
 
 

Delft University of Technology

Promoting Deliberate Naming Practices in Programming Education
A Set of Interactive Educational Activities
Van Der Werf, Vivian; Hermans, Felienne; Specht, Marcus; Aivaloglou, Efthimia

DOI
10.1145/3649165.3690115
Publication date
2024
Document Version
Final published version
Published in
SIGCSE Virtual 2024 - Proceedings of the 2024 ACM Virtual Global Computing Education Conference V. 1

Citation (APA)
Van Der Werf, V., Hermans, F., Specht, M., & Aivaloglou, E. (2024). Promoting Deliberate Naming Practices
in Programming Education: A Set of Interactive Educational Activities. In SIGCSE Virtual 2024 -
Proceedings of the 2024 ACM Virtual Global Computing Education Conference V. 1 (pp. 235-241).
(SIGCSE Virtual 2024 - Proceedings of the 2024 ACM Virtual Global Computing Education Conference V.
1). ACM. https://doi.org/10.1145/3649165.3690115
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3649165.3690115
https://doi.org/10.1145/3649165.3690115


Promoting Deliberate Naming Practices in Programming
Education: A Set of Interactive Educational Activities

Vivian van der Werf
v.van.der.werf@liacs.leidenuniv.nl

Leiden University
The Netherlands

Felienne Hermans
f.f.j.hermans@vu.nl

Vrije Universiteit Amsterdam
The Netherlands

Marcus Specht
M.M.Specht@tudelft.nl

Delft University of Technology
The Netherlands

Efthimia Aivaloglou
E.Aivaloglou@tudelft.nl

Delft University of Technology
The Netherlands

ABSTRACT
Despite extensive studies from the software engineering commu-
nity on how naming practices influence programming behavior,
the topic receives little attention in education. Prior work indicated
little agreement on good naming because it depends on many fac-
tors. Students are told that “naming is important” and “should be
meaningful,” yet its practical implementation is rarely discussed
and feedback is lacking. The current work presents a dialogic teach-
ing approach focused on teaching a critical reflection on naming
practices through five activity types: (A) perceptions and experi-
ences, (B) create names, (C) evaluate through ranking, (D) compare
codes, and (E) locate a mistake. We developed, ran, and analyzed
a one-hour workshop, that we present here and share our experi-
ences, leading to recommendations for teachers. Our contribution
is twofold: (1) we provide a set of (adaptable) activities and exer-
cises for supporting deliberate naming practices, thereby assisting
teachers interested in adopting naming practices into their curricu-
lum; (2) we provide insights regarding the student perspective on
naming practices, derived from the activities, revealing potential
issues and opportunities in teaching the topic.

CCS CONCEPTS
• Social and professional topics → Computing education.

KEYWORDS
programming education; naming practices; course design; dialogic
teaching; reflection; critical thinking; student perceptions

ACM Reference Format:
Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aival-
oglou. 2024. Promoting Deliberate Naming Practices in Programming Edu-
cation: A Set of Interactive Educational Activities. In Proceedings of the 2024
ACM Virtual Global Computing Education Conference V. 1 (SIGCSE Virtual
2024), December 5–8, 2024, Virtual Event, NC, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3649165.3690115

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike International 4.0 License.

SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0598-4/24/12
https://doi.org/10.1145/3649165.3690115

1 INTRODUCTION
From prior work, we know that variable naming practices are con-
sidered important by teachers, yet findings from introductory pro-
gramming Massive Open Online Courses (MOOCs) and interviews
with teachers [23, 24] indicate that many inconsistencies remain in
teaching the subject matter. These inconsistencies are often due to
variations in beliefs, goals, and intentions among teachers and de-
signers of educational materials [23]. Therefore it seems critical that
the Computer Science Education community provides guidelines
or approaches to teachers on handling naming practices.

However, any teaching approaches also need to consider the
perspectives and attitudes of students regarding the topic. Such stu-
dent perspectives largely remain unexplored and teachers seem to
handle the topic based on personal experience: prior work showed
teachers indicating that their students do not find naming a problem
because they never receive questions about it [23]. However, this
could be a result of course design decisions or reflect factors such
as the teacher’s own beliefs or possible disinterest in the topic.

Since naming practices influence a programmer’s code compre-
hension both positively and negatively [4, 8, 14, 18–20], we believe
that software developers must have a thorough understanding of
what makes a good name and be able to reflect critically on different
naming practices. Our work presents a dialogic teaching approach
to teaching a critical reflection on naming practices. We developed
five types of activities that we ran and analyzed during a one-hour
workshop given to a specialist vocational education program on
software development. Through this workshop we were also able
to explore students’ perspectives and experiences on any barriers
to adopting ‘good naming practices’, in this research denoted as
names that carry the content or intent of the named object.

After presenting background on the topic of naming practices,
we present our activities and their design (section 3), the workshop
and its settings (section 4), and our experiences with the different
activities (section 5). Finally, we reflect on our experiences and
provide practical implications for the activity types.

