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SUMMARY 

The accuracy of a statistical pattern recognizer depends upon the intrinsic 

overlap of the class distributions and the estimation error due to the finite 

size of the set of learning objects. The classification error, defined as 

the probability of error in classifying new objects, is used as a measure 

for the accuracy. The classification error depends on the characteristics 

of the features chosen, the number of features, the size of the learning set, 

and on the procedure and the statistical model used for the estimation of the 

discriminant function. A number of these items are influenced or determined 

by a priori knowledge. 

In order to be able to study the effects of feature size and sample size 

for given class distributions the expected classification error is investigated, 

which is the expectation of the classification error over the population of 

learning sets. More general aspects are studied by using the mean classifi­

cation error, which is defined as the expectation of the expected classifi­

cation error over a family of class ditributions. 

For the expected classification error an upper bound is found expressed 

in the intrinsic overlap of the class distributions and the expectations of 

the estimation errors due to using a finite sample size for the estimation 

of the class distributions. The upper bound is applied to the case of a 

discrete measurement space and to the case of normally distributed classes. 

For these cases sample sizes are computed which guarantee, in expectation,' 

a specified classification accuracy. 

The expected classification errors for a histogram and a Parzen estimate 

are compared for the case of a one dimensional nonparametric density estimation. 

The errors in the density estimates and the classification errors of Parzen 

estimates using normal and uniform kernels are compared in a multi dimensional 

example. 

If the classification error is studied for a finite sample size as function 
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of the feature size a peaking phenomenon may be observed: after a certain 

feature size the classification error starts to increase and approaches the 

a priori error if the feature size grows to infinity. It is shown that the 

mean classification error does not peak if the right estimators are used. 

This leads to a better understanding of the causes of peaking: bad features 

and bad estimators. Sufficient conditions could be formulated for the feature 

distributions and for the estimators under which peaking of the mean classi­

fication error is avoided. Also a better understanding of the discrete 

measurement space introduced by Hughes [24] is reached. It appeares that 

peaking in that space is caused by the specific properties of that space. 

The influence of the complexity of the statistical model (i.e. the number 

of parameters in that model) on the classification error is illustrated by 

a two dimensional example of two normally distributed classes. It appears 

that the expected classification error as a function of the model complexity 

may cause peaking too. 

The choice of good features, the ranking of the features, the determination 

of their optimal number, the choice of good estimators and of a statistical 

model all make it necessary to have some a priori knowledge of the 

distributions of the possible features. Without such knowledge it is hardly 

possible, because of the peaking phenomenon, to obtain good classification 

results using a finite learning set. 
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SAMENVATTING 

De nauwkeurigheid van een statistische procedure voor patroonherkenning hangt 

af van de intrinsieke overlap van de verdelingen van de klassen en van de 

schattingsfout als gevolg van de eindige grootte van de verzameling leerob­

jecten. De klassificatiefout, gedefinieerd als de foutkans bij het klassi-

ficeren van nieuwe objecten wordt gebruikt als een maat voor de nauwkeurigheid. 

De klassificatiefout is afhankelijk van de eigenschappen van de gekozen kenmer­

ken, van het aantal kenmerken, van de grootte van de verzameling leerobjecten 

en van de procedure en het statistisch model die gebruikt zijn bij de schatting 

van de scheidingsfunctie. Een aantal van deze grootheden wordt beïnvloed of 

bepaald door a priori kennis. 

Teneinde in staat te zijn bij gegeven verdelingen van de klassen de invloed 

van het aantal kenmerken en het aantal leerobjecten na te gaan is de verwachte 

klassificatiefout berekend. Dit is de verwachting van de klassificatiefout 

over de populatie van verzamelingen leerobjecten. Meer algemene aspecten zijn 

bestudeerd door gebruik te maken van de gemiddelde klassificatiefout, gedefi­

nieerd als de verwachting van de verwachte klassificatiefout over een familie 

van klasseverdelingen. 

Voor de verwachte klassificatiefout is een bovengrens afgeleid die is uit­

gedrukt in de intrinsieke overlap van de verdelingen van de klassen en de 

verwachtingen van de schattingsfouten als gevolg van het gebruik van een 

eindige verzameling leerobjecten voor het schatten van de klasseverdelingen. 

De bovengrens is toegepast voor het geval van een discrete meetruimte en voor 

het geval van normaal verdeelde klassen. Voor deze gevallen zijn de aantallen 

leerobjecten berekend die een gegeven nauwkeurigheid garanderen voor het 

verwachte klassificatieresultaat. 

De verwachte schattingsfouten voor een histogram en voor een parzen-

schatting zijn vergeleken voor het geval van een ééndimensionale niet-para-

metrische dichtheidschatting. De fouten in de dichtheidschattingen en de 

klassificatiefouten zijn voor een meerdimensionaal voorbeeld vergeleken bij 
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gebruik van parzenschatters met uniforme en normale kernels. 

Als in geval van een eindige verzameling leerobjecten de klassificatie­

fout wordt bestudeerd als functie van het aantal kenmerken, dan kan een 

'piekeffect' worden waargenomen: na een zeker aantal kenmerken begint de 

klassificatiefout toe te nemen en nadert naar de a priori fout als het aantal 

kenmerken naar oneindig gaat. Er is aangetoond dat bij gebruik van de juiste 

schatters de gemiddelde klassificatiefout dit piekeffect niet vertoont. Dit 

leidt tot een beter begrip voor de oorzaken van dit piekeffect: slechte 

kenmerken en slechte schatters. Voldoende voorwaarden zijn afgeleid m.b.t. 

de verdeling van de kenmerken en de gebruikte schatters waaronder voor de 

gemiddelde klassificatiefout het optreden van dit piekeffect wordt voor­

komen. Tevens wordt hierdoor een beter begrip bereikt voor de discrete meet­

ruimte zoals die is gebruikt door Hughes [24]. Het blijkt dat in die ruimte 

het piekeffect wordt veroorzaakt door de speciale eigenschappen van die 

ruimte. 

In een tweedimensionaal voorbeeld van twee normaal verdeelde klassen wordt 

de invloed geïllustreerd van de complexiteit van het statistisch model (dat 

is het aantal parameters van het model) dat wordt gebruikt bij de schatting 

van de dichtheden van de klassen. Het blijkt dat het piekeffect eveneens kan 

optreden voor de verwachte klassificatiefout als functie van de modelcom­

plexiteit. 

De keuze van goede kenmerken, hun rangschikking, de bepaling van het opti­

male aantal kenmerken, de keuze van goede schatters en van het statistisch 

model maken het te zamen noodzakelijk enige a priori kennis te hebben over de 

verdeling van de kenmerken. Zonder dergelijke kennis is het nauwelijks moge­

lijk, met het oog op het piekeffect, tot goede klassificatieresultaten te 

komen bij gebruik van een eindige verzameling leerobjecten. 
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Chapter 1 

INTRODUCTION 

The goal of statistical pattern recognition is to analyse the patterns that may 

be present in a set of objects in terms of measurements on these objects using 

statistics and a priori knowledge. This is often done in order to be able to 

classify the objects. Objects in this context are broadly interpreted. All 

that can be described by a set of measurements, such as a movement made by an 

arm, a sunny day, a human chromosome, a polluted river or a line on a picture 

is included. 

Measurements or transformations thereof, that may be useful for the 

description of a pattern in relation to other patterns are called features. We 

will assume that a set of those features as well as useful statistical models 

for the description of patterns are available as a priori knowledge. In this 

thesis we will restrict ourselves to the so called case of supervised learning. 

In this case sets of objects are given, in which previously certain patterns 

have been identified by man or by other means. A decision rule has to be 

constructed to decide between patterns in those sets. A set of objects with a 

common pattern is called a class. A learning set, which is a set of objects 

with known classification, is assumed to be available for the construction of 

the decision rule, which is a discriminant function on the features between 

the classes. 

For the accuracy of a statistical pattern recognizer several measures will 

be introduced later on. They are all related to the probability of error in 

classifying new objects. This probability of error will further be called the 

classifiaat-ion error, or just error. It depends on the characteristics of the 

features, the number of features, the size of the learning set, and the 

statistical model and the estimation procedure used for the determination of 

the discriminant function. A number of these quantities are influenced or 

determined by a priori knowledge. 

In the next five chapters we will present some discussions on each of these 
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subjects. Because they are highly interrelated, the order presented is sometimes 

arbitrary. Theoretical as well as experimental results using generated data will 

be given. Some are not yet mentioned in literature, some are already published 

by the author, others are well known and only given for illustration and 

comparison. Similar problems are studied by Raudys [36] but in a less general way 

and applied to more special types of discriminant functions- A general discussion 

of some aspects of the problem is given by Kanal and Chandrasekaran [2b]. 

Because our goal is merely to study a number of general effects and relations 

and not to give a complete guide for practical purposes we will make some 

additional assumptions that simplify the notation and avoid some additional 

problems not essential to this research. We will restrict ourselves almost 

entirely to the case of two classes A and B, given by learning sets of the same 

size m. The a priori probabilities of the classes will be c for class A and 

1-c for class B and are assumed to be known. 

Before presenting a short introduction to the other chapters we will define the 

main points of the notation and terminology. An arbitrary object, characterized by 

k features, will be denoted by the k-dimensional vector x = (x^, x., x,, ... x, ), 

in which x.(j=l,k) is a feature value. The probability density function for class 

l{l=l\,B) is written as f.(x.) or as fp(2il9.f)- The parameter vector 9̂  contains all 

parameters of the function f.(') introduced by the choice of the features. A 

different feature set or a different feature ranking will cause a different 

functional form of f»(') or just a different value of ê  . Whenever we write 

fj,(xie.) we assume that a particular feature choice is made and that the parameter 

vector has the value e„. For simplicity the vector 9, defined as 9 = (e.:e„) 
—Z — — —M —D 

will be used sometimes. 

In this thesis the so called Bayes strategy will be used for finding a 

discriminant function. This implies the minimization of the expected costs. 

Everywhere will be assumed that the costs of a correct classification are zero 

and the costs involved with an erroneous classification are equal for the two 

classes. Under these restrictions the Bayes strategy is equivalent to minimizing 

the probability of misclassification (see Fukunaga [23]). The discriminant functior 

becomes in that case 

S(x) = c f^(x) - (1-c) fg(x) (1.1) 

which classifies as 
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i f S(x) > 0 then x e class A 

i f S{x) = 0 then x e class A or x £ class B (1-2) 

i f S(x) < 0 then x e class B. 

The boundary case S(x) = 0 w i l l be assigned to class A a r b i t r a r i l y . 

Instead of S(x) the discriminant function R(x) w i l l be used sometimes 

R(x) = logic f ^ (x ) } - log{ ( l - c ) fg(x) } (1.3) 

This function c lass i f ies in the same way as (1 .2) . When S(x̂ ) or R(x̂ ) is studied 

as a function of 9̂  they w i l l be wr i t ten as S(x,£) or R(2<,e )̂. In th is context 

^A^-^ÜA ' ^"'^ • ' ' B ^ ^ I ^ ) ^""^ wr i t ten for f^(x) and fg(x) -

The c lass i f i ca t ion error e made by c lassi fy ing with S(x) given by (1.1) is 

e* = c Prob (S(x) < ü 1 x e A) -K (1-c) Prob (S(x) > 0 | x e B) (1.4) 

which is equivalent to 

* 
e 

= c ƒ f^(x) dx + (1-c) ƒ fg(x) dx (1.5) 

S(x)<0 S(x)>^0 > 

The same is true when R(x), given by (1.3), is used for S(x^). 

Whenever possible, the compact notation of (1.5) will be used for the multi­

dimensional integration in which dx̂  stands for dx , dx-, dx,, ... dx, . In the 

general discussions we will assume that x. is a multidimensional continuous 

variable. By using summations instead of integrals the results apply also to 

the discrete case. Because the discriminant function ((1.1) or (1.3)) is the 

optimal one, the error e is minimum. It is called the Bayes error. 

From (1.1) and (1.2) it can be understood that e can also be written as 

e* = j min{c f^(x), (1-c) fg(x)}dx (1.6) 

X 

Note that e <min{c,l-c}, in which the equal sign applies to fn(x) = '''B̂ —) • 

When ffl(x) and fg(2i) aréMinknown they have to be estimated using a learning set. 

Such a set will be denoted by x = X;̂  u Xg "i" which x^ = ^Xj,' iij,' 2iji' ••• A™^' 

I = A,B. An object x' is learning object number i of class I. The learning 
objects are assumed to be selected independently according to the densities 

f (x) and fg(x)- The number of learning objects m is often called the sample 
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size. Suppose f„(x) is estimated by f„(x) and fg(x) by fg(x)- An estimate 
of S(x) is 

S(x) = c f^(x) - (1-c) fg(x) (1.7) 

The classification error e made by classifying with S(x) based on a given 
learning set x is given by 

e = c Prob (S(x) < 0 I x e A,x) + (1-c) Prob (S(x) > 0 I x e B,x) (1.8) 

which is equivalent to 

e = c I f^(x) dx + (1-c) ƒ fg(x) dx (1.9) 

S(x)<0 S(x)>p 

The classification error E: can only be computed by (1.8) and (1.9) if the 
density functions f„(x) aid fg(x) are known. This is the case during simulations 
in which special choices are made for these densities. A value of c is the 
result of a single experiment by which one learning set x is generated, S{x) 
is estimated and (1.9) is computed. Such a value of e can be considered as a 
random variable in respect to the choice of x and is for that reason not very 
suitable as a measure for the accuracy of the discriminant procedure used. For 
that reason the expected alassification error 

J= E^(e) (1.10) 

is a feasible quantity to study in relation to the expected accuracy of a 
statistical pattern recognizer. This error gives the expected performance in 
a single problem. 

In order to investigate more general aspects of the classification error 
and to be able to make statements which are more problem independent e will 
be averaged over a class of problems. For mathematical convenience we will 
restrict ourselves to those classes of problems which can be generated by a 
distribution over 9̂. and 9̂p for given functional forms of f„(') and fB(*) and 
given feature size k. We therefore introduce the mean alassifioat-ion error 

è = EQ £^(0 (1-11) 
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in which E„ is the expectation over the distribution of 9. and 9„ that defines 
o —A —D 

the class of problems of interest. The mean classification error è can be 

treated as a measure for the accuracy of a statistical pattern recognizer if 

it is studied in relation to a class of problems. A short introduction to the 

literature and the types of problems we will deal with is given by Duda and 

Hart [11,(sections 3.8 - 3.10)]. 

Most of the results depend upon the estimators used for f „(x), ^ R ( ^ ) ' S(x) 

and R(x.) • Most estimators that are needed here will be presented in chapter 2. 

Their effect upon e, e and £ is shown by examples. 

In chapter 3 especially the effect of the sample size upon the classification 

error is studied. For some special distributions curves are given for the 

expected error as a function of sample size and feature size. For other cases 

an upper bound is given for the expected error. 

Feature size and sample size are closely related. If the number of features 

increases, the sample size necessary for a constant e may increase, decrease or 

remain equal. This depends upon the characteristics of the new features. It can 

therefore occur that the expected error increases by increasing feature size 

and constant sample size. This effect is called peaking. It was first studied 

by Hughes [24] and later by Kanal, Chandrasekaran et al. [ 1 ] , [ 5 ] , [ 7 ] , 

[25]. In chapter 4 feature size considerations are given with emphasis on the 

peaking effect. 

In chapter 5 some examples are given of the effect of the choice of the 

statistical model used for the density function estimates K{>^) and fB(x) upon 

the classification error. It appears that a wrong model can result in a 

smaller error than the right model, especially in the case of small sample 

size. 

In chapter 6 some remarks are made on the influence and use of a priori 

knowledge on the classification error. Especially the necessity of some 

knowledge about useful features is emphasized. If no such knowledge is 

available hardly any statistical pattern recognition is possible. Some results 

are discussed in the light of epistomology. 

The main conclusions are summarized and discussed in chapter 7. 
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Chapter 2 

ESTIMATION PROCEDURES 

An unknown density function f.{x) can be estimated in various ways from a 

randomly chosen learning set. The most general techniques are the non­

parametric ones such as the use of histograms or Parzen estimators. They 

demand very little knowledge of the functional form of f (x.) and are consistent 

under mild conditions (see for instance Patrick [32]). For our purposes they 

are not very well suited, because the computation of e and £ requires an 

integration over the learning set, which is only feasible in very simple 

situations and by using Monte Carlo procedures. In 3.4 some examples will be 

given. 

If the functional form of f (x) is known without the values of the 

parameters, a number of ways exist for the estimation of f.(x). Besides 

it is sometimes possible to estimate the discriminant function S(x̂ ) directly, 

as will be shown below. In that case too, however, S(x) can be interpreted as 

being built up from estimates of the class density functions. The following 

three procedures for the estimation of the discriminant function 

s(x) = c f^(x ie^) - (1-c) fB(xieg) ^ (2.1) 

w i l l be used in the next chapters. 

1) F i r s t we w i l l consider the plug-in rule. I t is based on f inding estimates 

i n foi^ I f l 3"d ê̂g '''°'" I R ^"'^ simply 'plugging i n ' these estimates in (2 .1) . 

S^^^x) = c f^(x lê^) - (1-c) fB(xl9e) (2.2) 

This implies that the density functions are estimated as 

T J ^ ' W = f^(xl9^) {I = A,B) (2.3) 
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The way the parameters are estimated is still open. We will often make use of 

maximum likelihood estimates for 9. and 9_ 
—̂ A —B 

m 
l^ = argmax { n f^{x[\Q^)} [^ = A,B) (2.4) 

The argmax'function yields that value of 9̂  for which the argument is maximum. 

