulting state action space of an adaptive discretisation scheme [14]

2.4.2 Approximation methods

The alternate approach often utilised is to use supervised learning techniques to approximate the policy or value
as continuous functions of the state-action space. Parametric approximations are those which use a finite number
of parameters to represent a function. These include parametric function approximators like neural networks,
sum of basis functions and linear regression. Mnih et al. [15] showed how convolutional neural networks can be
used to approximate a Q value function, dubbed Deep Q Network (DQN), to carry out a Q-Learning in high
dimensional state-action spaces. In this case, the settings were Atari games and the inputs to the neural net were
the raw screen pixels.

The other branch of approximation methods are the non-parametric ones. These don’t have a finite number of
parameters, but rather used the data gathered as the agent explores in order to form a model and as a result
non-parametric methods scale with the amount of data that is given to them. Common non-parametric methods
would be the likes of gaussian processes (GP), kernel methods and some Support Vector Machines (SVM). Engel
et al. [16] demonstrated how GPs can be used to approximate a value function for a continuous two dimensional
domain space for navigation. GPs have the advantage of being efficient in low data regimes [17] and offering a
measure of uncertainty in their approximations which is of particular interest for tasks where safety is a high
priority.

Each branch of the approximation methods has their advantages and disadvantages, however both are susceptible
to overfitting on sample data which is not representative sample of the overall problem landscape. Parametric
methods in general offer higher data efficiency as the lower complexity of a fixed number of parameters can help
find simple useful models early on. On the other hand, non-parametric models offer more flexibility as they grow
with the data but are very data hungry.

2.5 Reinforcement learning taxonomy
Within RL there are certain categories which are often mentioned in order to distinguish different types of ap-
proaches from each other. Figure 2.7 illustrates an overview of model-based and model-free approaches taxonomy;,

an explanation of these categories will be given in detail in Subsection 2.5.1 and Subsection 2.5.2 together with
some pseudo code demonstrating how they work.
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Apart from the model type classification there are other type of categories which are often discussed, such as:
on-policy, off-policy, online, offline. These will be discussed in Subsection 2.5.3 and Subsection 2.5.4 respectively,
once again together with some pseudo code implementations to highlight the differences between the categories.

2.5.1 Model based

Model Based Reinforcement Learning (MBRL) is, as the name suggests, a variant of RL where the agent has
access to a partial/complete representation of its environment. The word access here is used in the context that
the agent can either be given the model a priori or it can learn a model as it interacts with its environment.
MBRL combines planning and reinforcement learning. Planning is defined as the ability to query the model at
any preferred state-action pair [18, p. 8] in order to opt for better state-action routes across a horizon. MBRL has
seen success in flight control applications, such as low level control of quadrotors [19] or autonomous Unmanned
Aerial Vehicle (UAV) navigation [20].

The immediate advantage of MBRL is that due to the planning, the agent will be able to plan moves ahead and
therefore require a lower amount of samples to achieve good performance. This is not without a price however,
disadvantages to MBRL approaches do exist. Firstly, they need a model to begin with which involves either
having the agent learn one or having a partial/complete model of the environment in order to give it to the
agent. Secondly, in the case the model is learned, overfitting on mini batch samples can limit the solution space
the agent will search and therefore result in sub-optimal solutions [21].

2.5.2 Model free

Model Free Reinforcement Learning (MFRL) is a variant of RL where the agent learns to make decisions solely
based on observed experiences in the absence of accessing a model of the environment. MFRL is further cat-
egorised into two branches: methods that try to learn the value function in order to derive the optimal policy
and methods which attempt to immediately learn the optimal policy [22]. MFRL has been successfully used for
flight control applications like optimal control tracking [23].

The main advantage of MFRL is that it can be applied on any problem as no model is needed, allowing it to
have a very plug and play nature to the approach. The main disadvantage of MFRL is that due to the emphasis
on trial and error it tends to increase the number of samples the agent will have to go through in order to form
an optimal value function or policy.
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2.5.3 On-policy vs off-policy

The distinction between on-policy and off policy has to do with the way in which the algorithms update their
policies. Those whose policy is developed using the data produced by the latest policy are dubbed on policy,
while those that develop their policy using data from another policy are called off-policy. On-policy methods
are more intuitive as the agent will update its policy based on the actions it actually takes during the training.
SARSA [24], which stands for State Action Reward State Action, is an on-policy algorithm which will be used
to illustrate the difference between the two approaches. Algorithm 4 illustrates SARSA in a discrete state-action
space TD implementation, the on-policy label comes from the fact that the Q(s, a) function update is done using
the future discounted rewards of the (s, a) function being learned.

Algorithm 4 SARSA (on-policy TD control) for estimating Q ~ g. [9]

Algorithm parameters: step size 7 € (0,1], small £ > 0
Initialise Q(s,a), for all s € ST, a € A(s), arbitrarily except that Q(terminal,-) = 0
loop for each episode:
Initialise S
Choose A from S using policy derived from @ (e.g e-greedy)
repeat for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g e-greedy)
Q(S> A) A Q(Sv A) + T[R + ’YQ(S,v Al) - Q(Sv A)]
S+ S5 A+ A
until S is terminal
end loop

Off-policy methods may use foreign policies (often called behaviour policies) when updating the policy being
learned, where the policy being learned or optimised is called the target policy. The advantage of this is that
foreign policies can be used to stabilise, optimise or learn from when developing a new target policy. Q-Learning
[25] is an example of an off policy algorithm, Algorithm 5 shows the pseudo code of a discrete state-action space
TD implementation of Q-Learning. Here, the Q(s, a) function update step is updated using the discounted future
rewards calculated by a greedy policy even though the Q(s,a) function being updated is not greedy in of itself.

Algorithm 5 Q-Learning (off-policy TD control) for estimating m &~ 7, [9]

Algorithm parameters: step size 7 € (0,1], small £ > 0
Initialise Q(s,a), for all s € ST, a € A(s), arbitrarily except that Q(terminal,-) = 0
loop for each episode:
Initialise S
repeat for each step of episode:
Choose A from S using policy derived from @ (e.g. e-greedy)
Take action A, observe R, S’
Q(Sv A) — Q(57 A) + T[R + 7 maxg Q(S/7 a) - Q(Sv A)]
S+ S
until S is terminal
end loop

2.5.4 Online vs offline

Online learning is defined as the family of machine learning methods where a “learner attempts to tackle some
predictive (or any type of decision-making) task by learning from a sequence of data instances one by one at each
time” [26]. In the case of RL, the learner would be an agent which usually starts with limited or no knowledge
of its environment and is fed information about its state sequentially. Such methods are of importance to flight
control applications due to the fact that real-time dynamic systems operate with a stream of sequential data
that’s fed to the controller. Such systems are a great area of application for online learning, especially if there’s
no prior training data to learn from. In application, due to the nature of how online learning works, safety and
reliability risks are a real concern as the learning is directly done in a possibly dangerous, expensive and highly
unstable system. Nonetheless, online RL has shown to be viable in, for example, a Cessna Citation II high fidelity
model [27].

Offline learning, on the other hand, is a data driven approach that makes use of a previously collected static
dataset of a problem in order to learn something that performs well when actually made to face the problem.
In the context of RL, this would correspond to deriving a “sufficient understanding of the dynamical system
underlying the MDP entirely from a fixed dataset, and then construct a policy that attains the largest possible
return when it is actually used to interact with the MDP” [28]. Due to the nature of how offline RL is formulate,
it’s important that the dataset be representative of the real underlying MDP for the learning to be meaningful.
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As a result, one of the main disadvantages of offline RL are the need of having a large enough representative
dataset. However, it does allow for learning in a safe environment which if translated well to the real problem
will result in safe and reliable performance as has been shown in quadrotor’s motion and path planning [29].

Figure 2.8 illustrates the differences between the two methods. It ties it back to what was previously discussed
in the off-policy RL methods. The rightmost diagram depicts the usual offline RL setting, where a policy mog
is extracted from a static dataset D collected under an agent moving in an environment using policy m3. The
middle diagram depicts an off-policy RL algorithm which in this case makes use of a mix of static data (which
will serves as mog) and continuously collected experience data under a buffer D. It updates the policy 7 — mg41
in an off-policy manner using m,g as the behaviour policy. The leftmost diagram shows online RL, where the
agent must update on the fly using newly collected data from its latest policy and without any dataset or buffer.
Note the online algorithm may still be off-policy, it will be online and off-policy so long as the behaviour policy
it uses to train the target policy is not extracted from offline data.
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Figure 2.8: Online-Offline learning paradigm [30]

2.6 Benchmarking & common metrics

Benchmarking is the process of evaluating the performance of different models/algorithms by comparing relevant
metrics in standardised tasks. Benchmarking serves as a way of measuring advancements, helps aid in the re-
producibility of papers and serves as a yard stick along which different models can be compared to each other.
One of the most commonly used benchmarks in the field of Al is the gymnasium python library, the gymnasium
project provides an API for many common environment implementations for single agent reinforcement learning
problems like cartpole, pendulum and atari games. Among many features it contains a collection of: environ-
ments, pre-built learning algorithms to train your agents with, logging options to track performance, ways to
speed up or optimise the training and ways of live monitoring performance as the agent trains.

The MuJoCo environments collection are of particular interest for flight control problems involving continuous
state-action spaces. This is because the collection of environment features many continuous state-action spaces,
the idea being that using these environments would map better onto flight control problems and therefore be
more beneficial benchmarks to use. The environment collection offers a range of complexity, from an inverted
pendulum problem to teaching a bidepal agent how to walk as seen in Figure 2.9.
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Figure 2.9: Selection of MuJoCo environments [31]

The metrics used for benchmarking performance naturally depend on the area of application. However, for
algorithms that aimed to be applied in the real world (Dulac-Arnold et al. [32]) mentions the following nine
metrics and equations which will be explained hereafter:

1. Average return
6. Robust performance
2. Warm start
7. CVaR return
Time to R,in
8. Multi-objective

W

Safety violations
9. Explainability
5. Worst case performance

Average return

Average return is a common metric used to compare algorithms, it averages the amount of return the algorithm
receives across episodes. Note that this is different from the average return or return rate discussed in Equa-
tion 2.10, which had to do with a running average return on a single episode across a continuously on-going
non-terminal task.

Warm start

The warm start measure seen in Equation 2.21 measures the cumulative return from the initial policy learned
from offline external data. Here, D, is the tuple of state-action reward sequences under the training data policy
wp. The idea being that its important for the initial policy extracted from the data to perform well enough to
suggest that the offline training data will translate well into the actual problem.

Jot = R(Train(Dy,,)) (2.21)
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Time to R,,;,

This is a metric for the sample efficiency of the algorithm, the measure in Equation 2.22 reads as the minimum
number of data samples needed to train in order to achieve a minimum reward threshold.

J°m = min |D;| s.t. R(Train(D;)) > Ruin (2.22)

Safety violations

The safety of an RL algorithm in real world applications is a major factor, Equation 2.23 is a measure of the
number of safety violations across K distinct safety constraints by a policy w. Each of the different constraint
violations is stored along the entries of the K length J vector.

T
Jsafety(T) = (Z cj(si,ai)> € RK (2.23)
i=1

1<G<K

Worst case performance

The worst case performance value function is given by Equation 2.24, here & denotes a set of transition matrices
from which p is selected such that it’s as if at each step nature kept choosing the transition that leads to a
minimal long term reward function. Using p, the agent learns a policy that maximises the performance return
under this worst case scenario which is important for real applications due to the inherent dangers and costs of
catastrophic worst case outcomes.