2 BACKGROUND
That (variable) naming is important for comprehension and code
quality is indisputable from the existing literature focusing on the
effect of naming on program comprehension, code quality, and cod-
ing skills. Most importantly, programmers rely on names for their
understanding of code [3, 14, 18, 19, 21, 22], and names often serve

235

https://orcid.org/0000-0002-6435-0531
https://orcid.org/0000-0003-0722-0156
https://orcid.org/0000-0002-6086-8480
https://orcid.org/0000-0002-6531-2166
https://doi.org/10.1145/3649165.3690115
https://doi.org/10.1145/3649165.3690115
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649165.3690115&domain=pdf&date_stamp=2024-12-05


SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

as beacons during code comprehension [10]. Moreover, bugs are
easier to find when words are used [14]. Additionally, names that
are not descriptive enough, for example, single letters or abbrevia-
tions from which meaning is not directly clear, interfere with code
comprehension [4, 14, 18, 19]. The same holds true for too long
names that can be difficult to remember [5]. Additionally, names
can be unintentionally misleading and should therefore be chosen
cautiously [2, 3, 8, 9]. Especially general, non-specific names, such
as ‘length’ [8] or ‘result’ [20], appear problematic. Finally, novices
can wrongly believe that computers interpret or assign values based
on the semantic meaning of variables’ names, and thus incorrectly
apply semantic assumptions to syntax [15].

Consequently, thinking about teaching variable naming in intro-
ductory programming courses becomes relevant. Thirty years ago,
Keller [16] indicated that variable naming was rarely included in
programming textbooks. Since then, little research observed teach-
ing practices on this topic. Recently, Van der Werf et al. [23, 24]
found that teachers addressed naming practices in their learning
materials, but inconsistently: variable naming practices are not
always taught explicitly, taught practices are sometimes conflict-
ing, and given examples codes do not always match the provided
rules and recommendations. About a decade ago, Glassman et al.
[11] developed a tool and a quiz for their online course (MOOC)
to assess naming on length and vagueness. By evaluating the tool,
they found that feedback on naming practices, as well as both good
and bad examples, was highly valued by students. Unfortunately,
no follow-up has been published since. Research investigating code
quality perceptions among students and teachers [6] confirmed
students’ desire for ‘more and more specific feedback about what
was good and bad in their code’. Other studies on variable naming
in education found that novice programmers often fail to name
variables correctly [12] and that Scratch students are misled by
variables named with a letter, probably because of prior knowledge
from their mathematics education [13].

3 ACTIVITIES - DESIGN & EXPECTATIONS
Since good naming practices depend on several factors, such as the
context, programming language, purpose, and naming conventions,
we argue that practitioners should focus on fostering a critical but
adaptive attitude towards naming. Rather than teaching specific
naming styles, our activities are designed to (1) strengthen students’
reasoning about ‘good’ and ‘bad’ naming practices by encouraging
them to reflect on names and (2) support an understanding of how
names can influence code comprehension. To further support these
objectives, we also focus on (3) creating awareness through personal
experience by letting students explore their perceptions on the
topic and making them experience various advantages, drawbacks,
and limitations of different names for themselves. This, in turn,
highlights the effects of naming choices. Finally, we aim to (4) train
deliberate naming choices by building critical thinking skills applied
to naming. This is crucial for in-depth reflection, especially knowing
that students are expected to figure out naming ‘by themselves’
while feedback on naming is often missing [23].

Critical thinking, defined as ‘reasonable reflective thinking fo-
cused on deciding what to believe or do’ [7], is often most effectively
taught by combining (critical) dialoguewith authentic instruction [1].

Dialogue in this context covers learning through discussion, specifi-
cally including teacher-posed questions and teacher-led whole-class
discussion. Authentic instruction covers genuine and engaging
problems such as applied problem-solving, case studies, simula-
tions, games, and role-play. We maintain open-minded dialogue by
applying the pedagogy of dialogic teaching, which is defined as ‘a
general pedagogical approach that embodies the strategic use of
different types of talk, ranging from rote repetition to discussion,
to achieve certain pedagogical goals’ [17]. Our activities therefore
also centralize whole-class discussions and authentic examples.

In particular, we developed five different activity types, each
with an opportunity to reflect usually through whole-class discus-
sion and comparison of answers supported by an online polling
system: (A) develop and express perceptions, experiences, and
opinions, (B) create appropriate names for given variables within
a code, (C) rank a set of given names based on (perceived) appro-
priateness or deceptiveness, (D) read and compare two identical
codes with different names, and (E) locate a naming mistake in
a code containing one misleading name. To stimulate reflection
and discussion on naming, we facilitated program comprehension
by always accompanying our code examples with a description of
what the code does, its output, and the contents of each variable,
both through the presented materials and the teacher. Below we
discuss the activities separately before showing how we adapted
them to develop a one-hour interactive workshop on naming and
presenting our experiences per activity.

