TU Delft

Investigating the impact of PDFA implementation on alert-driven attack graphs

A comparison between the Suffix-based PDFA and PDFA models

Ioan-Cristian Oprea’

Supervisor(s): Sicco Verwer', Azqa Nadeem'!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 28, 2023

Name of the student: Ioan-Cristian Oprea
Final project course: CSE3000 Research Project
Thesis committee: Sicco Verwer, Azqa Nadeem, Asterios Katsifodimos

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

SAGE is a deterministic and unsupervised learning
pipeline that can generate attack graphs from intru-
sion alerts without input knowledge from a secu-
rity analyst. Using a suffix-based probabilistic de-
terministic finite automaton (S-PDFA), the system
compresses over 1 million alerts into less than 500
attack graphs (AGs), which are concise and man-
ageable. Unlike other frequency analysis methods,
SAGE does not discard infrequent high-severity
alerts, which are crucial for learning the penetration
strategies of attackers. This paper compares the
baseline algorithm (i.e. S-PDFA) with a modelling
assumption generated by swapping the S-PDFA
with a PDFA. The aim is to validate the quality of
SAGE and propose possible solutions for PDFA us-
age, allowing the algorithm to generate AGs in real-
time. We compare them both quantitatively and
qualitatively using size, complexity, completeness
and interpretability metrics. Our findings show that
AGs generated by the PDFA are more readable and
as complete while being slightly larger (i.e. 16%
larger) than the baseline S-PDFA. In certain cases,
it can also better capture different attack strategies,
proving that, if further optimized, it can perform
better than the baseline.

Keywords: attack graph, S-PDFA, PDFA, cyber-
security, intrusion alerts

1 Introduction

Security operations centres (SOC) receive thousands of alerts
daily. However, most of those threats are either low-severity
threats or false positives [1]. Nonetheless, the daily respon-
sibility of a SOC analyst is to inspect and filter out all these
alerts, which in most cases, is an unfeasible task. This much
cleaning is a pilot to alert fatigue [2], which can lead to
burnout, misclassified alerts or even ignored alerts altogether.
All this increases the probability of a real cyberattack going
undiscovered.

One of the approaches to easing out this process is to an-
alyze attack graphs (AGs), which in essence, are a graphi-
cal representation of all the paths that an intruder takes to
achieve a potential goal [3]. Systems that automatically gen-
erate these graphs from security alerts are already in place.
However, they require input knowledge about the network
and the topology of the systems [4], making them imprac-
tical against newly introduced vulnerabilities (i.e., zero-day
attacks.). Therefore, a reliable system that can generate these
attack graphs without prior knowledge from a security analyst
is in need.

Recently, Nadeem et al. has bridged the knowledge gap
by developing SAGE [5] (Intrusion alert-driven attack graph
extractor), which generates attack graphs from security alerts
without the input knowledge of a security analyst. It uses
a Suffix-based Probabilistic Deterministic Finite Automaton
[6] (S-PDFA) to model the attacker’s paths learned from the
intrusion alerts into concise and more manageable graphs,
compressing over 1 million alerts into less than 500 AGs.

There is still much work to be done in this area, mainly
due to the difficulty of measuring the quality of resulting at-
tack graphs. One way is to learn and compare different mod-
els to the baseline model based on different metrics. This
paper aims to compare the attack graphs generated by swap-
ping the baseline S-PDFA implementation with a PDFA im-
plementation. The analysis is done using several quantitative
metrics such as size or complexity and qualitative metrics such
as completeness or interpretability.

Additionally, an improved PDFA implementation would
allow us to generate real-time attack graphs, which at the mo-
ment is not possible, and extend SAGE’s uses beyond only
forensics analysis. With these in mind, the research topic was
split into multiple subquestions:

* What evaluation criteria can be used to quantifiably
compare attack graphs in terms of: size, complexity,
completeness and interpretability?

* How does a PDFA implementation, as opposed to an S-
PDFA, influence the learning algorithm?

* Is the PDFA implementation better at modelling the real
world attack paths than the S-PDFA?

Before any experimental analysis was conducted, a hypoth-
esis on the changes in attack graphs generation was proposed:
The PDFA implementation will result in a higher number of
high severity nodes, which creates bigger and more complex
attack graphs. This hypothesis will be analyzed further in
Section 5.

The main contribution of this paper is the analysis of the
attack graphs and the alerts generated from them. This is
in the form of both automated scripts and manual investiga-
tions. We propose metrics for analyzing the interpretability
and completeness of the graphs without the existence of prior
ground truths to compare. We create several Python scripts
to filter out candidates and reduce the search space for the
manual examination.

The paper is structured as follows: Section 2 describes re-
lated work that helps the reader understand the content better.
Section 3 outlines the methodology and the metrics used dur-
ing the analysis. Section 4 discusses details on recreating the
experiments. Section 5 summarizes the results of the analysis
and their inherent causes. In contrast, Section 6 presents the
conclusion of the analysis, possible limitations and any future
work about the paper’s topic. Section 7 describes any ethical
concerns which might have arisen during research. Finally,
Section 8 acknowledges individuals who helped towards this
research goal.

