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CHAPTER 1 

INTRODUCTION 

GeoelectricaI depth sounding resistivity measurements have found 

wide application in diversified fields. In Civil Engineering it is 

used to determine the depth and nature to the bed rocks, in the quest 

of solid foundations for dam, bridge, tunnel and road constructions (4)'-'. 

It is being used to study the crustal electrical properties involving 

great depths (22, 23, 24, 62, 77). However, by far the greatest appli

cation is in the field of hydrogeology where it is used as a tool for 

exploration and exploitation of ground water resources (15, 78). This 

mostly involves shallow depths to within about 300 metres, although 

very recently a deep sounding for ground water has been reported (76), 

Although drinking water is of vital importance, a step-mother 

attitude has been given to this problem by persons involved in geoex-

ploration. As such many countries, specially those in arid regions, 

are in acute shortage of water, arising mostly out of insufficient 

effort diverted towards exploration of their own ground water resources. 

There is thus immediate and urgent need for concentrated intensive explo

ration, that calls for fast improved techniques of acquiring and in

terpreting the data. 

Frinaiiple and field variations employed 

The main purpose of a geoelectricaI measurement is to delineate 

the subsurface structure by basing its study on the electrical condition 

of the earth. The property studied is resistivity p(z), which is the 

inverse of conductivity o(z). The situation commonly encountered is 

horizontal layering. Permeable formations are known to carry in their 

pore spaces ionic fluid that permits the flow of electricity. A four 

1' The numbers in brackets refer to the References page 119-125. 
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point electrode system, with the electrodes placed symmetrically in a 

straight line, is employed. The ground is energized galvanically by 

the help of two external electrodes and the response of the ground, 

in the form of potential difference, is measured between the inner 

pair of electrodes. Two variations in field techniques, named after the 

pioneers in this field, are commonly employed. In the SCHLUMBERGER 

method used widely in Europe, the potential electrodes are close to 

each other and kept stationary for long periods during which the current 

electrodes are moved outwards progressively at a ratio of about 1.4. 

In the WENNER's arrangement used mostly in North America and other 

English speaking countries, all the four electrodes are expanded out

wards with respect to the centre of the system, always maintaing equal 

spacing among the electrodes. The relative merits of these two tech

niques have been debated in literature (9, 34). It suffices here to 

remark that field procedure is easier with the SCHLUMBERGER method and 

that the surface inhomogeneities affect the measurements also to a 

lesser degree than with the WENNER arrangement. The procedure of expan

ding outwards the electrodes simply implies that progressively deeper 

and deeper horizons are reached by the current. Thus this form of 

resistivity measurements is aptly known in geophysics as electrical 

drilling (HEDSTRÖM) or vertical electrical sounding (V.E.S.) or simply 

as depth sounding. The potential difference and the current are 

observed at each electrode-layout and the multiplication of their ratio 

i.e. the resistance with a suitable geometrical factor, defined by the 

electrode layout, determine a function called apparent resistivity. The 

unit is ohm-metre and the dimension is resistance multiplied by length. 

I The fieldwork is completed by plotting this function on bilogarithmic paper against one half the current electrode distance in SCHLUMBERGER 

j and one third the current electrode distance in WENNER arrangement. 

Concept of apparent resistivity 

The meaning of the term apparent resistivity is quite vital towards 

proper understanding of interpretationaI methods. It is the true res is-
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tivity that a homogeneous half space earth should have, if it had to 

record the same potential difference as observed on a stratified earth, 

thinking for a moment that the same measurement was being repeated 

(the layout and current are kept exactly the same). It is an artificial 

concept and as has rightly been pointed out by PARASNIS (51) does not 

represent an average resistivity of a certain volume, as certain 

writers have erroneously mentioned, because it is also a function of 

the electrode arrangement used. The desired information about the sub

surface is concealed in the apparent resistivity curve in such an 

intriguing fashion that simple depth rules are dangerous and not re

commended . 

Theoretical assumptions 

The situation is alarming which requires a complete analysis based 

on solid theoretical foundations. The mathematical treatment is simpli

fied by idealizing the geological situation. The layers are treated 

as homogeneous and isotropic while the boundaries are taken as plane 

parallel. It cannot, however, be said with surety that this condition 

is always met in practice, but it is not possible to incorporate these 

deviations as it makes the mathematics too complicated. The practice 

is to complete the interpretation on the above assumption and to alter 

the interpretation if necessary, mostly in a qualitative or semi-

qualitative fashion to include deviations that come to our knowledge 

from geology and drill hole information. It may be said for a passing 

remark, that the effect of dip is less severe than anisotropy in depth 

determination based on a consideration assuming ideal conditions sta

ted above (25). For further details on anisotropy reference is made 

to the work of MAILLET (38) and SCHLUMBERGER (63). Extensive treatment 

about the effect of dip has been given by NOSTRAND and COOK (47). Sur

face inhomogeneities also influence resistivity measurements (1). 
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Equivalence Problem 

Further difficulties arise due to limitations in the physical 

nature of the problem. This is introduced by the fact that quite diffe

rent horizontal layer distributions may produce almost the same pattern 

of apparent resistivity curves. This ambiguity is known as the equiva

lence problem (39) and although methods are known to solve this problem 

(19) the best is to rely on external control as a check on our inter

pretation. 

Interpreting the field observations 

The interpretation of the field data is done in two stages. In 

the first stage the data is interpreted purely on theoretical considera

tions. Then in the latter stage, the interpreted result is correlated 

with available geological knowledge to arrive at a realistic picture 

of the subsurface. The success of geoelectricaI methods depends much on 

this geological interpretation. FLATHE, 1955 (15), gives a critical 

review of the applicability and limitations of the geoelectricaI method 

specially towards hydrogeological problems. 

In this thesis we shall be concerned only with the first stage i.e. 

physical interpretation. This is based on an expression by STEFANESCO, 

1930 (67), for the potential due to a point source of current on a 

stratified earth. He expressed the potential in the form of an HANKEL 

integral, the integrand of which is a product of a BESSEL function of 

zero order and of a function dependent on the layer parameters cal led 

the kernel function. The technique applied in interpreting the data 

has been mostly indirect, in that the field curve is matched with 

standard graphs prepared from the STEFANESCO expression for known earth 

models. This procedure of trial and error costs time and in many in

stances the possible cases outnumber the small number of cases for 

which standard graphs can be prepared. 

Direct derivations of layer parameters 

The idea of obtaining the layer parameters directly from field 
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measurements is due to SLIGHTER, 1933 (64), who showed that it could 

be obtained in two steps. In the first step, the kernel function in the 

STEFANESCO integral was determined from field measurement and in the 

second step the layer distribution was deduced from the kernel function. 

However, SLICHTER's procedure was laborious and thus unsuitable. 

PEKERIS, 1940 (54), gave an extremely useful method for carrying out 

SLICHTER's second step. These suggestions, however, found very little 

application because there was no means of determining the kernel suita

ble to field parties.':So KOEFOED's method, 1968 (32), was of great prac

tical significance, because he gave a procedure to obtain the kernel 

from the apparent resistivity curve, that was not only accurate but 

simple in application^ To carry out the second step of SLICHTER's pro

posal, two methods were suggested by him, one of which was similar to 

that of PEKERIS. However,IJl KOEFOED (33), subsequently modified his 

second method by introducing a new function called the resistivity 

transform, related to the kernel f unction.,: The speed of obtaining the 

parameters from the transform was accelerated by the introduction of 

a standard curve. 

The need of a new technique for calculating the resistivity transform 

KOEFOED's method as such was complete. The modification mentioned 

above for obtaining the parameters from the transform gave considerable 

gain of working speed. On the other hand the first step was relatively 

lengthy. It was thus desired to devise a method for carrying the first 

step, A/hich should give considerable speed to the application of direct 

methods and yet retain the accuracy of KOEFOED's method of obtaining 

the kernel from the field data. The knowledge of sampling and filter 

theory in the field of communication theory was applied to obtain the 

resistivity transform from the apparent resistivity curve. For the 

deduction of the layer parameters from the transform, KOEFOED's method 

cited above is recommended. It is hoped that these two procedures 

should give a new meaning to the application of the direct method in 

resistivity interpretation. 



CHAPTER 2 

THE FUNDAMENTAL RELATION BETWEEN POTENTIAL, APPARENT RESISTIVITY, 

RESISTIVITY TRANSFORM AND THE LAYER DISTRIBUTION OF A STRATIFIED EARTH 

2.1 Potential distribution about a point electrode 

It is required to determine the potential at an arbitrary point 

on the surface due to a point electrode emanating a current /, also 

placed on the surface of the n-layered horizontal earth. The layers have 

resistivities pi, P2, P3, , P , .. . .p _ , p and thicknesses 

di, d2, d3, , d , ....d _^. The n layer is the substratum, and 

the air with infinite resistivity is not taken as a section but is of 

importance in governing the boundary conditions. These details are shown 

in fig. 2.1.1 

The potential V has to satisfy LAPLACE's equation V^V = 0 , every

where except at the electrode. Such a solution can be obtained by con

sidering LAPLACE's equation in cylindrical coordinates. There exists 

circular symmetry of the field about a vertical line through the elec

trode. The electrode is taken as the origin of the polar coordinate 

system with the vertical line as the z-axis positive downwards and the 

r-axis aJongVphe surface of the earth. In view of the above mentioned 

symmetry, LAPLACE's equation in cylindrical coordinates degenerates to 

v 2 v = | ! ^ . l | V ^ 6 ^ ^ 0 (2.1.1) 
ór"̂  r 6r ^z^ 

This differential equation can be solved by FOURIER'S method by 

assuming a solution of the form 

V = X(r).Y(z) (2.1.2) 

where X(r) is a function of r only and Y(z) of z only, each solu

tion being independent of the other. The solution in the process has 

to meet the following boundary and continuity conditions: 
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point electrode ( 0 . 0 ) pc = 00 air 

surface z 

z=d, 

2=<j , *d2 

d, 

2 = d i * d 2 » •dn- i" 
d..i 

d„»oo 

A ( r ,0 ) 
^-rrrTT-TTTT-/ 

pi 

Pn-

Pn-, 

V/ ' / / ' / ' / ' /^ 

fig. 2.1.1 Layering notations 

. (reflection 
m coetriclent) 

'•n-2 

, - Pn-Pn-1 
" - ' " Pn*Pn., 

1) potential is finite and continuous across the interfaces 

2) normal component of current density is also continuous across 

the interfaces 

3) at the surface, T J = 0, as the air has infinite resistivity 

4) potential vanishes at great distances from the electrode. 

STEFANESCO et al, 1930 (67), gave a solution to eq (2.1.1) by the 

method enumerated by eq (2.1.2), on the basis of the above conditions. 

They expressed the potential as \ 

{ - + 2 ƒ Bi(A,k,d).Jo(>^r).dX} 
2-iï r 0 vj 

(2.1.3) 

Sv.f 
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where 

Jo(Ar) = BESSEL function of zero order and first kind 

Bi(A,k,d) = Kernel function, determined by thicknesses and 

resistivities of enclosed layers of the subsurfa

ce under consideration. It is a quotient in 

which both the numerator and denominator are 

polynomials in v = e"̂ -̂ . The kernel function can 

have all possible values ranging from -j to in

finity. 

A = Integration variable, a real number and in the 

present problem can assume values from zero to in

finity. It has the dimensions of inverse length. 

The expression under the integral is known as the STEFANESCO function 

and is of fundamental importance in resistivity interpretation. STEFANESCO 

solved the problem for three and four layers and indicated it for others. 

FLATHE, 1955 (14), gave mathematical expressions of the kernel function, 

in terms of depths and resistivities of the subsurface layers, for up 

to six layers. A recurrence formula was included by which the kernel for 

any number of layers could be determined from its preceding one. 

He dropped the suffix i from the expression of the kernel function 

and instead preferred to use a suffix that referred not to the fact 

that the measurement was made at the surface but instead indicated the 

number of layers involved. There is apparently no real advantage gained 

in using a suffix in the kernel so long as the meaning is maintained. 

As such none will be used here further on. 

KOEFOED, 1968 (32, p. 14), showed that errors in the apparent 

resistivity curve did not show up to the same degree in the correspon

ding kernel curve, such that any method based on the transformation of 

the apparent resistivity to the kernel is bound to lead to inaccurate 

representation. With this aim he introduced a new function called the 

raised kernel function defined by 



21 

H(A) = B(X) + j (2.1.4) 

He showed that there the changes in the kernel were of the same 

magnitude as the changes in apparent resistivity, such that all the 

information was retained in the conversion process. 

2.2 The concept of Resistivity Transform 

Critical examination of apparent resistivity curves and their cor

responding raised kernel curves, specially Fig. 10.1.1 of KOEFOED's 

book (32, p. 82), revealed an interesting feature that If the H(A) curve 

was raised by a factor 2pi on the logarithmic scale, then the resulting 

curve fol lowed the apparent resistivity curve much more faithful ly -• '^--

than any of the kernels mentioned earlier. Moreover, as It was directly 

proportional to the H-curve, it retained its Important property of no 

loss of accuracy during conversion. So It was decided to use this func

tion as an intermeditary step, to obtain the layer distribution from 

the apparent resistivity, instead of the kernel functions used In pre

vious work. We shall introduce the concept of this new function, which 

is called the resistivity transform T(A) (33), In the expression of 

the potential (eq (2.1.3) ). 

Taking the help of the knowledge in BESSEL functions (72) we 

can rewrite eq (2.1.3) as 

V =Bll {/°°Jn(Xr).dA+ /°°2B(A).Jo(Ar).dA } 
2TI 0 0 

or 

V =^^- /°°{1 + 2B(A)}.Jn(Ar).dA 
2TT 0 

or 

V = ^ /°°T(A).Jn(Ar).dA 

where 

T(A) = pi{l+2B(A)} 

(2.2.1) 

(2.2.2) 
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The Resistivity Transform T.(A) has the property that for small 

values of 1/A it approaches pi and for large values of 1/A asymptotical

ly approaches the resistivity of the substratum (see fig. 7.3.1). In 

other words it is a very good reflector of the apparent resistivity 

curve. Thus if we are able to determine T(A) from the apparent resis

tivity by some process, then the layer parameter could immediately be 

obtained from it by methods already known (33). For this purpose an 

explicit expression is necessary relating the resistivity transform to 

the apparent resistivity. This will be given in section 2.5 of this 

chapter. 

The relation of the resistivity transform to the various kernels 

used in literature can be deduced from eq (2.2.2). The following rela

tions have been given here to avoid confusion 

SLICHTER's kernel =T(A)/pi 

T(A)-pi 
2P1 

Kernel function, B(A) 

Raised kernel , H(A) = T(A)/2pi 

T(A)-pi 
Modified kernel , G(A) = 

T(A)+pi 

PEKERIS function, fi(X) = }Q)-'^^ 

(2.2.3) 

2.3 The Resistivity Transform for two and three layers 

Like the kernel function, the resistivity transform is also rela

ted to the thicknesses and resistivities of the subsurface layers. 

These expressions can be deduced from the corresponding expression of 

the 1<ernel function in terms of the layer parameters that arise in the 

solution of eq (2.1.1) (see 14, 32). However, these expressions are not 

of direct interest in the working of the method proposed. Nevertheless 

expressions for two and three layers are given, as they have been used 

extensively in the development of the method. 
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Three layer case 
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T^^>=Pl-7-^ ildT (2.3.1) 
l-kj.e- ^ 

, . , , -2Ad2 ^ M -2Adi ^ , -2A(di+d2), 
J... ^ ( 1 +ki.k2.e ^ ) + (kj.e ^ + k2.e ) 

^^•,, , , -2Ad2 N M -2Adi I -2A(di+d2), (2.3.2) 
( 1 +ki.k2.e ^ ) - (k^.e ^ + k2.e ^ ^ ) 

The resistivity transform for any number of layers can be found 

by taking the help of FLATHE's recurrence formula (14). 

2.4 Apparent Resistivity 

Expressions for apparent resistivity can be found from the expres

sion for the potential due to a point electrode. 