3.1 Activity Type A: Perceptions
This activity type stimulates students’ reasoning and opinions on
naming, encouraging them to develop and express their perceptions
and own experiences. We designed two variants, one to “warm-up”
(A1), focusing on activating and motivating students to explore the
topic based on their prior experiences, and one to “wrap-up” (A2),
aiming to consolidate opinions and establish students’ viewpoints.

Variant A1 includes questions such as “when writing code, do
you pay attention to naming?”, “do you find naming an issue for
software developers?”, and “in your opinion, is naming worth the
effort?” that students answer on a scale from 1 (never/not at all) to
10 (always/absolutely) through the online polling tool. This tool
generates a summary of opinions to show the class as input for
discussion. The teacher facilitates the discussion by prompting for
more in-depth reasoning, and students are expected to participate
by reacting to one another. Variant A2 asks students to individu-
ally write down their reasons for paying or not paying attention
to naming practices and what prevents them from paying (more)
attention to it. This can be implemented right after discussion, or
at the end of the lesson. Alternatively, variant A2 could be given
as preparation before class in a flipped classroom style with the
intended interaction during class, serving the same purpose as A1.

3.2 Activity Type B: Create Names
This activity uses student input on code snippets to lead the dis-
cussion, ensuring authentic instruction. The activity not only stim-
ulates students to reason about appropriate names but also stim-
ulates interest in the examples as the discussed names are their

236



Promoting Deliberate Naming Practices in Programming Education SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

own. Additionally, the discussion allows for developing a common
understanding of ‘good’ naming practices among the students.

Students are given a small code with redacted variable names.
They individually name the redacted variables on paper and submit
them anonymously through the online polling tool, which creates
an overview of given names in the form of a list or word cloud. The
teacher presents this overview, using it as the basis for discussion
and prompting students to indicate what they notice about the set
of names, which names they prefer and why, and what elements
from these names they consider a part of “good” or “bad” naming.

3.3 Activity Type C: Evaluate Through Ranking
This activity encourages reflection by asking students to rank names
for specific code snippets based on which they find most to least
appropriate, or most to least misleading alternatively. By doing so,
they rely on their perceptions and opinions to evaluate what they
consider appropriate. Moreover, the activity provides an opportu-
nity to experience that naming needs not be as straightforward as
it seems at first sight. We expect different or opposing preferences
to provide an ideal situation for discussion that is essential to re-
veal students’ reasoning, show them how and why a name can be
misleading to some, and help them understand the effect of names.

We designed two variants: (C1) ranking names from a given
set per a single variable from most to least appropriate, and (C2)
ranking names from a complete code snippet (each name repre-
senting a different variable) from most to least misleading. Again,
a whole-class, teacher-led discussion is facilitated by submitting
individual rankings to the online polling tool.

3.4 Activity Type D: Compare Two Codes
This activity type provides an opportunity to reflect on the effect
of different naming styles on code comprehension by reading and
comparing two codes only differing in the names representing the
variables. By prompting students to compare the two codes and
evaluate which they find easier to understand or more efficient,
students further develop their perceptions. Moreover, by prompting
students to reflect on which code looks more like those of other
people and those written by themselves, they are stimulated to put
the naming styles, including their own, in context.

We opted for two identical programs representing opposite nam-
ing styles: (1) letters and abbreviations, and (2) full word names.
Students write down what they notice while comparing the codes
and then select the program most fitting to four questions (which
is easier, more efficient, looks like their programs, looks like other
people’s programs). They also explain their reasoning on paper.

3.5 Activity Type E: Locate the Mistake
This activity aims for students to understand the effect of names
on their understanding of code, showing them that names can be
(unintentionally) deceiving and that choosing a good name might
not be as straightforward as they might assume. We expect that
this activity might serve as an ‘eye-opener’ to students when they
struggle to identify the naming error. Discussion afterward is es-
sential to reveal students’ reasoning and to show them how and
why a name can (sometimes) be misleading.

To mirror a real-life situation, we offer students code containing
a (single) misleading name. To aid them, the explanation of the
program, its output, and the contents of the variables are stressed
(again). Students need to read and analyze the code to evaluate its
names and are asked which name is wrong. Again, a whole-class,
teacher-led discussion is facilitated by the online polling tool.

4 WORKSHOP - DESIGN, SETTING & DATA
To test our activities, we developed a one-hour workshop covering
all activity types (see Figure 1), and implemented it in March 2024
in two first-year classes within a three-year vocational program
Software Development in an urban area in The Netherlands. We
reached a total of 27 (male) students, aged 16-17. Twenty-one stu-
dents gave consent to use their data. To accommodate the course,
the first author visited the classes to do classroom observations,
gaining a feel for the classroom interactions. We then developed
the assignments in collaboration with the students’ usual teacher,
and presented the example codes in C#, as this is the language the
students were learning, thereby eliminating possible confusion due
to encountering an unfamiliar language. The first author led the
workshop with the students’ usual teacher present. The workshop
was given in Dutch, including all the variable names used. Quotes
and names presented in this paper are all translated into English.