2 Related Work

Understanding the nuances of this paper requires the reader
to be familiar with certain frameworks and algorithms used
throughout the research. These can be systems that are either
utilized directly (i.e. SAGE) or indirectly (i.e. FlexFringe)
during or for the analysis. This section will provide a concise
overview of these mechanisms, beginning with FlexFringe
and concluding with SAGE and its attack graph generation.

2.1 FlexFringe

FlexFringe [6] is a software package that learns a Proba-
bilistic Deterministic Finite State Automaton (PDFA) from
a series of traces. By learning automata from trace data,
FlexFringe can analyze and model various types of complex
software systems. In our case, it is used to learn the attackers’
behaviour and model their attack paths.

The process begins by utilizing a tree-like model (i.e. pre-
fix tree) that directly models the input traces. Afterwards, it
combines states by verifying their past and future behaviours.
The result is a compact model that reveals the data’s hidden
system states and transition structure. An example of the out-
put of FlexFringe for the CPTC-2017 dataset can be seen in
Figure 1.

Figure 1: S-PDFA for the CPTC-2017 dataset. Traversing the tree
and reading the edges shows the progression of an attack, but in re-
verse order as the input traces are flipped before the learning process.

2.2 SAGE

SAGE [5] is a deterministic algorithm that can generate at-
tack graphs from security alerts without prior knowledge of
the network topology. It uses a suffix-based implementation
(i.e. the input traces are reversed) of FlexFringe to learn the
attackers’ behaviour. The reason behind using FlexFringe in-
stead of other machine learning approaches is that they are
notorious for discarding infrequent data [7]. In our case,
most high-severity threats are infrequent and discarding them
would break the underlying principle of SAGE.

SAGE starts by preprocessing the alerts and extracting
certain features from their signature. Then it gathers the
alerts into alert sequences (AS) based on source and desti-
nation IP addresses. Afterwards, it aggregates these alert se-
quences into episode sequences based on the timestamp and
creates the traces from which FlexFringe learns the suffix-
based PDFA.

Lastly, attack graphs (AGs) are created individually for ev-
ery victim and objective, with the objective representing a
high-severity attack stage. An example of an attack graph
can be seen in Figure 2.

Victim: 10.0.0.151
DATA DELIVERY
‘wap-wsp

DATA DELIVERY
wap-wsp | ID: 69

71 ¢ 17 1631
AG ANIPULAT
D: 408

DATA DELIVERY
wap-wsp | ID: 406

a0

1
INFO DISCOVERY
xdmep
o 41T, 163100

Gap: 15
nd_prev- 04N 1117 16:30:58

REMOTE SERVICE EXPLOI|
snmp | ID: 52

117, 163

nd.

VULNERABILTY DISCOVERY
neube-im

17340350
025431

DATA EXFILTRATION
wap-wsp | ID: 68

Figure 2: Attack graph legend. To follow a path, you start at a yellow
state and follow a path with the label Attacker. Then, per node,
you follow the edge that has the same end_prev timestamp as the
start_next timestamp of the previously followed edge. All attack
paths have only one correct traversal.

The current problem is that the validity of this model is dif-
ficult to assess. It is mainly due to the inexistence of ground
truth attack graphs to compare. One proposed strategy is to
learn different models, in this paper’s case, a PDFA, and pick
the one that creates the most intuitive graphs. Details on the
analysis and the discussion of the results themselves will be
presented in the subsequent sections.

3 Methodology

This section presents the methodology of this research
project. It first starts by presenting the problem statement
in 3.1. Afterwards, it briefly overviews the hypothesis in 3.2
and the experimental workflow in 3.3. Finally, Subsection 3.4
defines all the metrics used throughout this research.

3.1 Problem Statement

A current limitation of SAGE is the inability to generate real-
time attack graphs (i.e. while the attack is underway). This is
because it uses a Suffix-based PDFA to predict the past from
the future [5]. Unfortunately, it makes the pipeline usable
only for forensics, not for real-time monitoring of possible
intrusions. This paper aims to verify how a PDFA implemen-
tation compares with the baseline model and to explore and
suggest possible improvements of the modelling assumption
for possibly extending the use cases of SAGE.

3.2 Hypothesis

Before conducting any experiments, we hypothesise how the
new learning algorithm affects the outputted attack graphs.
We believe that because the PDFA implementation does not
flip the prefix tree [6], it will result in more high-severity
nodes either due to the algorithm not merging them or due to

the way the traces are traversed in the post-processing. These
statements will be discussed and explored in Section 5.

3.3 Experimental Workflow

The investigation used quantitative measures such as size and
complexity and qualitative measures such as completeness
and interpretability. The qualitative analysis was accom-
plished by first filtering out candidates based on quantitative
analysis (i.e. graphs with more drastic changes in complexity
or size were analyzed first) and then manually inspecting the
differences within the graphs.

The theories of the differences were backed up by an in-
vestigation of the alert sequences related to the victim’s IP
address and targeted objective. In the absence of ground
truth values, these alerts were also used to compute the com-
pleteness metric, which will be discussed in the subsequent
paragraphs. More details on the setup of experiments can be
found in Section 4.

