

Delft University of Technology

Guess What
Test Case Generation for Javascript with Unsupervised Probabilistic Type Inference
Stallenberg, Dimitri; Olsthoorn, Mitchell; Panichella, Annibale

DOI
10.1007/978-3-031-21251-2_5
Publication date
2022
Document Version
Final published version
Published in
Search-Based Software Engineering - 14th International Symposium, SSBSE 2022, Proceedings

Citation (APA)
Stallenberg, D., Olsthoorn, M., & Panichella, A. (2022). Guess What: Test Case Generation for Javascript
with Unsupervised Probabilistic Type Inference. In M. Papadakis, & S. R. Vergilio (Eds.), Search-Based
Software Engineering - 14th International Symposium, SSBSE 2022, Proceedings: 14th International
Symposium, SSBSE 2022, Proceedings (1 ed., pp. 67–82). (Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 13711 LNCS).
Springer. https://doi.org/10.1007/978-3-031-21251-2_5
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-21251-2_5
https://doi.org/10.1007/978-3-031-21251-2_5

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Guess What: Test Case Generation
for Javascript with Unsupervised

Probabilistic Type Inference

Dimitri Stallenberg, Mitchell Olsthoorn(B) , and Annibale Panichella

Delft University of Technology, Delft, The Netherlands
D.M.Stallenberg@student.tudelft.nl,

{M.J.G.Olsthoorn,A.Panichella}@tudelft.nl

Abstract. Search-based test case generation approaches make use of
static type information to determine which data types should be used
for the creation of new test cases. Dynamically typed languages like
JavaScript, however, do not have this type information. In this paper, we
propose an unsupervised probabilistic type inference approach to infer
data types within the test case generation process. We evaluated the
proposed approach on a benchmark of 98 units under test (i.e., exported
classes and functions) compared to random type sampling w.r.t. branch
coverage. Our results show that our type inference approach achieves a
statistically significant increase in 56% of the test files with up to 71%
of branch coverage compared to the baseline.

Keywords: Empirical software engineering · Search-based software
testing · Test case generation · Javascript · Type inference

1 Introduction

Over the last few decades, researchers have developed various techniques for
automating test case generation [31]. In particular, search-based approaches have
been shown to (1) achieve higher code coverage [25] and (2) have fewer smells [37]
compared to manually-written test cases, and (3) detect unknown bugs [1,2,21].
Furthermore, generated tests significantly reduce the time needed for testing and
debugging [42], and have been successfully used in industry (e.g., [3,11,30]).

These approaches make use of static type information to (1) generate prim-
itives and objects to pass to constructors and function calls, and (2) determine
which branch distance function to use. Without this type information, the test
case generation process has to randomly guess which types are compatible with
the parameter specification of the constructor or function call and would not have
guidance to solve the binary flag problem. This greatly increases the search space
and, therefore, makes the overall process less effective and efficient. Consequently,
most of the work in this research area has focused on statically-typed program-
ming languages like Java (e.g., EvoSuite [18]) and C (e.g., AUSTIN [26]).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Papadakis and S. R. Vergilio (Eds.): SSBSE 2022, LNCS 13711, pp. 67–82, 2022.
https://doi.org/10.1007/978-3-031-21251-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21251-2_5&domain=pdf
http://orcid.org/0000-0003-0551-6690
http://orcid.org/0000-0002-7395-3588
https://doi.org/10.1007/978-3-031-21251-2_5

68 D. Stallenberg et al.

Dynamically-typed programming languages introduce new challenges for
unit-level test case generation. As reported by Lukasczyk et al. [28], state-of-
the-art approaches used for statically-typed languages do not perform well on
Python programs when type information is not available. According to the survey
from Stack Overflow1, Python and JavaScript are the two most commonly-used
programming languages. Both languages are dynamically-typed, strengthening
the importance of addressing these open challenges with the goal of increasing
the adoption of test case generation tools in general.

In this paper, we focus on test case generation for JavaScript as, to the
best of our knowledge, this is a research gap in the literature. In building our
research, we build on top of the reported experience by Lukasczyk et al. [29]
for Python programs. They addressed the input type challenge by incorporating
Type4Py [32]—a deep neural network (DNN)—into the search process.

We propose a novel approach that incorporates unsupervised probabilistic
type inference into the search-based test case generation process to infer the type
information needed. An unsupervised type inference approach has two benefits
compared to a DNN: (1) it does not require a labeled dataset with extensive
training time, and (2) the model is explainable (i.e., the decision can be traced
back to a rule set). We build a prototype tool which implements the state-of-the-
art many-objective search algorithm, DynaMOSA, and the probabilistic type
inference model for JavaScript. We investigate two different strategies for incor-
porating the probabilistic model into the main loop of DynaMOSA, namely
proportional sampling and ranking.

To evaluate the performance of the proposed approach, we performed an
empirical study that investigates the baseline performance of our prototype (i.e.,
using random type sampling) and the impact of the unsupervised probabilistic
type inference w.r.t. branch coverage. To this aim, we constructed a bench-
mark consisting of 98 Units under Test (i.e., exported classes and functions) of
five popular open-source JavaScript projects, namely Commander.js, Express,
Moment.js, Javascript Algorithms, and Lodash.

