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Preface

This report is written by Sytze Andringa, Daan van der Werf and Job Zoon for the course Bachelor Project
of the Bachelor Computer Science at Delft University of Technology. During ten weeks, we carried out a
marketing attribution project at bunq. This project consists of implementing a sytem that prepares data
for a machine learning model and can communicate with the model, in such a way that the bunq marketing
department can use it. The problem, research, process, results and some other important parts of the project
are described in this report.

We thank everybody at bunq who was involved in the project or helped us in any way. Especially Wessel
Van for his supervision, Ali el Hassouni for working closely with us on the project, Iñez Eppinga for showing
us around at bunq and making us feel welcome, and André de Roos, Esan Wit, Sander van den Oever and
Kevin Hellemun for reviewing our code.

Finally, we thank Dr. M.T.J. Spaan for his supervision as a TU Delft professor and for all the advice,
critical questions and thinking along in the meetings we had during the project.
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Summary

One of the greatest challenges in marketing is measuring the return of investment of a marketing campaign
and translating that into a strategy. Companies spend a lot of money on marketing without knowing how
e�ective certain marketing campaigns are. To solve this problem for bunq, we will be using machine learning
to create a marketing attribution system which outputs the optimal parameters for advertisements, based
on data from all previous bunq advertisements. This tool can be used by the marketing department of bunq
to increase its e�ciency. The marketing attribution project consists of three parts: the machine learning
model itself, the input data of the machine learning model and the system through which people can get
output of the model.

The machine learning model is created by a data scientist at bunq. The model uses supervised learning,
a method that uses a set of annotated training data as a supervisor for learning patterns. We speci�cally
make use of deep learning models that use regression to �nd either the expected amount of clicks or the cost
per acquisition of an advertisement. The results of these models are presented as a JSON �le containing the
best n advertisement options and their features.

The input data to train the machine learning model was created by us. One component of the input data
are the so-called touchpoints from Adjust. Adjust is an advertisement tracking company, which helps bunq
with gathering data about all online encounters people had with bunq, like clicks on bunq advertisements
or visits to the bunq website. The Adjust data gives the machine learning model information about how
often an advertisement has been seen or clicked on, but it does not give information about how e�cient an
advertisement was in terms of the gained users. To solve this, we wrote an algorithm that anonymously
matches the Adjust data to user data in the bunq database, based on IP-address and timestamps. The
more links an advertisement has with users, the more e�cient it is since it has been part of a process that
convinced many users to become a bunq user. With this input data the machine learning model can be
trained.

The second part of the project is creating a connection to the machine learning model in such a way
that the marketing department can use it. We created a python server that accepts calls from the bunq
backend and sends the calls to the model, which is written in Java. It will then pass on the response of the
model back to the bunq backend. In the python server, we use a bayesian technique to determine the best
inputs for the marketing attribution machine learning model, to �nally get the best possible parameters for
a certain advertisement.

All code in the backend is written in PHP and .json in a very clear Model View Controller structure,
with strict bunq coding guidelines. Testing is done with PHPUnit tests.
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1 | Introduction

bunq is a company that delivers digital �nancial services and received its banking license in 2015. bunq
focusses on being innovative and is much more agile in comparison to the traditional banks. Ali Niknam,
the founder of bunq, describes it as an 'IT company with a banking license' [1].

For bunq's marketing department, it would be desirable to know how e�ective certain campaigns are
in terms of gaining users. Most users have multiple touchpoints with the company before they decide to
download the app and start using it, but we do not know which of the touchpoint really made the di�erence
in convincing a person to become a user. If we would know how pro�table an advertisement is, it would
result in a more e�cient marketing strategy.

During this project we worked at the bunq o�ce to create a system which outputs the optimal parameters
for advertisements. It uses a machine learning algorithm, which processes data about advertisements of the
past. The marketing department can use this system to make decisions about advertising.

In this report, you can read all about the di�erent parts of the process of creating this system. In
chapter 2, the results of our research from the �rst two weeks are presented. The third chapter contains the
ethical implications our project could have and in the fourth section the methodology of our development is
explained. Then, in chapter 5, the general structure of the bunq backend is described, to give an insight in
the way we needed to code. Chapter 6, 7 and 8 contain the di�erent programming parts that together make
up the end product. In chapter 9 the results can be found and chapter 10 contains the conclusions. Finally,
in chapter 11 you can �nd some recommendations for the future. Discussions about the di�erent parts of
the project can be found throughout the report, as sections of the chapters about those parts.
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2 | Research phase

2.1 Introduction

In this chapter, the research report of the bachelor project is presented. It contains the problem de�nition
and our solution to that problem with background information. Further information about implementations
of the di�erent components of the project can be found in other chapters, this chapter only contains the
information we discovered during the �rst two weeks of the project.

2.2 Problem de�nition and analysis

Measuring the revenue of a marketing campaign is an established problem within the marketing business.
We are able to make an approximation of the e�ectiveness of an advertisement, but it is very hard to come
up with an accurate metric. Even if we would know the amount of visitors, which is sometimes possible, it
is hard to determine how much we have gained out of this.

The other side of the equation however, the activity metrics, are easy to determine [2]. These metrics
include which marketing campaigns have been set up, which is data such as "X articles are published" or
"an advertisement was published on Y websites". These metrics only say something about the cost side of
the equation and nothing about the e�ectiveness.

To get the most out of a marketing budget, we need to develop tools to evaluate the e�ectiveness of
marketing campaigns. To quote John Wanamaker (1838 -1922): "Half the money I spend on advertising
is wasted; the trouble is I don't know which half." [2] What makes this problem interesting is that users
can have multiple kinds of touchpoints, moments in which the customer comes in contact with the company,
before a purchase is being made. The root of the problem is that it is di�cult to determine which touchpoints
are most e�ective. Knowing what the most pro�table touchpoints are is valuable information, since it shows
the quality (how much pro�t can be made) and quantity of the users being attracted to each marketing
channel.

2.2.1 Current state

Currently, bunq's marketing department makes advertisements and uses data and experiments to �nd out
what the best parameters are for those advertisements. There are multiple kinds of parameters: the way of
distributing the advertisement (through for instance facebook or instagram), but also which kind of customers
are targeted (by for instance gender or age) and how the advertisement looks. They base the decisions of the
values of the parameters partly on their own instinct and experience, with help of the available statistics.
These statistics are not intelligent, and therefore do not recommend any marketing parameters or strategy.
If they are provided with easy to read data that shows which parameters work best for which ads, this could
greatly improve the e�ciency of future marketing campaigns.
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2.2.2 Current systems

We are going to work with the following systems during this project:

• bunq backend The code behind bunqs systems is in the backend. The backend is written in PHP.

• Machine learning model Ali El Hassouni, a data scientist from bunq, will build a machine learning
model which computes optimal parameters for advertisements. It is in the form of a POJO (Plain Old
Java Object).

• Attribution page The marketing department uses this page to see stats about user behavior.

• Adjust data Every hour Adjust, a mobile app measurement company, dumps a .csv �le in an AWS
bucket with data about bunq-related actions on the internet. This data can be used to analyse a large
number of touchpoints associated with bunq.

• bunq database This database contains all data of the bunq users. We have limited access to this for
security and privacy reasons, but when our code is merged with production it can use the database.

2.2.3 Solution

bunq is a data driven company, so it would be a great improvement for marketing if data would be available
on what the best parameters are for certain advertisements. Our goal is to integrate the machine learning
model within the bunq backend to give marketing the information they need.

The �rst thing we need to do is to combine the Adjust data and the user database, to link touchpoints
with users. By combining data from Adjust and the bunq database, we will obtain the input of the machine
learning model.

When we have the model and input, we need to start writing code around the model to integrate it in
the bunq backend. To do this, we have to make sure all the input is in place, the model can be called upon
and the output can be shown to the marketing department. After ten weeks, when the whole system is in
place, marketing should be able to use it.

2.3 Structure and connection to bunq backend

bunq holds a lot of sensitive data. This makes security a top priority at bunq. Also, bunq has written a lot
of code over the last couple of years, and its core repository is huge. To maintain this, bunq needs to hold
some very strict custom guidelines regarding programming. This is all documented on a private wiki page
only accessible to bunq employees. We were advised to let other bunq emplyees review pieces of our code as
quickly as possible, to avoid the need to rewrite a lot of code in the end. In week 6 we need to upload some
code to SIG for a code review. Since we are obliged to follow the strict programming standards of bunq, we
do not expect SIG to reject our code because of inadequate code quality.

We expect the most computationally intensive task to be the training process of the machine learning
model. The more frequently we update it, the more accurate the model will be. Convertro, a marketing
attribution platform, reported that an attribution system should never be more than one day behind [3].
Adjust delivers new marketing data every hour [4], which leaves us to choose an update interval between one
hour and one day. In the end we decided to not update the machine learning model automatically, because
the data scientist at bunq prefers to train the model manually at �rst, to be able to validate it thoroughly.

The structure of the whole project as we expect it to turn out can be found in �gure 2.1.
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Figure 2.1: A schema we have created to show the data �ow. A rectangle, diamond or ellipse respectively
represent an object, proces or entity. The creator of the machine learning model will work on anything �lled
up with the color gray while we will focus on the rest.