SCHLUMBERGER arrangement: If the distance between the current elec

trodes is taken as 2s, then the apparent resistivity is given by 

p c —;;"•'" .(3—) (2.4.1) 
aS ƒ dr r=s 

Taking the help of eq (2.2.1), we have 

p c = s2/ T(A).Ji(AsO.A.dA (2.4.2) 
ab 0 

WENNER arrangement: Calling the spacing between consecutive elec

trodes a, the WENNER potential difference becomes 

AV. ,= V -V = ^/°°T(X).{Jn(Xa)-Jo(A2a)}.dA (2.4.3) 
W a 2a Z T T Q 

The apparent r e s i s t i v i t y is given by 

— Zira ... 
^aW-T'^^W 

or 

p ^ = a/°°T(A).{Jo(Aa)-Jo(A.2a)}.dA (2 .4 .4 ) 
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The suffix S and W in the apparent resistivity in eqs (2.4.2) and 

(2.4.4) simply signify the type of arrangement used. 

2.5 Explicit Expression for the Resistivity Transform 

As stated in section 2.2 an explicit expression for the resistivi

ty transform function T(A) is of fundamental importance to a method 

that uses to determine this function as an intermedlatary step in the 

interpretation of field data. Applying HANKEL's inversion theorem of 

the FOURIER-BESSEL integral (72) to eq (2.4.2) we obtain 

T(A) = /°°p <,.Ji(As). — (2.5.1) 
0 3b s 

For the WENNER's arrangement, a different procedure will be fol

lowed as no simple and direct relation of the form of eq (2.5.1) is 

obtainable for it. 

2.6 Image approach 

HUMMEL, 1929 (20), prior to STEFANESCO's solution solved the iden

tical problem for a two layer case. However, this method was different 

as he took the help of image theory of optics. The stratified ground 

was replaced by a fictitious homogeneous medium with an Infinite series 

of Image poles, placed one above the other at a spacing determined by 

the thickness of the bed In question. The potential at a point was 

thought to be as the sum of the contributions of the source and its 

infinite images. 

LASFARGUES (36), and others have demonstrated the correspondence 

between HUMMEL's and STEFANESCO's express Ion f or a two layer case (also 

see chapter 3, section 3.2a). HUMMEL also obtained an expression for 

the potential for a three layer problem on similar reasoning. 

A different set of image configuration applicable to any layer 

distribution was obtained by EHRENBURG and WATSON, 1932, and independent 

ly by WATSON, 1934 (12). Detailed comparison of these merhods and their 

relation to a similar method based on STEFANESCO's expression has been 

dealt with by VAN DAM, 1964 (7). 



CHAPTER 3 

AN OUTLINE OF EXISTING RESISTIVITY INTERPRETATIONAL TECHNIQUES 

3.1 General Considerations 

The interpretation of field observations in terms of depths and 

resistivities is the basic task of a geoelectricaI survey. The pro-

fa I em is not so simple as several complexities are known, some of them 

inherent to the physical nature of the problem as discussed In chapter 

1. As such several attempts have been made in the past to Interpret the 

data correctly. Most of these methods are far from being perfect, any

way they have contributed to a better understanding of the problem and 

need to be discussed, because they are the foundations of future me

thods. 

The techniques commonly used either start of from STEFANESCO's ex

pression for the potential or HUMMEL's equation. The image method 

had been used by several workers (12, 20, 27, 59, 60, 69) to solve 2 

or 3 layer problems. The obvious limitations in the application to a 

multilayer problem was soon recognized (60), as such now it is seldom 

used and will not thus be discussed. 

Methods can be classified as direct or indirect depending on the 

manner in which the parameters of the subsurface are deduced from the 

field observations. An attempt will be made to state the principles 

Involved In the development of the methods, according to this classifi

cation, with special emphasis to direct methods only for the method 

suggested in this thesis is a part of it. 

I N D I R E C T M E T H O D S 

3.2 Evaluation of the STEFANESCO function 

The basic problem Involved In the computation of standard curves 

used In indirect interpretation. Is the evaluation of the integral in 

eq. (2.1.3), which does not render itself to Integration analytically. 
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Various procedures attempted to evaluate it, have been dealt with by 

KUNETZ (34). 

The Infinite integral is often replaced by finite Intervals and 

integrated numerically. The advent of digital computers have made this 

feasable, aIthough several difficulties are known (43). The tables of 

MOONEY and WETZEL, 1956 (42), were obtained by SIMPSON's method of 

numerical Integration. 

An attempt to simplify the integrand by expanding the BESSEL func

tion in series (45) was not very successful. The most accepted proce

dure is to resolve the kernel function into an infinite series or into 

a series of partiai fractions; other processes like expansion into a 

series of LEGENDRE orthogonal polynomials (49) or into a series of 

powers of half the relative difference of resistivity of adjacent beds, 

have been attempted (17). 

(a) Expansion into an infinite series 

This is rendered possible by the fact that the kernel being a 

ratio in which both the numerator and denominator are polynomials in 

v = e~ , couId be expressed as an i nfIni te sum of terms Q..e~ ', 

such that the Integral in eq (2.1.3) becomes 

V. = i:°° Q. .e""^^'.Jo(Ar).dA (3.2.1) 
I n=-«> I " 

Taking the help of L ipsch i tz In tegra l (72) we have 

Q. 
Vj =n C '• , ( 3 . 2 . 2 ) 

' " " (r2 . D?) l /2 
I 

Each term can be regarded as the contribution to the potential due 

to an image at depth D. and strength determined by Q.. This is the 

similarity with image methods mentioned in section 2.6. The choice of 

the number of terms depends on the convergence of the series. The methods 

of VAN DAM, 1964 (7) and MOONEY et al. 1966 (43), are based on this 

principle of expansion. The method of "finite forward differences" has 
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been employed by NABHIGHIAN, 1966 (46), for Improved convergence of the 

inf^inlte series. 

(b) Expansion into a series of partial fractions 

FLATHE, 1955 (14), showed that the kernel function of a multilayered 

earth, in cases of Infinitely resistive or conductive substratum could 

be replaced by a series of partial fractions called prime elements. Each 

element referred to a three layer case with a conductive substratum and 

varying p2. The apparent resistivity curve could then be constructed as 

a linear combination of a finite number of such elements multiplied by 

suitable weighting factor. C.G.G., 1955 (6), obtained a major part of 

their master curves on a similar method of decomposition of the kernel 

with a slightly different system of the prime elements. 

For the rapid convergence of the series, considered in both group 

(a) and (b) methods, the restriction is laid down that the layer thick

nesses be integral multiple of some common thickness which can be taken 

smaII (14). 

3.3 Practical procedures followed in Indirect Interpretations 

(a) Curve matching 

This employs biIogarithmic curve matching, the advantages of which 

are well recognized (25). The field curve Is superposed on a set of 

standard curves, prepared by methods cited in 3.2. In case of perfect 

match the parameters of the standard curve determine the unknown layer 

di stri but ion. 

(b) Computing your own curve 

In case of failure of obtaining a fit, the interpreter can obtain 

his own curve by any of the methods of 3.2. When the computers are not 

available, the methods of VAN DAM or FLATHE could be used. A theoretical 

curve could also be constructed graphically (4, 34) taking the help of 

the principle of equivalence. Everything said the computation of field 

curves is decidedly a burden to field parties. 
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(c) Method using asymptotic curves 

When the interpreter is not inclined to compute his curve, he has 

the option to use approximate methods to interpret the data. A multi

layer problem could be reduced to simple cases by using asymptotic 

two layer curves and the parameters of the subsurface determined from 

these two layer curves, taking the help of auxiliary charts. HUMMEL, 

1932 (20), expressed the relation between parameters of the subsurface 

and those of asymptotic curves mathematically, while CAGNIARD (36), 

and later KOEFOED, 1960 (28), expressed them graphically. 

HUMMEL gave rules of combining layers by treating them as resis

tances in parallel, which must be understood as applicable only to 

the specific case of a resistive substratum (26). For other resistivity 

distributions empirical rules and graphs have been worked out by EBERT, 

1943 (11), and can be found in SOROKIN's book (66). For a proper under

standing a knowledge of Dar-Zarrouk parameters (39) is necessary. An 

article by ZOHDY, 1965 (75) is very useful in this respect. 

As parts of the curve are matched by the asymptotic curves, these 

methods are also known as partial curve matching or also as auxiliary 

point method. Although these seml-empIricaI methods can accommodate a 

large number of cases, they are inaccurate and the greatest objection 

is that large significant parts of field information remain unused. 

D I R E C T M E T H O D S 

3.4 Introduction 

In this section methods will be discussed in which attempts have 

been made to determine the layer distribution directly from field 

measurements, by taking the help of certain mathematical processes. 

In any problem of mathematical physics a direct solution is prefer

red, as a trial and error process Is In its very nature not only time 

consuming but at times unreliable. Yet surprisingly enough resistivity 

interpretation has been mostly indirect, although the foundations of 

direct methods were laid down at least three decades before. This leaves 
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to our mind the question about the possible shortcoming of these methods 

that prevented them to widespread application. A more detailed investi

gation will be made into this question. 

LANGER's theorem, 1933 (35), that the knowledge of potential about 

a point electrode uniquely determined the unknown conductivity function, 

gave the necessary impetus to workers to devise methods to determine 

directly the layer parameters. 

3.5 Techniques based on potential measurements about a single electrode 

(a) In accordance with LANGER's suggestion, SLIGHTER, 1933 (64), 

solved the relevant differential equation, arising out of zero divergence 

for the electrical field, due to a point electrode on the surface of 

an earth In which the conductivity was a continuous function of depth. 

However, the most significant part of SLICHTER's. ana lysis was the 

step in which he obtained an expression for the SLICHTER's kernel by 

applying HANKEL's FOURIER-BESSEL theorem (72) to the equation of the 

potential, that was obtained earlier by solving the differential equation 

mentioned above. His expression in the finite interval {o,i) of measure

ment took the form 

T(A).b.^'" ^^ = /^V(r).Jo(Ar).r.dr. (3.4.1) 
Aa 0 

A knowledge of the measured p o t e n t i a l s about the e lec t rode de te r 

mined SLICHTER's ke rne l , which could be obtained by numerical or mecha

nica l i n t eg ra t i on of eq ( 3 . 4 . 1 ) . 

The determinat ion of the unknown conduc t i v i t y func t ion from the 

kernel was the next problem. For t h i s SLIGHTER expressed both the kernel 

f unc t ion and the conduc t i v i t y func t ion a(z) as power ser ies and compa

r i ng the c o e f f i c i e n t s of the two sets of ser ies could a r r i v e a t the con

d u c t i v i t y d i s t r i b u t i o n . 

The o r i g i n a l symbol of t h e au tho rs r e l a t i n g t o t h e kerne l f u n c t i o n 

has been rep laced by T(X) t a k i n g Pi as u n i t y and m a i n t a i n i n g t h e 

r e l a t i o n s h i p d e f i n e d by eq . ( 2 . 2 . 3 ) . 
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The latter step could also be done in an Indirect fashion, by esta

blishing standard relations of coefficients between a(z) and their 

associated kernels for known earth models and then comparing them with 

the relations obtained for the field data. 

(b) SLICHTER's power series could only handle problems concerning 

uniform half space as such, LANGER, 1936, extended It to handle a two 

layer problem and STEVENSON to a three layer problem. 

(c) PEKERIS, 1940 (54), suggested a more straightforward approach 

to the second step of SLICHTER's proposal. He gave an extremely practi

cal method of deducing the layer distribution after the SLICHTER's ker

nel was determined by numerical or mechanical integration of field 

potential observations. 

He obtained a function fi(A) (eq 2.2.3) from the kernel and plot

ted it on a semilog, scale against A, which was plotted on the linear 

scale. According to this theory, for large values of A the points fall 

on a straight line the slope of which is 2di and the intercept l/kj. 

(d) NOSTRAND and COOK, 1966 (47), describe a procedure which is 

very similar to that of PEKERIS. 

(e) VOZOFF, 1958 (71), based on SLICHTER's analysis, proposed a 

method in which he assumed the initial values of the parameters of the 

layer distribution and then slowly changed the variables in such wise 

that the theoretical kernel approximated to the field kernel obtained 

by mechanical or numerical integration of field potential data. The 

least square statement of the problem was 

Z'?^,[T(A) - T(A)]2 = minimum (3.4.2) 
-J t f 

where T, = theoretical and T = field transform. 

The method needed the use of computer and was suitable only for 

up to three layers. There was also considerable ambiguity in the 

solution as there was no way of checking whether the solution obtained 

was the correct one. 

(f) Other important contribution to the direct method is due to 

BELLUIGI, 1957 (3). 
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3.6 Conclusions on methods discussed in section 3.5 

(1) Although the idea of obtaining the kernel from the field data 

is a unique one, there is, however, no simple procedure to compute it. 

Either mechanical or numerical integration requires a lot of computatio

nal time and computers are not accessable to field parties. 

(2) SLICHTER's solution was of academic interest as it deviates 

from our geologica I knowledge, that resistivity Is constant In discrete 

layers. 

(3) The field procedure commonly followed Is to measure potential 

difference and not potential alone. It could be argued, that we could 

remove the second electrode far away and only measure the potential about 

one elctrode, to suit our InterpretatlonaI procedure. However, this too 

has practical disadvantages in that potentials cannot be measured accu

rately in the vicinity of an electrode and particularly serious are 

errors in measurements at distances farther from the electrode specially 

when the effect of deeper beds are sought (47). 

<4) The method of PEKERIS Is simple to carry out but It requires 

considerable computational time. The transformation of the kernel to 

the function fi(A) involves loss of accuracy (32). 

(5) Although LANGER's theorem does suggest uniqueness in solution, 

it should not be misinterpreted into the fact that changes in potential 

are directly related to corresponding changes in resistivity (18), be

cause of the equivalence limitation. Thus direct interpretation may 

lead to erroneous results if the above limitation is overlooked. It will 

be shown in section 3.7 that there is enough scope to check the results 

even in direct interpretation. 

3.7 Techniques based on apparent resistivity field measurements 

KOEFOED, 1968 (32), attempted to remove the shortcomings stated 

in section 3.6 by giving an extremely useful method of carrying out 

SLICHTER's first step and two procedures to determine the layer distri

bution from the kernel function. His method was acceptable in the sense 

that it was commensurate with the field procedure commonly followed, 
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easy in application and hence adaptable to field parties as the whole 

process could be carried out graphically for which standard curves 

were suppI led . 

It was also in line with geologic considerations as the resistivity 

was considered as a step-function of depth i.e. on STEFANESCO's expres

sion. 

The splitting of the interpretation into two steps was of great 

utility hitherto unrealized by previous workers but pointed out by 

KOEFOED, 1965 (30). He showed that the relation between the kernel and 

the apparent resistivity was a 'one to one' relation such that ambiguity 

if any resides only in the step between obtaining the layer distribution 

from the kernel. So the kernel may be determined from field observations 

once for all, and as external information becomes ava i lab le, only the 

second step of i nterpretation cou Id be changed. This is a big advantage 

to all direct methods, utilizing the determination of the kernel func

tion as an intermediate step. 

He introduced a new function the raised kernel function, for rea

sons already discussed in section 2.1. The apparent resistivity curve 

was decomposed into a series of partial resistivity functions and 

their associated raised kernel functions were defined by 

A.H(A) = ƒ" - ^ - ^ .Jl(As).ds (3.7.1) 
I 0 2p 1. s ^ 

where Ii 

A.p „ = are the partial resistivity functions 
I aS ^ ' 

A.H(A)= are their corresponding raised kernel functions 

A set of standard curves were given for the partial resistivity 

function and their corresponding kernels. The apparent resistivity 

field curve was approximated stepwise by these resistivity functions 

graphically, until the whole curve was accounted for. The corresponding 

kernel curves were drawn and added up to yield the total raised kernel 

curve. 

The next task was to determine the layer distribution. This Is 
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carried out best by a modified method suggested by KOEFOED, 1969 (33), 

in which he used the resistivity transform to determine the layer 

distribution instead of the raised kernel or modified kernel used be

fore (32). A standard curve was also added to speed up the process. 

The basic principles of the above method involved the reduction of 

the transform to a lower boundary plane, namely the successive derivation 

of the T , curve from the T curve yielding d. and p. of the removed 
n - l n ' ^ 1 I 

top layer in question. 

KOEFOED gave separate standard curves for SCHLUMBERGER and WENNER 

arrangement. For the latter arrangement, he preferred to assume a re

lation of the form of eq. (3.7.1). PAUL, 1968 (53), indicated that 

expressions of the from of eq.(3.7.1) could also be deduced for the 

WENNER arrangement from eq. (2.4.4), taking the help of FOURIER-BESSEL 

integral (72). There are, however, unfortunate crossovers In some of 

his equations. 