J(r) = inf EP by 2, 2.24
(7) = nf 27 |3 o' w] (224

Robust performance

The robust performance metric is concerned with how the algorithm will perform under peturbed environments,
the measure is given in Equation 2.25 where it reads as the average performance across K perturbed environments.
The perturbed test environment p is sampled from the set of test sets P.

1
Jrobust (71—) = ? Z EP
peP

T
Z’yi_lr(si,ai)l (2.25)
i=1

CVaR return

The Conditional Value at Risk (CVaR) return measurement is shown in Equation 2.26, this is essentially a
risk measure that reads as optimising the reward via a parameter I" over w% worst outcomes. These outcomes
correspond with the w quantile of R and are represented as v, (I") [33].

() =E" [R| R < vy(D)] (2.26)

Multi-objective

The multi-objective measure is given by Equation 2.27. Note here J is bold to show it’s a vector, where each
of the K entries being a sub-reward metric (imagine an algorithm needs to have a compromise of performance,
safety, time-to-target, etc).

T,
Jmulti(ﬂ-) = <Z Tj(3i7 az)) S RK (227)

=1 1<G<K
Explainability

The explainability of an algorithm is important when human machine interaction is present in real world appli-
cations for the operator to be able to understand the decision making behind the algorithm, Dulac-Arnold et al.
[32] suggest user surveys about how understandable the intent of the policy is by humans as a metric.
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Chapter 3

Methodology Proposal

Now that the background information necessary to propose a method has been covered, the research objective
and questions can be tackled. This chapter will narrow down on the methodology that will be used to achieve the
research objective and cover: RQ1.3 & RQ3.1 - RQ3.4. As the research objective states the aim is to improve the
sample efficiency of current flight control methods, this is of course quite broad and some choices have to be made
on the scope to allow for a fruitful assignment. The following choices have been made which will subsequently
be justified:

I. The task shall be performed on the Cessna Citation PH-LAB model
II. The agent shall incorporate both offline and online MFRL in the tasks

III. The approach for the task shall be based on REDQ (discussed in Section 3.2)

Firstly, the Cessna Citation PH-LAB model will serve as the environment for the RL agent, this is because it
is a readily available TU Delft model that’s been through verification & validation [34]. This means that the
behaviour given by the model should correspond with high fidelity to the real PH-LAB Cessna Citation seen in
Figure 3.1.

FuDelit

Figure 3.1: TU Delft’s Cessna Citation - PH-LAB [35]

Secondly, including both online and offline MFRL aspects was chosen because sample efficiency is tackled differ-
ently for these two settings. In an online setting, sample efficiency is mostly defined in an implicit and binary
way such that if an algorithm is able to learn a task online then it must also be sample efficient. However, it
can also be comparatively defined by comparing how fast a policy is learned in real time relative to another
online algorithm. In an offline setting, sample efficiency is measured by how much training an algorithm needs
to achieve a certain performance which is a lot more explicit and comparative than the former. The idea of
choosing both is that if the algorithm performs well enough offline (in terms of sample efficiency) then it could
be that it is efficient enough to learn online. Lastly, the approach will be based off of REDQ due to it being an
online MFRL algorithm and its great performance in terms of sample efficiency for several MuJoCo continuous
state-action environments [5]. Per the date of this document this would be the first time REDQ has been applied
to flight control applications as far as the author is aware.
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The coming sections will piece together how both offline and online MFRL can be used in the PH-LAB model.
Section 3.1 will discuss how flight control can be formulated for RL, Section 3.2 will detail how REDQ works
and Section 3.3 will discuss which RQs have been addressed and which will need to be addressed in the thesis
assignment.

3.1 Flight control in the context of reinforcement learning

In the context of flight control, RL problems are formulated in such a way that the agent represents the controller
for the task being learned, the action is the control input given by the agent and the environment is the system
dynamics that act as both the state transition function and reward function (via the reference error). Figure 3.2
illustrates a simple case of how this would look in a control loop for a pitch tracking control task. Here the pitch
error e would be the state of the agent (RL controller), the feedback system dynamics (servo, aircraft and sensor)
the environment and the control input c is the action taken by the agent.

e - c 6 ' : 6
0, RL Controller Servo e Aircraft R
Dynamics Dynamics

O:n Sensor o
Dynamics

Figure 3.2: Pitch tracking RL controller block diagram

Using the PH-LAB, an identified model for TU Delft’s Cessna Citation [34], control tasks can be formulated
for many different objectives. The full list of states and actuators that are present in the model are shown in
Equation 3.1.

T = |:p q T Vras « 5 ¢ 0 ¢ he e Ye

(3.1)
u = [56 5(1 5r ’TN1 TN,J

This section will discuss two relevant examples of how the PH-LAB model has been used together with RL in
order to solve flight control problems.

Online fault tolerant pitch control

For their thesis Chan [36] designed an online pitch controller for the PH-LAB using an Incremental Dual Heuris-
tic Programming (IDHP) agent that was able to perform when previously unseen (to the agent during training)
faults were introduced. Their approach involved using the IDHP agent to learn a model online of the dynamics
of the associated MDP problem via a recursive least squares approach, this model is then used to improve the
actions of the actor as well improve the value estimation of the critic to maximise the cumulative reward.

For their MDP problem formulation Chan [36] used (with the notation previously introduced in Equation 3.1)
Equation 3.2. Here 0. is the pitch error with respect to the reference.

s=[a 0 q 6"
a = [0,] (3.2)
r=—(0-6,)>
For their experiment, they designed a warmup phase during which the agent would learn and a manoeuvring
phase where faults to the model would be introduced to determine if the aircraft was able to track in the presence

of faults unforeseen to the agent. The thesis demonstrated that the IDHP agent was able to improve the fault
tolerance performance.

Robust offline trained attitude and altitude control

For their thesis Dally [37] developed a cascaded controller that trained two Soft Actor Critic (SAC) (see Sub-
section 3.2.3 for more detail on actor critic architectures) agents offline for attitude and altitude tracking. One
agent was in charge of controlling the attitude of the PH-LAB and the other agent was in charge of feeding a
pitch reference to the attitude controller to mantain the altitude. The attitude controller was fully trained first
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and then the altitude controller was trained. The fault tolerance performance of the agents was then evaluated
in scenarios the likes of a jammed rudder, gravitational center shift and icing on the wings. The agents were
shown to be able to perform the attitude and altitude tracking despite the faults.

For their MDP problem formulation Dally [37] used Equation 3.3. Where e is the attitude error vector with
respect to the reference, c is the associated cost vector and u is the present control input which was necessary as
they controlled the actuator increment instead of the actuator directly (to smoothen out the actuator behavior).

Satt = [(Catt o eatt)’ U-T7P7 q, T]T
Aqtt = [5e75a75r]T
1 : att att (33>
Tott = —§||chp[c e e -1,0]||
Tair = —||clip[c™* o €2, -1, 0]]|

3.2 REDQ

This section will introduce several aspects of REDQ in order to give some context for how REDQ works. REDQ
stands for Randomized Ensenmble Double Q-Learning, Subsection 3.2.1 will discuss the ensemble aspect, Sub-
section 3.2.2 will go over the double Q-Learning aspect, Subsection 3.2.3 will discuss the actor critic architectures
that REDQ can be layered on and Subsection 3.2.4 will tie everything together in an overview of how the actual
algorithm works.

3.2.1 Ensemble learning

Ensemble learning approaches are RL approaches that use multiple learners that are trained concurrently. Fig-
ure 3.3 shows what this means in practice. In this case, an SAC solution is turned into an ensemble approach
by having multiple actors and critics being trained simultaneously. Note here the use of a replay buffer. This
is something that is commonly used when dealing with neural network function approximations to prevent the
networks from forgetting past experiences. By creating a replay buffer from sampled past experiences and using
it to continually train the network, catastrophic forgetting is avoided and learning is stabilised.

Bootstrap with

. ‘ra‘lnf:lorr} Weighted Bellman
initialization
backup

ucs

Action

exploration

Replay buffer BT —

Figure 3.3: Ensemble soft actor critic visualisation [38]

This ensemble of actors and critics is then used to achieve more robust estimates for the value function and
policy. In this case the estimates for the Q functions (critics) are used to generate a robust backup of @ and
the multiple policies (actors) are used to choose which action maximises the Upper Confidence Bound (UCB) as
defined in Equation 3.4 [38] which once again makes use of all the critics. Here ¢ is a hyperparameter.

ay = maaX{Qmean(Stv a) + CQstd(stv a)} (34)

3.2.2 Double Q-Learning

In Subsection 2.5.3 the off-policy algorithm Q-Learning was shown for a tabular case. This was an algorithm that
tried to learn the state-action value function estimate @ by exploring the environment and constantly updating
its estimate based on interactions. DQN is an extension of Q-Learning for problems that are non-tabular i.e
problems in which the value functions or policies are impossible or impractical to arrange into a table. Mnih
et al. [15] showed this to be successful in Atari games using the screen pixels as inputs (the high dimension of the
states making a tabular solution impractical). DQN is a functional approximation approach (g being the function
it tries to approximate) that uses a convolutional neural network to estimate ¢ = Q(s, a; \;) by comparing its
estimates to a target (the value it actually received) once an action has been made. A paper by van Hasselt
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et al. [39] expanded on learning Q via function approximation by introducing the concept of Double Q-Learning
(DQL). Equation 3.5 - Equation 3.8 explain the differences of the functional approximations between DQN and
DQL.

At = he+7 (5 = Sk A M) Va, QU8 A M) (3.5)

v = Ripr + ymax Q(Sr, a; \r) (3.6)

These first two equations illustrate how a neural network’s parameters are updated in a TD manner. Equation 3.5
shows how the networks parameters A\;y; are updated by using the previous parameters A, a target th and the
gradient of the network V,, (computed via backpropagation). Equation 3.6 shows the usual definition of the
target which is akin to the Bellman equation for Q.

?JPQ'N =Ry + W’maaXQ(StJrlva? A7) (37)

Equation 3.7 shows the definition of the target that was used by Mnih et al. [15], where the difference is that
it uses a Q function approximation based on A\~ when computing the target. These parameters A~ belong to a
network that is a delayed version of the online network which is updated less frequently.

y "% = Ry +4Q (St+17 arg max Q(Si41,a; Ar); )\2) (3-8)

The way in which DQL defines it’s target is seen in Equation 3.8. It splits up the maximisation into two different
networks: the online Q network that greedily chooses the future action and the delayed network which evaluates
it. Splitting the maximisation by looking at two different estimates has shown to prevent overestimation and has
been shown to perform better as seen in Figure 3.4.