Marketing department

api

Attribution model

interacts with

interacts with

Figure 2.2: This diagram shows how the marketing department interacts with the model through an api.

2.3.1 Where to place the project within the back-end

In concept the model that we will be implementing behaves semi-independently of the rest of the back-end.
No other component in the backend will directly depend on our project. The project, however, will depend
on the bunq backend. Since the attribution model will use components from the backend, it is placed inside
bunq's core repository.

We want the marketing department to be able to do at least the following things:

• Receive an output, which is an action output from the ML model. This output can be the basis of a
marketing strategy.

• Adjust the model's training behavior, or reset it to default settings. For example, we might want it to
only train over the last X months, or only �nd the best advertisement for a speci�c age group.

Marketing should be able to interact with the model through an API. A good option would be to add a
panel to the marketing's statistics page. Through this panel the marketing department can interact with the
attribution system. Creating a panel is not in the scope of our project, so we will ask a front-end developer
to do this after we �nish our project. Figure 2.2 illustrates the way the marketing department should be
able to interact with the model.

2.4 Data collection

2.4.1 Data from Adjust

Adjust is a mobile measurement company that provides companies with marketing attribution insights [4].
They provide an overview of the interactions between a person and bunq. Their attribution system matches,
for every user, its app installs and advertisements visited. This means that if a user installs the app because
of an interaction with an advertisement on Facebook, the source (Facebook) will be attributed to the install.
Their attribution also goes on after the initial install, allowing for understanding in-app behavior.

Adjust provides this data on an hourly basis. Their clients can access their raw data via so called callbacks,
which provide in-depth information about a user event. The data that is collected by Adjust is delivered
straight to Amazon S3 buckets. These buckets can then be accessed from the bunq back-end and combined
using the data that we �nd in the bunq database.
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2.4.2 Combining data from both sources

To ensure that the machine learning model is able to learn correctly and e�ciently, we need information
from both Adjust and bunq. Adjust provides us with data on how a certain person reaches the bunq website
and installs the app. This data constists of many parameters that describe the journey of the user to the
bunq website [5]. Next, we require some high-level characteristics of the person in order to train the machine
learning model, which is stored by bunq.

Both datasets can be linked to get a wide variety of information that correspond to the same person.
This linking can be done by creating an interval around a user's time of signing up to bunq from the bunq
database. We use this interval to �nd the timestamp of an install from the Adjust dataset. On top of this,
we can use features from the Adjust data like IP-address, geolocation or device type. This set of features is
not con�ned to the ones mentioned above and may be expanded during implementation. Both datasets have
unique identifyers to de�ne a user. This means that if we have found a match from both datasets, we can
use these identifyers to track this user in the future. This is particularly useful to construct a user journey
leading to a sign up from the Adjust dataset.

2.4.3 Privacy and anonymity

Both datasets that we are working with contain data about users and thus privacy plays an important
role, especially in the bunq user database, which contains sensitive data about bunq's users. Adjust adopts
a pro-user approach to privacy to ensure that they can be trusted with private data [6]. What we will
essentially be doing is deanonymizing the Adjust dataset by linking it to the bunq database. By doing this,
certain personal data will be accumulated. Although this data can be used to link a certain user back to
any sensitive data contained in the bunq database, the data in itself is not sensitive. It will contain cases
like gender, age and location of signing up. This is the type of data that the model needs to train and
potentially sensitive data like SSN, address or even a name are not needed. It comes down to the fact that
the data will exclusively be used for marketing research purposes. The result of this research will be used
to determine which ad campaign will give the highest reward. If the data would be used for instance for
targeted personal advertisements based on geoloation or IP-address this would be in con�ict with the EU
General Data Protection Regulation (GDPR) [7]. More information about the ethical implications of this
project can be found in chapter 3.

2.4.4 Touchpoint weight assignment

There are multiple ways to evaluate the quality of touchpoints [2]. We consider two important touchpoints.

• The �rst touch is the touchpoint that drives the �rst visit. For bunq, this would be the touchpoint
that drives a visitor to visit a bunq related web page.

• The lead Conversion is the touchpoint which drives the visitor to become a lead (i.e. give you their
contact information). For bunq this can be de�ned as the point at which the user decided to sign up.

In a single touch model, we assign 100% of the revenue credit to a single touchpoint. However, for the
model we are creating we are going to look at a multi touch model. This means that we assign di�erent
weights to touchpoints to obtain an optimal result. If we put heigher weights on the �rst touches, which is a
top-of-the-funnel (TOFU) market strategy, it means the marketing strategy is primarily focused on getting
more people to know about bunq. Using lead conversion as the main metric is called bottom-of-the-funnel
(BOFU) strategy and is more focused on making more people sign up at bunq.

Touchpoint weight in our model

We can use touchpoint weight assignment to change the behavior of the model. This can be done by
adjusting the weights of touchpoints in the combined user objects. This is done before the user objects are
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being sent to the machine learning model. We de�ne a parameter p which the marketing department is able
to adjust. A low p assigns higher weights on early touchpoints (TOFU strategy) and a high p vice-versa
(BOFU strategy). By default we want to measure the point where the user became a lead, so signed up.
However, if the marketing department is interested in a strategy that is based on getting as much website
visits as possible, we can set p to 0 and obtain a marketing strategy for that scenario.

Changing p means we should also change how historical rewards are measured. This reward is, by default,
measured by the number of signups. An alternative way to measure the reward would be the number of
website visits or premium accounts gained. We want our input and output to correlate as much as possible.
Therefore, when p is low, the reward will be based more on the amount of website visits, whereas a high
p will result in a reward being more based on signups. By default, the reward should be evaluated as the
number of signups.

This p value is optional, and can be considered as a could have. If it will not be part of the project, a
BOFU strategy will be applied.

2.5 Machine learning model

The machine learning model is the core of the project. We will not build the model by ourselves, but one
of our supervisors from bunq, Ali el Hassouni, will build it over the next couple of weeks. Together with
him, we have set up some guidelines regarding the in- and output of the machine learning model to make
sure our architectures match. Our task will be to integrate this into the bunq architecture. We will provide
an e�cient and correct data �ow to the model in such a way that the marketing department is able to
use it. The purpose of this section is to discuss the inputs and outputs, the chosen approach and relevant
considerations that were taken into account regarding the machine learning model.

2.5.1 Reinforcement learning

Reinforcement learning methods turn out to be widely used for these kinds of problems. This category of
machine learning methods develop a model/policy/agent that tells us what to do in a given situation so that
a cumulative future reward is maximised. This is di�erent from the standard modelling approach: supervised
learning. Supervised learning maps inputs to a label/target. For our case that would be mapping marketing
parameters to amount spent and number of signups. There are some problems however if we would use
supervised learning. Marketing is a sequential decision problem with a temporal dimension among many
other dimensions/factors/parameters. Also, user actions have delayed e�ect into the future which would be
completely missed using a standard modelling approach. Because of these limitations, we think reinforcement
learning is a more suitable approach than supervised learning.

2.5.2 How it works

For every hour, the total amount of money spent on online marketing and the number of signups are
evaluated. The input is a state of the current environment, which contains marketing pro�les of users and
any other correlated data. The output is the corresponding expected cumulative reward for all possible
marketing actions. These actions are de�ned beforehand and can be interpreted as marketing activities,
which is a concept explained in chapter 2.2. The marketing department will use these values to help them
plan marketing campaigns.

LSPI algorithm for reinforcement learning

The model that we will be using is based on a reinforcement learning algorithm called the Least Squares
Policy Iteration algorithm (LSPI). LSPI is used to develop a policy that maximises the cumulative future
reward, given a batch of historical data. This historical data is presented as hourly (state, action, reward)
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samples from the last four months. A policy in the context of reinforcement learning is a function that
dictates what action to take given a particular state [8].

LSPI is very suitable for prediction problems where we are interested in learning a good control policy for
a task. It uses a related algorithm called LSTDQ, which learns the approximate state-action value function
of a �xed policy, thus permitting action selection and policy improvement without a model [8]. LSTDQ
is very data e�cient, which LSPI combines with the policy-search e�ciency of policy iteration. Because
LSPI is a completely o�-policy algorithm, it can (re)use the data that is continuously collected by Adjust in
each iteration to evaluate the generated policies. Because of this, the LSPI algorithm enjoys stability and
soundness of approximate policy iteration and has no need for learning parameters, such as a learning rate,
that often need careful tuning. Figure 2.3 illustrates the �ow of the LSPI algorithm.

Figure 2.3: A diagram that shows the �ow of the LSPI algorithm. Q̂π is the state-action value function
computed by the policy evaluation of the current policy π [8].

2.5.3 First version

A �rst very basic version for the model was already developed and tested. It is based on a simple setting. In
this setting, the state is purely based on 'day of week' and 'hour of day'. The action is the amount we need to
spend during each tuple (day, hour). The reward is the total number of signups, divided by the amount spent
during a certain hour during a certain day of the week. The state space and the action space will be expanded
in further versions of the model. Expensions of the action space consist of possible marketing investments
and targeting parameters for our campaign. Any expansions of the state space consist of features that
provide information about the current marketing state, such as any data from adjust or running marketing
campaigns.

2.6 Code development

In this section, the choice of programming language and the way of testing will be presented.

