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Abstract
Networks with a large number of participants and a highly dynamic data exchange are better off us-
ing a distributed networking system due to network failures in centralized networks. However, with
the increase in distributed networking, security problems arise in distributed processes. Injection of
malicious data, for example, must be dealt with by using the tools provided by detection theory. The
detection probability 𝑃 can be taken as the performance metric that we aim to optimize. In order to
achieve this, one must first define a hypothesis testing problem and derive an optimization problem for
𝑃 that is dependent on which nodes are assumed to be compromised by these malicious agents that
inject data.
For the injected data, there are three different models taken into consideration for the change in val-
ues over time and nodes. For every model, we assume that the outlier data can be injected with two
different attack modes. These attack modes enforce different network topology related constraints on
the set of compromised nodes due to different motivations. Furthermore, additional constraints are
assumed due to the limited resources of the agents.
Additionally, with the given framework, we can also derive an optimization problem that can be solved
with the help of the well-known linear regression method, i.e., Lasso. The problem that arise with this
method is the difficulty of implementing the network topology related constraints into this optimization
problem.

In order to solve these optimization problems, several methods are combined for the relaxation and
solution of the optimization problems.

From numerical evaluation, it can be observed that our empirical performance is non-negligibly lower
than the theoretical performance for all three models and both attacking modes. This can be linked to
the dependence of the empirical distribution to the derived subset of compromised nodes, these sub-
sets are chosen such that the cost function is optimized. Hence, we observe that the empirical values
are much higher than it is theoretically assumed, in case that the network is ’clean’.
A second factor for performance evaluation is the number of wrongly indexed nodes, it can be observed
how this factor is dependent on the distribution of the energy of the outlier data over the nodes and time.

Overall, this study shows that the provided framework shows an increasing performance for an in-
creasing outlier-to-noise energy ratio. For an energy ratio higher than 0.5, the empirical and theoretical
ROC-curves are nearly perfectly saturated for all models. The number of wrongly indexed nodes for
our methods is generally speaking lower compared with the Lasso-method.
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1
Introduction

Networks are designed to exchange data between entities (nodes) such as network access points,
sensors or agents. Networks with a large number of participants and where a highly dynamic data
exchange is the norm can be prone to network failures. In a centralized network where ’a’ wants to
send data to ’b’, there is only a single path of connection from ’a’ to ’b’. If there is a connectivity problem
this can lead to the loss of data. Distributed networks are more robust to failure since that the failure of a
single path is backed up by the other existing paths. However, with the increasing interest in distributed
processing over networks, there is also an increasing concern for the security of such processes [1].
The algorithms that are used in order to distribute the data efficiently in these networks rely heavily
upon the exchange of data on these internodal paths. Protection against injection of malicious data,
during the exchange on these paths, is nowadays a very relevant problem in signal processing over
networks. In a smart grid for example, this can also mean the subtraction or addition of power into the
network, see figure 1.1

Figure 1.1: The arrows indicate the flow of the power, hence the power flowing away from the house indicates power
subtraction and the power flowing into the fabric indicates power addition

Another example: with the help of controlled data injection by malicious agents it is shown that it is
possible to steer the end result of a network process to a state [2] beneficial for the malicious agents.
An example of such a behavior occurs in social networking, for instance, where the general opinion is
usually formed through consensus dynamics where the opinion of the network participants are metri-
cized and taken as a variable [3]. In this setting, there can be the so-called ’stubborn agents’ that aim
to influence their neighbors but always stick to their initial opinion in order to skew the general opinion,
for example, to bias the outcome of an election or in a viral marketing campaign.
Recently, several methods have been put forth to cope with malicious data injection on a node level. In
those approaches, either the nodes are screened individually to identify them as malicious agents or
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2 1. Introduction

using the information of their direct neighbours [4, 5]. Although the detection of a malicious agent can
be done in a network through collaborative screening, i.e., each node auditing its neighboring nodes,
there are instances where there are centralized observations available. Examples of such cases are
smart grid networks for monitoring the power distribution [6, 7] or centralized routing for communica-
tions [8].
Regardless of whether the screening of nodes is on a global or local level, there exists an assumed
difference in the behavior of the malicious agents with respect to the nodes that are considered to
be honest agents, i.e., nodes that operate normally. In the case of global screening, the problem has
been tackled before from an outlier detection point of view where the injected data is treated as additive
outliers to the node signal values. The node signal values are then separated from the outliers with
the help of an estimation process that measures the alignment of the signal values with the underlying
structure of the network. Properties such as smoothness, i.e. variation of signal values across con-
nected nodes, are exploited in order to measure the alignments of the nodal values [9]. The hypothesis
testing problem for this kind of outlier detection problems is formulated as:

ℋ ∶ observed data consists of noise and nodal data
ℋ ∶ observed data consists of noise, nodal data and outlier (malicious) data

(1.1)

Apart from similarity measures for the node signal to be estimated, there is also made use of the spar-
sity for the estimation of outliers in [9]. Thus a sparsity-based method is used for the identification of
malicious nodes. However, in the classical outlier detection methods, the information from the network
is not leveraged. Particularly, information that is related to the connectivity measures of the sparse out-
lier vector can not be imposed directly. So these approaches neglect the fact that the connectivity of
the malicious agents is, in many cases, relevant to describe their behavior. For example, the malicious
nodes can be arranged such that they are weakly connected to the rest of the network or they can be
managed and coordinated by the agents without having a connection between them. In this thesis,
we will thus focus on the detection of outliers with a structure that is dependent on the topology of the
network. It is therefore required to set up a framework that identifies the anomalous nodes in the net-
work from historical network data. To do so, we will make use of the performance metrics provided by
classical detection theory along with tools of graph theory to find a mathematical expression to identify
outliers with structural restrictions.

The remaining part of the thesis looks as follows. In chapter 2, we give the preliminaries about graph
theory tools that are used in this work and along with these we also provide the required background
of classical detection theory.

In chapter 3, the problem statement is provided and complemented with the data model. After this,
we introduce three different models for the behavior of the malicious agents (outlying values). The
last part in chapter 3 is dedicated to the explanation of the topology-based constraints that model the
connectivity of the malicious (or compromised) nodes.

In chapter 4, we explain the mathematical derivation for the hypothesis testing problem related to the
anomaly detection over networks. For all three models, there is a different hypothesis testing problem
defined and thus also a different test statistic (or threshold function) must be derived. From the test
statistic, we devise an optimization problem which aims to optimize the target performance metrics,
which are dependent on the candidate malicious nodes. In addition, we add a discussion on why the
sparsity based Lasso-method is not directly applicable, in terms of constraints, for our setting. Nev-
ertheless, for comparison purposes, the test detector for the Lasso-based detector is also derived. A
derivation for the optimization of the fitting error is also discussed in the last part.

Chapter 5 is dedicated to the convex relaxation of the optimization problems given in chapter 4. For
all three models the relaxed problems are different, hence we provide three different algorithms that
optimize the respective performance metrics.

In chapter 6, we will evaluate the performance of the relaxed optimization problems for all three models.
Before doing this, the parameters affecting the performance are explained as well as the decisions that
are taken for the variation of these parameters.
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In chapter 7, future research directions are provided. Finally, in chapter 8, an overall conclusion is
provided for the thesis.





2
Background

This chapter explains the concepts of graph signal processing, more specifically how network informa-
tion diffusion occurs and how we can measure some basic connectivity properties. Furthermore, the
concepts of detection theory and its performance metrics are explained.

2.1. Graph Theory
A graph 𝒢 = (𝒱, ℰ) consists of an edge set ℰ and a node set 𝒱. The edge set is the set that contains
the links between the nodes. The links are assumed to be used for exchange of information. Every
element in the edge set consists of two nodes that are connected. For undirected graphs, it is assumed
that an edge is free of orientation. This means that the edge from node 𝑖 to node 𝑗 is identical to the
edge from node 𝑗 to node 𝑖. The edge set can also be represented with the help of an adjacency matrix
or a Laplacian matrix. An unweighted adjacency matrix 𝐴𝐴𝐴 ∈ ℝ|𝒱|×|𝒱| is defined as the matrix that has
a 1 at entry [𝐴𝐴𝐴] , only when node 𝑖 and 𝑗 are connected. For an unweighted adjacency matrix, these
non-zero elements are equal to 1. The unweighted Laplacian matrix 𝐿𝐿𝐿 ∈ ℝ|𝒱|×|𝒱| is defined by the
following equation:

𝐿𝐿𝐿 = 𝐷𝐷𝐷 −𝐴𝐴𝐴, (2.1)
where the matrix 𝐷𝐷𝐷 is a diagonal matrix containing the degrees of the nodes, i.e., the number of links
that are coupled to each node in the graph. Hence, the entry [𝐷𝐷𝐷] is equal to the degree of node 𝑖. The
nodeset is defined as the set that contains the nodes. The cardinality of the nodeset will be indicated
as 𝑁 for future reference, i.e., 𝑁 = |𝒱|. The time varying signal values for each node are represented
in the vector 𝑥𝑥𝑥 ∈ ℝ whose element values are assigned to the nodes. The subscript 𝑡 indicates that
the signal values for time 𝑡 are given in the vector. In order to diffuse information, i.e., spread out the
information across the network, a graph shift operator must be defined. A graph shift operatorΦΦΦ allows
us to define the notion of information flow over a graph by replacing the signal values of each node
with a linear combination of the neighbours [10]. Alternatively, we can also add a weighted value of
the current signal to the linear combination in order to define the signal values for the next timeframe.
Information diffusion occurs then as follows:

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 . (2.2)

At time 𝑡 + 1, the signal values are calculated by multiplying the vector containing signal values at time
𝑡 with the graph shift operator of time 𝑡 + 1, i.e. ΦΦΦ . Possible candidates for our graph shift operator
are a weighted adjacency matrix or a weighted Laplacian matrix. A well-known example, that will be
used for evaluation purposes in this thesis, is the matrix that calculates the weighted average of the
values from the neighbouring nodes at every timeframe. This weighted average is then assigned as
the new value of the node signal value. For the calculation of the weighted average, the elements of
ΦΦΦ consist of positive values smaller than 1 that will sum up to 1 in every row of ΦΦΦ for all 𝑡. Hence,
the element values are then given as:

{0 ≤ [ΦΦΦ ] , ≤ 1 if 𝑖 = 𝑗 or {𝑖, 𝑗} ∈ ℰ,
[ΦΦΦ ] , = 0 otherwise

(2.3)
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6 2. Background

and

∑[ΦΦΦ ] , = 1 ∶ ∀ 𝑖 ∈ {1, ....𝑁}. (2.4)

A matrix with these properties is also called a right stochastic matrix [11].

Furthermore, in order to exploit the structure of the graph, we will make use of graph connectivity
measures. These connectivity measures are based on the cut of a subset of the node set 𝒱. The cut
of a subset is defined as the summation of the (weighted) edges ’leaving’ that subset. Let us define a
subset of the node set as𝒲 ⊂ 𝒱 and the support of the subset as

[111𝒲] = {
1, if 𝑖 ∈ 𝒲
0, if 𝑖 ∉ 𝒲 (2.5)

Mathematically, the cut 𝐶(111𝒲) can then be formulated as follows [12]:

𝐶(111𝒲) = 111𝒲 𝐿𝐿𝐿111𝒲 . (2.6)

The Laplacian matrix can be unweighted or there can be a weight assigned to the edges of the graph.
In this thesis, we work with the unweighted Laplacian for the graph cut. An illustrative example is given
in figure 2.1, where the edge subset that defines the cut for a given subset of nodes is indicated in red.
In the example given in figure 2.1, the cut will be equal to 4. .

1 3

4

5 7

Figure 2.1: For the subset of nodes that are filled in orange, the subset of edges that belong to the cut are colored in red

2.2. Detection Theory
Detection theory lies at the core of signal processing. The main concern of detection theory is decid-
ing whether a certain event of interest occurs or not. Mathematically, this event is then denoted as
an hypothesis. A well-known detection problem is to detect whether a certain signal 𝑠𝑠𝑠 is present in
observed data that is embedded in noise 𝑛𝑛𝑛. This problem can then be mathematically denoted as a
binary hypothesis problem where the null hypothesis ℋ is then the absence of the signal 𝑠𝑠𝑠 and thus
only the presence of noise 𝑛𝑛𝑛. And the alternative hypothesis is then the situation where there is noise
and signal present in the observation 𝑦𝑦𝑦, i.e.,

ℋ ∶ 𝑦𝑦𝑦 = 𝑛𝑛𝑛
ℋ ∶ 𝑦𝑦𝑦 = 𝑠𝑠𝑠 +𝑛𝑛𝑛 (2.7)

In case that we want to choose the correct hypothesis for our decision, the observed data needs to
be exploited as efficient as possible. So that the rate of correct decisions is maximized for multiple
realisations of the problem. We can make use of the statistical properties and model the hypotheses
under certain distributions. For example, if the noise in the elements of the observed data 𝑦𝑦𝑦 is zero
mean while Gaussian, 𝑛𝑛𝑛 ∼ 𝒩(0, 𝜎 𝐼𝐼𝐼), and the observed signal 𝑠𝑠𝑠 is deterministic, we can then denote
the hypothesis under these statistical models as:

ℋ ∶ 𝑦𝑦𝑦 ∼ 𝒩(0, 𝜎 I)
ℋ ∶ 𝑦𝑦𝑦 ∼ 𝒩(𝑠𝑠𝑠, 𝜎 I) (2.8)
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If we define the distribution under ℋ as 𝑃(𝑦𝑦𝑦;ℋ ) and the distribution under ℋ as 𝑃(𝑦𝑦𝑦;ℋ ). We
can set up a framework for a detector dependent on the false alarm probability 𝑃 and the detection
probability 𝑃 . The false alarm probability 𝑃 is defined as the probability thatℋ is decided whenℋ
is true, 𝑃(ℋ ;ℋ ). And the detection probability is defined as the situation where ℋ is decided while
this is true, 𝑃(ℋ ;ℋ ). The Neyman-Pearson (NP) theorem shows that the likelihood ratio test returns
the most ’powerful’ test [13]. The power of a test is defined as the detection probability 𝑃 and the most
powerful test is defined as the test that has the highest 𝑃 for a given risk of 𝑃 . The likelihood ratio
test, 𝐿(𝑦𝑦𝑦), must be compared with a detection threshold 𝛾 in order to make a decision between the two
hypotheses, i.e.,

𝐿(𝑦𝑦𝑦) = 𝑃(𝑦𝑦𝑦;ℋ )
𝑃(𝑦𝑦𝑦;ℋ )

ℋ
≷
ℋ
𝛾. (2.9)

The detection threshold 𝛾 is then found with the help of the false alarm probability:

𝑃 = ∫
{ ∶ ( ) }

𝑃(𝑦𝑦𝑦;ℋ ) 𝑑𝑦𝑦𝑦. (2.10)

By mathematical manipulation of the likelihood ratio, we can then derive a threshold function, which
is also called as the test statistic interchangeably, 𝑇(𝑦𝑦𝑦), which allows us to derive a mathematical
expression for the detection and false alarm probability as:

𝑃 = 𝑃(𝑇(𝑦𝑦𝑦) > 𝛾 ;ℋ )
𝑃 = 𝑃(𝑇(𝑦𝑦𝑦) < 𝛾 ;ℋ ) (2.11)

where 𝛾 is the newly found threshold after simplification. In case that the distribution of 𝑇(𝑦𝑦𝑦) is known
under both hypotheses, it is simpler to derive a mathematical expression that is dependent on 𝑦𝑦𝑦 for
both of the probabilities. For the above given example, assuming that 𝑠𝑠𝑠 is known and deterministic, a
matched filter is derived for (2.7).

𝑇(𝑦𝑦𝑦) = 𝑦𝑦𝑦 𝑠𝑠𝑠. (2.12)
And the distribution of the test, under both hypotheses, is given as follows:

ℋ ∶ 𝑇(𝑦𝑦𝑦) ∼ 𝒩(0, 𝜎 𝑠𝑠𝑠 𝑠𝑠𝑠)
ℋ ∶ 𝑇(𝑦𝑦𝑦) ∼ 𝒩(𝑠𝑠𝑠 𝑠𝑠𝑠, 𝜎 𝑠𝑠𝑠 𝑠𝑠𝑠) (2.13)

These expressions give us the following expressions for the detection and false alarm probability

𝑃 = 𝑄(𝛾 − 𝑠
𝑠𝑠 𝑠𝑠𝑠

√𝜎 𝑠𝑠𝑠 𝑠𝑠𝑠
), (2.14)

𝑃 = 𝑄( 𝛾
√𝜎 𝑠𝑠𝑠 𝑠𝑠𝑠

). (2.15)

In (2.14) and (2.15) the Q-function is defined as the right tail distribution function of the standard normal
distribution. The problem gets more complicated when the statistical models used for the hypotheses
contain unknown parameters. In these cases, what must be done first is to find an estimate for these
unknown parameters. To this end, we can make use of the generalized likelihood ratio test which
replaces the unknown parameters with their maximum likelihood estimation from the collected data,
i.e.,

𝑠𝑠𝑠∗ = argmax𝑃(𝑦𝑦𝑦;𝑠𝑠𝑠,ℋ ). (2.16)

An overview of the performance is presented with the help of a receiver operating characteristic (𝑅𝑂𝐶)-
curve that plots the 𝑃 for 𝑃 ∈ [0, 1].

The mathematical modeling used for the detection problem in this thesis will be simplified to the above
mentioned formulation in (2.7) while a certain structure of the unknown signal to be detected is taken
into account.
In the next chapter, we provide the problem statement together with the data models of the signal and
outliers.





3
Anomaly Detection in Networks

The goal of this chapter is to explain the problem that will be dealt with in this thesis. A formal statement
of the problem is provided first. Secondly, the data model that will be used is explained in section 3.2.
Then, we introduce three different models for the outliers. And in the last part, we will explain how
certain connectivity measures for the graph are motivated and taken as constraints for the support set
of the compromised node set.

3.1. Problem Statement
Let us consider a network modeled by an undirected graph 𝒢 = (𝒱, ℰ). Each element in the node set
𝒱 represents a network element and ℰ is the edge set that represents the relationship between the
elements. In this thesis, we will focus on distributed networking where {𝑖, 𝑗} ∈ ℰ indicates that nodes
𝑖 and 𝑗 exchange data, in other words there is a communication between the elements. Despite the
distributed nature of the network, an active surveillance in the form of a centralized observation will
be available for security purposes. In figure 3.1 an illustration is given for the situation under study.
An attack can be carried out by an unknown third party that may cause anomalies in the data or data

Figure 3.1: An illustration of an auditor observing the data

observation. An anomaly occurs by a malicious injection that results in data outliers. A case example is
given in [14] for cyber-physical systems, where sensor readings are altered. A more specific example
could be the injection of false data during the observation of the state in microgrids [15]. Thereby
manipulating the state estimation procedure. In these two examples, the false data injection alters the
observation 𝑦𝑦𝑦 of the data at time 𝑡 by adding outliers 𝑜𝑜𝑜 to the observation, i.e.,

𝑦𝑦𝑦 = 𝑥𝑥𝑥 +𝑜𝑜𝑜 + 𝑒𝑒𝑒 . (3.1)

In equation (3.1), 𝑥𝑥𝑥 is defined as the vector containing the signal values of the network at time 𝑡 and
𝑒𝑒𝑒 is the observation noise.

9
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Apart from false data injection during observation, it can also occur that the signal values are directly
influenced by a third party during state transition, i.e.,

𝑥𝑥𝑥 = 𝐴𝐴𝐴 𝑥𝑥𝑥 + 𝑜𝑜𝑜 +𝑛𝑛𝑛 . (3.2)

Here,𝐴𝐴𝐴 is defined as the state transition matrix at time 𝑡 and 𝑛𝑛𝑛 is the added noise during transmission.
In [16], it is explained that analyzing the signal values of consensus-based distributed estimation during
direct false data injection can prevent future attacks by designing an effective defensive measure.
When talking about false data injection, outliers or anomalies, the model in (3.2) will be assumed in
the continuation of the thesis. It is the task of the auditor to detect the anomaly in order to prevent
further influence of the third party malicious agents to the network. In case that we assume a noise-
free observation and noisy transmission of signal values, the hypothesis test for the detection problem
can then be formulated as:

ℋ ∶ 𝑦𝑦𝑦 = 𝐴𝐴𝐴 𝑥𝑥𝑥 +𝑛𝑛𝑛
ℋ ∶ 𝑦𝑦𝑦 = 𝐴𝐴𝐴 𝑥𝑥𝑥 + 𝑜𝑜𝑜 +𝑛𝑛𝑛 . (3.3)

For 𝑇 + 1 consecutive observed timeframes that start at time 𝑡, the hypothesis test is then formulated
as:

ℋ ∶ 𝑦𝑦𝑦 = 𝐴𝐴𝐴 𝑥𝑥𝑥 +𝑛𝑛𝑛 ∶ ∀ 𝑖 ∈ {0, ....𝑇}
ℋ ∶ 𝑦𝑦𝑦 = 𝐴𝐴𝐴 𝑥𝑥𝑥 + 𝑜𝑜𝑜 +𝑛𝑛𝑛 ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.4)

The challenge is to set up a framework that identifies the compromised nodes and estimates the out-
liers. The support of vector 𝑜𝑜𝑜 is defined as the set 𝒜 that consists of the indices corresponding to
nonzero entries in 𝑜𝑜𝑜 . Hence 𝒜 is a subset of 𝒱 containing the nodes that are compromised. Sparsity
of the outliers has been exploited in the past [9] [17] in order to estimate the outlying values and thus
also 𝒜. In addition to the sparsity of 𝒜, in this thesis, we will exploit prior information on the connec-
tivity of the malicious agents leading to structural constraints for 𝒜, along with assumptions about the
behavior over time of 𝑜𝑜𝑜 .