Alien Space Invaders Time Pilot Zasoxon
n ] Lud

o |

DN estimate

Double DOQN estimate

Double DON true value
DON true value

0 et
0 50 100 150 200 0 50 100 150 200 O 50 100 150 200 0 50 100 150 200
Training steps (in millions)

Value estimates

" Wizard of Wor Asterix
-] B |
] = 100 " | | a0
g w Ill'I: ';-; 40 DQN
B U 10 AR
@ @ 20
B0 i | DS _ DQN
28 1 e W L
22 Double! DON -
g 5 Double DQN
0 50 100 150 200 0 50 100 150 200
Wizard of Wor Asterix
4000 Double DON .
GO0
& 3000 A Double DON
= 4000
[«
S 2000
Jo00 o 2000
o ¥ o & .
0 50 100 150 200 0 50 100 150 200
Training steps (in millions) Training steps (in millions)

Figure 3.4: Deep Q Network vs Double Q-Learning comparison on Atari games [39]

3.2.3 Actor critic architectures

Actor critic architectures are a hybrid between policy optimisation methods and value based methods (see
Subsection 2.3.2). They delegate the learning into two coupled roles: the actor which is in charge of the policy
and the critic which is in charge of the value function. These two are usually coupled as the actor’s policy
usually takes into account the evaluation of the critic. In continuous state-action spaces the policies and value
functions tend to be approximated by separate neural network which are updated based on some loss objective.
A commonly used actor critic architecture is Deep Deterministic Policy Gradient (DDPG), shown in Algorithm
6. As mentioned, it makes use of critic and actor networks which are trained based on the squared loss of the
target y; and the associated predicted critic estimate Qx (s, a). Note the use of target networks that act as softly
updated backups via a hyperparameter p, similar to the previously discussed delayed networks.
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Algorithm 6 DDPG Algorithm adapted from Lillicrap et al. [40]

1: Randomly initialize critic @ and actor A with weights A and € respectively
2: Initialize target network Q" and A’ with weights Aarg < A, Qtarg < Q

3: Initialize buffer D

4: for episode = 1 till final episode do

5 Initialize a random process for action exploration

6 Receive initial observation state s

7 for t = 1 till final timestep do
8:
9

Select action a; ~ 7 (St) + €noise according to the current policy and noise process
Execute action a; and observe reward r; and new state s;41

10: Store transition (s, at, ¢, S¢+1) in D

11: Sample a random minibatch B transitions (s;, a;, 7, Si+1) from D
12: Set y; =i +7Q4,,,,. (5", )

13: Update critic by minimizing the loss: L = % > (yi — Qa(s,a))?
14: Update the actor policy using the sampled policy gradient:

1
VQ ~ E g VaQA(Sv a)'s:si,a:ﬂ'n(si)VQWQ(SNS:sf

15: Update the target networks:
)\targ — /7/\ + (1 - /’)/\targ
Qtarg — PQ + (1 - p)ﬂtarg
16: end for
17: end for

Two commonly used actor critic architectures are Soft Actor Critic (SAC) [41] and Twin Delayed Deterministic
Policy Gradient (TD3) [42] which are both very similar to DDPG. SAC uses a stochastic policy that outputs an
estimated mean and standard deviation which are used to calculate the entropy, this is then used for a entropy
regularisation term in the target (y;) definition. TD3 introduced the idea of using a minimisation over two critic
networks to prevent overestimating the target y and delaying the actor network updates such that its updated
less frequently than the critic [43] which has shown to boost performance.

3.2.4 REDQ overview

With the context set in place, REDQ can now be discussed. REDQ refers to the idea of using off-policy actor
critic architectures together with ensemble learning and using the takeaways from DQL. Algorithm 7 shows a
pseudo code implementation of REDQ SAC. Here, there are three main highlighted hyperparameters which must
be defined: N, U and M. N refers to the number of critics (or Q functions), U refers to the ratio of Update To
Data (UTD) and M refers to the subset size used for in-target minimization [5].
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Algorithm 7 REDQ SAC Algorithm adapted from Chen et al. [5]
1: Initialise policy parameters 2, N Q-function parameters \;, i = 1,..., N, empty replay buffer D.

2: Set target parameters Agargi < A, fori =1,2,..., N
3: loop
4: Take one action at ~ mo(-|st). Observe reward r;, new state s;41
5: Add data to buffer: D <— DU {(s¢, as, 7, Se41)}
6: for U updates do do
7 Sample a mini-batch B = {(s, a,r,s")} from D
8: Sample a set M of M distinct indices from {1,2,..., N}
9: Compute the Q target y (same for all of the N Q-functions):
y=r 7 (i Qu (0) — Rlogma@]s) ) '~ ol
] :
10: fori=1,...,N dodo
11: Update \; with gradient descent using
1 2
VAE Z (@x.(s,a) —y)
(s,a,r,s’)EB
12: end for
13: Update target networks with Agarg,i <= pAi + (1 — p) Avarg,i
14: end for
15: Update policy parameters € with gradient ascent using

16: end loop

Traces from the previous discussions are present in the code, such as the use of a replay buffer, entropy regu-
larisation (the —klogmq(a’|s’) term) scaled by a temperature coefficient hyperparameter s, the ensemble of N
critics, preventing overestimates by not using the online critic function when calculating the target and the use
of a slowly updated target network. Some new ideas are also present such as updating more than once per step
via the hyperparameter U and some randomness is introduced by the sampling of M. The critics are updated
with gradient descent and the actors using gradient ascent, which are ways to update the policy parameters so as
to minimise the loss function or maximise the expected return (depending on the formulation of the optimisation
problem) [44].

The main characteristic that makes REDQ interesting is that it has demonstrated high sample efficiency in
multiple MuJoCo environments in a truly model free fashion, meaning that it not only lacks access to an a
priori model of the environment but also does not even try to learn a model of the environment as it interacts
with it. Previously, high sample efficiency approaches were mostly model based such as Model Based Policy
Optimisation (MBPO) which learns a model as the agent interacts with the environment in order to increase
its sample efficiency by using simulations of interactions with the learned model to learn more efficiently [5].
Figure 3.5 shows the performance of REDQ compared to MBPO with SAC being used as a measure of the
average approach that does not focus on sample efficiency, in this figure both REDQ and MBPO have a UTD
ratio of 20.
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Figure 3.5: REDQ, MBPO and SAC comparisons in MuJoCo environments [5]

3.3 Addressing research questions

So far in this literature study: RQ1.1-RQ1.2 have been addressed in Chapter 2 and RQ1.3, RQ3.1 have been
answered in this chapter. As RQ2.1-RQ2.3 will be answered in Chapter 4, the only remaining questions left to
fully answer are RQ3.2-RQ3.4 as they require performing the full exercise. However, the list of steps outlined in
the Chapter 9 serve as a plan of how these remaining questions will be tackled.
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Chapter 4

Preliminary Analysis

This chapter will discuss the preliminary analysis that was performed as a way to test if the REDQ algorithm
discussed in Chapter 3 will increase the sample efficiency in two different new environments not mentioned in the
REDQ paper [5] and for the author to familiarise themselves with the coding, verification, hyperparameter tuning
and agent evaluation skills for RL tasks in order to ease the transition when moving to the thesis assignment on
the PH-LAB model. Section 4.1 goes over the environment choices and the rationale behind them. Section 4.2
discusses the procedure followed during the preliminary analysis. Section 4.3 details how the hyperparameter
choices for the agents were chosen. Section 8.1 discusses the verification steps that were taken to ensure the
agents were indeed learning as intended.

4.1 Environment choices

For the preliminary analysis, two environments were used to test the algorithms: Gymnasium’s “Pendulum-
v1” (hereafter referred to as hinged pendulum) and MuJoCo’s “InvertedPendulum-v4” (hereafter referred to as
inverted pendulum). This section will detail how these environments are defined and give motive for why these
environments were chosen, Subsection 4.1.1 will discuss the hinged pendulum and Subsection 4.1.2 the inverted
pendulum.

4.1.1 Hinged pendulum

The hinged pendulum environment consists of a freely rotating pendulum hinged at one end as seen in Figure 4.1
with the aim of keeping the pendulum upright. It’s a continuous state-action task whose dynamics are easy
enough for rapid learning by an agent. The fact that it is easily learnable makes it a perfect stepping stone onto
more challenging tasks, as this simple environment allows for quick feedback for code implementation verification,
algorithm convergence and generating data.

Figure 4.1: Diagram for hinged pendulum [45], signs are positive in the directions drawn

The state space consist of a three bounded dimensions, —1 < z, < 1 [m] denoting the free end of the pendulums
horizontal position, —1 < y, < 1 [m] being the free end’s vertical position and —8 < w < 8 [rad/s] representing
the angular velocity. The action space is bounded, one dimensional and represents the torque force applied at
the hinge denoted by Fr [N -m]. This is summarised in Equation 4.1.

s=[z, yp ", a=[Fr], -8<Fr<8 (4.1)
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The reward function is defined as seen in Equation 4.2, where 8, is the angle measured in radians between [—7, 7]
with the upright position corresponding to zero.

r=—(8+0.168," +0.001F2) (4.2)

An episode in the environment starts with a randomised selection of states and it ends when 200 timesteps have
elapsed.

4.1.2 Inverted pendulum

The inverted pendulum environments consists of a task of balancing a pendulum upright that is mounted on a
cart attached to a slider as seen in Figure 4.2. It’s a continuous on-going task that is easy to interface with and is
a level above complexity-wise relative to the hinged pendulum due to the existence of dynamic coupling between
states.

===

|

I.GL’—) V:’.art

cart

Figure 4.2: Diagram for inverted pendulum, signs are positive for the drawn directions

The environment is defined using four states with one possible action as seen in Equation 4.3. The states consist
of the horizontal position of the cart x4+ [m] with right being positive, the angle of the pole with respect to the
vertical 3, [rad] which is positive as seen in the diagram, the velocity of the cart Vo, [m/s] positive to the right
and the angular velocity of the pole w [rad/s] as depicted in the diagram. All of the states are unbounded meaning
any of them can take values in [—oc0,00]. The action is defined as a horizontal force Fy [N] introduced at the
middle of the cart positive to the right and is bounded with a max absolute value of three. This is summarised
in Equation 4.3.

s = [xca'r‘t ﬁp ‘/cart W]Ta a = [FH]» -3 < FH <3 (43)
The reward function is described by Equation 4.4.

. {1, 18,] < 0.2 rad 84

0, else

An episode in this environment starts by sampling from some noise for the initial positions and velocities such
that it doesn’t always start from the same initial conditions. The episode ends under two conditions. If the
magnitude of the angle of the pole is greater than 0.2 radians the episode is terminated, and if the reward reaches
a value of 1000 the episode is truncated as the agent has learned to keep it upright.
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4.2 Preliminary analysis procedure

This section will give an overview of the procedure followed during the preliminary analysis along with the main
results. For a more intricate breakdown into the hyperparameter optimisation and verification see Section 4.3-
Section 4.4. The preliminary analysis procedure for both environments consisted of coding the algorithms,
verifying the code, doing a hyperparameter optimisation and then comparing the sample efficiency performance
of the standard SAC algorithm with the REDQ version of it. For the coding, SAC and Algorithm 7 were
implemented using PyTorch. SAC was chosen as the comparison baseline as it already had good performance
and reference hyperparameters were readily available in the REDQ paper [5]. The neural network architecture
for the actors and the critics are shown in Figure 4.3 and Figure 4.4 respectively. They represent the neural
networks used to solve the hinged pendulum task (as seen by the number of states and notation), the neural
network architecture for the inverted pendulum is analogous with an extra state on it’s input layer. Hidden layers
contain 256 units each. Note that as in SAC uses a stochastic policy the actor outputs two values, one for the
action mean Fr, and the other for the log standard deviation Fr, which are used to create a normal distribution
from which the actual policy action Fr is sampled from.

hidden layers hidden layers

®
A

inputs !
. .! N7/ AN N Q\\\\\?v"{‘ ._
WL Xt N0 07 e\

SR
pbe @ in®.
9(@ AR
R
4O rzayy
Q\\g///‘\\\‘

Figure 4.4: Critic network architecture for hinged
pendulum environment

X7 SN

» CEREICHRR
0\‘ ’O"« »“Q'

. ’/” \\' R /

//,\\\

Figure 4.3: Actor network architecture for hinged
pendulum environment

Q(s,a)

In order to verify the code, its performance was measured against a Stable Baselines (SB) implementation of SAC,
which is a library that contains implemented reinforcement learning algorithms which are easy to interface with
the environments. Using the default hyperparameter values from stable baselines on the author’s code yielded
similar results with the hinged pendulum being learned in between 20 to 35 episodes as seen in Figure 4.5 and the
inverted pendulum in between 200-300 episodes. The differences in the plot can be attributed to a combination
of differences in implementation, the stochastic nature of SAC agents as well as the known non-deterministic
nature of RL [46].
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Figure 4.5: SAC comparison with SB SAC on hinged pendulum environment using 30 episode averages over 40
trials

The one hyperparameter that had to be found via trial and error to get the plot above was the entropy coefficient
K as the Stable Baseline implementation uses an automatic entropy tuning procedure as suggested by Haarnoja
et al. [47] which in the end was not used in the author’s code as it seemed to worsen the performance for the
inverted pendulum. So, for verifying the author’s SAC implementation worked by comparing its learning per-
formance to SB SAC, k = 0.2 was used. Section 4.4 touches on some other methods of verification that were used.