2.6.1 Programming language

During the �rst meeting we had at bunq, the choice of programming language already came up. Bunq
recommended us to use Python or PHP. Because of our experience with Java we added that language to the
possible options we had to choose between. The three options all have some advantages.
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Some of us already have experience with Python, and the language is fairly easy to learn for the others.
Also, Python is the most popular machine learning programming language: 57% of data scientists and
machine learning developers use it and 33% of them prioritise it for development [9]. Although we are not
going to develop the machine learning model ourselves, using a language that is widely used for machine
learning might still be beni�cial.

The most used programming language in the bachelor Computer Science is Java. This means that all
teammembers have a lot of experience with it. Java is also one of the most used languages for machine
learning [9]. Moreover, the machine learning model we are going to use will be in the form of a POJO (Plain
Old Java Object). When we use Java, it will be easier to deal with the model itself, because it is written in
the same language.

The last option is PHP. None of us had any experience with PHP and it is not commonly used for machine
learning. However, the entire bunq back-end is written in it, so if we write our project in PHP it can be
joined seamlessly with the other bunq code. Also, in PHP there already are ways in place to communicate
with the bunq databases, so we do not have to make those connections ourselves.

At �rst we decided to use PHP, to make sure the model could be integrated in the back-end. But in
the end, it turned out we needed to program in all three above mentioned programming languages. The
connection to the back-end and the merging of data is written in PHP, the machine learning server is written
in python and part of the connection to the Java machine learning model is written in Java.

2.6.2 Testing

Testing is a crucial part of software development, because you never want to commit code that might not
work properly. We will make use of two types of tests: �rst we have all code tests, such as unit integration
tests and end-to-end tests, and secondly we use manual tests.

We will use PHPUnit, a programmer-oriented testing framework for PHP [10], to test the code. This
framework is used to test all code at bunq, so we have to use it too. For manual testing, we will ask the
marketing department to try our program to see if it works and whether it contains all functionality needed.
Also, we will do some manual testing ourselves when working on the project, to watch if everything works
as intended.
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3 | Ethical implications

3.1 Our project and the GDPR

Because our project deals directly with user data, we had to keep in mind that everything we did had to
be privacy compliant and up to standards with the EU General Data Protection Regulation (GDPR) that
became active during our project. The GDPR is designed to protect and empower the data privacy of EU
citizens by reshaping the approach to data privacy of European organizations [11].

Because we are developing a new and not yet widely implemented marketing strategy based on user data,
these new regulations might have an impact on what we can and cannot do in our work. This section will
give a brief overview of how we dealt with these issues.

3.2 GDPR for data matching

At the core of our project lies the data matching part. Anonymous data collected by the company Adjust
is combined with data from the bunq database, which essentially deanonymizes the data. The data from
Adjust does not contain inherently sensitive data about individuals, but rather about the events in which a
person makes contact to something related to bunq. This means that having this new combined data does
not pose any new privacy threats compared to the data that was already kept by bunq.

Something that does potentially con�ict with the GDPR is the way in which the data is used. Because
we are using the data to improve bunq's marketing strategies, we could come into contact with article 21.2
of the GDPR, which states:

"Where personal data are processed for direct marketing purposes, the data subject shall have
the right to object at any time to processing of personal data concerning him or her for such
marketing, which includes pro�ling to the extent that it is related to such direct marketing." [7]

With the data that we have collected by matching bunq users to Adjust touchpoints we could potentially
target users directly with marketing. The keyword here is 'direct'. The data that we gather from matching
is used for research purpose only and will not be used for any activities directly targeting the individual.
This is because all the collected data will be fed to a machine learning model that only learns patterns in
the data and does not retain any information about an individual. The results of this model are used for
improving marketing campaigns on a global scale and not on an individual scale.

3.3 GDPR for machine learning

Not only targeting individuals may con�ict with the GDPR, there are also machine and deep learning
consequences following the new regulations. One of the major e�ects of the GDPR on machine learning
is the Right to Explaination, of which article 13 and 15 are most relevant to our project. These articles
describe how the data controller must provide the data subject with any stored information about him and
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how this information is used by the data controller. Since the collected data is only going to be used for
marketing research, these articles will not have a big impact on the project. The most important thing to
take from all of this is that the machine learning side of bunq should be able to not only try to embed their
algorithms with privacy protecting measures, but also make sure that the data inventory, classi�cation and
maintenance is well documented [12].
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4 | Development methodology

4.1 Location and communication

We worked �ve days a week from 9 to 6 at the bunq o�ce in Amsterdam, where we had our own o�ce.
Whenever we were in need of something from another bunq employee, for example if we had a code related
question, we could ask them through Rocket.Chat, bunq's internal communication program. The commu-
nication within the company was very e�cient because of the clear communication guidelines within the
company, as well as the fact that we were close to everybody we needed help from.

We had meetings scheduled regularly throughout the week. On Wednesdays we had a meeting with the
owner of our project at bunq, where we discussed the progress made and any updates about the project.
Every week at Thursday morning, we had a meeting at the TU Delft with our TU Delft supervisor. By
seeing him face to face every week, we assured that he was always up to date on what we were doing and
could provide us with help if we needed it.

4.2 Agile

We worked using an agile-like approach. Agile is de�ned as "a lightweight software engineering framework
that promotes iterative development throughout the life-cycle of the project, close collaboration between the
development team and business side, constant communication, and tightly-knit teams." [13]

During the research phase, we split the project up in parts to get an overview of what has to be done.
Every week we discussed what we would like to achieve that week. Weeks 3, 4 and 5 were mostly based on
creating something that works. After that, we focused more on code quality, additional features and a stable
endproduct.

Since we worked together in the same room at the same time, we were �exible in terms of assigning tasks.
Whenever new priorities popped up or tasks took either longer or shorter than expected, we could directly
discuss this together and come up with a plan to adjust our schedule.

Sometimes whenever a teammember �nished something, there was something he had to wait for before
it was possible to work for him on a next planned task. The most common causes for this were code reviews
or missing components. Among teammembers we made an agreement that whenever this was the case, the
teammember would work on the �nal report. That way we already had a lot of texts written, saving us a
lot of work near the end of the project.

4.3 GitLab

GitLab is a Git-repository manager which has planning tools and issue tracking features. bunq uses GitLab
for all development and other issues that need to be handled. We opened an own issue for our project which
we always referenced when committing code.
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Every time when we extended our own branch with more code, we assigned a merge request of that code
to one of the junior developers at bunq. They then gave us comments on how to improve our code to match
it with bunq's strict coding style. Some of the comments were just about coding style, others about the
general structure. These reviews were very bene�cial regarding improving our code.

When we �nally had code ready that could be added to the backend, we also assigned the merge request
to the senior developers. They also added some notes about coding style and structure, which improved our
code even more.

4.4 Coding language and IDE

We can split up the project in two parts that are implemented in a very di�erent way. The �rst part
consists of anything related to preparing any data in such a way that it is possible to train the model. This
training data consists of merged users and other touchpoints. The second part consists of anything related to
communicating with the model. Since training the model is not an automatic process (yet), and the trained
model is delivered manually, the two parts do not need to communicate with each other. They di�er quite
a bit in terms of architecture, programming language and functionality.

The �rst part is implemented in PHP. As stated in the research chapter, we used PHP because this way
it �t right in the bunq core backend. PHPStorm was used as the IDE, because this is the IDE used at bunq
and a couple of tools are written to speci�cally work with PHPStorm. We used a codesni�er with PHPStorm
to have our code automatically checked according to the bunq coding guidelines.

The second part contains both Java and Python code for several reasons. The model could only be
connected by calling it with Java code. Also, a machine learning model server already existed in python, as
described more extensively in chapter 8. The PEP-8 coding style [14] was used for Python and the Google
Java Code Style for Java [15]. Having the code in perfect shape is more important for the core backend than
for the python server. We noticed this in terms of how strict bunq asked us to code both.
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5 | Code Architecture

This chapter will describe how the bunq backend works and what the important components are that we
need to deal with. First, the use of composer, a tool that generated .json �les, is described. After that the
di�erent parts of the Model View Controller (MVC) structure are explained. Daemons and Libraries are
treated next and then we discuss how these parts were used to solve our problem. Finally, a discussion is
added about the architecture.

5.1 Use of composer

A lot of programming is done in .json �les. In those �les, de�nitions are given for Model, View and Controller
classes. The speci�c de�nitions per class type will be explained in the following section.

After creating such a .json de�nition �le, a package manager called composer is used. Composer is called
through a terminal and will generate code and classes based on the de�nitions given in the .json �les. The
generated classes make sure there is a general structure in all of the code and they support and call on the
PHP classes that are written by the developers.

5.2 MVC-structure parts

A MVC systems consists of three di�erent parts: a Model, a View and a Controller. In this section the use of
the three di�erent parts will be explained with their respective use in the bunq backend. A simple overview
of the MVC-structure can be found in �gure 5.1.

5.2.1 Model

Models are used as representations for database rows, and are a way of reading and writing from and to
di�erent database tables. For every table in the database, a TablenameModel exists. Those models have
get and set functions to retrieve and change values of speci�c rows in the database, but also static functions
like 'createQuery' which are used to perform queries on the entire database table. This can be used to �nd
speci�c rows in the database based on the parameters that are inserted in the query.