Our results show that integrating unsupervised probabilistic type inference
improves branch coverage compared to random type sampling. Both the rank-
ing and proportional sampling strategies significantly increase the number of
branches covered by our approach (+9.3% and +12.6%, respectively). Out of
the two strategies, proportional sampling outperforms ranking in 20 cases and
loses in 4. In summary, we make the following contributions:

1. An unsupervised probabilistic type inference approach for search-based unit-
level test case generation of JavaScript programs.

2. A prototype tool for automatically generating JavaScript unit-level test cases
that incorporates this approach.2

3. A Benchmark consisting of 98 units under test from five popular open-source
JavaScript projects.

4. A full replication package containing the results and the analysis scripts [43].
1 https://survey.stackoverflow.co/2022/#most-popular-technologies-language.
2 https://github.com/syntest-framework/syntest-javascript.

https://survey.stackoverflow.co/2022/#most-popular-technologies-language
https://github.com/syntest-framework/syntest-javascript

Test Case Generation for Javascript 69

2 Background and Related Work

This section explains the background concepts and discusses the related work.

Test Case Generation. Writing test cases is an expensive, tedious, yet nec-
essary activity for software quality assurance. Hence, researchers have proposed
various techniques to semi-automate this process since the 1970s [15]. These
techniques include symbolic execution [10], random testing [14], and meta-
heuristics [31] (e.g., genetic algorithms). The latter category is often referred
to as search-based software testing (SBST). SBST techniques have been success-
fully used in the literature to automate the creation of test cases for different
testing levels [31], such as unit [19], integration [17], and system-level testing [6].
At unit-level, SBST techniques aim to generate test cases that optimize vari-
ous test adequacy criteria, such as e.g., structural coverage and mutation score.
Many different meta-heuristic search algorithms have been proposed over the
years (e.g., whole suite [20], MIO [5], MOSA [38], or DynaMOSA [39]). Recent
studies have shown that DynaMOSA is more effective and efficient than other
genetic algorithms for unit test generation of Java [12] and Python [28] programs.

Type Inference. A recent study by Gao et al. [22] showed that the lack of static
types within JavaScript leads to bugs that could have been easily identified with
a static type system. To combat this problem, various approaches have been
proposed to infer/predict types for generating type annotations or assertions.
Anderson et al. [4] proposed a formal approach for inferring types using con-
straint solvers based on a custom JavaScript-like language. Chandra et al. [13]
proposed a formal type inference approach for static compilation of JavaScript
programs. These approaches, however, only support a subset of the JavaScript
syntax and, therefore, will not work on all programs. JSNice [41] and Deep-
Typer [24] are two other approaches that train a model based on training data
and use it to predict future type information. These approaches have the short-
coming that they can only predict basic JavaScript types. Meaning that they are
unable to predict/assert user-defined types. Additionally, these approaches can-
not consider the context of the literals and objects within a program or function.
Type4Py [32] is a similar approach that uses a Deep Neural Network (DNN) to
infer types for Python projects and suffers from similar limitations.

Testing for JavaScript. JavaScript started out as a client-side programming
language for the browser. Most work related to testing for JavaScript is, there-
fore, also focused on web applications within the browser (e.g., [9,27,34,44]).
Existing client-side testing approaches either focus on specific subsystems such as
the browser’s event handling system [9,27] or the interaction of JavaScript with
the Document Object Model of the browser [34]. Nowadays, JavaScript is also
a very commonly-used language for back-end development on Node.js. Tanida
et al. [44] proposed a symbolic execution approach that uses a constraint solver
for input data generation. Other approaches focused on mutation testing [33] or
contract-based testing [23]. However, to the best of our knowledge, there exists
no approach for automatic unit-level test case generation for JavaScript.

70 D. Stallenberg et al.

Fig. 1. Extracting relations from code

3 Approach

This section details our test case generation approach for JavaScript programs
that relies on Unsupervised Type Inference. Our approach consists of three
phases, which are detailed in the next subsections.

3.1 Phase 1: Static Analysis

The first phase inspects the Subject Under Test (SUT) and its dependencies.
First, this phase builds the Abstract Syntax Trees (ASTs) and extracts all iden-
tifiers and literals from the code; these will be referred to as elements. Afterward,
the static analyzer extracts the relations between those elements and all user-
defined objects, i.e., classes, interfaces, or prototyped objects.

Elements. As mentioned before, the elements consist of identifiers and literals.
The former are the named references to variables, functions, and properties. The
latter are constant values assigned to variables; examples are strings, numbers,
and booleans. The types of the literal are straightforward and do not require
inference. However, the identifiers do not have explicit types in dynamically
typed languages like JavaScript. Hence, their types need to be inferred based on
the contextual information (or relations) of the extracted elements.

Relations. Relations correspond to operations performed on code elements and
describe how these elements are used and relate to other elements, providing
hints on their types. For example, let us consider the assignment relation L = R,
where R (right-hand element) is a boolean literal; we can logically derive (or
infer) that L (left-hand element) must also be a boolean variable.

These relations are extracted from the AST and are converted to a consistent
format that allows for easy identification of the relation type. Let us assume that
there is a lower than relation between variable a and literal 6, as shown in Fig. 1a
on line 2. This relation is converted and recorded as [L < R, a, 6], as shown in
Fig. 1b. In general, a relation is stored as a tuple containing (1) the type of
operation (L < R in our example) and (2) the list of operands (i.e., a and 6 in
our example). The full list of extracted relations for the code snippet in Fig. 1a
is reported in Fig. 1b.