CHAPTER 4 

THE APPLICATION OF LINEAR FILTER THEORY 

4.1 Fourier Transform 

Fourier transform is a powerful tool to solve problems in diversi-

S^ f><Ld fields by transferring a function from its function domain to 

ibe frequency domain. Salient features, hitherto unrealized become con-

splclous in the frequency behavior of the function. 

Let g(x) be an aperiodic function of the space variable x. Then 

its transform G(f) Is given by 

G(f) = /'"g(x).e"'^''^^.dx (4.1.1) 

G(f) is in general a complex quantity and can be split as 

G(f) = A(f)+IB(f) (4.1.2) 

where A(f) and B(f) are Its real and imaginary components respectively. 

The spectrum G(f) is described completely by 

amplitude density spectrum, |G(f ) |= /A2(f) + B2(f) 1 
I (4.1.3) 

phase density spectrum, <t)(f ) = {B(f )/A(f )] J 

For the validity of eq (4.1.1), two conditions are often imposed. 

They are 

1) that g(x) has finite number of discontinuities 

2) that g(x) is Integrable 

The latter condition may be termed as sufficient but not a neces

sary one. It can be assumed safely that the existence of a physical V 

meaning to a quantity qualifies it to possess a FOURIER transform. > 

The Inverse FOURIER transform converts the function back to its own 

domain from the frequency representation. Mathematically It is stated as 

/ 
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oo i 9Trf X 

g ( x ) = ƒ G ( f ) . e ' ^ . d f ( 4 . 1 . 4 ) 

oo i 7TTf y 

= ƒ [ G ( f ) . d f ] . e ' ( 4 . 1 . 4 a ) 
— 00 •-

According to LEE, 1960 (37), eq. (4.1.4a) points to the fact, that 

an aperiodic function can be synthesized by an infinite aggregate of 

sinusoids of all possible frequencies. That FOURIER analysis is applied 

to study the frequency spectrum of such function, has thus enough jus

tification. 

Eq. (4.1.4) and eq. (4.1.1) are thus different modes of representa

tion of the same quantity. Thus g(x) and G(f) are known as. a FOURIER 

transform pair and generally denoted by the symbol -̂-»-

g(x) ̂  G(f) 

An example of such a pair is shown in fig. 4.1.1 the sine function 

sin x/x, and the rectangular function. If the sine function is repre

sented in the function domain, then the rectangular function is its 

spectrum in the frequency domain and vice versa. 

spect rum 
sine function »• of 

sine function 

f 
1 1 or 

X 

0 

rectangular function 

fig. 4.1.1 A FOURIER Transform pair 

Two o f t h e i m p o r t a n t p r o p e r t i e s o f F o u r i e r t r a n s f o r m ( 2 , 5) w i t h 

wh ich we w i l l be concerned w i t h a r e 

spect rum 
of 

rectangular function 
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1) If the FOURIER transform of a function Is known, then the FOURIER 

transforms of any of the derivatives of that function are also 

known; i.e. if 

then 

2) If 

g(x) -^ G(f) 

(^)'^ g(x) ^ (i2Tif)".G(f) (4.1.5) 
dx 

gi(x) -^ Gi(f) and g2(x) <-* G2(f) 

and if cj, C2 are real constants, 

then 

{ci.gi(x)+C2.g2(x)} ̂  {ci.Gi(f)+C2.G2(f)} (4.1.6) 

Eq. (4.1.6) suggest the linearity of FOURIER transforms. 

4.2 Linear Filters 

(a) Property of Linear systems 

A physical system is said to be linear, when an excitation g(x) 

applied to it and the corresponding response f(x) given by it, could 

be expressed by a linear equation. That is^a graph between these two 

quantities would be a straight line. This relationship is better under

stood by the following property of linear system: 

I/fi(x), f2(x) and f3(x) are respectively the responses to excita

tions gi(x), g2(x) and g3(x) applied individually to the system, then 

{fi(x)+f2(x)+f3(x)} should be the response to a combined excitation 

{gi(x)+g2(x)+g3(x)}. 

This is known as the superposition theorem and is inherent to linear 

systems. Another aspect of this theorem states: 

If the excitation g(x) is multiplied by a real constant c, then the 

response will also be multiplied by the same constant, for all values of 

c and g(X). 

A linear system Is said to be x-invarlant: 
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If the excitation is shifted by XQ, where XQ is a real constant, 

then the corresponding response will also be shifted by the same constant. 

That is f(x-xo) will be the response to the excitation g(x-Xo). 

FOURIER analysis is a powerful tool in solving problems in systems 

in which linearity and invariance is met (5). 

A linear system is termed a filter when the excitation and response 

to the system represent the Input and output. However, there are several 

other ways of representing a filter (8), which will become apparent in 

the following section. 

(b) Applicability of electric filters to physical problems 

SWARTZ and SOKOLOFF, 1954 (65), have quoted PIETY (1942), in brin

ging out the fact, that the concept of electrical filter theory Is not 

restricted only to electric circuits, but in fact Is quite general and 

can be applied to a I I forms of physical problems that are linear in 

nature and even be extended to numerical or graphical data. 

In electrical filters the input and output are voltages that vary 

with time, whereas in the problem we are confronted with, the single 

independent variable is distance. The properties discussed in part (a) 

of this section equally apply to both problems. However, the electric 

filters start to produce an output from t = 0, whereas geophysical 

f i Iters depend on all avaI lab I e data. 

A clear picture pointing to the difference between electric filter 

and those used for handling geophysical data has been brought about by 

TREIT^L and ROBINSON, 1964 (57). They use a term called advance filter 

meaning that the filter has a finite response for t<0. They have 

quoted an example of filtering operation during recording of seismic 

signals in the field and have brought out the fact that the filter can 

not respond to energies that have not yet arrived. On the other hand If 

the seismic information is available on magnetic tape advance filters 

are possible, as al1 the data Is at hand and we need not worry about the 

filter working on the excitation of an energy. Thus the field operation 

may be said to be working on real time and the other on nominal time 

(ROBINSON). 
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In the resistivity problem also we have all the data at our dis

posal and we can have responses from the filter at x<0. This is of 

course no limitation in the applicability of the knowledge of electric 

filters to physical problems. By removing the restriction Imposed in 

electrical filters it adds 'versatility' to the filter by utilization 

of all available data [DEAN, 1958 (8)]. 

(c) Pulse response of a linear filter 

A linear filter is defined by its response to an input of a Dirac 

delta unit impulse function, 6(x). This function is the limiting form 

of an even rectangular function where the height or amplitude tends to 

become infinite, as the base dx approaches zero. It is an Integrable 

function such that 

ƒ 6(x).dx = 
— OO 

(4.2.1) 

Eq. (4.2.1) signifies that the total area of the function is unity. 

Thus graphically it Is conventionally represented by a spike of unit 

height. 

The response of a filter to an input of this spike function is 

known as the unit impulse response or simply the pulse response of 

the filter, h(x). Its job Is to weigh an input with its pulse response 

to produce an output. The output is thus expressed in terms of the 

applied input and the characterizing function of the filter. Fig. 4.2.1 

shows the Dirac function and the pulse response of an 'arbitrary' filter 

box. 

S(x) h(x) 

Input 
5 ( x ) ^ 

© 

arbitrary 
filter 

output 
^ h ( x ) 

® 
fig. 4.2.1 a. Dirac delta function 

b. Action of an arbitrary filter 

c. Unit impulse response 
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(d) Representation of a filtering operation 

Mathematically the action of a linear filter can be represented by 

a convolution integral. The symbol * is used to signify convolution. 

Let us assume that an input g(x) is being convolved in the filter 

with the pulse response of the f iI ter, h(x). 11 wlI I be stated as 

f(x) = g(x)*h(x) (in symbolic notation) 

= /'"g(T).h(x-T).dT (4.2.2) 

The physical significance of the concept of the convolution is 

brought out in the German word for convolution, i.e. Faltung, which 

signifies a folding operation. The impulse function is displaced and 

then folded back and operated with the input to yield the output, f(x). 

This process Is best illustrated graphically and can be found at several 

places (5, 37, 65). The value of the Integral remains the same whichever 

of the two functions being convolved, is displaced and folded (37). Eq. 

(4.2.2) can be utilized to show that convolution is commutative. 

In the frequency domain, convolution degenerates to simple alge

braic multiplication such that eq. (4.2.2) takes the form 

F(f) = G(f).H(f) (4.2.3) 

where the FOURIER transforms, F(f), G(f) and H(f) convert the functions 

f(x), g(x) and h(x) respectively into the frequency domain. Eq (4.2.31) 

has tremendous advantages, as it gives a simple relation between the 

input and output in terms of the impulse response. It means that the 

output can be determined by simply multiplying the Fourier transform of 

the input by the Fourier transform of the impulse response, when it is 

known. 

(e) Filter characteristic 

From eq (4.2.3) we have 

H(f) = ̂ | i | (4.2.3 a) 
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H(f) is called the filter characteristic and is the frequency re

presentation of the pulse response function. It is a complex quantity 

containing an amplitude spectrum and phase spectrum. 

4.3 The Linear Filter analogy 

The apparent resistivity and the resistivity transform are related 

to each other by 

T(A) =/°°p ^(s).Ji(As).— 
0 aS ^ s 

We now introduce new variables in eq (2.5.1), defined by 
1) 

(2.5.1) 

X = I n s 

y = In (1/A) = In u (4.3.1) 

where u = 1/A and has the physical dimension of distance. 

Thus eq. (2.5.1) becomes 

T(y) = /°°p _(x).Ji[e"^^"^''].dx 
' -00 a S 

(4.3.2) 

Eq. (4.3.2) is a convolution Integral and suggests that the transforma

tion process from the apparent resistivity function p c;(x), to the 
a o 

resistivity transform T(y),defines the action of a simple linear fil

ter, as such all characteristics of linear systems outlined In section 

4.2areapplicable. Fig. 4.3.1 illustrates the I I near f i I teri ng process. 

Po(x) filter T(y) 

fig. 4.3.1 Shows that the conversion from the apparent resistivity to the 

resistivity transform as the action of a linear filter 

'note that log z = In z called natural logarithms 
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4.4 Frequency characteristic of the resistivity filter 

The filter characteristic of the operation defined by eq. (4.3.2), 

can be determined with the help of eq. (4.2.3). It is the ratio of 

the Fourier transform of the resistivity transform by the Fourier trans

form of its corresponding resistivity function. 

To determine the resistivity filter characteristic, a resistivity 

function is so chosen that Its corresponding resistivity transform is 

known. Such a function is given below and has been taken from KOEFOED's 

collection of partial apparent resistivity functions(32, p. 24) and 

their associated kernels with the necessary change of variable as un

derlined by eq. (4.3.1) through eq. (2.2.3) 

3x 
Ap „(x) = , 
aS (Ue'^)5/2 

1 

3.e>'{ee-y} 
AT(y) = 

(4.4.1) 

The Fourier transforms were determined numerically and their ratio 

gave the resistivity filter characteristic (eq. (4.2.3)). This was 

later verified by repeating the same process on a second set of partial 

resistivity function and its corresponding resistivity transform 

3x 
Ap c,(x) = ——/^ 
aS ,, 2x,7/2 

(1+e ) 

AT(y) = 
y,e-2y e ' +e 

15.e 
e-y 

(4.4.2) 
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fig.4.4.1 Amplitude FOURIER spectrum of the SCHLUMBERGER res 1 sti vi ty 

filter characteristic 
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The amplitude spectrum of the filter characteristic is shown in 

fig. 4.4.1. At zero frequency It has a magnitude equivalent to unity 

and decreases with Increasing frequency to a low value which, however, 

i s not zero. 

4.5 Principle of the method proposed 

In this thesis a method is proposed, based on sampling and filter 

theory, to obtain the resistivity transform from the apparent resisti

vity field curve. 

The basic elements of sampling theory tell us that, if a function 

is sampled according to Nyquist rule (see chapter 5), then It is 

possible to recover the signal to any desired degree of accuracy. This 

is performed by replacing the sample values by interpolating functions 

of equivalent peak height and period determined by the sample rate. 

The sine function shown in fig. 4.1.1 for example, is taken as the in

terpolating function. The property of sine function is such that it is 

equal to unity at the sample point and zero at all other sample points. 

Addition of a finite number of sine functions enables us to reconstruct 

the signal. Although in principle an infinite number of interpolation 

functionSis required but practically it suffices to use a finite 

number, at a loss of accuracy that can be controlled. 

The apparent resistivity c_urye is sampled and replaced at the 

sample points by sine functions. The resistivity transforms of each of 

these Individual sine functions are determined. And according to the 

superposition law of linear systems (see section 4.2) the sum of the 

transform of the partial functions gives us the total resistivity trans

form of the apparent resistivity curve. 

The sine function is a continuous curve such that its transform 

is also continuous. The addition process, however, is a laborious and 
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timeconsuming one, so a simpler approach Is given based on digital 

methods. The sine response of the filter is determined and sampled in 

the function domain at the same rate as the apparent resistivity curve. 

This gives us the sampled digital operators. Different sets of filter 

coefficients need to be determined for the SCHLUMBERGER and WENNER 

arrangement. 

The operators are required to be known once for all, such that 

the interpretation boils down in each field case, to run a weighted 

average of the sampled field apparent resistivity data with the opera

tors. This is described by the following digitalIzed convolution pro

cess and can be applied both numerica My or graphically 

T^ =. I a..R^ . (4.5.1 ) 
K J=-» J K-j 

where 

T^ = resistivity transform at sample point K 
k 

R|, = apparent resistivity value at sample point K 

a. = filter coefficients, number determined by length of 

f iI ter to be used. 

Eq. (4.5.1) yields the values of the resistivity transform at the 

sample points. The transform curve is obtained by joining the transform 

values at the sample points. The Interpolation is quite reasonable if 

the points are not too far off from each other. It may be recaI led that 

the apparent resistivity curve was also obtained in a similar manner by 

interpolation of the readings at various electrode distances as the 

electrodes were successively expanded. The basic problem is thus 

1) to determine the sampling rate 

2) to determine the filter operators. 
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In chapter 5 the problem of sampling is discussed, whereas In 

chapter 6 the filter operators are determined. Accuracy of the method 

and the time Involved in the process will also be Investigated. 



CHAPTER 5 

FIXATION OF THE SAMPLING INTERVAL 

5.1 Introduction 

Sampling is the art of representing a smooth continuous function 

by discontinuous function values at discrete points of the independent 

variable, which might be any physical quantity. The lay-out of the 

sample points defines the sampling pattern. Several variations used in 

practice have been outlined by MONROE (41). Here we shall be concerned 

only with equispaced data that calls for periodic sampling. The period 

at which the sample points appear is known as the sampling interval 

and its inverse gives us the rate of sampling. 

The theory of equispaced data Is much simpler to use. The resis

tivity observations in the field correspond to increasing electrode 

distances which are not linear. However, switching over to the logarith

mic scale makes the data linear and amenable to sampling. 

Sampling is applied mostly as a technique for easy and quick handling 

of a signal or function by using only a limited number of the data, as 

the basis of scientific work lies In simplification (ROBINSON, (58)). 

However, to use only specific values of a function. It should be ensured 

that these values are truly representative of the whole signal or func

tion. 

In our problem as enunciated in section 4.5, we have to replace 

the observed apparent resistivity curve by a number of sine functions 

at the sampled points of the curve. Thus the initial task in the process 

is to determine the sampling interval with an eye that the sample va

lues do truly represent the total field data. 

r 
5.2 SHANON's Sampling Theorem 

The conditions under which a certain function g(x), can be sampled 

at a 11 are 



47 

1 ) g(x) ̂  G(f) 

2) G(f) = O, for f > f 
' c 

where f is ca I Ied the cut-off frequency. 

The idea is that the art of applying sampling is filtering out 

the high frequency components of the function, provided the amplitude 

spectrum above f is practically zero. It signifies that sampling is 

applicable only to band-limited functions. 

The choice of the proper sampling interval is vital in the recovery 

process of the signal from the sample values. SHANON's theorem guaran

tees that provided the sampling has been done according to the given con

dition, it is possible to recompute the function (If so desired) from 

the sample values only 

0 <_ Ax <_ 2J- (5.2.1 ) 
c 

where Ax is the sampling interval. 

The largest per.missable sampling interval is found from (5.2.1) 

Ax=J-

or 

c 2Ax 

(5.2.2) 

eq 5.2.2 is also known as the Nyquist rule. If the cut-off frequency 

is chosen too small (Ax large), such that the highfrequency components 

are not eliminated, then in the reconstruction process they manifest 

themselves into an effect called aliasing or undersgmpling (5, 55). 