Almost all of programming in Models is done through the .json de�nition �les. These �les contain the
table name, description, the keys of each element in the table (columns), the relations with other tables and
some table settings. After de�ning the .json �les and running composer, a lot of di�erent classes are created.
For example, SQL queries that create the table, classes that contain get and set functions for elements of
the table and query/search objects to create queries on both SQL and ElasticSearch. ElasticSearch is an
e�cient JSON-based search and analytics engine [16], that the bunq data scientists use.

5.2.2 View

The View classes consist of two parts: pre-processors and post-processors. When an API-call is sent to the
backend, the pre-processor creates objects for the controller based on the parameters given in the call. After
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the objects are created, the view calls the right controller to start a work�ow. The output of the controller
is then handled by the post-processor to create an output that can be sent back as response to the API-call.

The .json de�nition �le contains the Models that are used, the inputs, the outputs and the name of the
pre- and post-processor. The pre- and post-processor �les contain methods to parse the inputs and create
outputs from a Model, as well as some other functionality that needs to be done before and after the wor�ow
needs to be called.

5.2.3 Controller

The controller consists of work�ow classes. Those classes contain the actual functionality needed to transform
the inputs sent by the pre-processors to the outputs which the post-processors can send back. Some of the
work�ows are called directly from view classes, others (called sub-work�ows), are called from other work�ows.
A work�ow is divided in di�erent states, which are functions that are part of a work�ow.

The .json �les are the de�nition of the work�ows. They contain the input, output and �ow through the
states of the work�ow. This means that states do not call eachother within themselves, but the de�nition
takes care of the �ow from one state to another. There is also a possibility to add logical statements to the
transition between two states to decide to which state the work�ow should go next.

5.3 Other parts

Except for the MVC, there are two di�erent kinds of code structures in the backend that we need to use.
They are explained in this section.

5.3.1 Libraries

Libraries contain code that does not �t in one of the three MVC catagories. This is mostly functionality
that is not really part of a work�ow, or objects that are used to support functionality. Library classes can
be called both in Controllers and Views. The structure of libraries within the MVC-structure can be seen
in �gure 5.1.

Figure 5.1: A diagram that shows the MVC structure with libraries. The dependencies are shown with the
little arrows.
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5.3.2 Daemons

Daemons are background processes that can assist the regular code. bunq has multiple Daemons running at
all times. Daemons are in a way a replacement for view classes: instead of making API-calls to the backend
to get the code running, Daemons will run themselves without interaction from the outside. There is no real
functionality in the Daemon classes, all the functionality can be found in the work�ow class that a Daemon
calls.

5.4 Usage of all di�erent parts

The project is clearly split up into two di�erent parts: the �rst part is about collecting and merging data
and the second part is about connecting the machine learning model to the bunq backend. The architecture
of both is discussed here, but the architecture of the python server itself is discussed in chapter 8, because
the python server is not a part of the bunq back-end.

5.4.1 Collecting and merging data

This part consists of two subparts: collecting data and merging data. Their architecture is really similar,
but the code is mostly seperated, except for the MarketingAttributionAdjustTouchpointModel, which they
both use. The structure is �rst explained for each part, then in �gure 5.2 an overview is given.

Model

We created two Models: the MarketingAttributionAdjustBucketModel and the MarketingAttributionAdjust-
TouchpointModel. The former is used to represent the CSV-�les which contain all the Adjust data. Those
are saved to know which �les are inserted into the database and which are not. The latter model is used
to represent the touchpoints from Adjust. Because every Adjust touchpoint has around 140 columns, we
decided to only add the useful columns for matching data to the Model to keep the Model clear. All the
other colums of a touchpoint are added to just one column in the AdjustTouchpointModel, in .json format.
The collecting data part of the code creates instances of the Models and writes those to the database. It also
adds two empty columns: a User column and a RequestMetadata column. The merge data part of the code
then takes all MarketingAttributionAdjustTouchpoint entries and tries to match them with Users using the
RequestMetadata table. If a match is found, both colums are �lled with the data of the match.

Controller

The Controller consists of work�ows that contain most functionality that is used to create and merge the
data. This is, for example, reading the CSV-�les, saving the touchpoints to the database, and �nding users
by the touchpoints. Some of the more speci�c functionality is moved to library classes, to keep the work�ow
classes clean with a clear �ow. We have two upper work�ow classes: one for the collecting of data and one
for the merging of data. Those classes all have some subwork�ows, which are called once or looped over.

Choice between View and Daemon

The two upper work�ow classes need to be called from somewhere to let the code run. We had two choices to
do this: with a View class or with Daemons. We decided to go for Daemons for two reasons. First, there is
no need to have an input on the process, which views are made for. Daemons do not require any input from
'outside' the back-end. This makes them more �t for the job. Secondly, Daemons have a built in database
looping functionality which makes them very e�cient when you want to loop through a database. This
is exactly what we need to merge the MarketingAttributionAdjustTouchpointModel database with users,
because the Daemons loop through that database and try to �nd a match for every row.

21



5.4.2 Connection to python server from backend

The connection from the bunq backend to the python server is quite simple in terms of functionality, but the
architecture is more complex. The following sections explain the di�erent parts and in �gure 5.3 an overview
is given.

View

Views can communicate with the 'outside world', which means that someone who wants to use the code can
send an API-call to the view. In our case, the API-call needs to be redirected to the python server. This
means that the view only saves the body of the API-call, but does not process it in any other way. The same
applies to sending back the response. When the view receives the response, it only adds the body to its own
response for the API-call and then immediately sends it back. We created two views, one which handles info
calls and one which handles predict calls.

Controller

For both views a work�ow class exists. They are really simple, they only call on a library object which
connects to the python server and then send back the response from that library class.

Library

We wrote a library class which actually makes the call to the python server using curl, a tool that can
transfer data through URL's [17]. When a curl response is received, the class sends back the response to the
work�ow classes. The library class both accepts info and predict calls and will handle them in two di�erent
ways.

5.5 Discussion

The bunq back-end architecture provided us with a very strict coding style. In the beginning, this took a lot
of time to learn which could have been spent on writing new code, but in the end it ensured that the quality
of our code is way higher than it would have been without this architecture. Especially the MVC-structure
resulted in high quality code. The other bunq back-end part that was really useful were the Daemons. In our
initial code, a for-loop was used which took the itemId of every entry in the database and looped through
them in that way. The Daemon has its own way of looping through a database which is much more e�cient.
All in all, the end product is much cleaner and better working than it would have been without the strict
guidelines of the bunq back-end.
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6 | Preparing data for the model

For the duration of the project we have been working with two major data sources. The �rst one being
the touchpoints collected by the company Adjust and the second the bunq database. The way in which
we collect data from both sources proved to be two very di�erent processes. In this section we will discuss
how we e�ciently collect data from both of these sources and elaborate on our choices towards creating an
algorithm that combines both sets of data.

6.1 Adjust Data

The �rst and main data source that we had to work with is the collection of touchpoints from the company
Adjust. These touchpoints aggregated by Adjust are dumped on a Amazon web service called S3 (simple
storage service). These dumps were in the form of csv �les containing between 500 and 5000 rows on average
which have about 100 attributes. The amount of rows per csv �le are dependent of the hour of the day they
correspond to. There is a clear pattern where the �les contain very little touchpoints during the night and
more during the day. There were also very large outliers on special occasions. An example of this is when
there was a bunq update, which led to a huge number of touchpoints per csv �le in the hours following the
release.

The rows describe various characteristics that make up a touchpoint. Examples are the Adjust Device
Id, the creation time of the touchpoint, the geolocation of the touchpoint and the ip-address. Some of the
attributes in the table did not contain values, as they were not activated (added to the list of attributes
monitored by Adjust) by bunq yet. To be able to use the data from the Adjust we �rst needed to download
the objects from the S3 buckets, unzip them, read the csv �les and write them to the database.

6.1.1 S3 Bucket

The hourly data dumps by Adjust are stored in what Amazon calls a bucket. This bucket contains every csv
�le as a zipped �le, which are called objects. To be able to e�ciently download these objects from the bucket
there were some steps that needed to be taken. The �rst step was how to download the bucket object. Here
we had three options: to download the entire object into memory and do operations on it, stream the entire
object and do operations on chunks or download the entire object to a cache and use PHP �le handlers to
perform operations on it. The �rst option proved to be unsuitable as storing an entire object in memory
while performing operations on it was too much for the PHP working memory. On top of that, this solution
does not scale well at all, which means that as bunq grows the code will become increasingly slow and will
have memory issues. The second solution scales a lot better than the �rst, but also came with a problem.
This approach would make use of the streamWrapper class of the S3 PHP sdk [18]. While this approach
seemed like a good solution to the scalability problem, streaming an object that was still zipped meant that
the streamed chunks could not be used independently. This meant that we still had to stream the entire
object before being able to unzip and use it. This is why we chose to use the S3 sdk to download the entire
object into a cache and perform operations on it from there.
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6.1.2 Downloading from S3

The �rst step in downloading an object is to determine which bucket object needs to be read next. Every
object in the bucket has an unique key which could be used in conjunction with a get function from the S3
sdk to retrieve a speci�c object. To persistently keep track of which objects we have read we store metadata
on every object that has been processed in the bunq database. When a download is complete the object is
stored in the database. When downloading a new object, the database is queried in order to �nd the key
of the latest bucket object that was read. Using this key the next object from the bucket is collected and
downloaded. The object is stored as a zipped csv �le in the default temporary folder that PHP uses. We
chose to not remove the object from the S3 bucket after downloading, as storage at the AWS side is not an
issue and the objects are still a valuable source of information that might be used by another source later.

