
A study on the application of two different acoustic analogies to
experimental PIV data

V. Koschatzky,a) J. Westerweel, and B. J. Boersma
Laboratory for Aero and Hydrodynamics, Delft University of Technology, Mekelweg 2-Delft,
Zuid-Holland 2628 CD, The Netherlands

(Received 15 December 2010; accepted 4 May 2011; published online 24 June 2011; publisher

error corrected 30 June 2011)

The aim of the present study is to compare two different acoustic analogies applied to time-

resolved particle image velocimetry (PIV) data for the prediction of the acoustic far-field generated

by the flow over a rectangular cavity. We consider the model problem of sound radiating from an

open, two-dimensional, shallow cavity with an aspect ratio of 2 at a Reynolds number of 3.0� 104

(based on the cavity length). The study is carried out by simultaneous high-speed two-dimensional

PIV and sound measurements. The instantaneous flow field is obtained from the PIV

measurements. The emitted sound is then calculated using Curle’s analogy and Vortex Sound

Theory. To our knowledge, Vortex Sound Theory is used here for the first time in combination

with time-resolved PIV data. The acoustic analogies are derived through rather different pathways,

and the mathematical schemes used to solve the equations are sensitive in a different way to factors

such as data resolution, noise level, and complexity of the geometry. Both methods indicate that the

trailing edge of the cavity is the main sound source. The predictions of the acoustic field obtained

by applying the two methods are analyzed and compared with the measured sound. For the

presented case, the results show that both analogies estimate the overall sound pressure level quite

well and that they give very similar results, both in total intensity and in the spectral distribution of

the emitted sound. VC 2011 American Institute of Physics. [doi:10.1063/1.3596730]

I. INTRODUCTION

Contemporary investigation of aeroacoustics is per-

formed by using both experimental and numerical studies.

The problem is rather complex: it usually involves multiple

physical processes; the governing equations are non linear;

there is a wide range of length scales to be considered

because of the separation between the flow and the acoustic

scales; high Reynolds and Mach numbers are often involved;

and the flow might occur in the proximity of solid surfaces

which are frequently geometrically complex. All the meth-

ods that have been developed are useful in providing impor-

tant insight into some specific aspects, but a general and

exhaustive technique able to solve various acoustic problems

is not yet available. It is therefore important to work on the

development of new techniques that can help in the study of

those problems that are difficult to approach with the estab-

lished methods. It is in this spirit, with the intention to cover

some of the open gaps, that the proposed methods are

investigated.

Traditional experimental investigation follows different

approaches. In industry, where the main focus is the localiza-

tion of the sound sources rather than the study of the physical

mechanisms of sound production, the main role is played by

surface pressure sensors and microphone measurements. The

most common use of microphones is beamforming (see

Dougherty1 for an overview of the method and the work of

Brooks and Humphreys2 for recent improvements): this is a

technique where the microphones are organized in large

arrays positioned in the acoustic far field. The phase shift in

the microphone signals permits to reconstruct the locations

where sound originates. Beamforming is a simple and rapid

measurement technique, which is able to locate the sound

sources and to follow their temporal evolution, but cannot

provide any information about the nature of the sound

source. In order to obtain this kind of information, the micro-

phone measurements in the propagation region are usually

performed in combination with flow measurements in the

source region (by means of laser doppler anemometry

(LDA), hot wire anemometry (HWA), and particle image

velocimetry (PIV)), for two points space-time correlation

studies (see the work of Henning et al.3,4 for some recent

results). Those studies can provide useful information, their

limitation lies in the need of anechoic facilities to be prop-

erly performed and on the choice of the flow quantity to be

used for the correlation that is not always well related with

the actual acoustic source. Computational studies for the

investigation of flow-generated sound follow two main

approaches (see Wang et al.5 and Colonius and Lele6 for a

complete review and analysis): a direct approach and an indi-

rect, or hybrid, approach. In the direct approach, the sound is

computed together with its fluid dynamic source field by

solving the compressible flow equations (for instance by

direct numerical simulation (DNS) or large eddy simulation

(LES)). This method avoids any modeling approximations of
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the radiated sound and, therefore, the solution is as close as

possible to the physical solution once the problem is well

posed in terms of resolution and boundary conditions,

aspects that are usually quite critical.5,7 Because of the ab-

sence of modeling, the direct computation approach by DNS

is essential for the generation of databases for developing and

evaluating sound prediction models. However, its high com-

putational cost limits its use to simple flow configurations at

low or moderate Reynolds numbers. In a hybrid approach, the

computation of the flow is decoupled from the computation of

the sound, which can be done in a post-processing step based

on an aeroacoustic theory (i.e. via integral methods, also

known as acoustic analogies, or by numerical methods such

as the linearized propagation equations). The advantage is

that the most appropriate method can be chosen for each of

the two steps, lowering the computational cost and, hence,

broadening the possible applications. On the other hand, this

approach is based on the fundamental assumption of the sepa-

ration between the flow and the acoustic scales.

Recent and fast developments in laser and camera tech-

nology have opened the way to new measurement

approaches for aeroacoustics that make it possible to use ve-

locity data fields, obtained from time-resolved experimental

PIV measurements, in the evaluation of acoustic sources.