To collect data, we video recorded the front of the classroom,
with only the whiteboard and the first author on tape, supported
by additional audio recordings to capture students’ verbal input
observational notes of any events taken by a student assistant. The
video recordings were transcribed and complemented with tran-
scription from the audiotapes when necessary. Furthermore, we
collected students’ submissions in the online polling tool and their
written contributions on paper hand-outs. These were digitized and
added to the data from the polling tool using MS Excel. Finally, we
collected students’ experiences of the workshop through a question-
naire, part of the paper hand-out. The Ethics Review Committee of
Leiden University approved this research.

It should be noted that students appreciated the online polling
tool and it worked as intended. However, paper writing provedmore
challenging as students remarked it had been “ages” since they had
written anything with pen and paper. We also observed that the
positioning of tables in the classroom influenced the workshop.
There was a flexible seating arrangement with up to seven students
per table. According to the teachers, this was the common setup,
however, students were easily distracted by group dynamics within
and between tables.

Figure 1: Overview of the workshop with time indications.

237



SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

Table 1: Students’ reasons for and against paying attention
to naming and mentioned limitations

Reasons for Code clarity (11)
Understanding (7): self (4), others (5), both (2)
Code readability (4)
Eases programming/debugging (3)
Preventing errors (2)

Reasons against Costs (too much) time (9)
It is a non-issue (5): i.e., “I already know”,
... “it is not necessary”, “it does not matter”
Competes with writing/performance/accuracy (3)
Costs too much effort (2)

Obstacles Time (8)
It is a non-issue (6): i.e., “nonsense”, “unnecessary”
Possible confusion (3)
Nothing (3)
Too repetitive (1)

5 WORKSHOP - EXPERIENCES & RESULTS
5.1 Assignment 1: Activity Type A1 & A2
The ‘warming-up’ discussions (Activity Type A1) were successful
in exploring students’ perspectives. Students expressed they did not
find naming an issue for software developers since “it is not that
difficult at all.” When asked whether they pay attention to naming,
students responded diversely across the scale, giving ample room for
discussion. Some students indicated that they gave specific attention
because “it is important to keep track of your code,” whereas others
said they did not because “it is easy.”

The written assignment directly afterward (Activity Type A2)
showedmore depth to students’ reasoning: when prompted to name
reasons for paying or not paying attention to naming, we found
several themes, addressed in Table 1. Many students acknowledge
that naming improves the code and benefits both understanding
and writing, yet at the same time, they also express several issues.
Most importantly, students indicate that paying attention to naming
costs too much time and students fail to see its relevance. These
results reveal that students have mixed experiences and opinions
about whether or not naming deserves their attention, some of
which hold them back from embracing the topic.

5.2 Assignment 2: Activity Type B and C1
To illustrate different naming options and their effects, we used the
same code snippet for both activities, which converts temperature
from Celsius to Fahrenheit (Figure 2a). After each activity, a whole-
class discussion facilitated the understanding of how, why, and
when the use of certain names can be counterproductive.

When asked to name variables [A] and [B] (Activity Type B),
students predominantly write celsius-fahrenheit (8) or tempCelsius-
tempFahrenheit (7), where "temp" could also be replaced by "de-
grees". Less popular were constructions like temperature-fahrenheit
(3), temperature-result (1) and number1-number2 (2). This demon-
strates a preference for clarity, and perhaps already internalized
conventions or community guidelines, but also reveals lazy and
less informative attempts.

(a) Converts temperatures from Celsius [A] to Fahrenheit [B].

(b) Calculates profit [D] from a savings account with [A] amount of
money, [B] interest rate in %, for [C] number of years.

Figure 2: C# Code snippets for assignments 2 (a) and 3 (b).

Figure 3: Assignment 2, C1: Name-pair ranking

When ranking (best-worst) a set of name pairs for this code
(Activity Type C1), we see a similar pattern (see Figure 3). How-
ever, students disagreed on the name pairs temp1-temp2, input-
output, and c-f, which provided room for discussion in class: upon
seeing the results of the ranking, students showed surprise, com-
menting, for example, that the name pair c-f was much better and
more practical than temperature1 or temp1, as these are too long
and could be confusing. Although no student expressed it out loud,
the disagreement for temp1-temp2 could result from the common
use of temp as an abbreviation for a temporary variable.

5.3 Assignment 3: Activity Type B, C1, E, and C2
Again, all activities use a single code snippet (see Figure 2b), allow-
ing for experiencing and discussing the effect of different naming
choices for a single code. The snippet presents a simplified calcula-
tion of the profit after saving a given amount for a given interest
rate and a given time. Due to prior courses on the subject, students
should be familiar with the economic context and terminology.

After explaining the program and each variable’s contents, the
students were asked to name the variables [A] to [D] (Activity
Type B). Their answers revealed a preference for using a name
that combines two words, such as startingAmount, interestRate or
numberOfYears (“aantalJaar”). Also popular were single words such
as amount, balance, or for variable [D], result, outcome, and money.