Test Case Generation for Javascript 71

Fig. 2. Extracting relations from nested code

In total, we designed 75 possible relations based on the MDN web documen-
tation by Mozilla3. These operations/relations are classified into 15 categories,
namely (1) primary, (2) left-hand side, (3) increment/decrement, (4) unary, (5)
arithmetic, (6) relational, (7) equality, (8) bitwise shift, (9) binary bitwise, (10)
binary logical, (11) ternary, (12) optional chaining, (13) assignment, (14) comma,
and (15) function expressions. The complete list of relations is available in our
replication package.

Nested relations are special types of relations whose composing elements are
relations themselves. As an example, let us consider the code snippet in Fig. 2a.
The corresponding relation for the assignment is [L = R, x, y∗], where y* is an
artificial element that points to the whole right-hand side of the assignment.
This element corresponds to a ternary relation [C?L : R, z∗, 6, 10], which also
includes an artificial element, called z*, that points to the equality relation in
the conditional part of the ternary statement. So z* points to the final relation
[L == R, a, b]. Although the code in Fig. 2a seems rather simple, it corresponds
to three relations, two of which are nested, as shown in Fig. 2b.

Scopes. A critical aspect of the elements we have not yet discussed is scoping.
The scope of an identifier determines its accessibility. To better understand the
importance of the scope, let us consider the example in Fig. 3. First, the con-
stant x is assigned the value 5. The constant x is defined in the so-called global
scope. Next, a function is defined, creating a new scope. This scope has access
to references of the global scope. Still, it can also have its own references, which
are only available within its sub-scopes. In our example, another constant x is
defined within the function scope. Note that from line 4, every reference to x in
the scope of the function refers to the newly defined constant, not the x constant
of the global scope. This type of operation is called variable shadowing. In a nut-
shell, variable shadowing is when the code contains an identifier for which there
are multiple declarations in separate scopes. In these situations, the narrower
scope shadows the other identifier declarations.

This shadowing principle is fundamental during the first phase of our app-
roach because variables in the global scope are not the same variables as those
in the function scope (e.g., x in Fig. 3). In fact, variables with the same identifier
names but within different scopes can also have different types. In the example of
Fig. 3, x from the global scope is numerical, while the x from the function scope
is a string. In conclusion, the relations include the involved elements together
with their scope.

3 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators

72 D. Stallenberg et al.

Fig. 3. Scopes

Complex Objects. In JavaScript, objects are the building blocks of the lan-
guage and are stored as key-value pairs. Apart from primitive types like booleans
and numbers, almost everything is represented as an object. An array, for exam-
ple, is a special object where the keys are numbers. In recent JavaScript versions,
developers can define classes and interfaces through a prototype-based object
model, inducing a more object-oriented approach to JavaScript. Since these
objects play such a prominent role in JavaScript, it is important that object
types can be inferred as well. Hence, our approach extracts all object descrip-
tions available in the program under test, including class, interface definitions,
and standard objects (e.g., functions).

3.2 Phase 2: Unsupervised Static Type Inference

The second phase builds a probabilistic type model for the elements extracted
from the first phase. For literal elements, the type inference is straightforward as
the type can be directly inferred from the literal type. However, for non-literal
elements, our probabilistic model considers all type hints that can be inferred
from the relations extracted in the previous phase.

For example, the assignment x = 5 corresponds to the relation [L = R, x, 5].
From such a relation, we can derive that, at this particular point in the code, x
must be numerical since it is assigned the literal value 5. However, for statements
like x = y + z, there are various possibilities for the type of x depending the on
types of y and z. To illustrate, the + operator can be applied to both numbers
(arithmetic sum) and strings (string concatenation). Besides, in JavaScript, it is
also possible to concatenate numbers with strings. For example, 1 + "1" returns
the number 11. Therefore, multiple types can be assigned to elements that have
relations/operations compatible with multiple data types.

To account for this, our model assigns scores to each type depending on the
number of hints that can be derived for that type by its relations in the code. In
general, given the element e and the set of relations R = {r1, . . . rn} associated
to e as extracted from a program P , our model assigns each type t a score equal
to the number of relations that can be applied to t (i.e., the number of hints):

score(e, t) = |hints(e, t)| where hints(e, t) = {ri ∈ R : ri applies to t} (1)

Test Case Generation for Javascript 73

Finally, the element e has a probability of being assigned the type t propor-
tional to the number of hints received for t:

p(e, t) =
score(e, t)∑

ti

score(e, ti)
(2)

The higher the score of a particular type, the larger the probability that the
element is of that type. The probabilities are later used to sample argument
types in the search phase.

For example, let us consider the statement x = y + z, which can be applied
to both strings and numbers. In this case, our probabilistic model would assign
+1 hint for numbers and +1 hint for strings. Hence, both types will have an
equal probability of 50%.

Nested Types. The probability model takes into account both simple and
nested relations. For example, let us consider the JavaScript statement: c = a
> b. Such a statement corresponds to two relations (one of which is nested):
[L = R, c, d∗] and d∗ = [L > R, a, b]. The outcome for d∗ = [L > R, a, b] is
boolean no matter the types of a and b. Therefore, we can infer the variable
(or element) c should be as well. Hence, the hints and scores are obtained by
considering all relations, including the nested ones.