The next step was to perform a hyperparameter optimisation, for which the Optuna python library was used.
The hyperparameters and the optimal values found for the hinged pendulum and inverted pendulum agents
can be seen in Table 4.1 and Table 4.2 respectively. The tables are separated into three different sections,
the first showing the hyperparameters that were fixed and copied from Chen et al. [5] in order to simplify the
hyperparameter combinatorial space. The second section depicts the hyperparameters which were optimised
using the standard SAC, this was done to ensure the SAC agent was proficient at the task. Note that the buffer
size was not included in this section because, due to REDQ algorithm updating several times per step, it would
follow that it be more sensitive to the buffer size. Therefore, it was moved to the third section. The third section
groups the hyperparameters that were optimised using the REDQ extension of SAC while keeping fixed the
values from the first two sections. For a more detailed description of how these values were found see Section 4.3.

Table 4.1: Hyperparameters hinged pendulum for
SAC/REDQ agents

Table 4.2: Hyperparameters inverted pendulum for
SAC/REDQ agents

Parameter Value Parameter Value
Optimizer! Adam [48] Optimizer! Adam [48]
Nonlinearity ReLU Nonlinearity ReLU
# hidden layers 2 # hidden layers 2

# of units per hidden 256 # of units per hidden 256
Learning rate® 7.5 x 1077 Learning rate® 6.6 x 1074
Discount factor 0.999 Discount factor 0.986
Temperature coeff 0.185 Temperature coeff 0.185
Target smoothing coeff. 0.009 Target smoothing coeff. 0.007
Batch size 256 Batch size 128
Buffer size? 0.4M Buffer size 3 1M

# of critics 10 # of critics 5
Subset size 7 Subset size 3
UTD ratio 8 UTD ratio 10

I From Chen et al. [5]
2 Group found from SAC hyperparameter study.
3 Group found from REDQ hyperparameter study.

L From Chen et al. [5]
2 Group found from SAC hyperparameter study.
3 Group Found from REDQ hyperparameter study.
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With hyperparameter tuning completed, the next step was to actually evaluate and compare the sample efficiency
of SAC against the REDQ extended version of it. The metrics for sample efficiency were defined as seen in
Equation 4.5, Equation 4.6 for the hinged pendulum and the inverted pendulum respectively based on the return
successfully trained agents receive. In these uy represents the running mean of the next k episodes. Equation 4.5
is defined in terms of episodes (ep). Each episode is guaranteed 200 interactions with the environment so it holds
the same amount of information as number of interactions or steps. Equation 4.6 is also defined using episodes
(ep) but note that here the episode lengths now vary depending on how well the pole is balanced (due to the
termination condition). This could be considered more aptly as the episodic efficiency, which indirectly points to
the sample efficiency as it is ultimately trying to capture the minimum number of episodes the agent experiences
before learning the task.

Jﬁgl‘ge = min |ep;| s.t. R(us(ep;)) > —250 (4.5)

JeE — min |ep;| s.t. R(us(ep;)) = 1000 (4.6)

inv

To test the efficiency of the sample of a REDQ agent compared to a SAC one, the best performing hyperparameters
seen in Table 4.1 and Table 4.2 were used to construct the learning curves. Figure 4.6 shows the comparison
of performance between the two algorithms, where the blue line and the contour consist of the average and
standard deviation of 40 SAC trials while the red line and the contour represent those of the 24 REDQ trials.
The mismatch in the number of trials and the relatively low number of episodes has to do with the computation
time difference between the algorithms, with REDQ taking substantially longer due to a higher UTD. This
implies more updates to the network per timestep, which is the most computational part of the training. The
performance of the REDQ agents are significantly better and with less variance in terms of sample efficiency,
narrowing in on the -250 requirement very fast starting at around episode 7 and staying there for the rest of the
episodes. The SAC performance is more volatile but on average touches the -250 goal within 17 episodes but
with a lot more fluctuation around -250, which continues to taper off as the number of episodes increases.
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Figure 4.6: Experiment - Hinged pendulum learning curves of SAC and REDQ agents

The training curve comparison between the SAC and the REDQ agent for the inverted pendulum can be seen in
Figure 4.7. For the SAC agennts, the blue solid line represents the mean and the shading the standard deviation
across 40 trials. The red solid line and shading represent those of the REDQ agents over 20 trials (different due
to computation time). It is important to note that since in the inverted pendulum environment the episodes are
not of a fixed length, the training curve will aggressively skew towards the better performing agent because it
will see more training steps per episode. This means that in the 40 episode performance recorded for each agent,
the REDQ agent was able to train substantially more as it learned to avoid termination faster. An estimate of
the mean aggregate training steps taken by each agent can be found by summing the mean episodic returns since
the sparse reward function rewards a point for every timestep that the episode is not terminated. Over these 60
episodes, due to this correspondence between reward and training steps for the environment SAC trains on average
over 562 steps while REDQ does so over 20663 steps. As a result, the training curve overwhelmingly favours
REDQ which forks the SAC curve at about episode 22 where it begins to consistently avoid the termination
condition.
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Figure 4.7: Experiment - Inverted pendulum learning curves of SAC and REDQ agents

4.3 Hyperparameter optimisation

The hyperparameter optimisation was performed using the Optuna python library with up to eight trials being
carried out in parallel. The search space for the hyperparameters can be seen in Table 4.3. Once again, the first
group of hyperparameters were optimized first for SAC and kept fixed when optimising for the second group’s
REDQ hyperparameters. The first group consisted of mostly type float parameters (these can be freely sampled
between the given bounds) with some categorical parameters as well (these have a fixed number of possible
choices). The second group consisted fully of parameters which were either integers or categorical. As a result
of both being diescrete their parallel coordinate plots (as seen in Figure 4.9 for example) look different relative
to the floats.

Table 4.3: Hyperparameter optimisation search space

Parameter Value Range
Learning rate’ [1E-3, 1E-5]
Discount factor [0.5, 0.999]
Temperature coeff. [0.1, 0.5]

Target smoothing coeff. [0.001, 0.01]

Batch size 64, 128, 256

Buffer size 0.2M, 0,4M, 0.6M, 0.8M, 1M
# of critics [2, 10]2

Subset size [2, # of critics]

UTD ratio [2, 10]

1The learning rate for the actor and critic are both the same
2The upper bound for number of critics in the inverted pendulum
was changed to 6 to reduce computation time.

The sampling from these ranges was done through a process called Tree-structured Parzen Estimator (TPE)
sampling [49] which is a Bayesian non-parametric model based sampling technique that continuously uses the
observed performance information from trials to refine a probabilistic model between the hyperparameters and
the objective to select future hyperparameters in an informed manner (relative to for example random search).
For all the trials, no seeds were fixed as hyper-optimising for a seed is not the goal. The objective function
was defined as the average reward across the number of episodes per trial and the aim was to maximise it. For
the hinged pendulum environment, the first group of parameters yielded the parallel co-ordinate plot seen in
Figure 4.8 across 100 trials of 30 episodes (with each episode lasting 200 timesteps) each using SAC.
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Figure 4.8: Hinged pendulum SAC hyperparameter parallel co-ordinate plot

There is large volatility in the objective value for these trials. This is expected as RL agents are quite sensitive
to some hyperparameter choices and this is the initial sifting through the hyperparameter space. Notice how the
lines cross freely across the parameter columns for float type parameters whereas they cross them discretely for
categorical (batch size). A high batch size, discount factor, learning rate and target smoothing coefficient seem
to perform well in the hinged pendulum task. The second group of parameters yielded the parallel co-ordinate
plots seen in Figure 4.9 using 70 trials across 20 episodes (200 timesteps per episode) each using the extended
REDQ implementation. The motive behind doing less trials and episodes for the REDQ version is because the
computation time is much longer than the normal version due to the high number of updates. Notice how all
the objective values associated with high UTD ratios are higher.
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Figure 4.9: Hinged pendulum REDQ hyperparameter parallel co-ordinate plot

The parallel co-ordinate plot for the inverted pendulum using SAC agents can be seen in Figure 4.10, which
spanned 200 trials each training for a total of 20000 timesteps. There is a clear trend for good hyperparameters
as the best results are clustered with high discount factors, learning rates and target smoothing coeflicients.
Comparing this plot with that of the SAC hinged pendulum confirms that the best performing hyperparameters
are dependent on the environment of the task.
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Figure 4.10: Inverted pendulum SAC hyperparameter parallel co-ordinate plot

Figure 4.11 shows the inverted pendulum performance of REDQ agents across 70 trials that trained for a total
of 20000 timesteps each. From here, one can again see that higher values of UTD seem to be performing very
well relative to those with lower UTD.

Buffer size Subset size # of critics

iM & &
- .
Objective Value

340

320

5. 240

" .
0.4M - — -
\\ _— 7
. T /, 200

—
—
|
— / h
. /\\ . \\
0.3M - e \ 2.5 2.5 / \ 3
T N 180
0
o
2
2

Figure 4.11: Inverted pendulum REDQ hyperparameter parallel co-ordinate plot

Hyperparameter importance

Now that visualisations have been given for the combinatorial space within the bounds in Table 4.3, a natural
question to ask is “how important is each of the hyperparameters to the overall objective value?”. This is captured
in the hyperparameter importance metric suggested by Hutter et al. [50]. It’s a metric that seeks to quantify
the importance of each hyperparameter of a black-box model (the trial observations) by approximating it with a
learned random forest model and then marginalising the variance observed with respect to each hyperparameter.
The hyperparameter importance is defined between [0, 1] with higher values corresponding to hyperparameters
whose change highly affects the objective performance. A note should be made that the hyperparameter im-
portance is of course dependent on the search space defined as if one picks to search within a narrow “good
enough” region in one parameter and a wider region in another with variable performance then the latter will be
considered more important.
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The hyperparameter importances for the SAC and REDQ in the hinged pendulum environment can be seen in
Figure 4.12 and Figure 4.13 respectively. For the SAC optimisation study the target smoothing coefficient (p),
learning rate and discount factor () were found to be the most important. In the case of the REDQ study it was
found that the UTD was the most important followed by the buffer size. This is in agreement with the results
in Chen et al. [5], where a UTD of 20 in order to achieve their best sample efficient performance.
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Figure 4.12: SAC hinged pendulum parameter im- Figure 4.13: REDQ SAC hinged pendulum param-
portance eter importance

Figure 4.14 and Figure 4.15 show the hyperparameter importance for the SAC and REDQ studies respectively.
There is an immediate difference in which hyperparameters are most important compared to the hinged pendulum
once again, confirming that the importance of hyperparameters varies depending on the task. In the case of the
SAC agent the discount factor () and learning rate were found to be the most important while UTD was the only
real important hyperparameter in the REDQ study. The general trend across the hyperparameter optimisation
is that REDQ is very sensitive to the UTD and that higher UTD seems to perform better (at the expense of
more computation time).
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Final choice of hyperparameters

The chosen hyperparameters in Table 4.1 and Table 4.2 were picked with consideration to the trial hyperparameter
performance, the parallel co-ordinate plots and the hyperparameter importance. Meaning that if the best best
trial was in line with the story from the parallel co-ordinate plots, then they were chosen. If other trials performed
similarly but with simpler hyperparameters (computation wise such as less number of critics) these were chosen
as long as their hyperparameter importance was low (less than 0.1). It is important to mention this because in
isolation the trial performance is not a sufficient criterion for choosing hyperparameters. This is because it could
be the result of favourable environment initialisations and choices of hyperparameters were not repeated in this
hyperparameter study for several different environment seeds.
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4.4 Verification

As previously discussed, one way in which the code was verified was using the SB library to compare performance.
However, other methods of verification were also used ranging from print statements at a low level to check
everything was working under the hood, up to more system scale tests. This section will focus mostly on the
latter and the policies of the actor will be used as evidence that the agent is learning good policies. These policies
used the best found hyperparameters from the hyperparameter optimisation (except on the policy for the REDQ
inverted pendulum where a lower UTD was used to reduce computation time). The verification using the hinged
pendulum will be given in Subsection 4.4.1 and the inverted pendulum in Subsection 4.4.2.