Interestingly, even though the variables’ contents were discussed
and provided, several students still made mistakes, writing totalAm-
ount for variable [C] or interest for variable [D]. Moreover, while

238



Promoting Deliberate Naming Practices in Programming Education SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

Table 2: Students’ 1st choice from a given list of names per
variable (assignment 3: C1). The order shows the average
ranking when a full ranking was provided (n=9).

[A] (n=18) [B] (n=18) [C] (n=21) [D] (n=21)
startingAmount (17) interestRate (17) numberOfYears (15) profit (5)

amount (0) interest (1) years (2) result (5)
account (0) percentage (0) term (1) outcome (2)
start (1) perc (0) time (0) endAmount (6)

calculation (0)

the names given to variables [A], [B], and [C] were mostly specific,
the names given to variable [D] varied widely and showed little
creativity. In fact, no student provided a name that included profit,
which accurately describes the content. This could indicate a lack
of domain knowledge. Alternatively, it could indicate an inability
or unwillingness to translate the contents into a suitable name, or
a lack of vocabulary or creativity. After seeing their classmates’
answers, some students commented on the length of names by
critiquing the combined names. This demonstrates a preference for
shorter and more compact names.

For each variable, we presented students a set of names and
asked them to rank from best to worst (Activity Type C1). Even
though just before this activity, students clearly expressed they
regarded combined names as “too long”, the names students chose
as “best name” overwhelmingly disregard that sentiment (see Table
2). Looking at the second, third, and fourth/last choice wemostly see
clear ‘winners’ and shared ‘losers’. For example, amount, account,
and start received mixed positions, as did years and term, indicating
they are considered equally bad, receiving very mixed positions.

However, while patterns are more or less similar for variables
[A], [B], and [C], students demonstrate different preferences for
variable [D]: some students move toward profit as the best name, but
endAmount and result remain equally popular. During the whole-
class discussion, we witnessed students strongly defending their
choices, although without clear and convincing arguments. When
prompted what makes calculation so much worse than outcome or
result the following discussion took place (translated): S: “Calcula-
tion of what?” // S: “It’s too vague.” // S: “‘Result’ is more specific.” //
T: “But how about result/outcome ‘of what’?” // S: “Yes, but ‘result’ is
much clearer.” // S: “It’s the outcome of the calculation.”

One explanation for the preference for result might be that stu-
dents are influenced by the “meta-program”, where they prioritize
the result of the function or program over a better reflection of the
content. After all, the name result or outcome gives little information
on what that result is composed of.

By locating a namingmistake (Activity Type E), students experi-
ence first-hand how certain naming practices can be unintentionally
misleading. To illustrate this, we presented again the same code, but
now with the names startingAmount, interestRate, endAmount, and
termInYears, asking the students to find the mistake (endAmount).

Despite these efforts, this activity proved very difficult for the
students. Almost half of the students indicated they did not know,
and only three answered correctly, while four students pointed
to interestRate and another four to termInYears. Since none of the
students could explain why endAmount was misleading, the teacher
attempted to make students get there by asking questions such
as: “What does the variable represent?”, “What does the name

Table 3: Names chosen as most misleading (assignment 3: C2)

Variable Version 1 (n=19) Version 2 (n=11)
A amount (3) account (3)
B percentage (5) interestRate (1)
C years (3) time (7)
D calculation (8) result (0)

endAmount represent?”, “What do you expect the program to deliver
as output when the variable is called endAmount?”, and “Does
endAmount mean the same as profit?”. Only with the last question,
some students started to realize the mistake, but the majority still
needed an explicit example. While the activity served as an eye-
opener to many students, some continued to resist, commenting
that “endAmount” still accurately represents the amount at the
‘end’ of the calculation. This further indicates that these students
consider a certain ‘meta-level’ when choosing names, in a similar
fashion as the names result and outcome, rather than choosing a
name more indicative of its actual contents.

By having students rank all names from a code snippet from
most to least misleading (Activity Type C2), we create an authen-
tic context in which students are stimulated to further explore how
names can have negative effects. We prepared two different ver-
sions, each having a different set of (misleading) names. The most
misleading names per version are presented in Table 3 and show
consistency with previous activities.

5.4 Assignment 4: Activity Type D and A2
By comparing identical codeswith opposite naming styles (Activity
Type D) students get another opportunity to experience the effect
of naming choices. Students were unanimous in their opinion on
which code they found easier (words) and most also indicated that
this version looks more like their own programs. However, students
were split in half on which approach was more efficient, showing
that some prefer letters and abbreviations for efficiency, which
is consistent with the opinions we found during Assignment 1
when students noted that paying attention to naming is too time-
consuming and can compete with other objectives.