2) The plug-in rule is very commonly used because i t does not necessarily assume 

any knowledge on Q. This ru le , however, is not opt imal, as w i l l be shown, i f 

one deals with a class of problems with known d is t r ibu t ion over 9̂ . Using the 

Bayes rule i t is possible to f ind the a posteriori density g.(6^.lx„) ^or the 

class parameters 9̂  using the a priori density h (£ ) (see Duda and Hart [11]) . 

g^lx^ie ) h (9 ) 
%{Qf,%)=- —^^^ - ^ (£ = A,B) (2.5) 
-J, ƒ g,(x,ie,) hj9^) d9̂  

h 
in which h (£ ) is the a pr io r i density of _9 and 

m 

g,(x,ie^) = n f,(x; ie^) {i - A,B) (2.6) 
i=i 

is the j o i n t density of the learning objects of class 5,. An estimate of 

f (x |^ ) can now be found by estimating fi from (2.5) by taking the 

expectation of 9̂  (cal led the Bayes estimate of ö) and using the plug- in rule. 

Another poss ib i l i t y is taking the expectation of fAx}Q_„) over g (^.Jx») and 

obtaining the Bayes estimate of fj(xl9^ ) 

'^l^^M = j ^i^l^h^ % (9^1 X;̂ ) de^ (̂  = A,B) (2.7) 

In this way the following estimate of S(x̂ ) is found 

S^^^x) = c fl^\x) - (1-c) f^^^x) (2.8) 

We prefer the Bayes estimate of fj,(x.l6 ) to the Bayes estimate of Q and using 

the plug-in rule because i t is immediately related to the expectation of S(2<,9̂ ) 
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over the a posteriori distributions for 9. and 0^. In the case of binomially 
distributed and independent features these two estimates are identical. This 

follows straight forward from substitution of the densities in (2.6) and 

computing (2.5) and (2.7). It is caused by the fact that the parameter p of a 

binomial distribution is identical with the density for x=l : p = f(l). 

3) A third way of estimating the discriminant function is found by taking the 

expectation of S(x,9̂ ) over the a posteriori distribution of Q_. 

S^3)(x) = |s(x,9) gQ(9lx) d9 > (2.9) 

where g„(8lx) is given by 

g(xl9) h(9) 
99(91X) = (2.10) 

| g ( x l e ) h(9) d9 

_9 

In (2.10) is 

m 

g(xle) = n {fA(x;i9^) fA^%)} (2.11) 

the joint density of all learning objects and h(9̂ ) the density of the whole 

set of parameters 9̂. Substitution of (2.1) in (2.9) yields 

s(3)(x) = c |fA(xie^) g^(eix) d9 - (i-c) |fB(xl9^) gg(9ix) d9 (2.12) 

e_ ~ 9_ ~ 

This can be written as 

s'^^x) = c f p ^ x ) - (1-c) f(2\x) (2.13) 

with 

fl^^2<) = /^^(ü'iji) ggd'x) d9 (£ = A.B) (2.14) 

.(2), 

learning set x. Note also that these two estimates become identical if 

Note the difference between (2.7) where f (x) just depends upon v»> the 

learning set of class £, and (2.14) where f (x) depends upon the entire 
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h(l) = ̂ (9^) hB(9e) (2.15) 

which can easily be verified by substitution of (2.10) and (2.11) in (2.14) 

using (2.15). This method is equivalent with a method known as 'predictive 

diagnosis' in the medical statistical literature, e.g. see Aitchinson, 

Habbema and Kay [2]. 

We will give a simple example in order to illustrate the differences 

between the three types of estimates. The interesting point in this example is 

the difference in results for the three kinds of estimators in the multi­

variate case. For simplicity, however, the estimates will be given for the 

one dimensional case only. 

Let a feature be binomially distributed for the classes A and B. 

fjl(x) = (P^)"" (I-Pj''"" (̂  = A,B; X = 0,1; 0 < p ^ < 1) (2.16) 

Note that in this example the parameter vector Q_ is given by ( P ^ . P B ) - li" ^ 
learning objects per class are available of which n^ respectively ng are one, 

the maximum likelihood estimates are given by 

P, = ^ (£=A,B) (2.17) 

The corresponding density estimates, using the plug-in ru le , are 

-(2) In order to use the estimates f (x) uniform a p r io r i densities for 

p. as well as for pn w i l l be assumed as an example. 

h^(p^) = 1 0 < p ^ < l {1 = A,B) (2.19) 

After some calculations using (2.7) and (2.5) can be found that 

T^(><)=(lr) ( l - i f T J (^ '̂̂ 'B) (2.20) 

If the joint a priori density is also uniform, h(p^,Pg) = 1, 0 < {p^.pg} < 1, 

then (2.15) is valid and fp'(x) = f|^'(x), I = A,B. If h(p^,Pg) is uniform 
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k m 

1 1 
1 2 
1 3 
2 3 
2 5 
3 3 

è in % 

es t imators used 

1 

50.0 
33.3 
30.0 
23.0 
20.'* 
21.6 

2 

50.0 
33.3 
30.0 
21.5 
19.9 
17.0 

3 

50.0 
33.3 
30.0 
21.4 
19.7 
16.7 

Table 2.1 Values of ë (in %) for the presented example (see text) for feature 

size k and sample size m. The three estimators used are the ones 

defined by (2.S), (2.7) and (2.14). 

along the line p. = 1-pg and has a zero density elsewhere, then for the 

estimates is found 

i-,\ m+n.-n„+l x m+n.-n„+l l-x 
(2.21) 

and 

m+n„-n„+l X , m+nn-n^+l^l-x . | • , ^ MITfl - I I X I A , I I I T l l n - l l f l T i > 

(2.22) 

Notwithstanding the fact that the three estimates for f^(x) and fg(x) differ, 

they all yield the same discriminant function S(x) with 

S(l) = C(n^-ng) 

S(0) = C(n„-nJ 
(2.23) 

where C is some positive constant. For the multivariate case, in which more 

than one feature is involved, the resulting discriminant functions are 

different. Some examples are presented in table 2.1 for the case of independent 

features. These values are exact computations of e for different feature sizes 

k and sample sizes m. The table shows that the results for the multivariate 

case differ for different estimators. More values are presented and discussed 

in chapter 4. 
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Chapter 3 

SAMPLE SIZE 

In this chapter the effect of the sample size on the classification error is 

considered using the density estimates described in the previous chapter. 

Especially the influence of the estimation errors on the density estimates 

will be considered. 

In the first paragraph a general approach is given which results in a sample 

size dependent upper bound on the expected classification error E. In the next 

paragraph this is applied to a class of classification problems defined by 

Hughes [24]. The estimation accuracy for the case of normal distributions is 

considered in the third paragraph. Examples for nonparametric estimates are 

presented in paragraph 4. In the last paragraph some concluding remarks are 

made. 

Parts of this chapter are already published in [12], [13] and [14]. 

3.1 A SAMPLE SIZE DEPENDENT ERROR BOUND 

Error bounds are intensively studied in connection with feature extraction, see 

Fukunaga [23]. In that case known class distributions are assumed. These error 

bounds are therefore sample size independent. They do not take into account the 

errors made in estimating the distributions. For answering questions such as: 

What is the error caused by a finite learning set, or: What number of learning 

objects should be used in order to reach a certain accuracy, these error bounds 

are useless. 

Effects of the sample size upon the accuracy obtained by an estimated 

discriminant function have been previously studied. Cover [9] gave 

for the total sample size (in our case 2m) a lower bound of two times the 

feature size. Otherwise learning sets of identically distributed classes 

become linearly separable, which is obviously absurd. Foley [22] presented 
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curves for the resubstitution error (the classification error estimated by 
classifying the learning objects) as a function of feature size and sample size. 
These curves are based on Monte Carlo experiments using identically distributed 
classes. From these curves can be concluded that a sample size feature size ratio 
of at least three or four is necessary. Extremely large figures are given by 
Hughes [24] and Abend et al. [ 1 ]. They compute what they call the optimal 
measurement complexity for a given sample size. The sample size for which a 
given measurement complexity is optimal appeared to be very large due to the 
extremely general model used. 

In this paragraph an upper bound for the expected classification error is 
given. It is expressed into the Bayes error and the expected errors in the 
estimates of the class densities. The expected classification error, and 
thereby the upper bound is a function of the sample size. This makes it possible 
to compute the maximum number of learning objects necessary for a given value 
of the expected classification error. 

The Bayes error can be written as given by (1.5). 

c* = c ƒ f^(x) dx + (1-c) ƒ fg(x) dx (3.1) 
S(x)<0 S(x)>^0 

The error made in the estimates f Ax) and fg(x) will be expressed into the 

Kolmogorov variational distance (see Fukunaga [23]) 

^i = i j \ f^(x) - ̂ ^(x) I dx {I = A,B) (3.2) 
X 

which is equivalent to 

^ = 1 - fmin {f5^(x), fj^(x)} dx («, = A,B) (3.3) 

This is called the estimation error. Note that e is not a probability like e. 
The definition of e is such that 0 < e < 1. In the case of perfect estimation 
e is zero, for bad estimates e approaches or is equal to one. 

For the classification error caused by a discriminant function S(x) can be 

written (1.9). 

£ = c ƒ f^(x) dx + (1-c) j fg(x) dx (3.4) 

S(x)<0 S(x)>P 
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This can be rewritten as 

e = c I f^(x) dX - c I f^(x) dx + c I f^(x) dx + 

S(X)<0 S(X)<0 S(X)>0 

S(x)>0 S(x)<0 

+ (1-c) ƒ fg(x) dx - (1-c) ƒ fg(x) dx + (1-c) ƒ fg(x) dx 

S(x)>̂ 0 S(x)>p S(x)<0 

S(x)<0 S(x)>p 

(3.5) 

Combination of some integrals and using (1.1) gives 

e = c ( f^(x) dx + (1-c) j fg(x) dx - ( S(x) dx + ( S(x) dx 

S(x)<0 S(x)>p S(x)<0 S(x)iO 

S(x)40 S(x)<0 

(3.6) 

The sum of the f i r s t two terms equals c*, see (1 .5) . I f a region V is defined 

in which the classes are non-optimally c lass i f ied by S(x), 

V = {x:(S(x) < 0 A S(x) > 0 ) V (S(x) > 0 A S(x) < 0 ) } (3.7) 

then (3.6) s impl i f ies to 

e = E* + [ |S (x ) | dx (3.8) 

V 

or , . 

£ = E* + (\c f^(x) - (1-C) f3 (x ) | dx (3.9) 

For x e V the fol lowing inequali ty holds 

|c f^(x) - c f ^ ( x ) | + I (1-c) fg(x) - (1-c) fg (x ) | > 

|c f^(x) - (1-c) fg(x)| = |S(x)| (3.10) 

For the proof we distinguish two cases 

27 



a) S(x) < 0 , S(x) >0 (3.11) 

so 

-S(x) < S(x) - S(x) (3.12) 

As both terms are pos i t ive , (3.12) is also true for the absolute values. 

!S (x ) |< |S(x ) - S(x)| (3.13) 

or 

| S ( x ) | < | c f^(x) - (1-c) fg(x) - c f^(x) + (1-c) fg (x ) | (3.14) 

< |c f^(x) - c f ^ ( x ) | + I (1-c) fg(x) - (1-c) f g ( x ) | (3.15) 

which proves (3.10) 

b) S(x) >0, S(x) < 0 (3.16) 

The proof is in th is case simi lar to the one under a) . 

Substitut ion of (3.10) in (3.9) gives 

E < e * + / { | c f^(x) - c f ^ ( x ) | + I (1-c) fg(x) - (1-c) fe(x)t}dx (3.17) 

V -

The integration area V can be equal to the whole space. An example is given 

in fig. 3.2. If V is replaced by the whole space one finds after using (3.2) 

E < E* + 2 {c e^ + (1-c) eg} (3.18) 

which completes the derivation of the upperbound pn the classification error. 

From (3.9) another upperbound can be found by immediately replacing V by the 

whole space, 

E < £ * + ƒ |c f^(x) - (1-C) fg(x)|dx (3.19) 

X 
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density 

f A ( x ) 

S(x) > 0 >|< S(x) < 0 

class A X - class B 

Fig. 3.1 The Bayes error E* equals half the shaded area (a = 0.5). 

Substitution of (3.1) gives 

c < ƒ {min {c f ^ ( x ) , (1-c) fg(x)} + |c f^(x) - (1-c) fB(x) | }dx 

_x 

This is equivalent to 

E < f max {c f ^ ( x ) , (1-c) fg(x)}dx 

or 

< 

[3.20) 

;3.21) 

ƒ jc f^(x) + (1-c) fg(x) - min {c f ^ ( x ) , (1-c) f g d ) } } dx (3.22) 

or 

E < 1 - E* (3.23) 

The upper bound is reached when the classification regions corresponding with 

E* are completely reversed, see figs. 3.1 and 3.2. Together with the obvious 

fact that £* < E one gets from (3.23) and (3.18) 
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density 

S(x) > 0 S(x) < 0 >|< 

I 
c lass B >|<- - c lass A 

Fig. 3.2 Example of the result of an extremely bad estimate for one of the 

classes. The interrupted line shows the estimated density for 

class A. The density function of class B is assumed to be estimated 

perfectly. So e. equals half the shaded area and e„ - 0. Comparison 

with fig. 3.1 shows (c - 0.5) 

1) £ = i - £* 

2) £ = E* + e^ + gg 

By this the two upper bounds (3.23) and (3.18) are reached simul­

taneously. 
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e* < e <niin {(1-e*), e* + 2 (c e^ + (l-c)eg)} (3.24) 

For most practical problems, however (3.18) is a more stringent bound than 

(3.23). In fig. 3.2 an example is given where the upperbound (3.18) is reached. 

In this example the densities and their estimates of the two equally probable 

classes A and B are given. The density estimate of class B is equal to the true 

density. The density estimate of class A is such that the classification 

compared with the one based on the true densities is reversed. From the figure 

can be understood that by this the additional classification error E - E* 

equals e . As eg = 0 the upper bound E = E* + e. + e^ is reached. Note that 

in this example also E = 1 - £*, so the two upper bounds coincide. 

A bound on the classification error expressed in e and eg has hardly any 

practical value, because e and eg can, in general, have any value between zero 

and one and are in a particular problem unknown. A bound on the expected error 

would be more useful. It gives an indication of the expected accuracy. Such a 

bound can easily be found by taking the expectation of (3.18). 

£ = E^(£) < £ * + 2 {c E^(e^) + (1-c) E^(eg)} (3.25) 

This bound will not be very tight because f(x) can deviate from f(x) to two 

sides. Only one of these sides can cause an erroneous classification. 

An exact expression for c can be found by taking the expectation of (3.8) over 

the learning set. Therefore (3.6) is rewritten as 

£ = E* + I S(x) dx - I S(x) dx 

S(x)>0 S(x)<0 

S(x)<0 S(x)>̂ 0 

The expectation over the learning set effects only S(x), of which only its 

sign is relevant. 

So 

£ = e* + [ Prob (S(x) < 0 ) S(x)dx + 

S(x)>̂ 0 

j Prob (S(x) >0) S(x)dx (3.26) 

S(x)<0 
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If one assumes that the probabilities in (3.26) can be 0.5 at most, which is 

for the given integration areas likely but not necessarily true, ïï is bounded 

by 

i < £* + 0.5 / |S(x)| dx .5 ƒ |S(x) 

Using (3.10) one obtains 

K E * + c E^(e^) + (1-c) E^(eg) (3.27) 

which is a factor two better than (3.25). 

The next paragraphs will investigate for some special cases, how E (e ) and 

E (e ) depend on sample size and feature size. This results into sample sizes 

which guarantee, in expectation, a certain classification accuracy. 

3.2 THE ERROR BOUND FOR A GENERAL MEASUREMENT SPACE 

We will adopt here a model originally presented by Hughes [24]. Let x be a 

measurement outcome into one of n cells with probabilities p^ and p^ (j = l,n) 

for the classes A and B. n is called the measurement complexity. It can be 

compared with the dimensionality k of, for instance, continuous spaces. The 

influence of both on the number of distributional parameters is similar. 

Assume that 2m objects are available for the estimation of p^ and p^. Maximum 

likelihood estimates indicated by p^ and p^ will be used. For the estimation 

error of class i (I = A,B) can be written, (compare (3.3)) 

n 
e^ = 1 - I min {p|,p{} (3.28) 

j=1 

By taking the expectation over all learning sets one gets 

n 

E^(e^) = 1 - .̂^ ^<"^i"^Pi'P^i (3-29) 

Define 

y = (P̂ ' - PJ) {pj(l-pj)/m}"i (3.30) 
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So 

E^{min{pJ , p j } } = E{min{y,0}} { p j ( l - p j ) / m } i + pj (3.31) 

I f m is large enough p̂  is approximately normally d ist r ibuted with expectation 

p| and variance p j ( l - p | ) / m . In that case y has approximately a standard normal 

d i s t r i bu t i on . For the expectation of min{y,0} is found 

0 ' 

E{min{y,0}| = ƒ (2^)"^ y exp(-y2/2)dy = -(271)"* (3.32) 
- c o 

Using (3.31) and (3.32), (3.29) becomes 

£^(6,) = I {p | ( l -p | ) / (2™)}* (3.33) 

because 

n 

^ Pi = 1 j= i ^ 

In appendix A i t is shown tha t , for c = | , c E (e ) + (1-c) E (Og) is 

maximum i f for n/2 values of j (n even) 

P^ = 2e*/n 

and (3.34) 

pj = 2( l -£* ) /n 

and i f for the other n/2 values of j 

p^ = 2 ( l -£*) /n 

and • • (3.35) 

pj = 2£*/n 

Using (3.33) - (3.35) for (3.25) can be written 

ë < e* + n(2TTm)"*{{2E*(l-2e*/n)/n}*+{2(l-E*)(l-2(l-£*)/n)/n}*} (3.36) 
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0,20r 
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Fig. 3.2.a 

O BOr 

O.iO 

0.30-

0.20-

6=0.10 -

50000 

Fig. 3.2.b 

Fig. 3. 2 The upper bound of £ for the general measurement space (3,26) as a 

function of sample size m and measurement complexity n. 

a. E* = 0.01 

b. £* - 0.1. 
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For large values of n th is reduces to 

£ < £ * + {n/(TTm)}* { (£* ) * + ( l - £ * ) h (3.37) 

In fig. 3.3 the upper oound (3.36) o f ? is given for two values of E* as a 

function of sample size m and measurement complexity n. These curves should be 

interpreted in the following way. If the Bayes error £* (infinite sample size 

case) equals 0.1 then fig. 3.3b gives the sample size that guarantees an 

inaccuracy of less than "E for measurement complexity n. Because the 
•' max 

Bayes error is only rarely known in practice, the given curves serve to give 

an impression of the sample size needed for a certain accuracy by given 

measurement complexity n. For small sample sizes the approximation of y by a 

normal distribution, and thereby the expressions (3.32) and (3.36), become 

inaccurate. 