3.4 Metric Definition

Size

The chosen metric for size is the number of nodes. This met-
ric is easy to compute and understand, and is also used in the

original SAGE paper [5]. This way, the comparison between
the two reports becomes easier.

Complexity

As for complexity, we use the process introduced by De Al-
varenga ef al. [8]. This method uses minimum and maximum
values to determine how the complexity is calculated. If the
number of vertices is smaller than the minimum, the graph
automatically has a complexity of 0. In comparison, if the
number of vertices is larger than the maximum, the graph has
complexity 1. However, if the number of vertices falls be-
tween these thresholds, we use the inverse of the simplicity
measure: simplcity(G) = %, where |V| and |E| are the
number of vertices and edges of the graphs.

In our analysis, the minimum and maximum values se-
lected were 11 and 26 for the CPTC-2017 and 13 and 24
for CPTC-2017. Due to the low number of resulting attack
graphs, a knowledge base procedure [8] cannot be effectively
used to pick these parameters. Therefore, looking at the dis-
tribution of the number of nodes, the lower threshold was
picked as the 25" percentile and the upper threshold as the
75" percentile.

0 if |V| < min
complezity(G) = % if min <|V|<max (1)
1 if V| > max

Afterwards, we perform linear regression on the graphs
with vertices between the minimum and maximum threshold
in order to decide on a decision boundary ¢, and on a classi-
fication function:

No if complexity(G) <t

2
Yes if complexity(G) > tg @)

isComplex(G) = {

Completeness

Determining the completeness of an alert-driven attack graph
is a complicated task. This is mostly due to the inexistence of
ground truth values to compare the results. Consequently, we
assume that the alert sequences can be used to derive these
ground truth statements.

This observation does not hold in a holistic evaluation be-
cause Security Information and Event Management (SIEM)
systems can present their own problems. For example, SIEM
software generates a large number of false positives [1] for
which every complete alert-driven attack graph generation
tool should be able to filter out.

However, in our context, the only adjustment over the base-
line model is introducing a PDFA instead of the S-PDFA.
Given that this stage is not responsible for data cleaning, we
believe that a layered evaluation that uses the alert sequence
as ground truth is an appropriate method of computing com-
pleteness.

Subsequently, for our analysis, we adapt the definitions of
schema and population completeness of knowledge graphs
[9] in relation to attack paths and the final objectives of the
AGs. In essence, it measures the ability of the algorithm to
model the real world with regard to additions or subtractions
of properties of graphs.

Schema completeness refers to the extent to which the
classes and properties within an ontology are adequately por-
trayed in a linked data dataset. In our context, it represents
the degree to which paths are missing in one particular attack
graph and can be computed as:

#path tin AG
schemaComp(G) = paths present in

= 3
#total individual paths ©)

Population completeness refers to the extent to which a
linked data dataset adequately represents all real-world ob-
jects of a specific type. In the context of SAGE, it describes
the degree to which all the high-severity alerts have a match-
ing attack graph generated by the algorithm. It can be com-
puted as:

#unique objectives present in AG
C G) = 4
popComp(G) #total unique objectives @

It is important to look at completeness from both these two
perspectives because, in real life, there can be a substantial
difference between not detecting an attack for a service that
was previously attacked and is already vulnerable or not de-
tecting an attack for a service that has not been previously
attacked and is not known as vulnerable yet.

Details on how this data is generated will be discussed in
Section 4.

Interpretability

Interpretability is the last of the qualitative approaches that
we used throughout the analysis. From the perspective of a
security analyst, it is an essential measurement to discuss, as
it is redundant for them that the graph is complete unless it
is also readable and interpretable. Without this characteristic,
one can find themselves drawing the wrong conclusions. At
the same time, it is also a challenging metric to quantify.

With these in mind, a protocol was designed to assess the
readability of the attack graphs using inspiration from [10].
A set of experts is asked to perform a series of tasks, and the
completion of these tasks is timed. The tasks are:

1. Estimate the number of nodes (part of intervals, e.g. 0-
10, 10-20)

Estimate the number of attack paths

Locate a node based on a given label

Locate all medium-severity states

Locate all high-severity states

Follow an attack path from a start state to the victim state

SAINAIF e

However, performing the protocol for all the attack graphs
and both the baseline and the PDFA models is very time-
consuming for this project’s scope. At the same time, it is
also unnecessary because some graphs remain the same be-
tween the implementations and do not aid the comparison.
Therefore the following selection was made:

» The biggest difference in the node count (top 5 AGs)
» The biggest difference in complexity (top 5 AGs)

» Simple AGs that became complex (at most 5 AGs)

¢ Complex AGs that became simple (at most 5 AGs)

In addition to this protocol, we also gave some insights
which give an idea of the interpretability of the graphs con-
cerning the ability to detect distinct penetrations strategies of
attackers. These will be presented in Section 5.

4 Experimental Setup

The attack graphs analyzed in this paper were generated us-
ing the 2017 and 2018 datasets of the Collegiate Penetration
Testing Competition [11] [12] (CPTC). The algorithm was
run twice on each dataset, once with the original implemen-
tation, which flips the prefix tree and thus learns an S-PDFA,
and once with a regular PDFA model. FlexFringe and SAGE
were run on the versions containing only the Pull Requests up
to 9t" of June. The repository linked in the appendix already
contains the correct versions.