Considering these, a framework is required that must identify the support set 𝒜 based on metrics
used in detection theory, while graph-related constraints are enforced on the candidate set of compro-
mised nodes. In other words, the task is to estimate 𝒜 that optimizes a given detection performance
metric, while the new constraints are taken into account. In section 2.2, it is explained that the likelihood
ratio test is derived such that the true positive 𝑃(ℋ ;ℋ ) is maximized for a given risk of false positive
𝑃(ℋ ;ℋ ). The reason that we define the compromised state asℋ and not asℋ is explained by the
consequences that arise as a result of the detection or misdetection of this compromised state of the
network. The consequences for an undetected anomaly, are a bigger concern than the minor conse-
quences that arise by a falsely claimed anomaly, i.e., unnecessary temporal network process inhibition.
Thus, we would like to increase our detection probability of anomaly for a given risk of falsely claimed
state of anomaly. Otherwise, if we would have preferred to decrease the chances of a falsely claimed
anomaly and thus increase the chances of detecting the ’normal’ state, then we would have defined
ℋ as the ’normal’ state. This is the reason that the alternative hypothesis ℋ is defined as the case
where an anomaly occurs.
Therefore, we need to derive an optimization algorithm that solves the following:

max
�̃�

𝑓 (111�̃�)
subject to 111�̃� ∈ 𝒞

(3.5)

The vector 111𝒜 is defined as the support vector of 𝑜𝑜𝑜 , i.e.,

[111𝒜] = {
1, if 𝑖 ∈ 𝒜
0, if 𝑖 ∉ 𝒜 . (3.6)

The vector, 111�̃� is the stacking of 111𝒜 for multiple values of 𝑡.
In the optimization problem of (4.24) 𝑓 is the cost function that must be maximized in order to optimize
the detection probability 𝑃 . Furthermore, 𝒞 is the constraint set that is defined by the sparsity and the
graph-structure related constraints of 𝒜.
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3.2. Networked Data Model
Let us recall the data model for the signal values as:

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 (3.7)

The matrix ΦΦΦ was previously identified in section 2.1 as the graph shift operator. In section 3.1, ΦΦΦ
is defined as the state transition matrix 𝐴𝐴𝐴 and we will assume that it is known at all times. Due to
uncertainties in the network it is assumed that there is noise added to the signal, i.e.,

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 +𝑛𝑛𝑛 (3.8)

where 𝑛𝑛𝑛 is assumed to be additive white Gaussian noise, 𝑛𝑛𝑛 ∼ 𝒩(0, 𝜎 𝐼𝐼𝐼), that is added to the signal
due to its uncertainties in the network at time 𝑡. In case that there is a compromised node, let’s say
the 𝑖’th node, [𝑥𝑥𝑥 ] will be altered by a malicious agent during state transition, causing an abnormal
behavior in [𝑥𝑥𝑥 ] . These assumptions result in the following expression for the signal:

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 +𝑜𝑜𝑜 +𝑛𝑛𝑛 . (3.9)

In (3.9), the vector 𝑜𝑜𝑜 corresponds to the outlying values of 𝑥𝑥𝑥 . Hence an entry in [𝑜𝑜𝑜 ] is non-zero only
if 𝑖 ∈ 𝒜. For the observation, we assume that there is not any noise added to the signal values, hence
we write the observation as:

𝑦𝑦𝑦 = 𝑥𝑥𝑥 . (3.10)
The state transition matrixΦΦΦ( , ) between time 𝑡 and 𝑡 + 𝑖 is defined as:

ΦΦΦ( , ) =∏ΦΦΦ . (3.11)

In order to simplify the notations where 𝑡 is included, without loss of generality, we shift the time to
make it 𝑡 = 0 and omit it from the notation.
If the first observation is made at time 𝑡, all observations 𝑦𝑦𝑦 for 𝑖 ∈ {1, 2, 3, .., 𝑇} can be stacked in a
single vector:

⎡
⎢
⎢
⎣

𝑦𝑦𝑦
𝑦𝑦𝑦
⋮
𝑦𝑦𝑦

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

ΦΦΦ
ΦΦΦ( , )
⋮

ΦΦΦ( , )

⎤
⎥
⎥
⎦
𝑥𝑥𝑥 +

⎡
⎢
⎢
⎣

𝐼𝐼𝐼 000 000 …
ΦΦΦ 𝐼𝐼𝐼 000 …
⋮ ⋮ ⋱

ΦΦΦ( , ) ΦΦΦ( , ) … 𝐼𝐼𝐼

⎤
⎥
⎥
⎦
(
⎡
⎢
⎢
⎣

𝑜𝑜𝑜
𝑜𝑜𝑜
⋮
𝑜𝑜𝑜

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝑛𝑛𝑛
𝑛𝑛𝑛
⋮
𝑛𝑛𝑛

⎤
⎥
⎥
⎦
) (3.12)

𝑦𝑦𝑦 = ΦΦΦ𝑥𝑥𝑥 +ΩΩΩ(𝑜𝑜𝑜 +𝑛𝑛𝑛) (3.13)

The absence of subscripts in vectors indicate a stacking of vectors starting from timeframe 1 until the
last observed timeframe 𝑇. The same notation will be used throughout the thesis for other vectors. The
matrixΦΦΦ indicates a stacking of the power of state transition matrices fromΦΦΦ toΦΦΦ( , ). And the matrix
ΩΩΩ refers to the lower triangular matrix in equation (3.12).

3.3. Anomalous Action Model
We introduce the following three different models for the manner in which malicious agents inject outly-
ing values into the network. We will show that for all three models, the hypothesis test for the detection
problem will be different. As a result, due to the different nature of the problems arising from the re-
spective performance metrics, the derived optimization problems will also differ.

3.3.1. Time-invariant attacks
In the past, it has been considered how to approach the problem of a time-invariant attack on a network
[18]. For example, constant data injection is dealt with in [19]. In [14], the time invariant attack is referred
to as static attack. In these works, a motivation is not provided for the use of time-invariant attacks.
Here, we will motivate this kind of network attack by listing two advantages that a time-invariant attack
provides for the malicious agents.
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1. Constant and time-invariant injection of false data does not require an observation of the network
by the malicious agents. Outlying values that are dependent on the signal values require a con-
stant observation of the network, thus resulting in a higher usage of resources by the malicious
agents.

2. Apart from saving on resources, a constant and time-invariant injection results in a constant power
ratio of injected-to-noise data. A non-increasing power ratio will increase the chances of being
undetected. This will be true for the framework for detection that is provided in this thesis due to
the fact that we do not have to deal with the power in the signal. The reason for this will be clear
in the next chapter.

The structure of the outlying values for a time-invariant constant attack is given by the following equa-
tions:

𝑜𝑜𝑜 = 𝑐111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇}
111𝒜 = 111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇}, (3.14)

where 111𝒜 is defined as the support vector at time 𝑖.
In the continuation of the thesis, the time invariant attack will be referred to as Model 1 or M.1,

3.3.2. Time-variant attacks
Time varying attacks are defined as attacks where the outliers vary over time, i.e.,

𝑜𝑜𝑜 ≠ 𝑜𝑜𝑜 , ∶ ∀ 𝑖 ≠ 𝑗. (3.15)

Time varying attacks are effective when the malicious agents are interested in exerting a greater influ-
ence on the signal values. In [5], for example, an attacking schedule that will result in the steering of a
consensus based distributed network towards a desired final state is given as

𝑥𝑥𝑥 = 𝑔(𝑖)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖)) ∶ ∀ 𝑖 ∈ {0, ....𝑇}, (3.16)

where 𝑔(𝑖) ∈ [0, 1] is a variable that is decreasing over time and 𝛼𝛼𝛼 is the desired state of the malicious
agents. The outliers are given then as:

𝑜𝑜𝑜 = (𝑔(𝑖) − 1)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖)) ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.17)

In (3.17), we see how the outliers are produced depending on the previous signal values. A fraction of
the signal value is subtracted and at the same time the same fraction of the desired final state is added.
After every time frame is the fraction 1 − 𝑔(𝑖) increasing.
A particular version of this attacking schedule will be used for evaluation purposes in this thesis. In this
particular version we want the nodes in the network to converge to the average of the initial values.
In case the goal of the agents is to steer the state to the global average, it is not mandatory to alter
the nodal values of the complete network, i.e., all the nodes. Instead, steering only the nodes that are
selected by the agents to the desired average will also force the rest of the network to this desired
global average. Hence, we can denote the outliers and node values then respectively as:

𝑜𝑜𝑜 = ((𝑔(𝑖) − 1)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖))) ⊙111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇}, (3.18)

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 + ((𝑔(𝑖) − 1)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖))) ⊙111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.19)

The notation⊙ refers to a pointwise multiplication of vectors. Also, 𝛼𝛼𝛼 is now an all-ones vector with a
scalar value which we will call 𝛼 .
In section 3.4, an example is given for the visualisation of the nodal values with this attacking schedule
for both attacking modes. The two attacking modes will also be explained in section 3.4.

Fixed anomalous nodes
Time varying attacks can be seperated in two different kinds. If the support of the outliers is fixed over
time, only the values are then varying. This attack will be called Model 2 or M.2 in the continuation of
the thesis. 111𝒜 is then said to be constant for all observed timeframes 𝑖, i.e.,

111𝒜 = 111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.20)
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Time-varying anomalous nodes
The final attack mode is the time-varying attack where we assume that the support can be, although
not necessarily, varying over time, i.e.,

111𝒜 ≠ 111𝒜 for some 𝑖 ≠ 𝑗. (3.21)

This attack mode will be called Model 3 or M.3. In case that the structure of the network is also time-
varying, this kind of attack becomes necessary. In figure 4.3, the different models are illustrated with a
sparsity of 10%, i.e., 10% of the nodes are assumed to be compromised for time 𝑖 for 𝑖 ∈ {1, 2, ...100}.

(a) Model 1 (b) Model 2

(c) Model 3

Figure 3.2: The images show the outlying values for ∈ { , , ... } and 100 nodes, for all three models. Every column
represents a different timeframe and every row is a different node.

3.4. Anomalous Agents Network Constraints
Apart from the models that are proposed for the variety in time of the outliers 𝑜𝑜𝑜 in the previous chapter,
there can also be constraints ascribed to the support set 𝒜, for example, due to the limitations in
resources of the agents. These constraints can also be dependent on the topology of the network. In
case that the malicious set of agents are limited in their resources, the compromised nodes will be also
limited in their amount. Hence our first constraint is the limited cardinality of 𝒜, i.e.,

𝐾(111𝒜 ) = ‖111𝒜 ‖ ≤ 𝛽 ∶ ∀ 𝑖 ∈ {0, ....𝑇}, (3.22)

for some 𝛽 ∈ ℝ .

For an increased effectivity of network influence for the agents, it is preferred to compromise high
degree nodes. However, highly connected nodes are fundamental for the operation of the network and
therefore they, most of the time, are highly secured. Therefore, this translates to a large expenditure
of resources for a malicious agent if it tries to compromise such nodes. Thus, the malicious agents
will limit their direct reach, i.e., to a one-hop neighbourhood, leading to the following (total degree)
constraint

𝐷(111𝒜 ) = 𝑑𝑑𝑑 111𝒜 ≤ 𝛼 ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.23)

Thus, 𝐷(111𝒜 ) is defined as the total degree or density of all the selected nodes. A degree of a node is
defined as the total number of direct neighbours of that node. The vector 𝑑𝑑𝑑 is the vector which contains
the (possibly time-dependent) degrees of the nodes of graph 𝒢.
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Due to these two limitations, the malicious agents must provide a graph-related structure to the set
of compromised nodes in order to optimize the influence on the network. The relation to the graph
is based on the connectivity measures between the nodes that are and are not compromised. An in-
creasing amount of edges between these two subsets of nodes results in an increasing influence of the
malicious agents on the network. A way to measure this connectivity is by the cut function. In classical
literature, the cut function of a node set is defined as the (un)weighted amount of outgoing edges of that
nodeset, see section 2.1. In this thesis, the cut is defined as the unweighted amount of edges between
the compromised nodeset and the ’clean’ nodeset. The cut function can then be formulated as:

𝐶(111𝒜 ) = 111𝒜 𝐿𝐿𝐿111𝒜 ∶ ∀ 𝑖 ∈ {0, ....𝑇} (3.24)

Alternatively, we can also minimize the cardinality of the dependent edge set of 𝒜. The dependent
edge set of 𝒜, is defined as ℱ, where

(𝑖, 𝑗) ∈ ℱ iff 𝑖, 𝑗 ∈ 𝒜 ∶ ∀ (𝑖, 𝑗) ∈ ℰ. (3.25)

An example of the edges that belong to ℱ is given in figure 3.3.

1 3

4

5 7

Figure 3.3: For the identical graph and set of malicious nodes as in figure 2.1, now, the set of edges that belong to the
dependent edge set are given in red

Every element in the dependent edge set can be seen as an unnecessary edge that does not
contribute to the influence on the network by the malicious agents. The influence on the ’clean’ nodes
are limited to indirect altering. Hence, in order to maximize the influence on these nodes, one can
chose𝒜 such that |ℱ| is minimized. The relationship between the cut, ℱ and density can be explained
with the following equation:

𝐷(111𝒜 ) = 𝐶(111𝒜 ) + 2|ℱ | ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.26)

where ℱ is the dependent edge set of 𝒜 .
As it is stated above, we can describe how the maximization of the cut will increase the influence in the
network by minimizing the difference between the degree and the cut, i.e.,

|ℱ | = 𝐷(111𝒜 ) − 𝐶(111𝒜 )
2 ∶ ∀ 𝑖 ∈ {0, ....𝑇}. (3.27)

Hence, our third constraint is directly linked to to the cardinality of the dependent edge set:

𝐵(111𝒜 ) = |ℱ | ≤ 𝜌 ∶ ∀ 𝑖 ∈ {0, ....𝑇}, (3.28)

for some 𝜌 ∈ ℝ .
In case the malicious agents are interested in only a part of the network, they will focus their resources
on compromising nodes that belong to the part of the network in question. Instead of imposing a
constraint on the dependent edge set, there will be a constraint on the cut of the compromised subset
of nodes. A constraint on the cut will limit the influence of the agents on the rest of the network and
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optimize the influence on the part of the network in question. Hence, the constraint given in equation
(3.28) may be replaced by a new constraint depending on the intention of the agents:

𝐶(111𝒜 ) ≤ 𝜌 ∶ ∀ 𝑖 ∈ {0, ....𝑇} (3.29)

In order to understand the concept of influence on the network, there are two plots given in figure 3.4
that show how the signal values in a network are affected by the attack schemes given in (3.17). For
each plot a different compromised set 𝒜 is given, depending on the intention of the malicious agents.
Hence, 𝒜 is dependent on the constraints given in (3.28) and (3.29), respectively for each plot.

(a) Consensus with |ℱ| constraint (b) Consensus with cut=5 constraint

Figure 3.4: In the figures, we have plotted the signal values for a varying time. In figure 3.4a, 𝒜 is chosen such that |ℱ|
and in figure 3.4b 𝒜 is chosen such that ( 𝒜) at all times. For both plots, identical graphs are used and all node values

have an initial value of 1. The desired value is assumed to be 10 for all nodes

It can be noticed how most of the nodes in figure 3.4a converge in a quicker pace to the desired
state compared with the node values in 3.4b, hence the influence is optimized for the complete net-
work. In figure 3.4b, the compromised nodes converge quicker to the desired state in comparison to
the rest of the nodes, which means that the influence is optimized for the selected subset of nodes.
The attack that is visualized in figure 3.4a will be called attack 𝑎 and in figure 3.4b will be called attack 𝑏.

In the next chapter, we will provide the hypothesis testing problems together with the performance
metrics with the help of the provided data model of this chapter. Also, the metrics for the Lasso-based
method will be treated.





4
Anomalous Network Agent Detection

This chapter discusses the relation between the classical outlier detection and the provided problem in
chapter 3. Secondly, the limitations of the classical Lasso-based approach are discussed. After this, we
mathematically derive the performance metrics that are based on the maximum likelihood estimators
and compare this framework with the classical matched filter. And also we derive the optimization
problem for the Lasso-based method. Finally, an alternative performance metric is discussed in the
last part of this chapter.

4.1. Anomalies as Outlying Values
In anomaly detection problems the task is to detect whether observations diverge from a pattern and
decide if the observations are normal or not. Outlier detection is a form of anomaly detection where
outlier data ought to be separated from the normal signal data. In the previous section, we have defined
the outlier 𝑜𝑜𝑜 as an addition to the signal that is to be observed at time 𝑡:

𝑦𝑦𝑦 = 𝑠𝑠𝑠 + 𝑜𝑜𝑜 +𝑛𝑛𝑛 (4.1)

By using the formulation of our data model in (3.13), it is possible to write the hypothesis for our problem
as an outlier detection problem

ℋ ∶ 𝑦𝑦𝑦 = ΦΦΦ𝑥𝑥𝑥 +ΩΩΩ𝑛𝑛𝑛
ℋ ∶ 𝑦𝑦𝑦 = ΦΦΦ𝑥𝑥𝑥 +ΩΩΩ(𝑜𝑜𝑜 +𝑛𝑛𝑛)

(4.2)

By making use of the fact thatΦΦΦ is known, see section 3.2, it is possible to reformulate the hypothesis
in (4.2). First we introduce a new variable 𝑧𝑧𝑧, that is defined with the help of the following equation:

𝑧𝑧𝑧 = ΩΩΩ (𝑦𝑦𝑦 −ΦΦΦ𝑥𝑥𝑥 ) (4.3)

Since ΦΦΦ is known, we can subtract ΦΦΦ𝑥𝑥𝑥 from our observed data 𝑦𝑦𝑦, given that the observation starts at
time 𝑡 = 0. Secondly, the matrix ΩΩΩ is always invertible regardless of ΦΦΦ. This is due to the fact that the
set of eigenvalues of a lower triangular matrix are equal to the set of the diagonal values [20]. Since
the diagonal values of ΩΩΩ are always equal to one, it will be the case that ΩΩΩ is always invertible. It can
be said now that 𝑧𝑧𝑧 can be calculated by the auditor of the network, provided that there are at least two
observed timeframes. The equation in (3.13) is then simplified as:

𝑧𝑧𝑧 = 𝑜𝑜𝑜 +𝑛𝑛𝑛 (4.4)

Giving rise to a new detection problem:

ℋ ∶ 𝑧𝑧𝑧 = 𝑛𝑛𝑛
ℋ ∶ 𝑧𝑧𝑧 = 𝑜𝑜𝑜 +𝑛𝑛𝑛 (4.5)

The problem in (4.5) can be seen as a signal detection problem where the signal ought to be unknown
but subjected to a certain structure explained in sections 3.3 and 3.4. The support of 𝑜𝑜𝑜 is then also
subjected to constraints that determine a subset within a larger powerset with cardinality 2|𝒱| where the
support set can be chosen from, see section 3.4. The powerset is defined as the set that contains all
the subsets of 𝒱.

17
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4.2. Pitfalls of Vanilla Sparse Regression
Before a detection test can be carried out, an estimation must be done for the unknown parameters.
Omitting the structural contraints for the malicious nodes, the estimation that can be carried out is the
maximum likelihood estimator [21].