The resulting numbers of learning samples are large and in many practical 

problems not available. Additionally, they are with respect to many practical 

results extremely pessimistic. This is caused by the very general model which 

covers many difficult classification problems and by the worst case approach 

that has been followed. 

In order to illustrate this last statement the exact value of T given by 

(3.26) has been computed approximately for the same probability distribution, 

defined by (3.34) and (3.35), as used above. The results, shown in fig. 3.4 

have to be compared with those of fig. 3.3, where the upper bound is given, 

which is based on the same probability distribution. Formula (3.26) has been 

approximated for this case using the Camp-Paulson approximation for the 

cumulative binomial distribution as given by Molenaar [29]. 

The resulting values of "E for given m, n and E*, as follow from fig. 3.4, 

are much closer to values obtained for £ in practical situations than the ones 

of fig. 3.3. This illustrates how pessimistic the upper bound is. 

The results of the upper bound are based on a worst case approach and have 

to be valued in that light. The results actually obtained in a particular 

classification problem are, with high probability, much better. The upper 

bound, however, gives a guarantee for the resulting values of e as a function 

of m and n. 

35 



o .5 r 

1000 

o 5r 

0.4 

O 3 h 

0 2 

e*=0 1 

10 100 1000 
• m 

Fig. 3.4.b 

Fig. 2.4 The expected classification error £ for the function defined by 

(2.34) and (3.35) as a function of sample size m and measurement 

complexity n 

a. z* = 0.01 

b. z* ^ 0.1. 
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3 .3 THE CLASSIFICATION ERROR USING NORMALLY DISTRIBUTED FEATURES 

The expectation of the estimation error e for an arb i t rary k-dimensional normal 

d is t r ibu t ion can be wr i t t en , as follows from (3 .3) , as 

E^(e) = l -E^Mmin { f ( x | y ,S ) , f ( x |u ,5 : ) }dx [ (3.38) 

in which f(xi]£,Z) is the normal density function with expectation y and 

covariance matrix I. In this paragraph the plug-in rule based on the 

maximum likelihood estimates p and Ê will be used only. 

In appendix D it is shown that (3.38) is independent of y and z. Therefore 
a multidimensional standard normal distribution may be chosen for f('). E 

can be written in that case as 

E (e) = 1-E 
X^ ' X 

(min{f(xlp,2), f(xlO,I)}dx (3.39) 

in which I is the identity matrix. Because of this E (e) only depends on the 

dimensionality k and the sample size m. 

We computed E (e) as a function of m and k using Monte Carlo procedures. 
A 

The integral of the minimum in (3.39) was approximated by using 2x50 randomly 

selected points according f(x|0,I) and its estimate. This procedure is explained 

in appendix E. The expectation was obtained by averaging the results of 200 

randomly chosen learning sets of size m. The accuracy of this method can be 

found by computing the standard deviation of those 200 results. In fig. 3.5 

E (e), estimated in this way, is shown as a function of m and k (see also 
A 

table 3.1). The values of m can,for our purposes, be interpreted as that number 

of learning objects which guarantees that in expectation the contribution 

of the estimation error of some normal density function to the expected 

classification error is less than 2 Prob (x € class I) E (e^^), see (3.25). 
In 3.1 it was stated that the upper bound (3.25) will probably be too loose. 

In order to get some impression of this the following experiments were 

performed for the case of normal distributions. For a number of classification 

problems with c=| and randomly chosen learning sets, E*, Z , e^, eg and y, 
defined by 
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500 1000 

Fig. 2.5 The expected estimation error E (e) for normal distributions with 
A 

dimensionality k and sample size m, 

m 

2 
5 

10 
20 
50 

100 
200 
500 

1000 

k 

1 

0-506 (0.019) 
0.233 (0.011) 
0.160 (0.008) 
0.098 (0.008) 
0.065 (0.0D7) 
0.047 (0.007) 
0.031 (0.007) 
0.019 (0.007) 
0.009 (0.007) 

2 

0.437 (0.013) 
0.284 (0.009) 
0.170 (0.008) 
0.111 (0.007) 
0.068 (0.007) 
0.052 (0.007) 
0.034 (0.007) 
0.021 (0.007) 

5 

0.617 (0.009) 
0.396 (0.008) 
0.226 (0.008) 
0.173 (0.007) 
0.114 (0.007) 
0.074 (0.007) 
0.051 (0.007) 

10 

0.712 (0.006) 
0.416 (0.007) 
0.289 (0.007) 
0.203 (0.007) 
0.126 (0.007) 
0.097 (0.007) 

Table 2.1 The expected estimation error E (e) for normal distributions with 
A 

dimensionality k and sample size m. The presented values are the 

mean results of a Monte Carlo simulation. Between the brackets the 

confuted standard deviations of the means are given. 
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u 

0 
0.5 
1.0 
2.0 
0 
0.5 
1 .0 
2.0 
0 
0.5 
1 .0 
2.0 

ü) 

2 
2 
2 
2 
6 
6 
6 
6 

20 
20 
20 
20 

E* 

0.42 
0.36 
0.26 
0.11 
0.30 
0.29 
0.26 
0.17 
0.19 
0.19 
0.18 
0.16 

1 

m = 20 

Y 1) 2) 3) 

0.09 2 2 
0.09 3 1 
0.10 2 0 
0.15 0 0 
0.16 5 5 
0.08 2 0 
0.07 0 0 
0.05 1 0 
0.03 0 0 
0.10 0 0 
0.09 2 0 
0.05 0 0 

m = 50 

y 1) 2) 3) 1 

0.02 0 0 
0.04 0 0 
0.03 0 0 
0.01 0 0 
0.04 1 0 
0.00 0 0 
0.01 0 0 
0.02 0 0 
0.00 0 0 
0.01 0 0 
0.03 0 0 
0.03 0 0 

Table 2.2 Results of a number of two dimensional experiments, each repeated 

for ten different learning sets and for sample sizes of 20 and 50. 

The distributions ar-e normal and independent with means (0,0) and 

(V;0) and with variances (1,1) and (i>),l). 

1) mean value of Y in ten experiments 

2) number of times y > 0.15 

2) number of times y > 0.20 

£ = E* + Y(e^+eg) (3.40) 

were computed. The resulting values of y appeared very often to be less than 

0.2. In table 3.2 the results of an example are presented where the distribution 

of the classes A and B are both binormal with zero correlation. A has mean (0,0) 

and variances (1,1) and B had mean (p,0) and variances (w,l). For each value of 

p and u ten learning sets were chosen at random, resulting in ten values of y-

In table 3.2 the mean value of y and the number of times that y was larger than 

0.15 or 0.20 are given. The results are presented for sample sizes of 20 and 50. 

These experiments show that under certain conditions the accuracy is much 

greater than can be determined from fig. 3.5 and formula (3.25). 

In literature much attention has been paid to the behaviour of E as a function 

of m, k and e* for the case of normally distributed classes with equal 

covariance matrices. A relation to the estimation error, however, was not 

found, yet. An asymptotic expansion of z, up to the second order with respect 

to m , has been given by Okamoto [31]. The asymptotic distribution of E has 

been studied by Lachlan [27]. Monte Carlo experiments for several values of £*,m 
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0.^0 

0.30 
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0.10 

k = 1 

10 20 50 100 200 
m 

Fig. 3. 6 The expected classification error z for two normal distributions 

with equal covariance matrices I and with means on a distance of 

two, as a function of feature size k and sample size m. 

k 

1 
2 
5 

10 
20 
50 

m 

20 

0.161 (0.003) 
0.168 (0.009) 
0.190 (0.019) 
0.244 (0.047) 
0.430 (0.117) 

50 

0.160 (0.001) 
0.162 (0.004) 
0.170 (0.008) 
0.185 (0.014) 
0.219 (0.023) 
0.445 (0.067) 

100 

0.159 (0.001) 
0.161 (0.003) 
0.165 (0.005) 
0.171 (0.006) 
0.186 (0.009) 
0.247 (0.022) 

200 

0.159 (0.001) 
0.159 (0.001) 
0.161 (0.002) 
0.165 (0.003) 
0.171 (0.005) 
0.194 (0.007) 

Table 3.2 The estimation and its standard deviation of the expected 

classification error z, for two normal distributions with equal 

covariance matrices I and with means on a distance of two, as a 

function of feature size k and sample size m. 
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and k are presented by Dunn [17], Bouillon et. al [4 ], and in a wider context 

by Van Ness and Simpson [44]. The performance of a number of linear 

discriminant functions in the normally distributed case are compared by Sorum 

[38]. However, all these references do not enable us to present 7 as a function 

of sample size and feature size on the basis of published results. This is due 

to the accidental choices made for m and k. We were, therefore, forced to run 

our own Monte Carlo experiments. They are based on two equally probable classes, 

both normally distributed, with the identity matrix as covariance matrix and 

with means on a distance of one. 50 different learning sets of size m were 

generated and each time z was computed analytically on the basis of the 
estimated means and covariance matrix, in the same way as published by Dunn 

[17]. The results are shown in fig. 3.6 and in table 3.3. Comparison with 

the results obtained by substitution of the data of fig. 3.5 into the upper 

bound (3.25) shows again a wide gap between the bound and the actually 

obtained results. 

Finally we will give a short comment on the procedure followed by Bouillon 

et al. [4]. In contrast with the earlier paper by Dunn [17] they find an 

estimate of E by averaging the classification errors made in only one of the 

two classes. This error has a range of 0 to 1. It is therefore possible that 

their estimate of E is lower than z*. In fact this happens several times in 

their published results, but is not commented on by the authors. If they had 

averaged the values of E, which have a range of E* to 1, as is done here and 

by Dunn [17], more realistic figures would have been obtained. 

3.4 THE CLASSIFICATION ERROR USING NONPARAMETRIC ESTIMATES 

In this paragraph some considerations will be given to the accuracy of density 

estimates by using histograms and Parzen estimators. This will be illustrated 

by some experimental results using Monte Carlo procedures on normal densities. 

The histogram as a density estimator shows similar characteristics as the 

general measurement space described in 3.2. In both cases the number of 

learning objects in a cell is used for estimating the probability of finding 

an object in that cell. The estimates converge in both cases in the same way 

to those probabilities. The difference is, however, that the general measurement 

space is intrinsically discrete wl̂ ile the histogram may be an approximation of 

a continuous stochastic variable. The result is that, for a constant number 
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100 200 500 1000 
»-m 

Fig. 2. 7 The expected estimation error of a histogram of a normal distribution 

for a number of values of n (the number of cells used per standard 

deviation), m is the sample size. 

I.Ot-

E,(e) 

08-

0.6 

0.4-

m = 2 

10 

Fig. 2.8 The expected estimation error of a histogram of a normal distribution 

for a number of values of the sample size m, n, is the number of 

cells used per standard deviation. The indicated points correspond 

with a interval width of the expectation of (x -x . )/^m. 
•' ^ •' max mm 
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of histogram cells and a constant width of those cells, the histogram cannot 

represent the density exactly, even for very large numbers of objects. Always 

some residual error remains to exist. This error approaches zero only if by 

increasing number of objects the number of cells approaches infinity and the 

width of those cells approaches zero. The remarks and figures of 3.2 apply, 

because of the above, for the histogram approach except for the residual error. 

The estimation error of a one dimensional histogram for an underlying 

normal distribution with standard deviation a has been calculated using a 

Monte Carlo procedure. In this experiment n̂ ^ cells were chosen on a length of 

one standard deviation. So the width of a histogram cell is a/n^. The location 

of the mean of the distribution was random in relation to the cells. For each 

value of nj, a sample set of size m was generated 50 times. The estimation 

errors, calculated by integration, were averaged. The results are shown in 

fig. 3.7 as a function of m for a number of values of n̂ .̂ The convergence of 

E (e) can be studied using this figure. An optimal choice for n̂ , is best made 

from fig.3.8 where the expected estimation error is given as a function of nh 

for a number of values of m. In a practical situation with unknown distributions 

the optimal number of cells has to be chosen using a priori knowledge, or from 

previous experiments. 

As a rule of thumb sometimes Ax = (x - x . )//m is used for the interval 
^ max mm' 

width of a histogram, in which x and x . are the maximum and minimum values 
max mm 

in the sample set. This corresponds with the indicated points in fig. 3.8. 

These points are close to the optimal ones. 

An example of the application of a histogram for discriminant analysis is 

given by Moss [30], who maps continuous signals into a discrete space. He 

experimentally investigates the influence of the number of cells on the error. 

In such a discriminant analysis, cells in the non-overlapping regions of the 

class distributions can be combined for efficient coding, because this will 

not influence the discriminant error. This causes a lower optimum number of 

cells in the discriminant problem compared with the density estimation problem. 

In the case of density estimates using Farzen estimators the situation is 

slightly different. Such an estimate can be written as (see Fukunaga [23]) 
m 

f(xlh,x) =- I u(x-x'lh) (3.41) 
i = 1 

Several choices can be made for the so called kernel function u(xlh) in which 

h is a width parameter, often called the smoothing parameter. A common choice 

for u(') is the normal density function with mean zero and covariance matrix 
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Fig. 2.9 A one dimensional example of a Parzen estimation of a density function 

using five objects. 

2 + 

h I, when I is the identy matrixl A one dimensional example is given in 

fig. 3.9. A problem is the choice of h. In [13] a pseudo maximum likelihood 

method has been proposed, which will be used below in one of the experiments. 

In order to be able to compare the estimation errors of a histogram and a 

Parzen estimate the following one dimensional experiment was performed. For a 

number of values of h a sample set of size m was generated 50 times, using a 

normal distribution. The estimation errors, determined by a Monte Carlo 

procedure (see appendix E) using 50 samples for the true density function and 

50 samples for its estimate, were averaged. The results are shown in fig. 3.10 

for a normal kernel and fig. 3.11 for a uniform kernel. Comparison with 

fig. 3.3 learns that the results of the Parzen estimates are better than the 

results of the histogram estimates. 

The figures 3.10 and 3.11 show that except for very small values of 1/h 

approximately the same accuracy is reached for the two types of kernels. The 

normal kernels, however, give a somewhat lower minimum error. This is caused 

by the fact that the density function is estimated by kernels of the same 

shape (both normal). This benefit of the normal kernels, however, is rather 

small. 

The performance of the Parzen estimator on a multidimensional normal 

density using a normal kernel and using the pseudo maximum likelihood estimator 

for h is shown in fig. 3.12. These results are found by generating a sample set 

of size m 50 times. Each time a new estimation of li is made. The estimation 

In our experiments the kernel function was always chosen to be such that 

u(xlh) = n u'(x.lh), in which u'(-) is a one-dimensional density function 

with standard deviation h. 
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Fig. 3.10 The expected estimation error of a Parzen estimation of a one 

dimensional normal distribution as a function of the inverse of the 

smoothing parameter for a number of sample sizes m. Normal kernels 

are used. 
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Fig. 2.11 The expected estimation error of a Parzen estimation of a one 

dimensional normal distribution as a function of the inverse of 

the smoothing parameter for a number of sample sizes m. Uniform 

kernels are used. 
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Fig. 3.12 The expected estimation error of a Parzen estimation of a k-

dimensional normal distribution as a function of the sample size m. 

Normal kernels are used. The smoothing parameter is estimated 

using the method described in {13}. 

m 

2 
5 

10 
20 
50 

100 

1 
1 

0.39 (0.20) 
0.26 (0.10) 
0.18 (0.10) 
0.15 (0.09) 
0.09 (0.07) 
0.08 (0.07) 

2 

0.46 (0.19) 
0.37 (0.13) 
0.26 (0.10) 
0.24 (0.09) 
0.15 (0.07) 
0.13 (0.07) 

5 

0.67 (0.13) 
0.54 (0.11) 
0.46 (0.09) 
0.43 (0.09) 
0.35 (0.07) 
0.31 (0.07) 

10 

0.82 (0.08) 
0.74 (0.09) 
0.71 (0.07) 
0.64 (0.07) 
0.60 (0.05) 
0.53 (0.06) 

Table 2.4 The expected estimation error E (e) of a Parzen estimation of a 
A 

k-dimensional normal distribution using a learning set of size m. 

Normal kernels are used. The smoothing parameter is estimated 

using the method described in [13]. The presented values are the 

mean results of a Monte Carlo simulation. Between the brackets 

the computed standard deviations of the means are given. 
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errors are computed by Monte Carlo procedures using (see appendix E) 50 samples 

for the true density and 50 samples for its estimate. The results are averaged over 

the 50 runs. Thev are also shown in table 3.4. Thev have to be compared 

with the results of the parametric estimate shown in fig. 3.5. For small sample 

sizes these results are comparable or better due to the fact that the chosen 

kernel and the true density function are identical. The parametric estimates 

converge, of course, much faster than the Parzen estimates. These experiments 

use much computing time and are, therefore, not run for sample sizes larger 

than 100 and not repeated more than 50 times. We realize, however, that by 

this the obtained accuracy is not very high. 