To change between the PDFA and S-PDFA implementa-
tion, the input traces were reversed before loading them into
the FlexFringe algorithm. Afterwards, the graphs between the
different implementations were matched head-to-head based
on the victim’s IP address and the target objective.

CPTC-2018 | CPTC-2017
alerts 330,270 43,611
teams 6 9
Duration (hrs) 8 11
Victim hosts known? Yes No
Competition type Pen. testing | Pen.testing

Table 1: Summary of experimental datasets [13].

The alert sequences were extracted after the episodes were
broken up into sub-sequences and before traces were gener-
ated to be fed into the FlexFringe algorithm. Subsequently,
candidates for the manual analysis of alert sequences were
filtered out using the following procedure:

1. For each attack graph, the starting edge of all attack
paths was stored as a tuple containing the following in-
formation < victim_I P, end_prev, mcat, protocol >

2. Each alert was modified to contain the same information
as the attack paths

3. If a sequence contained an alert which matched the at-
tack path information, the entire sequence was filtered
out as there is enough evidence that it is modelled in the
results

4. SAGE takes into account only paths that lead to a high-
severity node, therefore sequences that did not contain
at least one high-severity alert were removed

The remaining alerts were manually inspected to determine
whether the sequences are already accounted into the attack
graphs but at different timestamps or whether they are truly
missing in the interpretation.

NetworkX was also used to perform operations on the re-
sulting graphs, for example, for extracting the starting states
and starting edges or for the computation of the complexity
metric. It can read the ”.dot” files outputted by SAGE and
store them as a graph data structure.

5 Results

This section presents the results of the various analysis meth-
ods conducted throughout the research. It first outlines some
statistics that confirm the hypothesis presented in the intro-
duction. Then it discusses the results of the size, complexity,
completeness and interpretability analysis between the base-
line and PDFA models.

5.1 High-Severity Nodes Analysis

We started this paper by introducing a hypothesis on how the
learning algorithm is affected by the PDFA model. We as-
sumed that the attack results would have more high-severity
nodes. From Table 2, we can see that for the CPTC-2017,
there is an increase in the number of sub-objectives (i.e. high-
severity nodes directly connected to the final objective) of
1.48 over the baseline model, while for the 2018 dataset, the
ratio is 1.593. When looking at the high-severity nodes, these
numbers increase to 1.722 and 1.908, respectively. Therefore,
these results confirm the hypothesis.

Dataset Sub-objectives | Total high-sev. nodes
CPTC-2017 1.722 1.480
CPTC-2018 1.908 1.593

Table 2: Ratio of high-severity nodes in the PDFA implementation
over high-severity nodes of the baseline per AG.

Figure 3 shows a clear example of this behaviour. Here we
can see that, compared to the baseline model, there are three
sub-objectives, even though the two rightmost sub-objectives
have similar nodes going into DATA MANIPULATION.

At first glance, one might think that this behaviour is
caused due to the merging algorithm not being able to merge
these correctly. However, by investigating this behaviour
more in-depth, we can see that the more probable cause is

oATA XL “TA EXFIL
tp | 1D:3 p10: 17

ccccc

pesc2

(b) S-PDFA

Figure 3: Attack graph for DATA EXFILTRATION http for victim
10.0.0.24. It shows how the modelling assumption has more sub-
objectives than the baseline and how the paths are grouped based on
the starting node of the attack.

the traversal of traces in the learned automaton. In the base-
line model, the traces are traversed from a high-severity node
to a low-severity node. With the PDFA model, it is the op-
posite. In both models, paths are grouped based on the first
alert of the trace. Consequently, this means that in the PDFA,
paths are grouped based on low-severity nodes rather than
high-severity nodes, which explains why in 3a each path of
an individual sub-objective starts in the same node: leftmost
three nodes in VULNERABILITY DISCOVERY mysql, middle
two paths in HOST DISCOVERY http and the last two nodes
in VULNERABILITY DISCOVERY http. Although the indi-
vidual paths might differ in the baseline model, they will start
at the same high-severity node and thus be visually merged in
the AG.

5.2 Size Analysis

The behavioural difference between the PDFA and S-PDFA
also affects the size of the resulting attack graphs. From Ta-
ble 3 and 4, we can see an average increase of around three
nodes between the implementations, while for some graphs,
we even discovered an increase of more than ten nodes.

This allows us to conclude that, in the future, we could pos-
sibly use a PDFA implementation without drastically com-
promising the size of individual attack graphs.

Dataset Avg size | Min size | Max size
CPTC-2017 | 17.703 3 48
CPTC-2018 | 17.173 3 32

Table 3: Size values of the baseline model.

Dataset Avg size | Min size | Max size
CPTC-2017 | 20.842 3 70
CPTC-2018 | 19.946 3 43

Table 4: Size values of the PDFA model. It shows how the differ-
ences in size between the modelling assumption and the baseline are
minor

5.3 Complexity Analysis

In terms of complexity, we can see from Table 5 that there are
not many differences. For CPTC-2017, there is no change
in the number of complex graphs between the baseline and
PDFA model, while for 2018, the difference is negligible (i.e.
3).