𝑜𝑜𝑜∗ = argmax𝑝(𝑧𝑧𝑧|𝑜𝑜𝑜) (4.6)

The maximum likelihood estimation (MLE) of a signal with additive white Gaussian noise is equal to
the least squares error estimation [21]:

𝑜𝑜𝑜∗ = argmin ‖𝑧𝑧𝑧 − 𝑜𝑜𝑜‖ (4.7)

Which will give a trivial solution as 𝑜𝑜𝑜∗ = 𝑜𝑜𝑜 if no constraints are assumed. From chapter 3, we know
that not all of the nodes are compromised but only a few. If we model the outliers as a Laplacian prior,
we can then observe that this leads to an l1-norm problem [22]. This is alternatively interpreted as a
regularized linear regression problem. The scaling parameter 𝜆 of the Laplacian distribution is then
used for the tuning of the variable sparsity:

𝑥𝑥𝑥∗ = argmin ‖𝑦𝑦𝑦 −ΒΒΒ𝑥𝑥𝑥‖ + 𝜆 ‖𝑥𝑥𝑥‖ (4.8)

In (4.8), 𝑦𝑦𝑦 is assumed to follow a linear observation model with additive Gaussian noise, i.e., 𝑦𝑦𝑦 = ΒΒΒ𝑥𝑥𝑥+𝑛𝑛𝑛.
Sparse regression is a collection of methods that is used for optimization problems, where the sparsity of
the variable is exploited. In sparse regression methods a new variable or a set of variables is introduced
that can be tuned in order to increase or decrease the sparsity of a variable. A well-known example
for this is the lasso method [23], which is explained above. We can also penalize the l2-norm of the
variable, which is known as the ridge regression method [24]. The l1- or l2-norm can be seen as a
relaxation of the cardinality ‖𝑜𝑜𝑜‖ . If we combine the l1- and l2-norm as penalty terms, a new sparse
regression method can be defined: elastic net regularization [24].
In the original paper for the lasso method [23], results show how the lasso-based least squares method,
c.f. (4.8), outperforms other methods, like the non-negative garrotte method or the classical least
squares method, in terms of the mean square error, i.e., the average squared difference between the
estimated values and the actual value of the variable 𝑥𝑥𝑥. These results are calculated for the situation
where ΒΒΒ is a matrix with dimensions 1×𝑁, i.e., a row vector that is correlated with 𝑥𝑥𝑥 over different noise
realisations and for different values of ΒΒΒ.
In case thatΒΒΒ has orthogonal columns, i.e., ΒΒΒ ΒΒΒ = 𝐼𝐼𝐼, we can make use of the special form for the closed
form solution of 𝑥𝑥𝑥 in (4.8), see [23]. The closed form solution for the Lasso method for our case, i.e.,

𝑜𝑜𝑜∗ = argmin ‖𝑧𝑧𝑧 − 𝑜𝑜𝑜 ‖ + 𝜆 ‖𝑜𝑜𝑜 ‖ ∶ ∀ 𝑖 ∈ {1, ....𝑇}, (4.9)

is then denoted as:
𝑜𝑜𝑜∗ = 𝑠𝑔𝑛(𝑧𝑧𝑧 )(|𝑧𝑧𝑧 | − 𝜆𝜆𝜆 ) ∶ ∀ 𝑖 ∈ {1, ....𝑇}, (4.10)

where 𝑠𝑔𝑛(𝑧𝑧𝑧 ) returns the sign vector of 𝑧𝑧𝑧 and the (.) operator turns all negative values to zero in the
vector of (|𝑧𝑧𝑧 | − 𝜆𝜆𝜆 ). Also the newly defined vector 𝜆𝜆𝜆 is the multiplication of an all-ones vector with 𝜆 .
Hence, the method returns a linearly regressed 𝑧𝑧𝑧 as the solution for 𝑜𝑜𝑜 . This is done for all timestamps
𝑖 ∈ {1, ....𝑇} separately, i.e., every timestamp has a different optimal value for 𝜆, i.e., 𝜆 .

However, apart from the sparsity there are other constraints that must be included in the estimation.
The constraints discussed in section 3.4 are related to the support set 𝒜 of the outliers. Relaxing the
constraints with a dependency on 𝑜𝑜𝑜 could be possible, similar as for the cardinality:

‖111𝒜 ‖ = ‖𝑜𝑜𝑜 ‖ ⟶ ‖𝑜𝑜𝑜 ‖ ∶ ∀ 𝑖 ∈ {1, ....𝑇} (4.11)

However, multiple relaxed constraints where the support vector 111𝒜 is substituted by the outliers 𝑜𝑜𝑜 will
result in a very complicated optimization problem. Multiple regularization parameters as 𝜆 are then
required. For example if we would have to include the cut 𝐶(111𝒜) and the density 𝐷(111𝒜) as constraints
in the estimation, we will need to have the following optimization problem:

𝑜𝑜𝑜∗ = argmin ‖𝑧𝑧𝑧 − 𝑜𝑜𝑜 ‖ + 𝜆 ‖𝑜𝑜𝑜 ‖ + 𝜆 𝐶 (𝑜𝑜𝑜 ) + 𝜆 𝐷 (𝑜𝑜𝑜 ) ∶ ∀ 𝑖 ∈ {1, ....𝑇} (4.12)
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where 𝐶 (𝑜𝑜𝑜 ) and 𝐷 (𝑜𝑜𝑜 ) are relaxations of the cut and density, respectively. Regularizing 3 different
parameters gives a lot of uncertainties about how the penalty terms will act and if there can be found
a solution that meets the constraints. Apart from that, even if it is possible to find a relaxation in terms
of 𝑜𝑜𝑜 , it is not guaranteed that the derived relaxations of the constraints in section 3.4 are a good
relaxation. Finding a proper convex relaxation of the constraints in section 3.4 is difficult in terms of
𝑜𝑜𝑜 . For example, a relaxation of the density constraint 𝐷(111𝒜 ) can be achieved with the help of the
weighted node degrees, i.e.,

𝐷 (𝑜𝑜𝑜 ) = 𝑑
𝑑𝑑 |𝑜𝑜𝑜 |
‖𝑜𝑜𝑜 ‖ ≤ 𝛼 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (4.13)

This formulation can be manipulated into a convex relaxation only when all the elements in 𝑜𝑜𝑜 are
positive, i.e., 𝑑𝑑𝑑 |𝑜𝑜𝑜 | = 𝑑𝑑𝑑 𝑜𝑜𝑜 . The relaxation then looks as

𝑑𝑑𝑑 |𝑜𝑜𝑜 | − 𝛼111 𝑑𝑑𝑑 ≤ 0 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (4.14)

Even when all the outlying values are positive, an accurate relaxation is not guaranteed. If the non-zero
values in 𝑜𝑜𝑜 differ from each other greatly, the value of the relaxation is also going to deviate greatly
from the true value. Hence, the solutions derived for 𝑜𝑜𝑜 will be inaccurate due to the multiple weak
relaxations like the above given example. Instead, we will look at the given models in section 3.3 and
derive a maximum likelihood estimation based on subset selection. And for evaluation purposes of the
lasso-based method, we will only take the cardinality constraint into consideration. This way, we can
use the closed form solution for the lasso-based method in (4.10) as a benchmark.

4.3. Maximum Likelihood-based Metrics
The subset selection method evaluates all the possible subsets for the support of 𝑜𝑜𝑜 . Instead of a linear
regression until a desired cardinality is reached, the subset will search exhaustively for the subset with
the optimal value for the problem. Consequently, the variable elements [𝑜𝑜𝑜 ] are then forced to zero if
𝑖 ∉ 𝒜. As stated earlier in section 3.1, the task is to find the support for 𝑜𝑜𝑜 that gives the highest detection
probability for a fixed false alarm probability. Instead of a direct estimation for 𝑜𝑜𝑜, an expression for the
estimation will be found for 𝑜𝑜𝑜 that is dependent on 111�̃�. The vector 111�̃� is defined as the stacking of the
support vectors for timeframes 𝑖 ∈ {1, ....𝑇}. Hence, �̃� is defined as the collection of the support sets
for timeframes 𝑖 ∈ {1, ....𝑇}, i.e.,

�̃� = {(𝒜 , ..., 𝒜 )}. (4.15)

Consequently, we can derive a likelihood ratio that is also dependent on 111�̃�:

𝑇(𝑧𝑧𝑧,111�̃�) =
𝑃(𝑧𝑧𝑧;ℋ ,111�̃�)
𝑃(𝑧𝑧𝑧;ℋ )

ℋ
≷
ℋ
𝛾, (4.16)

since the likelihood function for 𝑧𝑧𝑧 underℋ is dependent on 111�̃�. For a signal detection problem denoted
as in (4.5), where the noise 𝑛𝑛𝑛 is assumed to be white Gaussian, the standard expression for the log-
likelihood ratio is derived as [25]:

𝑇(𝑧𝑧𝑧,111�̃�) =
1
𝜎 𝑜𝑜𝑜 𝑧𝑧𝑧 − 1

2𝜎 𝑜𝑜𝑜 𝑜𝑜𝑜
ℋ
≷
ℋ
𝛾 (4.17)

Thus, the likelihood functions for 𝑇(𝑧𝑧𝑧,111�̃�) will also be dependent on 111�̃�:

ℋ ∶ 𝑃(𝑇(𝑧𝑧𝑧,111�̃�);ℋ ,111�̃�)
ℋ ∶ 𝑃(𝑇(𝑧𝑧𝑧,111�̃�);ℋ ,111�̃�)

(4.18)

Mathematically, the expression for the detection probability is then given as:

𝑃 = 𝑃(ℋ ;ℋ ) = 𝑃(𝑇(𝑧𝑧𝑧,111�̃�) > 𝛾 ;ℋ ,111�̃�) (4.19)

And for the false alarm probability, the expression is denoted as:

𝑃 = 𝑃(ℋ ;ℋ ) = 𝑃(𝑇(𝑧𝑧𝑧,111�̃�) < 𝛾 ;ℋ ,111�̃�) (4.20)
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Figure 4.1: For a calculated �̃� a certain distribution is derived for the test statistic under both hypotheses. The detection and
false alarm probabilities are visualized for a given threshold value

The Q-function, which is defined as the tail distribution function of 𝑇(𝑧𝑧𝑧,111�̃�) underℋ will yield the false
alarm probability

𝑄 ( , �̃�);ℋ (𝛾 ) = 𝑃 (4.21)
The threshold value can then be calculated with the help of the inverse Q-function,

𝑄 ( , �̃�);ℋ (𝑃 ) = 𝛾 (4.22)

By the substitution of 𝛾 with the expression given in (4.22), we can then, for a given 𝑃 , find the support
vector that gives the optimal detection probability.

𝑃 = 𝑃(𝑇(𝑧𝑧𝑧,111�̃�) > 𝑄 ( , �̃�);ℋ (𝑃 );ℋ ,111�̃�) (4.23)

In order to simplify notation, we will not denote the dependency of the threshold 𝑇(𝑧𝑧𝑧) and likelihood
functions 𝑃(𝑇(𝑧𝑧𝑧)) on 111�̃�, hereafter.
If we have to visualize what the equation in (4.23) will mean for the distributions of 𝑇(𝑧𝑧𝑧) under both
hypotheses we can look at figure 4.1. By analyzing the expression that we have for 𝑃 , it is now possible
to evaluate the relationship between 𝑃 and 111�̃�. After this, we can derive a cost function 𝑓 that must
be optimized in order to yield a support vector 111�̃� from which the maximum 𝑃 can be calculated. Given
the properties for the support set in section 3.4, an optimization problem can be formulated now for the
models M.1a, M.2a and M.3a as:

max
�̃�

𝑓 (111�̃�)
subject to 𝐵(111𝒜 ) ≤ 𝜌 ∶ ∀ 𝑖 ∈ {1, ....𝑇},

𝐾(111𝒜 ) ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
𝐷(111𝒜 ) ≤ 𝛼 ∶ ∀ 𝑖 ∈ {1, ....𝑇}

(4.24)

And for the models M.1b, M.2b and M.3b the optimization problem can be formulated as:

max
�̃�

𝑓 (111�̃�)
subject to 𝐶(111𝒜 ) ≤ 𝜌 ∶ ∀ 𝑖 ∈ {1, ....𝑇},

𝐾(111𝒜 ) ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
𝐷(111𝒜 ) ≤ 𝛼 ∶ ∀ 𝑖 ∈ {1, ....𝑇}

(4.25)

For M.1 and M.2 we include the additional constraint:
111𝒜 = 111𝒜 ∶ ∀ 𝑖 ∈ {1, ....𝑇} (4.26)

In order to derive a unique optimization problem for all three different models, we will derive a maximum
likelihood estimation and cost function for time-invariant and time-varying models seperately.
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4.3.1. Time-invariant attacks
With the given framework above, we can derive a threshold function that is specific for the time invariant
attack. To do so, we rewrite the hypothesis for the time-invariant attack M.1 as:

ℋ ∶ 𝑧𝑧𝑧 = 𝑛𝑛𝑛
ℋ ∶ 𝑧𝑧𝑧 = 𝑐111�̃� +𝑛𝑛𝑛

(4.27)

In case we assume that 111�̃� is known, we can set up an optimization problem for the MLE:

min ‖𝑧𝑧𝑧 − 𝑐111�̃�‖ (4.28)

From which we can derive an expression for 𝑐 as:

𝑐 = 1
11�̃� 𝑧𝑧𝑧
|𝒜|𝑇 (4.29)

Where 𝒜 is the constant support set for all timeframes 𝑖 ∈ {1, ....𝑇}.
Hence, 𝑐 is the average of all the selected nodes over all the 𝑇 timeframes. By substituting the outliers
𝑜𝑜𝑜 with 𝑐111�̃� in (4.17), the log-likelihood ratio test can then be formulated as and simplified to:

𝑇(𝑧𝑧𝑧) = |𝑧𝑧𝑧 111�̃�|
√𝑇|𝒜|

≷ 𝛾 (4.30)

In appendix A, the necessary steps are given for the derivation of 𝑐 and 𝑇(𝑧𝑧𝑧). The distribution of the
test statistic under both hypotheses is denoted as

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ {2𝒩(0, 𝜎 ), if 𝑇(𝑧𝑧𝑧) ≥ 0,
0, if 𝑇(𝑧𝑧𝑧) < 0,

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ {𝒩(𝐴, 𝜎 ) +𝒩(−𝐴, 𝜎 ), if 𝑇(𝑧𝑧𝑧) ≥ 0,
0, if 𝑇(𝑧𝑧𝑧) < 0,

(4.31)

where 𝐴, which we will call the amplitude of the total outlier energy, is substituted for

𝐴 = 111�̃�𝑧𝑧𝑧
√𝑇|𝒜|

. (4.32)

The Q-function of a Gaussian distribution that is folded around 0, which is the case for the distributions
in (4.31), is equal to the summation of two Gaussian Q-functions that are shifted left and right with the
mean of that Gaussian distribution [26]. Hence, for M.1, 𝑃 can be formulated as the summation of two
Q-functions that are shifted positively and negatively with the term 𝐴 underℋ :

𝑃 = 𝑄(𝛾 − 𝐴
√𝜎

) + 𝑄(𝛾 + 𝐴
√𝜎

). (4.33)

The false alarm probability is, like the detection probability, expressed using the Gaussian Q-function

𝑃 = 2𝑄( 𝛾
√𝜎

) (4.34)

By substitution, the following dependency is provided between 𝑃 and 𝑃

𝑃 = 𝑄(𝑄 (𝑃 /2) − 𝐴
√𝜎

) + 𝑄(𝑄 (𝑃 /2) + 𝐴
√𝜎

) (4.35)

The term that is dependent on 𝒜 and that must be analyzed is the amplitude 𝐴. The function for 𝑃
is symmetric around zero for a varying amplitude 𝐴, furthermore the Gaussian Q-function 𝑄(𝑥) is a
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monotonic decreasing function for 𝑥. Thus, if we would like to increase the detection probability, the
magnitude of the amplitude must be increased. Hence our cost function for M.1 is:

𝑓 (111�̃�) =
|𝑧𝑧𝑧 111�̃�|
√|𝒜|

(4.36)

It is also possible to use the performance metric that is derived for the matched filter, see section 2.2.
We can make use of this metric by not assuming any model for 𝑜𝑜𝑜 during the derivation of the 𝑃 . This
will mean that the likelihood functions are not derived as an expression of 𝒜. With the result that the
expression derived for 𝑃 will be standard, no matter the model of 𝑜𝑜𝑜. The standard expression for 𝑃 in
the matched filter is formulated as:

𝑃 = 𝑄(𝑄 (𝑃 ) − √𝑜
𝑜𝑜 𝑜𝑜𝑜
𝜎 ) (4.37)

The expression in (4.37) is maximized by maximizing the square root of the energy term for the outliers,
√𝑜𝑜𝑜 𝑜𝑜𝑜. Which is mathematically equivalent to maximizing |𝐴|. This is clear when we substitute 𝑜𝑜𝑜 for 𝑐111�̃�
and 𝑐 for the expression given in (4.29).
For comparison purposes of the performance metrics between the two detector tests, 𝑃 is plotted for
a constant 𝑃 = 0.5 and varying values of |𝐴|.

Figure 4.2: is plotted for a varying | | with noise variance and .

Despite the lower performance that can be seen in figure 4.2, a numerical evaluation for the pro-
posed framework will be provided. It can be said that the metrics for the provided framework are more
realistic of nature, since the structure of 𝑜𝑜𝑜 is taken into consideration for the derivation of the probability
distributions of 𝑇(𝑧𝑧𝑧). Adding to what is already mentioned, the matched filter can thus be assumed to
be too optimistic for the auditor.

4.3.2. Time-variant attacks
ForM.2 andM.3, it is also possible to derive a threshold function specific for these time-varying attacks.
First, we reformulate the hypothesis as

ℋ ∶ 𝑧𝑧𝑧 = 𝑛𝑛𝑛
ℋ ∶ 𝑧𝑧𝑧 = 𝑜𝑜𝑜 +𝑛𝑛𝑛 (4.38)
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The solution for the MLE is derived by assuming that 111�̃�, which is the support of 𝑜𝑜𝑜, is known:

min ‖𝑧𝑧𝑧 − 𝑜𝑜𝑜‖ (4.39)

Hence we can formulate our estimation for 𝑜𝑜𝑜 as:

𝑜𝑜𝑜 = 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧 (4.40)

where the diag operator returns a diagonal matrix with the elements of 111�̃� on the diagonal. The thresh-
old function can then be found with the log-likelihood ratio test and is simplified to:

𝑇(𝑧𝑧𝑧) = 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧 ≷ 𝛾 (4.41)

The distributions for both hypotheses are denoted as:

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝜒|�̃�|
ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝜒|�̃�|(𝜇)

(4.42)

Where |�̃�| is defined as the total cardinality. For M.2 this is defined as:

|�̃�| = 𝑇|𝒜| (4.43)

and for M.3:

|�̃�| =∑𝒜 . (4.44)

The 𝜒 -distribution yields the distribution of the sum of |�̃�| squared independent normal variables with
zero-mean if it is centralized, as in the case ofℋ . A non-central 𝜒 -distribution returns the distribution
of the sum of |�̃�| squared independent normal distributed variables, where the non-centrality parameter
is then defined as the squared summation of themeans of the independent normal distributed variables.
Forℋ , the non-centrality parameter is defined as 𝜇:

𝜇 = 𝑧
𝑧𝑧 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧

𝜎 (4.45)

In both cases, the degrees of freedom (dof ) are then equal to |�̃�|.
The detection probability can then be expressed in terms of theQ-function of a non-central 𝜒 -distribution.

𝑃 = 𝑄(𝛾 )
|�̃�|( )

(4.46)

And the false alarm probability as the Q-function of a centralized 𝜒 -distribution.

𝑃 = 𝑄(𝛾 )
|�̃�|

(4.47)

Substitution gives the following formulation for 𝑃 :

𝑃 = 𝑄(𝑄 (𝑃 )
|�̃�|
)
|�̃�|( )

(4.48)

An increasing 𝜇 results in an increasing 𝑃 . To understand why this is happening, we have to look at
how the 𝜒 -distribution is defined. Increasing 𝜇 implies that the means of the squared and summed
normal distributions are increasing under ℋ . As a result, the distributions under both hypotheses will
be more separated. In case that 𝜇 is constant and |�̃�| is increasing, the realisations of the distributions
under both hypotheses will be increasing in similarity. This will result in an increasing of the overlap
between the two hypothesis distributions. Hence, we observe contradictory trends for 𝜇 and |�̃�|. A way
to tackle this problem is to take 𝜇 as the cost function, and optimize the problem for different constraint
values 𝛽 for the cardinality.

𝑓 = 𝑓 (𝑧𝑧𝑧) = 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧 (4.49)
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Contrary to M.1, in case that we would use the matched filter approach for finding a cost function, we
can now observe a difference in the optimization problem. The matched filter returns the same cost
function as in equation (4.49). But, it does not take |�̃�| into consideration. This is because the detection
probability under the matched filter is increased by increasing the energy signal-to-noise ratio of the
signal that is to be detected. Whereas the detection probability denoted in (4.48), is also dependent on
the cardinality of �̃�. In figure 4.3b we observe once again that the provided framework shows a lower
performance compared to the metrics provided by the matched filter.