Resolving Complex Objects. Complex objects are characterized by property
accessor relations, i.e., operations that aim to access properties of certain objects
(e.g., using the dot notation object.property). If an element is involved in one
or more property accessor relations, the accessed properties are compared to
the available object descriptions. If there is an overlap between the element’s
properties and the properties of an object description, the object description
receives +1 hint. In addition to matching object descriptions, an anonymous
object type is created and assigned as a possible type. This anonymous object
type exactly matches the properties of the element. This object is used when no
other object matches are found.

3.3 Phase 3: Test Case Generation

The third phase generates test cases using meta-heuristics with the goal of
maximizing branch coverage. As explained in Sect. 2, we use the Dynamic
Many-Objective Sorting Algorithm (DynaMOSA) [39] as suggested in the lit-
erature [12,29,40]. Previous studies have shown that DynaMOSA outperforms
other meta-heuristics in unit test case generation for Java [12,40], python [29],
and solidity [36] programs. Assessing other meta-heuristics in the context of
unit test generations for JavaScript programs is part of our future agenda.

Our implementation applies the probabilistic model described in Sect. 3.2 to
determine what is the potential type of each input parameter. We have imple-
mented two different strategies to incorporate the type inference model into the
main DynaMOSA loop, namely proportional type sampling and ranking.

74 D. Stallenberg et al.

Table 1. Benchmark statistics

Benchmark #Units CC SLOC Avg. n. branches

Commander.js 4 23 208 29

Express 15 20 222 25

Moment.js 54 7 33 8

Javascript Algorithms 30 5 68 8

Lodash 10 11 63 16

Proportional Sampling. This strategy can assign various types to each input
parameter. As explained in Sect. 3.2, our model assigns scores to multiple types
(see Eq. (1)) based on the number of positive hints received by analyzing the
associated relations. When creating a new test case (either in the initial popula-
tion or during mutation), each input parameter is assigned one of the types. Each
candidate type has a probability of being selected equal to the value obtained by
applying Eq. (2). Notice that each data type is sampled for each newly generated
test case. Therefore, the same input parameter (for the same function) may be
assigned different types every time a new test case is created.

Ranking. This strategy assigns only one type to the input parameter. In partic-
ular, this strategy sorts all types with positive hints in descending order of their
score values. Then, this method selects the type with the largest probability (or
the largest number of hints).

Test Execution. Once generated, each generated test case will contain a
sequence of function calls with their input data. These tests are then executed
against the program under test, and the coverage information is stored. The
“fitness” of a test is measured according to its distance to cover all unreached
branches in the code, as typically done in DynaMOSA. The distance to each
uncovered branch is computed using two well-known coverage heuristics [31]: (1)
the approach level and (2) the normalized branch distance.

4 Empirical Study

To assess the impact of the unsupervised probabilistic type inference on the
performance of search-based unit test generation for JavaScript, we perform an
empirical evaluation to answer the following research questions:

RQ1 How does unsupervised static type inference impact structural coverage of
DynaMOSA for JavaScript?

RQ2 What is the best strategy to incorporate type inference in DynaMOSA?

Benchmark. To the best of our knowledge, there is no existing JavaScript
benchmark for unit-level test case generation. Hence, for our empirical study,

Test Case Generation for Javascript 75

we build a benchmark comprising of five JavaScript projects: Express4, Com-
mander.js5, Moment.js6, JavaScript Algorithms7, Lodash8. These projects were
selected based on their popularity in the JavaScript community (measured
through the number of stars on GitHub) and represent a diverse collection of
JavaScript syntax and code styles. From these projects, we selected a subset of
units (i.e., classes or functions) based on two criteria: (1) the unit has to be
testable (i.e., the unit has to be exported), and (2) the unit needs to be non-
trivial (i.e., have a Cyclomatic Complexity of CC ≥ 2 as calculated by Plato9).
The latter criterion is in line with existing guidelines for assessing test case gen-
eration tools [40]. Table 1 provides the main characteristics of our benchmark at
the project-level, including the average Cyclomatic Complexity per project (CC
column), the average Source Lines Of Code (SLOC column), and the average
number of branches. It is worth noting that some of the files in the selected
projects had to be excluded or modified. For example, in the Commander.js
project there are two files that contain statements that terminate the running
process. This has the effect of also terminating the test case generation process.
Therefore, we have excluded this file from the benchmark and modified it, so
that any other files depending on it will not be affected.

Prototype. To evaluate the proposed approach, we have developed a prototype
for unit-level test case generation that implements our unsupervised dynamic
type inference, written in Typescript. The prototype also implements the state-
of-the-art search algorithm for test case generation, namely DynaMOSA [39],
as well as the guiding heuristics [31], i.e., the approach level and branch distance.

Parameter Settings. For this study, we have chosen to mainly adopt the
default search algorithm parameter values as described in literature [39]. Pre-
vious studies have shown that although parameter tuning impacts the search
algorithm’s performance, the default parameter values provide reasonable and
acceptable results [8]. Hence, the search algorithm uses a single point crossover
with a crossover probability of 0.75, mutation with a probability of 1/n (n =
number of statements in the test case), and tournament selection. For the pop-
ulation size, however, we decided to deviate from the default (50). We went for
a size of 30 as our preliminary experiment showed this worked best for a bench-
mark this size. The search budget per unit under test is 60 s. This is a common
value used in related work [35].