Such a sampling is said to be coarseioaqj/'Uav-o ) 

On the other hand If we apply a very fine sampling we do not lose 

any information about the function. But this means too many sampling 

Intervals in a given range of the function which reduces the speed and 

efficiency of handling the data. Thus keeping a watch on the fact that 

the sampling Interval be not greater than jf , we should try to fix It 
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with the following points in consideration: 

1) accuracy desi red 

2) speed and easiness in handling the sampled values 

3) costs i nvolved. 

The third point may be lumped with the second for many purposes. 

5.3 Reconstruction 

A band-limited function sampled according to the condition stated 

by (5.2.1), can be completely recovered through the sample values. 

The process of reconstruction of the function at intermediate 

points is effected by replacing the sample values by sine functions of 

equivalent peak height and period determined by the sampling rate (fig. 

5.3.1). 

The'sine functions may be specified at as many points as desired. Ad

dition of an infinite number of such functionjtruly redefines the ori

ginal function. This is stated in the following equation, the proof of 

which can be found elsewhere (5, 55). 

, , _ ^°°„, , > si n [TT(x-m.Ax)/Axl ^ = 7 1 % 
g (x) = I g(m.Ax).—r^. -4—, >, i'̂  (5.3.1) 
^r m=-<» ̂  [Tr(x-m.Ax)/Ax] 

where 

g (x) = reconstructed function 

g(mAx)= sample values of the original function at the sample 

points Ax, 2. Ax, 3. Ax m.Ax. 

s i n [TT(x-m.Ax)/Ax] i , j ? • x. j.- i /..^^i-MiAnr^ ,,-,,= -,-. 
—f-f ' , ,. 1 ^ = so called 'sine function' WOODWARD, 1953 , 
LTT(x-m.Ax)/AxJ ' ' 

also known as interpolating function. It has the form 

of sin v/v and has the property: 

sine o = 1; sine m = 0,where m = 1, 2, 3, ... 

At the sample point it is equivalent to 1 and at 

all other sample points Is equal to zero. Also 
oo 

ƒ s i nvdv = 1 
— oo 

The reconstruction is said to be complete only when 

g^(x)-g^(x) = 0 (5.3.2) 
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g ( x ) 

sannpled values.g(mAx) 
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— I 1 1 1 1 — 

Ax 2Ax 3Ax 4Ax 5Ax 

reconstruction process 

/ \ 

y V sine func t ions 

reconstructed function g (x ) 
reconstructed points • ° ° • 

— X 

fig. 5.3.1 Sampling and Reconstruction 
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where 

g^(x) = original function 

5.4 Errors due to sampling 

That eq (5.3.2) is never realized can be attributed to two main 

reasons: 

a) that most functions are not by nature band-limited which brings 

about distortion In the reconstructed function, due to violation of 

conditions stated in section 5.2. 

b) that in practice only a limited number of sine functions corres

ponding to sample values within a finite range of the function are con

sidered. We neglect the sample points outside this range, which in 

principle should extend up to infinite distances outside the range. The 

sine function is one that approaches to zero only at infinite distances 

on either side. Thus there will be contributions from sine functions 

situated at neglected sample values even far off from the range. Fortuna

tely, however, the values of the sine functions alternate in sign while 

their relative magnitudes go on decreasing the farther the sample point 

is from the range of our interest. Thus the combined effect of the 

neglected sample points may be quite smal I, and In any case the accuracy 

can be control Ied. 

These two errors manifest into a combined error such that we can 

state 

g^(x)-g (x) 
percentage error = 7—^ xlOO (5.4.1) 

This error has to be kept to a minimum, being guided by the accura

cy with which sampling is to be applied. 
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5.5 Fourier Analysis of Apparent Resistivity curves 

A frequency analysis is necessary to acquire a knowledge of the 

spectral behavior of apparent resistivity function. This should enable 

us to determine the cut-off frequency and hence the sampling Interval. 

Numerical evaluation of the Fourier transform of apparent resis

tivity Is difficult because of the complicated nature of the expression 

of p t;(x), which has to be substituted for g(x) in eq (4.1.1). On the 

other hand the expressions for T(y) are rather simple to use (see sec

tion 2.3). The Fourier spectrum of apparent resistivity curves can be 

readily determined from the knowledge gained in section 4.3 and 4.4 

from 

G(f) = ̂ i ^ (4.2.3a) 
H (t J 

where H(f) is the filter characteristic shown in fig (4.4.1) and 

T(y) ^ F(f) and p .(x) ^ G(f) 

An initial difficulty in numerical integration of eq (4.1.1) for 

eases of.T(y) in which the curve approximate to constant values, 

specially for ascending and descending type curves, were removed by 

taking the linearity property of Fourier transform into account (eq 

4.1.6). The spectra were determined by parts and later summed up to 

give the total spectrum. Two methods utilized gave Identical results: 

1) In the first the T(y) curve was replaced by a convergent part 

and a part which approached to a constant value. The Fourier transform 

for the first part can easily be evaluated by applying numerical In

tegration by using approximate Integrals for eq (4.1.1). The latter 

part had the familiar form of a step function with amplitude correspon

ding to the asymptotic resistivity value. Although the Integral of 

such a function diverges, the Fourier transform can still be determined 

by applying limiting processes (37). The spectrum of such a function 

Is known. 

2) Another method used to determine the Fourier transform was to 

replace the ascending or descending part of the T(y) curve by a slope 
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function having a comparable slope. It might be recalled that the block 

rectangular function having an amplitude (c) is the derivative of a slope 

function having a slope (?). Moreover the spectrum of a block function 

is known (fig. 4.1.1). Thus we have by the application of eq (4.1.5) 

Fourier Transform of slope function 

Fourier transform of block function 
i2TTf 

It is seen from the above relation that the spectrum has only an 

imaginary part. This is easily understood from the fact that it is 

derived from a symmetrical function which in general have no real com

ponents. 

Cases examined 

Resistivity distributions are numerous In nature but from the point 

of view of frequency behavior study, we could in general group them 

into ascending, descending and maximum or minimum bow I-shaped varieties. 

It is hoped that the study of these cases should yield sufficient in

formation regarding the cut-off frequency to be used in resistivity sam

pling in genera I. 

The list of cases Including the mathematical expression used for 

the Fourier transform is given below. For the expression of T(y) to be 

used in place of g(x) in eq (4.1.1) we should refer back to section 

2.3. Putting In the new variables defined by eq (4.3.1) into the expres

sion of T(A) for two and three layer cases give us the corresponding 

expressions for T(y). The case for the point pole has also been treated 

and the expression has been derived from the expression T(A) for point 

pole given by KOEFOED (32). This case although not encountered in prac

tical problems is, however, of basic fundamental importance in the 

theory of resistivity Interpretation. The Fourier transform of G(f) Is 

determined from F(f) by application of eq 4.2.3a. Taking pi = 1 and 

u = e*̂  we have for 



Poi n t p o l e case 

53 

F(f) = ƒ V ' / ^ e " ' ' ^ ^ ^ dy ( 5 . 5 . 1 ) 

and 
| F ( f ) | appears in f i g . 5 . 5 . 1 A 

| G ( f ) | appears in f i g . 5 . 5 . 1 B 

frequency 

tig. 5.5.1 Amplitude FOURIER spectrum of (A) T(y) and (B)p _(x) 
a j 

tor point pole case 

Two l a y e r case 

, , - 2 d i / u . , 
^ l + k i . e '• - i 2 ï ï f y F ( f ) = ƒ " ^^ , . e ' " " ' \ d y 

-«>, , - 2 d i / u ' 
l - k i .e ^ 

( 5 . 5 . 2 ) 

w i t h d and p i = 1 
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and 
| F ( f ) l is shown in f i g . 5.5.2 A 

|G ( f ) I is shown In f i g . 5.5.2 B 

f o r 
i ) kj = 0 .3 i i ) ki = 0 .9 

i i i ) ki = -0 .3 iv) ki =-0 .9 

Three layer cases 

F(f) = ƒ 
l-k2.e-2d2/^.k(e-'^l/^-e-''^1^^2^/" 

"» n-k2 -2d2/us_^f -2di/u_ -2(di+d2)/u, 
(1-k^.e ')-k(e 

-i2-iïfy , 
e ' .dy 

(5.5.3) 

with di = 1; Pi = p3 = 1 i.e. k = k̂  = -k2 and for varying thickness 

for the intermediate layer. 

The amplitude spectra are shown in the following figures for 

F(f ) 

G(f) 

fig. 5.5.3 A ( 

fig. 5.5.3 A ( 

fig. 5.5.3 A ( 

fig. 5.5.3 B ( 

fig. 5.5.3 B ( 

fig. 5.5.3 B ( 

) with d2 = 2 

i ) with d2 = 3 

i i ) with d2 = 5 

) with d2 = 2 

I) with d2 = 3 

Ii) with d2 = 5 

for 

a) k = 0.3 

b) k = 0.8 

c) k = -0.3 

d) k = -0.8 

Discussion on the amplitude Fourier spectrum of resistivity and transform 

curves 

The use of the logarithmic scale facilitates the accommodation of 

the large drop in amplitude Into a single diagram. The amplitude spec

trum for two layer cases for low frequencies approach to infinity 

whereas for the three layer cases they have a 'singular' point with 

infinite value at zero frequency. 
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The amplitudes In general for all curves decrease with increasing 

frequency, being sharper for the three layer than the two layer cases. 

The decrease is less steep for the resistivity curves than the trans

form curves as is to be expected from the nature of the f I Iter. 

The pattern of decrease Is quite encouraging from sampling view 

point. The amplitudes are quite small but do not completely become zero. 

So a zero level has to be chosen below which the amplitudes can 

be considered negligible. However, there is left a considerable lot of 

discrepancy in the choice of this level i.e. in determining the cut-off 

frequency. Thus it was thought safer instead to assume a few sampling 

intervals corresponding to different cut-off frequencies (eq 5.2.2) and 

to see how well they reproduce a known function. 

5.6 Determination of the sampling interval 

Known two and three layer transforms were chosen for reconstruction. 

Three sampling intervals were tried out 

a) Ax = ln(10)/4 

b) Ax, = ln(10)/3 
b 

c) Ax = ln(10)/2 
c 

The two and three layer curves were first calculated using the ex

pression for T(y) discussed in section 5.5 for varying values of the 

reflection coefficient. This gives us the original function. Next the 

curves were sampled according to the above intervals and the sampled 

values were used in eq (5.3.1) to construct the function at various in

termediate points. The percentage error was then calculated in each 

case between the original and reconstructed function at various points 

by the help of eq (5.4.1). All the errors at these points will not be 
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Table 5.6.1. Showing the maximum percentage error between original 

and reconstructed two layer transform function for various values of 

the reflection coefficient, using different sampling intervals. 

sampi i ng -* 
i nterva1 

1̂ i 

0.3 

0.9 

-0.3 

-0.8 

-0.9 

Ax = ln(10)/4 
3 

0.50.10"^ 

0.02 

0.76.10"^ 

0.09 

0.19 

Ax^ = ln(10)/3 

-0.04 

-0.11 

-0.07 

0.25 

0.64 

Ax^ = ln(10)/2 

-0.42 

-1 .07 

0.57 

2.67-' 

6.24 

Table 5.6.2. Showing the maximum percentage error between original 

and reconstructed three layer transform with d^ = 1, d2 = 3 and for 

various values of k where k = k̂  = -k2, using different sampling inter

vals. 

sampI i ng -)• 
i nterva1 

0.3 

0.9 

-0.3 

-0.8 

Ax = In(10)/4 
9 

0.85.10"^ 

•0.06 

-0.59.10~ 

-0.03 

Ax, = ln(10)/3 
b 

0.06 

0.68 

0.06 

0.24 

Ax^ = ln(10)/2 

0.89 

5.59 

0.67 

0.96 

-0.9 -0.04 0.28 1 .73 
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shown but only the maximum deviation is Illustrated in table 5.6.\ and 

5.6.2 to give an idea of what should be the correct interval to be used. 

It is immediately clear that the sampling interval Ax does not 

recover the function and apparently does not satisfy the condition stated 

by eq 5.2.1, thus it is rejected. In principle both the sampling inter

vals Ax and Ax, can be used, for they yield an accuracy which can be 

termed as quite high. 

So our choice between these two intervals will thus naturally be 

guided by the speed of application. In this context let us consider a 

resistivity survey with a spread equivalent to 300 m. This is the most 

common length of survey used for ground water exploration, although 

it is conceded that there are exceptions controlled by geological con

ditions. Ax refers to 4 and Ax, to 3 intervals In a factor 10 of a 

a b 

log-log scale on which resistivity curves are commonly plotted. This 

means we have 12 sample points while working with Ax and 10 sample 

points with Ax , where we desire to find the T(y) values from the 

p Ay.) values. This literally means that considerable speed is gained 
ab 

by working with an Interval Ax, without loss of accuracy from our point 

of view. This Interval is thus recommended to sample resistivity curves, 

plotted on a log-log scale preferably on a 62.5 modulus. 



CHAPTER 6 

DETERMINATION OF THE SCHLUMBERGER FILTER COEFFICIENTS 

6.1 Sine response of the SCHLUMBERGER filter 

After having determined the sampling interval the next Important 

task Is determining the response of the filter to an input of sine 

function. The period of the sine function is fixed by the sampling 

Interval decided upon. According to the principle of the proposed me

thod laid down in section 4.5 of Chapter 4, the digital operators will 

be given by the sample values of this response. A running weighted 

average of the resistivity sample values with the filter coefficients 

yield the transform values at the sample points. 

The sine response of the filter can be found out in two diffe

rent manners which are given below: 

a) by convolution 

1 J.L. X- a. J j.i_ • i J-- s i n 2TTf X . , , , In the first procedure the sine function, c_ is treated as 
2lTf X 

c 
the input in lieau of p ^(x) in eq (4.3.2), such that the transform 

a b 
of the sine function or simply the sine response Is given by 

r°° si n6 , r -(y-x) 1 , /c 1 1 \ 
sine response = ƒ —;;— .Ji{e l.dx (6.1.1) 

si ne response =sinc6*h(x) (6.1.1a) 

where 

B = 2TTf X 

e 

h(x) = pulse response of the resistivity filter 

The numerical integration of eq. 6.1.1 can be achieved either by 

ROMBERG'S method or SIIMPSON's method. However, due to rapid oscillations 

of the BESSEL function the computing time is enormous and also the 

accuracy with SIMPSON's method may be effected. 



67 

b) operation in frequency domain 

An alternative procedure Is to operate in the frequency domain, 

such that eq 6.1.1a becomes 

B(f) = spectrum of sine function x H(f) (6.1.1b) 

where 

H(f) = frequency characteristic of the resistivity filter shown 

in fig. 4.4.1 

B(f) = frequency representation of the sine response. 

The sine response b, can be recovered from B(f) by applying the 

inverse Fourier transform given by eq (4.1.4). The sine response of 

the filter is shown in fig. 6.1.1. 

0.5-1 

-0.2-1 

fig. 6.1.1 Sine response of the SCHLUMBERGER filter 

It has finite responses for both positive and negative values of 

the Independent variable. The response oscillates, however, the magni

tude diminishes rapidly with increasing value of the independent varia-
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ble on either side. Moreover, the magnitude of the response is favou

rably placed with respect to the sampling Interval (Ax = I n(10)/3=0.77). 

This is quite encouraging as for practical application only a 

finite interval of the response need be considered. 

6.2 Filter coefficients 

The response is sampled In the x-domain at the same interval as 

was used to sample the resistivity data i.e. Ax = ln(10)/3. This is 

important if we wish to obtain the same form of sampled output as 

the Input. If we now take the sampling Interval Ax as our unit then 

the filter coefficients will be situated at the index values of the 

independent variable, - 3 , - 2 , -1, 0, 1, 2 and so on. Let us denote 

by a. the filter coefficients. The arrow at ao indicates the centre 
J 

of the filtering operation. 

The twelve point filter [a_3, a_2, a_i, ag, a j , a2, 83, ^^^, as, 

ae, ay, as] is shown in table 6.2.1. We shaI I term this as the long f i I -' 

ter, reasons for which will be given subsequently. 