4.4.1 Verification using hinged pendulum

The best way to interpret the following policies is to keep an eye on Figure 4.1 for the sign convention and keep
in mind that for the following policies the z, and y, have been replaced by —m < 8, < 7 using = 1 X cos(f)
(the pendulum has a length of one) to reduce the state dimensions to two. In order to construct these following
policy diagrams, the agents were trained until the task had been learned and then the actor network was used
to generate the action values per given states.

Looking at Figure 4.16 there are a few things that can be seen to that indicates the agent learned a good policy.
Firstly, looking at the corners of the state grid the action follows the direction of the angular velocity w of the
pendulum. This makes sense because both the horizontal extremes represent the pendulum pointing down and
so the easiest way to return to the upright position would be to ride in the direction of w and can be seen
by both top corners being red (where w is positive) and the bottom corners being blue (where w is negative).
Secondly, starting in the centre of the picture and solely moving up vertically would indicate a scenario where
the pendulum is at the desired position but with an increasing positive w, the resultant torque action is to
counteract the positive angular velocity which is what’s necessary to keep upright equilibrium. The opposite also
holds moving down vertically so it is consistent. Lastly, if starting at the centre and moving only horizontally
then there is a small margin in which the agent tries to fight this angular displacement by applying an opposite
torque. After this margin ends the agent seems to apply full torque in the direction of the displacement meaning
it has figured out a threshold at which it’s actually better to give the pendulum a push in order to catch the
equilibrium on the other side than try to fight the angular displacement.

L 0.6
o 2]
= oo %
o
3 =
=T

L 0.6

0
Bp (rad)

Figure 4.16: SAC hinged pendulum policy after 60 episodes

The policy for REDQ SAC is plotted in Figure 4.17. The same arguments to its validity hold as discussed above,
however notice there are more blemishes and irregularities in this policy. These are attributed to the fact that it
was mapped after only 20 episodes and also consider that these problems do not have a unique policy solution.
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Instead, there is a whole family of non-identical policies which are good enough to solve the hinged pendulum
environment,.

(rad/s)
Action Value

w

0
5p (rad)

Figure 4.17: REDQ SAC hinged pendulum policy after 20 episodes

4.4.2 Verification using inverted pendulum

The policies for the inverted pendulum were also visualised. In order to be more easily understood it’s best
to look at the diagram and understand the sign convention discussed in Subsection 4.1.2. For these following
policies, the agent was trained until the task was learned. The policies then were plotted using the actor network.

Starting with the SAC policy seen in Figure 4.18; the easiest ones to interpret are those plotting x...: (the
bottom three sub-figures) with any of the other variables as 2.4+ is effectively irrelevant to the goal of keeping
the pendulum upright. From this, it can be seen that when the angular velocity and pole angle are varied on the
bottom left and right plot the action follows the input that would be needed to counteract the rotation. Note
that the bottom middle figure fixes both the pole angle and angular velocity meaning that it is essentially at
the goal state (perfectly upright with no angular velocity) so in this condition the agent doesn’t care too much
what the action is as it has learned to address when it isn’t stable. For the top sub-figures, the top middle figure
is the easiest to interpret as the agent has learned to prioritise counteracting the angular velocity. This is what
determines where the pole will be in the future, so it only inputs actions in a way to oppose the angular velocity
of the pole regardless of the angle of the pole. In the top right sub-figure it shows that when there is only some
angular deflection (without angular velocity) the agent tries to fight it. However, it recognises that for certain
deflection and velocity combinations, it doesn’t need to input anything as the cart is already moving in such a
way that will balance the pendulum and sometimes even pushes against this vertical restoring velocity of the
cart (seen in the wavy patterns) in order to arrive at the vertical at a standstill. The same idea holds true for
the top left figure.
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Figure 4.18: SAC inverted pendulum policy study after 200 episodes

The policy for the REDQ variant is plotted in Figure 4.19. As can be seen, the majority of the plots have the
same look with some small differences to the decision boundaries. The two plots that are the most different are
the top right and bottom middle sub-figures. The differences in the top right plot can be attributed to simply
lack of experience for the policy as it took a smaller number of episodes for the REDQ agent to learn the task it
wasn’t exposed to as many starting conditions as the SAC one. The bottom middle plot is mostly uninteresting
as this one fixes the pendulum at the goal state so policy differences in this setting are not of much concern.
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Figure 4.19: REDQ SAC inverted pendulum policy after 50 episodes
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Chapter 5

Conclusion

In this literature study, the idea of improving the sample efficiency of current reinforcement learning techniques
in flight control applications was discussed and motivated, relevant literature was recapped and a preliminary
analysis was conducted. The relevant literature aimed to give an overview of the concepts in RL and address
RQL1.

Q1 How can reinforcement learning with a focus on sample efficiency be used for flight control applications?
1. How can RL be used to solve control problems?

2. What are some relevant performance metrics to keep in mind when developing RL for flight control
purposes?

3. What is a suitable methodology to tackle sample efficiency improvement?

The first two questions have been addressed. Firstly, reinforcement learning can be used to solve control prob-
lems formulated as MDP. In the field of flight control, several applications were mentioned such as the flying
of a quadrotors drone with a PPO algorithm and using an IDHP agent to learn a fault tolerant pitch control
task online. Secondly, there are several relevant metrics to keep in mind when developing a RL solution in flight
control among which are safety, sample efficiency and the explainability of the solution. Abstract mathematical
definitions are presented as the precise definitions are problem dependent. The last question remains partially
unanswered as though a lot of the relevant literature points to directions in which tackling sample efficiency can
be improved, since the thesis exercise has not yet been performed the full details are still missing.

The preliminary analysis looked to address RQ2.

Q2 How can a preliminary analysis investigating sample efficiency be implemented on benchmark environ-
ments?

1. What learning environments will be used to test the methodology?
2. What baseline algorithms will be used in the preliminary analysis for comparison?

3. How will the sample efficiency of the preliminary analysis be computed?

The questions will now be addressed in order of appearance. Firstly, the preliminary analysis was implemented
in two environments the “Pendulum-v1” and “InvertedPendulum-v4” from the Gymnasium and Mujoco libraries
by interfacing with their environments. These two were chosen because one of them was simple to learn for the
agents which was good for testing and verification purposes while the other posed a more complex task. Secondly,
the baseline algorithm that was used during the preliminary for comparison was SAC and it was chosen because
it already had good base performance and REDQ [5] had hyperparameters specific to the SAC implementation
for reference. Lastly, environment specific sample efficiency metrics were defined in order to be able to compare
the REDQ algorithm’s performance relative to the baseline SAC.

The literature recap also covered some of RQ3.
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Q3 How does the proposed methodology perform on the Cessna Citation PH-LAB Model?
1. How can the RL algorithm be interfaced with the PH-Lab model?
2. What algorithms will be used as comparisons to the proposed methodology?
3. How will the proposed methodology improve sample efficiency?

4. What are the safety implications for the proposed methodology?

Addressing them by order of appearance. Firstly, RL algorithms can be interfaced with the PH-LAB via the
state space description of the model which can be used to define the agent, its actions and the environment. The
full details of how this would be done is not described in detail as it’s yet to be implemented but the general
description of how it would work is discussed. Secondly, the comparisons to the proposed methodology have yet
to be decided (also discussed at the end of this chapter as possible directions) but two examples are given one
for an online RL IDHP agent for fault tolerant control and other being an offline attitude and altitude controller
using SAC agents. There’s also the possibility of just comparing its performance with a control SAC agent.
Thirdly, the gains in sample efficiency are likely to come from the power of the REDQ extended algorithms
which as seen in the preliminary analysis are more sample efficient than standard implementations with UTD
ratios of one but as the experiment has yet to be performed this question has not been fully answered. Lastly, the
safety implications of the proposed methodology is not addressed as this is something that can only be discussed
in the context of the experiment environment under safety criteria which have not yet been set.

For continuing into the thesis exercise, the following directions are given as ideas to what the author currently
has in mind:

(A) The offline sample efficiency of standard SAC and REDQ will be compared for a pitch control tracking task
like Figure 3.2

(B) Compare offline sample efficiency in Dally [37] experiment by extending their SAC implementation with
REDQ

(C) The online sample efficiency will be tested using the online learning experiment setup proposed by Chan
[36]:

— is REDQ sample efficient enough to learn a task in an online setting?

— if not, what can be changed to the experiment such that it’s sample efficient in an online task? (Increase
warmup phase or change the amount of information in warmup phase)
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Part 111

Additional Results
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Chapter 6

Hyperparameter Tuning

Hyperparameter choice plays an important role on the agent’s learning, to ensure the comparison between
agents was fair a hyperparameter search was conducted to find the best combination for SAC and REDQ. This
chapter will discuss the search procedure for the policy smoothness hyperparameters in Section 6.1, how the
hyperparameter tuning was performed in Section 6.2 and the final choice of hyperparameters in Section 6.3. The
choice of keeping the smoothness and other hyperparameter tuning separate was made to first establish a smooth
starting point around which the agents could then be tuned.

6.1 Policy smoothing - CAPS hyperparameters

To ensure that the policy of the agents was smooth for use on real-life applications (that is, to prevent bang-bang
control), Conditioning for Action Policy Smoothness (CAPS) [51] was used to smoothen the policy during train-
ing. In essence, CAPS introduces two regularisation terms to the actor loss objective function: one for the spatial
smoothness (to ensure that actions near similar states are not too different) and one for the temporal smoothness
(to ensure two sequential actions are not too different from one another). Each of these regularisation terms has
their own coefficient in the objective function which are hyperparameters, denoted ns and 7; respectively.