Experimental Protocol. To answer RQ1, we compare the two variants of
our approach with DynaMOSA without type inference. In particular, for this
baseline, the type for the input data is randomly sampled among all types that
can be extracted using the relations described in Sect. 3.1. To answer RQ2, we

4 https://expressjs.com/.
5 https://tj.github.io/commander.js/.
6 https://momentjs.com/.
7 https://github.com/trekhleb/javascript-algorithms.
8 https://lodash.com/.
9 https://github.com/es-analysis/plato.

https://expressjs.com/
https://tj.github.io/commander.js/
https://momentjs.com/
https://github.com/trekhleb/javascript-algorithms
https://lodash.com/
https://github.com/es-analysis/plato

76 D. Stallenberg et al.

compare the two variants of our approach: (1) proportional type sampling, and
(2) ranking.

To account for the stochastic nature of the approach, each unit under test
was run 20 times. We performed 20 repetitions of 3 configurations (i.e., random
type sampling, ranking, and proportional sampling) on 98 units under test, for
a total of 5880 runs. This required (5880 runs × 60 s)/(60 s × 60 min × 24 h) ≈
4.1 d computation time. At the end of each run, we stored the maximum branch
coverage achieved by the approach for the active configuration (RQ1 and RQ2).
The experiment was performed on a system with an AMD Ryzen 9 3900X (12
cores 3.8 GHz) with 32 GB of RAM. Each experiment was given a maximum of
8 GB of RAM. To determine if one approach performs better than the others,
we applied the unpaired Wilcoxon signed-rank test [16] with a threshold of 0.05.
This non-parametric statistical test determines if two data distributions are sig-
nificantly different. In addition, we apply the Vargha-Delaney Â12 statistic [45]
to determine the effect size of the result, which determines the magnitude of the
difference between the two data distributions.

5 Results

This section discusses the results of our empirical study with the aim of answer-
ing the research questions formulated in Sect. 4. All differences in results are
presented in absolute differences (percentage points).

Result for RQ1: Structural Coverage. Table 2 summarizes the results
achieved by our approach on the benchmark with the winning configuration
highlighted in gray color. It shows the median branch coverage and the Inter-
Quartile-Range (IQR) for the two possible strategies to incorporate the type
inference model (Ranking, Proportional) and a baseline that uses random type
sampling (Random). The Units column indicates the number of units (i.e.,
exported classes and functions) that are tested in the file of the benchmark
project.

On average for all 57 files in the benchmark, random achieves 33.4% branch
coverage, ranking 42.7%, and proportional type sampling 46.0%. The baseline
still performs quite well, as random type sampling can be effective in triggering
assertion branches and can over time guess the correct types for primitives. For
the ranking strategy, the average improvement in branch coverage is 9.3%. The
file with the least improvement is suggestSimilar.js from the Commander.js
project with an average decrease of 13%. The file with the most improvement
is add-subtract.js from the Moment.js project with an average increase of
71%, which corresponds to 10 additionally covered branches. For the proportional
strategy, the average improvement in branch coverage is 12.6%. There are 24 files
for which the proportional strategy performs equally to the baseline. The file with
the most improvement is again add-subtract.js from the Moment.js project
with an average increase of 71%.

Table 3 shows the results of the statistical comparison between the two strate-
gies and the baseline, based on a p-value ≤ 0.05. #Win indicates the number of

Test Case Generation for Javascript 77

Table 2. Median branch coverage and the inter-quartile-range. The largest values are
highlighted in gray color.