Dataset

Complex S-PDFA

Simple S-PDFA

Complex PDFA

Simple PDFA

CPTC-2017

50

58

50

58

CPTC-2018

36

39

39

36

Table 5: Complexity values between the baseline and PDFA. It
shows how, even with the increase in size, the modelling assump-
tion is not drastically affected in terms of complexity.

These can be explained using the hypothesis about the be-
havioural difference between the S-PDFA and PDFA algo-
rithms. As discussed in High-Severity Nodes Analysis, the
PDFA model has problems visually merging high-severity
nodes. These, however, appear close to the unique objec-
tive, and therefore, for each new node, there is a new edge
that goes to this unique objective node. The consequences
are that, because of how the complexity is defined, the differ-
ences are very marginal and, thus, Equation 2 does not affect
the output.

This allows us to conclude that, in the future, we could
possibly use a PDFA implementation with marginal effects
on the complexity of individual attack graphs.

5.4 Completeness Analysis

The completeness analysis is the first qualitative measure-
ment conducted between the two implementations. We aimed
to verify whether the models can correctly represent the real
world concerning additions or subtractions of properties of
graphs. With this regard, we verified if there are any incon-
sistencies between the episodes that Flexfringe is trained on
and the attack sequences of the AGs generated by SAGE.

As discussed in the High-Severity Nodes Analysis sub-
section, the proposed model does not affect the underlying
paths that SAGE generates, but only the merging approach
and the number of nodes/edges. Therefore, we can expect
no differences in terms of completeness given the metrics de-
fined in Section 3. Considering the reason for analysing the
differences between the two designs is to assess the validity
of SAGE, we decided not to make a head-to-head comparison
in this section.

From Table 6, it is evident that for CPTC-2017, the al-
gorithm correctly models 87.33% of the total paths into the
AGs and 82.44% of the total high-severity alerts into unique
AGs. For the 2018 dataset, these numbers become 88.01%
and 76.53%, respectively. These values may seem adequate.
However, the objective of cybersecurity software is to min-
imise the production of false negatives and positives [14],
which does not apply in our case.

Dataset schemaComp | populationComp
CPTC-2017 87.33% 82.44%
CPTC-2018 88.01% 76.53%

Table 6: Completeness for baseline and PDFA model (values are
the same between the models). It shows how completeness is not
affected between implementations, but also how it is fairly low for
cyber-security software.

Given Figure 4a, we can observe a somewhat even distribu-
tion of false negatives types for the 2017 dataset, with attacks
not being detected as early as possible being the most fre-
quent miss. From Figure 4b, one can notice that NETWORK
DOS ms-wbt-server has the most inconsistencies (i.e. 23)
followed by DATA EXFILTRATION microsoft-ds with nine
inconsistencies, and NETWORK DOS ssdp with five incon-
sistencies.

Histogram of the types of misses for CPTC-2017

earlier attack missing graph

missing attacker
Types of misses

(a) Distribution over the type of false nega-
tives

Histogram of the alerts and protocols missed for CPTC-2017

netDOS ssdp

netDOS ms-wbt-server
exfil websm

exfil wap-wsp

exfil unknown

exfil microsoft-ds

exfil http-alt

exfil http

exfil distinct

Alert and protocol of misses

delivery wsman
delivery unknown

delivery irdmi

delivery http

0 5 10 15 20 25
Count.

(b) Distribution over the alerts and protocols

Figure 4: Distribution of false negatives on the CPTC-2017 dataset.
It gives an idea of what attacks are missed when episodes of length
smaller than three are discarded.

Referring to Figure 5a, we can recognise that the most fre-
quent type of false negative is the absence of a unique AG

given a high-severity alert, with a count of 27. Analysing
Figure 5b, NETWORK DOS ssdp shows the most signifi-
cant number of inconsistencies, specifically 18. Following
that, DATA EXFILTRATION http has five inconsistencies,
and NETWORK DOS http, DATA EXFILTRATION unknown,
DATA EXFILTRATION ssh, DATA DELIVERY remotware-cl
all have five inconsistencies.

Histogram of the types of misses for CPTC-2018

earlier attack missing attacker

Types of misses

missing graph

(a) Distribution over the types of false neg-
atives

Histogram of the alert and protocols missed for CPTC-2018

resH) hhtp
netDOS ssdp
netDoS http

exfil unknown
exfil ssh

exfil http

exil etlservicemgr

exfil complex-main

Alert and protocol of misses

delivery remoteware-cl
dManip http

dDestruct us-cli

dDestruct cslistener

0 2 4 6 8 10 12 14 16
Count

(b) Distribution over the alerts and protocols

Figure 5: Distribution of false negatives on the CPTC-2018 dataset.
Compared to CPTC-2017, we can see that for the 2018 dataset,
SAGE is more prominent in missing entire graphs.

The reason behind these discrepancies is that SAGE dis-
cards all episodes with less than three alerts. This is to reduce
the number of paths and attack graphs generated. However, it
results in the algorithm missing valuable information if one of
these episodes contains a high-severity threat. The next sub-
section will discuss one possible modification to solve this
problem and the result analysis.

