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A B S T R A C T

In this paper, we describe adjoint gradient formulation for the Operator-Based Linearization modeling
approach. Adjoint gradients are implemented in Delft Advanced Research Terra Simulator (DARTS) framework
and applied for history matching using a proxy methodology. Due to the application of adjoint gradients,
the computational efficiency of the discrete well affinity (DiWA) proxy model for production forecast is
significantly improved. That allows us to derive several important extensions. The proxy methodology is
further extended and validated for 3D three-phase black-oil problems. The results show that the gradient-based
regression can provide good history matching and reconstruct a true petrophysical characterization when the
initial guess is generated based on highly reliable geological information. For cases with a limited or not
sufficient geological characterization, an efficient stochastic application of DiWA proxy model is proposed. This
approach consists of massive sampling procedures for collecting different realizations based on high-fidelity
statistics with filtering. These realizations are generated stochastically because they are not conditioned to
any production information but the basic geological statistics of the reservoir. The trained DiWA proxy model
demonstrates a small deviation between the model response and the observation data. When applying the
refined DiWA model for the training, the error between the model response and observation data can be
further reduced. The forecast based on the trained model has slightly larger variability but the deviation is
still reasonable. The enhanced DiWA methodology presents an efficient and robust technique for creating an
ensemble of stochastic proxy models that can be used in production forecast, flow diagnostic, and optimization.
. Introduction

Production optimization has always been one of the research fo-
uses in the field of reservoir engineering. Prior to the production
ptimization, the geological model should be calibrated or history
atched to the production data. This history matching procedure is
sually quite time-consuming because of the large amounts of gradi-
nt calculation and many iteration steps of searching for the optimal
olution. A reliable reservoir numerical model is the prerequisite for
oing reservoir management and decision-making in subsurface energy
rojects. Generally, a reservoir model with higher resolution may be
een as more realistic with detailed geological information so that the
alculation output can be considered more plausible. However, the
egrees of freedom in the high-resolution reservoir model may contain
everal thousand or millions. In this case, the computational time of
imulation model can take hours or even days. Moreover, the history
atching process may require a large number of forward simulation

uns to obtain accurate results. This consequentially results in high

∗ Corresponding author at: Department of Geoscience and Engineering, TU Delft, Delft, Netherlands.
E-mail address: D.V.Voskov@tudelft.nl (D. Voskov).

computational cost of forward simulation in the course of history
matching.

Simplified full-field models can be applied to increase computa-
tional efficiency. This kind of approach includes (but not limited to)
upscaling, multi-scale method, and streamline simulation. The upscal-
ing method uses a coarser grid model to mimic a high-resolution
reservoir model (Durlofsky, 2005). The multi-scale method takes the
fine-scale grid and locally transfers it in the global representation using
the basis function concept (Jenny et al., 2003). The simulation is
performed at a coarse grid with a fine grid solution (e.g. pressure)
reconstructed based on pre-processed basis functions. A streamline
method is an Eulerian–Lagrangian approach that translates a real fluid
transport problem into a one-dimensional problem solved along stream-
lines (Batycky et al., 1997). The performance of these methods largely
depends on the reliability of the geological characterization of the
reservoir. However, in many cases, reliable geological information is
questionable or may not be available.
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In this case, another alternative called the data-driven model can
help in modeling without requiring much geological information. The
data-driven model often uses a proxy representation with fewer degrees
of freedom compared with the high-fidelity model. It is assumed that
the degrees of freedom of the proxy model are sufficient to mimic a
realistic model response after a certain period of training. Once the
proxy model is trained to meet the required criteria, it can be applied to
do reservoir simulations and predictions with much less computational
effort because of the lower degrees of freedom. Many data-driven
models were developed by different researchers. For example, Guo et al.
(2018) proposed a data-driven Interwell Numerical Simulation Model
with Front-Tracking (INSIM-FT). Jansen and Kelkar (1997) proposed
a statistical data-driven model. In the study of Zubarev (2009), the
applied data-driven models utilize artificial intelligence techniques in
the course of model training.