This new methodology provides insight in the sound

sources that was previously not possible to achieve with the

established experimental methods. It also permits the experi-

mental investigation in those situations where other measure-

ments would not be possible, for example, in the presence of

a noisy environment or when a suitable anechoic tests facil-

ity is unavailable. In addition, it allows the estimation of the

acoustic emission, coupled to the proper acoustic model,

in the same fashion as done in hybrid computational

approaches. Compared to computational studies, the methods

proposed here have both advantages and disadvantages. The

temporal and spatial resolutions achievable by PIV, as well

as the size of the investigated domain, are currently still con-

siderably modest in comparison to what can be achieved

with computational fluid dynamics (CFD), which limits the

range of applications. On the other hand, the results are com-

puted from measured velocity fields rather than from simu-

lated ones. This allows the investigation of those cases for

which the numerical simulation of the flow field would be

difficult, because of the uncertainty in the definition of the

in-flow and out-flow conditions, or would be expensive, such

as high Reynolds number flows and wall-bounded flows over

complex geometries. Only recently, few researchers started

to investigate the potential of the combination of PIV and

acoustic models. Schram,8 for example, performed phase-

locked PIV measurements of a jet of which the periodicity

was acoustically triggered (pseudo-time-resolved measure-

ments). Later on, Haigermoser9 presented time-resolved PIV

measurements in combination with Curle’s analogy. Despite

its innovative character, the work of Haigermoser should be

considered as a preliminary study: the experiments were per-

formed in a water flow facility at a low free-stream velocity

(Re¼ 7.8� 103), such conditions are not representative of

those for significant acoustic noise generation. Furthermore,

his study did not provide any comparison of the estimated

sound emission with direct acoustic measurements. In a pre-

vious study,10 we performed combined PIV and acoustic

measurements using Curle’s analogy to compute the acoustic

pressure from the PIV data. The measurements were per-

formed in air and relatively high Reynolds numbers

(Re¼ 24� 103� 30� 103). The acoustic emission was sig-

nificant and allowed us to compare the acoustic emission

estimated from the PIV data with the sound directly meas-

ured by a set of microphones positioned in the acoustic far

field. We also performed a detailed analysis and validation

of some of the assumptions involved in the derivation of the

source term for Curle’s analogy, as well as in its application.

Moore et al.11 investigated the possibility of using spectral

methods for the computation of Curle’s analogy source term

and compared the solution with the results obtained from the

same data analyzed in the time domain. Recent reports,12–14

including a preliminary and partial description of the results

presented here,15 focus on the application of acoustic analo-

gies to PIV data showing the growing interest in this new

technique and pointing out the fact that many aspects still

need to be investigated and a number of issues need to be

clarified.

In the present study, we compare the application of two

different acoustic models to our PIV data: Curle’s analogy16

and the Vortex Sound Theory derived by Powell17 and devel-

oped by Howe,18 presented here for the first time in combi-

nation with the time-resolved PIV data. As a test case for the

comparison of the application of these two acoustic analo-

gies to experimental PIV data, we chose to study the flow

over a rectangular open19 cavity. This geometry is well

suited for the development and testing of this new experi-

mental technique for the study of aeroacoustics of wall-

bounded flows. It generates a strong periodic acoustic emis-

sion with large amplitude. Furthermore, the generation of

noise by flow over a rectangular cavity is a common bench-

mark problem for aeroacoustics, and it has been investigated

both experimentally and numerically over the last decades.20

Ahuja and Mendoza21 showed how the flow over open cav-

ities depend on multiple factors, such as the cavity geometry,

the free stream velocity, and the properties of the upstream

boundary layer. Gharib and Roshko22 identified different

flow regimes. In particular, they reported that, when the ratio

between the cavity length, L, and the boundary layer

momentum thickness, h, falls within certain values

(80� 100 hL=h i 120� 140 depending also on other parame-

ters), the flow passing over the cavity develops in what is

known as the “shear layer mode.” The shear layer separating

at the leading edge of the cavity develops into large-scale

coherent spanwise vortices. These vortical structures periodi-

cally impinge on the aft wall of the cavity, producing pres-

sure fluctuations that radiate acoustic waves and that

generate a self-sustaining oscillation mechanism. This mech-

anism has a double nature, i.e., acoustic and hydrodynamic.

Which one dominates depends on the wavelength of the per-

turbation and, therefore, on the flow speed and the character-

istic dimension of the cavity, i.e. the streamwise length of

the cavity. In low-speed flows, the cavity can be considered

as acoustically compact; its length is much smaller than the

acoustic wavelength. Therefore, the acoustic perturbation is
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not able to influence the flow behavior inside the cavity, and

hence the self-sustaining oscillation mechanism is purely

hydrodynamic. It consists of a recirculating vortex inside the

cavity that interacts with the shear layer were it enhances

and triggers its destabilization. The assumption of compact-

ness is fundamental in the use of acoustic analogies for the

prediction of the sound emission, since it permits to decouple

the acoustic features of the flow from the hydrodynamic

ones and, therefore, to solve an explicit problem. Rossiter23

proposed a semi-empirical formula to estimate the frequency

of the shear layer instability

St ¼ fL

U0

¼ m� c
1
k þMa

: (1)

Here, St is the Strouhal number, f is the frequency of the os-

cillation, L is the length of the cavity, U0 is the free-stream

velocity, Ma is the Mach number, k is the ratio between the

shear layer convection velocity, and the free-stream velocity,

n¼ 1,2,3,…, is the mode number, and c an empirical con-

stant that is set to 0.25. Equation (1) has been derived for

flows in which the feedback mechanism is of acoustic nature.

It does not provide accurate predictions for low Mach num-

bers (Ma< 0.2),24,25 where the flow can be regarded as

incompressible and the feedback mechanism is mainly

hydrodynamic. Studies at very low Mach number give

results that deviate significantly from Rossiter prediction,

showing at the same time a broad scattering of the Strouhal

number of the oscillation.25–27 In incompressible flows, the

frequency of the oscillation is governed by the convective

velocity of the vortices in the shear layer. The convective ve-

locity depends on the properties of the incoming boundary

layer, in particular, its momentum thickness. The Strouhal

number is commonly defined by the free-stream velocity

rather than the convective one, which may explain the scat-

tering of the results. The vorticity in the shear layer, trig-

gered by the mechanism described before, concentrates in an

integer number of discrete vortices along the cavity length.

The oscillation frequency is therefore simply given by

St ¼ fL

Uc
¼ n; (2)

where Uc is the shear layer convective velocity. In this case,

the hydrodynamic mode n is defined by the number of dis-

crete vortices along the cavity length and is proportional to

the inverse of the boundary layer momentum thickness.