5.5 Completeness Improvement Analysis

One possible solution to the problem showcased in the previ-
ous sub-section is keeping all episodes, regardless of length.
Applying this technique decreases the number of missed
paths from 56 to 8 for CPTC-2017 and 43 to 11 for the 2018
dataset. This is a considerable decrease in the number of false
negatives. However, it comes at the cost of generating sub-
stantially more attack paths, from 393 to 538 and 323 to 386,
respectively.

The reason for this is that it considers many false positives,
i.e., subpaths of paths that already exist in attack graphs. This
is because attackers tend to follow shorter paths to re-exploit
the same objective [5]. In most cases, capturing these insights

is useful, though, in our case, the number of such paths is
so large that it makes the AGs less interpretable, thus, less
qualitative.

Another interesting aspect discovered when analysing this
experiment’s results is that some episodes with less than three
alerts translated into attack paths of more than three alerts
when adding them to the learning step of SAGE.

Figure 6: Attack graph for victim 10.0.0.77 for DATA EXFILTRA-
TION unknown when SAGE uses all episodes to learn from. It shows
how SAGE, by discarding episodes with length smaller than three,
removes longer attacks.

For example, for victim 1/0.0.0.77 and attacker
10.0.254.30, we have the following episode that SAGE
discards because of its length:

e ([’2017-11-04 14:07:40.394839+00:00°, ’2017-11-04
14:08:00.600665+00:00], ’surf’, "unknown’)

e ([’2017-11-04 14:07:48.259365+00:00°, ’2017-11-04
14:08:00.690355+00:00’], exfil’, 'unknown’)

When SAGE does not discard it, it results in the purple attack
path from Figure 6. In this case, we can see that the attack
does not start at a SURFING unknown node as it is showcased
in the episode, but from a HOST DISCOVERY http node. The
cause is that the information for this particular attack is not
stored in only one episode. However, it is split into multi-
ple ones, which might result in SAGE incorrectly discarding
alerts.

With all these in mind, SAGE cannot learn from all the
episodes without drastically affecting the size and inter-
pretability of attack graphs. However, it also cannot discard
them without noticeably decreasing the completeness. One
possible solution that can be explored in future works will be
discussed in Section 6.

5.6 Interpretability Analysis

We define interpretability as the process of quickly and cor-
rectly reading attack graphs and the ability to draw the correct
conclusions from them, given design decisions of SAGE and
practices in the cyber security domain. Moreover, the person

conducting this process was assumed to be a security ana-
lyst who knows how to read a SAGE-generated attack graph.
Consequently, this sub-section is split into the readability pro-
tocol and the correct retrieval of attack strategies.

Readability Protocol
For a security analyst to draw the right conclusions from
an attack graph, they must first be able to read it correctly.
Only the results of 6 attack graphs were documented here to
save space. However, the readability protocol was, in total,
conducted for the 20 most interesting (i.e. with significant
changes between baseline and PDFA model) attack graphs.
As seen from Table 7, the PDFA is overall more read-
able, with the difference being more drastic for the more
complex AGs. This time was saved when the expert had to
traverse a path from a start state to an end state. The rea-
son behind this outcome is that, because the PDFA does not
merge high-severity episodes as much as the baseline model,
the paths are more spread out, and the out- and in-degree of
these high-severity nodes are lower than their S-PDFA coun-
terparts. Thus, it makes it easier for an expert to identify the
edge leading to the next attack node.

Attack Graph Baseline | PDFA
10.0.0.176 66 »
DATAMANIPULATIONhttp s s
10.0.0.100
DATADELIVERY wsman 186s | 116s
10.0.1.46
DATAEXFILTRATIONuscli 147s 104s
10.0.0.100
NETWORKDOSntp 333s | 234s
10.0.1.46 3 ol
RESOURCEHIJACKINGHhttp s s
10.0.0.20 s -0
DATAMANIPULATIONremotewarecl S s

Table 7: Results of the readability protocol(i.e. completion time per
model and attack graph). It shows that overall, the PDFA implemen-
tation is more readable than the baseline model, with the difference
being more drastic with a more complex graph.

A clear example is Figure 7 where the DATA EXFILTRA-
TION http node of the S-PDFA has an in-degree of 6, while
the DATA EXFILTRATION http nodes of the PDFA have in-
degrees of 1, 1, 2 and 2 respectively. This leads to the paths
being simpler to traverse and the graph being easier to read.

Correct Retrieval of attack strategies
Besides being readable and easily traversable, an inter-
pretable graph should allow a security analyst to draw the
right conclusions from the attack strategies executed on a spe-
cific service. SAGE was designed such that the number of
sub-objectives in the attack graphs signifies different strate-
gies for targetting the same service. Thus the AGs should
correctly model such behaviour. With the PDFA implemen-
tation not merging sub-objectives, it is possible that the PDFA
incorrectly splits paths that are not sufficiently distinct.
Considering this, Figures 3 and 7 clearly illustrate how op-
timising our modelling assumption further can make it more
interpretable than the baseline. In the S-PDFA model of

"DATA EXFILTRATION
itp 10:3.