Before training the proxy model, it is essential to construct an appro-
priate loss function and an efficient minimization strategy. Based on the
practical use of gradient information in the course of model training,
they can be classified into gradient-free and gradient-based methods.
Gradient-free methods are suitable for the highly nonlinear problem
with many local minima, for example, simulated annealing (Kirkpatrick
et al., 1983), genetic algorithm (Holland, 1984), particle swarm al-
gorithm (Eberhart and Kennedy, 1995), etc. For the gradient-based
method, the idea is searching for the reduction of the loss function in
the direction of gradient (Jansen, 2011). It is essential to efficiently
calculate the Hessian using the derivatives of the loss function. A
straightforward approach for obtaining gradients is to calculate its
derivatives numerically. However, this procedure usually requires large
amounts of computational efforts considering the high degrees of free-
dom of the model, and possibly generates unreasonable gradient values
if the selected perturbation to the control variables is not suitable for
the given nonlinearity of the problem (Moraes et al., 2017).

A promising method to resolve these issues is applying the adjoint-
based technique to calculate gradients, especially for the case of high-
dimensional space of control variables. This approach is based on
an adjoint formulation, which combines the original loss function
with other constraints following the optimal control theory. The ad-
joint method largely reduces the computational effort, compared with
the conventional numerical gradients approach for calculating partial
derivatives. It has been originally developed for the optimization of
dynamical systems, for example, the flight paths of rockets and satel-
lites (Bryson and Ho, 2018). In the field of reservoir engineering, as the
development of numerical technique, adjoint-based optimization was
applied in numerical reservoir simulation to perform history matching
for petroleum recovery process (Mehos and Ramirez, 1989; Fathi and
Ramirez, 1984; Ramirez et al., 1984), thermal recovery process (Wei
et al., 1993) and so on. Later, as the conceptions of ‘‘smart well’’ and
‘‘smart field’’ arose, adjoint-based optimization was widely studied and
applied in the field of reservoir engineering and reservoir manage-
ment (Brouwer and Jansen, 2004; Sarma et al., 2005, 2006; Kourounis
et al., 2010; Volkov and Voskov, 2016).

In this study, the DARTS framework is used to implement a data-
driven Discrete Well Affinity (DiWA) model. It is following up on our
recent work (Tian et al., 2021) where the DiWA model was introduced
and tested for a large ensemble of fluvial proxy models as well as a
real petroleum field. However, a fixed uniform permeability of 1000
mD is used to generate the initial guess of the Brugge field in the
study of Tian et al. (2021). In this study, the permeability of each
cell of the stochastic proxy model is randomly sampled based on the
probability density of the field. Before the training of these models,
a filtering procedure is applied to filter out the outliers while keeping
the most promising candidates under a specific threshold. The collected
candidates are then history matched by the observation data. The
application of these stochastic proxy models is essential, because it
enables to search for the optimum solution in a wider range of the
2

parameter space, therefore it avoids being trapped in local minima or
losing the generality especially in the case of lacking field geological
information. Unlike the conventional generation of prior geological
models that require detailed petrophysical data, the stochastic proxy
model uses the much coarser grid to represent the connectivity between
the wells and reservoirs and incorporates the basic geological statistics
of the field at the same time.

The application of the adjoint method and the coarse grid of the
proxy model makes it possible to finish the history matching for a large
ensemble of realizations within few hours. The trained proxy model
can be further used in production optimization problems with high
efficiency also because of its low degrees of freedom. The character-
ization of the geological information using a proxy model is another
important extension compared with our previous work. This extension
is demonstrated by testing on a three-phase 3D proxy model. It shows
that the proxy approach can be used to characterize petrophysical
information of the reservoir if the initial guess is close enough to a
true model. Furthermore, we updated and modified the loss function by
introducing the Dirac delta function. This makes the adjoint framework
more robust because it solves the issue of the time measurement
mismatch between the field observation and the simulator’s model
response, which occasionally happens because of the switching between
the well controls and constraints.