^ In the terminology used in seismic data processing this would be re

ferred to as a two sided filter witti a memory function (ao. . .ag) and 

an anticipation function (a_ ...a_ ). However, as the purpose and prin

ciple involved in obtaining the operators are quite different we have 

avoided using these terms. It may suffice here to say that our purpose 

is to find the depths and resistivities and thus we need higher accura

cies. For the same reason we chose the sine function instead of Dirac 

function used in seismic data processing. The main object there is to 

enhance the resolution of adjacent traces and for that purpose they use 

filter coefficients to deconvolve the trace, i.e. the problem there is 

to determine such operators which when applied to the input would yield 

a DIRAC pulse (1,0,0,0....). These operators are thus known as inverse 

operators. The stability of such operators are increased by using a 

two sided f iIter (57). 
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Table 6.2.1. The long SCHLUMBERGER filter coefficients 

a . 
J 

a.3 
a 
-2 

^-1 

ao 

ai 

32 

va1ues 

0.0060 

-0.0783 

0.3999 

0.3492 

0.1675 

0.0858 

a . 
J 

as 

ait 

as 

36 

ay 

as 

va1ues 

0.0358 

0.0198 

0.0067 

0.0051 

0,0007 

0.0018 

6.3 Length of the filter 

In digital operations the length of the filter refers to the number 

of coefficients defining the response. The following considerations 

govern the choice of the number of terms: 

a) how far the response of the filter is represented by the coeffi

cients chosen? 

b) what is the accuracy obtained while working with the chosen co

efficients? 

c) what is the speed realized? 

d) what is the nature of the input? 

The twelve point filter choice was governed mainly only by the 

first consideration. We shall in this section analyze it in the light 

of the other three questions raised. 

The speed and accuracy of working with the coefficients is partly 

dependent on the form of the input data. This question of accuracy does 

not arise on filters working on real time, as there are no coeffients 

for t<0. This signifies that the output let us say at t = T', wiI I 

depend on the input at t = T' and also on the inputs prior to that, but 

not on future values of the input after the interval t = T'. 

This will be understood completely from the knowledge how these 

digital operators function. We shall leave this to chapter 7 and only 

mention here that the operators are reversed about x or t = 0 and then 
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applied on the input. Thus for filters, that have only responses for 

t>_0, there are no coefficients beyond the sample point t = T'. Also 

even for a two sided filter, there will be no dependence on future 

values of the input, if the input or function approach to zero on right 

side of the range up to where the output is desired. 

However, the case involved in the resistivity problem is different. 

We know for certain that the p curve to the left approaches pi for 
a 

small electrode spacing and to the resistivity of the substratum to the 

right for large electrode spacing and also that the filter has finite 

responses for x<0. We shall explain the imp-l ications by the help of 

an example: 

Let us imagine that the curve obtained In the field Is defined 

between 1 to 300 m of electrode spacings. We now desire to determine 

the transform within that range by the filter coefficients defined 

by Table 6.2.1. The real problem is at the two ends of the curve. We 

have said that the coefficients to operate have to be reversed about 

x = 0. This means to know the output at the right end of the curve, 

we still need three more sample values of the curve beyond 300 m, coi— 

responding to the coefficients a_,, a_ and a_,. That means the curve 

has to be extrapolated to the right up to three sample points. This 

operation here has an effect on the output if the extrapolation is not 

correct. Errors in extrapolation arise only when the asymptotic value of 

the curve has not been reached during the survey performed. On the other 

hand to the left of the curve we need maximum 8 extra sample points to 

yield the output from 1 to 300 m, corresponding to the filter coeffi

cients ai, a2 ... ag. However,the extrapolation to the left is no real 

problem as it refers to small spacings and the resistivity if it could 

have been measured would always be the resistivity of the top layer as 

current is confined only to the first layer for small spacings. 

Thus it is desirable that the number of filter coefficients for 

x<0 be as less as possible, to cut down errors due to extrapolation. 

The speed Is governed by the total number of coefficients. A survey 

of table 6.2.1 reveals that the coefficients a ,, a^ and a are suffi-

clently small such that the length of the filter could be cut down by 
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accommodating the magnitudes corresponding to them Into adjacent 

coefficients. This procedure gives rise to considerable gain In working 

speed but will certainly reduce the accuracy because of violation of 

the first condition mentioned before. 

6.4 Comparison between the two sets of filter coefficients 

We call the resulting filter coefficients the short filter which 

is shown in Table 6.4.1. In the next chapter we have investigated the 

Table 6.4.1.The short SCHLUMBERGER filter coefficients 

+ 

3 - 2 

- 0 . 0 7 2 3 

a - l 

0.3999 

ao 

0.3492 

a i 

0 .1675 

3 2 

0.0858 

as 

0.0358 

3 4 

0.0198 

as 

0.0067 

3 6 

0.0076 

effect on the accuracy of the method due to shortening of the f I Iter. 

A resistivity function was so chosen that its theoretical transform 

could be calculated mathematically. Next the transform was calculated 

from the sample resistivity values by the filter method using both 

the long and the short filter coefficients. The resulting transform 

was then compared with the theoretical one. The long filter yielded 

an accuracy of about k% and the short filter about ].5% (see Fig. 

7.6.1). This error also Included errors brought about by sampling. 

The speed of application was much faster with the short filter. 

Thus it is concluded that the short filter be used, as it yields 

an accuracy of obtaining the'transform which is reasonably high be

sides imparting speed to the process. 



CHAPTER 7 

PRACTICAL PROCEDURE OF APPLICATION, 

SCOPE AND ACCURACY OF THE METHOD 

7.1 Introduction 

This chapter deals with the practical aspects of the problem inclu

ding the method of application, accuracy and range of applicability. 

The process of application and accuracy obtained then are treated 

in the light of actual techniques adopted in the field in procuring 

resistivity data. For this various alternative suggestions are given in 

the mode of interpretation to suit diversified needs. 

7.2 The process of obtaining the resistivity transform from the sampled 

apparent resistivity field curve 

a) Numerical calculation by convolution 

The convolution of the apparent resistivity sample values with the 

filter coefficients yields the resistivity transform. Since we are here 

concerned with sampled data at discrete Interval of the independent 

variable, the convolution integral for example eq 4.3.2 is now to be 

replaced by a summation. The statement of the digitalIzed convolution 

would thus be 

y 

T„ =. E^ a..R . -̂  (7.2.1 ) 
m J=-2 J m-j _-

Eq. 7.2.1 signifies that a running weighted average of the input 

resistivity sample data with the filter coefficients a. (short filter 

table 6.4.1) yields the transform value at the sample points mAx. If 

Ax is taken as out unit then the input will be given by R where m is 

an integer. For example the transform value at sample point 3 becomes 

Ts = a_2R5^a_^.R^.a^R3.a^R^.a2R^.a3R„.a^R_^.a^R_2.agR_3 (7.2.2) 
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For convention sake we assume that the resistivity curve is defined 

starting from sample point 0 to let us say sample point 4, remembering 

tnat each sample point is at equal spacing, of Ax = ln(10)/3 = our unit, 

from the other. Then eq (7.2.2) suggests that R^ and (R_,, R , R ) 
^ 3 2 — 1 

have to be obtained by extrapolating the field curve to the left to ob

tain (R_3, R_ , R_ ) and to the right to obtain R^. This Is necessary 

from the nature of resistivity curves (see section 6.3), if a correct 

estimate on the output is to be obtained between sample point 0 and 4. 

For those who are not conversant with the working of digital opera

tors we shall try to clarify the process by considering the action of 

an arbitrary four point filter (a_ , a , a , a ) on the resistivity 

input data (R , R , R , R ). The first step in the process Is to reverse 

the filter coefficients about x = 0, (a , a^, a^, a_^) and then to 

operate on the input as follows (R_„. R_ and R are extrapolated sample 
vaIues): 

at sample poi nt 0 

R_2' R-1 

32 31 

Ro Ri R, 
+ 

30 3-1 

Rs 

at sample point 1 

Ti =a2R_i^ajR„.a^R^. a_^R2 

f̂ _2' R-i RQ Ri R2 Rs 

32 ai 30 a-1 

at sample point 2 

T2 = a2Ro+aiRx+aoR2"^ a iR 1^3 

R-2' R-i RQ Ri R2 Rs 
-1. 

32 31 30 3 - 1 
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fig. 7.2.1 I l l u s t r a t i on of the graphical process of appl icat ion of the method 
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at samp Ie poi nt 3 

Ts = a2Ri-<-aiR2-'-aoR3+a_iRî  

Ro Ri R2 Rs 
3 2 3 1 ao 3 - 1 

The above procedure and the expression of the transform clearly 

demonstrate the dependence of the output on the extrapolated values. 

b) Graphical process by superposition 

An alternative method, that would yield Identical results as shown 

above, is to superimpose the Individual responses obtained after each 

input data has been operated upon by the filter coefficients (a_,» ag, 

31, 32). 

This can be accomplished either numerically or graphically. We 

shall confine ourselves to the graphical method because of its utility 

to the field geophysIcists. We shall redirect our attention to the 

SCHLUMBERGER short filter coefficients shown in table 6.4.1 and discuss 

the practical method of application on a true apparent resistivity curve 

shown In Fig. 7.2.1 

The procedure to be followed to obtain the transform curve is 

summarized In the following steps: 

1) For convenience of application retrace the field apparent resis

tivity curve on the top right portion of a log-log transparent paper. 

For the modulus to be used there is no restriction, but a 62.5 modulus 

is recommended. A 83.3 modulus can also be used, although on this modulus 

the Interpolation between the derived transform points is more difficult. 

2) The sample values are marked on the observed curve by a dash. In 

Fig. 7.2.1 they are defined from sample point H to 0. Also mark six extra

polated points to the left of H and 2 to the right of 0, If you are 

using the short filter. The sample points should be at an equal spacing 

of Ax = ln(10)/3 i.e. on your logscale there should be 3 intervals in 

a factor of 10. 
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fig. 7.2.2 The SCHLUMBERGER short digital filter coefficients 

3) Plot the filter coefficient on to another log-log paper of the 

same modulus with their proper magnitude and proper spacing i.e. the 

same spacing of Ax = ln(10)/3. Put a cross at ordinate value of 1 and 

absc'issa value of x = 0 i.e. directly above ao This is shown In fig. 

7.2.2. Note that the filter coefficient a_^ has negative value and 

hence it is denoted by a dash sign to signify the fact that its contri

bution has to be subtracted from the rest. 

4) The process of multiplication of the input with the filter ope

rators is performed by first superimposing the resistivity chart upon 

the filter chart, then coinciding the sample value with the cross and 

tracing the filter points on to the resistivity chart. This is executed 

as follows: 
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a) Place the last extrapolated sample point to the left of the reslstiv 

ty curve I.e. point B on to the cross and trace the filter points on 

to the resistivity chart. There is no need of tracing points that 

fa 1 I outside the range of the observed curve because the transform 

is need to be obtained only in this range. 

b) Keeping the filter chart fixed, move the resistivity chart to the 

left over it In such a manner, that the second last of the extra

polated point i.e. C, is now at the cross. Trace the filter points 

on to the resistivity chart. 

c) As a check, observe after performance of step (b) there should be 

two points below sample point H, and one below I. If this is not 

so, some errors have been committed regarding the number of extra

polated points In step 2 or in plotting the filter coefficients in 

step 3. Recheck these steps. 

d) Perform the operation (b) at all other sample points from D to Q, 

by successively adjusting them to the cross and tracing the filter 

points on to the resistivity chart. 

e) As another check, at least at each of the sample points in the 

middle range of the resistivity curve, there should be nine points 

corresponding to nine filter coefficients comprising the short 

filter, after the step (d) has been completed. 

5) Now at each sample point from H to 0, add the respective values 

of the points. Do not forget to subtract the value of the dash. 

6) Plot the sum thus obtained at each sample point. 

7) This gives us the transform value at each sample point corres

ponding to the sample resistivity value at that point. 

8) By careful interpolation between the transform values draw the 

transform curve. 

9) To determine the thickness and resistivities of the subsurface 

apply KOEFOED's method (33) to the transform curve so obtained. 

Fig. 7.2.1 shows the operation at only one of the sample points 
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fig. 7.3.1 Derivation of the transform curve trom the sample values of a 

three layer curve, with pi = P3 
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7.3 On the applicability of the method 

The question of applicabiIity of the method wiI I be treated in this 

section on the basis of a few examples worked out here, that will demon

strate the working of the method and the difficulties that may arise 

therefrom. 

Fig. 7.3.1 to 7.3.4 show the application of the method In four 

diversified cases of layer distribution. The dashed points on the resis

tivity curve are the sample values, the circles are the transform 

values determined from them, by the filter method discussed in section 

7.2. 

First example 

Fig. 7.3.1 shows the application of the method to a simple three 

layer case with pi =P3. This curve could have been matched with the 

standard three layer curve out of the C.G.G, collection for example. 

Thus It is quite unlikely that the dIrect method wou ld at all beapplied 

for this case. However, no difficulty arises in determining the trans

form. As the curve approaches asymptotically to pj and the resistivity 

of the substratum to the left and right respectively, there is no ambi

guity in the manner the curve has to be extrapolated on either side. 

So in problems irrespective of the number of layers involved, the 

method depends to some extent on the asymptotic behavior of the last 

portion of the curve. 

Second example 

Fig. 7.3.2 shows a curve which was still descending rapidly when 

the survey was abandoned with the result that the asymptotic part was 

not reached. This gives some uncertainty about extrapolation to the 

right. However, In this particular case, errors due to extrapolation 

would be considerably less because the magnitude of the extrapolated 

sample values is very low such that their effect on the output would be 

neg Iiglble anyway. 

Sometimes working experience of the area and geological evidence 

furnish sufficient information about the range of resistivity values to 
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be expected from the substratum. The same Is true for this problem. The 

resistivity curve shown was obtained by the GeoelectricaI Workgroup 

of the TNG, the Netherlands, during a project undertaken by them on 

behalf of Amsterdam Drinking Water Company, to delineatethe fresh-

saltwater boundary. The status of groundwater resources is quite deli

cate in the Netherlands (7a) because of the low elevation of the country 

and the continued upsurge of salt water caused by withdrawal of fresh 

water for drinking purpose and other hydrogeological aspects. For this 

reason it was desired to find the level of contamination of the fresh

water reservoirs. The curve refers in all probability to a three 

layer problem with a surficial clay layer. The knowledge of the resis

tivity of the formation carrying saline water gives sufficient ground 

for extrapolation, which Is also the reason why unnecessary large lengths 

of surveys are avoided. In neighbouring dune areas a sandy surface 

layer of high resistivity may change the pattern of this curve to a des

cending step type pattern. 

Third example 

Fig. 7.3.3 refers to a three layer case with Pi = 1000 ohm m, 

P2 = 50 ohm m and P3 = 100 ohm m and di = 10 m and d2 = 30 m.This curve 

shows a relatively large length of survey with the result that curve 

approaches to a value of 100 ohm m. Thus there Is no difficulty in 

extrapolation, such that the transform could be obtained quite correctly. 

Fourth example 

This Is a special problem undertaken to investigate Into one of 

the limitations of direct methods in particular, and to resistivity in-

terpretationaI methods in general. The statement of the problem is 

that, whether the use of the resistivity transform as the intermediatary 

step in interpretation increases or decreases the possibility of inden-

tifylng different layer stratification not quite apparent in the field 

curve, due to let us say limited length of survey. Fig. 7.3.4 shows 

such a dual curve taken from the private collection of the Rijkswater

staat, The Hague. The parameters are defined as 
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fig. 7.3.3 Derivation of the transform curve from the sample values of a 

three layer curve with pj = 1000 ohm m, P2 = 50 ohm m and 
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curve I pi:P2:P3: :1:0.0833:2 ; d2/di= 3 

curve 11 pi :p2:p3::l:0.0833:1 ; d2/di= 2.75 

The curves are in principle widely different concerning the asymp

totic value of the last part of the curve. But for reason of short 

length of the survey only a small difference exists that gives no hint 

towards the actual value of the substratum. By the filter method thus 

there is considerable uncertainty in the manner of extrapolation. To 

be on the safe side we have extrapolated to only one sample point. This 

means the transform curve determined will have one sample length less 

than the resistivity curve. 
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fig. 7.3.4 Ambiguity ar is ing due to der ivat ion of the transform curve for 

shorter lengths than the corresponding r e s i s t i v i t y curves 

The t ransform curves fo r both the cases shown in f i g . 7.3.4 are 

almost i d e n t i c a l . There were minute d i f fe rences of the value a t the 

extreme sample po in t of the t ransform curve which on the logar i thmic 

scale do not show up. So we may conclude t h a t al though we are perhaps 

able t o cu t down e r ro rs due t o ex t rapo la t i on by ex t rapo la t i ng up to 

only one p o i n t , t h i s process reduces the d i f fe rences t h a t were a c t u a l l y 

hinted by the r e s i s t i v i t y curve. 