In order to illustrate the relative value of a good density estimate for 

classification the following classification experiments are performed. From two 

five dimensional normal densities, each with the unity matrix as covariance 

matrix and with their means on a distance of two, 2x50 learning objects are 

generated. For a number of values of h, Parzen estimates are computed for the 

case of normal kernels as well as for the case of uniform kernels. The 

resulting ciscriminant function given by (1.7) and (3.41), in which c = 0.5 is 

chosen, is tested by 2x1000 test objects. This is repeated ten times for ten 

different learning sets. Always the same test set is used. The averaged 

classification results, which are an estimate for "E, are shown in fig. 3.13 

for the normal kernel and in fig. 3.14 for the uniform kernel (see also table 

3.b and table 3.6). The strong difference between the two results is explained 

below. 

The estimation errors for one of the two classes are computed by a Monte 

Carlo procedure using 50 objects for the true density estimate and 50 objects 

for its estimate (see appendix E). The averaged results over the ten 

experiments are shown in fig. 3.15 for the normal kernel and in fig. 3.16 for 

the uniform kernel (see also table 3.7 and table 3.8). There is little 

difference between the two curves, which indicates that, at least for 50 

objects in a five dimensional space, the choice of the shape of the kernel is 

not wery important for the accuracy of the density estimation. 

The difference between the results for the estimation error and the 

classification error can be understood from studying the kernel properties. 

By increasing smoothing parameter the normal kernel is better and better 

approximated, in the area of interest, by the linear term in its Taylor 

expansion. The discriminant function approaches, therefore, the perpendicular 

bisector between the two means (see Specht [39]). This happens to be, in the 

case of the presented example, the optimal discriminant function. In the case 
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Fig. 2.12 The expected classification error in a five dimensional example 

as a function of the smoothing parameter of the Parzen estimation. 

Normal kernels are used, m - 50. 

h 

0.05 
0.10 
0.20 
0.50 
1.00 
2.00 
5.00 

e 

0.43 (0.01) 
0.27 (0.02) 
0.25 (0.02) 
0.23 (0.02) 
0.18 (0.01) 
0.17 (0.01) 
0.17 (0.01) 

Table 3.5 The expected classification error z in a five dimensional example 

as a function of the smoothing parameter of the Parzen estimation 

(m = 50). Normal kernels were used. The presented values are the 

mean results of a Monte Carlo simulation. Between the brackets 

the computed standard deviations of the means are given. 
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Fig. 3.14 The expected classification error in a five dimensional example 

as a function of the smoothing parameter of the Parzen estimation. 

Uniform kernels are used, m = 50. 

h 

0.05 
0.10 
0.20 
0.50 
1 .00 
2.00 
5.00 

e 

0.500 (0.000) 
0.500 (0.000) 
0.500 (0.001) 
0.452 (0.011) 
0.234 (0.016) 
0.169 (0.011) 
0.500 (0.001) 

Table 3.6 The expected classification error z in a five dimensional example 

as a function of the smoothing parameter of the Parzen estimation 

(m - 50). Uniform kernels were used. The presented values are the 

mean results of a Monte Carlo simulation. Between the brackets 

the computed standard deviations of the means are given. 
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Fig. 2.15 The expected estimation error of one of the classes in a five 

dimensional classification problem as a function of the smoothing 

parameter of the Parzen estimation. Normal kernels are used. 

m - 50. 

h 

0.05 
0.10 
0.20 
0.50 
1.00 
2.00 
5.00 

E (e) 
X 

1 .00 (0.00) 
1.00 (0.00) 
0.93 (0.01) 
0.49 (0.02) 
0.44 (0.02) 
0.78 (0.03) 
0.98 (0.01) 

Table 3.7 The expected estimation error E (e) of a five dimensional normal 
A 

distribution using a Parzen estimation with normal kernels and 

smoothing parameter h (m - 50). The presented values are the mean 

results of a Monte Carlo simulation. Between the brackets the 

computed standard deviations of the means are given. 
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Fig. 2.16 The expected estimation error of one of the classes in a five 

dimensional classification problem as a function of the smoothing 

parameter of the Parzen estimation. Uniform kernels are used. 

m = 50. 

h 

0.05 
0.10 
0.20 
0.50 
1 .00 
2.00 
5.00 

E (e) 
X 

1.00 (0.00) 
1.00 (0.00) 
1.00 (O.OU) 
0.82 (0.02) 
0.37 (0.03) 
0.70 (0.03) 
0.99 (0.01) 

Table 3.8 The expected estimation error E (e) of a five dimensional normal 
A 

distribution using a Parzen estimation with uniform kernels and 

smoothing parameter h (m = 50). The presented values are the mean 

results of a Monte Carlo simulation. Between the brackets the 

computed standard deviations of the means are given. 
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of uniform kernels the density estimates are the same for the two classes if 

h is large enough, because then all learning objects contribute in the same 

way. The classification error approaches, therefore, by increasing h the a 

priori error min{c,l-c}, which is 0.5 in the presented example. For small 

values of h a similar effect exists. The two density estimates become zero 

almost everywhere, which results in the classification error approaching the 

a priori error. In that case normal kernels remain giving nonzero estimates 

everywhere. 

From this experiment it can be concluded that in spite of the nearly 

identical estimation errors, the choice of the value of the smoothing parameter 

may be more critical for uniform kernels than for normal ones. 

3.5 CONCLUDING REMARKS 

The classification error made by an estimated discriminant function depends 

upon the accuracy of the density function estimates. From the examples in 3.4 

it appeared, however, that this dependency differs from problem to problem, 

and can be very non-linear. An upper bound has been presented for the 

classification error which is expressed into the Bayes error and the estimation 

errors of the density functions. This bound expresses the worst thing that may 

happen: the complete estimation error works through into the classification 

error. In general it is highly improbable that this will occur. The advantage 

of the upper bound is that it can be computed, as we have shown, if only the 

family to which the class densities belong is known. If more detailed knowledge 

is available, such as in the case of normal distributions with equal covariance 

matrices, much lower figures for the expected classification error can be 

obtained. 

The figures given in this chapter show how fast the classification error 

converges to z by increasing sample size. From these figures it appears that 

the relation between £*, E, m and k can be roughly written as 

i ~ £* + F (m/k) (3.42) 

(For the case of the general measurement space k has to be replaced by n). This 

is illustrated in fig. 3.17 where the data of the figures 3.4a, 3.4b and 3.6 

are given as a function of m/k and m/n using a logarithmic scale for 'E - E*. 
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Fig. 2.17.a £ - E* versus m/n for the data of fig. 2.4.a for several values 

of n. 
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Fig. 3.17.b £ - £* versus m/n for the data of fig. 3.4.b for several values 

of n. 
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Fig. 3.17. a J - z* versus m/k for m/k > 4 for the data of table 3.3 (fig. 

3.8). Points with '£-£*< 0.003 are not given because of the 

relatively large variances. 
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n=2 

Fig. 2.18.a z - z* versus m/n for the data of fig. 2.I.a for several values 

of n. 

As these functions may be approximated by straight lines, this indicates that 

F(') is for those cases an exponential function. The data of the upper bound 

in the general measurement space as given in fig. 3.3 shows a linear relation 

between e - E* and m/n if for both a logarithmic scale is used, see fig. 
max ^ _ 

3.18. This implies that the relation between the two quantities E - e* and 
'^ ^ max 

m/n is such that the one is the other raised to some power, except for some 

constants. This was already shown for larger values of n by (3.37). This 

illustrates that the convergence of the upper bound for 'z is much slower than 
the exponential convergence of e itself. 
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Fig. 3.18.b z^^ - e* versus m/n for the data of fig. 3.2.b for several values 
of n. 

So far a restriction has been made to the two class case. For the multiclass 

case an upper bound similar to (3.18) can be found (for simplicity equal class 

probabilities will be assumed), 

n 

< + 2 I e/n 
f C 

£=1 ^ 

:3.43) 

in which n is the number of classes. This follows immediately from (3.18) with 

the interpretation that class l is class A, and all other classes together 
constitute class B. The maximum contribution of the estimation error of that 

class, e , to the classification error E is 2 e/n . Thus (3.43) gives the 

maximum classification error, given all estimation errors. For E is found 

< + 2 I E (ej/n^ (3.44) 

A tighter bound can be derived as follows. In a multiclass problem several 

class densities may be estimated erroneously. For each object to be classified 
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only two of them may determine a wrong classification: the density of the 

correct class and the density of the one that takes over. So for each point x 

can be stated 

£(x) <e*(x) + 2 max (e.(x))/n (3.45) 

in which £(x), c*(x) and e (2<) are the local error contributions. After 

integration is found for E 

£ < E* + 2 [max (e (x))/n dx (3.46) 
i 

X 

and for £ 

£ < e* + 2 E { r max (e^(x))/n^ dx} (3.47) 

Especially when the number of classes is much more than two, the bound (3.47) 

may give a significant reduction compared with (3.44). The computation of 

(3.47), however, may be very difficult because a complicated function has to 

be integrated over x. 
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Pig. 4.1 £ and z* as a function of the feature size. 
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Chapter 4 

FEATURE SIZE 

4.1 THE PEAKING PHENOMENON 

By considering fig. 3.6 it appears to be possible that for constant £* and 

constant sample size m the expected classification error 'z is an increasing 
function of the feature size k. This seems to be counterintuitive, more 

features and worse results. The cause is that in spite of the fact that more 

features are available, no extra discriminating power is added, because the 

Bayes error has a constant value of E*. If this happens the new features are 

useless. They even cause worse results, because more parameters have to be 

estimated using the same number of objects. 

Assume that the new features add some discriminating power, so e* 

is not constant but decreases with k and approaches asymptotically some value 

£*. The difference between the expected classification error and the Bayes 

error z - z*, is, as explained in the previous chapter, often an increasing 

function of the expected estimation errors and thereby an increasing function 

of k. An exception has to be made for a very good new feature that makes E as 

well as £* equal to zero. However, if the features are ranked in an order of 

decreasing discrimination power it often may happen that 1 - z* increases 
with k because of the increasing expected estimation errors. The expected 

classification error ¥ may for that reason be a peaked function as indicated 

in fig. 4.1. This peaking phenomenon may also be observed in the classification 

error itself and in the mean classification error E. 

This chapter will be devoted to the peaking phenomenon. Some comments will 

be given on the literature and conditions will be presented under which peaking 

does not occur. Parts of this chapter have already been published in [15] and 

[15]. Examples of peaking are given by Ullmann [43] (classification of hand­

printed numerals). Van Vark [46] (classification of human skeletal remains), 

Allais [3] (prediction). Van Ness and Simpson [44] (simulations of 
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discriminant analysis of normally distributed classes) and by Bouillon, Odell 

and Duran [4] (simulation of linear discriminant analysis of normally 

distributed classes). General discussions on feature size are given by Cover 

[9], Foley [22], Kanal and Chandrasekaran [25] and Raudys [35],[36]. 

The possibilities of peaking of E, 7 and z will now be treated shortly. 
Meanwhile a short introduction to the literature as well as to the other 

paragraphs of this chapter will be given. 

Peaking of the classification error z may always happen if the classes are 
not completely separable, i.e. if the class densities show some overlap. In 

that case it is for instance possible that the learning objects are so poor 

for a particular feature that a completely wrong picture of the relative 

positions of the classes is obtained as in fig. 3.2. The classification error 

e may increase by such a feature. Another possibilities is that the class 

densities are completely identical for some feature while this cannot be 

detected from the learning objects. Such a feature will probably cause 

peaking of e. A test on equality of the feature densities for the two classes 

will detect some bad features, but will not be able to avoid peaking 

completely. 

From this point we will adopt the interpretation of Chandrasekaran and Jain 

[8] of the word peaking, which is more global than the one used just above. 

They call an increase of e as a function of k only peaking if this increase is 

permanent. A local peak, caused by a single bad feature is therefore not a. 

peak in this sense. Peaking of the classification error, in this interpretation, 

is still data dependent and cannot be proved from the data only. Even the use 

of a finite test set for making an estimate E of e will not do because peaking 

of £ does not necessarily coincide with peaking of E. 

The peaking phenomenon can in our set up be studied much better on the 

level of the expected classification error 'z, because in that case the density 

functions are assumed to be known. The results will have no direct practical 

value, because in a practical problem usually only learning sets are given. 

They show, however, what might happen and give some idea under what 

circumstances (sample size, feature size, density functions) peaking might be 

possible. 

For studying the mean classification error E one is not restricted to a 

particular classification problem as one studies now the expectation of E over 

a class of problems. This can be important when the density functions are 

given except for some parameters Q_. The first published study on peaking of £ 
was by Hughes [24], who used the model described in 3.2. In 4.2 Hughes' results 
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will be discussed as well as the comments given by Abend, Harley and 

Chandrasekaran [ 1 ]. 

After Hughes paper a number of papers appeared by Chandrasekaran and 

varying co-authors [ 5 ] , [ 6 ] , [ 7 ] , [ 8 ] , [25], which discussed several 

aspects of peaking. In particular the case of independent features drew their 

attention. For that case the peaking phenomenon is still more striking: new, 

independent information cannot be used because it causes worse results. In 

addition, the mathematical computations become in the case of independent 

features somewhat more feasible. For the case of independent binary features 

Chandrasekaran [5] showed that for a uniform parameter distribution peaking of 

£ does not occur. In 4.3 we will give for the general case (not restricted to 

binary features) conditions for the parameter distribution and the estimators 

used, under which the mean classification error does not peak. 

Chandrasekaran and Jain [ 7 ] constructed conditions under which the 

expected classification error 7 does not peak. These conditions, however, 

appeared to be neither necessary nor sufficient as has been shown by a 

clarifying paper by Van Ness [45]. See also Duin [15] and Chandrasekaran and 

Jain [ 8 ] . These conditions, intended for preventing peaking of the expected 

classification error 7, gave inspiration to some of the results for the mean 

classification error c presented in 4.3. 

In 4.4 it will be shown and illustrated that one of the causes of peakingmay 

be the choice of the estimators. If the right estimators are chosen peaking 

may sometimes be prevented. The knowledge, however, that has to enable us to 

make the right choice is often not available;suggestions for better choices are 

given for some cases. 

The peaking phenomenon is not restricted to pattern recognition. Allais [ 3] 

showed that it exists in the related field of prediction. It also exists in 

regression analysis where it is easier to understand and computations are more 

simple. Because this field is rather out of the scope of this thesis we have 

restricted ourselves to a short discussion in appendix B. 

4.2 DISCUSSION OF H U G H E S ' RESULTS 

We will summarize here the results of Hughes [24] and of some comments on his 

paper made by Abend, Harley and Chandrasekaran [l ] and present our own 

comments. Hughes' paper was the first to study the mean accuracy of statistical 

pattern recognizers. It resulted in curves for the mean error as a function of 
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Pig. 4.2 The mean classification error z, as computed by Hughes [24] as a 

function of measurement complexity n and sample size m. e = 0. 2, 

m 

2 
5 
10 
20 
50 
100 
200 
500 
1000 
oo 

n 
opt 

2 
3 
3 
4 
6 
8 
11 
17 
23 
oo 

z 

0,417 
0,365 
0,345 
0,321 
0,297 
0,284 
0,274 
0,265 
0,261 
0,250 

Table 4.1 Optimum measurement complexity as a function of sample size and 

the corresponding mean classification error as computed by Hughes 

[24]. a = 0.5. 
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measurement complexity and sample size. Thereby was proved that peaking of the 

mean classification error existed. 

The model of the measurement space introduced by Hughes is described in 3.2. 

The possible number of outcomes of a measurement x (also named cells) was 

called the measurement complexity and denoted by n. The probability that x is 

in cell j is indicated by 

pj = Prob (x in cell j I x € class i) (j = l,n; l = A,B) (4.1) 

The learning set consists of m objects for each class with cell frequencies 
n . n . 

q^ respectively q^ for cell j (j = l,n), while ^ q̂, = "£ q^ = m. Hughes made 
j=1 j=l 

use of maximum likelihood estimators for p and p . 

• q^ 

Pl=lir («- = A,B) (4.2) 

Independent uniform distributions were used for the parameters which implies 

that h(p^, p^, ..., p^, 

under the restrictions 
that h(p^, p^, ..., p^, pg, pg, ..., Pg) is equal for all parameter values 

i Pi= 1 
j = 1 '^ 

and (4.3) 

i p̂B - 1 
j = i 

The mean classification error e, as given by (1.11), could be calculated 

analytically as a function of m, n and c. In fig. 4.2 Hughes' result is shown 

for c = 0.2. Two points are important to note. First the peaking phenomenon. 

After a certain value of n, called the optimal measurement complexity, z starts 
to increase. This value is a function of the sample size m, see table 4.1. 

Note that n = 32 is equivalent to a five dimensional binary feature space. 

Even for large sample sizes such as m = 1000, the optimal measurement 

complexity is very low. 
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The second point of interest that can be observed in fig. 4.2 is the fact 

that after peaking, the mean error continues to increase to values higher than 

the a priori probability of error of min{c, 1-c}. For these measurement 

complexities it would be better to classify all samples into the class with the 

highest a priori probability. 

The comments of Abend, Harley and Chandrasekaran [ 1 ] concentrated on this 

second point. They state that this behaviour is caused by the fact that hughes 

made use of maximum likelihood estimators instead of Bayes estimators, in 

spite of the fact that the parameter distributions were known. They prove that 

the following Bayes estimators correspond with the uniform distributions: 

i "^h^ 

They show that if use is made of these estimators E behaves as is shown in 

fig. 4.3. This comment is correct, however, the fact still exists that if it 

is not known that the parameter distribution is uniform, one still might be 

confrontated with results as in fig. 4.2. The important thing to note for us 

is that in spite of the fact that the optimal estimators (4.4) are used peaking 

exists. 

The reason why peaking exists in Hughes model is rather obvious, but it is 

not explicitly stated by Hughes or in the comments. The higher the model 

complexity, the more cells, and, because of the constant sample size, the more 

empty cells. An empty cell, without any learning object from class A or B, has 

to be allocated to the class with the highest a priori probability and gives a 

contribution to the error of cp^ if c < 0.5 and (l-c)p^ if c > 0.5. This has to 

be summed over all empty cells. If the number of cells increases, this sum 

increases and approaches min{c, 1-c} because the fraction of non empty cells is 

reduced to zero. 