2. Forward modeling formulation

DARTS is a high-performance numerical framework for modeling
subsurface engineering problems. The physical kernels of DARTS utilize
an operator-based linearization (OBL) technique (Voskov, 2017). This
technique was proposed for addressing the challenges of balancing
the accuracy of the numerical model and the performance of the
simulator. The main idea of the OBL approach is parameterizing the
state-dependent operators at the preprocessing stage that simplifies
and accelerates the assembly of Jacobian. Later, the OBL technique
was improved by adaptive parametrization (Khait and Voskov, 2018a)
and implementation at GPU architecture (Khait et al., 2020). Cur-
rently, DARTS framework has been utilized for modeling of advanced
petroleum (Khait and Voskov, 2018b; Lyu et al., 2021a), geother-
mal (Khait and Voskov, 2018c; Wang et al., 2020) and CO2 sequestra-
tion (Kala and Voskov, 2020; Lyu et al., 2021b) applications.

2.1. General formulation of multiphase multicomponent flow

For forward modeling, the multiphase compositional flow problem
with 𝑛𝑝 phase and 𝑛𝑐 components can be described by 𝑛𝑐 equations of
mass conservation:

𝜕
𝜕𝑡

(

𝜙
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑠𝑗

)

+ div
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝒗𝑗 +

𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑞𝑗 = 0, 𝑐 = 1,… , 𝑛𝑐 , (1)

where:

𝜙 porosity,
𝑥𝑐𝑗 mole fraction of component 𝑐 in phase 𝑗,
𝑠𝑗 phase saturation,
𝜌𝑗 phase molar density,
𝒗𝑗 phase velocity,
𝑞𝑗 phase rate per unit volume.

For the phase velocity of each phase, Darcy’s law is applied:

𝒗𝑗 = −
(

𝑲
𝑘𝑟𝑗
𝜇𝑗

(

∇𝒑𝑗 − 𝛾𝑗∇𝒅
)

)

, 𝑗 = 1,… , 𝑛𝑝, (2)

where:

K permeability tensor,
𝑘𝑟𝑗 relative permeability,
𝜇𝑗 phase velocity,
𝑝𝑗 vector of pressures in phase 𝑗,
𝛾𝑗 gravity term,

𝒅 vector of depths (positive downwards).
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Next, a finite-volume discretization on a general structured or un-
structured mesh and backward Euler approximation in time are ap-
plied:

𝑔 = 𝑉
⎛

⎜

⎜

⎝

(

𝜙
∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗

)𝑛+1

−

(

𝜙
∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑠𝑗

)𝑛
⎞

⎟

⎟

⎠

− 𝛥𝑡
∑

𝑙∈𝑳

(

∑

𝑗
𝑥𝑙𝑐𝑗𝜌

𝑙
𝑗𝑇

𝑙
𝑗 𝛥𝜓

𝑙

)

+ 𝛥𝑡
∑

𝑗
𝑥𝑐𝑗𝜌𝑗𝑞𝑗 = 0, 𝑐 = 1,… , 𝑛𝑐 , (3)

where 𝑉 is control volume and 𝑞𝑗 = 𝑞𝑗𝑉 is the source of phase 𝑗. The
ffects of capillarity and gravity are neglected for simplicity. Two-Point
lux Approximation (TPFA) with upstream weighting introducing the
ummation over all interfaces 𝑳 connecting the control volume with
eighboring grid blocks are applied in the course of discretization.
ased on these simplifications, 𝛥𝜓 𝑙 becomes the pressure difference
etween two neighboring grid blocks, where 𝑇 𝑙𝑗 is phase transmissibil-
ty. These notations facilitate the further description of operator-based
inearization.

Eq. (3) is the discretized form of flow and transport equations for
eneral multi-component fluid. Another assumption of instantaneous
hermodynamic equilibrium is chosen to close the system. Here, we
sed the overall molar formulation suggested by Collins et al. (1992).
n the overall molar formulation, the unknowns are [𝑝, 𝑧𝑐 ] and the
hysical state 𝝎 is completely defined by these variables. By applying
he governing and closing relations, the values and their derivatives
f all properties in Eq. (3) with respect to 𝑝 and 𝑧𝑐 can be obtained.