II. METHODOLOGY

The study was carried out by means of combined high-

speed planar PIV imaging and sound measurements. We per-

formed measurements with a laminar boundary layer flow

approaching the cavity, at a free-stream velocity of 15 m=s

giving a Reynolds number of 30� 103, based on the cavity

length, L. For the investigated flow condition, the ratio

between the length of the cavity and the boundary layer mo-

mentum thickness (determined from the velocity profile that

was measured by traversing a hot wire anemometer) was

L=h¼ 112. At this condition, the flow passing over the cav-

ity induces the “shear layer mode” described in the introduc-

tion. Measurements were conducted in the vertical open-jet

wind tunnel of the Low-speed Aerodynamics Laboratories of

the Aerospace Department at the Delft University of Tech-

nology. The cavity was machined in a flat plate and posi-

tioned in the test section aligned with the flow. Figure 1

shows a schematic representation of the experimental config-

uration including the dimensions of the cavity. The cavity

had a width of 600 mm, spanning the full width of the tunnel

and giving a width to length ratio of W=L¼ 20. Details of

the measurements and the experimental conditions are given

elsewhere.10

A. PIV and microphones

The PIV system consisted of a 12-bit 1024� 1024 pixels

camera (Photron FastCAM A1S), used at a image format of

512� 1024 pixels to allow an increase of the frame rate that

matches the minimum required frame rate to resolve the

FIG. 1. (Color online) Photo and schematic of the experimental setup.
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time-dependent flow, and a dual-cavity pulsed Nd:YLF laser

(New Wave Pegasus). The flow was seeded by means of a

stage smoke generator (Safex) that produces particles of

approximately 1 lm in diameter. PIV image pairs were

acquired at a frequency of 3 kHz with a time delay of 65 ls

between the first and second frame. This time delay was cho-

sen as an optimum between two opposing demands: it allows

enough particle-image displacement between the two frames

in the slower regions of our flow inside the cavity (in the

order of 2–3 pixels) while keeping it within reasonable limits

in the regions with a faster flow (typically 16 pixels in the

free-stream area). The laser sheet was estimated to be

approximately 1 mm thick, which was determined by projec-

tion onto a millimetric scale. This is comparable to the in-

plane dimension of our final PIV interrogation window. Data

were processed using a multi-pass algorithm.28 Window de-

formation29 was also applied to accommodate the large spa-

tial dynamic range of the flow. The interrogation windows

were placed in such a way that their boundaries coincided

with the walls of the cavity. The distance between the cavity

walls and the location of the first vector is therefore half the

size of an interrogation window. The final passes in all

domains were done with square interrogation windows of

16� 16 pixels with a 50% overlap, giving a vector spacing

of 0.48 mm throughout the entire measurement domain.

The emitted sound was recorded with 4 microphones

(Sonion serie8000) positioned 0.5 m above the cavity lid

plane. The sound pressure was acquired at a frequency of

100 kHz during the acquisition of the PIV data. The analog

microphone signals where amplified in order to get an opti-

mum signal dynamic range. The microphones were then

calibrated a posteriori by comparison with a calibrated

microphone (CESVA P-05) that was exposed together with

the other microphones used in the measurement (including

the analog signal amplifiers) to the same acoustic field. This

field was generated by a signal generator unit and a loud-

speaker. We performed measurements for a wide range of

amplitudes and frequencies. As specified by the manufac-

turer of the microphones, the amplitude response appeared to

be independent of the frequency within our measurement

range (from 100 Hz to 8 kHz). The conversion from electric

signal (in volts) to pressure (in pascal) appeared to be given

by a linear relation (with a linear regression coefficient, R2,

that is, better than 0.99) and with a zero offset, i.e., the con-

version reduces to a single gain coefficient. For further

details about the experimental setup, we refer to the paper by

Koschatzky et al.10

B. Acoustic analogies

The emitted sound was computed using both Curle’s

analogy and Vortex Sound Theory. Both methods were

derived from the compressible Navier-Stokes equations rear-

ranged into two different forms of an inhomogeneous wave

equation. The compactness assumption made it possible to

decouple the acoustic features of the flow from the hydrody-

namic ones. Consequently, the acoustic variable and the

source term in the wave equation could be regarded as inde-

pendent, and the problem could be solved explicitly.

In both methods, we took into account the presence of

the non-compact wall, in which the cavity was present, by

using the image principle in the derivation of the solution.

Many studies, both experimental9,10 and numerical,30,31

make the simple assumption that it is possible to limit the

computation to the source area (in our case, a cavity) and its

nearest surroundings. This is because the measured source

term appears to decay rapidly away from the source region.

In a previous study,10 we made the same assumption and

computed the acoustic pressure fluctuation level in the far

field using Eq. (4), in which the surface integral was

extended from the cavity to the boundaries of the PIV

measurement domain. The pressure fluctuations were win-

dowed,10 when approaching the boundaries, to avoid errone-

ous sources due to sharp truncations at the edges of the

integration domain. This approach is in general easy to

implement and gives reasonably accurate results, but it

ignores parts of the solid walls in the far field region where

the compactness assumption no longer holds. Even though

the source region is compact, the solid body in its proximity

is not. Hence, an unknown and potentially significant contri-

bution to the surface integral from the acoustic pressure fluc-

tuation is neglected. Taking into account the presence of a

non-compact surface near the compact source of sound is

usually not straightforward, since the compactness assump-

tion needs to be given up and the problem becomes explicit.

For the particular case of large planar and rigid surfaces, the

problem is rather simple, since the image principle can be

applied.

The flow under investigation is characterized by the per-

iodic shedding of large structures in the shear layer (the

“shear layer mode” described in the introduction). It is well

known that these structures are coherent over large distances

in the spanwise direction. Recent measurements10 on this

configuration confirmed this. The emitted sound is produced

by the unsteady motions of the flow. In particular, at the

Mach number under consideration, the only significant con-

tribution comes from the interaction of the turbulent struc-

tures with the solid boundaries of the cavity.16 The largest

portion of the emitted sound is due to the large spanwise-

coherent structures in the shear layer that produce high inten-

sity tonal sound emissions; the three-dimensional turbulent

fluctuations that are superimposed on the two-dimensional

periodic flow contribute to the broadband sound spectrum

with a much lower intensity, which adds little to the overall

sound emission. The results presented here are computed

from velocity fields obtained by planar PIV measurements in

a streamwise-normal plane. We therefore cannot include any

source terms that are based on a contribution of velocity fluc-

tuations in the out-of-plane direction. We compute the flow

as a completely two-dimensional flow. At the same time, we

approximate the radiation of the sound from the whole cavity

by using a single middle plane. It is assumed that the cavity

is radiating coherently along the spanwise direction. Both

approximations are acceptable, given the large spanwise-

coherent structures that are responsible for most of the sound

emission. However, the assumptions are not valid for the

smaller non-coherent structures that are present in the flow.

The effect of these assumptions on the final result is two-
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fold: the broadband sound spectrum is underestimated by

considering only a part of the total turbulence in the calcula-

tion of the sound source terms, while on the other hand, it

tends to be overestimated by considering every fluctuation as

coherent in the spanwise direction as they become smaller.