(a) ncp=1 (b) ncp=10

Figure 4.3: The ROC-curve is plotted for a matched filter, and minimum degree-of-freedom of 1. For the matched filter

√ ( ) ( )
is equal to the square root of the non-centrality parameter, √ . It can be seen that even for a minimum number of dof

and an increasing , the provided framework performs suboptimal.

However, the provided framework can be more selective in identifying the compromised nodes. For
example, in case that only a single node is compromised. The framework that is used provides a higher
accuracy of estimating the sets of 𝒜 , compared with the matched filter. The optimization problem for
the matched filter will then most probably return an estimation for𝒜 with a cardinality that reaches the
upperbound for the constraint. Thereby selecting nodes that are erroneously labeled as compromised.
The last claim is backed up by the fact that the optimization problem for the matched filter is aimed at
maximizing the total energy, regardless of how the energy is distributed over the nodes. Maximization
of the energy is reached by maximizing the cardinality, while the provided framework is also dependent
on {|𝒜 }| and not only on the total energy.

4.3.3. Lasso Estimator
From the expression in (4.17), we can derive the threshold function by substituting 𝑜𝑜𝑜 with the expression
in (4.10) as:

𝑇(𝑧𝑧𝑧) = 1
𝜎 ∑([𝑧𝑧𝑧] − [𝜆𝜆𝜆] )

ℋ
≷
ℋ
𝛾 (4.50)

In the equation above 𝜆𝜆𝜆 is defined as the vector that contains stacking of 𝑇 the vectors 𝜆𝜆𝜆 for all 𝑡 ∈
{1, 2..𝑇}.
At first glance, the distribution of 𝑇(𝑧𝑧𝑧) resembles that of a 𝜒 distribution that is shifted. However, the
(.) operator makes the distribution more complicated. Given that the probability density function (pdf)
of a (non-central) chi-squared distribution for a single degree of freedom is defined as 𝑓 ( )(𝑥) where
𝜇 is the non-centrality parameter and 𝑥 is the random variable that is the squared of a random normal
variable; and that 𝐹 ( )(𝑥) denotes the cumulative distribution function (cdf) of that same distribution,
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we can denote the distribution under both hypotheses for a single element 𝑧 as follows:

ℋ ∶ 𝑇(𝑧) ∼
⎧

⎨
⎩

𝑓 (𝑇(𝑧) + ), if 𝑇(𝑧) > 0
𝐹 ( ) + 𝑓 ( ), if 𝑇(𝑧) = 0
0, otherwise

ℋ ∶ 𝑇(𝑧) ∼
⎧

⎨
⎩

𝑓 ( )(𝑇(𝑧) + ), if 𝑇(𝑧) > 0
𝐹 ( )( ) + 𝑓 ( )( ), if 𝑇(𝑧) = 0
0, otherwise

(4.51)

In (4.53), 𝜆 refers to the single elemental value for 𝜆𝜆𝜆 and 𝜇 is defined as

𝜇 = (|𝑧| − 𝜆) (|𝑧| − 𝜆)
𝜎 (4.52)

In (4.53), the distributions are valid only when 𝑧𝑧𝑧 is a scalar, i.e., 𝑧. The explanation for the distributions
is given in appendix C.
With an increasing number of elements for 𝑧𝑧𝑧 and different values of 𝜆 it can be observed that deriving
a theoretical distribution for the threshold function becomes mathematically challenging. Idem ditto for
deriving an expression for the detection and false alarm probability.
Due to the mathematically challenging nature of finding an expression for the distribution of (4.50), we
can resort to a simpler expression for the threshold function that will be used as proxy for the Lasso-
based method. Namely that of the matched filter. As it is shown in section 2.2, the matched filter is
derived by not making any substitutions for 𝑜𝑜𝑜 when deriving the threshold function. If we assume 𝑜𝑜𝑜 to
be known, we will get the following distributions for the matched filter under both hypotheses:

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝒩(0, 𝜎 𝑜𝑜𝑜 𝑜𝑜𝑜)
ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝒩(𝑜𝑜𝑜 𝑜𝑜𝑜, 𝜎 𝑜𝑜𝑜 𝑜𝑜𝑜) (4.53)

With the help of the expressions given for 𝑃 and 𝑃 in section 2.2, we can derive the following expres-
sion for 𝑃 :

𝑃 = 𝑄(𝑄 (𝑃 ) − √𝑜
𝑜𝑜 𝑜𝑜𝑜
𝜎 ) (4.54)

The energy term 𝑜𝑜𝑜 𝑜𝑜𝑜 can be substituted with the following term that is derived with the help of (4.10):

𝑜𝑜𝑜 𝑜𝑜𝑜 = (|𝑧𝑧𝑧| − 𝜆𝜆𝜆) (|𝑧𝑧𝑧| − 𝜆𝜆𝜆) (4.55)

Since we know that the detection probability for the matched filter is increased by increasing the energy
term, we can derive the following expression for the cost function:

𝑓 (𝜆𝜆𝜆) = (|𝑧𝑧𝑧| − 𝜆𝜆𝜆) (|𝑧𝑧𝑧| − 𝜆𝜆𝜆) (4.56)

4.4. Alternative Fitting Error Metrics
As stated in chapter 3, the scope of this thesis is to optimize the detection probability. An alternative
metric to optimize could be the fitting of our estimated 𝑜𝑜𝑜 to our observed data 𝑦𝑦𝑦. This can be, for
example, measured with the help of the mean squared error. The value that we retrieve is called the
least squares error. The optimization problem will then look as follows:

min ‖𝑧𝑧𝑧 − 𝑜𝑜𝑜‖ (4.57)

In the previous section, we only derived an expression for 𝑜𝑜𝑜 that is based on the maximum likelihood
estimation (and thus also least squares estimation). We can rewrite the problem above as:

min 𝑧𝑧𝑧 𝑧𝑧𝑧 + 𝑜𝑜𝑜 𝑜𝑜𝑜 − 2𝑜𝑜𝑜 𝑧𝑧𝑧 (4.58)
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For M.1, the problem is then denoted as

min 𝑧𝑧𝑧 𝑧𝑧𝑧 + 𝑐111�̃�𝑐111�̃� − 2𝑐111�̃�𝑧𝑧𝑧 (4.59)

Since we already derived an expression for 𝑐 (see appendix A), we can now substitute this expression
for 𝑐 in (4.59) and observe that we get the identical optimization problem as in the previous section:

min
�̃�

𝑧𝑧𝑧 𝑧𝑧𝑧 + (1
11�̃� 𝑧𝑧𝑧
|𝒜|𝑇 ) |𝒜𝑇| − 2(

111�̃� 𝑧𝑧𝑧
|𝒜|𝑇 )111�̃�𝑧𝑧𝑧 (4.60)

Upon simplification, we get the following problem

max
�̃�

(111�̃� 𝑧𝑧𝑧)
|𝒜| (4.61)

In the next chapter, it is explained how this cost function and the cost function given in (4.36) gives the
same estimated value for 111�̃� since that one is the squared version of the other.

In case that we apply the same steps for M.2 and M.3, i.e.,

min
�̃�

𝑧𝑧𝑧 𝑧𝑧𝑧 − 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧 (4.62)

which can be simplified to
max

�̃�
𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(111�̃�)𝑧𝑧𝑧, (4.63)

we observe that the problem is identical to the problem derived with the matched filter in the previous
section despite that the metric to be optimized is different. However, in this thesis our main concern
is the detection of malicious nodes. Hence, our framework is based on the optimization of detection
probability. If our problem was based on the estimation of outlying values, given that the network is
(guaranteed) compromised, then we can use the framework that is given in this section. This would
not differ greatly in terms of the derived optimization problem.

In the next chapter, we will look into how we can solve these optimization problems that we have
derived with the help of methods that are used to convert non-convex optimization problems to convex
optimization problems.



5
Convexification of Detection Problem

This chapter treats the methods that are used for the convexification of the optimization problems
that were derived in the previous section and how to solve the new convexified formulation of those
problems. Methods such as binary relaxation, semidefinite programming and the Dinkelbach algorithm
will be used for achieving this goal. A relaxation for the constraints will be firstly given. Secondly, we will
explain the steps that are going to be used to solve the optimization problem for M.1 using the convex
optimization machinery. And also provide the simple binary relaxed formulation for the cost functions
of M.2 and M.3. Hereafter, the remaining steps are explained and we then formulate the complete
methods for all three models in an algorithmic scheme. The last part gives the derived solution for the
Lasso method.

5.1. Constraints relaxations
For the cardinality and the density constraints, relaxations are easy to derive with the binary relaxation
method, i.e., a new variable vector 𝑥𝑥𝑥 is introduced that relaxes the entries of 111�̃� to the box [0, 1]. This
relaxation can now be expressed as

111�̃� ∈ {0, 1} ⟶ 𝑥𝑥𝑥 ∈ [0, 1] . (5.1)

Using this relaxation, the cardinality and density constraints are relaxed to convex constraints. The
newly relaxed constraints are then given as

𝐾 (𝑥𝑥𝑥 ) = ‖𝑥𝑥𝑥 ‖ ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, ....𝑇}, (5.2)

𝐷 (𝑥𝑥𝑥 ) = 𝑑𝑑𝑑 𝑥𝑥𝑥 ≤ 𝛼 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.3)

Note that the cardinality constraint can be assumed to be linear if we use the fact that 𝑥𝑥𝑥 has only non-
negative entries, i.e., 𝐾 (𝑥𝑥𝑥 ) = 111 𝑥𝑥𝑥 .
In order to relax the remaining two cut-dependent constraints in (3.28) and (3.29), a convex and concave
relaxation for the cut function in (3.24) must be found.

5.1.1. Convex Cut Relaxation
For the convex relaxation of the cut function, we canmake use of the properties of submodular functions
[27]. To do so, first let us consider the following. For every modular set function 𝑓(𝒜), we can define the
so-called Lovasz extension ̂𝑓(𝑥𝑥𝑥), which extends the original function through the variable 𝑥𝑥𝑥 ∈ [0, 1]|𝒜|
from a powerset 2|𝒜| to a unit cube. The Lovasz extensions has nice properties that can be used to
find a convex relaxation for the cut function. These properties are listed as follows:

• if a set function 𝑓(𝒜) is submodular, the Lovasz extension of that function ̂𝑓(𝑥𝑥𝑥) is convex

• if 𝑓(𝒜) is submodular, thenmin
𝒜
𝑓(𝒜) =min ̂𝑓(𝑥𝑥𝑥)

• 𝑓(𝒜) = ̂𝑓(𝑥𝑥𝑥), if 111𝒜 = 𝑥𝑥𝑥

27
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The properties are very well suited for taking the Lovasz extended function as a convex relaxation for
the cut. For the way that we have defined the cut, we need to find the Lovasz extended function of an
unweighted and undirected cut. This gives us the well-known relaxation for the cut function:

𝐶 (𝑥𝑥𝑥 ) = 𝑥𝑥𝑥 𝐿𝐿𝐿𝑥𝑥𝑥 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.4)

5.1.2. Concave Cut Relaxation
In order to find a relaxation for the constraint function in (3.28). We need to have a concave relaxation
of the cut function. The cut function, as we have defined it to be, can be formulated in different ways.
A formulation is already given in (3.24) as a quadratic function. In order to derive a concave relaxation,
we will propose an alternative formulation for the cut function. Before giving the formulation, we will
first explain the steps that are used in order to derive this formulation.
Firstly, the incidence matrix 𝐵𝐵𝐵 must be explained. The matrix 𝐵𝐵𝐵 is defined as a matrix with the dimen-
sions 𝑁 × |ℰ| at time 𝑖. Each column of this incidence matrix contains a pair of 1’s, the 1’s indicate for
a given edge which two nodes this edge connects, e.g., figure 5.1:

𝐵𝐵𝐵 =

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

⎛
⎜

⎝

⎞
⎟

⎠

1 1 1 0 0 1 0 0 0
2 1 0 1 0 0 1 0 1
3 0 0 0 0 1 1 1 0
4 0 1 0 1 0 0 1 0
5 0 0 1 1 0 0 0 1

⟹ 1

2

3

4

5

a

e

b

cf
g

h

d

Figure 5.1: An example of an incidence matrix with the corresponding graph. The nodes are indicated with numbers and the
edges are indicated with a letter

Thus if the 𝑙’th edge connects the nodes 𝑗 and 𝑘 then [𝐵𝐵𝐵 ] , and [𝐵𝐵𝐵 ] , are equal to 1 and the rest
of the column elements of [𝐵𝐵𝐵 ]∗ are equal to zero. The term ∗𝑙 as a subscript for a matrix is a general
term for the 𝑙’th column. Multiplying this matrix with 111𝒜 will give us a vector that looks as follows:

𝐵𝐵𝐵 111𝒜 = [2 2....2..1 1...0 0] ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.5)

The value of 2 occurs in [𝐵𝐵𝐵 111𝒜 ] when the 𝑙’th edge connects two nodes which are both in 111𝒜 ; if only
one of the nodes belongs to 111𝒜 then the entry in [𝐵𝐵𝐵 111𝒜 ] yields 1; otherwise we will get 0 for the entry.
Now, if we subtract an all ones vector from the above-mentioned vector, we will get a vector that looks
as follows:

(𝐵𝐵𝐵 111𝒜 ) − 111| | = [1 1....1..0 0... − 1 − 1] ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.6)

The values of 2 are subtracted to 1, values of 1 are subtracted to 0 and values of 0 are subtracted to
−1. By taking the 𝑙1-norm of this vector, we obtain the number of edges that does not belong to the cut
set, i.e. the cut of the complement of 111𝒜

𝐶(111𝒜 ) = ‖(𝐵𝐵𝐵 111𝒜 ) − 111| |‖ ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.7)

Here the superscript 𝑐 stands for the complement set of 111𝒜. The final step for deriving the cut of 111𝒜
is achieved by subtracting 𝐶(111𝒜 ) from the total number of edges |ℰ|

𝐶(111𝒜 ) = |ℰ| − ‖(𝐵𝐵𝐵 111𝒜 ) − 111| |‖ ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.8)

What can be observed is that upon binary relaxation of 111𝒜 :

𝐶 (𝑥𝑥𝑥 ) = |ℰ| − ‖𝐵𝐵𝐵 𝑥𝑥𝑥 −111| |‖ ∶ ∀ 𝑖 ∈ {1, ....𝑇}, (5.9)

we get a different function than in (5.4). In fact, it is easy to show with the help of the composition
rule [28] that (5.9) is a concave function. With the help of the composition rule we can prove that
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‖𝐵𝐵𝐵 𝑥𝑥𝑥 −111| |‖ is convex since that it is the composition of an l1-norm and an affine function. Hence,
the function in (5.9) is concave.
In (3.27), the relation between the density, cut and the dependent edge set are given. We can now
exploit this relation for a convex relaxation of the dependent edge set:

𝐵 (𝑥𝑥𝑥 ) = 1
2(𝐷 (𝑥𝑥𝑥 ) − 𝐶 (𝑥𝑥𝑥 )) ≤ 𝜌 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (5.10)

5.2. Relaxation of Performance Metrics
Now that the constraints are relaxed, the next step would be to find a convex relaxation for the cost
functions related to the performance metrics.

5.2.1. Time-invariant attacks
First, notice that the derived cost function for M.1 in chapter 4 is a fractional function, i.e. a function
that consists of a numerator 𝑓(𝑥) and denominator 𝑔(𝑥). Hence, the fractional function is then defined
as ( )

( ) . For fractional functions there are fractional programming methods that can be used for their
optimization. For instance, the Dinkelbach method [29] is a well known method that is used for the
solution of fractional problems. In order to utilize the method, there are conditions that must be met.
We define a variable 𝑥 that contains all the variable elements that are used in the function, i.e., all
the elements in the vectors and matrices that are a variable. The fractional function ( )

( ) that must be
minimized for 𝑥 must hold the following conditions for the Dinkelbach algorithm to be applicable [29].

• 𝑓(𝑥) must be convex for 𝑥 ∈ 𝒞

• 𝑔(𝑥) must be concave for 𝑥 ∈ 𝒞

• 𝑓(𝑥) ∶ 𝒞 → ℝ

• 𝑔(𝑥) ∶ 𝒞 → (0,+∞)

Here 𝒞 is the convex constraint domain for 𝑥. Hence, 𝒞 has the same dimension as the variable set 𝑥.
Thus, 𝑓(𝑥) ∈ ℝ for 𝑥 ∈ 𝒞 . And 𝑔(𝑥) maps to the set of positive values for 𝑥 ∈ 𝒞. Hence, we need to
first find a relaxation for the nominator and the denominator that satisfies these conditions.
Let us recall the cost function

𝑓 (111�̃�) =
|𝑧𝑧𝑧 111�̃�|
√|�̃�|

(5.11)

In order to convexify the nominator part of the cost function, it can be squared. The maximum argument
of the squared cost function is equal to the maximum argument of the original cost function. And since
the Dinkelbach algorithm is derived for minimization instead of maximization, we reformulate the cost
function as follows:

̂𝑓 (111�̃�) = −
(111�̃� 𝑧𝑧𝑧)
|�̃�| (5.12)

The denominator in (5.12) is equal to the cardinality of �̃�. In chapter 5.1, we explained how the car-
dinality is relaxed to a linear expression. Benefiting from the convexity of a linear function, we could
put the minus sign in the denominator. Unfortunately, the minus sign in the denominator, i.e., 𝑔(𝑥), will
falsify the condition 𝑔(𝑥) ∶ 𝒞 → (0,+∞). Hence, a convex relaxation must be find for the nominator
−(111�̃� 𝑧𝑧𝑧) .

SDP Formulation
For dealing with non-convex quadratic functions [30], we can make use of semidefinite programing
relaxation methods. For instance, the nominator in (5.12) can be reformulated as follows:

−111�̃� 𝑧𝑧𝑧𝑧𝑧𝑧 111�̃� = −𝑡𝑟(𝑧𝑧𝑧𝑧𝑧𝑧 111�̃�111�̃� ) (5.13)

The operator 𝑡𝑟() returns the trace of a square matrix.
After applying binary relaxation, we can observe that we are dealing with a concave nominator due to the
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(−) sign. With the help of semidefinite relaxation, a new variable matrix for the relaxation of the ’support
matrix’ 111�̃�111�̃� can be introduced. If we define a new matrix 𝑋𝑋𝑋 ∈ ℝ × that should be equal to 𝑥𝑥𝑥𝑥𝑥𝑥 ,
then 𝑋𝑋𝑋 should be a positive semidefinite and rank-1 matrix. The semidefinite programming provides
a relaxation for the problem by dropping the rank-1 constraint for 𝑋𝑋𝑋 and keeping the semidefinite
constraint since this yields a convex subset for matrices. If we reformulate

𝑧𝑧𝑧𝑧𝑧𝑧 = 𝑍𝑍𝑍, (5.14)

the relaxed formulation for (5.13) can then be denoted as

− tr(𝑍𝑍𝑍𝑋𝑋𝑋 ) (5.15)

With the following constraints for 𝑋𝑋𝑋 :

𝑋𝑋𝑋 ∈ ℝ × ,
0 ≤ [𝑋𝑋𝑋] , ≤ 1 ∶ ∀ 𝑖, 𝑗 ∈ {1, 2, 3...𝑁},
𝑋𝑋𝑋 ∈ 𝕊 ,
𝑋𝑋𝑋 ⪰ 0,
𝑋𝑋𝑋 = 𝕀 ⨂𝑋𝑋𝑋,

(5.16)

The symmetric constraint is given with the help of the symbol 𝕊 , which stands for the symmetric
domain of matrices with dimensions 𝑁 × 𝑁. The positive semidefinite constraint is presented with the
help of the symbol ⪰. The matrix 𝑋𝑋𝑋 is actually the Kronecker product, ⨂, of a different semidefinite
relaxation matrix with an all ones matrix 𝕀 with dimensions 𝑇 × 𝑇. The reason for this is the assumed
time-invariancy of the support set. In equation (5.16) the matrix 𝑋𝑋𝑋 is the semidefinite relaxation matrix
for the constant vector 𝑥𝑥𝑥 where 𝑥𝑥𝑥 = 𝑥𝑥𝑥 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. In order to tighten the relation between 𝑋𝑋𝑋
and 𝑥𝑥𝑥, a second semidefinite constraint can be included:

𝑋𝑋𝑋 −𝑥𝑥𝑥𝑥𝑥𝑥 ⪰ 0. (5.17)

This relaxation, which is called the Shor’s relaxation [31], is needed because the denominator is ex-
pressed as a term of 𝑥𝑥𝑥. With the help of the Schur complement, we can manipulate this relaxation into
a semidefinite constraint [32]

[𝑋𝑋𝑋 𝑥𝑥𝑥
𝑥𝑥𝑥 1] ⪰ 0 (5.18)

From experiments, it can be observed that without enforcing semidefinite contraints, we observe that
the method returns good results. Therefore, we conclude that it works in practice.
Since the computational complexity of the semidefinite constraints are very high, i.e., long and unre-
alistic simulation times, the decision is taken to drop the semidefinite constraints. However, we must
introduce new relaxations that tighten the relationship between 𝑋𝑋𝑋 and 𝑥𝑥𝑥. The final optimization prob-
lem that will be used for the Dinkelbach method is given as follows:

min
, , ,

�̃� = − ( )
‖ ‖

subject to 𝐵 (𝑥𝑥𝑥 ) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌,
𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽,
𝐷 (𝑥𝑥𝑥 ) ≤ 𝛼,
𝑋𝑋𝑋 ∈ 𝕊 ,
𝑋𝑋𝑋 = 𝕀 ⨂𝑋𝑋𝑋,
𝑥𝑥𝑥 = 𝑥𝑥𝑥 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
0 ≤ [𝑋𝑋𝑋] , ≤ 1 ∶ ∀ 𝑖, 𝑗 ∈ {1, 2, 3...𝑁},
0 ≤ [𝑥𝑥𝑥 ] ≤ 1 ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
[𝑋𝑋𝑋] , = [𝑥𝑥𝑥 ] ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 ) ≥ 0,
‖[𝑋𝑋𝑋] ∗‖ ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
‖𝑋𝑋𝑋‖ ≤ ‖𝑥𝑥𝑥 ‖

(5.19)

The newly introduced constraints must be justified first. We start with

[𝑋𝑋𝑋] = [𝑥𝑥𝑥 ] ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁} (5.20)
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This follows from the following:

[111𝒜111𝒜] , = [111𝒜] ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁} (5.21)

Hence we enforce this also for 𝑥𝑥𝑥 and 𝑋𝑋𝑋.