The surprising feature of Hughes' results is not the existence of peaking, 

but rather the very low measurement complexity for which peaking occurs. This 

cannot be understood on the basis of empty cell considerations alone. Also 

the surprisingly large error contributions of the non empty cells have to be 

taken into account. 

We will illustrate the importance of empty cells with an example of peaking 

in the expected error based on Hughes' model, which illustrates the influence 

of empty cells. Suppose the cell probabilities are given by 
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nnin(c J-C) 

Fig. 4.2 The mean classification error z as a function of measurement 

complexity n and sample size m using Bayes estimators based on a 

uniform parameter distribution in Hughes ' model. 
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pJ = 2/n, pJ = 0 (j = 1, n/2) 

and (4.5) 

p^ = 0, pJ = 2/n (j = n/2+1, n) 

with n even. For the estimation of these probabilities the Bayes estimator 

(4.4) will be used. The expected error 7 can be written, as follows from (1.8) 

and (1.10), supposing that c = ̂  

I = |E {Prob(S(x) < 0 I X e A, x)}+ JE {Prob(S(x) > 0 | x £ B, x)) (4-6) 
X X 

The discriminant function for x in cel l j is , using (4.4) , given by 

m+2 S(x) = ipj - ipi = i A T T T ^ (j = 1.") (4-7) 

From (4.7) and (4.5) can be understood that the probabi l i ty of S(x) < 0 for 

X e A and the probabi l i ty of S(x) > 0 for x e B are zero. Expression (4.6) 

s impl i f ies therefore to 

J = IE {Prob(S(x) = 0 I X e B, x)} (4.8) 
X 

S(x) can only be zero for points x with q^ = 0, which has a probability of 

H-Pif. so 
B 

^= i T {(i-P̂ g)'" PB^ (4-9) 
j=i 

Substitution of (4.5) yields 

£ = |(l-2/n)'" (4.10) 

When the measurement complexity is raised to i n f i n i t y one f inds 

lim I = l im | ( l -2 /n) ' ^ = i (4.11) 
n-Mo i i-x» 

while for n=2 the value of £ is zero. Note that the classes do not overlap at 

all (E* = 0, V n). In this example the peaking is caused completely by the 
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empty cells. The expected error is the probability of finding an empty cell 

times the probability of an incorrect guess. 

t 

4,3 CONDITIONS FOR NO PEAKING OF è 

In this paragraph conditions are given under which, for any sample size, the 

mean classification error z over the class of independent feature distributions 

approaches zero monotonically if the feature size is raised to infinity. 

The results of Hughes, described in 4.2 have been further investigated by 

Chandrasekaran et al. [ 5 ], [ 6 ], [ 7 ]. A different model was used in which e 

was studied as a function of the feature size instead of the measurement 

complexity. For the case of independent binary features Chandrasekaran [8] 

showed that È has no peaking and approaches zero if the feature size is raised 

to infinity. Like Hughes, he used a uniform distribution for the parameters. 

We will present here more general conditions under which, for the case of 

independent features, the mean classification error will show no peaking. 

Under these conditions z will approach to zero if the feature size is raised 

to infinity. The distribution assumed for the parameters is not necessarily 

uniform. The proof is partly inspired by a paper by Chandrasekaran and Jain 

[7], which studies the peaking of the expected classification error E. 

The estimate of the discriminant function R(x) given by (1.3) will be 

written in a different way. Define 

rJ = lüg{f^(x.)} - log{fJ(x.)} (j = 1, k) (4.12) 

and ' 

d = log{(l-c)/c} (4.13) 

f| is the density estimate of feature j for class X,. R(x) is now given by 

k 
R(x) = I rJ - d - (4.14) 

j = l 

It is assumed that the features are independently distributed. For further 

calculations it will be necessary for the true feature densities f{{') and 

fp(') to be such that 
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fl(Xjlli) = ^(Xjiei) (J = 1'k; !>• = A,B) (4.15) 

This implies that all feature distributions are of the same type, e.g. normal 

distributions. Let the joint parameter density of 6̂  and ^ be given by 

h(e^,^ ), from which the parameters are drawn independently, be independent 

of j. The variables r^ are thus random variables with respect to 6;!, e^, x 
—A —B — 

and X- Since the parameter sets are selected independently and the classes 

have independent features the variables r-' can be interpreted as independent 

identically distributed random variables. The mean classification error (1.11) 

is now given by, as follows from (1.8) 
k . k . 

£ = c Prob( X rJ < d) + (1-c) Prob( 2 r-J > d) (4.16) 
j=l j=l 

If the variance of a variable r-* is bounded and if the expectation of r-' is 

positive, then the probability that a sum of k of those variables is larger 

than a fixed constant d approaches one by increasing k. From now on it is 

assumed that the variance of r-* is bounded. Sufficient conditions under which 

the probabilities in (4.16) go to zero are therefore 

and 

^e^x ^ X 6 B ( ^ ^ ) < ° (^-18) 

which has to be true for each j. Since it is assumed that the density of the 

parameters, h(e., e_g), is independent of j , the r-̂ 's have for all j the 

same distribution, because of (4.15). z will therefore approach to zero mono­

tonically. 

It will now be proved that (4.17) and (4.18) are fulfilled if h(e^, Og) 

satisfies 

h(e^, Gg) = h(9g, e^) (4.19) 

for each 9. and e„ and 
— H —D 
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ƒ h(e^, Bg) d e ^ d e g > ü . / (4.20) 

and i f Q, defined by 

Q(x., e^, i g ) = E^(rJ) • ' (4.21) 

satisfies 

Q(Xj. e^ . ie^ > ° ^^ f(Xjie^) > f ( x . i e g ) (4.22) 

Q(x., e^, 6g) = o i f f ( x . i e ^ ) = f (x . |6g) ^ (4.23) 

Q('<j' ÖA' ̂ B^ "^^ ^^ f (X j l6^ ) < f ( x . | 6 g ) (4.24) 

Note that 

Q(Xj,iA' 9^) = - Q(Xj . iB ' Ö )̂ (4-25) 

because of (4.21), (4.15) and (4.12). For the proof,condit ion (4.17) w i l l be 

wri t ten as 

\ \ \ ^^^y ^A' is) f(>^jliA) ^ ( ^ ' ^B^ ^\ ^% ̂ ^j > ° (̂ -26̂  

The integral over £ and êg can be split into a sum of three terms, one for the 

region with f(x.|6.) >f(x.|e„), one for the region with f(x.ie.) <f(x.|e„) 

and one for the reaion with f(x.|e.) = f(x.ieo). The integral over this last 
\ J —A' ^ J —B' 

region is zero because of (4.23). If 6. and ̂  are interchanged in the integral 
over the region with f(x.ie.) < f(x.|e ) one gets, using (4.19) and (4.25) 

J " J ° 

ƒ \ \ Q(Xj,e^,eB){f(x.ie^)-f(x.ieg)}h(e^,6g)de^d6gdx. > o • 

Xj f(Xjl9^)>f(Xj|6g) (4.27) 

ATI factors in the integrand are positive because of (4.20) and (4.22), which 
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causes that this condition, and thereby (4.17), are satisfied. In the same way 

it can be proved that the presented conditions (4.19), (4.20) and (4.22) -

(4.24) are sufficient for (4.18) to be true. 

The conditions (4.17) and (4.18) guarantee, for the case of independent 

distributions, that the mean classification error approaches zero mono­

tonically.These conditions differ slightly from the ones given by 

Chanarasekaran and Jain [ 7 ], who were interested in z instead of z. 
It appeared that the conditions of Chandrasekaran and Jain are inaccurate. 

This will be treated in the next paragraph in more detail. 

We proved that our conditions are fulfilled if (4.19) - (4.24) are satisfied. 

The condition (4.19) is probably the most demanding one. It requires that 

the chances of finding a feature with parameters 9. for class A and e„ for 
—A —D 

class B are as great as finding a feature with parameters Q_^ for A and 9. 
for B. 

Condition (4.20) simply demands that the classes differ in their 

statistical behaviour. This is trivial, because otherwise a worthwhile 

separation is impossible. The conditions (4.19) and (4.20) include the 

assumption of uniform distributions for 9. and 0^ over the same interval. 
The conditions (4.22) - (4.24) demand that the expected value (over all 

learning sets) of the estimated discriminant function has the same sign as the 

optimal one. In the next paragraph an example of this will be given. 

4.4 INFLUENCE OF THE ESTIMATORS 

In the previous paragraph a class of estimators is defined implicitly that 

fulfils the presented conditions for no peaking of È if the parameter density 

function satisfied (4.19) and (4.20). Independent class distributions were 

assumed. Here it will be shown that for known parameter density functions an 

estimator can be constructed which always prevents peaking of E. This estimator 

is for the case of independent class distributions a member of the class 

mentioned above. 

The case of independent features, starting from the conditions (4.17) and 

(4.18) will be considered first. Condition (4.17) is after substitution of 

(4.12) equivalent to 
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ƒ ƒ ƒ {log{fJ(x^)} - log{fJ(Xj.)}) f ̂ (x^ I 9^)g(xl9)h (9)dx^dxde > O (4.28) 

XXj 

The estimates f^(Xj) and fg(x ) are computed from x alone. So if the order 

of integration is changed and integration over 9 is carried out first, (4.28) 

becomes 

j I vJ (x . , x ) { l og { f J (x . ) } - l o g { f J g ( x . ) } } d x . d x > 0 (4.29) 

X X . 

in which • 

v i (X j ,x ) = / f i ( X j l 9 ^ ) g(xie) h(9) d9 (4.30) 

_e 

is the marginal density of x.eA and x- Similar expressions can be found for 

class B star t ing from (4.18). Choose as density estimator 

in wlflich g(x) is the marginal density of x 

g(x) = ƒ g(xi9) h(9) d9 

9 

For the calculat ion of the estimator (4.31) the fol lowing factors have to 

oe known: the parameter d is t r ibu t ion h(e^), the functional form of f j ( * ) and 

a learning set x- Knowledge of the parameters 9̂ . and 9^ themselves is of 

course not necessary. 

After some calculations condition (4.29) can now be wr i t ten as 

ƒ ƒ v^(Xj.x) 1og{vJ(Xj,x)} dxj dx 

ƒ | v J ( x . , x ) log{vJ(x . ,x ) } dx. d x > 0 (4.32) 

X X . 

X X . 
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which is always satisfied unless v^(x.,x) = v^(x.,x). v(x.,x). This can be 
A J " J J 

understood after realizing that ƒ a(x) log{b(x)}dx in which a(x) and b(x) are 
X 

density functions , is maximum for b(x) = a(x), vx (e.g. see Kullback [26]). 

It is easy to verify that condition (4.18) is also satisfied by choosing 

(4.31) as estimator. This completes the proof that the estimator (4.31) 

results by satisfying (4.17) and (4.18), in a non-peaking mean error è. 

These estimates are, due to (4.30), based on the known parameter density 

h(9^). If this density is not exactly known, as in many practical situations, 

it is not possible to make fp(*) exactly equal to v|('), but (4.29) may still 

hold. If fj(*) differs too much from v^(-) no guarantee for avoiding peaking 

exists. 

Note that the estimator (4.31) for £ = A as well as i = B depends upon the 

entire learning set x- In practice these kinds of estimators are rather 

unusual. 

An example, which is a special case of the above proof, is given by 

Chandrasekaran [ 5 ] . For independent binary features with a uniform parameter 

distribution, he proves that the mean error does not peak in the case of 

Bayes estimates based on a uniform parameter distribution. In appendix C it 

is proved that if maximum likelihood estimators were used the mean error would 

show peaking. 

If the features are not independent the conditions (4.17) and (4.18) cannot 

be used and a somewhat different approach has to be made. From (1.11) and 

(1.9) it follows that for È can be written 

£ = ƒ ƒ ƒ _̂  c fA(xie^) g(xi9) h(9) dx dx de + 
i (x,x)lS(x,x)<0 

j jj ^ (1-c) fg(x|9g) g(xl6) h(9) dx dx de (4.33) 
6̂  (x,x)lS(x,x)>0 

S(x,x) is the discriminant function based upon a learning set x- This 

function has to be defined in such a way that (4.33) is minimum. After inter­

changing the order of intergration, one finds 
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£ = ƒ ƒ c v^(x,x) dx dx + j j (1-c) Vg(x,x) dx dx 

(x,x)IS(x,x)<0 (x,x)IS(x,x)>0 (4.34) 

in which v (x,x) is given by 

%(x.x) = /f^lxiöj^) g(xie) h(e) de (i = A,B) (4.35) 

which is the mean j o i n t density of x£ class l and x- I f the second term in 

(4.34) is expressed in an integrat ion over the complementary region, the 

expression for E s impl i f ies to 

z= j j {c v^(x,x) - (1-c) Vg(x,x)} dx dx + 1-c (4.36) 

(x,x) |S(x,x)<0 

which is minimum if all points in which the integrand is negative are used 

for the integration region. So 

S(x,x) = c v^(x,x) - (1-c) Vg(x,x) (4.37) 

This can be used as discriminant function if the parameter distribution h(ê ) 

is known. This discriminant function is the optimal one in the sense that it 

minimizes z. Peaking of z will now be prevented. This can be understood 
after realizing that the (k+l)-dimensional feature space R, ^ contains the 

k-dimensional feature space R as a subspace. Thus each discriminant function 

in R, is also a discriminant function in R, . by giving a zero weight to 

the new feature. The optimal discriminant function in R is as good as or 

better than the optimal discriminant function in R because the latter is 

available in R^^,• Using these optimal discriminant functions guarantees 

therefore the absence of peaking. 

The above results are in apparent contradiction with the results of Hughes 

as described in 4.2. There too the optimal discriminant function based on the 

known parameter distribution was used. However, in that case peaking still 

existed. This was caused by the different model in which the discriminant 

function in the space with measurement complexity n had no meaning, and could 

therefore not be used, in the space with measurement complexity n+1. So the 

results of an optimal discriminant function do not hold in a space with higher 

complexity and peaking may happen. 
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The resul t of no peaking obtained by using (4.37) is va l i d for the case of 

dependent features. Note that applying i t to independent features gives the 

same discrimination as obtained by using the estimator (4.31) because 

k 
" vJ(x ,x) = V (x,x) {i = A,B) (4.38) 

} = ] ' • • > '^ 

as follows from (4.30) and (4.35). 

The optimal discriminant function for known h(ê ) (4.37) is after 

substitution of (4.35) identical to the discriminant function (2.13) 

introduced in chapter 2. The above therefore proves that the Bayes estimator 

(2.14) is optimal, in the sense that it minimizes the mean classification 

error. 

In chapter 2 an example of binary features was presented which will be 

considered here in more detail. A multivariable independent binary distribution 

is assumed. The density for a single feature is given by 

fivXj) = (pj)''^ (1 - p|) ""j {I = A,B; j = l,k) 

The three kinds of estimators (2.18), (2.20) and (2.22) are compared by 

computing z for a uniform parameter density h(p.,Pg) on the l i ne p^ = 1-pg 

and a zero density elsewhere. 

1) Maximum l ikel ihood estimator for the density estimate of feature j 

Substitut ion into (4.12) yields 

rJ = x .dog nJ/nJg} + (1-x.) log{(m-nJ)/(m-nJ)} (4.40) 

As n and n may have the values 0 and m, the expectation over the learning 

set is not defined. The conditions (4.17) and (4.18) cannot be applied for 

that reason. In appendix C is shown, however, that peaking exists by using 

(4.39) for density estimation. 

2) The Bayes estimator constructed by assuming a uniform parameter density 

for each p^, which is the marginal density of h(p ,p ). 
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Substitution into (4.12.) y ields 

rJ = X. log{(nJ+l)XnJ+l)} + (1-x.) log{(m-nJ+l)/(m-nJg+l)} (4.42) 

In appendix C i t is proved that th is r ' f u l f i l s the conditions (4.17), (4.18) 

and (4.22) - (4.24). I t can be easily ver i f ied that the given parameter 

d is t r ibu t ion sat is f ies (4.19) and (4.20). Hereby i t is clear that the 

estimator (4.41) shows no peaking in the presented example. 

3) The Bayes estimator using the true parameter d i s t r i bu t i on , which i s , 

as is shown in chapter 2 

m+n^-n^+Lx. , m+n^-n^+l 1-x. 

for class A and 

,m+n^-n^ + l ,x. , m+n^-n;l + l ,1-x. 
f i ( > < j ) = ( ^ f ^ ) ^ ( l - - ^ | ^ ) ^ (4.44) 

for CIBSS B. These are, as indicated earlier in this paragraph the optimal 

estimators, because they are based on the true parameter density. The mean 

classification error will, therefore, show no peaking by using these 

estimators. 

Some values of E, for the three presented estimators, are given in table 

4.2. These values are based on an exact computation. For large sample sizes 

and feature sizes a Monte Carlo procedure would have to be used, which is not 

accurate enough to show the difference between the results of the second and 

the third estimator. The results show that peaking exists when the maximum 

likelihood estimator is used. The difference between the two Bayes estimators 

appears to be rather small for the example presented. This indicates that the 

non-optimal estimator (4.41) is a robust one. 

We will now consider the role of the estimator in the peaking of the 

expected classification error E. This has, for independent features, recently 

been treated by Chandrasekaran and Jain [7 ], in a comment on their paper 

made by Van Ness [45] and in the authors reply [ 8 ] . The results are 

nJ+1 1-x. 

m+5~/ (4.41] 
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k 

2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 

m 

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 

£ in I 

es t imators used 

1 

50.0 
33.3 
26.0 
23.0 
21.4 
20.4 
19.8 
50.0 
37.0* 
26.5* 
21.6 

2 

50.0 
27.8 
23.3 
21.5 
20.5 
19.9 
19.4 
50.0 
23.1 
18.7 
17.0 

3 

50.0 
27.8 
23.3 
21.4 
20.4 
19.7 
19.2 
50.0 
23.1 
18.6 
16.7 

Table 4.2 Values of £ (in %) for the presented example (see text) for feature 

size k and sample size m. The three estimators used are 

1. The maximum likelihood estimator (4.29) 

2. The Bayes estimator (4.41) 

2. The Bayes estimators (4.42) and (4.44) 

* These values show an increase after the addition of a new 

feature (peaking). 

summarized below, together with our own comments. 