We expect the effects to become more significant at higher

frequencies, since we conjecture that the turbulent structures

are less coherent in the spanwise direction, the smaller they

are. In the end, the broadband contribution to the overall

sound emission is very small compared to the tonal compo-

nent, and therefore we anticipate that the final result is not

significantly affected by our assumptions.

Figure 2 summarizes the coordinate system and notation

used in the analogies: y is the source location, x is the listener

location, and �x ¼ ðx1; �x2; x3Þ is its image on the opposite

side of the wall. Subscripts i¼ 1, 2, and 3 refer to the stream-

wise, normal, and spanwise directions, respectively. The

assumption of a listener positioned in the far field implies that

jxj ! 1 and xj j � yj j. The assumption of compactness

implies that l� k, where l is the typical source dimension

and k the characteristic wavelength of the emitted sound.

Under both assumptions, it follows that jyj� l and k �jxj.

1. Curle’s analogy

We first considered Curle’s analogy16 for the computa-

tion of the acoustic pressure from the PIV data. Curle’s

acoustic analogy derives from Lighthill’s analogy,32 where

the chosen acoustic variable is the perturbation density

q� q0. In case of stationary and rigid bodies, Curle’s anal-

ogy takes the form

a2
0ðq� q0Þ ¼

@2

@xi@xj

ð
V

Tij

� � d3y

4pjx� yj

� @

@xi

þ
S

ðp� p0Þdij � rij

� � dSjðyÞ
4pjx� yj ; (3)

where a0 is the speed of sound, (q�q0) is the fluctuating fluid

density, V is the source region volume, Tij is the Lighthill

stress tensor, jx� yj is the distance between the source and

the listener positions, Sj is the surface of the rigid body with

the normal pointing into the flow region in the j-th direction,

(p� p0) is the fluctuating pressure at the surface, and rij is

the viscous stress tensor. The terms in the square brackets in

Eq. (3) need to be evaluated at the retarded time,

t� jx� yj=a0. At low Mach number, the perturbation pres-

sure can be expressed as p� p0 ¼ ðq� q0Þa2
0. Under the

same assumption, in high Reynolds numbers flows and for lis-

teners positioned in the far field, Curle’s equation can be fur-

ther simplified: the volume integral can be ignored, as well as

the viscous terms, and a far-field approximation can be

adopted. It is also convenient to replace the spatial derivative

@=@xj with the temporal derivative @=@t. One thus obtains

pðx;tÞ�p0¼
xi

4pa0jxj2
@

@tþ
S

ðp�p0Þ y;t�jxj
a0

þ x	y
a0jxj
þO

jyj
jxj

� �2
 !

dSiðyÞ:

(4)

Under the assumption of a listener positioned in the far field

region, the terms of order O jyj
jxj

� �2

and higher can be safely

ignored. To take into account the presence of the non-com-

pact wall that contains the cavity we followed the approach

introduced by Powell;33 we applied Curle’s solution both at

the observer point x and at its image �x on the opposite side

of the wall,

pðx; tÞ � p0 ¼
xi

4pa0jxj2
@

@tþ
S

ðp� p0Þ y; t� jxj
a0

þ x 	 y
a0jxj

� �
dSiðyÞ (5)

in the far field and

0 ¼ �xi

4pa0jxj2
@

@t

þ
S

ðp� p0Þ y; t� j�xj
a0

þ �x 	 y
a0jxj

� �
dSiðyÞ (6)

at the image location. The two solutions were then added to-

gether. If the cavity can be considered as acoustically com-

pact, it is possible to safely discard the retarded time

variations
x	y

a0jxj and
�x	y

a0jxj for the sound sources within the cav-

ity region. These must be retained along the non-compact

walls before and after the cavity. With x¼ (x1,x2,x3),

�x ¼ ðx1; �x2; x3Þ, and j�xj ¼ jxj, it follows that the contribu-

tion to the sound emission from pressure fluctuations at walls

with the normal pointing in the i¼ 2 direction cancels out. In

contrast, the terms for the walls with the normal pointing in

the i¼ 1 and i¼ 3 directions contribute with a double inten-

sity of that in the free-space solution. This means that the

walls upfront and after the cavity and the bottom of the cav-

ity are “silent,” and the sound is produced only by pressure

fluctuations at the vertical walls of the cavity. Curle’s equa-

tion then takes the form

pðx; tÞ � p0 ¼
xi

2pa0jxj2
ð

S

@p

@t
y; t� jxj

a0

� �
dSiðyÞ; (7)

where i¼ 1,3. In the derivation of Eq. (7), we moved the

time derivative inside the integration. This choice was

FIG. 2. Coordinate system and notation used in this paper. y is the source

location, x is the listener location, and �x ¼ ðx1;�x2; x3Þ is its image on the

opposite side of the wall.
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imposed by the method with which the time derivatives were

computed and that will be explained in the next paragraph.

The index i is in the principle either 1 or 3, but in the present

experimental configuration, there are no walls with a normal

component in the i¼ 3 direction. Therefore, the index to con-

sider here is in practice just i¼ 1. Equation (7) relates the

acoustic pressure at the listener position, x, to a surface inte-

gral of the time derivative of the hydrodynamic wall pres-

sure. The integral is limited to the vertical walls of the cavity

and needs to be evaluated at a retarded time that takes into

account the distance between the source and the listener

position.