6.1.3 Unzipping and storing

When the zipped csv �le is succesfully downloaded it can be unzipped in the next step. PHP has a native
function that can unzip �les with the .gz extension called gzopen(). If all goes well, an unzipped version
of the �le is created, after which the original �le is deleted. This unzipped �le can now be used to extract
data from and when this is done the unzipped �le is removed as well. This process is described in the next
section.

6.1.4 Storing the data

Because csv �les contain a lot of di�erent �elds and Adjust dumps a csv �le with an avarage of 3000 rows to
the amazon bucket every hour we needed to think of an e�cient way to store all these rows in the database.
This comes down to about 10 million rows in 4 months. Our �rst choice was to read every csv �le and directly
translate every row to an associative array. Using the header of the csv �le we combined every row with this
header to split up a csv �le with X rows into X associative arrays. These arrays could then e�ciently be
added to the database. While this method did work fairly well, it did not conform to the bunq coding style,
as it resulted in a large amount of setter methods being called in one function, making the function too long.
On top that, it is not allowed for models, which are further described in chapter 8, to have a large amount
of attributes. At this point we thought of 3 di�erent alternatives, which will be explained in the following
paragraphs.

Alternative 1 was to still create an associative array out of every row, but instead of going over every
element in the array and adding them to a model we only added the values from the array that we needed
to index. These indexed attributes were chosen by the data scientist in order to make his searches on the
database table more e�cient. We could then encode the entire array as a JSON string and add that as one
attribute to the model in a MYSQL LongBlob format. The data could then be extracted quite e�ciently
by getting this attribute from the database and decoding the JSON string. This method saves us more than
100 rows over our �rst attempt and does not result in more (sub)tables or rows.

The second alternative was to use what in the bunq back-end context is called an extended model. What
an extended model does is use a certain amount of base attributes and on top of that use attributes from a
collection of submodels. For our problem this would mean that we would divide all the original attributes
into categrories and create a submodel for every attribute. While this method would decrease the size of the
touchpoint model, this method would still result in the same code style di�culties, as the total amount of
colums stays the same.

The last alternative was to decrease the size of the model to basically only contain an id and other
standard bunq database metadata. The rest of the touchpont values would then be stored in a di�erent
table containing one column with the touchpoint id and another with one of the touchpoints values. This
would result in a separate table containing all the touchpoint values with one touchpoint value per row. The
problem with this method is that it will result in a table with an immense amount of rows. This amount of
rows is equal to the amount of csv attributed (120) times the amount of rows in our �rst attempt.
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Because of the (dis)advantages of all 3 methods we have chosen the �rst method to use for the touchpoint
model. The reason is that it is the best scaling option of the 3 and because the raw data in JSON format
can still easily be used to extract data without any losses. This all leaves us with two tables that we have
added to the database: one for every object in the S3 bucket and one for every touchpoint (csv row) from the
bucket objects. Using these tables we match the touchpoints to bunq users, which will be described below.

6.2 Matching Adjust touchpoints with bunq users

To train the machine learning model, we need to know which speci�c advertisements were e�cient and which
were not. One of the inputs to determine whether an advertisement is e�cient is the amount of users gained
by that advertisement. The Adjust data does not provide us with any information about whether the person
who clicked on an advertisement became a user in the end. That is why we need to match the Adjust data
with the data bunq has about their users.

To do this, we wrote two algorithms that try to �nd a match with a user for every touchpoint. If a match
is found, the UserId of the user is added to the AdjustTouchpoint table. The way the algorithms work and
the choices that are made are explained in the two following subsections.

6.2.1
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7 | Machine learning model

During our research phase we discussed how reinforcement learning is widely used for problems like marketing
attribution and how the standard approach for these kinds of problems is usually by using supervised learning
models. In the end, the models that were trained on the data collected and matched by us are supervised
learning algorithms. In this chapter we will elaborate on the concept of supervised learning, how the trained
models are used within our system and what the models produce as results.

7.1 Supervised deep learning

Supervised learning is a machine learning method that distinguishes itself from other methods by using
annotated training data as a 'supervisor'. The supervised learning algorithm aims to learn a mapping
function Y = f(x), where x represents the input variables and Y the output variable computed by the
function f . Using the training data the algorithm approximates the mapping function with the goal of using
the function to accurately compute Y with new, previously unknown, input data x [19]. The problem of
approximating this mapping function can be grouped into regression and classification problems. Both
these kind of problems have the goal of �nding an accurate mapping function, but di�er in that regression
uses numerical attributes and classi�cation uses categorical attributes. In this context numerical data is data
that is represented by a number, for instance a persons age or the amount of times a person clicks on an
advertisement. Categorical data represents characteristics that can be regarded as an element of a category,
for instance a persons gender or hometown. The �nal models use regression, because it works towards �nding
numerical values like the expected amount of click or the cost per acquisition.

Deep learning algorithms are a form of machine learning that allows a computer program to learn from
experience and are inspired by biological neural networks [19]. Without being programmed to perform a
speci�c job, these neural network inspired programs learn to replicate certain tasks by considering a large
amount of examples. Neural networks consist of an interconnected collection of nodes, similar to the neurons
in a brain. The di�erence between deep learning neural networks and standard neural networks lies in the
amount of internal (hidden) nodes that the network uses, which is shown in �gure 7.1. Because of the large
amount of layers of internal nodes, deep learning algorithms are able to learn from complex nonlinear data,
like consumer touchpoint behavior. In the next section we will elaborate on what this means for the models
that were trained on the data that we collected.

7.2 Training the model

The dataset that was described in chapter 6 was used to train the model. As of writing this report the
size of this dataset was about rows, of which about rows were matched with a bunq
user. The matched rows gave the most valueable information, but both the matched and unmatched rows
were used to train because even unmatched rows give information about consumer's touchpoints. As stated
before, we did not design or create the machine learning model, but we did work closely together with the
data scientist who did. We will discuss some interesting statistics about the training of the model in this
section.
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Figure 7.1: Di�erence between a simple neural network and a deep learning neural network

7.2.1 Training parameters

Table 7.1 shows a list of training parameters for the model that outputs the expected amount of clicks. The
�rst parameter we see is the number of folds used for K-fold cross-validation. K-fold cross-validation is a
method for evaluating machine learning models using resampling. The parameter k represents the number
of groups in which the dataset is split up. Carefully choosing a value for k is important as it might lead to
a non-representative evaluation of the model [20].

The amount of hidden nodes per layer is also an interesting parameter to look at. Using too many nodes
in the hidden layer can lead to over�tting, making the model less generally applicable. It will also lead to a
longer time to train the model. Too few neurons in the hidden layers also causes problems. An amount of
hidden nodes per layer that is too small will lead to under�tting, which means that the layers do not contain
enough neurons to adequately learn patterns in complex data [21].

Another parameter that is interesting to take a look at is the hidden_dropout_ratios parameter. This
parameter speci�es the ratios in which hidden neurons will be ignored during training. This essentially means
that their in�uence on neurons down the stream and vice-versa is temporarily disabled. Using dropout can
improve generalization and will prevent over�tting to a certain extent.

Parameter Value

nfolds 4
response_column TotalClicks
activation Recti�erWithDropout
hidden 300, 400, 500, 600
epochs 836,25
hidden_dropout_ratios 0.15, 0.1, 0.05, 0.01
max_w2 10
initial_weight_distribution Normal Distribution
stopping_rounds 0

Table 7.1: Training parameters of the expected amount of clicks model

On top of these machine learning parameters, there were also model speci�c variables that in�uence
weight of certain factors of the training process. Figure ?? shows the scales of importance for a multitude
of input variables. For example, we can see that installs are the most important to bunq in this model as
these values have very high importance. All of these variables are decided on by the data scientist, who has
a good idea of where the focus of the model should be.
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When training the deep learning model, the deviance statistic was used to test the goodness-of-�t of the
current state of the model. As for the training of this model, we can see from �gure ?? that the deviance
starts o� very high and then converges to a lower value. The model stops training when either the stop value
for the deviance has been reached or the maximum amount of epochs is reached. In this case we can see
from �gure 7.1 that no stop value is set, but that there is a maximum amount of epochs set. From �gure ??
we can see that the model stopped training when this number of epochs was reached.