When prompted again with more general questions on naming
practices (Activity Type A2), we see that, compared to the start
of the lesson, students are slightly more concerned. In more detail,
we see four types of responses to the question do you find naming
a problem for software developers? (scale 1-10). Those answering
on the lowest end of the scale (1, never) say “it’s not difficult” and
“if naming would be a problem we have a big issue”. Those rating
2-3 and those rating 7 and up note that naming “is no effort at all
and helps immensely”, whereas those rating 4-6 note that naming
“costs a lot of time” and is a “big effort”. Reactions to the question do
you find naming worth the effort? can be found in Figure 4, which
shows conflicting perspectives, especially among the middle group,
and room for further dialogue.

5.5 Questionnaire (Workshop Evaluation)
Students rated the workshop with an average score of 7.6 out of
10 (n=21). Assignment Three was found most informative (n=8),
followed by Assignment One (n=6) and Two (n=4). Half of the

239



SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA Vivian van der Werf, Felienne Hermans, Marcus Specht, and Efthimia Aivaloglou

Figure 4: Results (n=19): is naming worth the effort?

students (n=11) indicated that they plan to pay more attention
to naming. These students also noted the following takeaways
from the workshop: “naming is important,” “the hows and whys
of naming,” and “to make deliberate decisions.” On the other hand,
eight students indicated that they do not plan to pay more attention
to naming, even though their takeaways also included “names
should be readable for another person too” and “always use correct
names.” These students may feel they already pay enough attention
to naming, as one student also indicated “I didn’t learn anything I
didn’t already know.” Three students concluded the questionnaire
by noting that they found the lesson enjoyable and very informative.

6 PRACTICAL IMPLICATIONS
Since naming practices influence code comprehension in various
ways, but are currently taught inconsistently in introductory pro-
gramming education [23, 24], we experimented with an adaptive
and interactive teaching approach to naming practices, support-
ing critical thinking, reflection, and deliberate naming choices. We
presented five Activity Types and their design, discussed how they
can be adapted for implementation, and showed our experiences
with them. Below we highlight our insights and recommendations
regarding the adoption of naming practices in a curriculum.

Use versatile activities. Although we used C# code, the various
activities support any programming language that uses labels for
variables. Moreover, they support selecting and adapting existing
programs from student code or examples from a running or previous
course. This versatility helps create authentic experiences while
limiting the time needed to develop new materials.

Encourage whole-class discussion. Whole-class discussions proved
extremely valuable in revealing potential issues (see below) and cre-
ating opportunities for reflection, nudging students to re-evaluate
naming practices. We found the use of a third-party online polling
tool beneficial in supporting the dialogue, but expect that other
ways of promoting dialogue would have a similar effect, as long
as students can share their choices and opinions with others and
reflect upon those of others as well. Additionally, we have seen
that reflection is deepened by also including activities that focus
on individual consolidation of opinions after discussion.

Address and counter obstacles by offering various experiences.
Perception-focused activities (Type A) are successful in revealing
potential issues for paying attention to naming practices, as stu-
dents reported conflicting opinions and experiences. At least half

of the students perceive paying attention to naming as (too) time-
consuming, inefficient, and irrelevant, while also reporting finding
the act of naming easy. If left unattended, students could take a
long time before experiencing the benefits of good naming choices.
Considering that naming affects comprehension and heavily de-
pends on many factors while teachers expect students to ‘figure
out naming by themselves’ [23], a nonchalant attitude is unhelpful.
Including a diverse set of activities provides (guided) opportunities
for students to ‘figure out naming’ by practicing, experiencing, and
reflecting on different naming styles, hence increasing the chances
to gain new perspectives. In this way, we can ‘prime’ students to
adapt to a wide range of names and encourage the adoption of
deliberate naming choices, without teaching specific naming styles.

Highlight the pitfalls surrounding naming. At the same time, stu-
dents already recognize reasons for paying attention, most often
to improve code clarity and support code understanding for them-
selves and others. However, reflection based on ranking names
(Activity Type C) and locating a naming mistake (Activity Type
E) revealed that students are unaware of the limitations of certain
naming choices and in particular of how naming choices can (un-
intentionally) deceive a reader. Through the activities, students
showed increased awareness of how names are interpreted differ-
ently by different people, or when names, with the best intentions,
do not accurately reflect the variable’s contents. The teacher-led
whole-class discussion was vital in increasing this awareness, high-
lighting both the strengths and weaknesses of naming choices. Our
results show that using a single code snippet for various activities
(Assignment Three) supports ‘aha-moments’ while using a variety
of codes creates repeated practice with a wider range of examples.