To compute the pressure and its time derivative at the

walls, we solved a Poisson equation for the pressure derived

from the momentum equation. The viscous terms were

ignored because of the relatively high Reynolds of the flow

under consideration (see Liu and Katz34 and Koschatzky et
al.10). The Poisson equation for the pressure is

r2p ¼ �q0r 	
Du

Dt

� �
; (8)

where p is the pressure, q0 is the fluid density, and u is the

velocity vector field. As explained earlier in this section, to-

gether with the implications of such an approximation, only

the streamwise and normal velocity components are avail-

able. Therefore, the flow is treated as two-dimensional. Neu-

mann and Dirichlet boundary conditions were applied at the

boundaries of the domain

@p

@y1

¼ �q0

Du1

Dt
; on y1 ¼ constant boundaries;

@p

@y2

¼ �q0

Du2

Dt
; on y2 ¼ constant boundaries;

p ¼ 1

2
q0 U2

0 � u2
� 	

; at the upper boundary of the domain;

8>>>>><
>>>>>:

(9)

where y1 and y2 are the in-plane coordinate directions (see

Figure 2 for the definition of the coordinate reference sys-

tem), and u1 and u2 are the corresponding velocity compo-

nents. A validation of the pressure reconstruction by means

of a comparison with wall-pressure measurements is pro-

vided by Koschatzky et al.10

The velocity material derivatives are computed directly,

using the method proposed by Liu and Katz34 and further

developed by Moore et al.11 The method consists of the eval-

uation of the total derivative of the velocity by tracking a

fluid parcel by means of a Lagrangian approach, under the

assumption of Taylor’s hypothesis of frozen turbulence. This

is permitted, since the characteristic fluctuations of the flow

are small with respect to the characteristic velocity of the

mean recirculating flow in the cavity, and therefore the larger

structures, which are primarily responsible for the total

sound emission, convect without much deformation within

the duration of our acquisition. This approach was necessary

due to the relatively large time steps between PIV snapshots,

which did not allow for a correct computation of time deriva-

tives when done in the conventional Eulerian way. Figure

3(a) shows a region of the flow close to the trailing upper

corner of the cavity. The instantaneous vector field is dis-

played together with the backward and forward paths for one

vector and the corresponding positions and velocity vectors

at the previous and subsequent time steps. These were com-

puted by subdividing the time interval between subsequent

time steps in smaller sub-steps, by interpolating the veloc-

ities field at the sub-steps, and by computing the displace-

ment for every vector location during the sub-steps. Figure

3(b) shows the statistical correlation between the velocity

magnitude field, U, at a certain time steps and the velocity

magnitude field obtain by computing the path from the previ-

ous time step, Ups, over the whole data set. Data are normal-

ized by the free-stream velocity, U0. It can be seen that the

localization of the displacement is extremely accurate allow-

ing for a correct computation of the velocity material deriva-

tive using a central differences scheme. The pressure

material derivative is computed in the same way as the ve-

locity material derivatives, and the pressure time derivative

is simply obtained by

@p

@t
¼ Dp

Dt
� u 	 rp: (10)

For further details on the computation of the pressure and of

the pressure time derivative, we refer to a paper by

Koschatzky et al.10

2. Vortex Sound Theory

Powell17 derived a different form of Lighthill’s analogy by

considering the total enthalpy, B, instead of the fluid density, q,

as the acoustic variable. Howe18 generalized Powell theory,

extending its application to wall bounded flows. At low Mach

number and in the far field, the acoustic pressure p� p0 can be

expressed in terms of the total enthalpy B as p� p0¼q0B. It is

therefore possible to solve the acoustic equation for the pertur-

bation pressure by means of a Green’s function in a similar

way as done in the derivation of Curle’s analogy. The main dif-

ference is that, while in the derivation of Curle’s analogy, the

solution was found in free space and the solid body with its

boundaries was introduced successively (leading to a surface

integral term), here the presence of the solid boundary is a part

of the wave equation solution itself, since we used a Green’s

function tailored to the cavity geometry. Under the same

assumptions made in the derivation of Curle’s analogy, i.e. of a

stationary and rigid body and of a low Mach and high Reynolds

numbers flow, it can be found that18

pðx; tÞ � p0 ¼ �q0

ðþ1
�1

ð
V

x� uð Þ y; sð ÞrG x; y; t� sð ÞdVds:

(11)

In Eq. (11), q is the fluid density, x� u is the Lamb vector,

i.e. the cross product of vorticity x and velocity u, and rG
is the gradient of the Green’s function with respect to y. In

the derivation of the tailored Green’s function, as for Curle’s

analogy, we took into account the presence of the non-com-

pact wall in which the cavity was located. We did this by

considering the Green’s function solution for a flat plate,

derived by means of the image principle (Eq. (12)) and by
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expanding this solution to first order in y near the cavity (Eq.

(13)), i.e. correcting to dipole order:18

Gðx; y; t� sÞ ¼ 1

4pjx� yj d t� s� jx� yj
a0

� �

þ 1

4pj�x� yj d t� s� j�x� yj
a0

� �
(12)

¼ 1

4pjxj 2d t� s� jxj
a0

� �


þðxþ �xÞ 	 y
a0jxj

d0 t� s� jxj
a0

� ��
þ O

jyj
jxj

� �2

:

(13)

As for Curle’s analogy, under the far field assumption, the-

terms of order O jyj
jxj

� �2

and higher can be safely ignored.

We then tailor the Green’s function on the cavity geometry

in such a way that its normal derivatives as a function of y

vanish at the walls. For a compact source such as our cavity,

this is easily done by correcting in Eq. (13) the term

ðxþ �xÞ 	 y with ðxþ �xÞ 	 Y 
 2x 	 Y: (14)

The term Y is the Kirchhoff vector for the body. To this

order of approximation, the components Yi of the Kirchhoff

vector satisfy the Laplace equation r2Yi¼ 0, with

@Yi=@yn¼ 0 at the surface of the body, fulfilling the bound-

ary conditions of the Green’s function in the presence of a

solid body. For a detailed interpretation of Y, we refer to the

work of Howe.18,35 The Green’s function (13) then becomes

Gðx; y; t� sÞ ¼ 1

2pjxj d t� s� jxj
a0

� �


þ xiYi

a0jxj
d0 t� s� jxj

a0

� ��
; (15)

and therefore the gradient rG of the Green’s function with

respect to y is

rGðx; y; t� sÞ ¼ xi

2pjxj2
rYid

0 t� s� jxj
a0

� �
; (16)

since Y is the only term that is a function of y. Equation (11)

then finally takes the form

pðx; tÞ � p0 ¼ �
q0xi

2pa0jxj2
ð

V

@

@t

�
ðx� uÞ 	 rYiðyÞ

�
 �
dVðyÞ;

(17)

with i¼ 1,3. As for Curle’s analogy, i is either 1 or 3. The

components Yi can be interpreted as the velocity potentials

of an incompressible flow past the cavity, having unit speed

in the i-th direction at large distances from the cavity. Since

jrY3 yð Þj � jrY1 yð Þj, we consider only i¼ 1. Y1 is found

by conformal mapping of the region above the cavity cross-

section on a half plane,36 where the solution for the velocity

potential is straightforward. In particular, the Schwarz-Chris-

toffel transformation states that

Y1ðyÞ ¼ <
Lk

2EðkÞ nðyÞ
� �

and y ¼ L

2EðkÞEðn; kÞ: (18)