7.3 Using the trained model

We got a few di�erent models delivered. Our �rst fully trained model outputted the expected amount of
clicks of an advertisement. The second one outputted the cost per acquisition of an advertisement. Both
models take a set of advertisement parameters as input. The input �elds are largely the same for both
models. The di�erence between the two models is that the cost per acquisition model contains a cost in

euro �eld, which the other model does not. Figure ?? shows the parameters of the model calculating the
expected amount of clicks:

The output consists of a single value, representing either the expected amount of clicks or the cost per
acquisition depending on the model. This value is used by the server to evaluate the e�ectiveness of a call.
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8 | Connecting the model to the bunq
backend

A few months before we started this project, an employee from bunq programmed a machine learning server
(ML-server) in python to fetch predictions out of machine learning models. By sending parameters over a
route towards the server it is possible to obtain predictions from a model. Di�erent routes correspond to
di�erent machine learning models. At bunq we were told that we could use and adjust the server, in such
a way that we can use it for our project. The purpose of the ML-server is that it is able to load a lot of
di�erent models which can then be accessed in a rather easy way. Unfortunately, the ML-server was not
created with marketing attribution in mind, but with transaction monitoring instead, and was therefore in its
delivered state not suitable for our project. Therefore, we extended the server with two major improvements:
functionality to support plain old java object (pojo) models and functionality to get predictions based on a
search space as input.

The software used to create machine learning models by data scientists at bunq is called H2O. H2O is
Java-based software for data modeling and general computing [22]. It contains a lot of analysis tools which
leaves a lot of expansion possibilities open for our server. For example, we could be able to show more details
about the found prediction, such as con�dence intervals.

The ML-server is connected with an endpoint in bunq's core back-end through a view, only accessable
to those with admisitrator priveledges. The marketing department can interact with the ML-server through
this endpoint. The ML-server is placed in the back-end in such a way that it is only connected to the core
back-end. Any security measures are dealt with by the core back-end. This structure provides the marketing
department with an endpoint which should be callable from the Admin page. bunq's front-end department
can extend the Admin page with a simple panel to make it possible to fetch predictions in an easy way.

The readme of the repository is included in appendix ?? and provides instructions of how the server
should be used.

8.1 Con�guring the server

The ML-server holds a settings .json �le. In this �le we de�ne any models the server should include, their
feature types (which is equivalent to input parameters types, for instance for advertisements), any thresholds
that are used to label returned predictions and any other relevant con�guration data. An example is shown
in �gure 8.1.

When the server tries to access a model, it does so by checking whether its corresponding binary or
jar �le is included in its ./data folder. Each model should have its own �le. Next to these model-
speci�c �les, we should also add a jar containing any non-model-speci�c Java code. This jar is called
machine_learning_java_adapter.jar by default.

31



{

"app": {

"name": "bunq_mlserver",

"data_dir": "../../data"

},

"server": {

"bind_port": 54321,

"bind_host": "127.0.0.1",

"gunicorn_options": {

"log-syslog": false

}

},

"daemon": {

"pidfile": "/tmp/bunq_mlserver.pid"

},

"api": {

"namespace": {

"madls": "MarketingAttributionDeepLearningSimple"

}

},

"model": {

"MarketingAttributionDeepLearningSimple": {

"model_filename": "All_features__5epoch_450x250x450_1",

"type": "pojo",

*****

"threshold": [

{"group": "low", "min": 0.0},

{"group": "mid", "min": 13.2},

{"group": "high", "min": 40, "max":100}

]

}

}

}

Figure 8.1: Example of a settings json �le, containing a single model.



8.2 The Java Adapter

A problem we directly faced is that it is not possible to run a pojo model directly through a python command.
Therefore we created an adapter in Java. Its job is to provide communication to any H2O machine learning
model that is de�ned in pojo format. Communication between python and Java is done through Pyjnius,
which is a python library for accessing Java classes [23]. Pyjnius allows us to call methods from a jar through
python.

We could have also chosen to replace the python code by Java code and implement a server in java. But
doing so would require to reimplement a lot of functionalities. The ML-server already was, for example,
already able to work in threads, have a con�g �le and create routes for models according to their namespace.
Next to that: we would also have to �gure out how to connect to binary models in Java if we wanted to keep
that functionality.

The Java adapter can be used to build model-jar �les for the server's data folder. Such a generated
model-jar �le should at least contain three classes, next to any dependencies these classes use. First, the
pojo model itself, which is generated code from H2O and usually the deliverable from the data scientist.
Second, the ModelClassContainer class, which is a class that our main predictor is able to recognize. Third,
we need to manually create a custom class that extends ModelClassContainer, whose name should be equal
to the �lename of the jar and the "model_�lename" �eld in the settings .json �le. Since this custom class is
an extension of ModelClassContainer but contains a speci�c model, we can use this as input for the main
callable predict function.

Exceptions are thrown with messages that are as clear as possible when something is missing. This makes
it easy to see if something went wrong regarding adding a new model or generating the jar.

8.3 Fetching predictions from the server

When the model is included in both the data folder and the settings �le, we can call it by taking the
corresponding namespace, which is also de�ned in the settings �le, as part of an API REST call. HTTP

GET <model_route>/info responds with information about the model. HTTP POST<model_route>/predict

responds with predictions based on the parameters within the body.

Initially the predict route was built in such a way that it can make a prediction from a single combination
of advertisement parameters for a binary model. We extended this with array support, which means that
instead of assigning a single value to an advertisement parameter, we are able to assign an array of values.
This enables the use of a search space. From this search space, the server �nds the best X results, where X
is de�ned as the �eld amount_of_predictions of the input.

By default, the server tries to approach an optimal set of advertisement parameters in an iterative way
using bayesian techniques. To do this, we use the hyperopt python package. It evaluates which parts of the
search space work best by sending a variety of di�erent advertisement parameters to the ML-model. For each
call made to the model, the system evaluates the output of the model to choose a new set of advertisement
parameters. With this feedback loop, it tries to approach the optimal solution within Y iterations, where
Y is de�ned as an input �eld. This creates a list, which includes the found optimal solution and any other
iterated combinations of advertisement parameters after these Y iterations. From this list, we then return
the best X results.

A di�erent technique to fetch the best X results is through a brute force search among all possible combina-
tions of advertisement parameters. This process is triggered whenever the �eld process_all_combinations

is set to True. The server constructs a collection of all possible parameter combinations, sends each of
them to the model and returns the best X results. When using this technique instead of the bayesian one,
increasing the length of the arrays will exponentionally increase the runtime since the server brute forces all
possible combinations.
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Bunq backend
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X: Amount
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Send request feedback loop that iterates N times

Receive best X results

Figure 8.2: A schema that shows the �ow from the client to the ML-model and back.

In almost every case the bayesian method will provide the most e�cient answer. We expect this to be
the most often used route. Brute forcing all combinations might be useful when we want to evaluate some
or a few speci�c cases as it might reveal new insights. Therefore we did not remove the brute force method
from the server and left it as optional, but we did set the default method to be bayesian.

8.4 Architecture of the ML-server

The ML-server contains the model_controller_base.py �le, which can create ModelBase objects. Those
objects contain functionality to fetch a prediction from a model. A prediction request can be of two di�erent
types: pojo or binary, and can also be performed either brute force or bayesian. This sums up to four
possible paths to take into account. The di�erence between brute force or bayesian is handled inside the
ModelBase class by splitting our process function up in two. The di�erence between calling a binary model
or pojo model is made in extended classes from ModelBase, which are ModelJava and ModelBinary. These
child classes should contain a predict_single function and may contain an optional custom_pre_process
function. Since the output should be of the same format for each process, every predict is going through the
same post-process. Any con�guration data, which is discussed earlier, is retrieved through config.py.

The api_controller class creates a Server object which holds an extension of ModelBase for each
model. Requests for this model are handled by calling process() on the model and returning its response.
Due to the use of Daemons, multiple predictions can be run simultaniously.

During the creating of both the server and java adapter, we set the focus on easy expansion. In the
future bunq might want to load models of unsupported catagories (so non-pojo or non-binary models) in the
server. Since we will not be around the bunq o�ce after our project is �nished to help people expand on our
code, we had to make sure it would not take up a lot of work for someone to extend our code. Therefore we
have also provided a detailed readme of how to use the server, which can be found in appendix ??.

8.5 Architecture of the Java adapter

The adapter is written in an object oriented way. There are some di�erent model categories de�ned by
H2O. Models of the same category are called in the same way and have the same output. The adapter
includes the ModelPredictorAbstract class, which is the parent class of ModelPredictorBinomial and
ModelPredictorRegression. Next we have the Parameter interface and ParameterSingle class. This
class represents an advertisement parameter as input for the model. A list of Parameter interfaces can be
send to a predictor to obtain a ModelResponsePair. The ModelResponsePair represents an input-output
combination, and has ModelCategory-speci�ed child classes.

Next we have the ModelClassContainer class. This class contains a model and its corresponding cat-
egory. If we want to add a new model, we should create a custom child of ModelClassContainer with
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no constructor parameters. This class, together with its model is put into a seperate jar. The custom
ModelClassContainer class will form one of the inputs to fetch a prediction. The other inputs are the
parameters. The call to the main function is made in ModelCaller. ModelCaller picks the corresponding
Predictor class and returns its output in .json format.

The UML of this Java-adapter can be found in �gure 8.3.

8.6 Discussion

Fetching optimal solutions from the ML-model is quite a complex and computationally intensive task. It was
therefore important this would happen e�ciently, because for such a huge model, long runtimes might result
in the system being infeasable to use. Connecting the model to the bunq backend was done using both Java
and python. Having the process run e�ciently through multiple languages raises di�culties, such as that
a JVM is generated in python, Java is heavily object-oriented and errors are not always easy to recognize
when passed on between Java to python. This section explains some of the decisions we had to make, and
a few problems and limitations we have faced.