Chandrasekaran and Jain [ 7] presented the following conditions for no 

peaking of E 

lim E t 
I X XÊA 
k-w "̂  -

lim E E _„ 
X üEB k-Ko 

k . 

j = l 
k . , 
I rJ = -
J = l I 

(4.45) 

(4.46) 

in which r-' is defined as in (4.12). They state that if these conditions are 

fulfilled "E shows no peaking. Their argument is that the distribution of the 

sum of the independent random variables r-' becomes normal because of the 

central limit theorem. If the mean of that distribution goes to infinity for 

increasing k and the variances of the r-''s are sufficiently well behaved, then 

the expectation of the sum devided by its standard deviation also goes to 

infinity and complete separation between the classes becomes possible, so 

"e -̂  0 for k ̂  oo. 
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Van Ness [4b] showed that the conditions (4.45) and (4.46) are neither 

necessary nor sufficient since the central limit theorem is not valid for the 

general situation described and the standard deviation may approach infinity 

as fast as the mean does. 

In their reply Chandrasekaran and Jain [ 8] admit these imperfections and 

give new, sufficient conditions that do not depend on the applicability of 

the central limit theorem. These conditions are 

limJ-j^^ = <» , • (4.47) 

^^ {T Var^ Var^^^(rJ)}^ 

and 

1< 
I E E ̂ „(rJ) 

^™ ^ = - «> (4.48) 

^•^ {_! Var^ Var^gg(rJ)}' 

The notations Var Var ̂ „(r-') and Var Var ̂ „(r-') stand for the variance of r-' X x£l\^ ' x XÊB'' ' 
due to the random choices of x ^^d x- ^^^ variables r-*, given by (4.12), are 

functions of the density estimates of the classes. The expectations and the 

variances in (4.47) and (4.48) are therefore estimator dependent. Thus the 

choice of the estimator is relevant for avoiding peaking. In particular 

estimators with large or unbounded variances have to be avoided. For instance 

estimators for which the density estimates in (4.12) can be arbitrarily small 

or even zero (e.g. maximum likelihood estimators for binary features) cause 

large or unbounded variances of r-' and may thereby cause peaking. In appendix 

C it is shown that for the case of independent binary features maximum 

likelihood estimators nearly always result in peaking. The case of Bayes 

estimators based upon a uniform parameter distribution, as given by (4.41) is 

investigated by Chandrasekaran and Jain [ 7 ] and [ 8 ]. They found that in 

certain small regions of the parameter space peaking occurs, while in the other 

regions peaking is avoided. This illustrates the importance of the choice of 

the estimator. 

Finally we will make some remarks on James-Stein estimators. These estimators 

can be used when the same param.eters have to be estimated for a number of 

distributions, each represented by their own learning set. This is exactly 
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the situation in the case of independent features. The main supporters of the 
James-Stein estimators, Efron and Morris [18], [19], [20], [21] state that in 
some cases the estimators approach the Bayes estimator based on the true 
parameter distribution if the number of distributions goes to infinity. This 
would imply that for independent features peaking could be avoided in those 
cases. This point has not yet been further investigated. 

4.5 DISCUSSION ON THE PEAKING PHENOMENON 

The cause of peaking of the expected classification error z will be discussed 
first, starting with some results of the previous paragraph. The conditions 
(4.47) and (4.48) can be generalized, using (4.14) as 

lim ^ - = «> (4.49) 
k-« (Var Var ^.(R(x))}^ X x^A^ ^—" 

and 

E E (R(x)) 
lim ^ - • i- = - «> (4.50) 
k ^ (Var^ Var^^g(R(x))}^ 

Van Ness [45] showed, using the Chebyshev inequality, that these conditions 
are also in the case of dependent features sufficient for avoiding peaking of 
E, because they guarantee that 

lim Prob(l^(x) <0|xeA) = 0 (4.51) 

and 

lim Prob(R(x) > OlxeB) = 0 (4.52) 
k-x» 

On the other hand, if R(x) has an asymptotically symmetric distribution (e.g. 
normal), sufficient conditions for the existence of peaking are 

E, E (R(x)) 
lim X -fc-ft _ = o (4.53) 
k-» {Var^ Var^^^(R(x))}^ 

and 
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E E (R(x)) 
lim ^ — = 0 ^ (4.54) 
k ^ Nar Var ^jR(x))}i 

In that case these conditions guarantee 

lim Prob(R(x) <0|xeA) = j (4.55) 
k-K» 

and 
lim ProD(R(x) > OIXÊB) = i (4.56) 
k-x» 

The four conditions (4.49), (4.50), (4.53) and (4.54) show the importance of 
the expectation of R(x) compared with its standard deviation. In the case of 
independent features which are identically distributed, both the expectation 
ana the variance of R{x) increase with order k. By this (4.49) and (4.50) are 
fulfilled and peaking is avoided with the following exception. If an 
increasing number of identically distributed independent features are added 
which have no discriminating power (E E ^„(r-') = E E ^„(r-') = 0) then 

^ '^ ^ X xCA^ ' X XÊB^ ' ' 

R(x) has an assymptotic normal distribution and (4.53) and (4.54) are fulfilled. 
Generally, if the features are not identically distributed and worse and worse 
features are added, the standard deviation of R(x) may grow faster than its 
expectation-and peaking becomes possible. 

A fast increasing standard deviation of R(x) can be caused oy the estimators 
used, such as the maximum likelihood estimator in the case of binary features, 
or by the class densities of the classification problem involved. An example 
of the latter is given by van Ness [44]. He proves that the discrimination 
of two normally distributed classes with unknown expectations and known 
variances produces peaking if the variances of the newly added features 
increase fast enough with the feature size. 

So we find three causes of peaking of E, which are highly interrelated. 
1. The choice of bad estimators. 
2. Fast increasing variance of R(x.). 
3. Slowly increasing expectation of R(2i). 

Now the classification error E will be considered. This error peaks whenever 
£ does, except if the learning set is, by accident, so good that the effects 
mentioned above are avoided. In general this will only delay peaking somewhat, 
because each new feature introduces new estimation errors. In the same way a 

bad learning sets may cause an early peaking. 
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Peaking of the mean classification error è has the same three causes as 

peaking of 1, because here a number of problems is averaged of which each 

individually may show peaking. It completely depends on the weights for the 

problems in the parameter distribution whether E shows peaking or not. 

As has been stated, the choice of the estimator is of great importance for 

avoiding peaking. The question, what is a good estimator, is, however, hard 

to answer in general. The answer is problem dependent and can only be given 

if sofne knowledge on the parameter values is available. So here the same 

problem as everywhere else in statistics is met: good estimators cannot be 

constructed without a priori knowledge on the parameter values. 

In this chapter calculations have been made for known parameter distri­

butions. A distinction can be made between the a priori distribution of 9̂  

which is assumed before any measurements are made and the actual distri­

bution of 9̂, which is present in the investigated measurements. An estimator 

can only be based on the a priori distribution because that is the only one 

that is known. The error that will be made by using such an estimator depends 

on the actual distribution. If these distributions differ the estimator is 

not optimal and peaking becomes possible. 

The question may be raised whether there are practical problems in which 

the parameter distribution is really known. In such a problem the a priori 

density equals the actual density which makes it possible to construct the 

optimal estimators. It will be clear that these estimators are only optimal 

if one really is engaged with the complete class of classification problems. 

This is not the usual case in practice. 

An example might be the following. Certain types of heart defects may cause 

for one subject two different types of electrocardiograms. One corresponds 

with normal behaviour of the heart and one with abnormal behaviour. For 

clinical purposes it is relevant to observe how often each of the two types 

are present in the electrocardiogram. This causes a classification problem. 

A learning set can be found by classifying a part of the cardiograms by man, 

after that the other cardiograms may be recognized automatically. 

As the shape of both the normal as well as the abnormal cardiogram, may be 

subject dependent, one has for each subject a different classification 

problem. So there is a class of problems if more subjects are considered. 

From a number of subjects the distribution of the parameters 9̂  over this class 
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of problems may be estimated. Using this parameter distribution an optimal 

estimator can be calculated for the parameter vector of a new subject. 

If the variance of the distribution of Q_ is small, the cardiograms of 
different subjects are similar and only a small learning set is necessary for 

estimating the parameters ^ of a new subject. For a widely spread distribution 

of 9̂  more learning objects will be necessary. For a very widely spread 

distribution so many learning objects will be necessary that it hardly pays 

to use this a priori distribution. In that case the cardiograms of different 

subjects differ so much that the knowledge of the cardiograms of other subjects 

is of no use for recognizing the two types of cardiograms of a new subject. 

In contrast with the above example often the parameter distribution is 

unknown. For those cases the relevance of this chapter is that it shows how 

the classification error can be studied given certain estimators and parameter 

distributions.This may give some arguments for the selection of the estimators 

and the feature size in relation to the sample size. 
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Chapter 5 

MODEL COMPLEXITY 

In the previous chapters the influences of feature size and sample size on the 

classification error have been considered. The density functions fa(xllfl) and 

f„(xie„) were assumed to be known except for the parameters 9. and e„. In 
b — — D —A —D 

many practical situations, however, even the functional form of fj(xl65) is 

unknown. We will call a choice for that functional form the statistical model. 
In this chapter some effects of choosing a wrong statistical model will be 

considered. By this a family of density functions is meant that does not 

enclose the density of the population in question. Special attention will be 

given to the effect of the model complexity, i.e. the number of parameters 

involved in a certain model. The way an additional parameter influences the 

classification error is very complicated and differs from problem to problem. 

We will restrict ourselves, therefore, to some simple examples using 

artificially generated data. 

First it is shown that the choice of a wrong model does not necessarily 

cause worse results. Models with a lower model complexity than the true one 

may result in a lower classification error. This result has, strictly spoken, 

already been shown in the previous chapter when we considered the peaking effect. 

In that-case the use of all relevant features lead to worse results compared 

with the use of only a few of them. It will be shown here that such a result 

is also true for the covariances between the features. Neglecting covariances 

between correlated features may cause better classification results. 

In a second example the last mentioned result will be illustrated, especially 

in relation to the value of the correlation coefficients. It appears in that 

example that the higher the correlation coefficients in the true model, the 

less likely that neglection of those correlation coefficients improves the 

results. Assuming zero correlation between lightly correlated features may in 

that case be better than estimating the correlation coefficients using a 

small sample set. The important fact for practice, therefore, is that it is 
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not so relevant how sure we are about the existence of some correlation between 
the features, but far more how large that correlation may be. 

It will now be shown that there exists a model with specified parameters 
9̂  such that the expected classification error z decreases if the model is 
simplified, in spite of the fact that the more complex model is the correct 
one. As an example will be used two two-dimensional normal distributions 
(see fig. 5.1) with expectations 

UA = (0, 0) 
(5.1) 

HB = (2.-1) 

and covariance matrices 

(5.2) 

^ ' < \ : ) 

This implies that for class A the features are uncorrelated and that for class 
B the correlation coefficient is 0.5. Equal a priori probabilities will be 
assumed, so c = 0.5. The following four discriminant functions, in decreasing 
order of model complexity are used: 

a) The Bayes discriminant function 

IZ I 
R(x) = i(x-ÜB)^^6' ^^"^B) " Hx-H^)^ 2A^ (X-HA) + i ln{-^} (5.3) 

The model complexity for this case will be coded as 4. This quadratic function 
follows immediately from (1.3) after substitution of the normal density 
function, see Fukunaga [23]. 

b) The linear discriminant function 

R(X) = ( U A - Ü B ) ^ '̂̂  Ü - i WJ Z"^ ̂ A + 2 ij ̂ '̂  lie ^^•'^^ 

in which Z = j(Z. + Ig). The model complexity for this case is coded as 3. The 

discriminant functions (5.4) and (5.3) are identical if I. = Eg. The function 
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Fig. 5.1 The two classes as given by (5.1) and (5.2). 

(b.4) is often used as a linear approximation of (5.3). 

c) The linear discriminant function 

R(x) = {v^-v^ ^ A"^x - \ yj A'^ ÜA + 2 iï A'^ Pg (5.5) 

in which A is a diagonal matrix. The model complexity for this case is coded 

as 2. The discriminant functions (5.3), (5.4) and (5.5) are identical if Z 

and 1 are identical and equal to A. 

d) The linear discriminant function 

R(x) = (IJ^-HB)-X - \ y^-y^ + 5 ÜB-MB (5-6) 

The model complexity for this case is coded as 1. The four discriminant functions 

are identical if the two covariance matrices are identical and diagonal and 

all variances are equal (of course this does not apply for the estimates of 

R(x)). 

From each of the two classes with parameters as defined by (5.1) and (5.2) 

m learning objects were chosen at random. R(x) was estimated using the plug-

in rule and maximum likelihood estimates for I., Zg, Z, A, u. and p . The 

classification error of each of the four discriminant functions was estimated 

by applying them to 200 test objects. This test set was the same for each 

discriminant function. This was repeated ten times for different learning 
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0.10 

O 05 

m= 5 

- m o d e l complexity 

Fig. 5.2 The expected classification error z as a function of model 

complexity and sample size for a two dimensional example. Only the 

measurement points have meaning. The lines are drawn just for 

clarity, 

m 

5 
10 
20 
100 
500 

model complexity 

1 

0.265(0.023) 
0.242(0.019) 
0.246(0.014) 
0.242(0.003) 
0.241(0.003) 

2 

0.223(0.019) 
0.198(0.008) 
0.193(0.005) 
0.189(0.002) 
0.193(0.001) 

3 

0.254(0.024) 
0.209(0.007) 
0.195(0.004) 
0.178(0.003) 
0.176(0.002) 

4 

0.277(0.029) 
0.220(0.009) . 
0.202(0.006) 
0.185(0.003) 
O.lBl(0.001) 

Table 5.1 The expected classification error z of a two-dimensional example 

as a function of sample size and model complexity (see text). 

The given numbers are the results of a Monte Carlo procedure and 

the aonputed standard deivations in those results. 



sets. The averaged results are an estimate for r. They are presented in fig. 

5.2; see also table 5.1 where in addition the computed standard deviations 

in the averages are given. 

It appears that a peaking phenomenon occurs. A higher model complexity 

may result in worse performances. The optimal model complexity seems to 

increase for increasing sample size m. A similar effect for binary features 

has been shown by Schinkel [37]. 

The observed peaking phenomenon can be elucidated by realising that if the 

true value of a parameter is known to be small it may be estimated better by 

putting it equal to zero than by using a small learning set. Besides, a more 

simple discriminant function is obtained. Similarly, if two parameters are 

known to be almost equal it may be better to assume equality than to 

estimate two different parameters. The criterion for a better estimate is here 

the classification error. 

The above mentioned importance of the correlation coefficient will be 

illustrated by a two-dimensional example in which the covariance matrices 

are chosen to be equal, 

Z = Z, = I g = ^ l ') (5-7) 

and in which the means are given by 

.UA = (0. 0) 

(5.8) 
Me = (1. 0) 

The expected classification error 'z is estimated using a Monte Carlo procedure, 
in which the discriminant functions given by (5.4) and (5.5) were computed for 

200 randomly generated learning sets. For each discriminant function and each 

learning set E was computed analytically. The results, averaged over all 

learning sets are an estimate for z. In fig. 5.3a and fig. 5.3b E is given for 

two values of m as a function p. Equal results are assumed for negative and 

fjositive values of p. See also table 5.2a and table 5.2b for the standard 

deviations. It appears that for small values of p it is better to assume 

P = 0 than to estimate p. The regions of p-values for which this is true 

shrinks with increasing m. 
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Fig. 5.2. a The expected, classification error z as a function of p 

for the presented example, m = 2. 

p 

0.0 
0.1 
0.3 
0.5 
0.7 
0.9 

model complexi ty 

2 

0.264(0.008) 
0.264(0.008) 
0.262(0.008) 
0.256(0.008) 
0.244(0.008) 
0.216(0.008) 

3 

0.290(0.009) 
0.286(0.009) 
0.278(0.009) 
0.253(0.009) 
0.197(0.009) 
0.081 (0.007) 

Table 5. 2. a The expected classification error z as a function of p 

for the presented example, m - 2. 
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Fig. 5.3.b The expected classification error z as a function of p 

for the presented example, m = 5. 

p 

0.0 
0.1 
0.3 
0.5 
0.7 
0.9 

model complexi ty 

2 

0.200(0.004) 
0.200(0.004) 
0.197(0.003) 
0.190(0.003) 
0.177(0.004) 
0.158(0.005) 

3 

0.209(0.004) 
0.207(0.004) 
0.195(0.003) 
0.167(0.003) 
0.116(0.003) 
0.025(0.002) 

Table 5.2.b The expected classification error z as a function of p 

for the presented example, m = 5. 



The conclusion of this chapter is that the expected classification error z 
may behave for increasing model complexity in a similar way as for increasing 

measurement complexity or feature size. Quantitative results which hold for 

a class of problems are not presented here. Analytical solutions are very 

difficult if not impossible because of the complex way additional parameters 

influence the classification error. For the same reason Monte Carlo simulations 

are impractical because of the difficulty in getting results with general 

validity. 

Finally a remark will be made on the possibility of peaking of the mean 

classification error È as a function of the model complexity. The results of 

the previous chapter may apply here too. If for the estimators of the 

parameters the Bayes estimators are chosen based on thf) true parameter distri­

bution then the discriminant function is optimal. This implies that if the 

model is such that the parameter space of a complex model encloses the 

parameter space of a more simple model then E will be minimum for the complex 

model and peaking does not occur. 
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Chapter 6 

A PRIORI KNOWLEDGE 

In this chapter the foregoing discussions will be considered from the point of 

view of a priori knowledge. Most points are already implicitly or explicitly 

mentioned. They are put together here in order to illustrate the importance 

of a priori knowledge. 