7 CONCLUDING REMARKS
In this work, we implemented a set of educational activities on vari-
able naming in the single context of a vocational program with two
small-size workshops totaling 27 (male) students. We stress that
student participation, group dynamics, and teacher involvement all
influence the outcomes of the discussions. However, we encourage
practitioners to experiment with the activities also in other contexts,
such as higher education or primary/secondary education. It would
be especially interesting to compare these results with a similar
workshop given to more experienced students, specifically related
to our encountered (explicit) preference for names such as ‘result’,
‘endAmount’, and ‘outcome’. We find this preference intriguing, as
such names seem to be tailored to the ‘meta-program’ rather than
the contents of the variable, and are known to be problematic for
code comprehension [8, 20]. Finally, it could be interesting to use
the activities with other programming languages, or even try out
naming activities in a language the students are not familiar with,
to see the effects on comprehension. Regarding comprehension, we
also suggest experimenting with presenting code without an expla-
nation of its purpose, its output, and/or a description of the contents
of the variables. This likely increases difficulty and completion time,
but would also train reading and program comprehension skills.

REFERENCES
[1] Philip C. Abrami, Robert M. Bernard, Eugene Borokhovski, David I. Wadding-

ton, C. Anne Wade, and Tonje Persson. 2015. Strategies for Teaching

240



Promoting Deliberate Naming Practices in Programming Education SIGCSE Virtual 2024, December 5–8, 2024, Virtual Event, NC, USA

Students to Think Critically: A Meta-Analysis. Review of Educational Re-
search 85, 2 (2015), 275–314. https://doi.org/10.3102/0034654314551063
arXiv:https://doi.org/10.3102/0034654314551063

[2] Venera Arnaoudova, Massimiliano Di Penta, and Giuliano Antoniol. 2016. Lin-
guistic antipatterns: what they are and how developers perceive them. Empirical
Software Engineering 21, 1 (Feb. 2016), 104–158. https://doi.org/10.1007/s10664-
014-9350-8

[3] Eran Avidan and Dror G. Feitelson. 2017. Effects of Variable Names on Compre-
hension: An Empirical Study. In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC). 55–65. https://doi.org/10.1109/ICPC.2017.27

[4] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G. Feitelson.
2017. Meaningful Identifier Names: The Case of Single-Letter Variables. In 2017
IEEE/ACM 25th International Conference on Program Comprehension (ICPC). 45–54.
https://doi.org/10.1109/ICPC.2017.18

[5] Dave Binkley, Dawn Lawrie, SteveMaex, and ChristopherMorrell. 2009. Identifier
length and limited programmer memory. Science of Computer Programming 74, 7
(2009), 430–445. https://doi.org/10.1016/j.scico.2009.02.006

[6] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara
Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.
2017. "I Know It When I See It": Perceptions of Code Quality. In Proceedings
of the 2017 ACM Conference on Innovation and Technology in Computer Science
Education (Bologna, Italy) (ITiCSE ’17). Association for Computing Machinery,
New York, NY, USA, 389. https://doi.org/10.1145/3059009.3081328

[7] Robert H. Ennis. 2018. Critical Thinking Across the Curriculum: A Vision. Topoi
37, 1 (March 2018), 165–184. https://doi.org/10.1007/s11245-016-9401-4

[8] Dror G. Feitelson. 2023. From Code Complexity Metrics to Program Comprehen-
sion. Commun. ACM 66, 5 (apr 2023), 52–61. https://doi.org/10.1145/3546576

[9] Dror G. Feitelson, Ayelet Mizrahi, Nofar Noy, Aviad Ben Shabat, Or Eliyahu, and
Roy Sheffer. 2022. How Developers Choose Names. IEEE Transactions on Software
Engineering 48, 01 (jan 2022), 37–52. https://doi.org/10.1109/TSE.2020.2976920

[10] Edward M. Gellenbeck and Curtis R. Cook. 1991. An Investigation of Procedure
and Variable Names as Beacons During Program Comprehension. Technical Report.
USA. https://doi.org/10.5555/891020

[11] Elena L. Glassman, Lyla Fischer, Jeremy Scott, and Robert C. Miller. 2015. Foobaz:
Variable Name Feedback for Student Code at Scale. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software & Technology (Charlotte, NC,
USA) (UIST ’15). Association for Computing Machinery, New York, NY, USA,
609–617. https://doi.org/10.1145/2807442.2807495

[12] Abdul R.M. Gobil, Zarina Shukor, and Itaza A. Mohtar. 2009. Novice difficulties
in selection structure. In 2009 International Conference on Electrical Engineering
and Informatics, Vol. 02. 351–356. https://doi.org/10.1109/ICEEI.2009.5254715

[13] Shuchi Grover and Satabdi Basu. 2017. Measuring Student Learning in In-
troductory Block-Based Programming: Examining Misconceptions of Loops,
Variables, and Boolean Logic. In Proceedings of the 2017 ACM SIGCSE Tech-
nical Symposium on Computer Science Education (Seattle, Washington, USA)
(SIGCSE ’17). Association for ComputingMachinery, New York, NY, USA, 267–272.

https://doi.org/10.1145/3017680.3017723
[14] Johannes Hofmeister, Janet Siegmund, and Daniel V. Holt. 2017. Shorter identifier

names take longer to comprehend. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 217–227. https:
//doi.org/10.1109/SANER.2017.7884623

[15] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.
2010. Identifying Student Misconceptions of Programming. In Proceedings of
the 41st ACM Technical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Machinery, New York,
NY, USA, 107–111. https://doi.org/10.1145/1734263.1734299

[16] Daniel Keller. 1990. A guide to natural naming. ACM SIGPLAN Notices 25 (1990),
95–102.