Benchmark File Name #Units
Random Ranking Proportional

Median IQRMedian IQRMedian IQR

Commander.js help.js 1 0.20 0.0190.41 0.0760.53 0.023

option.js 2 0.33 0.0560.33 0.0560.39 0.000

suggestSimilar.js 1 0.69 0.0620.56 0.1560.75 0.062

Express application.js 1 0.63 0.0190.63 0.0190.65 0.019

query.js 1 0.67 0.0000.67 0.0000.67 0.000

request.js 1 0.25 0.0000.27 0.0230.25 0.023

response.js 1 0.14 0.0070.13 0.0130.14 0.013

utils.js 7 0.56 0.0070.62 0.0000.59 0.029

view.js 1 0.06 0.0000.06 0.0000.06 0.000

JS Algorithms Graph articulationPoints.js 1 0.00 0.0000.00 0.0000.08 0.000

bellmanFord.js 1 0.00 0.0000.17 0.0000.33 0.000

bfTravellingSalesman.js 1 0.00 0.0000.08 0.0000.08 0.000

breadthFirstSearch.js 1 0.12 0.1250.38 0.0310.31 0.125

depthFirstSearch.js 1 0.00 0.1670.00 0.1670.00 0.167

detectDirectedCycle.js 1 0.00 0.0000.12 0.0000.38 0.000

dijkstra.js 1 0.00 0.0000.10 0.0000.20 0.100

eulerianPath.js 1 0.00 0.0000.00 0.0000.21 0.000

floydWarshall.js 1 0.00 0.0000.67 0.0000.67 0.000

hamiltonianCycle.js 1 0.00 0.0000.00 0.0000.00 0.050

kruskal.js 1 0.10 0.1000.30 0.0000.30 0.000

prim.js 1 0.08 0.0000.08 0.0830.17 0.000

stronglyConnectedComponents.js 1 0.00 0.0000.00 0.0000.25 0.000

JS Algorithms KnapsackKnapsack.js 1 0.57 0.0000.50 0.0000.57 0.000

KnapsackItem.js 1 0.50 0.0000.50 0.0000.50 0.000

JS Algorithms Matrix Matrix.js 12 0.79 0.0530.74 0.0260.80 0.158

JS Algorithms Sort CountingSort.js 1 0.92 0.0830.92 0.0210.92 0.000

JS Algorithms Tree RedBlackTree.js 1 0.21 0.0000.26 0.0000.29 0.037

Lodash equalArrays.js 1 0.08 0.0000.67 0.0420.75 0.052

hasPath.js 1 0.75 0.1560.75 0.0000.88 0.250

random.js 1 1.00 0.0001.00 0.0001.00 0.000

result.js 1 0.90 0.1000.80 0.0000.90 0.100

slice.js 1 1.00 0.0001.00 0.0001.00 0.000

split.js 1 0.88 0.0000.88 0.0000.88 0.000

toNumber.js 1 0.60 0.0000.65 0.0000.65 0.050

transform.js 1 0.83 0.0000.83 0.0000.83 0.083

truncate.js 1 0.38 0.0000.59 0.0290.59 0.000

unzip.js 1 1.00 0.0001.00 0.0001.00 0.000

Moment.js add-subtract.js 1 0.00 0.0000.71 0.0180.71 0.000

calendar.js 2 0.05 0.0000.45 0.0910.43 0.091

check-overflow.js 1 0.05 0.0000.60 0.0000.60 0.000

compare.js 6 0.14 0.0000.14 0.0000.14 0.000

constructor.js 3 0.38 0.0000.53 0.0080.41 0.156

date-from-array.js 2 0.88 0.0000.88 0.0000.88 0.000

format.js 4 0.08 0.0000.08 0.0000.08 0.000

from-anything.js 2 0.68 0.0590.71 0.0000.69 0.037

from-array.js 1 0.02 0.0000.04 0.0000.04 0.000

from-object.js 1 0.50 0.0000.50 0.0000.50 0.000

from-string-and-array.js 1 0.00 0.0000.31 0.0000.31 0.000

from-string-and-format.js 1 0.06 0.0000.56 0.0390.55 0.133

from-string.js 3 0.06 0.0000.16 0.0000.16 0.000

get-set.js 5 0.14 0.0000.23 0.0450.36 0.068

locale.js 2 0.17 0.1670.17 0.0000.17 0.000

min-max.js 2 0.12 0.0000.12 0.0000.12 0.000

now.js 1 0.50 0.0000.50 0.0000.50 0.000

parsing-flags.js 1 0.50 0.0000.50 0.1250.50 0.000

start-end-of.js 2 0.10 0.0000.10 0.0000.10 0.000

valid.js 2 0.38 0.0000.38 0.0000.38 0.000

78 D. Stallenberg et al.

Table 3. Statistical results w.r.t. branch coverage

Comparison
#Win #No diff. #Lose

Negl. Small Medium Large Negl. Negl. Small Medium Large

Ranking vs. Random - 3 1 23 26 - 1 - 3

Prop. sampling vs. Random - 1 4 27 25 - - - -

Prop. sampling vs. Ranking - 4 - 16 33 - 3 1 -

times that the left configuration has a statistically significant improvement over
the right one. #No diff. indicates the number of times that there is no evidence
that the two competing configurations are different; #Lose indicates the number
of times that the left configuration has statistically worse results than the right
one. The #Win and #Lose columns also include the Â12 effect size, classified
into Small, Medium, Large, and Negligible.

We can see that the ranking and the proportional strategy have a statis-
tically significant non-negligible improvement over the baseline in 27 and 32
files for branch coverage, respectively. Ranking improves with a large magni-
tude for 23 classes, medium for 1 class, and small for 3 classes and proportional
with 27 (large), 4 (medium), and 1 (small). The Ranking strategy loses in four
cases when compared to the baseline: response.js, response.js, Knapsack.js,
Matrix.js, and results.js.

Result for RQ2: Strategy. When we compare the two different strategies
with each other, we can observe that the proportional type inference on aver-
age improves by 3.3% over the ranked strategy based on branch coverage.
The file with the least improvement is constructor.js from the Moment.js
project with an average decrease of 12%. While the file with the most improve-
ment is detectDirectedCycle.js from the JS Algorithms project with an
average increase of 36%. From Table 3, we can see that the proportional
strategy has a statistically significant non-negligible improvement over rank-
ing in 20 cases (16 large and 4 small). While ranking improves over propor-
tional in only 4 cases (1 medium and 3 small): slice.js, constructor.js,
from-string-and-format.js, and parsing-flags.js.

6 Threats to Validity

This section discusses the potential threats to the validity of our study.

External Validity: An important threat regards the generalizability of our
study. We selected five open-source projects based on their popularity in the
JavaScript community. The projects are diverse in terms of size, application
domain, purpose, syntax, and code style. Further experiments on a larger set of
projects would increase the confidence in the generalizability of our study and,
therefore, is part of our future work.

Conclusion Validity: Threats to conclusion validity are related to the ran-
domized nature of DynaMOSA. To minimize this risk, we have executed each

Test Case Generation for Javascript 79

configuration 20 times with different random seeds. We have followed the best
practices for running experiments with randomized algorithms as laid out in well-
established guidelines [7]. Additionally, we used the unpaired Wilcoxon signed-
rank test and the Vargha-Delaney Â12 effect size to assess the significance and
magnitude of our results. To ensure a controlled environment that provides a
fair evaluation, all experiments have been conducted on the same system and
interfering processes were kept to a minimum.