If in a particular classification problem the sample size is as large as 

possible in the practical situation and if the features, the statistical model 

and the estimators are chosen optimally as far as knowledge reaches and if the 

classification error is still unsatisfactorily large, the only thing one can 

try to do is to enlarge the a priori knowledge. Especially knowledge of the 

following kinds will be useful. 

- A priori knowledge on the discriminating power of the features. From the 

chapters 3 and 4 it follows that it is important for the accuracy and for 

avojding peaking to keep the number of features as low as possible. The 

features have therefore to be ranked in such a way that e* is minimum for 

each number of features because by this the estimation error is kept as small 

as possible by constant z*. 

- A priori knowledge on the relations between the features can improve the 

feature ranking. Sometimes one of two good features can be deleted because 

of their dependency. 

- A priori knowledge on the class densities. This may result in the choice of 

better estimators as shown in 4.4. A decision has to be made whether or not 

certain parameters are taken into account in relation to the sample size, 

see chapter 5. 

- A priori knowledge on the distribution of the parameters. This is applicable 

if the same classification system has to be used several times for a class 

of problems, see 4.5. 

The estimators, the feature size and the model may be chosen in a way 

described in the previous chapters on the basis of the sample size and the 
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knowledge as described above. If the result is still not satisfactory the 

final thing one can do is search for new and better features. A priori knowledge 

in the context of statistical pattern recognition can be seen, as appears from 

the above, as any knowledge on the class distributions of possible features 

that is useful for selecting the discriminant procedure. 

It might seem possible to build up a part of the a priori knowledge by 

making use of the learning set. This may be a trap, however, if the same 

learning objects are used for estimating the discriminant function. In that 

case no real a priori knowledge is used, only a more complicated discriminant 

procedure has been followed. For such a procedure the limitations discussed 

in the previous chapters are valid. Thus, real a priori knowledge has to be 

built up by other objects than the ones used for the discriminant analysis. 

At this point we encounter a general problem. Discriminant procedures and 

other statistical techniques for gaining knowledge may be automized, for 

instance by using a computer. The question may be raised whether all a priori 

knowledge can be found by an automatic analysis of learning objects or an 

additional source of knowledge is needed. If the first is true it would be 

possible for very large learning sets to construct some discriminant procedure 

that does not make use of any a priori knowledge at all. If the second is true 

man is more than just a very complicated computer (see Turing [42]). This 

question and related problems on "computer knowledge" are discussed by Popper 

in "Objective knowledge" [34]. 

In this thesis an argument can be found for the impossibility of the first 

alternative. In chapter 4 has been shown that only under restricted conditions 

(e.g. having the right a priori knowledge) peaking can be avoided. In general, 

even for very large, but finite sample sizes the classification error shows 

peaking. This implies that if the feature size is large enough, discrimination 

becomes worse. If no a priori knowledge is given at all, anything can be a 

feature and the feature size is very large, if not infinite. Peaking is 

therefore to be expected in the absence of a priori knowledge. As many 

practical discriminant procedures give good results a source of knowledge has 

to exist that differs essentially from the analysis of observations as done 

in statistical pattern recognition. 

In epistemology roughly three sources of knowledge are distinguished. The 

first is the observation, which was strongly emphasized by the empirists. In 

the above is argued that an automatic analysis of observations seems to be 
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insufficient for gaining knowledge (in our restricted sense of ability to 

discriminate). The second is the mind, as emphasized by the rationalists. The 

third is a combination, e.g. the process of conjecture and refutation as 

defined by Popper [32], or the role of thought as a bridge between intuition 

and observation see Steiner [40]. As the peaking phenomenon argues against 

pure observation as a source of knowledge, even in combination with a 

"computer mind", it argues for the existence of something else, such as 

intuition. 
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Chapter 7 

CONCLUSIONS AND DISCUSSION 

The classification error E of a statistical pattern recognizer is expressed by 

an upper bound into the Bayes error and the estimation errors of the class 

distributions. The expectation of these estimation errors can be computed for 

certain distributions like an arbitrary normal distribution, as a function of 

sample size and feature size. This results in an upper bound of the expected 

classification error 1 expressed in sample size and feature size. It could 
also be shown, however, that better estimates, thus smaller estimation errors, 

do not necessarily yield a smaller classification error (chapter 3). 

The Bayes error decreases with increasing feature size, but the expected 

estimation error increases. The expected classification error, therefore, may 

increase or decrease. If it increases this is called peaking. The causes of 

the peaking phenomenon are the choice of bad estimators and a too large variance 

of the estimated discriminant function compared with the small contribution 

of the new feature to the discriminating power (chapter 4). 

It could be shown, however, that the mean classification error, which is 

the expected classification error averaged over a class of problems, shows 

no peaking if Bayes estimators are used, based on the parameter distribution 

of that class of problems (§ 4.4). An explanation of the result that by use 

of this estimator in a model presented by Hughes [24] peaking still occurs with 

increasing measurement complexity (§ 4.2) appeared to be the fact that in­

creasing measurement complexity is virtually not the same as the addition of 

a new feature (§ 4.4). 

Conditions were presented for a class of distributions and a class of 

estimators for which the mean classification error does not peak (§ 4.3). 

In the case of increasing model complexity, in which more parameters, 

describing the statistical model, are added, instead of features, a similar 

peaking phenomenon can be observed. This was shown by an example (chapter 5). 
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If enough a priori knowledge is available it is possible to compute along 

the presented lines whether peaking is to be expected in a given situation. 

An important problem which has not been investigated in this thesis is how 

peaking can be detected in a given classification problem. A very short 

discussion follows. If the sample size is large the learning set can be split 

into a part for learning and a part for testing. Peaking may be detected using 

the test set. In case peaking occurs, however, it is certainly better to use 

all objects for learning and no objects are left for testing. A number of 

methods is available for the estimation of the classification error with an 

economic use of test objects, see for instance Toussaint [41] and Lissack and 

Fu [28]. These estimators differ in variance and biasedness. For the detection 

of peaking in a single case, using a single learning set, however, unbiasedness 

is not essential. An estimator with a small variance might be better if its 

mean square error is smaller. It will still be possible, however, that peaking 

is detected too late, or not at all. For that reason an investigation of the 

circumstances under which peaking might happen as has been presented here may 

be useful. 

Before estimating a discriminant function using a small learning set, one 

should realize that the result can never be better than the learning set 

permits. A too detailed method will determine the discriminant function on 

some incidental details of the learning set which are not representative for 

the population. The larger the learning set, the more reliable its details and 

the more significant the use of a detailed method. 

For a scientist, for instance a physicist, who wants to use a method like 

statistical pattern recognition for reaching his conclusions, this thesis 

implies that he has to limit the number of variables he wants to measure. 

Such a method might be of use if it is difficult to obtain sufficient 

accurate physical model, for instance in the case of weather-forecasting. 

Under these circumstances often a statistical approach is chosen. This implies 

that many observations have to be available. The variables, like temperature, 

air pressure and humidity and the measurement places have to be chosen on the 

basis of a priori knowledge and their number should be limited. If that 

number is large, it is hard to draw significant conclusions on statistical 

grounds. Now use has to be made of a physical model for relating the variables. 

After this has been done statistical pattern recognition may not be necessary 

anymore or the statistical problem is simplified and conclusions are more 
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significant. It is not possible to construct such a physical model completely 

on the ground of the statistics of the learning set, because in that case a 

similar inaccuracy is introduced as by using statistical models. It is 

necessary to use physical knowledge and intuition for the construction of the 

model from the statistical data. The elements: observations, a priori knowledge, 

thought and intuition constitute together the basis for new knowledge. 

Statistical pattern recognition can be an aid for that. 
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APPENDIX A 

THE "WORST" PROBABILITY FUNCTION IN THE GENERAL MEASUREMENT SPACE. 

Here i t w i l l be proved that ( in the case of even n) JE (e ) + Ê (e^) , with 

E^(ej^) given by (3.33) 

n 
iE (e^) + IE (eg) = i I {pJ(l-pJ )/(2iTm)}^ + 

I i {pJ( l -pJ) / (2™)}^ (A.1) 
j = 1 J=i 

is maximum i f 

P̂  = 2E*/n (A.2) 

pJ = 2 ( l -£ * ) /n (A.3) 

for M/2 values of j (n even), and i f 

pj = 2 ( l -£ * ) /n (A.4) 

P̂  = 2£*/n (A.5) 

for the other n/2 values of j . Constraints for the maximization are 

n 
I P| = 1 {i = A,B) (A.6) 

J = l 
n 

z* = k 1 min{pJ,pJ} (A.7) 
j = l 

Let J = { j j , j ^ , . . . j } be a subset of the set of indices {0, 1 , 2, . . . n} and 

l e t p^ < pj for jeJ and p^ > p^ for j ?J . Condition (A.7) becomes in that case 
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e* = I I P^ + I I P^ - (A.8) 
J6J '̂  j?J ^ 

It is easily seen that q / 0 and q / n because in those cases (A.8) would 

give £* = I, and can tnerefore not be chosen arbitrarily. 

Wow the maximum of (A.1) may be found by using the Lagrange multiplier 

method. The function to be maximized is, apart from the term (2'iTm) ̂  in (A.1), 

u = I I ^Pi(i-PA)>* + ^ ^ ^PB(^-PB)^* + 
j=l J=1 

X, { i pJ-1} + X̂  { | pJ-1} + Xj a Y niin{pJ,pJg} - £*} (A.9) 

The derivative of U to p̂  is 

i {p i ( l -p i ) } " ^ {l-2p{) + X, + 1X3 for jeJ (A.10) 

HP{{1-PI)}'^ (l-2pJ) + X, fo r JŜ J (A.11) 

If these derivatives are put equal to zero it appears that the optimal p^ is 

a constant for jeJ. The same applies for j^J, so p^ = p. for jeJ and p^ = p' 

for j^J. Analogously from the derivatives of U to p^ 

HP^B^^'PB)^"' (I'^PB) + ̂ 2 ^ ° ^ Ĵ ^ '̂̂ •̂ 2) 

Hpiil-vi)}'^ (l-2pi) + X, + 1 X, for j$̂ J (A.13) 

it follows that p^ = p„ for jeJ and p^ = p' for j^J. Using these results the 
D b D D 

constraints (A.6) and (A.7) can be written as 

qPft + (fi-q)P; = 1 • • (A-14) 

qPg + (n-q)PB = 1 (A.15) 

e* = JqP^ + Hn-q)p^ (A.16) 

With (A.14) p' can be expressed in p , with (A.16) p' can be expressed in p 
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and with th is result and (A.15) i t is possible to express Pg in p 

p; = (1 - qp^)/(n - q) (A.17) 

p^ = 2(£* - I qp^)/(n - q) (A.18) 

Pg = (1 - l£* + qPA)/q (A-19) 

If the derivatives (A.10) - (A.13) are put equal to zero and X , X, and X 

are eliminated, one obtains 

{p^(i-p^)}-i(i-2p^) - {p;(i-p;)}-i (i-2p;) 

- {p^(l-p^)}-i (l-2p') + {pg(l-pg)}-i (l-2pg) = 0 (A.20) 

All the four terms of (A.20) are monotonous decreasing functions of p 

because p' and p' are linear decreasing functions of p. and Pg is a linear 

increasing function of p , as follows from (A.17) - (A.19). This implies that 

(A.20) has at most one solution for p.. This solutions yields a maximum for U 

because the derivatives (A.10) - (A.13) are monotonous decreasing functions 

of p^ and p^. For U can now be written 

. U = J q {p^(l-p^)}i + i(n-q) {p;(l-p;)}^ 

+ i q {PB(I-PB)>* + 2("-q) ^PB^^-PB)^' ('̂ •̂ i) 

This is a function of p. and q after substitution of (A.17) - (A.19). 

U = HPp(^{^-Pj^^)}^ + H(l-P;^q)(n-q-l+P^q)}* 

+ H(l-2£*+P^q)(q-l+2E*-p^q)}^ 

+ i{(2£*-Pftq)(n-q-2E*+p^q)}i (A.22) 

For the following q will be considered as a continuous variable between 0 

and n. The derivative to q for constant p is given by 
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HPAq(q-p^q)}"^ (2p^q-2pjq) 

+ H(l-PAq)(n-q-l+PA'l)>'* (-l+PA-PA"+2p^q+p-2p^q) 

+ H(l-2E*+PAq)(q-l+2E*-PAq)}'*(l-PA-2e*+2£*P^+2p^q+p +2p^£*-2pjq) 

+ H(2£*-p^q)(n-q-2E*+p^q)}'^ (-2e*+2e*p^-p^n+2p^q+2p^£*-2pjq) (A.23) 

The probabi l i t ies p j , p- and p' as given by (A.17) - (A.19) have values 

between 0 and 1 only i f 

0 < q < 2£*/Py^ (A.24) 

I t can be ver i f ied that the four terms of (A.23) are monotonous non-increasing 

functions of q for the interval given by (A.24). This implies that the zero 

crossing of (A.23) on that in terval gives the absolute maximum of U as a 

function of q. The proof is completed by ver i fy ing that the solution as given 

by (A.2) - (A.5), which implies that p^ = 2E*/n and q = n/2, sa t is f ies (A.20) 

and makes (A.23) equal to zero. 

3U 

3q 
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APPENDIX B 

LEAST SQUARES APPROXIMATION AND THE PEAKING PHENOMENON 

In this appendix it will be shown that the error of a least squares approximation 

shows a similar kind of peaking as is described in chapter 4 for the classifi­

cation error. 

Let the function y = F(x) be observed for the values x. (i = l.ni) of the 

vector 2i- Uenote the observations by y.. An approximation of y will be made 

using c 

k < m). 

using a set of not necessarily orthogonal basis function ip.(x) (j = l,k; 

k 
y = I a cp (X) (B.1) 

j = l J J 

Let y. be the value of y for x = x.. The coefficients a. are chosen such that 
I — — I J 

-s m ^ 

fi = I (y, - yJ (B.2) 
i=i 

is minimum. In vector notation this can be written as 

6 = (y - y)^ (y - y) (B.3) 

Substitution of (B.1) gives 

6 = (y - (p̂ a)"̂  (y - cp'̂ a) (B.4) 

in which 

y = (y.; i = l,m)T (B.5) 

a = (a ; j = Lk)""" (B.6) 
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and cp is a matrix given by 

tp = (ip.(X|); j = l . k ; i = l ,m) ' (B.7) 

(B.4) is minimum i f • . 

a = iW)'^ tP y • (B.8) 

These formula w i l l be used for the case that y is random and that (B.1) should 

approximate the expectation of y , which w i l l be defined as 

E(y) = u (B.9) 

Assume that the variances of a l l y . are equal. 

Var(y.) = af ( i = l,m) (B.10) 

Assume that the values of a l l y . ' s are uncorrelated 

E(y,y.) = E(y.) E(y.) (vi ^ j ) (B.11) 

For the expected square error "6, defined as E{(y-y) (y-y)} can be wr i t ten 

6 = I E{(y - ip^a)^ (u - tp^a)} (B.12) 

After subst i tut ion of (B.8) one finds 

S = i E{/u - 2yV(w"^)"^ W + / / ( w " ^ ) ' ^ ipy} (B.13) 

in which use has been made of the fact that tptp is a symmetric matrix. Let the 

matri x D be given by 

U = /(cpp"^)'^ (P • . . (B.14) 

The k rows of (p are eigenvectors of D because Dtp =(p . This set of eigenvectors 

is complete because Rank(L)) = k. All corresponding eigenvalues are one. So the 

trace of L), which is equal to the sum of the eigenvalues,is k. For (B.13) can 

now be written after some calculations 
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« = I (H^Ü - H V + tr(D)a^) (B.15) 

in which use has been made of (B.9) - (B.11). 
For (B.15) the following geometric interpretation can be given. The inner 

product y y is the square distance of y to the origin. D]j is the projection 

of y on the space R, spanned by the eigenvectors of D (which are the rows of 
T T 

ip). y Uy is the square distance of Dy to the origin because D D = D. So 
Ü H " Ü '̂ H is the square distance of y to R, . This is a monotonous non-

2 2 increasing function of k. The term tr(D)a = ko increases linearly with k. 
It is therefore possible that "6 peaks as a function of k, see fig. B.1. 

_ 2 
The expected error 6 decreases monotonically if a is small and increases 

2 '' 
monotonically if a is large. If y is completely described by the first n 

'̂  T T — 2 
functions ip., then y y = y t̂y for k > n and therefore 6 = ka for k > n. 

It is interesting to investigate the mean square error S, defined as the 
expectation of '6 over a class of signals in analogy with the mean classification 
error. As an example will be treated the case of signals with constant power 

2 
no that can be described completely by n functions cp.. Assume that y is 

s J 2 
uniformly distributed on a hypersphere in R with radius ma . The mean 
square error can now be written as 

6 = ̂  E(y"''y - y"''Dy) + ̂  a^ (B.16) 
m —̂ — — —' m r ^ ' 

The expectation is eouivalent to the expected square distance of a point of 
the hypersphere in R to a k-dimensional subspace containing the centre of 
the sphere. This expectation is 

E(/y - y V ) = ̂  maj (n > k) (B.17) 

Substitution into (B.16) yields 

6 = ̂  o^ + - a^ (n > k) (B.18) 

n s m r ^ ' ^ ' 
This is the mean square error of the description of an arbitrary signal by k 
basis functions, using m observations, if the signal can be completely 
described by the first n basis functions. If k > n the first term of (B.18) 
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has to be put equal to zero. This implies that (B.18) shows peaking if n < m , 

because in that case 6 decreases for k < n and increases for k > n , see fig. 

B.2. The well known sample theorem (k > n, k < m so choose m > n) can be 

derived from (B.18). 