, ' : - ' • 
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On the other hand determining the transform up to the total range 

of the curve would preserve the difference but this requires very care

ful extrapolation up to two sample points to the right. This can be 

achieved In two manners 

1) by taking large length of surveys 

or 

2) using two layer standard curves which are asymptotic to the 

last part of the curve. This can act as a guide to correct extrapolation. 

In this manner we are able to remove some of the difficulties en

countered with the problem of extrapolation in the filter method giving 

rise to ambiguity in the transform curve. 

Concluding remarks: It is concluded that the method is applicable 

to any problem irrespective of the subsurface distribution. Only special 

care has to be taken in extrapolation when the survey is abandoned be

fore the asymptotic value is reached, especially when the trend of the 

curve is towards high resistivity. 

7.4 Speed of application 

The speed of working with the short filter was examined both for 

numerical and graphical application. In the presence of a hand calcula

tor, for a reasonable length of survey, the transform could be obtained 

in less than 10 minutes. Graphically it took about a quarter of an hour. 

We can set aside another quarter of an hour to obtain the layer distri

bution by KOEFOED's method. This means that the physical interpretation 

should not take more than half an hour. 

This can be termed as considerably fast. At the moment there is 

no limit set to the question of what should be the proper investment 

time towards interpretation In comparison to the time required for ob

taining the data. This point has been hinted to by KELLER (26) although 

he gives no figure for It. It is agreed that it is very much a personal 

factor and it depends on individual organizations and companies of what 

they consider as a reasonable investment of time. In that context per

haps the long filter coefficients may be used. 
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7.5 Utilization of all field information 

There is no definite rule as to the ratio at which the electrodes 

be expanded. In the field every organization have their own method of 

working which also varies according to the problem, time and costs 

involved In that project. It is, however, observed that a ratio of about 

1.4 to 1.8 Is commonly used. 

To compare the above quoted figures for the ratio of expansion 

of the electrode with the sampling interval used for interpretation, 

we shall convert them to the x scale by recalling that 

J dx , I , ds = e or dx = In ds 

such that 

dxj = In 1.4 = 0.34 

and dx2 = In 1.8 = 0.59 

This suggests that the interval at which the field resistivity 

data appears is closer than the sample resistivity values utilized for 

interpretation which is Ax = I n ( 10)/3==0.77. This means that in some type 

of field survey there are chances of loss of even half of the field 

i nformatlon. 

Although sampling does ensure us that In principle the whole data 

is represented adequately through the sample points, it may not be 

acceptable to various organizations to spend money and effort of collec

ting data and yet use only a part of them. There are two alternative 

suggestions to be made to this demand: 

a) either to alter the field procedure used to suit the interpretation 

method 

or 

b) to use an alternative method of application In interpretation with 

the same field procedure. 
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The alternative suggestion is illustrated in fig. 7.5.1 and the 

steps followed are: 

1) Sample the resistivity curve using a sampling interval of 

Ax = ln(10)/3. Let us say they are represented by the points. 

2) Apply the filter method to these points to obtain the transform 

values corresponding to the sample points. 

3) In between the first set of sample points mark a second set of 

sample points defined by the circles which themselves are at a spacing 

of Ax = ln(10)/3. 

4) Again apply the filter method to this second series of sample 

points and obtain the transform values corresponding to this series. 

5) Thus the transform values are defined at an interval of 

Ax= ln(10)/6, which means at an Interval of 0.38. 

first »»t somple points 
second set sample points 

a» = - ! a ^ Ax = i a ^ 

I 1 1 1 
1 10 100 5 0 0 

fig. 7.5.1 Al ternat ive procedure for u t i l i z a t i o n of a l l f i e l d information. 

The f i l t e r method is f i r s t applied to the points and then re

peated to the second set of sample points denoted by the c i r c l e s 

with the resul ts that the transform is yielded at a spacing of 

ln(10)/6 

By t h i s p rocess t h e r e s i s t i v i t y da ta w i l l be u t i l i z e d a t an i n t e r 

v a l o f 0 .38 wh ich compares v e r y f a v o u r a b l y w i t h t h e p rocedu res f o l l o w e d 

by d i f f e r e n t companies [dx = 0 .34 t o 0 . 5 9 ] such t h a t t h e r e i s no a p p r e 

c i a b l e l o s s o f f i e l d i n f o r m a t i o n . We s t r e s s t h a t t h i s a d d i t i o n a l p r o 

cedu re Is recommended o n l y t o persons who f e e l l i k e u s i n g a l l t h e da ta 

t h e y have . T h i s p rocedu re i s g i v e n w i t h an eye t o t h e f a c t t h a t b i g o r 

g a n i z a t i o n s l i k e R i j k s w a t e r s t a a t (The Hague) , t h e N i e d e r s a c h s l s c h e s 

Landesamt f u r Etodenforschung a t Hannover , e t c . , have t o t h e i r d i s p o s a l 
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small office computers such that they could afford to determine the 

transform at a spacing of Ax = ln(10)/6. This by graphical application 

would mean a time of about 30 to 40 minutes. These suggestions are 

given and it is up to the interpreter to decide what are his needs. In 

principle the procedure suggested in section 7.2 is fast in application 

and considered sufficient in the light of the errors expected in other 

stages of the resistivity method. 

7.6 Accuracy of the method 

We sha1 I try to test the accuracy by determining the transform of 

resistivity functions by the filter method and then comparing it with 

their theoretical transform evaluated mathematically. A set of partial 

resistivity functions are so selected that they have strong resemblance 

with actual resistivity curves. It Is conceded therefore that the accu

racy so determined may be slightly more favourable than for the resis

tivity curves. However, It is fruitless to test the accuracy of the 

method by comparing the transform thus obtained with the transform ob

tained by other methods, because this process points to combined In

accuracy of the two methods which Is difficult to isolate. Errors by 

this method are twofold in nature (1) firstly because sampled data is 

used (2) and secondly because of the finite length chosen for the fil

ter. 

This is manifested into a combined error represented as 

T^ . I - T_̂  
percentage error = = x 100 (7.6.0) 

where 

T , . . = t ransform of the r e s i s t i v i t y func t ion ca lcu la ted by 

f i I t e r method 

T, = t heo re t i ca l t ransform 

These smal l o f f i c e computers a re be ing employed more and more by 

deve lop ing as we l l as e s t a b l i s h e d p rospec t i ng o r g a n i z a t i o n s . 
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Fig. 7.6.1 to 7.6.4 show the results of the tests. 

The points refer to the sample value of the resistivity function 

and the circles to their corresponding transform calculated by the fil

ter method . The alternative procedure (section 7.5) was used to obtain 

the transform at a spacing of Ax = ln(10)/6. The full drawn curve is a 

standard curve taken from the C.G.G. or MOONEY and ORELLENA collection 

to show the resemblance of the functions with resistivity curves. The 

lower part of the fig. gives an estimate of the percentage error through 

qq. 7.6.0. The following cases were tested 

a) descending type (Fig. 7.6.1) 

Ap _ (X) 
a o 

AT(y) 

/I X 2X , id 
( 1 + e + e /2 )/e 

12 

(1 + e"^)'^^ (1 + e ') 
2y,3/2 

(7.6.1) 

Both the long (Table 6.2.1) and the short (Table 6.4.1) filter were 

used. 

b) ascending type (Fig. 7.6.2) 

Ap _(x) = 10 
9o 

AT(y) = 10 

9(Ue^) 

(Ue^V)^/^ 

only the short filter was used. 

(7.6.2) 

c) bowl shaped maximum type (Fig. 7.6.3) 

X 

^Pas'^^ 

AT(y) 

1+e (2.7 e^)^ 

1 + (2.7 e'") X,213/2 
0.7 

(l+e^V)^/^ 
+ e 

1 
2.7 eY - 0.7 

(7.6.3) 

only the short filter was used. 
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fig. 7.6.1 Upper part of the figure shows the transform derived from 

the sample values of a partial resistivity function by the 

filter method. A descending type two layer curve (C.G.G. 

collection) shows the similarity of the function used, 

with resistivity curves. 

Lower part shows the percentage error between the derived and 

the theoretical transform using successively the long and short 

fi Iter. 

d) bowl shaped minimum type (Fig. 7.6.4) 

Ap _(x) 
9 o (1+e 

S X y 
e - s o .e r , ,^ X l,-,„ X,2 1/70 X,3 

~,^ + e { 1 + 30.e + Tr(30.e )^ + ̂ (30.e )^ 
2X,3/2 2 6 

+ ^(30.e^)'* } + 0.5 

AT(y) = e ® + { 8 + 28(30.e^)^ + 35(30.e^)'' 

+ (30.6^)2 }7/2 

only the short fi Iter is used. 

20 (30.eV) }/8. { 1 

0.5 

(7.6.4) 
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fig. 7.6.2 Upper part of the figure shows the transform derived from 

the sample values of a partial resistivity function (appro

ximating to an ascending three layer curve taken from the 

MOONEY-ORELLANA collection) using the short filter. 

Lower part shows the percentage error between the derived 

and theoretical transform. 

Discussion 

The bottom part of Fig. 7.6.1 to 7.6.4 gives an estimate of the 

percentage error by using the filter method at each sample value where 

the transform was determined (upper diagrams). 

The first remark at a glance of the error curve Is that the error 

is less for bowlshaped curves than for ascending and descending type 

curves. It appear that the maximum discrepancy occurs during the part of 

ascent or descent. 
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fig. 7.6.3 Upper part of the f igure shows the transform derived from 
the sample values of a par t ia l r e s i s t i v i t y function that 
has the s im i l a r i t y with a three layer bowl shaped maximum 
type r e s i s t i v i t y curve (C.G.G. co l l ec t i on ) . The short 
f i I ter was used. 
Lower part shows the percentage error between the derived 
and the theoret ical transform. 

F i g . 7.6.1 bottom p a r t , shows the accuracy obtained in using both 

the long and shor t f i l t e r . I t is apparent t ha t the long f i l t e r is much 

more accurate but t h i s may not appear necessary when we stop t o t h i n k f o r 

a moment t h a t our data I t s e l f does not possess t ha t r e l i a b i l i t y . With 

the shor t f i l t e r , on the other hand the maximum percentages e r ro r f o r 

the cases discussed does not exceed 1.7. Accepting even a 2% e r ro r r e 

s u l t i n g from the t rans format ion procedure of f i e l d r e s i s t i v i t y curves, 

the accuracy of t h i s procedure is s t i l l higher than the c e r t a i n t y of 

f i e l d data i t s e l f . This w i l l be c lear from the fo l l ow ing cons ide ra t i on . 

I t has been pointed out by KELLER and FRISHKNECHT tha t w i th most 

inexpensive experiment used to obta in the r e s i s t i v i t y data, an accuracy 
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fig. 7.6.4 Upper part of the f igure shows the transform derived from 

the sample values of a par t ia l r e s i s t i v i t y function that 

has the s im i l a r i t y with a three layer bowl-shaped minimum 

type curve (C.G.G. co l l e c t i on ) . The short f i l t e r was used. 

Lower part shows the percentage error between the derived 

and the theoret ical transform. 

o f ± 5% can be expec ted t o accoun t f o r o b s e r v a t i o n a l and i n s t r u m e n t a l 

e r r o r s . T h i s can be c u t down t o ± 5% w i t h r e f i n e d f i e l d p r o c e d u r e s and 

s e n s i t i v e i n s t r u m e n t s c a p a b l e t o read up t o one hund red th o f a m i l l i v o l t 

and even up t o m i c r o v o l t i n some i n s t a n c e s . Thus o u r v a l u e o f a c c u r a c y 

i s much w i t h i n s a f e l i m i t s w h i l e u s i n g t h e s h o r t f i l t e r wh ich f u r t h e r 

p rom ises speed i n a p p l i c a t i o n . 



CHAPTER 8 

APPLICATION OF THE LINEAR FILTER THEORY TO THE WENNER SYSTEM 

8.1 Linearity of the WENNER system 

It might be recalled that It was possible to apply the filter theory 

to the SCHLUMBERGER system on the ground that the process of conversion 

of the apparent resistivity to the resistivity transform was a linear 

one. This linearity was demonstrated on the basis of a convolution inte

gral (eq 4.3.2) which was obtained after the introduction of the new 

variables x and y (eq. 4.3.1) in the explicit expression of the trans

form (eq. 2.5.1). 

However, for the WENNER arrangement such a procedure Is not possi

ble. This is realized from the difficulty in obtaining an explicit ex

pression for the resistivity transform of identical form as for the 

SCHLUMBERGER arrangement (eq. 2.5.1), by the application of HANKEL's 

inversion to 

p ,., = a/°°T(A).[jo(Aa)-Jo(A.2a)] .dA (2.4.4) 
aw 0 

PAUL, 1968 (53),has worked out an expression for T(A) by applying 

HANKEL's Inversion, but unfortunately this Is in the form of an infinite 

series and not suitable from the point of view of converting it into 

a convolution integral. 

This, however, does not restrict the fact that the transformation 

in the WENNER system Is also linear in nature. And as we have marked 

in chapter 4, there are several possibilities of demonstrating the 

linearity of a system viz. the superposition theorem. If we have two 

resistivity curves defined by 

P;,w, = a /°°Ti(A). [Jo(A.a)-Jo(A.2a)] .dX 

and 
aWi 0 

Pg^ = a /°°T2(A).[jo(A.a)-Jo(A.2a)] .dA 

(8.1.1) 
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we read ily obtai n 

P̂,u) *P w ) = a ATi(A)+T2(A)}[jo(A.a)-Jo(A.2a)1 .dA (8.1.2) 
aWj aW2 0 i L u u J 

Eq. 8.1.1 and 8.1.2 show that the linearity of the WENNER system 

goes without doubt. In fact the idea of KOEFOED (32) of approximating 

the WENNER apparent resistivity by partial resistivity functions and 

then obtaining the total kernel function as a sum of the corresponding 

kernel functions would not have been possible If the condition of linea

rity was not satisfied. 

8.2 Principle of the WENNER method 

The basic principle of obtaining the resistivity transform from the 

WENMER apparent resistivity remains exactly the same as stated In sec

tion 4.5 of chapter 4. That is the WENNER resistivity curve is sampled 

at a rate of Ax = ln(10)/3, and replaced by sine functions. The digital 

approach, like the SCHLUMBERGER method, would be convolution of the re

sistivity sample values with the WENNER digital filter operators. These 

operators are the sampled values of the sine response of the WENNER 

filter stated in the following equation 

spectrum of sine function x Ĥ (̂f) (8.2.1) 

FOURIER spectrum of WENNER sine response 

Frequency characteristic of WENNER resistivity filter. 

The expression for the transform for the WENNER and SCHLUMBERGER 

curves are the same,thus the FOURIER spectrum shown in Fig. 5.5.lA 

to Fig. 5.5.3A is also valid for the WENNER case. For the FOURIER 

spectrum of the WENNER resistivity we have to divide it by the Fre

quency characteristic of the WENNER filter. This gives us sufficient 

ground to use the same cut-off frequency and hence the same sampling 

i ntervaI. 

where 

Bw(f) 

Bw^f) 

H^(f) = 



95 

It goes without saying that eq. (8.2.1) will be valid only for 

linear systems. The difference between the sine response of the WENNER 

and the SCHLUMBERGER case is brought about by the fact that the two 

curves and consequently their filter characteristics are different. 