7 Conclusion and Future Work

In this paper, we presented an automated unit test generation approach for
JavaScript, the most popular dynamically-typed language. It generates unit-
level test cases by using the state-of-the-art meta-heuristic search algorithm
DynaMOSA and a novel unsupervised probabilistic type inference model. Our
results show that (1) the proposed approach can successfully generate test cases
for well-established libraries in JavaScript, and (2) the type inference model
plays a significant role in achieving larger code coverage (through proportional
sampling). As part of our future work, we plan (1) to extend our benchmark, (2)
to investigate more meta-heuristics, (3) assess different strategies to incorporate
the type inference model within the search process, and (4) compare our type
inference model to state-of-the-art deep learning approaches.

References

1. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing
autonomous cars for feature interaction failures using many-objective search. In:
2018 33rd IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 143–154 (2018)

2. Almasi, M.M., Hemmati, H., Fraser, G., Arcuri, A., Benefelds, J.: An industrial
evaluation of unit test generation: finding real faults in a financial application. In:
2017 IEEE/ACM 39th International Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP), pp. 263–272 (2017)

3. Alshahwan, N., et al.: Deploying search based software engineering with Sapienz
at Facebook. In: Colanzi, T.E., McMinn, P. (eds.) SSBSE 2018. LNCS, vol. 11036,
pp. 3–45. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99241-9 1

4. Anderson, C., Giannini, P., Drossopoulou, S.: Towards type inference for
JavaScript. In: Black, A.P. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 428–452.
Springer, Heidelberg (2005). https://doi.org/10.1007/11531142 19

5. Arcuri, A.: Test suite generation with the many independent objective (MIO) algo-
rithm. Inf. Softw. Technol. 104, 195–206 (2018)

6. Arcuri, A.: RESTful API automated test case generation with EvoMaster. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 28(1), 1–37 (2019)

7. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2014)

https://doi.org/10.1007/978-3-319-99241-9_1
https://doi.org/10.1007/11531142_19

80 D. Stallenberg et al.

8. Arcuri, A., Fraser, G.: Parameter tuning or default values? An empirical investi-
gation in search-based software engineering. Empir. Softw. Eng. 18(3), 594–623
(2013)

9. Artzi, S., Dolby, J., Jensen, S.H., Møller, A., Tip, F.: A framework for automated
testing of JavaScript web applications. In: Proceedings of the 33rd International
Conference on Software Engineering, pp. 571–580 (2011)

10. Baldoni, R., Coppa, E., D’elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. (CSUR) 51(3), 1–39 (2018)

11. Ben Abdessalem, R., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver
assistance systems using multi-objective search and neural networks. In: Proceed-
ings of the 31st IEEE/ACM International Conference on Automated Software
Engineering, pp. 63–74 (2016)

12. Campos, J., Ge, Y., Albunian, N., Fraser, G., Eler, M., Arcuri, A.: An empirical
evaluation of evolutionary algorithms for unit test suite generation. Inf. Softw.
Technol. 104, 207–235 (2018)

13. Chandra, S., et al.: Type inference for static compilation of JavaScript. ACM SIG-
PLAN Not. 51(10), 410–429 (2016)

14. Chen, T.Y., Leung, H., Mak, I.K.: Adaptive random testing. In: Maher, M.J. (ed.)
ASIAN 2004. LNCS, vol. 3321, pp. 320–329. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30502-6 23

15. Clarke, L.A.: A system to generate test data and symbolically execute programs.
IEEE Trans. Software Eng. 3, 215–222 (1976)

16. Conover, W.J.: Practical Nonparametric Statistics, vol. 350. Wiley, Hoboken (1998)
17. Derakhshanfar, P., Devroey, X., Panichella, A., Zaidman, A., van Deursen, A.:

Towards integration-level test case generation using call site information. arXiv
preprint arXiv:2001.04221 (2020)

18. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, pp. 416–419 (2011)

19. Fraser, G., Arcuri, A.: EvoSuite: automatic test suite generation for object-oriented
software. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering, ESEC/FSE 2011,
pp. 416–419. ACM, New York (2011). https://doi.org/10.1145/2025113.2025179

20. Fraser, G., Arcuri, A.: Whole test suite generation. IEEE Trans. Softw. Eng. 39(2),
276–291 (2012)

21. Fraser, G., Arcuri, A.: 1600 faults in 100 projects: automatically finding faults
while achieving high coverage with EvoSuite. Empir. Softw. Eng. 20(3), 611–639
(2015)

22. Gao, Z., Bird, C., Barr, E.T.: To type or not to type: quantifying detectable bugs
in JavaScript. In: 2017 IEEE/ACM 39th International Conference on Software
Engineering (ICSE), pp. 758–769 (2017)

23. Heidegger, P., Thiemann, P.: Contract-driven testing of JavaScript code. In: Vitek,
J. (ed.) TOOLS 2010. LNCS, vol. 6141, pp. 154–172. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13953-6 9

24. Hellendoorn, V.J., Bird, C., Barr, E.T., Allamanis, M.: Deep learning type infer-
ence. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing, pp. 152–162 (2018)