8.6.1 Necessity to expand the ML-server

There were two main reasons for which we had to extend the server with extra functionality.

First of all, the server did only support binary models and no pojo models. Such models are represented
by executable binary �les. In python, binary models can be called rather easily by using functions from the
H2O python package. The marketing attribution ML-model we obtained was in pojo format. These type of
models are represented by a Java �le and should �rst be compiled, before we can call them. The maker of
the marketing attribution machine learning model preferred to build the model as a pojo instead of a binary
object, since a binary model would probably hurt perfomance, and because the maker is not able to inspect
or adjust the model's generated code if it is a binary model. Besides that, functionality to load both pojo
and binary models gives the python server an extra dimension of �exibility. To tackle this problem, we have
built the Java Adapter.

Secondly, marketing attribution is based on inserting combinations of di�erent parameters in the model
and picking the best X results from it. This is di�erent from transaction monitoring, for which the server was
initially built. Transaction monitoring takes a single transaction as input, runs it through a ML-model, pro-
cesses the result by �agging it as suspicious or not and goes on to the next. A single Marketing Attribution re-
quest is performed by running multiple sets of parameters through the model and returning the X best results
as the most pro�table recommended actions for the marketing department.
The �rst version we have build was a brute force approach and computed each possible combination of pa-
rameters to return the one with the highest value. The second version included bayesian techniques to search
for an optimal solution using a feedback loop.

8.6.2 Multiple JVM instances

One of the limitations of the python server is that it is not possible to create multiple Java Virtual Machine
(JVM) instances for a single python process. A JVM instance is created as soon as import jnius is called
in python, and should therefore be called before the �rst java call is made since JVM options cannot be
changed after the JVM starts up. As a result, if one would add or change something Java related, such as
adding a new model, the server needs to be restarted in order to let it rebuild the JVM.

It is di�cult to determine whether using a di�erent package than pyjnius has the guarantee to not face
the same problem. Jpype, a similar package, addressed the same issue in their docs, but explained that
the issue is due to the SUN JVM, the JVM that is used by pyjnius, giving a non-speci�c exception when a
startupJVM() is called after a destroyJVM().
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Figure 8.3: Detailed UML diagram of the java adapter. This diagram shows how classes interact with each
other and gives an overview of all the classes and functions of the java code.



There are some options that might be able to �x this issue. The jpype docs suggested using a non-SUN
JVM which supports JNI invocation. The writer says he believed that IBM's JVM support JNI invocation,
but did not know if their destoyJVM would work properly [24].

A di�erent solution would be to tweak the server in such a way it creates a new python process for each
server call. This would require linking each thread that is created for a server call to a seperate python
process.

However, we think any of these solutions would be out of the scope of the project, and therefore adressed
it as a could have. Removing the need to restart the server whenever we update a model is much more useful
to di�erent kind of models. Marketing Attribution does not require to have a server up and running at all
times, since any call is a result of a manual request and no automatic processes depend on it. It functions
as a tool for the marketing department, which is an internal group and therefore it does not in�uence
external users directly. This is di�erent from transaction monitoring, where a call is made to model for each
transaction.

8.6.3 Model size

Towards the end of the project we received a bigger ML-model, trained on real data. However, the size of
the model was large: a single pojo of 8.8 MB. The models we had obtained so far to test were of sizes around
1 MB. When we imported this bigger model into the server and tried to fetch a response, the JVM gave
no reply, and the server seemed to take an in�nite amount of time to return a result. However, when we
skipped the python-Java connection and predicted directly through Java, we were able to fetch a response
from it within a second. What was also curious is that through a standalone python script we were able to
fetch a single prediction from the model, using the same methods and packages as the server does.

We suspected it to be something memory related, since the size of this new model was around eight times
as large compared to any previous models. Setting a higher maximum heap size gave no result. We did some
experiments with the python script that did give results by enabling the JVM option -XX:+PrintGC, which
enables printing messages during garbage collection. This eventually showed us the cause. For the larger
model the python script increased the MetaspaceSize of the JVM, which is the maximum amount of space
to be allocated for class metadata [25]. This increase of MetaspaceSize was not performed on our server
when we executed the same lines of code, probably because of the fact that every server call is treated as
a seperate python thread, and might behave di�erently. By setting the MetaspaceSize higher, speci�cally
high enough such that the python script would not print a log that it is increasing the MetaspaceSize, the
JVM's MetaspaceSize was increased and we were able to load the bigger sized model.

During the handling of this issue, we found out that the model runs a lot faster when the heap size of the
Java thread is increased. By setting it on 4 GB, we went from 200 iterations in 90 seconds, to 1000 iterations
in 50 seconds. This means that there is a lot of optimization possible. However, since we have found and
handled this issue in the last week of the project, it was out of our scope to do this, and we will leave this
as an recommendation for bunq to look at when they want to optimize it further.
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9 | Results

With all the functionality described in the previous chapters we can bring our work at bunq to a full circle.
We collect data from Adjust, match it to bunq users and use the combined dataset to train the machine
learning model. This model is then loaded into the python server to which API-calls can be made to get a
prediction from the model. In this section we will show the results of this full circle using a clear example.

Appendix E shows a list of features that we will use as an input to the ML-server. We have set amount_of_
iterations and amount_of_predictions at 2000 and 10 respectively for this example, which means that
after 2000 iterations, it will return 10 results. The .json response contains an array with the highest scoring
advertisement options from all iterations. Figure 9.1 shows the best result found. Figure 9.2 shows an
existing advertisement that bunq has used before. As of writing the report, the bunq marketeers have not
yet had the time to create an advertisement based on our results.

***CENSORED***

Figure 9.1: Machine learning model output of the bunq
advertisement. The amount of iterations was set on
2000 and CostEuro was de�ned to search between 0
and 100 euro. According to the found result, we should
target females in Germany aged between 55-64 at 5pm.
Note that the text parameter only describes the con-
tent of the advertisement, not the language. It does
not imply that a Dutch text should be promoted in
Germany.

Figure 9.2: A commonly used bunq advertisement
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10 | Conclusion

The marketing attribution project that we worked on for the past 10 weeks proved to be a more diverse
problem than we had initially thought. We used multiple programming languages and various types and
sources of data in order to reach the �nal product. This product consists of back-end functionality to period-
ically and automatically collect and store data on consumer touchpoints with bunq, back-end functionality
to match existing bunq users to these touchpoints and a server that is allows for accessing multiple machine
learning models trained on the aformentioned data using API calls in the back-end.

To create a dataset that is is suitable for training a supervised learning algorithm a few steps had to be
taken. The �rst step was to e�ciently collect and store the data on consumer touchpoints. This involved
creating functionality to download and process the data, which came in the form of a .csv �le every hour.
This work is executed by Daemons, which also run once every hour.

The next step was to match the data to bunq users, before being able to be used as a training dataset.
By using queries integrated in the bunq back-end we created a matching algorithm that looks at a consumers
IP-address and the time of creation of the touchpoint. Like the data collecting part, this algorithm is also
executed by a Daemon that runs periodically. When the algorithm �nds a match, the user data from the
bunq database is added to the touchpoint database row and can be used by the machine learning model.

The next step is training the model. We did not do this, as creating and training a machine learning
model was outside of the scope of the project. The training was done by a data scientist from bunq, directly
using the data written to the bunq database by our daemons.

The trained model can then be accessed through a python server, which is able to host multiple models.
Through an API-call, we can ask the server to �nd an optimal set of advertisement parameters using bayesian
techniques.

Finally, when a marketeer decides on the features of an advertisment, this person is now able to use these
features as an input of an API call. The model will then provide the user with an expected amount of clicks
or the return on investment rate of this advertisement. This brings the project to a full circle, where the
consumer behavior is monitored and advertisements are adjusted based on this.
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11 | Recommendations

11.1 Front-end interface

To make feeding the features of an advertisement to the model easier for people who do not have any backend
experience, a simple interface for marketeers is almost a must. Bunq uses an admin web interface, which
can be used for instance to handle tickets opened by users and to monitor transactions. This would be the
perfect place for a marketing attribution interface. Because learning how the bunq front-end works and
implementing an interface are both outside of the scope we did not create an interface. For someone with
front-end experience at bunq this would probably be a very easy task, as all of the functionality we have
created is accessable using simple API-calls. During the project we already had a meeting with a front-end
developer to talk this through.

11.2 Improved matching

11.3 Adjust API

The way in which Adjust makes their data available for programatic research is not optimal. They collect
data and dump all the data in an Amazon S3 bucket as .csv �les. Handling these �les in PHP is not
impossible, but a much more elegant solution would be if Adjust would create an API to directly access their
touchpoint data. This way, instead of having to download, unzip and transform to an array, we could just
call functions like getTouchpoint(...) or Iterator.getNextTouchpoint(). If Adjust ever creates this API our
code could be signi�cantly simpli�ed and would also be more e�cient.