The second constraint that is going to be explained is:

𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 ) ≥ 0. (5.22)

Since we know that
(111�̃� 𝑧𝑧𝑧) = 111�̃� 𝑍𝑍𝑍111�̃� ≥ 0, (5.23)

we can also enforce this constraint:
(𝑥𝑥𝑥 𝑧𝑧𝑧) = 𝑥𝑥𝑥 𝑍𝑍𝑍𝑥𝑥𝑥 ≥ 0. (5.24)

From which we can also derive
𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 ) ≥ 0. (5.25)

For the third constraint:
‖[𝑋𝑋𝑋] ∗‖ ≤ ‖𝑥𝑥𝑥 ‖ ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁} (5.26)

we know that the column 𝑖 of matrix 111𝒜111𝒜 is equal to 111𝒜 if [111𝒜] = 1. With relaxation, this turns into
an inequality:

‖[𝑥𝑥𝑥𝑥𝑥𝑥 ] ∗‖ ≤ ‖𝑥𝑥𝑥 ‖ ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁} (5.27)

Hence we can enforce for the columns of 𝑋𝑋𝑋 an upperbound for the l1-norm.

The last constraint that needs to be explained is:

‖𝑋𝑋𝑋‖ ≤ ‖𝑥𝑥𝑥 ‖ (5.28)

First, note that we have the following equation:

√𝑇𝑟(111𝒜111𝒜111𝒜111𝒜) = √𝑇𝑟(111𝒜111 111𝒜111 ) (5.29)

where 111 is the all-ones vector of size 𝑁.
In case of binary relaxation, this equality turns into the following inequality:

√𝑇𝑟(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥𝑥) ≤ √𝑇𝑟(𝑥𝑥𝑥 111 𝑥𝑥𝑥 111 ) (5.30)

In case that we write 𝑥𝑥𝑥 𝑥𝑥𝑥 as 𝑋𝑋𝑋, we get:

√𝑇𝑟(𝑋𝑋𝑋𝑋𝑋𝑋) ≤ √𝑇𝑟(𝑥𝑥𝑥 111 𝑥𝑥𝑥 111 ) (5.31)

Because of symmetry we see that the left side of the inequality can be reformulated as the Frobenius
norm:

‖𝑋𝑋𝑋‖ = √𝑇𝑟(𝑋𝑋𝑋𝑋𝑋𝑋 ) (5.32)

While the right side can be simplified to:

√𝑇𝑟(𝑥𝑥𝑥 111 𝑥𝑥𝑥 111 ) = 𝑥𝑥𝑥 111 = ‖𝑥𝑥𝑥 ‖ (5.33)
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FP Formulation
The Dinkelbach algorithm can now be used to solve the newly defined problem. For the Dinkelbach
algorithm we exploit the fact that if there is an optimal point 𝜆∗ for the cost function, then the following
holds [29]:

𝑥∗ = argmin 𝑓(𝑥) − 𝜆∗𝑔(𝑥) = argmin ( )
( ) (5.34)

Furthermore, if 𝐹 is defined as 𝐹(𝜆) = min 𝑓(𝑥) − 𝜆𝑔(𝑥), then 𝐹(𝜆) < 0 if 𝜆 > 𝜆∗ and 𝐹(𝜆) > 0 if
𝜆 < 𝜆∗. This can be proven as follows:
If we assume that

min 𝑓(𝑥) − 𝑡𝜆∗𝑔(𝑥) < 0 (5.35)

Any derived 𝑥 for 𝑥 ∈ 𝒞 will give
𝑓(𝑥 )
𝑔(𝑥 ) = 𝜆 < 𝑡𝜆

∗ (5.36)

Since we know that there is not a 𝜆 for a given 𝑥 ∈ 𝒞 that is lower than 𝜆∗, we can conclude that the
inequality can hold only when 𝑡 > 1. Hence,

𝑓(𝑥 ) − 𝜆𝑔(𝑥 ) < 0 (5.37)

is true given that 𝜆 = 𝑡𝜆∗ and 𝑡 > 1 and thus 𝜆 > 𝜆∗
In the same way we can prove that 𝐹(𝜆) > 0 for 𝜆 < 𝜆∗. The strategy of the Dinkelbach algorithm is
to recursively find the matching pairs of 𝑥 and 𝜆 that will eventually give a value for 𝐹(𝜆) that is close
enough to zero. In case there is an initially chosen lambda as

𝜆 = 𝑓(𝑥 )
𝑔(𝑥 ) (5.38)

We know that 𝐹(𝜆 ) ≤ 0 if there is a guarantee that 𝑥 ∈ 𝒞. Hence by substitution we get

min 𝑓(𝑥 ) − 𝜆 𝑔(𝑥 ) =min 𝑓(𝑥 ) − 𝑓(𝑥 )𝑔(𝑥 )𝑔(𝑥 ) ≤ 0 (5.39)

From which it is provable that
𝑓(𝑥 )
𝑔(𝑥 ) ≤

𝑓(𝑥 )
𝑔(𝑥 ) (5.40)

If we calculate the new 𝜆 , the same steps can be taken again to find a variable set 𝑥 that provides
a smaller point for the optimization problem, i.e., 𝜆 . The goal is to continue recursively in this fashion
until the algorithm iterates towards the minimum of the cost function. Where then the inequality in
equation (5.40) turns into equality.

5.2.2. Time-variant attacks
The relaxation for the cost functions of M.2 and M.3 are easier to derive. By exploiting its formulation,
a simple binary relaxation gives a direct linear relaxation of their cost function.

�̃� = �̃� (𝑥𝑥𝑥) = 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(𝑥𝑥𝑥)𝑧𝑧𝑧 (5.41)

For M.2, this will give the following relaxed optimization problem:

max
,

�̃� (𝑥𝑥𝑥)
subject to 𝐵 (𝑥𝑥𝑥 ) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌,

𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽,
𝐷 (𝑥𝑥𝑥 ) ≤ 𝛼,
0 ≤ [𝑥𝑥𝑥 ] ≤ 1 ∶ ∀ 𝑖 ∈ {1, ...𝑁},
𝑥𝑥𝑥 = 𝑥𝑥𝑥 ∶ ∀ 𝑖 ∈ {1, ....𝑇}

(5.42)
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And for M.3 we get:

max �̃� (𝑥𝑥𝑥)
subject to 𝐵 (𝑥𝑥𝑥 ) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌 ∶ ∀ 𝑖 ∈ {1, ....𝑇},

𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
𝐷 (𝑥𝑥𝑥 ) ≤ 𝛼 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
0 ≤ [𝑥𝑥𝑥 ] ≤ 1 ∶ ∀ 𝑗 ∈ {1, ...𝑁} ∧ 𝑖 ∈ {1, ....𝑇},

(5.43)

The relaxation of the problems forM.2 andM.3 is not complete with only the optimization problems given
in (5.42) and (5.43). As stated earlier in section 4.3.2, we need to solve these problems for different
values of the cardinality constraints, i.e. different values of 𝛽. This way we can check for which values
of 𝛽 we will get the maximum value for 𝑃 .
The same method can also be applied to M.1. The optimization problem in (5.19) is then approached
in a similar fashion by ’simplifying’ the cost function as

min
, , ,

−𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 )
subject to 𝐵 (𝑥𝑥𝑥) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌,

𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽,
𝐷 (𝑥𝑥𝑥 ) ≤ 𝛼,
𝑋𝑋𝑋 ∈ 𝕊 ,
𝑋𝑋𝑋 = 𝕀𝕋⨂𝑋𝑋𝑋,
𝑥𝑥𝑥 = 𝑥𝑥𝑥 ∶ ∀ 𝑖 ∈ {1, ....𝑇},
0 ≤ [𝑋𝑋𝑋] , ≤ 1 ∶ ∀ 𝑖, 𝑗 ∈ {1, 2, 3...𝑁},
0 ≤ [𝑥𝑥𝑥 ] ≤ 1 ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
[𝑋𝑋𝑋] = [𝑥𝑥𝑥 ] ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 ) ≥ 0,
‖[𝑋𝑋𝑋] ∗‖ ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, 2, 3...𝑁},
‖𝑋𝑋𝑋‖ ≤ ‖𝑥𝑥𝑥 ‖

, (5.44)

and solve this optimization problem for different values of 𝛽. The gathered variable arguments for the
different values of 𝛽 are then put into the cost function �̃� , the argument that yields the optimum value
for �̃� is then taken as the solution for the method.
However, for an increasing number of nodes together with an increasing 𝛽, the optimization problems
that must be performed will also increase. Also, since we are able to mathematically express the
relationship between the cardinality of �̃� and the term −𝑇𝑟(𝑍𝑍𝑍𝑋𝑋𝑋 ) as a ratio for the optimization of 𝑃
in M.1, it is more convenient to exploit this by using the Dinkelbach algorithm. A guaranty is not given
that the above mentioned method yields the same maximum argument as the Dinkelbach method.
In the future, results can be compared between the above mentioned method and the Dinkelbach
method. We can also compare other factors like the used resources and simulation time for both
methods in the future.

5.2.3. Convex Formulation
Now that the intermediate steps are explained for all three models, we can now formulate the complete
algorithms in an algorithmic scheme for all three models separately. Before we do this, we must first
define functions that returns the argument of the optimization problems. For M.1, we first define a
function

𝐹(𝜆) = argmin
𝒳

−𝑇𝑟(𝑋𝑋𝑋 𝑍𝑍𝑍) − 𝜆 ‖𝑥𝑥𝑥‖
subject to 𝒳 ∈ 𝒞

(5.45)

that returns a variable set 𝒳 = (𝑋𝑋𝑋 ,𝑋𝑋𝑋,𝑥𝑥𝑥 ,𝑥𝑥𝑥). The set 𝒞 is defined as the constraint set given in
(5.19). Furthermore, we define a second constraint set for 111𝒜 as 𝒞 . The constraint set 𝒞 is the ’hard’
constraint set given in (4.24) or (4.25). The algorithm for M.1 looks as follows:
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Algorithm 1 The optimization algorithm for M.1
1: Input: 𝑧𝑧𝑧
2: output: 111∗𝒜
3: Initialize: 𝜖 as positive stopping criterion close to 0 and 111𝒜 such that 111𝒜 ∈ 𝒞
4: 𝜆 ∶= �̃� �̃�

‖ �̃�‖
5: 𝒳 ∶= 𝐹(𝜆 )
6: 𝑘 ∶= 1
7: 𝜆 ∶= ( )

‖ ‖
8: while | − 𝑇𝑟(𝑋𝑋𝑋 𝑍𝑍𝑍) − 𝜆 ‖𝑥𝑥𝑥‖ | ≥ 𝜖 do
9: 𝑘 ∶= 𝑘 + 1
10: 𝒳 ∶= 𝐹(𝜆 )
11: 𝜆 ∶= ( )

‖ ‖
12: end while
13: Round 𝑥𝑥𝑥 by inserting 𝑥𝑥𝑥 into Rounding Algorithm for M.1 and return: 111∗𝒜
14: return 111∗𝒜

Similarly, for M.2 we must first define a function that returns the argument as:

𝐹 (𝛽) = argmax
𝒳

�̃� (𝑥𝑥𝑥)
subject to 𝒳 ∈ 𝒞

, (5.46)

where 𝒞 is the constraint set given in (5.42). The variable 𝛽 is the cardinality constraint given in (5.42).
The function in (5.46) returns a set 𝒳 that is defined as 𝒳 = (𝑥𝑥𝑥 ,𝑥𝑥𝑥). For M.2, the convex optimization
problem is solved for 𝛽 different cardinality constraints, giving us 𝛽 different answers for 𝒳 that
will be denoted as 𝒳 = (𝑥𝑥𝑥 ,𝑥𝑥𝑥) for 𝑖 = {1, 2..𝛽 }. From these answers, we need to choose the one
that gives us the highest value for 𝑃 .

Algorithm 2 The optimization algorithm for M.2
1: Input: 𝑧𝑧𝑧
2: output: 111∗𝒜
3: for 𝑖 ← 1 to 𝛽 do
4: 𝛽 ∶= 𝑖
5: 𝒳 ∶= 𝐹 (𝛽)
6: insert (𝑥𝑥𝑥, 𝑖) ∶ 𝑥𝑥𝑥 ∈ 𝒳 into Rounding Algorithm for M.2 and return: 111𝒜 ∗

7: end for
8: Choose 111𝒜 ∗ from 𝑖 ∈ {1, ...𝛽 } as 111∗𝒜 that gives the highest values for :
𝑃 = 𝑄(𝑄 (𝑃 )

|{𝒜 }|
)
|{𝒜 }|( )

9: Return: 111∗𝒜

And for M.3 there are 𝛽 different answers possible, for 𝑇 observed timeframes. This is because
every 𝑥𝑥𝑥 for a given timeframe 𝑖 has 𝛽 different answers. The final estimate is found by combining
all the possible combinations for the given timeframes to find the optimal 𝑃 .
We first define a function 𝐹 (𝛽) as:

𝐹 (𝛽) = argmax
𝒳

�̃� (𝑥𝑥𝑥)
subject to 𝒳 ∈ 𝒞

, (5.47)

where 𝒞 is the constraint set given in (5.43). The variable 𝛽 is the cardinality constraint given in (5.43).
The function in (5.47) returns a set 𝒳 that is defined as 𝒳 = (𝑥𝑥𝑥 ,𝑥𝑥𝑥 , ...𝑥𝑥𝑥 ).
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Algorithm 3 The optimization algorithm for M.3
1: Input: 𝑧𝑧𝑧
2: output: 111∗�̃�
3: for 𝑖 ← 1 to 𝛽 do
4: 𝛽 ∶= 𝑖
5: 𝒳 ∶= 𝐹 (𝛽)
6: end for
7: for 𝑖 ← 1 to 𝛽 do
8: for 𝑗 ← 1 to 𝑇 do
9: insert (𝑥𝑥𝑥 , 𝑖, 𝑗) ∶ 𝑥𝑥𝑥 ∈ 𝒳 into Rounding Algorithm for M.3 and return: 111𝒜 ∗

10: end for
11: end for
12: Define for all 𝛽 possible combinations a stacked support vector 111( ) ∗𝒜 where 𝑖 ∈ {1, 2, ...𝛽 }
13: Choose: 111( ) ∗𝒜 from 𝑖 ∈ {1, 2, ...𝛽 } as 111∗�̃� that gives the highest values for:

𝑃 = 𝑄(𝑄 (𝑃 )
|{𝒜 }|

)
|{𝒜 }|( )

14: return 111∗�̃�

The rounding algorithm for all three models is given in Appendix B. All three of the rounding algo-
rithms are based on Bernoulli processes that have the relaxed solution vector 𝑥𝑥𝑥 as input. In case there
are 𝑐 Bernoulli processes performed for 𝑥𝑥𝑥, there are 𝑐 different vectors where the final answer 111∗𝒜 can
be chosen out of. The rounding algorithm returns the vector of Bernoulli processes for 𝑥𝑥𝑥 that gives the
optimal value for 𝑓 , together with an acknowledgment for the meeting of the constraint set. Otherwise,
it looks at the answer that gives the second best value for 𝑓 , given that the constraints are met. It will
continue in this fashion until we have a match with the contraint set.

5.3. Lasso-based Detection
For the Lasso technique, a relaxation for the cost function is not necessary in order to find the optimum
answer. Since we know that the regression happens linearly, i.e., (|𝑧𝑧𝑧 | −𝜆𝜆𝜆 ) , we need to increase the
regularization parameter 𝜆𝜆𝜆 until the cardinality constraint

𝐾(𝜆𝜆𝜆 ) = ‖𝑠𝑔𝑛(𝑧𝑧𝑧 )(|𝑧𝑧𝑧 | − 𝜆𝜆𝜆 ) ‖ ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, 2, ..𝑇} (5.48)

is met for all 𝑖 ∈ {1, 2...𝑇}. The regularization parameter 𝜆𝜆𝜆 that gives the highest value for the cost
function while the constraints are met will be equal to the magnitude of the element of 𝑧𝑧𝑧 with the
(𝛽+1)’th largest magnitude. That is the magnitude of the element with the 𝑁−𝛽’th smallest magnitude.
Thus, if we would like to solve the optimization problem:

max 𝑓 (𝜆𝜆𝜆)
subject to 𝐾(𝜆𝜆𝜆 ) ≤ 𝛽 ∶ ∀ 𝑖 ∈ {1, 2, ..𝑇},

, (5.49)

we first sort the magnitudes of the elements in 𝑧𝑧𝑧 in descending order for all 𝑖 ∈ {1, 2...𝑇}. And then we
take the constant value in the vector 𝜆𝜆𝜆 as the (𝛽 + 1)’th element of the sorted vector, this process is
repeated for all 𝑖 ∈ {1, 2...𝑇}. After this, we get an estimation for 𝑜𝑜𝑜 as

𝑜𝑜𝑜∗ = 𝑠𝑔𝑛(𝑧𝑧𝑧 )(|𝑧𝑧𝑧 | − 𝜆𝜆𝜆∗) ∶ ∀ 𝑖 ∈ {1, ....𝑇}, (5.50)

In the next chapter, we will numerically evaluate the methods that are derived in this chapter.





6
Numerical Validation

For the numerical evaluation of our relaxed problem, wewill now provide numerical experiments. Before
we do that, we will first explain the graph models that are used along with the values that are ascribed
for the parameters. Lastly, an explanation will be given for the 𝑅𝑂𝐶-curves together with the average
error of wrongly indexed nodes.

6.1. Graph Models
We consider a bistochastic symmetric adjacency matrix ΦΦΦ for our matrix that defines the flow of infor-
mation. Furthermore, the elements in this matrix are between 0 and 1. In a bistochastic matrix, all the
columns and rows sum to 1. It is assumed that the network is a distributed averaging network, i.e.,
the signal values convert to an average. In [33], a proof is given for the convergence of such a matrix
towards an average.
The matrix is generated asΦΦΦ = 𝐼 − 𝑆𝑆𝑆 + (𝑃𝑃𝑃 +𝑃𝑃𝑃 ) where 𝑃𝑃𝑃 is a matrix that has random values for
entries 𝑖, 𝑗 if and only if the nodes 𝑖 and 𝑗 share an edge, i.e. 𝐴𝐴𝐴 , = 1, otherwise 𝑃𝑃𝑃 , = 0. Furthermore,
the matrix 𝑆𝑆𝑆 is considered to be a diagonal matrix consisting of the column sum of 𝑃𝑃𝑃 + 𝑃𝑃𝑃 and 𝑁 is
defined as the number of nodes in the graph, i.e., 𝑁 = |𝒱|. The matrix 𝐴𝐴𝐴 is derived from a sensor graph
for attack 𝑎 and for attack 𝑏 a community graph is considered. These graphs are generated with the
help of the toolbox in [34].