To solve the resulting system of nonlinear equations, Newton–Raphson
method is often applied in reservoir simulation. In this method, the
linearized form of the nonlinear equation system is shown as:

𝜕𝐠(𝝎𝑘)
𝜕𝝎𝑘

(𝝎𝑘+1 − 𝝎𝑘) = −𝐠(𝝎𝑘), (4)

where 𝑘 is the number of nonlinear iteration. The numerical approxima-
tions of the terms in Eq. (3) demand either reliable interpolation tables
(e.g. standard PVT correlations), or a solution of the highly nonlinear
equations (e.g. EoS-based properties).

2.2. Operator-Based Linearization

Based on OBL approach (Voskov, 2017), all terms in Eq. (3) can be
defined as the function of two types of variables, which are physical
state 𝝎 and spatial coordinate 𝝃. Then re-arrange Eq. (3) and define
some new notations:

𝒈𝑐 (𝝃,𝝎,𝒘) = 𝑉 (𝝃)𝜙0(𝝃)
(

𝛼𝑐 (𝝎) − 𝛼𝑐 (𝝎𝒏)
)

− 𝛥𝑡
∑

𝑙
𝛽𝑙𝑐 (𝝎)𝑇

𝑎𝑏(𝝃)(𝑝𝑏 − 𝑝𝑎)

+ 𝜃𝑐 (𝝃,𝝎,𝒘) = 0, 𝑐 = 1,… , 𝑛𝑐 , (5)

where:

𝛼𝑐 (𝝎) = (1 + 𝑐𝑟(𝑝 − 𝑝0))
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑠𝑗 , (6)

𝛽𝑐 (𝝎) =
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗

𝑘𝑟𝑗
𝜇𝑗
𝜌𝑗 , (7)

𝜃𝑐 (𝝃,𝝎,𝒘) = 𝛥𝑡
𝑛𝑝
∑

𝑗=1
𝑥𝑐𝑗𝜌𝑗𝑞𝑗 (𝝃,𝝎,𝒘), (8)

𝑐𝑟 is rock compressibility; 𝜙0 and 𝑝0 are reference porosity and pressure;
𝑎𝑏 is transmissibility between block a and b; 𝝎 and 𝝎𝑛 are unknowns
t the current and the previous timestep, respectively; and 𝒘 are the
ariables defined well controls.

Note that 𝛼𝑐 and 𝛽𝑐 are only dependent on physical state 𝝎. This
ndicates that both operators can be pre-processed and stored in tables
or further use in the course of Jacobian and residual assembly. This
re-processing procedure largely reduces the computational cost and
omplexity in the simulation with highly nonlinear physics. To be more
3

pecific, instead of keeping track of each property and its derivatives
ith respect to nonlinear unknowns at each nonlinear iteration, the
alues of property can be efficiently reconstructed based on the pre-
rocessed table defined in supporting points of physical state 𝝎. When
ssembling the residual terms, a multilinear interpolation procedure
s applied for the physical state 𝝎 located inside of the hyper-cube
efined by supporting points. The interpolation coefficients will yield
artial derivatives needed for Jacobian construction which significantly
implify its assembly. Another advantage of this approach is that the
bstract algebraic operators representing physics of any complexity
hown in Eqs. (6)–(8) can be re-used many times in the process of
orward simulation, data assimilation, or optimization.

. Adjoint gradients formulation

In this section, we introduce the formulation of adjoint equations
nd gradients for history matching in OBL simulation framework. In our
erivations, we will mostly follow the notations from Jansen (2011).
he adjoint gradients formulation is implemented in DARTS framework
or a wide range of energy transition applications.