8.3 Frequency characteristic of the WENNER filter 

A knowledge of Hy(f) is all that is needed to be determined in the 

process of obtaining the sine response. The frequency character.i.stic, 

H,.(f) is defined as 
w 

where 

H (f) - ^Sll V -Ĝ (f) 

F(f) ̂  T(y) and G,.,(f) ^ p ,,(x) ' W aW 

(8.3.1) 

It has been shown by DEPPERMAN, 1961 (9) and others that the 

WENNER curve can be approximately obtained from the SCHLUMBERGER curve 

by shifting the latter to the left by a factor 0.7. For the purpose of 

evaluating eq. (8.3.1) we shall try to obtain the expression for the 

partial WENNER resistivity function from the SCHLUMBERGER partial resis

tivity functions used in section 4.4, by the application of the following 

relationship (32) 

Ap r 
- o r2a aS 

Ap - 2a/ 
aW a s 

.ds 

we thus obtain, for the two cases stated In section 4.4 

o X X 

Ap .,(x) = 4 f , , 1 
aW 3 L 2x,S/2 ,, . 2X.3/2-' 

(1+e ) (l+4.e ) 

AT(y) = 

, y e-y 3.e' .e 

and 

(8.3.2) 

(8.3.3) 
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'̂̂ aw'x̂  = I [• " d + e ' ^ ) ' / ' (1+4.6^^)^/2-

AT(y) 
(e y + e-2y) 

15.e 
e-y 

(8.3.4) 

The expressions given in 8.3.3 and 8.3.4 were separately used to 

determine H^.(f) which is shown In fig. 8.3.1. The nature at higher 

frequencies is particularly different from that obtained for the SCHLUM

BERGER filter (fig. 4.4.1). The FOURIER spectrum of sine response of 

the filter, however, utilizes the filter characteristic up to the cut-off 

frequency because of the nature of the spectrum of the sine function 

(eq. 8.2.1 and fig. 4.1.1), or in other words 

B^(f) = 0 for f > fc 

fig. 8.3.1 Amplitude FOURIER spectrum of the filter characteristics for 

the WENNER system 

8.4 Sine response of the WENNER filter 

The sine response obtained after the application of the Inverse 

FOURIER transform of B,,(f) Is shown in fig. 8.4.1. The striking feature 
W ^ a 
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fig. 8.4.1 Sine response of the WENNER filter 

in contrast to the SCHLUMBERGER one (fig. 4.4.1) is that the sample 

points (at a spacing of Ax = I n( 10)/3=̂  0.77) are not favourably placed. 

By this we mean that particularly to the left side, that is for 

responses for x < 0, they occupy the crest and trough of the response 

which should make the length of the filter quite long. This has partial 

disadvantages from the digital filtering point of view. To avoid this 

situation we have applied a shift of ln(1.616) = 0.48 to the left 

between x = 0 and the first filter coefficient which we now give the 

nomenclature ag. All other filter coefficients are marked with respect 

to aQ at the same constant spacing of ln(10)/3. 

8.5 The WENNER digital filter coefficients 

The coefficients obtained by the above process are shown in table 

8.5.1. The difference with the SCHLUMBERGER coefficients is that the 

nomenclature Is slightly different i.e. the suffix 0 In the filter 
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Table 8.5.1 The WENNER digital filter coefficients 

3-2 

0.0212 

^-1 

-0.1199 

ao 

0.4226 

ai 

0.3553 

62 

0.1664 

93 

0.0873 

SH 

0.0345 

as 

0.0208 

ae 1 

0.0118 

coefficient does not refer to the abscissa value of x = 0 but now refers 

to a point shifted In(1.6l6) to the left. The Implication Is that the 

output will also be shifted with respect to the input by the same 

factor. 

8.6 Operation with the filter coefficients 

a) Numerical calculation by convolution 

The process of operation numerically can be kept the same as sta

ted through eqs (7.2.1) and (7.2.2) for the SCHLUMBERGER case, if we 

keep in mind that the output let us say T3 corresponding to the resis

tivity sample value R3 refers to a point shifted to the left of R3 

by ln(1.616). This Is true for each transform value. This thus implies 

that the transform curve obtained will be defined to a shorter length 

to the right by a factor ln(1.616) and extended to the left by the same 

factor. 

b) Graphical process 

The delay in the output can be easily taken into consideration In 

the graphical method. This can be accomplished as follows: 

1) Plot the filter coefficient shown in table 8.5.1, such that 

ao is at the abscissa value of Ax = - In (1.616) = -0.48. The cross is 

placed at X = 0 and ordinate value of 1. All other filter coefficients 

are plotted with their appropriate value with equal spacing of ln(10)/3. 

with respect to aQ. This is shown In fig. 8.6.1. 

2) the method of application is now exactly the same as stated In 

section 7.2(b) of chapter 7. The sampled resistivity values are brought 

In turn to the cross starting from the extreme left i.e. the sixth 
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x = 0 

fig.8.6.1 The WENNER digital filter coefficients 

extrapolated point to the second extrapolated point to the right of 

the curve. The filter points are successively traced on to the resisti

vity chart. 

3) The difference with the SCHLUMBERGER situation is that as a 

consequence of the above procedure, the transform value obtained by 

addition of points and substraction of the dashes, is automatically 

shifted with respect to the sample resistivity values to which they re

fer by the same constant shift,ln(1.616). 

8.7 Examples 

The working of the graphical process is demonstrated through two 

examples which are so chosen that they give also an indication about 

the limitations of the WENNER method that might arise. 



ohm m 
50O 

I 1 1 1 1-100--

o 
o 

500 m 

fig. 8.7.1 Derivation of the transform from the sample values of a four layer WENNER apparent resistivity curve with 

Pl = 100 ohm m, P2 = 300 ohm m, P3 = 33.3 ohm m, pi, = 300 ohm m and di = 5 m, d2 = 5m and d3 = 20 m. The 

derived transform Tg is shifted to the left by a factor ln(1.616) w.r.t. the sample resistivity value Rg. 
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a) First example 

Fig. 8.7.1 shows the derivation of the transform from the four 

layer WENNER apparent resistivity curve with pj = 100 ohm m, 

P2 = 300 ohm m, P3 = 33.3 ohm m and p^ = 300 ohm m and dj = 5 m, 

d2 = 5 m and d3 = 20 m.The transform curve is shown drawn through the 

circles and is derived for a shorter length to the right side. 

The rising nature of the curve presents the same difficulties 

as with the SCHLUMBERGER method, as regards extrapolation. Moreover, 

as the transform curve is known for a shorter length it might be 

advisable to take larger spreads for the WENNER method or to carefully 

extrapolate further on to the right so as to compensate partly for the 

shortening effect of the transform. 

b) Second example 

Fig. 8.7.2 shows the application to a four layer case taken from 

the album of MOONEY and ORELLENA (44) with, let us assume, pi = 1000 

ohm m, p2 = 400 ohm m, P3 = 200 ohm m and p^ = 100 ohm m, di = 10 m, 

d2 = 30 m, d3 = 10 m. For resistivity curves such as these, there 

arises no difficulty in extrapolation, such that the transform curve 

could be known by virtue of extrapolation of the resistivity curve to 

a longer length than the actual survey. This, however, Should not be 

confused with the fact that even in this case the transform curve will 

be shorter than the resistivity curve chosen to be interpreted by a 

factor ln(1.616). 

8.8 Concluding remarks 

The above two examples give some Idea of the applicability of the 

WENNER method. As regards other aspects of working procedure including 

speed of application they remain essentially the same as stated for 

the SCHLUMBERGER arrangement. Regarding the question of utilization 

of all field information, the author has the impression that for the 

WENNER arrangement the spacing between consecutive electrodes (a) Is 

doubled as the electrodes are expanded. This means that the interval 
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fig. 8.7.2 Derivation of the transform from the sample values of a four layer WENNER apparent resistivity curve with 

Pl = 1000 ohm m, P2 = 400 ohm m, p3 = 200 ohm m, pi, = 100 ohm m and with dj = 10 m, d2 = 30 m, d3 = 10 m. 

T7 is shifted to the left by a factor ln(1.616) w.r.t. the sample resistivity value R7. 
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at which the data appears on the x-scale is 0.69 which is Just a bit 

closer than the Interval 0.77 used for interpretation. Thus the conclu

sion is that little field information is lost in using this sampling 

procedure of interpretation. However, if the ratio used to expand the 

electrodes is by some chance less, the alternative procedure suggested 

for the SCHLUMBERGER case can be applied for using all information. It 

Is to be expected that the filter method for the WENNER would also 

yield an accuracy in the neighbourhood of that obtained for the 

SCHLUMBERGER case. 



CHAPTER 9 

THE INVERSE PROBLEM 

9.1 Introduction 

This part of the thesis does not concern the direct method of In

terpretation. On the contrary, it involves an indirect problem viz, the 

computation of apparent resistivity curves from sampled values of the 

transform curves. The main idea Is that transform curves are simpler 

to compute than resistivity curves such that the filter theory can be 

applied to derive the latter from the former. 

9.2 Frequency characteristic of the Inverse filter 

The process of transformation of p „(x) to T(y) was defined through 
a o 

the convolution Integral given by eq. 4.3.2 whose frequency domain re

presentation is given in the form 

F(f) = G(f) . H(f) (4.2.3) 

where as usual we have 

F(f) ̂  T(y); G(f) ̂  p „(x) 

a o 

and H(f) as the resistivity frequency characteristic of the SCHLUMBERGER 

fi Iter. 

Rewriting we have 

1 

G(f) = F(f) H(f ) 

or 

G(f) = F(f).Q(f) 

0(f) = ^ ^ 
^^^' F(f) (9.2.1) 

0(f) is the frequency characteristic of the Inverse SCHLUMBERGER filter 
and can be determined through the sets of equation given In section 4.4 

for p (x) and T(y). 
a o 
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9.3 The Inverse SCHLUMBERGER Digital filter coefficients 

The sine response of the Inverse filter is given in the frequency 

domain as 

1(f) = FOURIER spectrum of sine function x Q(f) (9.3.1) 

The sine response can thus be derived from 1(f) by applying the 

inverse FOURIER transform. The nature of the response was such that It 

was necessary to shift the coefficient ag to the left of x = 0 by a 

smaI I factor of In(1.05) i.e. by 5%. The other f 1 Iter coeff iclents are 

at equal spacing of 1n(10)73-0.77. The coefficients of the inverse 

filter are shown in table 9.3.1. 

Table 9.3.1 The Inverse SCHLUMBERGER filter coefficients 

3-3 

0.0225 

3-2 

-0.0499 

3-1 

0.1064 

ao 

0.1854 

ai 

1 .9720 

32 

-1.5716 

as 

0.4018 

ai, 

-0.0814 

as 

0.0148 

9.4 Operation with the filter coefficients 

The filter coefficients shown in table 9.3.1 operate with the sam

pled values of the transform,samp Ied at an Interval of 0.77 to yield the 

resistivity values which, however, now refer to an abscissa point which 

is to the left of the transform sample point by a factor of ln(1.05). The 

shift of the output w.r.t the input Is similar to the WENNER method but, 

however, the shifts have different magnitudes and also the meaning of 

the input and output are reversed. 

The numerical process of operation is the same as mentioned in ear

lier chapters defined through eq. 7.2.1 and 7.2.2 but we should remember 

that 'R' and 'T' change positions and also the resistivity values ob

tained are to be shifted to the left by ln(1.05). 

In the graphical process the shift is taken into account by plotting 

ag to the left of x = 0 by ln(1.05) and all the other coefficients with 
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fig. 9.4.1 The SCHLUMBERGER inverse filter coefficients 

respect to ao- The cross as usual Is placed at ordinate 1 and at x = 0. 

This is illustrated in fig. 9.4.1. 

The application of the graphical process is the same as mentioned 

in chapter 8 except that instead of the 'resistivity' chart we refer now 

to the 'transform' chart. The steps are the same i.e. the transform 

curve is sampled at an interval of ln(10)/3. Then the transform chart 

is superposed on the filter chart with the fifth extrapolated point^'to 

I) 

2) 

The easiest manner to obtain the transform curve is to replace in 

equation 2.3.1 and 2.3.2 X by I/u and to plot T(u) against u on 

log-log scale. Sampled values of this curve at an interval of 

ln(10)/3 gives T(y) which now can be utilized for operation. 

Five extrapolated points are necessary to the left and three to the 

right to correspond to the nature of the coefficients in table 9.3.1. 
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the left on the cross and as usual the steps mentioned earlier in chap

ter 7 and 8 are followed up to the point when the third extrapolated 

point Is on the cross. The points are added and subtracted from the 

dashes and the resultant value is plotted. The resistivity values so 

obtained are automatically shifted to the left by the factor ln(1.05). 

Interpolation amongst the resistivity values so obtained yields the 

apparent resistivity curve for the earth model for which the transform 

curve was calculated by the help of expressions given in section 2.3. 

9.5 Discussion - "" 

While suggesting this simple procedure of computing apparent resis

tivity curves, the author Is not completely aware of its subsequent util 

ty In the field of resistivity interpretation but the study was guided 

at least by the following considerations: 

1) It Is often desirable to know the shape of the apparent resis

tivity curve that will be produced by a certain subsurface distribution 

in connection with the question of detectabiIity of a layer in that 

subsurface. 

2) It might be desirable as a check on the parameters obtained by 

direct methods, to reconstruct the apparent resistivity curve. 

3) This computational procedure may find some applications when In

direct interpretation is used. The easy manner of computation of theo

retical curves may be of decided advantage of field parties who need 

to compute their field curves. 

4) It can also be used in wide scale computation of apparent resis

tivity curves using computers. This procedure Is to be preferred over 

direct numerical integration in computing resistivity curves as this 

process would save much computational time. (It is well known that due 

to rapid oscillation of BESSEL function, numerical computation of appa

rent resistivity curves is not only time consuming but also Inaccurate) 

This Is of particular importance to institutes and organizations who 

have only a limited computer time allocated to them. 
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Accuracy 

The method was applied on the sampled values of a transform func

tion whose corresponding true resistivity partial function was known. 

This resistivity function had close similarity with 2 layer descending 

type apparent resistivity curve. Errors between true and calculated 

resistivity values at the sample points by the filter method were found 

to be within 1 percent. 



CHAPTER 10 

SUMMARY AND CONCLUSIONS 

GeoeIectrica1 depth sounding resistivity methods have wide applica

tions in diversified fields notably of which is in the sphere of hydro

logy in connection with ground water exploration for drinking and agri

cultural purposes. The field data obtained in the form of an apparent 

resistivity curve (p ),Is interpreted in terms of basic theory and the 
a 

results are then correlated with available geohydrologicaI information 

to arrive at a realistic picture of the subsurface structure. The first 

step Is thus termed as physical interpretation and the subsequent pro

cedure as geological interpretation. 

The foundations of physical interpretation are laid down in the 

STEFANESCO expression for the potential due to a point source of current 

on the surface of a horizontally stratified earth. The integrand of 

this expression, which is the product of a BESSEL function and the kernel 

function, is of vital importance in theoretical interpretation mainly 

because of the fact that the latter function Is dependent exclusively 

on the subsurface layer parameters. I.e. on the thicknesses and resisti

vities of the enclosed layers. 

Procedures in interpretation are termed as direct or indirect de

pending upon the manner the information about the subsurface is derived 

from the field data. In indirect methods the field curve is compared 

with a set of precaleulated master curves (6, 44) for known geological 

conditions of the earth. A match of the curves Is Interpreted as a match 

of the parameters. This method is simple and fast in application but 

invariably the method fails because a fit cannot be obtained with the 

col lection at hand. 

Direct methods on the other hand depend on the determination of 

the kernel function as an intermediate step In the process of deriving 

the layer parameters from field measurements. The status of direct 

methods today, as established through the work of LANGER, 1933 (35), 
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SLIGHTER, 1933(64), PEKERIS, 1940 (54), KOEFOED, 1965-70 (29, 30, 31, 32, 

33), and others (3, 71) Is that although there exists an extremely prac

tical method of obtaining the layer distribution from the kernel function 

(33), there is no fast and simple method to carry out the first step, 

namely the evaluation of the kernel function from field resistivity ob

servations . 

Thus the principal aim of this thesis is to present such a method. 

The knowledge of sampling and filter theory is applied in deriving a 

function called the resistivity transform function T (33), related to 

the kernel, from the apparent resistivify curve. The layer parameters 

could then be obtained from the T curve by the method cited above. 

It has been shown that the conversion from the apparent resistivity 

to the transform is a linear one such that the principle of linear fil

tering could be applied. 

The resistivity field curve is sampled at an interval of Ax = ln(10)/3 

i.e. 3 Intervals in a factor of 10 of log paper used, being guided In the 

process by the fundamentals of sampling as laid down in SHANON's theorem. 

The sampled values are then replaced by functions of the form sin x/x 

called sine functions. The resistivity transform of each of these sine 

functions can be obtained separately and because the property of linearity 

holds good, the sum of these transforms gives us the total transform of 

the whole apparent resistivity curve. 

For simplification in application the digital approach is followed. ' 

This involves determining the sine response of the filter, sampled va

lues of which give us the digital operators. A running weighted average 

of the filter operators with the input i.e. the resistivity sample values 

yield the output i.e. the transform values. Interpolation among the 

derived transform values gives us the transform curve T. 