(a) a sensor graph (b) a community graph

Figure 6.1: An example of a sensor graph and community graph

The initial assigned values to the nodes are integers equal to the number of the node. For every
node there is assigned an initial integer value that is equal to its node number. Node 1 has a value
of 1, node 2 has a value of 2 etc. The community graph is generated in such a way that there are
exactly 10 communities consisting of 5 nodes. Every community has a maximum cut equal to 5. The
purpose of this is to make every community a possible candidate for the compromised set. For all three
problems we assume that the observation is done for 5 timeframes, hence 𝑇 = 4. In table 6.1 there is
an overview given for the constraint values and other attributions.

37



38 6. Numerical Validation

Table 6.1: Constraint values and number of nodes

attack 𝑎 attack 𝑏
Timeframe observations T+1 5 5
Number of nodes 𝑁 50 50
Chosen cardinality for 111𝒜 5 5
Cut constraint 𝜌 5 -
Dependent edge set constraint 𝜌 - 1
Cardinality constraint 𝛽 5 5
Density constraint 𝛼 - -

The density constraint would be interesting to observe for very large graph networks, i.e., 1000
nodes. However putting a density constraint for a network of 50 nodes will make the subset of feasible
node combinations very small. Hence it is decided not to include it during the performance evaluation.

6.2. Value Attack Models
Before we determine the outlying values, �̃� must be determined first. The set �̃� is selected such that
the constraints in section 4.3 are met. Hereafter, we can now calculate the outlying values.
For M.1, there is a standard value of 𝑐 = 1 for the outliers, i.e.,

𝑜𝑜𝑜 = 𝑐111�̃� (6.1)

For M.2 & M.3 we generate the outliers similar as in (3.18). The proposed attack scheme generates
the outlying values depending on the previous observed data values at time 𝑖 as

𝑜𝑜𝑜 = ((𝑔(𝑖) − 1)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖))) ⊙111𝒜 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (6.2)

where 𝑔(𝑖) ∈ [0, 1] is an over-time decreasing function. Also, 𝛼𝛼𝛼 is the desired state for the malicious
agents that is now constant for all elements. The values for state 𝑡 + 1 become then

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 + ((𝑔(𝑖) − 1)ΦΦΦ 𝑥𝑥𝑥 +𝛼𝛼𝛼 (1 − 𝑔(𝑖))) ⊙111𝒜 ∶ ∀ 𝑖 ∈ {1, ....𝑇}. (6.3)

Since it is not possible to predict the outliers at time 𝑡 for timestamps 𝑡 + 2 or higher, we will make an
assumption that the malicious agents determine the outlying values based on the first observed state
value 𝑥𝑥𝑥 . In other words, the agents calculate the outlying values given as in (6.2) by assuming that
there is not any noise added during state transition.

𝑥𝑥𝑥 = ΦΦΦ 𝑥𝑥𝑥 +𝑜𝑜𝑜 . (6.4)

This is purely done so that the outlier-to-noise ratio for a given observed timeframe set can be calculated
in case the noise variance is constant and known. For evaluation purposes it is useful to analyze the
performance for different outlier-to-noise ratio values. Furthermore, for M.2 & M.3 we assume that we
add a value of 1 to the average for the desired state. This means that

𝛼𝛼𝛼 = 𝛼 111 (6.5)

and

𝛼 = ( 150 ∑ 𝑁) + 1 = 26.5. (6.6)

Also, 𝑔(0) = 0.9 and 𝑔(𝑖) = 𝑔(𝑖−1)∗0.8 ∶ ∀𝑖 ∈ 1, ...𝑇. The attack scheme is applied for both the attacks
described in 3.4.

6.3. Evaluation
For all threemodels and both attack modes, the optimization problems are simulated for different values
of outlier-to-noise ratio (𝑂𝑁𝑅). The 𝑂𝑁𝑅 is calculated as:

𝑂𝑁𝑅 =
‖𝑜𝑜𝑜‖
𝑁𝑇𝜎 . (6.7)
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For every 𝑂𝑁𝑅, we perform 1000 different noise simulations. We must take into account that for every
noise realisation the graph structure and the outlying values 𝑜𝑜𝑜 must be identical for a fair evaluation
of the threshold function 𝑇(𝑧𝑧𝑧). Since we want to look at how the threshold function is behaving for a
varying 𝑂𝑁𝑅, we need to be sure that the other elements are not changing throughout the realisations.
In other words, the variation in our data 𝑧𝑧𝑧 must come only from the noise element 𝑛𝑛𝑛. Otherwise, the
variation of our estimated 111�̃� and consequently 𝑇(𝑧𝑧𝑧) will be dependent on different factors. In addition
to this consideration, the graph structure and the distribution of the outlier energy 𝑜𝑜𝑜 𝑜𝑜𝑜 may have an
effect on the outcome. This is due to the fact that the estimation of 111�̃� is dependent on these factors.
Hence, by keeping the graph structure and outliers constant for all 1000 noise realisations we can
analyze the influence of 𝜎 on the performance. An overview of the process is given in figure 6.2.

Figure 6.2: In this flowchart it is shown how results are generated without changing the network properties or the outlying
values. Hence only is adjusted to the given . M is denoted as the number of noise realisations per . We will also

look into the error related to the identification of malicious nodes.

Apart from the theoretical ROC-curve that can be derived from the detection and false alarm prob-
ability. We can also derive an empirical ROC-curve for the experiments. The empirical ROC-curve is
created by simulating values for the threshold function under both hypotheses and equal 𝜎 . Then, the
detection and false alarm probabilities are calculated empirically. The threshold value 𝛾 for a given
empirical 𝑃 is calculated by calculating 𝑖 out of 𝑃 = . 𝑁 is the total number of noise realisations per
hypothesis. After this, 𝛾 is equal to the average of the 𝑖’th and 𝑖 −1’th largest value for the realisations
of ℋ . The corresponding 𝑃 is then equal to the number of noise realisations that are bigger then 𝛾
normalized by 𝑁. For a visualisation of these results we can look at figure 6.3.
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Figure 6.3: In this example, the number of realisations is taken as 10. For a of , we can observe that the is equal to
. The red line corresponds to for .

The average of the theoretical ROC-curve is calculated by taking the average of the detection prob-
ability 𝑃 for a given 𝑃 for all 1000 noise realisations:

𝑃 = 1
1000 ∑ 𝑃 . (6.8)

We will refer to this average theoretical ROC-curve for 𝑃 ∶ ∀𝑖 ∈ {1, 2, ...1000} as 𝑅𝑂𝐶. Apart from the
ROC-curve, an important factor for evaluating the performance is also the identification of the compro-
mised nodes. The average number of wrongly indexed nodes per timeframe is calculated as follows:

𝐸𝑟𝑟𝑜𝑟 = 1
1000(𝑇 − 1) ∑ ‖111�̃� −111

∗
�̃�‖ , (6.9)

where 111 ∗�̃� is the final estimation for the 𝑖’th noise realisation and 111�̃� refers to the true value. The
equation calculates the number of wrongly indexed nodes per noise realisation per timeframe.

6.4. Results
We will now show the 𝑅𝑂𝐶 and empirical ROC-curves along with the 𝐸𝑟𝑟𝑜𝑟. The results are derived for
the following ONR values: 0.01, 0.1, 0.2 and 0.5. For 𝑂𝑁𝑅 values higher than 0.5 a full saturation of the
𝑅𝑂𝐶-curves are observed for all models along with almost all the empirical ROC-curve. This means
that the 𝑃 is almost directly increased to 1 at a very low 𝑃 . It is therefore interesting to analyze
the empirical ROC and theoretical 𝑅𝑂𝐶-curves for 𝑂𝑁𝑅 values lower then 0.5, since the behavior is
predictable for values higher than 0.5, i.e., a full saturation of both empirical ROC- and theoretical 𝑅𝑂𝐶-
curves. The 𝑃 for all three models are in a way dependent on the ratio of the estimated outlier energy
and the noise energy. An increasing 𝑂𝑁𝑅 will result in an estimated outlier energy that is closer to the
true outlier energy while the noise energy decreases. This means that the 𝑃 will only increase for a
given 𝑃 and increasing 𝑂𝑁𝑅.

6.4.1. Time-invariant attacks
We will now provide the empirical ROC and theoretical 𝑅𝑂𝐶 for M.1.
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Figure 6.4: Empirical ROC and Theoretical -curve for .

Figure 6.5: Empirical ROC and Theoretical -curve for .

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 8.43 4.18 2.07 0.21
𝑏 5.61 4.37 3.81 1.51

Table 6.2: for .
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The 𝑅𝑂𝐶-curve for M.1 is calculated as follows:

𝑃 (𝑃 ) = 1
1000 ∑ 𝑄(𝑄 (𝑃 /2) − 𝐴

√𝜎
) + 𝑄(𝑄 (𝑃 /2) + 𝐴

√𝜎
) (6.10)

where 𝐴 is defined as in section 4.3.

𝐴 = 111 ∗�̃� 𝑧𝑧𝑧
√𝑇|𝒜 ∗|

(6.11)

and 𝒜 ∗ is denoted as the estimated set for the 𝑖’th realisation ∀ 𝑖 ∈ {1, 2, ..1000}.
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The first noticeable observation is the decreasing similarity of the empirical and theoretical 𝑅𝑂𝐶-
curves for a decreasing 𝑂𝑁𝑅. This can be directly attributed to the estimation of the support vectors 111�̃�.
Higher 𝑂𝑁𝑅 yields a lower 𝐸𝑟𝑟𝑜𝑟. Consequently, a lower 𝐸𝑟𝑟𝑜𝑟 gives a more stable and less varying
values for 111�̃�. Which in turn results in an increasing resemblance of a normal distribution mentioned in
(4.31) forℋ and forℋ . An increase in the noise variance gives a higher deviation from the mean for
elements in 𝑧𝑧𝑧, underℋ Consequently, the optimization algorithm returns the elements with the highest
deviation from zero as an estimation for 111�̃�. In other words, the optimization problem returns values for
111�̃� that favors selection from the ’tail’ of the normally distributed elements in 𝑧𝑧𝑧, this can also be seen in
figure 6.6. In chapter 4.3, we explained how the amplitude term 𝐴 must deviate as much as possible
from 0 in order to increase the 𝑃 . This is achieved with the above mentioned selection from the ’tail’.

Figure 6.6: Comparison of the empirical distribution and the theoretical PDF under ℋ for . , .

The empirical distribution in figure 6.6 is calculated by taking the histogram for the calculated 𝑇(𝑧𝑧𝑧)
underℋ and normalizing the area to 1, the theoretical distribution underℋ is given in (4.31). It can be
observed how the empirical distribution differs from the theoretical probability density function (PDF),
under ℋ . Combining this with the fact that the decrease in 𝑂𝑁𝑅 gives an increasing resemblance
between the empirical distributions under ℋ and ℋ , resulting in a larger overlap of the empirical
distributions in comparison to the theoreticals. In figure 6.7, we observe how the empirical distribu-
tions are overlapping for the lowest given 𝑂𝑁𝑅 value, while the area of the theoretical PDF’s are less
overlapping.
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Figure 6.7: Empirical distribution and theoretical PDF’s for . , .

Here, the average theoretical PDF (𝑃𝐷𝐹) is calculated as the average of the theoretical PDF’s under
ℋ . Specifically, the PDF of a folded Gaussian distribution 𝑓|𝒩( , )|(𝑥) with variance 𝜎 and mean 𝜇
is given as [26]:

𝑓|𝒩( , )|(𝑥) =
1

√𝜎 2𝜋
𝑒

( )
+ 1
√𝜎 2𝜋

𝑒
( )

, (6.12)

where 𝜇 is in our case equal to:

𝜇 = 𝑧𝑧𝑧 111 ∗�̃�
√(𝑇)|𝒜 ∗|

. (6.13)

The 𝑃𝐷𝐹 is calculated as:

𝑓(𝑥) = 1
1000 ∑ 𝑓|𝒩( , )|(𝑥) ∶ ∀𝑥 ∈ [0,∞). (6.14)

The terms 𝑃𝐷𝐹 and 𝑓(𝑥) will be used interchangeably.
Since that the distribution under 𝐻 is not dependent on𝒜 ∗, the domain of integration for a given 𝑃 is
identical for all noise realisations 𝑖 ∈ {1, 2, ..1000}. The domain [𝑎,∞] can then be calculated as follows

𝑃 = ∫ 𝑓|𝒩( , )|(𝑥)(𝑥)𝑑𝑥 (6.15)

Conequently, we can denote 𝑃 also in terms of 𝑓(𝑥) as follows

𝑃 (𝑃 ) = 1
1000 ∑ ∫ 𝑓|𝒩( , )|(𝑥)𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥. (6.16)

Hence, the 𝑅𝑂𝐶-curve can also be analyzed with 𝑓(𝑥) and 𝑓|𝒩( , )|(𝑥).
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Considering these, we can observe that both the empirical and theoretical performance for M.1b is
lower compared to M.1a. This is shown in figure 6.8.

Figure 6.8: Empirical distribution and theoretical PDF’s for . , .

We observe a more ’shifted’ distributions underℋ to the left, which means that our gathered values
for 𝑇(𝑧𝑧𝑧) are lower compared to those from M.1a. The main reason for lower values of 𝑇(𝑧𝑧𝑧) can be
attributed to the cardinality of the estimated 111𝒜:

Figure 6.9: Cardinality histogram for . and . underℋ , .

Lower cardinality does not necessarily imply lower values for 𝑇(𝑧𝑧𝑧). However, for M1.b, we can
observe that ’swinging’ cardinality values,i.e., change of cardinality count between noise realisations,
will give a non-unimodal empirical distribution and 𝑃𝐷𝐹. For example, when we observe a bimodal
distribution, see e.g. figure 6.10,
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Figure 6.10: Empirical distribution and theoretical PDF’s for . , .

we also observe how the distribution of the cardinality count is divided between 1 and 5 in figure
6.11.

Figure 6.11: Cardinality histogram for . underℋ , .

The feasible constraint set for attack 𝑏 is smaller then for attack 𝑎. For attack 𝑏, the set consists of 10
communities, and a couple of single node sets. During the rounding process of the ’spread out values’
𝑥𝑥𝑥 , the chances of having a community set acknowledged within the first 𝑐 Bernouille realisations is
small, for the given 𝑂𝑁𝑅 values. A community set of 10 is relatively small in comparison to the set of all
possible combinations. Hence, rounding the higly ’spread out values’ 𝑥𝑥𝑥 to one of the 10 communities
is not big. For lower 𝑂𝑁𝑅 values, we can see that the chances are as good as none. Hence, this will re-
sult in ’selecting’ a single node as the set of compromised nodes since that the chances are higher for a
single element of 1 rather than five elements of 1 that form a community. This in turn yields a lower 𝑇(𝑧𝑧𝑧).
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When we compare the results with the results of the Lasso Estimator:

Figure 6.12: ROC-curves based on the Lasso-method for .

Figure 6.13: ROC-curves based on the Lasso-method for .

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 8.82 7.62 6.53 4.02
𝑏 8.82 7.58 6.48 4.03

Table 6.3: for . for the Lasso-method
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For the Lasso-based method, we observe also a gap between the empirical ROC- and 𝑅𝑂𝐶-curves.
The reasoning is similar as above. A higher 𝑂𝑁𝑅 results in values for the estimated energy 𝑜𝑜𝑜 𝑜𝑜𝑜 that
are more stable and closer to the true value. In turn the empirical distributions will resemble more that
of a normal distribution denoted as in (4.53).
For lower 𝑂𝑁𝑅 values, since that the algorithm will select the nodes with the 𝛽 highest magnitude
values, this will not give an empirical distribution that resembles a zero-mean Gaussian distribution
for 𝑇(𝑧𝑧𝑧). Instead, the calculated values for 𝑇(𝑧) will then be optimized due to how 111�̃� is calculated.
Selecting 111�̃� that optimizes 𝑓 (𝜆𝜆𝜆) will also optimize 𝑇(𝑧𝑧𝑧) = 𝑧𝑧𝑧 𝑜𝑜𝑜. Hence we will get a distribution for
𝑇(𝑧) that will select nodes from the ’right-tail’ of a zero-mean Gaussian distribution, thereby overlapping
with the empirical distribution under ℋ due to the higher variance.
Also, this time we know that only the nodes with the highest magnitudes are selected for calculating
𝑇(𝑧𝑧𝑧). Combining this with the fact that the Lasso-basedmethod does only take the cardinality constraint
into account will result in selecting nodes with 𝛽 highest magnitudes, this will yield a higher 𝐸𝑟𝑟𝑜𝑟.
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6.4.2. Time-variant attacks
Fixed anomalous nodes
For M.2, the 𝑅𝑂𝐶-curves are given below

Figure 6.14: Theoretical and empirical -curve for .

Figure 6.15: Theoretical and empirical -curve for .

The 𝑅𝑂𝐶-curve for M.2 and M.3 is calculated as follows:

𝑃 (𝑃 ) = 1
1000 ∑ 𝑄(𝑄 (𝑃 )

| ̃𝒜 ∗|
)
| ̃𝒜 ∗|

( ), (6.17)
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where 𝜇 is defined as:

𝜇 = 𝑧
𝑧𝑧 𝑑𝑖𝑎𝑔(111 ∗�̃�)𝑧𝑧𝑧

𝜎 (6.18)

The equation above is calculated for the gathered values 111 ∗�̃� underℋ for all 𝑖 ∈ {1, 2, ..1000}.

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 8.83 6.68 5.55 3.02
𝑏 7.2460 2.3640 0.2800 0

Table 6.4: for .

For M.2, once again a gap can be observed between the empirical ROC and theoretical 𝑅𝑂𝐶-
curves. Also, the steepness of the theoretical 𝑅𝑂𝐶-curves remain very high even for low 𝑂𝑁𝑅 values.
Particularly for attack 𝑎, we observe an almost ’perfect saturation’ for 𝑂𝑁𝑅=0.01. This is mainly due
to the high non-centrality parameter 𝜇. In figure 6.16 it can be observed that for a dof=20 a small
overlapping area is observed between a distribution with 𝜇 = 50 and a centralized Χ distribution. The
average of 𝜇 for the lowest 𝑂𝑁𝑅 for M2.a is also around 50.

Figure 6.16: PDF of the central and non-central distributions with degrees of freedom equal to 20
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If we want to analyze the relationship between the theoretical distributions and the 𝑅𝑂𝐶-curve, it is
better to show the average distributions for all possible cardinality cases apart, i.e., |𝒜| = 1, 2, 3...𝛽. In
other words, for every possible cardinality a different average distribution 𝑓(𝑥)|𝒜| is calculated.

𝑓(𝑥)|𝒜| =
1

|𝒪|𝒜||
∑
∈𝒪|𝒜|

𝑓
| ̃𝒜 ∗|

( )(𝑥) ∶ ∀ |𝒜| ∈ {1, 2, ...𝛽} (6.19)

Where the set 𝒪|𝒜| is defined as follows

𝑖 ∈ 𝒪|𝒜| 𝑖𝑓 |𝒜 ∗| = |𝒜| ∶ ∀ 𝑖 ∈ {1, 2, ..1000} ∧ |𝒜| ∈ {1, 2, ...𝛽} (6.20)

This is necessary since that 𝑃 (𝑃 ) can not be calculated directly with the total average distribution
under a single integration, as is the case for M.1, i.e.,

𝑃 (𝑃 ) = ∫ 𝑓(𝑥)𝑑𝑥 (6.21)

Every average distribution must now be integrated in a different domain [𝑎,∞] for a given 𝑃 .
For every average distribution we can now calculate 𝑃 |( )|(𝑃 ) for a given 𝑃 .

𝑃 |( )|(𝑃 ) = ∫ 𝑓(𝑥)|𝒜|𝑑𝑥 ∶ ∀ |𝒜| ∈ {1, 2, ...𝛽} (6.22)

Where 𝑎 is calculated from the integer of the central Χ -distribution as

𝑃 = ∫ 𝑓
|( )𝒜|

(𝑥)𝑑𝑥 (6.23)

Depending on the occurrence of the cardinality, the average 𝑃 is then equal to the weighted average
of the 𝑃 |𝒜| of every average distribution.

𝑃 (𝑃 ) = ∑
|( )|

|𝒪|𝒜||
1000 𝑃 |( )|(𝑃 ) (6.24)

For example, if there are 800 occurrences of |𝒜| = 1 and 200 occurrences of |𝒜| = 5, then 𝑃 is
calculated as

𝑃 (𝑃 ) = 0.8 ∗ 𝑃 (𝑃 ) + 0.2 ∗ 𝑃 (𝑃 ) (6.25)

Contrary to M.2a, the ’perfect saturation’ is not observed for M.2b. For example, If we observe the
empirical distribution and the average distributions for M.2b, ONR = 0.2, we observe in figure 6.17,
similar as in M.1b, a bi-modal distribution due to a ’swinging’ cardinality count:
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Figure 6.17: Empirical distribution and theoretical PDF’s for . , .