The situation described in this appendix is much more simple than the one 

in pattern recognition because there the square error is hardly used as 

criterion. The relation between the probability of error and the least square 

error criterion is studied by Devijver [10]. 

•ko-r^ 

Fig. B.1 The expected square error 6 and its contributions (B.15). 

Fig. B.2 The mean square error 5 and its contributions (B.18). 
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APPENDIX C 

INDEPENDENT BINARY FEATURES AND THE PEAKING PHENOMENON 

Peaking in the case of independent binary features is investigated here 

fur ther . F i rs t the case of maximum l ike l ihood estimates w i l l be treated 

generally. In the second part of th is appendix is shown for an example using 

Bayes estimators that the conditions for no peaking (4.17) and (4.18) are 

f u l f i l l e d . 

The maximum l ikel ihood estimates p̂  ( j = l , k ; 5, = A,B) are given by 

. . nJ 

m 

The discriminant function S(x) is found by substitution of 

^(x) = n (pj)''j (1 - pj) ""j (c.2) 
j=i 

in (1.7) 

S(x) = c f^(x) - (1-c) fg(x) (C.3) 

The probability that p^ = 0 is given by 

Prob(pJ = 0) = (1 - P{f (C.4) 

The probability that p^ = 1 is given by 

Prob(p| = 1) = (pj)'" (C.5) 

For the probability that S{x) = 0 for an arbitrary learning set in an 

arbitrary point x can be written 
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Prob(S (x) = 0) > Prob(f^(x) = O and fg(x) = 0) (C.6) 

I t w i l l be shown that, for f i n i t e m, the r ight part of (C.6) approaches one 

under general conditions i f k •+ <». 

Prob(f^(x) = 0 and fg(x) = 0) = 

= 1 - Prob(f^(x) ^ 0 or fg(x) / 0) . (C.7) 

k 
= 1 - n [Prob(x .= l ) { l - Prob(pJ = 0) Prob(pJ = 0)} + 

j = l -I '̂  ** 

+ Prob(x.=0){l - Prob(pJ = 1) Prob(pJ = 1)}] (C.8) 

The expression behind the product symbol in (C.8) equals one in the fol lowing 

cases: 

1. pj = pj = 1. In th is case is Prob(p^ = 0) = Prob(pJ = 0) = 0, see (C.4), 

and Prob(pJ = 1) = Prob(p^ = 1) = 1 , see (C.5). Behind the product sign is 

therefore obtained Prob(x. = 1),which equals one. 

2. pj = pj = 0. In th is case is Prob(pJ = 0) = Prob(pJ = 0) =1, see (C.4), 

and Prob(p^ = 1) = P>"ob(p^ = 1) = 0, see (C.5). Behind the product sign is 

therefore obtained Prob(x. = 0 ) , which equals one. 

3. pj = 1, pj = 0. In th is case is Prob(pJ = 0) = 0, see (C.4), and 

Prob(p^ = 1) = 0, see (C.5). Behind the product sign is therefore obtained 

Prob(x. = 1) + Prob(x. = 0 ) , which equals one. 

4. pj = 0, pj = 1. In th is case is Prob(pJ = 0) = 0, see (C.4), and 

Prob(p^ = 1) = 0, see (C.5). Behind the product sign is therefore obtained 

Prob(x. = 1) + Prob(x. = 0 ) , which equals one. 

In a l l other cases the expression behind the product sign is smaller than one. 

I f the number of features for which th is is the case increases then (C.8) 

approaches one provided that for a l l these features the expression mentioned 

is smaller than 1 - 6 , with & some arbi t rary constant between zero and one. 

Under these conditions one finds 

l im Prob(S(x) = 0) = 1 (C.9) 
k-wo 

If S(x^) = 0 no discrimination is possible and the best thing one can do is 
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assign all points to the class with highest a priori probability, so 

£ = min{c, 1-c} (C.10) 

Far small k the classification error is usually smaller than min{c, 1-c}, which 

proves the existance of peaking in the case of maximum likelihood estimates. 

The mean classification error E is the expectation of E over some distribution 

of p;| and pi. If the sum of the probabilities of the four cases mentioned 
A D 

above is smaller than one then also z shows peaking because (nearby) each z 
peaks. 

Now the possibility of peaking of È will be treated for the case of Bayes 

estimates using a uniform a priori density for the parameters. The following 

density estimate is found using (2.20) 

k 
= n 

j=i 

"i^^N^-
1 

, 1 1 - X . 

n, + 1 N J 
(c.ir 

m + 2 / \ m + 2 

The discriminant function R{x) can be wr i t ten as in (4.15) 

R(x) = I rJ - d 
j = l 

with r J , see (4.42) 

x-' loc 
n ^ 

nJ+1 
+ (1-xJ) l o g ( — ^ 

l-n;i+l/ 

(C.12) 

(C.13) 

and d = l o g { ( l - c ) / c } . 

Now the proof w i l l be given that (C.13) f u l f i l s the condition fo r no 

peaking (4.17) i f the j o i n t density of p^ and Pg is uniform along the l ine 

p| = 1 - Pg and is zero elsewhere. In a simi lar way can be proved that condition 

(4.18) is also f u l f i l l e d . The indices j w i l l be omitted. The expectation of 

r over x € A, x and e is wr i t ten as Efl(r). 

'»'^' = . . i . n.io / / "• '°<Vf) * "• '«' ' < ^ , 
A 

/m \ A,, 
(nJ PA (1-P 

A î B 

m-n 

A) 
A/m 

nr 

'B, 
1-PB) 

'B h(p. ,p„ ) dp, dp_ (C.14) 
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Introduce 

n^+1 

B̂ 

Note that 

/V^\ U(nA,nB) = l o g ( ^ ^ j (C.15) 

U(n^,ng) = - U(ng,n^) (C.16) 

and 

U(n^,ng) > 0 for n^ >ng • (C.17) 

In (C.14) Pg = 1 - p, can be substituted on which line h(p,,Pg) is uniform. 

h^r) = I I f |PA^("A'"B) + (1-PA) U(m-n^+l,m-ng+l)! 

„ \ /.̂  \ m+n.-n„ m+n_-n 

: j ( : g ) p A ' ^ ^ - P A ) ' ' ^ ^ (^•^«) 

Define 

/„ \ /™ \ ,. m+n.-nn+1 m+n„-n. 

" ( V " B ) = (:J(:g) ƒ PA ' ' (i-p^ ' '^9, (c.19) 
PA 

The integral is a g-function, so 

/m \/m \ (m+n.-n +l)l(m-n +n )l 
W("A'"B)=n (n ^-^ ^^— (̂ -2°) 

'^ ^ \ V \ " B / (2m+2)l 
Note that 

m+n -n +1 
"("A'"B)=liiTiï^W(ng,n^) (C.21) 

Formula (C.18) can now be written as 

m m 

EA('-) = I Z {^(^."8) W("A'"B) + U(m-n^,m-ng) W(ng,n^) ) (C.22) 
"A=° "B=° 

This summation can be split into one over n < n and one over n > ng. The 
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term with n = n is zero as U(n ,n ) = 0 because of (C.15). If n and n in 

the sum over n„ < n„ are exchanged one finds A B ^ 

E^(r) = I j U(ng,n^) W(ng,n^) + U(m-ng,m-n^) W(n^,ng) 

+ U(n^,ng) W(n^,ng) + U(m-n^,m-ng) W(ng,n^)[ (C.23) 

which is equivalent to 

^l^ir) = I |u (n^ ,ng) { - W(ng,n^) + W(n^,ng)} 

V " B ' 
+ U(m-ng,m-n^){W(n^,ng) - W(ng,n^)}| (C.24) 

because of (C.16). 

From (C.21) follows 

W(ng,n^) <W(n^,ng) for n^ > ng (C.25) 

Finally it can be concluded, using (C.17) and (C.25) that from (C.24) follows 

EA(r) > 0 . 

This completes the proof of (4.17) for the example under investigation. 
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APPENDIX D 

THE ESTIMATION ERROR FOR NORMAL DENSITIES 

In th i s appendix i t w i l l be shown that the expected estimation error for 

normal d is t r ibu t ions , given by (3.39) 

E (e) = 1 - E 
x^ ' X 

I m i n { f ( x l y , I ) , f ( x l y ,Z ) } dx (D.1) 

is independent of the expectation y and the covariance matrix Z. The maximum 

likelihood estimates y and l are the following functions of the set of 

learning objects x ̂  (x »x • • • • »2i )" 

- "̂  i=i -

1 m . .T 

m . ̂  m -. w 

(D.2) 

(0.3) 
i = l 

in which x' and y are the transposes of the column vectors x^ and y . 

E (e) can be wr i t ten as 

E (e) = 1 - f f ••• f [niin{(2Ti)"^/2|zr^ 5 exp(-Hx-y)^z"\x-i)). 

. 2 m 
X X X X 

(2TT)"''''^|i:r^ exp(-i(x-ü)'^ z'Vx-Ji))^ 

- k /2 , . , - i „ „ „ , . w i.„,T , - 1 , i . . . . , ... ...1 ...2 
n { ( 2 T T ) '^'^[Z\ ^ e x p ( - | ( x - y ) I (x - p ) ) } dx d x ' d x ' . . . dx' 

i = l 

The following subst i tut ions w i l l be made 

( D . 4 ) 

_x = Wẑ  + y 

x ' = Wz' + y ( i = l,m) 

( D . 5 ) 

( D . 6 ) 
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in which W is defined by 

Z = ww"*̂  (D.7) 

This is always possible because Z is a positive definite square matrix. 

Note that 

121^ = |W| 

dx = IWI dz 

dx' = IWI dz' 

(U.8) 

(D.9) 

(D.10) 

For y can be found using (D.2) and (D.6) 

y = - W Y z ' + y 

or 
i = l 

y = Wy^ + y 

(D.11) 

(D.12) 

For Z can be written after substitution of (D.6) and (D.12) in (D.3) 

^ = ̂  I (Wz'+ u)(Wz' + y)' - (Wy^ + y)(Wy^ + y)' 
m i = l 

After some calculations it appears that (D.13) is equivalent to 

,T 
Z = WZ W' 

z 

with 

z =i y z'z' - \,\J 
1 "̂  •=! — ±r^ 

For (Ü.14) it follows that 

[D.131 

(D.14) 

(D.15) 

IZI^ = {IWIIZ^IIWI}^ = IWIIZ^I' (D.16) 

Substitution of (D.5) - (D.10),(D.12), (D.14) and (D.16) in (D.4) yields 

after some calculations 
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E (̂e) = 1 - ƒ ƒ • • • ƒ fn ' in{(2^)"^/^IZ^r ' exp(-Hz-y^) ^ ^ ^ z - y j ) , 
1 2 m 

z z z z 

(2TT) '^ ' ' ^ exp( - iz^z)} n {(2^)" ' ' /^ exp(-^z ' z ' ) } 
i = l 

dz dz^ dz^ . . . dz'^ • -, (D.17) 

This is independent of y and Z. 
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APPENDIX E 

THE MONTE CARLO PROCEDURE USED FOR THE ESTIMATION ERROR 

Here the Monte Carlo method w i l l be presented by which 

e = 1 - | m i n { f , ( x ) , f2(x) } dx (E.1) 

X 

is estimated. This is done by generating v points x. according to the density 

functions f,(x) and f2(x) and counting the number of times that f,(x) 

respectively fp(x) is smaller. The estimate e is given by 

e = I - ^ Y 6(x;) - ̂  I (1 - 6(4)) (E-2) 
i = l i = l 

in which x, (i = l.v) is randomly generated according to f,(x) and x! (i = l,v) 
according to f2(2i)- The function 6{x) is defined as 

6(x) = 1 if f2(x) >f,(x) 

6(x) = 0 if f2(x) <f,(x) 
(E.3) 

First will be proved that the estimator (E.2) is unbiased 

E(ê) = 1 - E(6(x)|f,) - 1 + E(6(x)|f2) (£.4) 

= - Prob(5(x)=l|f^) + Prob(ö(x)=lif2) (E.5) 

= 1 - {Prob(6(x)=l|f,) + Prob(6(x)=0lf2)} (E.6) 

= 1 - ƒ {6(x)f,(x) + (l-6(x))f2(x)}dx (E.7) 
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= 1 - ƒ m in { f , ( x ) , f 2 ( x ) } dx 

X 

= e 

The variance of e follows easi ly 

Var(ê) = i { n i ( l - n , ) + n2( l -n2)} 

in which 

n^ = Prob(6(x)=l | f , ) 

and 

ri2 = Prob((5(x) = l l f 2 ) 

From (E.5) and (E.9) i t follows that 

n2 " n, = e 

or 

n^ = e + n, 

Substitution in (E.10) yields 

/ar(e) = ^ { n i ( l - n , ) + (e+n, ) ( l - e - n , ) } 

1 2 2 2 
- (n^ - n, + e - e - en^ + n̂  - n,e - n^} 

= ^ {2n, - 2n^ - 2en, + e - e^} 

This is maximum for ni = i ( l - e ) , so 

Var(ê) < ^ (1 - e^) 

(E.8) 

(E.9) 

(E.10) 

(E.11) 

(E.12) 

(E.13) 

(E.14) 

(E.15) 

(E.16) 

(E.17) 

(E.18) 

is an upperbound for the variance of e. 



LIST OF MAIN SYMBOLS 

A class of objects 

B class of objects 

c a priori probability of class A 

d log {(l-c)/c} 

e error in an estimate of a density function; estimation error 

e estimation error of class I 

E expectation operator 

E expectation operator over the learning set 

E expectation operator over a family of density functions generated 

— by a distribution over Q_ 

f(') density function 

f (•) density function of class i 

f-l{') density function of class i for feature j 

g(') joint density of the learning objects 

g (••) joint density of the learning objects of class I 

9a{') a posteriori density of the parameters 

g (•) a posteriori density of the parameters of class a 

h smoothing parameter in a Parzan estimation 

h(') a priori density of the parameters 

h (•) a priori density of the parameters of class I 

I identity matrix 

k number of features; feature size 

m number of learning objects of one class; sample size 

n number of cells; measurement complexity 

p probability that x takes on the value one 
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p probabi l i ty that x takes on the value one, i f xe class I 

p̂  probabi l i ty that x. takes on the value one i f xE class Si 

r-' contr ibut ion of a single feature to R(x) in case of independent 
features 

R(') discriminant function 

S( ' ) discriminant function 

u(-) kernel function 

v^(-) j o i n t density of x. and x i f x^ class I 

X arb i t rary nne-dimensional object 

X arb i t rary k-dimensional object 

X. feature value of feature number j of x 

x' learning object number i of class i 

z c lass i f i ca t ion error 

£* minimum value of E; Bayes error 

e E ( c ) ; expected c lass i f i ca t ion error 

£ E„(^) ; mean c lass i f i ca t ion error 

y expectation of a mult ivar iate density 

Z covariance matrix 

6 parameter vector 9 = 6.:e„ 
— — —̂ A —D 

Q_ parameter vector associated with the density of class 5, 

oi parameter vector associated with the density of class i for 
feature j. 

X union of x^ and Xg 

X„ learning set of class i 

a estimation of a 
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1 De belangrijkste voorwaarde voor de ontwikkeling van een nauwkeurig 

patroonherkennend systeem is de selectie op niet-statistische gronden 

van een gering aantal bruikbare kenmerken. De beschikbaarheid van een 

grote verzameling leerobjecten verzacht deze eis enigszins, doch niet 

essentieel. 

2 Bij het ontwikkelen van een patroonherkennend systeem zal voortdurende 

vergroting van het aantal in te stellen parameters het herkennings­

resultaat uiteindelijk doen dalen. Uitsluitend op grond van een verza­

meling leerobjecten valt niet te bepalen wanneer dit 'piekeffect' 

optreedt. 

3 Het model van Hughes is vanwege zijn te universele opzet ongeschikt voor 

een algemene studie van het 'piekeffect'. 

Hughes, IEEE Trans. Inf. Theory, IT-14, 55-63, (1968). 

4 Aan het in dit proefschrift behandelde 'piekeffect' is een argument te 

ontlenen tegen de bewering van Turing dat een computer, mits juist 

geprogrammeerd, niet te onderscheiden is van een mens op grond van zijn 

waarneembaar gedrag. 

Turing, Mind, 5S, 422-460, (1950). 

5 Het meermalen gebruiken van dezelfde verzameling testobjecten bij de 

ontwikkeling van een patroonherkennend systeem veroorzaakt te optimis­

tische foutschattingen. 

6 De moeilijkheid een synthese te bewerkstelligen tussen het linguïstisch 

en het statistisch patroonherkennen is inherent aan de complementariteit 

van de deterministische en de probabilistische benaderingswijzen in de 

natuurwetenschappen. 

7 De mogelijkheid tot het volgen van een college over de door Goethe 

gebruikte methode voor natuurwetenschappelijk onderzoek behoort in een 

academische opleiding in de natuurkunde niet te ontbreken. 



8 Bestudering van levensprocessen uitsluitend met behulp van instrumenten 

ontwikkeld bij de studie van de levenloze natuur leidt tot een eenzijdige, 

materialistische visie op deze processen. 

9 De ontwikkeling van het probabilistische denken in de natuurkunde vertoont 

historisch gezien een nauwe samenhang met de manier waarop het deter­

ministische denken zich daar heeft ontwikkeld. 

Hacking, The emergence of probability, Cambridge University 
Press (1975). 

10 Er zijn duidelijke argumenten aan te voeren, o.a. van embryologische 

aard, tegen de evolutieleer van Darwin en zijn moderne varianten. 

Poppelbaum, Mensah und Tier, Philosophisahe Verlag Dornach. 

11 Bij het onderwijs in de statistiek dient het onderscheid tussen het bij 

axioma ingevoerde toeval en de werkelijkheid te worden benadrukt. 

12 Automatische herkenning van nummerborden langs de rijkswegen is zonder 

duidelijke wettelijke waarborgen voor de bescherming van de privé-

sfeer van de burger ongewenst. 