[17] Min-Young Kim and Ian A.G. Wilkinson. 2019. What is dialogic teaching? Con-
structing, deconstructing, and reconstructing a pedagogy of classroom talk. Learn-
ing, Culture and Social Interaction 21 (2019), 70–86. https://doi.org/10.1016/j.lcsi.
2019.02.003

[18] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2006. What’s
in a Name?A Study of Identifiers. In 14th IEEE International Conference on Program
Comprehension (ICPC’06). 3–12. https://doi.org/10.1109/ICPC.2006.51

[19] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Effec-
tive identifier names for comprehension and memory. Innovations in Systems and
Software Engineering 3, 4 (Dec. 2007), 303–318. https://doi.org/10.1007/s11334-
007-0031-2

[20] Andrea Schankin, Annika Berger, Daniel V. Holt, Johannes C. Hofmeister, Till
Riedel, and Michael Beigl. 2018. Descriptive Compound Identifier Names Improve
Source Code Comprehension. In Proceedings of the 26th Conference on Program
Comprehension (Gothenburg, Sweden) (ICPC ’18). Association for Computing
Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/3196321.3196332

[21] Armstrong A. Takang, Penny A. Grubb, and Robert D. Macredie. 1996. The
effects of comments and identifier names on program comprehensibility: an
experimental investigation. J. Program. Lang. 4 (1996), 143–167.

[22] Barbee E. Teasley. 1994. The effects of naming style and expertise on program
comprehension. International Journal of Human-Computer Studies 40, 5 (1994),
757–770. https://doi.org/10.1006/ijhc.1994.1036

[23] Vivian van der Werf, Alaaeddin Swidan, Felienne Hermans, Marcus Specht, and
Efthimia Aivaloglou. 2024. Teachers’ Beliefs and Practices on the Naming of Vari-
ables in Introductory Python Programming Courses. In Proceedings of the 46th
International Conference on Software Engineering: Software Engineering Education
and Training (Lisbon, Portugal) (ICSE-SEET ’24). Association for Computing Ma-
chinery, New York, NY, USA, 368–379. https://doi.org/10.1145/3639474.3640069

[24] Vivian Van Der Werf, Min Yi Zhang, Efthimia Aivaloglou, Felienne Hermans,
and Marcus Specht. 2023. Variables in Practice. An Observation of Teaching
Variables in Introductory Programming MOOCs. In Proceedings of the 2023 Con-
ference on Innovation and Technology in Computer Science Education V. 1 (Turku,
Finland) (ITiCSE 2023). Association for Computing Machinery, New York, NY,
USA, 208–214. https://doi.org/10.1145/3587102.3588857

241

https://doi.org/10.3102/0034654314551063
https://arxiv.org/abs/https://doi.org/10.3102/0034654314551063
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1007/s10664-014-9350-8
https://doi.org/10.1109/ICPC.2017.27
https://doi.org/10.1109/ICPC.2017.18
https://doi.org/10.1016/j.scico.2009.02.006
https://doi.org/10.1145/3059009.3081328
https://doi.org/10.1007/s11245-016-9401-4
https://doi.org/10.1145/3546576
https://doi.org/10.1109/TSE.2020.2976920
https://doi.org/10.5555/891020
https://doi.org/10.1145/2807442.2807495
https://doi.org/10.1109/ICEEI.2009.5254715
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1109/SANER.2017.7884623
https://doi.org/10.1145/1734263.1734299
https://doi.org/10.1016/j.lcsi.2019.02.003
https://doi.org/10.1016/j.lcsi.2019.02.003
https://doi.org/10.1109/ICPC.2006.51
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1007/s11334-007-0031-2
https://doi.org/10.1145/3196321.3196332
https://doi.org/10.1006/ijhc.1994.1036
https://doi.org/10.1145/3639474.3640069
https://doi.org/10.1145/3587102.3588857

	Abstract
	1 Introduction
	2 Background
	3 Activities - Design & Expectations
	3.1 Activity Type A: Perceptions
	3.2 Activity Type B: Create Names
	3.3 Activity Type C: Evaluate Through Ranking
	3.4 Activity Type D: Compare Two Codes
	3.5 Activity Type E: Locate the Mistake

	4 Workshop - Design, Setting & Data
	5 Workshop - Experiences & Results
	5.1 Assignment 1: Activity Type A1 & A2
	5.2 Assignment 2: Activity Type B and C1
	5.3 Assignment 3: Activity Type B, C1, E, and C2
	5.4 Assignment 4: Activity Type D and A2
	5.5 Questionnaire (Workshop Evaluation)

	6 Practical Implications
	7 Concluding Remarks
	References