The process of application can be performed numerically or graphi

cally. Two sets of filter coefficients, the long filter with 12 points 

and the short filter with 9 points are given for the SCHLUMBERGER case. 

Approximately a quarter of an hour is required In obtaining the T curve 

while working with the short filter, but the accuracy of about 2% obtained 
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with it is less than with the long filter, which naturally takes more 

time. The WENNER filter has 9 points and time required for operation Is 

the same as for the SCHLUMBERGER filter. An alternative procedure is 

given that enables us to obtain the transform at closer spacing of 

In(10)/6=0.38, with the result that most of the field observational data 

is utilized in the interpretation. Chapter 7 deals with the process of 

application with the SCHLUMBERGER method while Chapter 8 deals with 

the operation with the filter coefficient for the WENNER method. 

In Chapter 9 an indirect procedure is treated, namely the compu

tation of apparent resistivity curves from sample values of the trans

form curve. This has been given with the sole idea that transform ex

pressions are simpler to compute than apparent resistivity expressions. 

Thus the p _ curve could be obtained from the T curve by the appllca-
ab 

tion of the Inverse filter operators given. 

The numerical calculations reported in thesis during the develop

ment of the method have been carried out In the electronic computer (No. 

TR 4; Algol 60) of the Wiskundige Dienst (Mathematical Centre) of the 

Technological University at Delft. 

The conclusions reached as a result of the present work can be 
summarized as: 

1) The method suggested is simple in application. The graphical 

process is particularly suited to the field geophysicist, whereas the 

numerical one could be applied conveniently when calculators are avai

lable. 

2) The method Is applicable for both the SCHLUMBERGER and WENNER 

form of field procedure. 

3) There is no limitation in what form the apparent resistivity 

field data is given; in the graphical process any form of logarithmic 

paper may be used, if care is taken that the resistivity chart and 

filter coefficients are plotted on Identical modulus. 

4) The transform can be obtained in less than a quarter of an hour 

using the 9 point filter which implies that in conjunction with KOEFOED's 
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method of deriving the layer distribution (33) from it, the whole physi

cal interpretation should not take more than half an hour. This gives 

a new meaning to direct methods of interpretation. 

5) The accuracy of about 2% can be termed as sufficiently reasona

ble. The use of the long filter can better this accuracy but Is doubted 

how far that will be necessary when we stop to think for a moment that 

the accuracy of the field data itself is nowhere better than 5%. 

6) The alternative procedure suggested adds considerable flexibili

ty to the method by being adaptable to diversified needs. 

7) The transform can be obtained for any type of layer distribution, 

but the question whether small layer differences will acutally show up 

in the transform curve depends mostly on the question whether such 

differences have actually been measured In the field. 

8) The difficulty in extrapolation, especially in cases where the 

asymptotic part of the curve has not been reached, can be removed either 

taking long spreads or using standard curves asymptotic to last measured 

segment of the apparent resistivity curve, to aid careful extrapolation. 

9) The use of the resistivity transform instead of the kernel has 

at least two distinct advantages: 

a) there is no loss of information during the process of con

version of p to T, which is of prime importance to a method 
a 

that utilizes an intermediate step in obtaining the layer dis

tribution from the field data 

b) the property that for small and large values of l/X, the T 
curve follows the p curve is a sufficient check to errors 

a 

committed during the derivation of the T curve, at least at 

the two ends. 

10) Likewise there are additional checks in the middle part of the 

operation. 

11) Direct methods have at least one distinct advantage over indi

rect methods in that the splitting of the Interpretation into two steps 

gives sufficient scope to take into consideration the implications of 

the equivalence problem (34, 39). It has been shown that the transform 

is an unambiguous representation of the p curve. As such It is neces-
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sary to change the second part of the interpretation as drillhole and 

other data become available from time to time. Moreover, the T function 

gives a clearer insight into the equivalence phenomena than is apparent 

from the resistivity curves (KOEFOED, 1970, 33a). Standard curves given 

in the above mentioned paper facilitate the study of equivalent cases. 

Hence the conclusion is justified that the application of the 

filter theory has been able to give rise to a new method of obtaining 

the kernel that has not only the ease and speed of application, but 

at the same time is accurate. 



CHAPTER lOA 

SAMENVATTING EN CONCLUSIES 

Geoelektrische weerstandsmethoden worden uitgebreid toegepast op 

uiteenlopende terreinen, met name in de hydrologie waar ze gebruikt wor

den voor de grondwaterexploratie in verband met de watervoorziening. 

Uit de veldwaarnemingen, in de vorm van een schijnbare weerstands-

kromme, wordt in de eerste fase (de fysische interpretatie) een weer

standsprofiel van de ondergrond berekend. In de tweede fase (de geolo

gische interpretatie) wordt dit weerstandsprofiel gecorreleerd met de 

uit de boringen bekende geologische gegevens. 

De fysische interpretatie berust op de formule van STEFANESCO voor 

de potentiaal in een gelaagde ondergrond veroorzaakt door een puntelek-

trode aan het aardopppervlak. De integrand van deze uitdrukking is het 

produkt van een Besselfunktie van de nulde orde en de kernfunctie. De 

kernfunktie bevat gegevens over de dikten en weerstanden van de lagen 

i n de ondergrond . 

De methoden in de fysische Interpretatie worden direkt of indirekt 

genoemd, afhankelijk van de manier waarop de interpretatie omtrent de 

ondergrond wordt afgeleid uit de veldwaarnemingen. 

Bij de indirekte methode wordt de veldkromme vergeleken met een 

reeks bekende standaardkrommen (berekend voor theoretische weerstands

profielen). Door het samenvallen van de veldkromme met één van de stan

daardkrommen zijn de weerstanden en dikten van de lagen bekend. Deze 

methode is eenvoudig en snel van toepassing. Maar vaak komen de veld-

krommen niet overeen met de beschikbare verzameling (6, 44) omdat 

het aantal mogelijke weerstandsprofielen zeer groot is vergeleken 

met de voorbeelden, waarvoor de standaardkrommen beschikbaar zijn, of 

kunnen worden samengesteld. 

het aantal neemt toe, naarmate het aantal lagen in de ondergrond 

vermeerdert 
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De huidige stand van zaken bij de direkte methode is het resultaat 

van het werk van SLIGHTER, 1933 (64), PEKERIS, 1940 (54), KOEFOED, 1968 

(32), en anderen. De direkte methode berust op de bepaling van de kern

funktie in de integraal van STEFANESCO om rechtstreeks het weerstands

profiel uit de veldwaarnemingen te verkrijgen. Dit wordt gedaan in twee 

stappen, n.I.: 

1) de kernfunktie wordt bepaald uit de schijnbare weerstandskrommen 

2) de dikten en de weerstanden van de verschillende lagen worden 

daarna bepaald uit de kernfunktie. 

Voor de tweede stap bestaat er reeds een nauwkeurige methode, niet 

echter voor de eerste stap. Dit proefschrift wil een eenvoudige methode 

geven om deze eerste stap uit te voeren. 

De kennis van de "sampling" en "filter"theorie is gebruikt om uit 

de schijnbare weerstandskromme een funktie, genaamd weerstandstrans

formatie af te leiden, die samenhangt met de kernfunctie. De conversie 

van de schijnbare weerstandskromme naar de weerstandstransformatie 

wordt hierbij opgevat als de werking van een lineair filter. De schijn

bare weerstandskromme wordt gesampled op intervallen ter grootte van 

1/3 deel van de logarithmische eenheid Ax = ln(10)/3 van het logarith-

mische papier waarop de schijnbare weerstandskromme is uitgezet. 

De keuze van de grootte van de intervallen berust op de principes 

van sampling volgens SHANON. De samplewaarden worden vervolgens ver

vangen door sincfunkties met piekhoogten ter grootte van de samplewaar

den en periodes bepaald door het sampI e-intervaI. Als de aanname van 

een lineair filter juist is, dan kan de transformatiefunktie worden 

verkregen door sommering van de transformaties van de verschillende 

si ncfunktles. 

De vereenvoudigde digitale benadering is nu het bepalen van de sinc-

responsie van het filter en het samplen van deze responsie met dezelfde 

intervallen als bij de schijnbare weerstandskromme. Dit geeft de zoge

naamde filter operatoren. Door convolutie van de fiIteroperatoren met 

de gesampelde schijnbare weerstandswaarden is de weerstandstransformatie 

op de gesampelde punten bekend. Door interpolatie wordt "weerstands

transformatie" verkregen. Het beschreven proces kan numeriek of grafisch 
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worden uitgevoerd. Voor de SCHLUMBERGER methode Is dit gedaan in hoofd

stuk 7, en voor de WENNER methode In hoofdstuk 8. 

De nauwkeurigheid van de afleiding van de transformatie blijkt In 

het geval van de SCHLUMBERGER methode, bij het gebruik van een kortfII ter 

met 9 coëfficiënten, 2% te zijn. De tijd benodigd voor de grafische 

procedure is minder dan een kwartier. Grotere nauwkeurigheid, tot %% kan 

worden verkregen door het gebruik van een twaa1 fpuntsf11 ter, maar dit 

zal het proces zeker vertragen. 

Met het oog op het gebruik van alle beschikbare Informatie uit het 

veld wordt een alternatieve procedure gegeven die de waarden van de 

"weerstandstransformatie" geeft met intervallen ter grootte van 1/6 

van de logarithmische eenheid (Ax = ln(10)/6). 

Er wordt ook een hoofdstuk gewijd aan het inverse probleem, n.l. 

de .berekening van de schijnbare weerstandskromme uit de weerstandstrans

formatie kromme. Hiervoor zijn de fi1teroperatoren gegeven in het ge

val van de SCHLUMBERGER methode. Dit is gedaan omdat de weergave d.m.v. 

weerstandstransformatie gemakkelijker is te hanteren dan de weergave 

d.m.v. schijnbare weerstand. Dit is van belang in de indirekte methode 

om de schijnbare weerstandskromme te kennen in het geval dat de onder

grond bekend Is. 

Op grond van het verrichte onderzoek kunnen we tot het volgende 

concluderen: 

1) De beschreven methode voorziet In een snelle en eenvoudige be

paling van de kernfunctie uit de veldwaarnemingen. Daarmee is het be

langrijkste bezwaar tegen het gebruik van de direkte methode onder

vangen. 

2) De methode is te gebruiken voor zowel de SCHLUMBERGER als de 

WENNER-opstelling. 

3) Er worden geen beperkingen gesteld aan de vorm, waarin de veld

waarnemingen beschikbaar zijn. Voor het grafische proces mag elk soort 

logarithmisch papier gebruikt worden, mits de schijnbare weerstandskromme 

en de fiItercoëffieienten op papier met dezelfde modulus worden uiteen

gezet. 
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4) De weerstandstransformatie kan In een kwartier berekend worden. 

Dit betekent dat met het gebruik van KOEFOED's methode (33), ter verkrij

ging van een weerstandsprofiel, de gehele fysische interpretatie in een 

half uur uitgevoerd kan worden. Deze snelheid geeft een nieuwe betekenis 

aan de toepassingen in het veld van de direkte interpretatiemethode. 

5) De nauwkeurigheid van ±2^, verkregen ondanks het gebruik van 

een kortfliter, is voldoende In vergelijking met de fouten gemaakt In 

andere gedeelten van de interpretatie en de onnauwkeurigheid van ±3^ in 

de veldwaarnemingen. 

6) De beschreven alternatieve procedure en het eventuele gebruik 

van een langfllter waarborgen een aanzienlijke flexibiliteit in de vorm 

van de toepassing om zo aan verschillende wensen te voldoen. 

7) Het gebruik van de "weerstandstransformatie" i.p.v. de kernfunktie 

heeft zeker twee duidelijke voordelen: 

a) Er Is geen verlies aan informatie bij de konversie van schijnbare 

weerstandskrommen naar de weerstandstransformatie. Dit is zeer 

belangrijk voor een proces dat een tussenstap vormt in een 

methode voor het verkrijgen van een lagen-verdeling uit de veld-

waarnemi ngen. 

b) De eigenschap dat de "weerstandstransformatie" kromme voor zowel 

kleine als grote abciswaarden nadert tot bekende waarden geeft 

tezamen met andere eigenschappen een mogelijkheid tot controle 

op fouten gemaakt tijdens het converteren. 

8) In de weerstandsmethoden is het mogelijk dat verschillende situa

ties in de ondergrond dezelfde schijnbare weerstandskromme geven. Dit 

probleem (het equivalentieprobleem ,34) geeft moeilijkheden bij de inter

pretatie in de indirekte methode. Maar bij de direkte methode is deze 

moeilijkheid gedeeltelijk ondervangen door het gebruik van de weerstands

transformatie. In dit geval hoeft alleen de tweede stap n.l. de bere

kening van het weerstandsprofiel uit de weerstandstransformatie veran

derd te worden. Indien er nieuwe gegevens beschikbaar komen over de 

geologie van de ondergrond. 
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Door het voorgaande is de conclusie gerechtvaardigd dat de toepas

sing van de filtertheorie het mogelijk heeft gemaakt om een nieuwe me

thode te ontwikkelen voor het bepalen van de kernfunktie uit veldwaai— 

nemingen, die behalve eenvoudig en snel, ook nauwkeurig is. 
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1. There is in India complete lack of communication between Institutes 

and Universities imparting geophysical education to students and 

organizations employing these students. 

2. The idea of Indicating the south magnetic pole of the earth situated 

in the Northern Hemisphere as the north magnetic pole, to tally with 

the geographic nomenclature, is contrary to the convention used in 

magnetism based on the physical behavior of a magnet and Is thus mis

lead ing. 

3. The assumption of KA1 LA et al. that the value obtained from a single 

seismic survey, carried out at a location situated at the far end of 

the Himalaya foothill region, is representative of the average sedi

mentary layer velocity throughout the extensive foothill area and the 

vast Indogangetic plains, for the purpose of regional crustal struc

ture determination is unjustified. 

"Crustal structure in Himalayan foothills area of North India". 

- KAI LA et al. Bulletin of the SeismologicaI Society of America, 

1968, p. 597 - 612. 

4. The third example given by HUMMEL to illustrate his method of combi

ning layers in a resistivity profile, In an attempt to reduce compli

cated multilayer problems to simpler cases. Is wrong and misleading. 

Krichoff's law of resistances in parallel on which the reduction is 

based Is applicable to the problem only when the substratum Is resis

tive compared to the overlying layers. 

"Apparent resistivity in surface potential methods" - HUMMEL, 

Geophysical Prospecting, 1932, AIME, Fig. 9, p. 421 . 

5. Closer cooperation is necessary amongst its various units, if earth 

science has to serve the cause for betterment of mankind. 



6. The illustrations given by JAKOSKY and DOBRIN to demonstrate the 

self polarization phenomenon of sulphide ore bodies are ambiguous 

and are due to the inability from the part of the authors to bring 

out clearly the distinction between ionic and electronic nature of 

conduction of electricity, inside and outside the ore body. 

"Exploration Geophysics" - JAKOSKY, Trija publishing co., 1950, 

Fig. 266, p. 445 . 

"Geophysical Prospecting" - DOBRIN, McGraw- Hill, 1960, Fig. 

17 - 1, p. 343 . 

7. The question of contraction or on the contrary expansion of the earth 

stII I remains unsolved, mostly due to the faiI ure on the part of 

either school of workers to substantiate their theories with concrete 

proofs. 

8. A new exploration outlook is necessary to prospect for extensive low 

grade sedimentary ore deposits. 

9. The usual treatment of the magnetic effect of ore bodies and geologi

cal structures, arising due to the Induction of the earth's magnetic 

field, is far from being complete as the relevant boundary conditions 

are not considered. 

10. The generalized statement appearing in geophysical literature, that 

the depth of current penetration is one third the current electrode 

spacing in resistivity measurements, without consideration of the 

electric state of the earth is wrong. 

11. That the total mass of a causitive body can be determined uniquely, 

is a definite pluspoint to the suitability of gravity methods to

wards mineral exploration (in concern with the calculation of the to

tal tonnage of the ore body) in spite of the ambiguity of gravity 

i nterpretation. 



12. If a healthier outlook of the Indian society is desired there is 

immediate and urgent necessity that the dowry system of marriage 

be abolished. 

13. Women of today want to emancipate without losing the privileges 

they enjoyed being the weaker of the two sexes. 

1 