In Eq. (18), y¼ y1þ iy2 and n¼ n1þ in2 (as in Figure 4), and

<(	) indicates the real part of the argument, L is the cavity

length, k is a parameter for the aspect ratio of the cavity,36

E(k) is a complete elliptical integral of the second kind, and

E(n,k) is an incomplete elliptical integral of the second

kind.37 Figure 4 shows streamlines and equipotential lines

obtained by conformal mapping of the region above the cav-

ity (plane y) into a half plane (plane n). The terms within the

square brackets in Eq. (17) need to be evaluated at the re-

tarded time, t� xj j=a0. Equation (17) relates the acoustic

pressure at the listener position, x, to a volume integral of

the time derivative of the Lamb vector, evaluated at a re-

tarded time that takes into account the distance between the

FIG. 3. (Color online) Instantaneous vector field with one pathline and statistical validation.
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source position and the listener position. The problem then

reduced to the computation of the Lamb vector and its time

derivative. The experimental data used for the estimation of

the emitted sound were planar, i.e. only the components u1

and u2 of the velocity field and the component x3 of the vor-

ticity field were available. Therefore, some of the terms in

the volume integral of Eq. (17) are missing. In particular,

since

ðx� uÞ 	 rY1 ¼ ðx2u3 � x3u2Þ
@Y1

@y1

þ ðx3u1 � x1u3Þ
@Y1

@y2

þ ðx1u2 � x2u1Þ
@Y1

@y3

; (19)

and @Y1=@y3 ¼ 0 (by definition), the terms that could not be

evaluated from the planar PIV data were x2u3 and x1u3. The

flow under examination is quasi two-dimensional,10 which

implies jx3j � jx2 ;j jx1j and u3j j � u1j j; u2j j. The results

that were obtained, while ignoring the terms we did not dis-

pose of, could therefore be seen as a good approximation of

the complete results as discussed earlier in this section. The

time derivative was computed in a Lagrangian reference

frame to deal with the relatively large time steps between

PIV snapshots (as for the time derivative in Curle’s

analogy).

III. RESULTS

A. PIV results

The mean flow in the cavity is characterized by a large

clockwise rotating flow region in one part of the cavity and a

smaller recirculation region in the lower left corner of the

cavity (see Figure 5). The recirculating flow inside the cavity

impinges on the separating laminar shear layer, which deter-

mines its de-stabilization and triggers the development of

vortical structures that convect downstream and then

impinge on the aft vertical cavity wall. The shedding of the

shear layer is shown in Figure 7, where three consecutive

FIG. 4. Streamlines (—) and equipotential lines (- -) in the y and n planes.

FIG. 5. (Color online) (a) Mean flow in the cavity, represented as streamlines. (b) Turbulent intensity.
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snapshots are depicted (this also gives an indication of the

temporal resolution that was achieved in this measurement).

The contours in Figure 7(a) indicate the out-of-plane compo-

nent of the vorticity, x3.

As vorticity is part of the source term in the Vortex

Sound Theory (Eq. (19)), reliable quantitative measurements

are necessary. Obtaining reliable differential quantities, such

as vorticity, from the PIV data is not straightforward. In gen-

eral, PIV data can be quite noisy when compared, for exam-

ple, to CFD data, and the spatial resolution may also be

limited. Moreover, in our experiment, adjacent data were

obtained from overlapping interrogation windows (with an

overlap of 50%), so errors in adjacent data are statistically

correlated. A standard central difference scheme would

therefore increase the uncertainty of the vorticity measure-

ment data with respect to the one computed from an equally

noisy but uncorrelated velocity field.38 In order to reduce the

uncertainty in the measurement of the vorticity field, we

therefore need to use a more refined approach. Foucaut and

Stanislas39 reviewed several differentiation schemes applied

to PIV data for the computation of the out-of-plane vorticity

component. They estimate the error, due to truncation, and

the effect of measurement noise, as a function of the ratio

between the radius of an Oseen vortex and the data spatial

resolution. According to their study, the schemes that would

have the best performance for the present data are the 4-th

order Richardson scheme (optimized for noise reduction),

the least square scheme, and the eight-point circulation

scheme. Figure 6 shows the out-of-plane vorticity field for

one snapshot computed with these methods, and by a

standard second order central difference scheme for com-

parison, while Table I summarizes the mathematical for-

mulations. It turned out that the preferred method is the

eight-point circulation scheme. According to Foucaut and

Stanislas,39 this scheme performs well over a broader

range of vortex sizes offering a good compromise between

FIG. 6. (Color online) Out-of-plane vorticity [1=s] computed by different differentiation schemes.

TABLE I. Numerical difference schemes for the computation of the out-of-plane vorticity component from the planar PIV data. eu is the error on the velocity

and Dx is the spatial resolution.

Scheme Implementation Accuracy Uncertainty

Central differences x3ði;jÞ ¼
u2ðiþ1;jÞ � u2ði�1;jÞ

2Dx1

�
u1ði;jþ1Þ � u1ði;j�1Þ

2Dx2

OðDx2Þ � 0:71 eu

Dx

Least squares
x3ði;jÞ ¼

2u2ðiþ2;jÞ þ u2ðiþ1;jÞ � u2ði�1;jÞ � u2ði�2;jÞ
10Dx1

�
2u1ði;jþ2Þ þ u1ði;jþ1Þ � u1ði;j�1Þ � u1ði;j�2Þ

10Dx2

OðDx2Þ � 0:32 eu

Dx

Richardson (noise opt.)
x3ði;jÞ ¼

1

1239


�
272ðu2ðiþ1;jÞ � u2ði�1;jÞÞ

2Dx1

þ
1036ðu2ðiþ2;jÞ � u2ði�2;jÞÞ

4Dx1

�
69ðu2ðiþ8;jÞ � u2ði�8;jÞÞ

16Dx1

�
�
�

272ðu1ði;jþ1Þ � u1ði;j�1ÞÞ
2Dx2

þ
1036ðu1ði;jþ2Þ � u1ði;j�2ÞÞ

4Dx2

�
69ðu1ði;jþ8Þ � u1ði;j�8ÞÞ

16Dx2

��

OðDx4Þ � 0:33 eu

Dx

8-point circulation
x3ði;jÞ ¼

1

8Dx1Dx2

½Dx1ðu1ði�1;j�1Þ þ 2u1ði;j�1Þ þ u1ðiþ1;j�1ÞÞ
þDx2ðu2ðiþ1;j�1Þ þ 2u2ðiþ1;jÞ þ u2ðiþ1;jþ1ÞÞ
�Dx1ðu1ðiþ1;jþ1Þ þ 2u1ði;jþ1Þ þ u1ði�1;jþ1ÞÞ
�Dx2ðu2ði�1;jþ1Þ þ 2u2ði�1;jÞ þ u2ði�1;j�1ÞÞ�

OðDx2Þ � 0:61 eu

Dx
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excessive smoothing and errors due to noise and trunca-

tion. It is also the most compact method between the con-

sidered ones, allowing a straightforward estimate of

vorticity near the walls. Moreover, it is the only method

that solves the problem of the correlated adjacent data

since no differences of neighboring points are used in the

computation, and therefore the bias due to the overlapping

of the interrogation data becomes negligible. The method

consists of calculating the out-of-plane vorticity value at

every data point by computing the circulation from the 8

neighboring points and dividing the result by the enclosed

area. This procedure is actually equivalent to computing

FIG. 7. (Color online) Three consecutive time steps with Dt¼ 0.32 ms.

FIG. 8. (Color online) Root mean square of the source terms for Curle’s analogy (a) and Vortex Sound Theory (b).
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the vorticity field by applying a central difference scheme

to a velocity field, that is, first smoothed with a 3� 1

points kernel.40

Curle’s analogy is less critical with respect to the com-

putation of the source term. The Poisson equation from

which the pressure field is obtained needs to be solved by

integrating over the entire domain. Any localized error is

therefore spread to the entire domain and, consequently, the

computation of the pressure time derivative is less affected

by noise in the individual data.

Figure 7(b) represents the Lamb vector by the Kirchhoff

vector (flood) with pressure (lines), and Figure 7(c) repre-

sents their respective time derivatives, i.e., the source terms

for the two analogies. It is clear how the source areas nicely

fall on top of each other. Figure 8 shows the root mean

square of the pressure and of the vector product of the Lamb

vector and the Kirchhoff vector. These contours represent

the magnitude of the variation in the terms in the source

region. They therefore give an indication of the areas where

most of the emitted sound is produced according to the two

analogies (note that for Curle’s analogy, the sound source is

the pressure fluctuation at the walls and not in the volume).

These data, however, do not take into account the time scales

during which such variations occur, and thus should be inter-

preted with an eye on the flow dynamics. For example, the

contour levels of the root mean square pressure in Figure

8(a) show relative high values at the lower right corner of

the cavity. These variations are actually due to the extremely

slow fluctuation of the large recirculation region inside the

cavity and not to the much faster turbulent variations (Figure

5). That is why they do not appear in Figure 8(b). Therefore,

the pressure time derivatives are very small and do not give

a significant sound source contribution. The contours show

that both methods detect the trailing upper edge corner of the

cavity as the main source of the sound, which is consistent

with what has been found in previous studies.20–22,25,31,41,42

It should be noted that the data are not available down to the

wall for the pressure (Figure 8(a)). The pressure field was

found integrating a Poisson equation for which the pressure

spatial derivatives are given by the equations for the conser-

vation of momentum. The pressure is therefore a function of

the material derivatives of the velocity that needs to be cal-

culated with the Lagrangian approach described in Sec. II. It

follows that the distance from the wall up to the location

where the data are available depends on the typical displace-

ment of particles during a time step. This is a critical aspect

in the application of Curle’s analogy; the source term is the

pressure fluctuation at the wall that is approximated by the

values at the closest position available to the wall. This is a

reasonable approximation only if the mean streamlines are

nearly parallel to the wall and if the position taken into con-

sideration is close enough to the wall to be considered within

the wall boundary layer. One must be careful then, when

applying Curle’s analogy, that the time steps are smaller

than the ratio between the boundary layer thickness of the

wall and the local velocity.

B. Results obtained with the acoustic analogies

Figure 9 shows the power spectra of a microphone posi-

tioned 0.5 m above the cavity (for the position refer to Figure

11) and of the acoustic signal computed with Curle’s analogy

(in green, dashed) and Vortex Sound Theory (in red, dashed)

at the same location. It also shows the power spectrum

FIG. 9. (Color online) Power spectra of the sound signal from a microphone and of the sound signal computed from the PIV data at the same locations with

the two analogies. St ¼ fL=Uc as defined in Eq. (2).

TABLE II. Overall sound pressure levels in dB at the microphone position.

Microphone Curle’s analogy Vortex Sound Theory

76.2 70.0 70.4
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computed with Eq. (4) (in gray, dot-dashed), which is

Curle’s analogy without the use of the image principle to

account for the non-compact wall in which the cavity take

place. The power spectra shown in the graphs are the aver-

ages of the power spectra of segments of the original time

signals. Each time signal was divided in 8 segments of equal

length with a 50% overlap. Each segment was then win-

dowed with a Hamming window of the same length as the

segment. The power spectrum of each individual segment

was computed through the fast Fourier transform algorithm,

and finally, the power spectra of all segments were averaged

to reduce the variance in the estimated power spectrum.43 It

should be noted that the experimental facility in which we

performed the measurements is not acoustically insulated,

even though it can be considered rather quiet with respect to

other similar facilities. In addition, due to physical restric-

tions of the experimental setup, it was not possible to posi-

tion the microphone at a much larger distance in the far field.