It is explained in chapter 4 that lower degrees of freedom can actually increase the performance.
A decrease in degrees of freedom is also associated with a lower non-centrality parameter which in
turn will result in a higher overlap between the distributions for ℋ and ℋ . Hence the peaks around
the lower values for 𝑥, can be subscribed to the values of 𝑇(𝑧𝑧𝑧) where the cardinality of 111�̃� is equal to
1. The occurrence of a low cardinality estimation has a similar explanation like for the case of M.1b.
An increasing noise variance also gives an increase in the scattering of the estimated values for 𝑥𝑥𝑥.
Hence it is not guaranteed that the algorithm will always acknowledge a community set within the first
𝑐 Bernouille realisations. With scattering it is meant that the values of 𝑥𝑥𝑥 will resemble less of a binary
value, the 1 elements are ’spread out’ over several nodes due to the binary relaxation.
For higher 𝑂𝑁𝑅, we observe that the bimodality disappears as in figure 6.18

Figure 6.18: Empirical distribution and theoretical PDF’s for . , .
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Apart from the rounding related issues, a non-optimal cardinality can also be associated with a
higher detection peformance. It is explained in 4 that the optimal 𝑃 is not always derived with only
maximizing 𝜇. It possible that lower 𝜇 values can give a higher detection probability if the lower 𝜇
values are combined with lower cardinality. For M.2a, there is also a variation in cardinality observed
for the highest ONR. It can be shown for M.2a that the variation stems from the optimal 𝑃 for lower
cardinalities. The structure of the sensor graph that is used for attack 𝑎 contains a larger set of node
combinations that is feasible and with a cardinality equal to 5. Hence the chances are higher that the first
𝑐 Bernouille realisations acknowledge a feasible maximum cardinality subset of nodes. Interestingly,
we can still observe for 𝑂𝑁𝑅 = 0.5 a varying cardinality value. We will now argue that this is due to the
case that the lower cardinality will yield a higher detection probability.

Figure 6.19: The empirical distribution for when the complete algorithm is run and when the algorithm is run only for :
. , . ,ℋ

In figure 6.19 we see now 2 histograms. The blue histogram represents the true empirical distri-
bution, the red histogram shows the values that we will get if we would run the algorithm in 2 for only
𝛽 . The latter giving us cardinality values of almost only 5. Although we have a varying cardinality
for the true empirical distribution, it can still be observed that there is not a bi-modal distribution similar
as in M.2b:
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Figure 6.20: Cardinality counts for . , . underℋ

Looking at figure 6.19, we can conclude that there are estimated node sets with cardinality lower
than 5 that returns a non-optimal value for 𝜇. But these non-optimal 𝜇 values do not differ much from
the optimal 𝜇 values that we would get for a maximal cardinality. The difference is small enough to yield
a higher 𝑃 for node sets with a smaller cardinality. With the help of figures 6.19 and 6.20, it can be
clearly seen that the variation in the cardinality stems from choosing the optimal detection probability,
contrary to M.2b.
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A second note must be made on the distributions under ℋ . Looking at the equation in (4.42),
theoretically, they should be independent of 𝜎 , since a centralized 𝜒 distribution is the summation of
zero mean and unit variance squared Gaussian distributions. Thus, indifferent of the noise variance
value 𝜎 , the algorithm in 2 always normalizes the variances for the selection of the nodes underℋ that
have mean values of 0. Consequently, the empirical distributions under 𝐻 should also be independent
of the 𝑂𝑁𝑅 values

Figure 6.21: Empirical distribution under ℋ for .

Comparing the empirical distributions under ℋ for the highest and lowest 𝑂𝑁𝑅 values, we can
observe that they are similar in shape.
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Now we will show the empirical and theoretical 𝑅𝑂𝐶-curves that are derived for the Lasso-method.

Figure 6.22: ROC-curves based on the Lasso-method for .

Figure 6.23: ROC-curves based on the Lasso-method for .

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 9.05 9.11 9.24 9.36
𝑏 8.92 8.31 8.02 7.77

Table 6.5: for . for the Lasso-method

The 𝑅𝑂𝐶-curves are similar to the 𝑅𝑂𝐶-curves in M.1, for the Lasso-methods.
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Time-varying anomalous nodes
Now, we provide the empirical and theoretical 𝑅𝑂𝐶-curves for M.3

Figure 6.24: Theoretical and empirical -curve for .

Figure 6.25: Theoretical and empirical -curve for .

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 8.83 7.74 6.88 5.10
𝑏 7.09 5.15 3.30 1.19

Table 6.6: for .
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For problem 3 we observe a similar pattern as for problem 2, hence there is not much to add for
problem 3. The only difference now is that every timeframe 𝑖 contains a different estimated support
set 111𝒜 . The cardinality is now defined as the total cardinality for 𝑖 ∈ {1, ...𝑇}. Contrary to M.1b and
M.2b, the bi-modal distribution is not observed for M.3b. For example, for the lowest 𝑂𝑁𝑅 we observe
a smooth single peak distributions:

Figure 6.26: Empirical distribution and theoretical PDF’s for . , .

However the ’appearance’ can be deceiving in the sense that the varying cardinality suddenly looks
like it has a different reasoning compared toM.1b andM.2b. In order to understand why we see a single
peak, we need to look at the shape of the cardinality histogram:

Figure 6.27: Cardinality counts for . , . underℋ

When we observe the cardinality histograms, we can see that the shape of the cardinality histogram
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is similar to the distributions. With similarity is meant that there is a peak around a cardinality value
of 12, i.e., the ’centre’. And a decreasing count can be seen for increasing or decreasing cardinality
values, i.e., the ’tail’. The peaks in the distributions caused by the varying cardinality are now faded out
to a single peak, because the cardinality values associated with these peaks are now lower in transition
compared to M.2b. For M.2b, we observed a ’swinging’ cardinality count between 1 and 5, although
these cardinalities are not huge in difference, the total degrees of freedom is then swinging between
4 and 20. For M.3 the cardinality values is equal to the total degrees of freedom. Hence, the main
cause for a varying cardinality for M.3b is still similar as for M.1b and M.2b, but it is less obvious when
observing the empirical distributions.
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Finally, the empirical and theoretical 𝑅𝑂𝐶-curves for the Lasso-based method for M.3 will be given.

Figure 6.28: ROC-curves based on the Lasso-method for .

Figure 6.29: ROC-curves based on the Lasso-method for .

Attack
𝑂𝑁𝑅 0.01 0.1 0.2 0.5

𝑎 9.0190 9.1755 9.2240 9.3970
𝑏 8.97 9.00 9.000 8.96

Table 6.7: for . for the Lasso-method
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6.4.3. 𝐸𝑟𝑟𝑜𝑟 Elucidation
For attack 𝑎, if we look at the provided framework, generally speaking, we can observe that M.1 gives
the lowest 𝐸𝑟𝑟𝑜𝑟. This can be attributed to an equal distribution of the energy over the compromised
nodes in M.1. A node with a higher energy input increases the chance of being detected, but this will
be at the expense of nodes with a lower energy input. Resulting in a higher 𝐸𝑟𝑟𝑜𝑟.
For attack 𝑏, we observe that M.2 yields the lowest 𝐸𝑟𝑟𝑜𝑟 for the provided algorithm, generally speak-
ing. The inequality of the energy over the nodes is then an advantage for the auditor. The nodes with
higher energy will determine mostly the community to be selected during the rounding process.
Also, we observe now that the 𝐸𝑟𝑟𝑜𝑟 is higher for M.3 compared with M.2 for both attacks. For M.2,
we only need to estimate a single set of compromised nodes. Hence, more information is available for
the single set that must be estimated. For M.3, we need to estimate a different set for every timeframe,
this can lead to a higher average error due to the single timeframe information for every estimated set.

For the Lasso method, a significant difference can not be observed between attack 𝑎 and 𝑏. A dif-
ference that can be observed is between the time invariant and time-varying models. This can be once
again attributed to distribution of the outlier energy over the nodes. The 𝐸𝑟𝑟𝑜𝑟 of M.2 and M.3 are
higher since the energy of the outliers are not equally distributed over the compromised nodes. Nodes
that have a smaller outlier energy input have a higher chance of being erroneously indexed as ’clean’.

6.5. Discussion
Despite that the empirical results are not as good as the theoretical results, we can observe that for
an increasing 𝑂𝑁𝑅, starting from 0.5, the derived methods provide promising results. Furthermore, for
an 𝑂𝑁𝑅 as small as 0.1 we can still observe a significant steepness of the empirical ROC-curves. For
the Lasso-based methods, we can observe similar results. However, the Lasso-based methods yield
higher values for 𝐸𝑟𝑟𝑜𝑟 due to the non-utilization of all the constraints.

As explained in chapter 6.4, the set of feasible node combinations, i.e., the set of all the possible
node combinations that are subjected to the constraint set, is of great influence on the selection of the
malicious nodes. A smaller feasible nodeset can lead to a higher ’spreading out’ of the binary relaxed
values.

Combined with the feasible nodeset, we also explained how the distribution of the outlier energy over
the nodes affects the 𝐸𝑟𝑟𝑜𝑟 in chapter 6.4.3. Equally distributed outlier energy provides a lower 𝐸𝑟𝑟𝑜𝑟
for a larger feasible nodeset. While, for a more restricted nodeset, as in attack 𝑏, this is not the case.
Energy that is accumulated into a single node for example, can lead to a better decision making for the
estimation of 111�̃�, for smaller feasible nodesets.

For M.3, since that we need to estimate 111𝒜 for all 𝑖, generally speaking, this will lead to higher 𝐸𝑟𝑟𝑜𝑟
since that we have less ’information’ for every 111𝒜 that we need to estimate.

In the next chapter, we will discuss three different ideas for future research.
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Future work

In this chapter, we will propose two different ideas for future research. For the first idea, we provide a
different reasoning for the use of the detection theory metrics. The second idea is based on solving the
classical outlier detection theory with the help of state of the art regression methods and our current
contribution.

7.1. Framework for Colored Noise
Similar as what we did in chapter 4, it is also possible to derive a framework for in case that we are
dealing with colored noise, i.e.,

𝑛𝑛𝑛 ∼ 𝒩(0, 𝜎 𝐶𝐶𝐶) (7.1)

The maximum likelihood estimation for colored Gaussian noise looks as follows [21]

𝑜𝑜𝑜∗ = argmin(𝑦𝑦𝑦 − 𝑜𝑜𝑜) 𝐶𝐶𝐶 (𝑦𝑦𝑦 − 𝑜𝑜𝑜) (7.2)

From which we must derive an expression for 𝑜𝑜𝑜. It is then possible as in chapter 4 to derive different
optimization problems for the different models.
The standard notation of the test statistic for colored noise is given as [25]

𝑇(𝑧𝑧𝑧) = 𝑜𝑜𝑜 𝐶𝐶𝐶( )𝑧𝑧𝑧 − 12𝑜𝑜𝑜 𝐶𝐶𝐶
( )𝑜𝑜𝑜

ℋ
≷
ℋ
𝛾 (7.3)

From which we derive expressions for the distributions and the false alarm and detection probabilities
similar as in chapter 4.

7.1.1. Model 1
For M.1, i.e.,

𝑜𝑜𝑜 = 𝑐111�̃� (7.4)

the optimal value for 𝑐 is derived as

𝑐 = 111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧
111�̃� 𝐶𝐶𝐶 111�̃�

(7.5)

By substituting this formulation for 𝑜𝑜𝑜 in the standard formation given in (7.3), we get the following
formulation for the test statistic

𝑇(𝑧𝑧𝑧) = |111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧|

√111�̃� 𝐶𝐶𝐶 111�̃�
≷ 𝛾 (7.6)

The details are given in appendix E.
Once again, the test statistic is a folded Gaussian function with the following distributions under both
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hypotheses

ℋ ∶ 𝑇([𝑧𝑧𝑧]) ∼ {2𝒩(0, 𝜎 ), if 𝑇([𝑧𝑧𝑧]) ≥ 0,
0, if 𝑇([𝑧𝑧𝑧]) < 0,

ℋ ∶ 𝑇([𝑧𝑧𝑧]) ∼ {𝒩(𝐴, 𝜎 ) +𝒩(−𝐴, 𝜎 ), if 𝑇([𝑧𝑧𝑧]) ≥ 0,
0, if 𝑇([𝑧𝑧𝑧]) < 0,

(7.7)

where 𝐴 is now defined as

𝐴 = 111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧

√111�̃� 𝐶𝐶𝐶 111�̃�
(7.8)

From which we can derive formulations for 𝑃 and 𝑃 respectively as

𝑃 = 𝑄(𝛾 − 𝐴
√𝜎

) + 𝑄(𝛾 + 𝐴
√𝜎

) (7.9)

𝑃 = 2𝑄( 𝛾
√𝜎

) (7.10)

and upon substitution we get

𝑃 = 𝑄(𝑄 (𝑃 /2) − 𝐴
√𝜎

) + 𝑄(𝑄 (𝑃 /2) + 𝐴
√𝜎

) (7.11)

Hence our cost function for our optimization problem is defined as

𝑓 (111�̃�) =
|111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧|

√111�̃� 𝐶𝐶𝐶 111�̃�
(7.12)

with the same reasoning given as in chapter 4.
Similarly as in chapter 5, it is possible to use the Dinkelbach method for the relaxed formulation for our
cost function. To do so, we first square and rewrite the cost function, similar as in chapter 5, as

𝑓 (111�̃�) =
𝑇𝑟(111�̃�111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧𝑧𝑧𝑧 𝐶𝐶𝐶 )

𝑇𝑟(111�̃�111�̃�𝐶𝐶𝐶 )
(7.13)

and relax the denominator and nominator as follows

�̃� = 𝑇𝑟(𝑋𝑋𝑋 𝐶𝐶𝐶 𝑧𝑧𝑧𝑧𝑧𝑧 𝐶𝐶𝐶 )
𝑇𝑟(𝑋𝑋𝑋 𝐶𝐶𝐶 )

(7.14)

where the variable 𝑋𝑋𝑋 is the same variable as in chapter 5.2. The optimization problem is similarly
solved as in the algorithm in 1. The constraint set in the algorithm does not change for the colored
noise framework and thus will be the same as in (5.19).

7.1.2. Model 2 and 3
For M.2 and M.3 we get a similar optimization problem as in (4.49). In order to derive an expression for
𝑜𝑜𝑜, we first rewrite the MLE as

𝑜𝑜𝑜∗ = argmin ‖𝐷𝐷𝐷𝑧𝑧𝑧 −𝐷𝐷𝐷𝑜𝑜𝑜‖ (7.15)

where 𝐷𝐷𝐷 is defined as
𝐶𝐶𝐶 = 𝐷𝐷𝐷 𝐷𝐷𝐷 (7.16)

From this formulation, it is clear that our formulation for 𝑜𝑜𝑜 is derived as

𝐷𝐷𝐷𝑜𝑜𝑜 = 𝑑𝑖𝑎𝑔(111�̃�)𝐷𝑧𝑧𝑧 (7.17)
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thus
𝑜𝑜𝑜 = 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(111�̃�)𝐷𝑧𝑧𝑧 (7.18)

Now, substituting this formulation in the equation given in (7.3) we get the following test statistic function

𝑇(111�̃�) = 𝑧𝑧𝑧 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(111�̃�)𝐷𝐷𝐷𝑧𝑧𝑧 (7.19)

Which is a squared summation of prewhitened Gaussian data, i.e., 𝜒 distribution, for both hypotheses.

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝜒|{𝒜 }|
ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝜒|{𝒜 }|(𝜇)

(7.20)

For colored noise, 𝜇 is defined as

𝜇 = 𝑧
𝑧𝑧 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(111�̃�)𝐷𝐷𝐷𝑧𝑧𝑧

𝜎 (7.21)

From this, we can denote the detection and false alarm probabilities as

𝑃 = 𝑄(𝛾 )
|{𝒜 }|( ) (7.22)

𝑃 = 𝑄(𝛾 )
|{𝒜 }|

(7.23)

and substitution gives
𝑃 = 𝑄(𝑄 (𝑃 )

|𝒜|
)
|𝒜|( ) (7.24)

Now, we get a similar cost function as in (4.49) with a similar reasoning given for that cost function.

𝑓 (111�̃�) = 𝑓 (111�̃�) = 𝑧𝑧𝑧 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(111�̃�)𝐷𝐷𝐷𝑧𝑧𝑧 (7.25)

Where the optimization problem is solved for different values of the cardinality constraint. This cost
function can now be rewritten as

𝑓 (111�̃�) = 𝑓 (111�̃�) = 𝑇𝑟(𝐷𝐷𝐷𝑧𝑧𝑧𝑧𝑧𝑧 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(111�̃�)) (7.26)

From which we get the following relaxed cost function

�̃� = �̃� (𝑥𝑥𝑥) = 𝑇𝑟(𝐷𝐷𝐷𝑧𝑧𝑧𝑧𝑧𝑧 𝐷𝐷𝐷 𝑑𝑖𝑎𝑔(𝑥𝑥𝑥)) (7.27)

The variable 𝑥𝑥𝑥 is the same variable given in chapter 5.2.

7.2. Undermining the Current Framework
The focus in this thesis was put on the identification of the compromised nodes. This identification is
achieved by using the metrics that are provided in detection theory. We can re-motivate the usage of
these metrics such that a new optimization problem can be derived. The framework that is derived in
this thesis identifies the compromised nodes with the help of the maximization of the detection prob-
ability, 𝑃 . A motivation for the optimization of the detection probability was given in chapter 3.1. The
awareness of this framework by the malicious agents can lead to a behavior that is focused on under-
mining this framework.
In chapter 3.3, we explained how it is possible to steer a consensus based distributed network with
the help of an attacking schedule. Likewise, the agents can come up with a new adjusted attacking
schedule that will minimize the detection probabilitywhile there is still a non negligible or lowerbound of
influence on the network. From the formulations that is derived for the detection probability in chapter
4.3, we can see that they are dependent on the estimated energy of the outliers. A higher energy leads
to higher chances of being detected. Consequently, for the time varying models, the agents can lower
the risk of detection by adjusting the entries of 𝑧𝑧𝑧 = 𝑜𝑜𝑜 + 𝑛𝑛𝑛 such that the absolute values of the entries
corresponding to the compromised nodes are low compared with the clean nodes. The choice for the
outlying values, for the agents, boils then down to the consideration between the influence on the net-
work and risk of detection. A higher influence means a looser bound on the outlying values, which can
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result in higher chances of detection due to the possible higher energy input. For the identification of
the compromised nodes, an alternative optimization problem for M.2 must be formulated then:

min
,

𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(𝑥𝑥𝑥)𝑧𝑧𝑧
subject to 𝐵 (𝑥𝑥𝑥 ) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌,

𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽,
𝐾 (𝑥𝑥𝑥 ) ≥ 𝛿,
𝐷 (𝑥𝑥𝑥 ) ≥ 𝛼,
0 ≤ [𝑥𝑥𝑥 ] ≤ 1, ∶ ∀ 𝑖 ∈ {1, ...𝑁},
𝑥𝑥𝑥 = 𝑥𝑥𝑥 , ∶ ∀ 𝑖 ∈ {1, ....𝑇}

. (7.28)

Apart from the minimization of the cost function, we introduced a new constraint for the lowerbound of
the cardinality. Only an upperbound for the cardinality will give a trivial solution for 𝑥𝑥𝑥 in the form of
an all zero vector since that we are minimizing the total energy. Instead, we will solve the optimization
problem for different values of a lowerbound 𝛿. The complete algorithm will then be similar as the
algorithm derived in the algorithmic scheme of 3, the only difference is the above mentioned changes
in the optimization problem part of the algorithm. The different values obtained for the estimation of 111�̃�
can then be used in order to find the minimum of 𝑃 .
For M.3, the problem is almost similar. However, the malicious agents can be more specific now in
choosing the compromised nodes since that a higher freedom is acquired by the malicious agents.
Whereas in M.2 the agents can only adjust the values of the outliers, in M.3 the agents can also de-
termine which nodes to compromise on the basis of the observed signal values. Hence, it can be said
that the model of M.3 will be more effective in the undermining of the current framework:

min 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(𝑥𝑥𝑥)𝑧𝑧𝑧
subject to 𝐵 (𝑥𝑥𝑥 ) ≤ 𝜌 𝑜𝑟 𝐶 (𝑥𝑥𝑥 ) ≤ 𝜌, ∶ ∀ 𝑖 ∈ {1, ....𝑇},

𝐾 (𝑥𝑥𝑥 ) ≤ 𝛽, ∶ ∀ 𝑖 ∈ {1, ....𝑇},
𝐾 (𝑥𝑥𝑥 ) ≥ 𝛿, ∶ ∀ 𝑖 ∈ {1, ....𝑇},
𝐷 (𝑥𝑥𝑥 ) ≤ 𝛼, ∶ ∀ 𝑖 ∈ {1, ....𝑇},
0 ≤ [𝑥𝑥𝑥 ] ≤ 1 ∶ ∀ 𝑗 ∈ {1, ...𝑁} ∧ 𝑖 ∈ {1, ....𝑇}

. (7.29)

7.3. Combining Regression methods and Current Framework
Often, it is not possible to reformulate the problem of outlier detection as we did in chapter 4.1. This
means that the hypothesis testing problem will look as a classical outlier detection problem:

ℋ ∶ 𝑦𝑦𝑦 = 𝑠𝑠𝑠 +𝑛𝑛𝑛
ℋ ∶ 𝑦𝑦𝑦 = 𝑠𝑠𝑠 + 𝑜𝑜𝑜 +𝑛𝑛𝑛 (7.30)

By making use of the GLRT, a threshold function is derived that looks as follows:

𝑇(𝑦𝑦𝑦) = 𝑦𝑦𝑦 (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 )
ℋ
≷
ℋ
𝛾 (7.31)

Where 𝑠𝑠𝑠 stands for the estimated signal value forℋ , 𝑠𝑠𝑠 is the estimated signal value forℋ and 𝑜𝑜𝑜 is
the vector with estimated outlier values. Steps are provided in Appendix D.
The distribution of the threshold function is denoted as follows for both of the hypotheses:

ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝒩(𝑠𝑠𝑠 (𝑠𝑠𝑠 + 𝑜𝑜𝑜) − 𝑠𝑠𝑠 𝑠𝑠𝑠 , (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 ) (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 )𝜎 )
ℋ ∶ 𝑇(𝑧𝑧𝑧) ∼ 𝒩((𝑠𝑠𝑠 + 𝑜𝑜𝑜) (𝑠𝑠𝑠 + 𝑜𝑜𝑜) − 𝑠𝑠𝑠 (𝑠𝑠𝑠 + 𝑜𝑜𝑜), (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 ) (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 )𝜎 ) (7.32)

And also the 𝑃 and 𝑃 are formulated respectively as

𝑃 = 𝑄(𝜆 − ((𝑠
𝑠𝑠 + 𝑜𝑜𝑜) (𝑠𝑠𝑠 + 𝑜𝑜𝑜) − 𝑠𝑠𝑠 (𝑠𝑠𝑠 + 𝑜𝑜𝑜))

√(𝑠𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜)) (𝑠𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜))𝜎
) (7.33)

𝑃 = 𝑄( 𝜆 − (𝑠𝑠𝑠 (𝑠𝑠𝑠 + 𝑜𝑜𝑜) − 𝑠𝑠𝑠 𝑠𝑠𝑠 )
√(𝑠𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜)) (𝑠𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜))𝜎

) (7.34)
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Substitution gives:

𝑃 = 𝑄(𝑄 (𝑃 ) − √(𝑠
𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜)) (𝑠𝑠𝑠 − (𝑠𝑠𝑠 + 𝑜𝑜𝑜))

𝜎 ) (7.35)

Since that the GLRT requires a maximum likelihood estimation of the unknown parameters, we must
first estimate these parameters.