(b) S-PDFA

Figure 7: Attack graph for DATA EXFILTRATION http for victim
10.0.0.176. It shows how the PDFA implementation can sometimes
better capture the individual penetration strategies of attackers. In
the figure, these strategies are encoded with numbers.

DATA EXFILTRATION http 10.0.0.176, there is only one sub-
objective, from which we could conclude that the service was
exploited similarly by all the attackers. However, analysing
the paths more closely, we notice four distinct methods of
breaching the victim. This is accurately represented in the
PDFA attack graph, with these paths being encoded with
numbers from 1 to 4 for ease of recognition but incorrectly
depicted in the baseline.

On the other hand, Figure 3 proves the need for optimisa-
tion, as the PDFA model incorrectly models the two green
paths as being distinct from the two rightmost pink paths,
which is not the case, as both of these alternatives have com-
mon nodes such as VULNERABILITY DISCOVERY http and
INFO DISCOVERY http.

6 Conclusions and Future Work

The goal of this paper was to compare the baseline model
(i.e. S-PDFA) with the proposed modelling assumption (i.e.
PDFA) in terms of size, complexity, completeness and in-
terpretability and to discuss any other insights discovered
during analysis. The key findings were:

e attack graphs generated by the PDFA implementation
tend to present around 1.5 more high-severity nodes than
the S-PDFA one. This can be attributed to the organi-
zation of traces used during the SAGE learning phase,
which is structured in a low-to-high severity alert se-
quence, unlike the baseline model.

e attack graphs generated by the PDFA implementation
contain 16.5% more nodes than the S-PDFA one. This

can be attributed to the increase in high-severity nodes
discussed in the previous point

o attack graphs generated by the PDFA implementation
present a negligible difference in the number of sim-
ple and complex attack graphs compared to the S-PDFA
one.

o attack graphs generated by the PDFA implementation
present no difference in completeness compared to the
S-PDFA implementation. This phenomenon is because
both models possess an equal number of attack graphs
and paths, making them equally complete.

* by discarding episodes containing less than three alerts,
SAGE misses important information about attack graphs
and paths regardless of the model. This is because an
attack stage, from start to finish, is not stored in the same
episode, and SAGE can incorrectly discard (part of) an
attack stage that is essentially longer than three alerts.

« attack graphs generated by the PDFA implementation
tend to be more readable than the S-PDFA one. This
can be attributed to the increase in high-severity nodes,
which makes the paths appear more spread out and eas-
ier to traverse.

e attack graphs generated by the PDFA implementation
are more sensitive to differences in attack strategies than
the S-PDFA one and will, overall, capture more true pos-
itive and false positive distinct paths.

Even though we have tried to reduce it as much as possi-
ble by using clearly defined protocols and defining explicit
research objectives [15], due to the nature of the manual in-
vestigation, some analysis bias and human error might have
been unknowingly introduced during the research. Moreover,
in the absence of ground truth values to compare the AGs in
terms of completeness, we assumed the filtered alerts to be
these ground truth values. It works for a layered evaluation of
the learning automaton. However, in the context of a holistic
evaluation, this assumption does not hold. This is due to Se-
curity Information and Event Management Systems (SIEM)
generating large amounts of false positives [1].

Additionally, we have found five bugs throughout the
project that affected the results and required rerunning the
experiments. These were fixed, however, due to time con-
straints, the analysis in this paper contains the fixes of only
the first 3. Thankfully, the last two bugs did not drastically
change SAGE’s outcome, thus, the results should still be rep-
resentable. With all these considered, reproducibility is still
not affected, as long as the experiments are run on the ver-
sions that contain only the Pull Requests up to 9* of June.

All these conclusions give insight into why our modelling
assumption can yield better results than the baseline if op-
timized further. More precisely, exploring an approach for
decreasing the number of false positive paths can generate at-
tack graphs which are more interpretable, slightly bigger, and
yet maintain an equivalent level of completeness.

Lastly, completeness could be improved by adding all the
episodes of length smaller than 3 to episodes with similar
timestamps. This process would be done per attacker per vic-
tim and would, technically, add previously discarded episodes
to their full attack paths. However, this process is more com-
plex, and it should be studied further in possible future works.

7 Responsible Research

SAGE and Flexfringe with both the baseline and the PDFA
implementation are deterministic and would yield the same
results as in this paper as long as they are run on the versions
that contain only the Pull Requests up to 9" of June. For
easier reproducibility, the repository linked in the appendix
contains the correct versions. Detailed instructions on how
the experiments and the analysis were conducted are found in
Section 4. Thus, this helps the reader reproduce any experi-
ment they may desire.

The evaluation was conducted critically, and the reasoning
behind any design choices was properly argued. Explana-
tions of the results were given and backed up by evidence in
the SAGE pipeline. The analysis was conducted such that
bias in the results was as little as possible by defining explicit
research objectives and using clearly defined protocols [15].
However, due to the nature of the manual analysis, some re-
sult bias may have been unknowingly added.