25. Kifetew, F., Devroey, X., Rueda, U.: Java unit testing tool competition-seventh
round. In: 2019 IEEE/ACM 12th International Workshop on Search-Based Soft-
ware Testing (SBST), pp. 15–20 (2019)

https://doi.org/10.1007/978-3-540-30502-6_23
https://doi.org/10.1007/978-3-540-30502-6_23
http://arxiv.org/abs/2001.04221
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1007/978-3-642-13953-6_9

Test Case Generation for Javascript 81

26. Lakhotia, K., Harman, M., Gross, H.: AUSTIN: an open source tool for search
based software testing of c programs. Inf. Softw. Technol. 55(1), 112–125 (2013)

27. Li, G., Andreasen, E., Ghosh, I.: SymJS: automatic symbolic testing of JavaScript
web applications. In: Proceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, pp. 449–459 (2014)

28. Lukasczyk, S., Kroiß, F., Fraser, G.: Automated unit test generation for Python. In:
Aleti, A., Panichella, A. (eds.) SSBSE 2020. LNCS, vol. 12420, pp. 9–24. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-59762-7 2

29. Lukasczyk, S., Kroiß, F., Fraser, G.: An empirical study of automated unit test
generation for python. arXiv preprint arXiv:2111.05003 (2021)

30. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann, T.: Automated test suite
generation for time-continuous simulink models. In: proceedings of the 38th Inter-
national Conference on Software Engineering, pp. 595–606 (2016)

31. McMinn, P.: Search-based software test data generation: a survey. Softw. Test.
Verif. Reliab. 14(2), 105–156 (2004)

32. Mir, A.M., Latoškinas, E., Proksch, S., Gousios, G.: Type4Py: practical deep sim-
ilarity learning-based type inference for Python. In: 2022 IEEE/ACM 44th Inter-
national Conference on Software Engineering (ICSE), pp. 2241–2252 (2022)

33. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: Efficient JavaScript mutation test-
ing. In: 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation, pp. 74–83 (2013)

34. Mirshokraie, S., Mesbah, A., Pattabiraman, K.: JSeft: automated JavaScript unit
test generation. In: 2015 IEEE 8th International Conference on Software Testing,
Verification and Validation (ICST), pp. 1–10 (2015)

35. Olsthoorn, M., van Deursen, A., Panichella, A.: Generating highly-structured input
data by combining search-based testing and grammar-based fuzzing. In: 2020 35th
IEEE/ACM International Conference on Automated Software Engineering (ASE),
pp. 1224–1228 (2020)

36. Olsthoorn, M., Stallenberg, D., van Deursen, A., Panichella, A.: SynTest-solidity:
automated test case generation and fuzzing for smart contracts. In: The 44th Inter-
national Conference on Software Engineering-Demonstration Track (2022)

37. Panichella, A., Panichella, S., Fraser, G., Sawant, A.A., Hellendoorn, V.: Test
smells 20 years later: detectability, validity, and reliability. Empir. Softw. Eng.
27(7) (2022). https://doi.org/10.1007/s10664-022-10207-5

38. Panichella, A., Kifetew, F.M., Tonella, P.: Reformulating branch coverage as a
many-objective optimization problem. In: 2015 IEEE 8th International Conference
on Software Testing, Verification and Validation (ICST), pp. 1–10 (2015)

39. Panichella, A., Kifetew, F.M., Tonella, P.: Automated test case generation as a
many-objective optimisation problem with dynamic selection of the targets. IEEE
Trans. Softw. Eng. 44(2), 122–158 (2017)

40. Panichella, A., Kifetew, F.M., Tonella, P.: A large scale empirical comparison of
state-of-the-art search-based test case generators. Inf. Softw. Technol. 104, 236–
256 (2018)

41. Raychev, V., Vechev, M., Krause, A.: Predicting program properties from “big
code”. ACM SIGPLAN Not. 50(1), 111–124 (2015)

42. Soltani, M., Panichella, A., Van Deursen, A.: Search-based crash reproduction and
its impact on debugging. IEEE Trans. Softw. Eng. 46(12), 1294–1317 (2018)

43. Stallenberg, D., Olsthoorn, M., Panichella, A.: Replication package of “guess what:
test case generation for Javascript with unsupervised probabilistic type inference”
(2022). https://doi.org/10.5281/zenodo.7088684

https://doi.org/10.1007/978-3-030-59762-7_2
http://arxiv.org/abs/2111.05003
https://doi.org/10.1007/s10664-022-10207-5
https://doi.org/10.5281/zenodo.7088684

82 D. Stallenberg et al.

44. Tanida, H., Uehara, T., Li, G., Ghosh, I.: Automated unit testing of JavaScript
code through symbolic executor SymJS. Int. J. Adv. Softw. 8(1), 146–155 (2015)

45. Vargha, A., Delaney, H.D.: A critique and improvement of the CL common lan-
guage effect size statistics of McGraw and Wong. J. Educ. Behav. Stati. 25(2),
101–132 (2000)

	Guess What: Test Case Generation for Javascript with Unsupervised Probabilistic Type Inference
	1 Introduction
	2 Background and Related Work
	3 Approach
	3.1 Phase 1: Static Analysis
	3.2 Phase 2: Unsupervised Static Type Inference
	3.3 Phase 3: Test Case Generation

	4 Empirical Study
	5 Results
	6 Threats to Validity
	7 Conclusion and Future Work
	References