𝑠𝑠𝑠∗ = argmax𝑝(𝑦𝑦𝑦 = 𝑠𝑠𝑠 |𝑠𝑠𝑠 ) (7.36)

(𝑠𝑠𝑠∗ , 𝑜𝑜𝑜∗) = argmax
,

𝑝(𝑦𝑦𝑦 = 𝑠𝑠𝑠 + 𝑜𝑜𝑜|𝑠𝑠𝑠 ,𝑜𝑜𝑜) (7.37)

As it is mentioned before in this thesis, it is not possible to leverage the information regarding the support
of the outliers that needs to be estimated directly into an optimization problem for the estimation of the
maximum likelihood as:

min
,

‖𝑦𝑦𝑦 − 𝑠𝑠𝑠 − 𝑜𝑜𝑜‖
subject to 𝑠𝑠𝑠 ∈ 𝒞 ,

111𝒜 ∈ 𝒞,
(7.38)

Where 𝒞 is the constraint set for the signal that is related to the underlying structure of the network,
see chapter 1.
Instead, we propose an idea that will combine the framework provided in this thesis together with a
regression method. Hence, we will use our post and previous work as building blocks for the proposed
idea.

Firstly, we estimate the signal and the outliers without the information of the support set. Only a regres-
sion parameter is used for the tuning of the estimation.

(𝑜𝑜𝑜∗ , 𝑠𝑠𝑠∗) = argmin
𝒜

‖𝑦𝑦𝑦 − 𝑠𝑠𝑠 − 𝑜𝑜𝑜 ‖ + 𝜆 ‖𝑜𝑜𝑜 ‖

subject to 𝑠𝑠𝑠 ∈ 𝒞 ,
(7.39)

In equation (7.39), the Lasso based regression method is denoted. For a more refined regression
method we can also use the elastic net method, see chapter 4.2.
From the estimated outlier signal 𝑜𝑜𝑜 , we carry out a second maximum likelihood estimation where we
can now use the relaxations derived in chapter 5.2 in order to estimate the outliers together with the
information provided about the network structure.

(𝑜𝑜𝑜∗) = argmin
𝒜

‖𝑜𝑜𝑜∗ −𝑜𝑜𝑜‖

subject to 111𝒜 ∈ 𝒞,
(7.40)

Despite that we substitute now 𝑜𝑜𝑜 directly with an expression dependent on 111𝒜 and calculate the esti-
mation directly in equation (7.40), it is shown in section 4.4 that we will get the identical optimization
problem as for the matched filter that is derived in chapter 4.3 for all three models. Hence, the relax-
ations in chapter 5.2 are still applicable.
Alternatively, it is also possible to carry out the second optimization problem for 𝑦𝑦𝑦 − 𝑠𝑠𝑠∗ instead of 𝑜𝑜𝑜∗ ,
i.e.:

(𝑜𝑜𝑜∗) = argmin
𝒜

‖𝑦𝑦𝑦 − 𝑠𝑠𝑠∗ −𝑜𝑜𝑜‖

subject to 111𝒜 ∈ 𝒞,
, (7.41)

which should give a lower mean square error (MSE) then when we apply the optimization problem in
equation (7.40).
The total MSE is now equal to:

𝜖 = 1
𝑁 ‖𝑦𝑦𝑦 − 𝑠𝑠𝑠

∗ −𝑜𝑜𝑜∗‖ (7.42)

The main idea behind this method is that we can simulate values for the signal and outliers for varying
values of the regression parameter 𝜆. Thereby, we obtain a set of values for the signal and outliers
where we can choose the values that gives us the lowest 𝜖. The main disadvantage of this idea is the
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fact that we can not identify when the optimal 𝜖 is achieved. For example, starting with 𝜆 = 0, if we can
observe a trend where 𝜖 is decreasing for an increasing 𝜆 until a certain value for 𝜆, it is not guaranteed
that a minimum is reached for 𝜖. Instead, a further increase in 𝜆 can result in an unpredictable behavior
in terms of the trend of the 𝜖. However, we can know that after a certain value for 𝜆, the values that we
get for 𝑜𝑜𝑜 or 𝑦𝑦𝑦 − 𝑠𝑠𝑠∗ will result in a trivial vector very close to zero for the Lasso method (presumably,
also for the elastic net method). Hence, a further increase of 𝜆 will not give non-trivial values for 𝑜𝑜𝑜 .
Thus, by choosing a step value 𝛿, after a certain amount of steps for 𝜆, we can investigate which of
these values (from the set of estimated values for 𝑠𝑠𝑠 and 𝑜𝑜𝑜) will give us an optimal value for 𝜖.

In the next chapter, we will conclude our thesis by giving a brief summary over the thesis.



8
Conclusion

In this chapter we will briefly summarize the work that we have conducted throughout the thesis. Fur-
thermore, we will give a conclusion for our numerical findings and give a short explanation what the
future work incloses.

The scope of this thesis was to find a way for the detection of outliers while structure based information
about the network is utilized. In chapter 3, we showed how we can make use of detection theory for the
derivation and motivation of an optimization problem that will identify these outliers. Furthermore, for
the modeling of the outlying values, we proposed three different anomalous action models. All three
models provide a different optimization problem. Also in chapter 3, we provided a motivation for the
structuring to be used of these outliers over the network.

In chapter 4, we showed how we can exploit the data model such that the problem can be re-defined
as a structured signal detection problem. An explanation is also given about the shortcomings of the
classical regression methods that enforce sparsity. Finally, we derived the optimization problems for
all three outlier models.

In chapter 5, we showed how it is possible to convexify these optimization problems that are derived in
the previous chapter. Firstly, a relaxation is provided for the constraints. Secondly, a combination of
fractional programming and semidefinite relaxation is used for the cost function of M.1. Furthermore, a
simple linear relaxation is provided for M.2 and M.3.

Chapter 6 is dedicated to numerical experiments for the evaluation of the relaxation algorithms pro-
vided in the previous chapter. We explained why the empirical results for the ROC-curves do not
match the theoretical results. Furthermore, an explanation is also given for the varying cardinality val-
ues of the estimated nodeset and how these are related to the attack modes 𝑎 and 𝑏. An observation
is also made for the average error of the Lasso method and the provided framework. We observe that
the Lasso method gives a higher average error due to the lack of utilization of the network properties.
We also explained how the distribution of the outlier energy over the nodes affects the average error
together with the constraint set.

Finally, in chapter 7, two different ideas are proposed that can be considered for future research. These
ideas are related to the conducted work in this thesis. The first idea is based on reconsidering the us-
age of the metrics of detection theory. The second idea explains how a regression method can be
combined with the provided framework in order to solve the classical outlier detection problem while
the structure based information about the network is utilized.
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A
Model 1 Log-Likelihood Ratio Test

Derivation
First, we calculate 𝑐 by taking the derivative of the mean square error and forcing it to zero.

𝜕 ∑ [(𝑧𝑧𝑧 − 𝑐111�̃�)]
𝜕𝑐 = −2 ∑

∈𝒜, ∈ ,..
[(𝑧𝑧𝑧 − 𝑐111�̃�)] = 0 (A.1)

From which we get the following equation

∑
∈𝒜, ∈ ,..

[(𝑧𝑧𝑧 − 𝑐111�̃�)] = 111�̃� 𝑧𝑧𝑧 − 𝑐𝑇|𝒜| = 0 (A.2)

Thus 𝑐 can be formulated as:
𝑐 = 111�̃� 𝑧𝑧𝑧

|𝒜|(𝑇) (A.3)

Now, by using the standard derived notation for the Log-likelihood ratio for the classical white Gaussian
noise, signal detection problem(4.17). We get the following expression by substitution:

𝑇(𝑧𝑧𝑧) = 𝑐
𝜎 ∑

∈𝒜, ∈ ,..
[𝑧𝑧𝑧] [111�̃�] − 𝑐

2𝜎 ∑
∈𝒜, ∈ ,..

[111�̃�] (A.4)

Substituting 𝑐 with the derived equation:

𝑇(𝑧𝑧𝑧) = 1
𝜎

111�̃� 𝑧𝑧𝑧
|𝒜|(𝑇) ∑

∈𝒜, ∈ ,..
[𝑧𝑧𝑧] − 1

2𝜎 ( 1
11�̃� 𝑧𝑧𝑧
|𝒜|(𝑇)) ∑

∈𝒜, ∈ ,..
[111�̃�] (A.5)

This can be further simplified to:

𝑇(𝑧𝑧𝑧) = 1
𝜎
(111�̃� 𝑧𝑧𝑧)
|𝒜|(𝑇) −

1
2𝜎

(111�̃� 𝑧𝑧𝑧)
|𝒜|(𝑇) =

1
2𝜎

(111�̃� 𝑧𝑧𝑧)
|𝒜|(𝑇) (A.6)

Which gives the final simplification for 𝑇(𝑧𝑧𝑧):

𝑇(𝑧𝑧𝑧) = |𝑧𝑧𝑧 111�̃�|
√(𝑇)|𝒜|

≷ 𝛾 (A.7)
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B
Rounding Methods

Rounding algorithms, for all three rounding algorithms 𝒞 is defined as the ’hard’ constraint set. Fur-
thermore, the 𝐵𝑒𝑟𝑛(𝑥) operator returns the outcome of a Bernouille trial with a probability of 𝑥.

B.1. For Time-invariant attacks

Algorithm 4 Rounding Algorithm for M.1
1: Input: 𝑥𝑥𝑥 ∈ [0, 1]
2: output: 111∗𝒜
3: for l ←1 to c do
4: for j ←1 to N do
5: [𝑠𝑠𝑠 ] = 𝐵𝑒𝑟𝑛([𝑥𝑥𝑥 ] )
6: end for
7: 𝑠𝑠𝑠( ) is the stacking of 𝑇 amounts of the vector 𝑠𝑠𝑠
8: [𝑐𝑐𝑐] = ( )

‖ ‖
9: end for
10: 𝑆𝑆𝑆 is the matrix with columns 𝑠𝑠𝑠( ) for all 𝑙 ∈ {0, 1, 2, ...𝑐}
11: Sort the elements of 𝑐𝑐𝑐 in descending order.
12: Sort the columns of 𝑆𝑆𝑆 with the same order that is used to sort 𝑐𝑐𝑐.
13: hit=0
14: i=1
15: while hit=0 do
16: if [𝑆𝑆𝑆] ∗ ∈ 𝒞 then
17: hit=1
18: else
19: i=i+1
20: end if
21: end while
22: 111∗𝒜 is equal to the ’unstacked’ form of vector [𝑆𝑆𝑆] ∗
23: return 111∗𝒜
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74 B. Rounding Methods

B.2. For Time-variant attacks

Algorithm 5 Rounding Algorithm for M.2
1: Input: (𝑥𝑥𝑥 , 𝛽) ∶ 𝑥𝑥𝑥 ∈ [0, 1] , 𝛽 > 0
2: output: 111∗𝒜
3: 𝛽 is defined as the cardinality constraint for 𝒞 .
4: for l ←1 to c do
5: for j ←1 to N do
6: [𝑠𝑠𝑠 ] ∶= 𝐵𝑒𝑟𝑛([𝑥𝑥𝑥 ] )
7: end for
8: 𝑠𝑠𝑠 is the stacking of 𝑇 amounts of the vector 𝑠𝑠𝑠
9: [𝑐𝑐𝑐] ∶= 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(𝑠𝑠𝑠 )𝑧𝑧𝑧( )
10: end for
11: 𝑆𝑆𝑆 is the matrix with columns 𝑠𝑠𝑠 for all 𝑙 ∈ {0, 1, 2, ...𝑐}
12: Sort the elements of 𝑐𝑐𝑐 in descending order.
13: Sort the columns of 𝑆𝑆𝑆 with the same order that is used to sort 𝑐𝑐𝑐.
14: hit:=0
15: i:=1
16: while hit=0 do
17: if [𝑆𝑆𝑆] ∗ ∈ 𝒞 then
18: hit:=1
19: else
20: i:=i+1
21: end if
22: end while
23: 111∗𝒜 is equal to the ’unstacked’ form of vector [𝑆𝑆𝑆] ∗
24: return 111∗𝒜
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Algorithm 6 Rounding Algorithm for M.3
1: Input: (𝑥𝑥𝑥 , 𝛽, 𝑖) ∶ 𝑥𝑥𝑥 ∈ [0, 1] , 𝛽 > 0, 𝑖 ∈ {1, 2...𝑇}
2: output: 111∗𝒜
3: 𝛽 is defined as the cardinality constraint for 𝒞 and 𝑖 is the time.
4: for l ←1 to c do
5: for j ←1 to N do
6: [𝑠𝑠𝑠 ] ∶= 𝐵𝑒𝑟𝑛([𝑥𝑥𝑥] )
7: end for
8: [𝑐𝑐𝑐] ∶= 𝑧𝑧𝑧 𝑑𝑖𝑎𝑔(𝑠𝑠𝑠 )𝑧𝑧𝑧
9: end for
10: 𝑆𝑆𝑆 is the matrix with columns 𝑠𝑠𝑠 for all 𝑙 ∈ {0, 1, 2, ...𝑐}
11: Sort the elements of 𝑐𝑐𝑐 in descending order.
12: Sort the columns of 𝑆𝑆𝑆 with the same order that is used to sort 𝑐𝑐𝑐.
13: hit=0
14: i=1
15: while hit=0 do
16: if [𝑆𝑆𝑆] ∗ ∈ 𝒞 then
17: hit:=1
18: else
19: i:=i+1
20: end if
21: end while
22: 111∗𝒜 ∶= [𝑆𝑆𝑆] ∗
23: return 111∗𝒜





C
Explanation Of the Distributions For the

Lasso-based Method

For an unshifted 𝜒 distribution with degrees of freedom equal to 1, the pdf looks as follows.

Figure C.1: Unshifted distribution with

In case that we subtract a positive value from the distribution, the PDF will look as follows

77
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Figure C.2: Shifted distribution with

A shift to the left can be observed, i.e., 𝑓 (𝑇([𝑧𝑧𝑧] ) + ).
Now, when we use the (.) operator, the domain 𝑇([𝑧𝑧𝑧] ) < 0 only returns values that are equal to 0.
Thus, the probability for the occurrence of [ ] [ ] < 0, is ’added up’ to the probability that [ ] [ ] =
0, for ([ ] [ ]) = 0. The probability value of [ ] [ ] < 0 is calculated with help of the cumulative

distribution function (cdf), i.e., 𝐹 ( ).



D
Constraint Explanation For the

Derivation of Threshold Function In the
Future Work

By taking the log-likelihood of the ratio test, we get first

𝑇(𝑦𝑦𝑦) = (𝑦𝑦𝑦 − 𝑠𝑠𝑠 − 𝑜𝑜𝑜) (𝑦𝑦𝑦 − 𝑠𝑠𝑠 − 𝑜𝑜𝑜) − (𝑦𝑦𝑦 − 𝑠𝑠𝑠 ) (𝑦𝑦𝑦 − 𝑠𝑠𝑠 ) (D.1)

With the help of simplification we get:

𝑇(𝑦𝑦𝑦) = (𝑠𝑠𝑠 + 𝑜𝑜𝑜) (𝑠𝑠𝑠 + 𝑜𝑜𝑜) − (𝑠𝑠𝑠 ) (𝑠𝑠𝑠 ) − 2𝑦𝑦𝑦 (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 ) (D.2)

We can now simplify this expression so that all the terms that are not dependent on 𝑦𝑦𝑦 are dismissed

𝑇(𝑦𝑦𝑦) = 𝑦𝑦𝑦 (𝑠𝑠𝑠 + 𝑜𝑜𝑜 − 𝑠𝑠𝑠 ) (D.3)
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E
Model 1 Log-Likelihood Ratio Test

Derivation for colored noise
First, we calculate 𝑐 by taking the derivative of the mean square error and forcing it to zero.

𝜕(𝑦𝑦𝑦 − 𝑐111�̃�) 𝐶𝐶𝐶 (𝑦𝑦𝑦 − 𝑐111�̃�)
𝜕𝑐 = −𝑧𝑧𝑧 𝐶𝐶𝐶 111�̃� −111�̃�𝐶𝐶𝐶 𝑧𝑧𝑧 + 2𝑐111�̃�𝐶𝐶𝐶 111�̃� = 0 (E.1)

Thus 𝑐 can be formulated as:
𝑐 = 111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧

111�̃� 𝐶𝐶𝐶 111�̃�
(E.2)

Now, by using the standard derived notation for the Log-likelihood ratio for the classical white Gaussian
noise, signal detection problem(7.3). We get the following expression by substitution:

𝑇(𝑧𝑧𝑧( )) = 𝑐111�̃�𝐶𝐶𝐶( )𝑧𝑧𝑧 − 12𝑐111�̃� 𝐶𝐶𝐶( )𝑐111�̃� (E.3)

Substituting 𝑐 with the derived equation:

𝑇(𝑧𝑧𝑧( )) = 111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧
111�̃� 𝐶𝐶𝐶 111�̃�

111�̃�𝐶𝐶𝐶( )𝑧𝑧𝑧 − 12
111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧
111�̃� 𝐶𝐶𝐶 111�̃�

111�̃� 𝐶𝐶𝐶( ) 111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧
111�̃� 𝐶𝐶𝐶 111�̃�

111�̃� (E.4)

This can be further simplified to:

𝑇(𝑧𝑧𝑧( )) = (111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧)
111�̃� 𝐶𝐶𝐶 111�̃�

≷ 𝛾 (E.5)

And the final form is:

𝑇(𝑧𝑧𝑧( )) = |111�̃� 𝐶𝐶𝐶 𝑧𝑧𝑧|

√111�̃� 𝐶𝐶𝐶 111�̃�
≷ 𝛾 (E.6)
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