As for ethical concerns, five bugs were discovered and
fixed in the SAGE code throughout the research project.
However, due to time limitations and the nature of the man-
ual analysis, the presented results contain only the first three
fixes. Thankfully, the last two bugs did not drastically change
the outcome of SAGE. Therefore the results should still be
comparable to the potential results generated with all the
fixes. With all these in mind, the code base could still possess
undetected bugs, which, if discovered, should be reported to
the maintainers.

8 Acknowledgements

Given the nature of the research questions and the desire of
the teaching team to have similar metrics and comparable re-
sults, the research methodology was developed in collabora-
tion with Alexandru Dumitriu and Jegor Zelenjak. Moreover,
the bugs mentioned in Section 7 were discovered and fixed
with the help of Senne Van den Broeck, Vlad Constantinescu,
Jegor Zelenjak and Alexandru Dumitriu. Lastly, we want to
acknowledge the responsible professor, Sicco Verwer, and su-
pervisor, Azga Ndeem, for the help and guidance throughout
the research project.

References

[1] Sandeep Bhatt, Pratyusa K. Manadhata, and Loai Zom-
lot. The operational role of security information and
event management systems. [EEE Security Privacy,
12(5):35-41, 2014.

[2] 'Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang
Chen, Kangkook Jee, Zhichun Li, and Adam Bates.
Nodoze: Combatting threat alert fatigue with automated
provenance triage. Network and Distributed Systems Se-
curity Symposium.

[3] Leevar Williams, Richard Lippmann, and Kyle Ingols.
Garnet: A graphical attack graph and reachability net-
work evaluation tool. In John R. Goodall, Gregory
Conti, and Kwan-Liu Ma, editors, Visualization for
Computer Security, pages 44-59, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg.

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Steven Noel, Matthew Elder, Sushil Jajodia, Pramod
Kalapa, Scott O’Hare, and Kenneth Prole. Advances in
topological vulnerability analysis. In 2009 Cybersecu-
rity Applications Technology Conference for Homeland
Security, pages 124-129, 2009.

Azqa Nadeem, Sicco Verwer, Stephen Moskal, and
Shanchieh Jay Yang. Alert-driven attack graph gener-
ation using s-pdfa. IEEE Transactions on Dependable
and Secure Computing, 19(2):731-746, 2022.

Sicco Verwer and Christian Hammerschmidt.
Flexfringe: Modeling software behavior by learn-
ing probabilistic automata, 2022.

Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan.
Frequent pattern mining: current status and future di-
rections. Data Min. Knowl. Discov., 15(1):55-86, 2007.

Sean Carlisto de Alvarenga, Sylvio Barbon, Ro-
drigo Sanches Miani, Michel Cukier, and Bruno Bogaz
Zarpeldo. Process mining and hierarchical clustering to
help intrusion alert visualization. Computers Security,
73:474-491, 2018.

Subhi Issa, Onaopepo Adekunle, Faycal Hamdi, Samira
Si-Said Cherfi, Michel Dumontier, and Amrapali Za-
veri. Knowledge graph completeness: A systematic lit-
erature review. IEEE Access, 9:31322-31339, 2021.

M. Ghoniem, J.-D. Fekete, and P. Castagliola. A com-
parison of the readability of graphs using node-link and
matrix-based representations. In IEEE Symposium on
Information Visualization, pages 17-24, 2004.

J Pelletier. Collegiate penetration testing competition,
2018.

Nuthan Munaiah, Akond Rahman, Justin Pelletier, Lau-
rie Williams, and Andrew Meneely. Characterizing at-
tacker behavior in a cybersecurity penetration testing
competition. In 2019 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measure-

ment (ESEM), pages 1-6, 2019.

Azqa Nadeem, Sicco Verwer, Stephen Moskal, and
Shanchieh Jay Yang. Enabling visual analytics via alert-
driven attack graphs. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications
Security, CCS 21, page 2420-2422, New York, NY,
USA, 2021. Association for Computing Machinery.

Cheng-Yuan Ho, Yuan-Cheng Lai, I-Wei Chen, Fu-Yu
Wang, and Wei-Hsuan Tai. Statistical analysis of false
positives and false negatives from real traffic with intru-
sion detection/prevention systems. IEEE Communica-
tions Magazine, 50(3):146-154, 2012.

Per Runeson and Martin Host. Guidelines for conduct-
ing and reporting case study research in software engi-
neering. Empirical Software Engineering, 14:131-164,
April 2009.

A Implementation of experiments and SAGE

The code used for generating the data presented in this paper can be found at the following GitHub Repository:
https://github.com/OpreaCristian2002/research-project.

The code for SAGE can be found at the following GitHub Repository: https://github.com/tudelft-cda-lab/SAGE

	Introduction
	Related Work
	FlexFringe
	SAGE

	Methodology
	Problem Statement
	Hypothesis
	Experimental Workflow
	Metric Definition

	Experimental Setup
	Results
	High-Severity Nodes Analysis
	Size Analysis
	Complexity Analysis
	Completeness Analysis
	Completeness Improvement Analysis
	Interpretability Analysis

	Conclusions and Future Work
	Responsible Research
	Acknowledgements
	Implementation of experiments and SAGE