Two figures are provided to illustrate the difference between agents that learn with CAPS and those that do not.
Figure 6.1 shows an agent that’s learned a pitch tracking task without policy smoothness. While the tracking
performance is accurate, the elevator control exhibits highly volatile bang-bang behavior. Such abrupt control
actions are undesirable for policies intended for physical systems due to concerns over safety, energy efficiency
and wear caused by friction.
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Figure 6.1: Pitch tracking by SAC agent without CAPS: pitch (left) and elevator action (right)

Figure 6.2 shows the result of training an agent with CAPS. Here, the tracking performance is also good and the
actuator exhibits smooth behaviour.
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Figure 6.2: Pitch tracking by SAC agent CAPS n; = 15,7, = 5: pitch (left) and elevator action (right)

The hyperparameter values for ns and n; were found experimentally by changing their values then looking at the
actuator output once the learning was finished. This was repeated until a suitable combination of 15 and n; were
obtained based on how smooth the time series visualisations were. For the pitch and roll tracking tasks, it was
found that the agent’s policy was most sensitive to the temporal smoothness coefficient. For these, a n; value of 15
yielded great results while the spacial smoothness coefficient seemed to have a smaller impact on the smoothness
of the agent’s actions with a 7, of 5 yielding good results. For the biaxial control task, ns = 30,7, = 60 yielded
mostly smooth results.

Although these hyperparameters often lead to smooth policies for agents, the number of training steps needed to
become smooth is not always the same. Agents will often appear to have learned the task and show good results
in terms of return, but the policy will still be volatile. This is because agents converge to smooth policies at
different rates. Creating a metric to track smoothness is non-trivial as a threshold needs to be set to classify what
is considered smooth and what is not during any evaluation. Therefore, it is recommended to always visually
check the smoothness of the policies to verify if the agent has converged to an acceptable policy in both return
performance and smoothness.

6.2 Learning-related hyperparameter optimisation

For the learning-related hyperparameters, a hyperparameter study was conducted in Optuna using TPE sampling
for parameter search in the maximise direction. Each trial consisted of training the agent on a pitch tracking
task for 20 episodes each lasting 50 seconds with the trial objective being the mean reward across all 20 episodes.
The search space for the SAC hyperparameters can be seen in Table 6.1. Note that some fixed hyperparameters
were chosen based on those found by Dally [37] (like the number of hidden layers and neurons per layer). The
ranges of the search space were determined by what the author believed to be sensible based on initial manual
trial and error attempts.

Table 6.1: SAC Hyperparameter optimisa-
tion search space

Parameter ‘ Value Range
Learning rate [1E-3, 3E-5]
Discount factor [0.9, 0.99]
Target smoothing coeff. [0.01, 0.3]
Batch size 64, 128, 256

IThe learning rate for the actor and critic are
both the same

The parallel co-ordinate plot for this search can be seen in Figure 6.3. From the plot, it is clear that a combination
of a low batch size, high discount factor, medium learning rate and low target smoothing coefficient performs
best. Note the hyperparameter search space type affects how the parallel co-ordinate plot looks, with discrete
search spaces like batch size showing less variance compared to float search spaces like learning rate.

67



Batch size Discount factor

256 0.989508

Learning rate Target smoothing coeff.

0.00099524, 0.28%6

Objective Value

—10k

—15k

—20k

& 0.502547

A

—-25k

¢
V4

2
7

—30k

0.000023%6 0.

075

Figure 6.3: Parallel coordinate plot of SAC hyperparameters for the pitch tracking task

The parameter search space for the REDQ agents can be seen in Table 6.2. Here, the upper bounds for the
number of critics and UTD were kept low due to computation time considerations. The subset size was omitted
and dropout was explored following developments from Hiraoka et al. [52] that showed great results in sample

efficiency on benchmarks when these two choices were made.

Table 6.2: REDQ Hyperparameter optimisation search

space

Parameter

Value Range

Learning rate!
Discount factor

Target smoothing coeff.
Batch size

[1E-3, 3E-5]
0.9, 0.99]
0.01, 0.3]

64, 128, 256

Buffer size
# of critics
Subset size
UTD ratio
Dropout chance

50k, 100k, 150k, 200k, 250k

2,5
2,5
[0, 0.3]

1The learning rate for the actor and critic are both the same

The accompanying parallel co-ordinate plot can be seen in Figure 6.4. Here, a high discount factor, high UTD,
low learning rate, and low number of critics seem to perform best. The dropout was set to zero after a few trials
since it caused the agent to consistently underperform whenever it had a non-zero probability.
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Figure 6.4: Parallel coordinate plot of REDQ hyperparameters for the pitch tracking task

The hyperparameter importance for SAC and REDQ SAC on the pitch task are given in Figure 6.5 and Figure 6.6.
These are found automatically through the Optuna hyperparameter study using the analysis of variance procedure
outlined by Hutter et al. [50]. In essence, it works by applying non-parametric regression across the observed trials
and ranks them based on the effect each hyperparameter has on the variance when marginalised with respect
to the objective performance (which was the mean reward across 20 episodes for this study). By definition, the
hyperparameter importances sum to one with higher values indicating more important hyperparameters. Note
that the importance is based on how the hyperparameter search space is defined, as hyperparameters that explore
broader search spaces tend to induce higher performance variance.
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Figure 6.5: SAC pitch tracking task parameter im- Figure 6.6: REDQ SAC pitch tracking task param-
portance eter importance

Each plot tells a different story about the importance of the hyperparamters. However, both agree that the
discount factor - is the most important hyperparameter. One-to-one comparisons of hyperparameter rankings
are challenging because one algorithm uses more hyperparameters, which dilutes the importance percentage.
The biggest discrepancy between importance is in the learning rate, which the plots show SAC is more sensitive
to than REDQ likely due to the higher UTD ratios compensating for slower learning rates. For the REDQ
hyperparameters, their importance was generally secondary to that of the base SAC hyperparameters, with the
UTD ratio and the number of critics showing roughly equal importance. Dropout was omitted since it was set to
zero after initial exploration. However, since non-zero dropout probabilities systematically caused the agents to
have deteriorated learning performance when it was non-zero, it likely has a high hyperparameter importance.
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6.3 Final hyperparameters

The hyperparameters obtained from the hyperparameter study serve as a good base from which to compare the
sample efficiency between agents. The final choice of hyperparameters were found by looking at the SAC parallel
co-ordinate plot and the best trials within that study. If the parameters of the best trials matched the trends
of the plot, they were chosen. Else, they were picked based on which parameter regions had the most successful
trials from the plots with consideration on computing time (such as choosing fewer critics if possible).

In the end, the optimal REDQ agent hyperparameters from the Optuna study were not used for the experiment
as they would be an uncontrolled addition to the variance in the sample efficiency performance of the agents. This
is because, for finding hyperparamters, the objective of the study was to maximise the mean reward across 20
episodes. This objective does not necessarily translate to better sample efficiency. Instead, to isolate the impact
the REDQ hyperparameters have on the sample efficiency, two agents were proposed RED3Q and RED5Q.
These agents had a matching number of UTD and number of critics set by the number in the name. RED3Q
was proposed as a minimal incremental step to SAC, only increasing the number of critics by one and tripling
the UTD ratio. RED5Q constituted a larger step with respect to SAC, adding three more critics and quintupling
the UTD ratio. The motive behind keeping the number of critics and UTD ratio the same was mostly due to
combinatorial simplicity, as investigating the sensitivity to each of these hyperparameters individually for every
task would require even more agents to be trained, i.e. an agent with a UTD ratio of two with three critics and
another agent with a UTD ratio of two but with five critics instead to isolate and investigate the effect of number
of critics on performance. Table 6.3 and Table 6.4 give the chosen SAC and REDQ hyperparameters respectively.

Table 6.4: Hyperparameters REDQ agents
Table 6.3: Hyperparameters SAC agents

Parameter Value
Parameter Value Optil.nizer. Adam [48]
Optimizer Adam [48] Non.hnearlty RelLU
Nonlinearity ReLU # hlddgn layers . 2
# hidden layers 9 # of units per hidden 64
# of units per hidden 64 Targ§t entropy 1 —dim(A)
Target entropy —dim(A) Spacial smoothness coeff. 530
Spacial smoothness cocfE! 5130 Tempf)ral smoothness coeff.! 15 ] 60 .
Temporal smoothness coeff.! 15 | 60 Le.armng rate 6.3 x 10
Learning rate 63 %< 102 Discount factor 0.99
Discount factor 0.99 Target smoothing coeff. 0.076
Target smoothing coeff. 0.076 Batch s1ze 64
Batch size 64 Buffer size 50k
Buffer size 50k # of critics® 315

UTD ratio? 315

ILeft: pitch or roll. Right: biaxial control.

ILeft: pitch or roll. Right: biaxial control.
2For RED3Q and RED5Q respectively.

Note that in the end, a buffer size of 50 thousand was used because all tasks were learned in less than 50 thousand
training steps during the actual experiments. The hyperparameters used for the pitch, roll and biaxial tracking
agents were the same.
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Chapter 7

Time Series Fault Analysis

This chapter will display a selection of time series plots and accompanying discussion for a deeper dive at how
agents performed in the different fault scenarios mentioned in the scientific article. Due to the large number of
combinations of agents and tasks, only a subset of the plots are presented. The nominal condition behaviour
will be discussed in Section 7.1, the quarter actuator efficiency condition in Section 7.2 and the actuator jolt
condition in Section 7.3.

7.1 Nominal condition agent behaviour

The biaxial control behaviour for the nominal condition is shown in Figure 7.1. From the figure, it is evident
that the agent is able to accurately track the reference signals in pitch and roll simultaneously. Furthermore, at
the very beginning of the evaluation the agent initially shows a quick oscillation on both actuators of differing
magnitudes that quickly dies down. The motive behind this is not fully understood, however, since the agent
starts at the trim condition with zero pitch/roll rate and zero error it is possible that this is simply a scenario
that very seldom occurs during training so it’s actions are erratic. Looking at the yaw angle, a drift towards a
steadily increasing yaw angle is visible. This is expected as the agent offers no yaw control and the model has a
pitch damper present, which only mitigates quick oscillations and not a slow drift. The altitude slowly decreases
over time since there is no altitude control. Finally, the velocity oscillates around 90m/s due to the auto-throttle
present in the model.
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Figure 7.1: Smooth RED3Q nominal condition biaxial control behaviour
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The behaviour of the agents is not always smooth as shown in Figure 7.2. Here, the agent seems to have difficulties
in both pitch and roll at the bottom of the pitch/roll reference as this is where the volatile behaviour consistently
occurs. However, the performance does not change in these volatile regions, further illustrating the problem of
ensuring smoothness discussed in Section 6.1 and demonstrating the importance of visualisation accompanied by

performance metrics.
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Figure 7.2: Non-smooth RED3(Q nominal condition biaxial control behaviour

7.2 Quarter actuator efficiency condition agent behaviour

The roll control behaviour for the quarter actuator efficiency condition is given in Figure 7.3. Here, it can
be seen that the agent is able to accurately track the roll reference even with diminished control over the
aileron. This is likely tied with the fact that the policy being learned, while effective, is not minimal. This
means that the magnitude of the agent actions could still be optimised to be even smaller and more energy
efficient. Coincidentally, the diminished actuator actions also alleviates some of the initial erratic behaviour at
the beginning of evaluations observed under the nominal conditions. Furthermore, looking at the longitudinal
states, there are still oscillations in them due to weakly coupled dynamics.
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Figure 7.3: RED5Q quarter actuator efficiency condition roll control behaviour

7.3 Actuator jolt condition behaviour

The pitch control behaviour of the actuator jolt condition is given in Figure 7.4. The agent is able to recover
from large disturbances and return to the given pitch reference. Furthermore, the agent acts as expected with
the elevator being pushed in the opposite direction of the disturbance. However, something unexpected happens
starting at 10 seconds, when the maximally negative disturbance is given, where the aircraft model does not
seem to be as responsive compared to the maximally positive disturbance at 5 seconds. The reason behind the
asymmetry in pitch responsiveness to maximal elevator deflection is not fully understood since the agent is able
to achieve high pitch angles under nominal conditions.
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Figure 7.4: SAC actuator jolt condition pitch control behaviour

The biaxial control behavior under the jolt condition is shown in Figure 7.5. Once again, the agent successfully
recovers from disturbances on both the pitch and roll axes. The previously observed unexpected asymmetric
responsiveness to maximal longitudinal disturbances is absent, which adds to the mystery of why it occurs only
during pitch control disturbances. Overall, the response of REDQ agents to the jolt condition is not always great
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as discussed in the article. Additionally, it also not always smooth. This is because the large deflection forces
agents to non-nominal states within the environment, where it likely had little training. Smoothness issues are
also likely related to the fact that the larger the reference error, the larger the agent’s actions are expected to be
to compensate for the reference error.
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Figure 7.5: RED3Q actuator jolt condition biaxial control behaviour
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Chapter 8

Verification and Validation

This chapter discusses the verification procedures followed throughout the research done in this thesis. Section 8.1
covers the verification performed, which consisted of a model match check to verify the compilation of the
MATLAB CitAST model was done successfully and an RL implementation verification which revolved around
sanity checks and analysing agent policies. Validation of the model was not conducted in this research, as the
model has previously been validated by van den Hoek et al. [34] where real flight data was used to identify and
validate the CitAST model for the PH-LAB.