11.4 Automatic training

Right now the bottleneck in our �nal product as a whole is the training of the machine learning model. At the
request of the data scientist the �rst version of the product would not include automatic continuous training
of the model. The reasons for this were that implementing this automatic training is di�cult to do well and
the data scientist which created the model prefers to do it himself. We think that if automatic continuous
training can be implemented reliably it would be a signi�cant improvement to the product. As explained in
section 8.6.2, adding a new model to the server is currently not possible without restarting the server and
changing con�guration settings. One part of an automatic training process would be to replace models on
the server. Therefore, �xing the problem described in section 8.6.2 is a part of adding an automatic training
process.
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General information

Title of the project: Attribution Modelling
Client: bunq
Date of �nal presentation: 04-07-2018

Team

Sytze Andringa

Interests Data Science
. Multimedia Computing
Contributions Back-end Research
. Machine Learning Server

Daan van der Werf

Interests Software Development
. Machine Learning
Contributions Database model de�nitions
. Collecting data from Adjust

Job Zoon

Interests Software Development
. Algorithms
Contributions Matching data functionality
. Back-end connection to server

All members contributed to the �nal report and to the
�nal presentation.

Client & Coach

Client

Name Ir. Wessel Van
Company bunq
E-mail wessel@bunq.com

TU Delft Coach

Name Dr. Matthijs Spaan
Department Software Technology
Group Algorithmics
E-mail m.t.j.spaan@tudelft.nl

Contacts

Sytze Andringa sytze@morvigor.nl
Daan van der Werf daanvanderwerf@hotmail.com
Job Zoon jobzoon96@gmail.com

Description

Challenge One of the greatest challenges in mar-
keting is measuring the revenue of a marketing cam-
paign and translating that into a strategy. One of the
employees at bunq created a machine learning model
in Java which can solve this by predicting how adver-
tisements will perform. It is our job to collect data
to train this model and to create a system in such a
way that bunq's marketing department can use it.

Research During the research phase, we looked
into the architecture of our application, the way we
have to collect and match data, how the machine
learning model works and the way we should develop
code.

Process We worked at the o�ce of bunq in Am-
sterdam for 5 days a week from 9 to 6. bunq pro-
vided us with MacBooks and access to their systems,
and whenever we had any questions there was always
someone to answer them. Some of the unexpected
challenges we faced during the project are the di�-
culty of programming in bunq's back-end, not having
access to the bunq database to test our algorithms
and not having a server in place yet that can deal
with big POJO models.

Product To train the machine learning model,
which was created by a bunq employee, data from
a company called Adjust was used. Adjust is an
advertisement tracking company that dumps CSV-
�les to an AWS bucket. We collected those �les and
stored the rows in the bunq database, where we also
matched the rows with bunq users. A matching algo-
rithm based on IP-address and timestamps was im-
plemented to do this.
After the creator of the machine learning model

trained the model, the marketing department needed
a way to access it. We created an H2O server in
python, which can make calls to the Java model.
Also, we implemented code in the back-end that ac-
cepts API-calls for the machine learning model and
sends it through to the python server.

Outlook We opened merge request for the di�erent
components of our end product, and they are, or will
be, merged into bunq's production code. Recommen-
dations for the future are improving the matching al-
gorithm, creating a front-end application to automate
the API-calls and automatically training the machine
learning model with the data we created.

The �nal report for this project can be found at: http://repository.tudelft.nl

http://repository.tudelft.nl


B | Original project description

B.1 Project description

The goal of this project is to develop and build an attribution model for marketing. The model ingests very
detailed data from di�erent sources such as visits to the website of bunq, online marketing campaigns data,
clicks on online advertisements and installs of the bunq app or even data about o�ine marketing activities
and attributes bunq users to a certain marketing channel. This way of tracking allows us to �nd out which
marketing channels deliver the most value in terms of users. Furthermore, attribution modelling allows us
to improve our online marketing e�orts by for instance having an ad bidding tool in place that learns to
evaluate the e�ectiveness of marketing campaigns by looking at the combination of target group and the
marketing creatives. The machine learning model becomes trainable by learning from the data outputted
by the attribution model.

B.2 Company description

Some years ago a bunch of coders decided they would challenge the status quo. Together we set out to create
the true alternative to traditional banking. A bank that would be di�erent. The bank of the free.

You will join a team of over 80 passionate bunqers who've come from all over the world (13 nationalities
and counting) to build something amazing together. Waking up with brilliant ideas and going to bed knowing
that you've made them happen. That's working at bunq. We are using the unlimited power and possibilities
of code to bring innovation to a place where stagnation is the status quo: the �nance industry. We don't
limit ourselves to what has been done or could be done: we make shit happen.
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C | SIG feedback

C.1 Initial feedback

Following is the initial feedback from SIG in Dutch:

De code van het systeem scoort 4.3 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de
code bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door lagere scores voor
Unit Size.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het op-
splitsen van dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te
begrijpen, te testen en daardoor eenvoudiger te onderhouden wordt. Binnen de langere methodes
in dit systeem, zoals bijvoorbeeld, zijn aparte stukken functionaliteit te vinden welke ge-refactored
kunnen worden naar aparte methodes.

In de Java-code binnen jullie project is ModelPredictorPojo.predictFromRowData() de enige lange
methode, maar omdat daar vreemde dingen gebeuren is het alsnog een goed voorbeeld. Jullie gooien
daar op regel 155 een ModelPredictionException, maar vervolgens wordt die exception een paar
regels later afgevangen en null teruggegeven. De vraag is dus wat de bedoeling is op het moment
dat de input van de methode niet geldig is: (1) de methode geeft null terug, (2) er wordt een
exception gegooid. Op dit moment doen jullie een combinatie van allebei.

In de Python-code zien we meer lange functies. daemon() in cli.py is een goed voorbeeld, dit
is ook typisch een functie die nog veel groter gaat worden op het moment dat de hoeveelheid
functionaliteit gaat toenemen. Je zou daar het parsen van de command line argumenten willen
scheiden van het daadwerkelijk opstarten van de daemon.

De aanwezigheid van testcode is in ieder geval veelbelovend. De hoeveelheid tests blijft nog wel
wat achter bij de hoeveelheid productiecode, hopelijk lukt het nog om dat tijdens het vervolg van
het project te laten stijgen.

Over het algemeen scoort de code dus bovengemiddeld, hopelijk lukt het om dit niveau te behouden
tijdens de rest van de ontwikkelfase.

The English translation of this feedback is:

The code scores 4.3 stars out of 5 on the maintenancemodel, which means it's above average
maintainable. The highest score was not achieved because of the lower scores for Unit Size.

For Unit Size, we look at the percentage of functions that are longer than average. Splitting these
kind of methods into smaller pieces ensures that each component is easier to understand, test
and therefore easier to maintain. Within the longer methods in this system separate pieces of
functionality can be found which can be refactored to separate methods.

In the Java code within your project ModelPredictorPojo.predictFromRowData() is the only long
method, but because strange things happen there, it is still a good example. You throw a Model-
PredictionException on line 155, but then that exception is caught a few lines later and null is
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returned. The question is therefore what the intention is when the input of the method is not
valid: (1) the method returns null, (2) an exception is thrown. At this moment you are doing a
combination of both.

We see more long functions in the Python code. daemon() in cli.py is a good example, this
is a function that will become even greater when the amount of functionality increases. You
would want to separate the parsing of the command line arguments from the actual startup of the
daemon.

The presence of test code is promising. The amount of tests is still a bit behind in comparison to
the amount of production code, hopefully it will be possible to increase that during the continuation
of the project.

In general, the code scores above average, hopefully it will be possible to maintain this level during
the remainder of the development phase.

C.2 Changes according to the feedback

There are two major points that could be improved according to the feedback:

• The unit size of our function in Java and python, which are used for the connection to the machine
learning model.

• The amount of tests.

Both were �xed in the weeks after the SIG feedback. The unit size was easy to �x by splitting all of
the larger functions up into smaller pieces. Also, we changed the weird Java function in such a way that it
makes more sense.

We also wrote more tests and every bit of code that is reasonably easy to test is tested now. Some
parts require a lot of very complicated existing Models from the bunq database, so those parts were almost
impossible to test for us, unless we created huge testcases. We tested those parts of the code extensively by
hand and by running them over huge amounts of data, so we are sure they run well and do not give any
exceptions.

C.3 Final feedback

Following is the �nal feedback from SIG. We did not recveive a grade, only this feedback.

In de tweede upload zien we dat het project een stuk groter is geworden. De score voor onderhoudbaarheid
is in vergelijking met de eerste upload iets gedaald. Jullie zaten bij de eerste upload ook erg hoog qua score,
dus die daling is daarmee wel enigszins verklaarbaar. Bij Unit Size, het enige verbeterpunt, zien we weinig
verandering. Jullie hebben het voorbeeld aangepast, maar er zijn in de nieuwe code weer nieuwe gevallen
geïntroduceerd. Naast de toename in de hoeveelheid productiecode is het goed om te zien dat jullie ook nieuwe
testcode hebben toegevoegd. De hoeveelheid tests ziet er dan ook nog steeds goed uit. Uit deze observaties
kunnen we concluderen dat de aanbevelingen uit de feedback op de eerste upload deels zijn meegenomen tijdens
het ontwikkeltraject.
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D | Machine learning server repository
readme
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E | Features for model prediction
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