The location chosen is almost one typical wavelength44

away from the cavity. Therefore, the microphone recordings

should be taken rather as an indication of the far-field sound

level and not as a direct validation for our method. Compar-

ing the estimate of the emitted sound obtained by applying

the acoustic analogies to the PIV data and the microphone

records, it is possible to see that both the main frequency

peak and the first harmonic peak are detected by the two

approaches. The main frequency peak corresponds to the

second hydrodynamic mode of Eq. (2) and falls in the

range reported in other theoretical,24 experimental,9,21,45

and numerical25 studies. The Vortex Sound Theory seems

to suffer from a higher broadband noise disturbance in the

signal at the very high frequencies. This is probably due to

the difficulties described previously in reducing the noise

error while computing the source term for the Vortex

Sound Theory result. Table II displays the measured overall

sound pressure levels at the microphone location. Estimates

from Curle’s analogy and Vortex Sound Theory are close

to each other, but are significantly lower than the measured

sound pressure level. The main differences occur at the fre-

quencies below that of the main tonal component. In the

low-frequency range, the microphone measurement

includes low-frequency disturbances from the testing equip-

ment (like cooling fans and the pump driving the water

cooling system of the laser). In the range of frequencies

close to the tonal component, we believe that, due to the

dimensions of the wind tunnel used in the measurements,

standing waves are likely to be present, which amplifies the

microphone signal in that specific range of frequencies.

The microphones are probably recording higher sound

intensities than they should be, explaining the discrepancy

with the analogies predictions at the tonal frequency. Fig-

ure 10 shows the power spectra computed with the two

analogies far enough from the cavity to be considered in

the far field and the directivity plot at the same distance.

As in Figure 9, we include the results computed with

Curle’s analogy, but without using the image principle to

properly take care of the non-compact wall in which the

cavity occurs. This signal, at the displayed location, shows

a tonal emission with a much lower intensity than the other

results (Figure 10(a)). For those, the same small differences

in the spectral distribution remain as in the microphone

location. The two results for the overall sound pressure

level (Figures 10(b) and 11) are almost identical. In partic-

ular, they both show that the cavity radiates as a dipole

with the same intensities in the backward and forward

directions. This is what one would expect at such low

Mach numbers,42 for which the convection of the acoustic

emission by the flow over the cavity is negligible. In con-

trast, the overall sound pressure level computed with

Curle’s analogy without the image principle shows a strong

emission directivity in the backward direction, although a

dipolar behavior is still visible.

FIG. 10. (Color online) Power spectra from the PIV data in the far field and directivity plot at the same distance. St ¼ fL=Uc as defined in Eq. (2).

065112-12 Koschatzky, Westerweel, and Boersma Phys. Fluids 23, 065112 (2011)

Downloaded 12 Jul 2011 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



IV. DISCUSSION AND CONCLUSIONS

In this paper, we compare two different acoustic analo-

gies applied to time-resolved planar PIV data. The sound

was computed using Curle’s analogy and Vortex Sound

Theory and compared with the directly measured acoustic

data. The analogies used in this paper were derived under

the assumption of low Mach number and high Reynolds

number and for a listener positioned in the far field. We

took into account the presence of the non-compact wall in

which the cavity was located by using the image principle

in the derivation of the solution. The two analogies give

very similar results, both in total intensity and in the spec-

tral distribution of the emitted sound. An analysis of the

source terms for the two analogies reveals that the trailing

edge of the cavity is the main source of sound in both

cases. The fact that the quantitative results for the final sol-

utions of the two methods are so similar, which provides

confidence that they have been applied appropriately. The

two solutions are in fact derived through quite different

pathways, and the mathematical schemes used to solve the

equations are sensitive to different factors. The analogies

are therefore not interchangeable and which one performs

better and is easier to apply depends on the specific appli-

cation. Typically, the solution is affected by the temporal

and the spatial resolution of the data, as well as by the

noise level in the data. Those factors are always critical

but affect the two analogies in different ways: for example,

the temporal resolution has a stronger effect on the result

obtained with Curle’s analogy. Here, the source term is the

pressure fluctuation at the walls that is approximated by

the pressure fluctuation at the attainable position closest to

the wall. The distance of this position from the wall

FIG. 11. (Color online) Computed overall sound pressure level, [dB], in the region above the cavity (the origin of the coordinates system is as shown in Figure 2).
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depends on the displacement of the flow during a time step

and, therefore, is larger for large time steps in the PIV re-

cording. On the other hand, the result obtained with the

Vortex Sound Theory is heavily affected by noise in the

data, as a matter of fact much more than Curle’s analogy.

The source term in the Vortex Sound Theory is the time

derivative of the term (x�u)	rY1 (Eq. (17)). The vortic-

ity x and the Lamb vector x�u are computed locally,

and therefore if the data are noisy, the temporal derivation

might be critical and leads to spurious high intensity source

terms. This is especially a problem close to the sharp corners

where the term Y1 can attain very high values. In Curle’s

analogy, noisy data do not affect the final result very much.

There, the source term is the pressure time derivative. The

instantaneous pressure field is computed by integrating a

Poisson equation over the whole domain and, therefore, the

local error due to noise on every point is re-distributed over

the entire domain. Another factor to take into consideration

is the choice of the analogy is the complexity of the geome-

try. Vortex Sound Theory needs a Green’s function tailored

to the body geometry, which may not always be as straight-

forward to obtain as in the present geometry. In most cases,

an analytical solution cannot be found and the Green’s func-

tion has to be computed numerically, slightly increasing the

complexity of the method.

In conclusion, both analogies perform quite well for the

present test case, but in their application they show to have

different strengths and weaknesses. The choice for either of

the two methods needs to be done by carefully evaluating

these aspects in relation to the specific application. The use

of the image principle has been shown to be crucial to prop-

erly estimate the sound emission for compact geometries,

sources of sound, which occur in large non-compact surfa-

ces. The method applies to any compact geometry (such as

cavities, projections, spoilers, etc.) that occur in a planar and

extended surface18,35 and for listeners positioned in the far

field. The extension to more complex geometries is rather

simple. For Curle’s analogy, there is no additional complica-

tion, since the only geometry-related information in the solu-

tion is the wall normal direction, that is always easily

available. For the Vortex Sound Theory, the numerical com-

putation of the tailored Green’s function may be necessary

for those geometries for which an analytical solution is not

known. This is usually not difficult, under the compactness

and far-field assumptions, since it reduces to the simple com-

putation of the flow potential over the geometry.

In the future, we plan to extend our research to the appli-

cation of acoustic analogies to PIV experimental data on two

main aspects: First, to perform a tomographic PIV study to

evaluate the impact of neglecting terms in the sound predic-

tion due to the fact that we base the computation on planar

PIV measurements. Second, to evaluate, by means of numer-

ical simulations, the effect of limited temporal and spatial re-

solution typical for the PIV data.
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