8.1 Verification

The verification of procedures throughout the research can be divided into model verification and RL implemen-
tation verification. These are addressed in Subsection 8.1.1 and Subsection 8.1.2 respectively.

8.1.1 Verifying the model

To verify that the PH-LAB MATLAB model had been compiled to the Python extension module correctly, the
trimmed and zero input response of the model was recorded to compare if it matched. The model was compiled
with the default values that it came with (different from the operating point used for the rest of the thesis) just to
ensure that there were no errors in the compiling. For brevity, only the zero input response is given in Figure 8.1
for the compiled Python extension module and Figure 8.2 gives the original MATLAB PH-LAB model response.
It is worthwhile to note that the aircraft crashes near 180 seconds, which explains the sudden jumps in the pitch
rate, pitch angle and angle of attack.

5 o1 P q le-14 r Vras

rad/s

°

50 100 150 200 50 100 150 200 0 50 100 150 200 100 150 200
Time (s) Time (s) Time (s) Time (s)

a le-14 B le-14 [ ¢

°
°
o
8

0.100 0
0.075
B 0050 B B

0.025

0.000

o
@
£

100 150 200
Time (s)

le-14 [ he Xe

o

50 100 150 200 0 50 100 150 200 0 50 100 150 200
Time (s) Time (s)

20000
15000
£ 10000

5000

o

°

100
Time (s)

150

°

50

100
Time (s)

150

200

0 50 100 150 200
Time (s)

0 50 100 150 200
Time (s)

Figure 8.1: Zero input response compiled python extension module
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Figure 8.2: Zero input response MATLAB PH-LAB model

8.1.2 Verifying RL implementation

While developing the RL implementation, several sanity checks were performed to ensure the learning was going
as expected. Firstly, the implementations of the SAC and REDQ agents were forked from those used for the
preliminary analysis which were shown to have comparable behaviour with the SB SAC implementation. The
agent implementations were also able to successfully learn policies in the hinged and inverted pendulum environ-
ments. Secondly, the learning behaviour of the agents for the attitude tracking tasks was actively monitored by
generating plots to check their tracking performance, loss curves and episodic returns. These plots were used to
make sure that the agents were learning as intended. Lastly, the agent policies were plotted to make sure these
were consistent with the expected behaviour. This last procedure is explained at length hereafter, it is useful to
keep in mind the sign conventions defined in Figure 8.3.

~Z 4,
Starboard
aileron

Elevator

Elevator

Positive control
angles shown

Port aileron

Figure 8.3: Relevant aircraft states and actuators sign convention adapted from Cook [53]

The policy plot for the pitch control agent can be seen in Figure 8.4. The leftmost plot was constructed using
only the deterministic policy actions (so no sampling from a distribution was done). The middle plot was
constructed with the stochastic policy actions, which explains the more noisy and less smooth behaviour shown.
The rightmost plot is a scatter plot showing the trajectory spread during learning where the states were logged
every step. Note that the shape of the plots can change from agent to agent as there can be multiple policies
that can be learned to be good enough from the training.
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Figure 8.4: Pitch control SAC agent policy plot

To interpret this plot, it is useful to remember that 6. = 0,y —6 and consult the sign convention seen in Figure 8.3
as for the pitch control agent the action corresponds to the elevator deflection. Looking at when the error is zero
and the pitch rate is very positive, it makes sense for the elevator deflection to be maximally positive in order to
stabilise the incoming pitch angle increase. Likewise, when the error is zero and the pitch rate is very negative,
one sees a maximally negative elevator deflection. Looking at when the pitch rate is zero and the error is large
0 = 0,5 — 0 is maximised when 6 is extremely negative, meaning the aircraft is pitching down and so a negative
action (nose up) is stabilising. The same line of argument is used to explain why when the pitch rate is zero and
the error is very negative, you get a positive action. The diagonal lines are expected due to the aircraft’s C,,,,
being negative, so when the angle of attack is changed due to pitch changes there is a restorative moment that
resists the change. The reason why the diagonal decision boundaries are not in a straight line is not fully known,
but the angle of the lines is highly sensitive to the seed of the training environment. It is therefore believed to
be a combination of what the agent was exposed to during the training, as well as the nonlinear nature of lift
curves.

A zoomed in version of the plots can be seen in Figure 8.5 where the more relevant agent actions are visible as
in nominal conditions it will be close to the reference signal so the error will be small.
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Figure 8.5: Zoomed in pitch control SAC agent policy plot

A policy plot for the roll control agents can be seen in Figure 8.6. The structure is the same as that for pitch
except that now the error is defined in ¢ instead of 6 and the action now corresponds to the aileron deflections.
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Figure 8.6: Roll control SAC agent policy plot

It is once again useful to remember the reference and sign convention seen in Figure 8.3 together with the roll
error definition ¢, = 0,.f — ¢. As can be seen, when the error is zero and the roll rate is very positive, the action
is very positive as this causes a negative roll moment. Similarly, when the error is zero and the roll rate is very
negative, a negative action is chosen to create a positive roll moment. When the roll rate is zero and the roll
error is very negative, this means the aircraft is at a very positive roll rate (follows from roll error definition)
and the agent choses a positive action to counteract this. The same logic applies when the error is very positive,
except that the agent now chooses a very negative action to counteract the very negative roll angle. The fact
that the decision boundary is slightly skewed is in this time due to the negative restorative moment Cj, caused
partly by the asymmetry in the lift generated by the wings when the aircraft rolls (as for the rest the aircraft is
symmetrical with a small dihedral angle of 4.5° [54]).

A more zoomed in version of the plots can be seen in Figure 8.7 where the more relevant parts of the policy is
shown under nominal conditions.
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Figure 8.7: Zoomed roll control SAC agent policy plot

Figure 8.8 shows the policy plot for the biaxial control task generated by fixing the states given at the top of the
plot to zero. The policies generated are consistent with those discussed previously. The one visible difference is
that the aileron policy is not as vertically divided. However, in the nominal performance region where the error
and roll rate are low it remains consistent.
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Chapter 9

Conclusion

Reinforcement learning offers an alternative to PID controllers for flight control applications. The main benefits
of a model free RL solution is that they require no knowledge of plant dynamics and can bypass the need for
gain scheduling used in conventional PID control techniques. This is achieved by agents being able to generalise
beyond operating points. Sample efficiency is central to any machine learning approach as it can constrain
which techniques are feasible. The research in this thesis adds to the body of knowledge of how RL based
model free flight control can be made more sample-efficient in offline training while also illustrating the possible
robustness consequences. The following discussion will detail how the research questions posed were answered
and the research objective of improving the sample efficiency of model free flight control reinforcement learning
approaches was achieved.

Q1 How can reinforcement learning with a focus on sample efficiency be used for flight control applications?
1. How can RL be used to solve control problems?

2. What are some relevant performance metrics to keep in mind when developing RL for flight control
purposes?

3. What is a suitable methodology to tackle sample efficiency improvement?

These questions will be addressed in the order they appear. Firstly, RL can be used to solve control problems
formulated as MDPs. In the field of flight control, several applications were mentioned such as the flying of a
quadrotor drone with a PPO algorithm and using an IDHP agent to learn a fault tolerant pitch control task
online. This is covered in Chapter 2. Secondly, there are several relevant metrics to keep in mind when developing
a RL solution in flight control among which are safety, sample efficiency and the explainability of the solution.
Abstract mathematical definitions are presented as the precise definitions are problem dependent. The specifics
of these definitions are found in Section 2.6. To answer the last question, the sample efficiency was tackled by
using the REDQ algorithm on flight control tasks. REDQ increases sample efficiency by generalising the number
of critics in an actor critic architectures, choosing a subset size over which to minimise during updates and in-
creases the number of updates performed per batch update step. Further details on REDQ are given in Section 3.2

Q2 How can a preliminary analysis investigating sample efficiency be implemented on benchmark environ-
ments?

1. What learning environments will be used to test the methodology?
2. What baseline algorithms will be used in the preliminary analysis for comparison?

3. How will the sample efficiency of the preliminary analysis be computed?

The questions will now be addressed in order of appearance. Firstly, the preliminary analysis was implemented
in two environments the “Pendulum-v1” and “InvertedPendulum-v4” from the Gymnasium and Mujoco libraries
by interfacing with their environments. These two were chosen because one of them was simple to learn for the
agents which was good for testing and verification purposes while the other posed a more complex task. More
detail on these environments is given Section 4.1. Secondly, the baseline algorithm used during the preliminary
for comparison was SAC and it was chosen because it already had good base performance and REDQ had hy-
perparameters specific to the SAC implementation for reference. Section 4.2 gives an overview of the procedure
performed. Lastly, learning curves and environment specific sample efficiency metrics were defined in order to be
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able to compare the REDQ algorithm’s performance relative to the baseline SAC. Section 4.2 also discusses this.

Q3 How does the proposed methodology perform on the Cessna Citation PH-LAB Model?
1. How can the RL algorithm be interfaced with the PH-LAB model?
2. What algorithms will be used as comparisons in the methodology?
3. How will the proposed methodology improve sample efficiency?

4. What are the safety implications for the proposed methodology?

These questions will be discussed in the order presented. All of the information regarding these research questions
was covered in the scientific article in Part I which is used as reference to substantiate the claims mentioned
hereforth. Firstly, RL algorithms were interfaced with a Python compatible compiled version of the PH-LAB
model by framing the problem as an MDP. This involved using the state space of the PH-LAB model to formulate
an agent, its actions, a reward function and the plant dynamics as the environment. Secondly, the comparison
algorithm used in the methodology was once again SAC. However, it was implemented on three attitude tracking
agents for pitch, roll and biaxial control. Using the SAC agents performance as a benchmark, a comparison was
made between standard SAC performance and that of REDQ for all three tasks. Thirdly, the proposed method-
ology improved sample efficiency by showing the learning curves of SAC and REDQ agents in conjunction with a
statistical analysis to demonstrate that the gains in sample efficiency during initial training were statistically sig-
nificant. Threshold performance metrics were also defined to get a sense of how long it took the agents on average
to achieve these thresholds. Lastly, the safety implications in the methodology were asymptotical learning insta-
bility, robustness in fault scenarios and actuator concerns on real systems from volatile command signals. REDQ
agents were shown to have worsened asymptotical learning stability in the learning curves. To test the robustness
of REDQ agents, a fault tolerance analysis was conducted which demonstrated diminished robustness in REDQ
agents. This was visible in the number of outliers during fault tests, with performance being the worst in fault
tests that introduced an actuator jolt that pushed them far from nominal conditions. The drawbacks in learning
stability and robustness were attributed to overfitting. Extra information regarding the fault tolerance analysis
and how concerns related to the action volatility of the agents were addressed see Chapter 7 and Section 6.1
respectively. Early stopping and active visualisation of actuator outputs during training are recommended as
preventative measures to mitigate safety concerns.

To conclude, this research demonstrated the viability of using RL as an alternative to conventional PID control.
The RL agents were able to successfully control the model without anything resembling gain scheduling and
were even able to generalise under fault scenarios, albeit with varying levels of robustness success. For the
three attitude control tasks performed in the experiment, the average accurate tracking convergence (error < 1°)
occurred within 5,500 training steps for pitch, 6,400 for roll and 11,500 for biaxial control. For all tasks, REDQ
demonstrated faster initial learning which fulfilled the learning objective of improving the sample efficiency of
model free flight control reinforcement learning approaches.
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Chapter 10

Recommendations

During the thesis process, several ideas and directions were considered but not pursued due to time and focus
considerations. This chapter will discuss a selection of them.

1.

Implementing other REDQ compatible algorithms

The thesis mainly focused on SAC and it’s REDQ counterpart. However, the ideas behind REDQ are
applicable to all actor critic architectures. Implementing REDQ across a family of algorithms would give
a broader look at how the sample efficiency of different algorithms can be improved for flight control.
Given how quickly the agents were able to learn the control tracking tasks, it could be the case that
more deterministic and safe exploration-centric algorithms would be able to learn the task online (through
clever use of techniques like a warm start). Two immediate candidates that come to mind would be the
online-offline architectures developed in Teirlinck [55] and dos Santos [56].

Full attitude tracking controller

The agents developed during this research were limited to attitude control within two axes, namely pitch
and roll. This was because the yaw damper that came implemented with the model hindered the learning
in the yaw axis. To investigate full attitude tracking performance the yaw damper could be removed from
the MATLAB model to test if the same methodology would yield good performance. Given the ease with
which the agent was able to generalise to more than uni axial attitude control, the methodology outlined
during this thesis has a strong case for working for full attitude control, whether it’s all done by one agent
or each axis done by separate agents. Regardless, full attitude control was not evaluated in this paper so
it remains a recommendation.

Further robustness testing Robustness testing through fault tolerance analysis was limited to three
cases due to time and technological considerations, compiling the CitAST model into Python is an elaborate
process. A step to improve on this would be to test the agents behaviours across a larger suite of tests.
Immediate candidates for this would be to test the agents behaviour starting from different trimmed
conditions than it was trained for or untrimmed conditions altogether. For additional reference, Dally [37]
analysed the robustness of their SAC controller with additional cases such as a jammed rudder, saturated
elevator range, icing and centre of gravity shift.

Investigate sensitivity to REDQ and CAPS hyperparameters

The research in this paper looked at two REDQ agents: RED3Q and RED5Q. As such, the research
only presented results with matching number of critics and update to data ratio. Though an additional
hyperparameter optimisation study on REDQ was conducted, its objective metric was long term mean
performance as opposed to sample efficiency. A more granular sensitivity analysis could be performed to
investigate how the sample efficiency performance of the agent varies with respect to individual changes in
the number of critics or the update to data ratio changes while keeping everything else equal. Additionally,
the learning related effects of CAPS hyperparameters was not investigated.

Policy transfers and policy transfer learning

The policies learned by agents on the PH-LAB model could be transferable to other models. The smallest
incremental step take in this direction would be to take the trained agents and assess their performance on
models of aircraft with similar aerodynamic characteristics and dynamics. Even if the performance is not
ideal, the trained neural network could still serve as a starting point for learning the task either through
further training of the agent network or by using the policy to fill a replay buffer to help train a new
off-policy agent. For such use cases, training agents using sparse reward functions should be investigated
as potential better reward shaping candidates due to their more abstract nature.
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Appendix A

Planning

Thesis

The planning for the thesis was broken into four main phases, the work packages associated with each phase
are denoted by Work Packages (WP) and their scheduling is shown in Gantt Chart - A with week zero being
21/11/2024 and week 28 being 03/07/2025. Once the draft has been submitted and feedback has been received,
the final thesis will be handed in on 25/06/2025 and defended on 09/06/2025. These cover the four main goals
of this literature study:

1. Setup an experiment for flight control tasks

2. Evaluate agent learning for different control tasks
3. Answer research questions

4. Write a scientific article

5. Defend the thesis

WP 1: Thesis Reporting

This spans the whole thesis as documenting the progress, uploading results and managing referencing is a con-
tinuous task.

WP 1.1: Report writing & formatting

This package encompasses the continuous reporting, referencing and formatting.

WP 1.2: Documenting results

The documentation of results is a recurring task that is repeated every time relevant results are generated which
are to be used in the thesis.

WP 2: Pitch Control Task

This part of the thesis encapsulates the period that was spent developing just the pitch tracking controller.
This first task is expected to take the longest as a lot of time is spent onboarding onto a non-familiar coding
environment.

WP 2.1: Set up PH-LAB model

Setting up the PH-LAB will involve compiling a MATLAB model into a Python extension module. This process
is not straight forward; it involves some knowledge of the MATLAB compiler and how to use SWIG to generate
a Python extensions out of compiled C code.

WP 2.2: Interface model with agents

Interfacing the PH-LAB model with agents will require creating code around the python extension module to:
interface the actions the agent outputs as inputs to the model and use the outputs of the model for subsequent
states and reward allocation.
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WP 2.3: Hyperparameter tuning

This part of the thesis will involve searching for a set of hyperparameters that allow the agent to learn the tasks.
Will most likely involve an Optuna study similar to what was done during the preliminary analysis.

WP 2.4: Verification & validation

Verification and validation is something that will be done in every task. For the pitch control task, it will involve
ensuring the code is working as intended through sanity checks based on outputs and visual feedback from plots.

WP 3: Roll Control Task

This part of the thesis contains all the packages related to the development of the roll tracking controllers.

WP 3.1: Expand pitch control code for roll

It is expected for a lot of the code for the roll tracking task to be very similar to the code of the pitch control
task. With some changes on which inputs and outputs are used from the PH-LAB model, so the code needs to
be expanded for this functionality.

WP 3.2: Verification & validation

Verification will consist of similar measures as described for the pitch control task. A comparison of the pitch
and roll control tasks can also be done at this stage since the pitch controller will already be finished to make
sure they’re learning comparably.

WP 4: Biaxial Control Task
The biaxial control task will be a controller that controls both the pitch and the roll. It will be the final results
related task in the thesis.

WP 4.1: Generalise code for biaxial control

The code must be expanded for compatibility of agents with a larger state and action space. Functionalities like
the training, evaluation and interfacing of the agents will need to be changed as well. The plotting functionalities
will also require changes.

WP 4.2: Define experiment evaluation criteria

With functioning code for all tasks, the experiment evaluation criteria will be implemented. This will involve a
sample efficiency and fault tolerance analysis. The scope of the analysis will be fixed at the end of this task.
WP 4.3: Verification & validation

This package encompasses the verification that will be done for the biaxial controller. It will use similar verification
checks as those performed for pitch and roll.

WP 4.4: Generating final results

the final plots and performance metrics will be generated at this stage for final inclusion in the thesis.

WP 5: Defence Preparation

The defence is the final phase of the thesis where the work will be defended in front of a committee.

WP 5.1: Thesis and forms submission

This package contains the procedural tasks that are done near the end of the thesis.

WP 5.2: Prepare presentation & practice

This will be the final task where the presentation to be given during the thesis will be made. It will require
practising and studying the content for any incoming questions.
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Literature study

The planning for the literature study was broken into four main phases, the work packages associated with each
phase are denoted by Work Packages (WP) and their scheduling is shown in Gantt Chart - B with week zero
being 26/06/2024 and week 21 being 20/11/2024. Once the draft has been submitted and feedback has been
received, the final literature study will be handed in at some date TBD. These cover the three main goals of this
literature study:

1. Brush up on the knowledge acquired throughout academic years
2. Explore research done in order to formulate research gaps/questions & solution methods/approaches

3. Perform a preliminary analysis in a benchmark environment using the proposed methods to assess their
feasibility prior to the thesis assignment

WP 1: Planning & Reporting

This part of the literature study spans the whole literature study as documenting the knowledge acquired and
managing referencing is a continuous task.

WP 1.1: Report writing & formatting

This package encompasses the continuous reporting, referencing and formatting.

WP 1.2: Planning Lit. Study

This package encompasses the planning that is scheduled outright from the beginning of the literature study. It
could be the case that some tweaks to the planning are performed throughout the whole literature study but
foundation is done in the first four weeks.

WP 2: Refresher - RL & Flight Control

This work phase was planned for only four weeks and acts as a baseline which will aid in digesting the upcoming
literature review.

WP 2.1: Reinforcement learning recap

The refresher on reinforcement learning will cover the theory behind it, the taxonomies & categories associated
with it as well as touch on some variations of it which are particularly suited for flight control.

WP 2.2: Control problems in aerospace

The refresher on control problems in aerospace will briefly introduce the type of control problems that arise in
aerospace applications and with an emphasis on those particularly suited to be solved via reinforcement learning.

WP 3: Literature Review

The aim of the literature review phase is to dive into what’s being done or has been done in order to get a feel
of where the cutting edge of research is currently at in order to identify a research gap/question(s) and form an
idea of how to design a methodology that will allow for the research question(s) to be answered.

WP 3.1: Identify research gap & question(s)

During this part of the literature review, the focus will be in researching possible knowledge gaps and formulating
questions. This will be done in parallel with WP 3.2 as researching state of the art will aid in finding out exactly
where the gap is as well as which questions to ask. This is where the scope of the literature study is fixed.

WP 3.2: Researching state of the art

In parallel with WP 3.1, this package will focus will be in investigating what the cutting edge research is for
reinforcement learning algorithms and how it’s being used for flight control purposes.
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WP 3.3: Define thesis approach/methods

With the research gap and question(s) formulated, what follows is coming up with methods that will successfully
answer the research question(s). This might be by coming up with a RL algorithm, improving on one that’s been
established or applying it to an area of application which has not yet been tested.

WP 4: Benchmarking

This phase of the literature study will act as a way of comparatively testing (relative to other established
algorithms) whether the proposed methodology appears promising, the aim is to reduce the amount of future
iterations/re-scoping by evaluating early on if the chosen research question & methodology that will result in a
fruitful thesis assignment.

WP 4.1: Familiarize with Mujoco benchmark

The Mujoco benchmarks are collections of environments used to test RL algorithms. The idea is to familiarize
with how to set it up by creating a python environment with all necessary dependencies and libraries.

WP 4.2: Try out different algs & envs

During this period different environments/algorithms will be run and measured in the Mujoco environments
(most likely in the inverted pendulum). The relevant metrics that are used to measure performance will be
explored and understood.

WP 4.3: Implement possible algorithms

In this last phase of the benchmarking, the proposed methods will be implemented to see their feasibility and
determine if they look promising enough to extend it to the flight control problems in the scope of the research.
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