In adjoint method, an augmented loss function J̄ that shares the
dentical extrema with the original loss function 𝐽 is constructed. It can
e written as:
̄(𝝎, 𝒖,𝝀) = 𝐽 (𝝎, 𝒖) + 𝝀T𝑔(𝝎, 𝒖), (9)

where 𝝎 is the state variables of the reservoir system, 𝒖 is the control
variables of the history matching problem, 𝐽 is the loss function, 𝑔 is
the governing equation of the reservoir system, and 𝝀𝑇 is the transposed
form of Lagrange multipliers. It is noticed that a new variable 𝝀 is
introduced in the augmented loss function J̄ (𝝎, 𝒖,𝝀), compared with
the original loss function 𝐽 (𝝎, 𝒖). The extrema of Eq. (9), therefore,
locate either at the boundary of the feasibility region or at stationary
points. For the latter case, all first-order derivatives with respect to 𝝀,
𝝎 and 𝒖 should be equal to zero, which leads to the following set of
equations:

J̄𝝀 = 𝑔(𝝎, 𝒖) = 0, (10)

J̄𝝎 = 𝝀T𝑔𝝎(𝝎, 𝒖) + 𝐽𝝎(𝝎, 𝒖) = 0, (11)

J̄𝒖 = 𝝀T𝑔𝒖(𝝎, 𝒖) + 𝐽𝒖(𝝎, 𝒖) = 0, (12)

where the notations with subscript 𝝀, 𝝎 and 𝒖 means the deriva-
tives with respect to corresponding variables 𝝀, 𝝎 and 𝒖, respectively.
Eqs. (10)–(12) are the first-order necessary conditions for an optimum.
The Eq. (10) is apparently satisfied already, because it is identical to the
governing equations. Therefore, we only need to focus on Eqs. (11) and
(12), which are known as adjoint equations and optimization equations,
respectively.

For the reservoir simulation problem, we discretize its governing
equation using finite volume method (FVM) spatially and backward
Euler scheme temporally. The governing equation then becomes:

𝑔𝑘(𝝎𝑘,𝝎𝑘−1, 𝒖) = 𝟎, (13)

where the subscript 𝑘 and (𝑘 − 1) means the variables at the 𝑘th and
(𝑘−1)th time step. Generally, the loss function is dependent on the state
variables 𝝎 and control variables 𝒖, which integrates nonlinear function
𝑗 from time 𝑡0 to 𝑡𝐾 and can be written as:

𝐽 (𝝎, 𝒖) = ∫

𝑡𝐾

𝑡0
𝑗(𝝎, 𝒖, 𝑡)d𝑡. (14)

Here the function 𝑗 is usually nonlinearly dependent on the state
variables 𝝎 and control variables 𝒖. It also represents the contribution
to the loss function 𝐽 at a given time 𝑡. This loss function in discretized
form is written as:

𝐽 =
𝐾
∑

𝜟𝒕𝑘𝒋𝑘, (15)

𝑘=1
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I

where 𝜟𝒕𝑘 is the 𝑘th time step and 𝐾 is the total number of the time
steps of model response. The 𝒋𝑘 is defined as:

𝒋𝑘 =
1
𝜟𝒕𝑘

𝛿𝑡(𝑇𝑜𝑏𝑠)
𝑛𝑤
∑

𝑤=1

𝑛𝑝
∑

𝑗=1

(

𝒒𝑤,𝑗 −𝑸𝑤,𝑗
)2 , (16)

where 𝑛𝑤 is the total number of production wells; 𝑛𝑝 is the total number
of phases; 𝒒𝑤,𝑗 and 𝑸𝑤,𝑗 are the model response and observation data
of the 𝑤th production well and the 𝑗th phase at the time 𝑡, respectively;
𝛿𝑡(𝑇𝑜𝑏𝑠) is Dirac measure function and is given as:

𝛿𝑡(𝑇𝑜𝑏𝑠) =
{

1 if 𝑡 ∈ 𝑇𝑜𝑏𝑠
0 if 𝑡 ∉ 𝑇𝑜𝑏𝑠

. (17)

Note that 𝛿𝑡 is the function of 𝑇𝑜𝑏𝑠, and 𝑡 is actually the time at the
endpoint of time interval 𝜟𝒕𝑘. 𝑇𝑜𝑏𝑠 is a set that only contains the marked
time point in observation data, which means it is also a subset of all
the time points of model response. The adjoint Eq. (11) in discretized
form is given as:

𝝀T𝑘+1
𝜕𝒈𝑘+1
𝜕𝝎𝑘

+ 𝝀T𝑘
𝜕𝒈𝑘
𝜕𝝎𝑘

+ 𝜟𝒕T𝑘
𝜕𝒋𝑘
𝜕𝝎𝑘

= 𝟎, (18)

𝝀T𝐾
𝜕𝒈𝐾
𝜕𝝎𝐾

+ 𝜟𝒕T𝐾
𝜕𝒋𝐾
𝜕𝝎𝐾

= 𝟎. (19)

he Lagrange multipliers 𝝀 are found from the solution of Eqs. (18) and
19). Therefore, the gradient of loss function with respect to the control
ariables 𝒖 can be written as:

d𝐽
d𝒖

=
𝜕J̄
𝜕𝒖

=
𝐾
∑

𝑘=1

(

𝝀T𝑘
𝜕𝒈𝑘
𝜕𝒖𝑘

+ 𝜟𝒕T𝑘
𝜕𝒋𝑘
𝜕𝒖𝑘

)

. (20)

q. (20) is the general form of adjoint gradients. For a specific reser-
oir engineering problem, the derivatives in this equation should be
odified to corresponding expressions based on the selection of control

ariables. For example, when the control variables are not dependent
n time, the adjoint gradient should be obtained by summing the
erm in Eq. (20) over all time steps, such as optimizing porosity or
ransmissibility (i.e. history matching). For the control variables are the
unction of time, we distribute the gradient terms of each time step into
ifferent control steps, and sum them up separately. The validation and
omparison between the adjoint gradient and numerical gradient can
e found in Tian et al. (2021).

. Discrete Well Affinity model

In this section, we briefly describe important ingredients required
or implementation of DiWA proxy methodology.

.1. Connectivity graph

In reservoir numerical simulation, the governing equations of flow
nd transport in porous media need to be discretized temporally and
patially before solving the system of nonlinear equations. The spa-
ial discretization of the reservoir is typically performed based on
he control volume partitioning. This procedure provides a connectiv-
ty graph, which represents the spatial connections between discrete
ontrol volumes and associated transmissibilities (Lim, 1995). An au-
omatic open-source meshing software GMSH (Geuzaine and Remacle,
009) is utilized in this study to generate the connectivity graph of the
roxy-model domain.

By setting different characteristic lengths in certain regions, GMSH
s capable of meshing a geometric domain with different resolutions.

hen gridding the reservoir domain, we adjust the values of charac-
eristic length to preserve the separation of wells in different control
olumes while keeping the number of them low. The output file of
MSH contains information about vertexes, edges and volumes. Based
n this information, an unstructured two-point discretization is applied
o generate a connection list and associated parameters (e.g. transmis-
4

ibility) based on the initial distribution of permeability and thickness
when known). The obtained model parameters can be used as an initial
uess for the training. Here, the most important information required
or the DiWA model is a connectivity graph which helps to evaluate
ells affinity.

.2. DiWA model construction

We utilize the Brugge field model to demonstrate the procedure of
enerating a DiWA model and to apply it in our framework. Brugge is a
enchmark model for the optimization of reservoir production (Peters
t al., 2010), which is used to generate observation data for the DiWA
odel training. The structure of the Brugge model consists of an East-
est elongated half-dome with a large boundary fault at the northern

dge. There are 20 production wells surrounded by 10 injection wells in
his field. The realization encoded as FY-SS-KP-8-73 is used in this study
o prepare the observation data of oil production. The permeability
istribution of the realization FY-SS-KP-8-73 can be found in Fig. 1.
his model runs for 3720 days with BHP control changing every 120
ays. For the DiWA model, unstructured meshing and finite-volume
iscretization (Karimi-Fard et al., 2004) are applied to generate a coarse
esolution DiWA model.

Notice that this unstructured DiWA model can only be considered
s a proxy model since it is based on very basic information about the
riginal field. For example, the reservoir boundaries are approximated
y several piece-wise linear segments as can be seen in Fig. 1. The large
oundary fault is not included in the unstructured DiWA model. The
ell locations are obtained based on projecting the real well locations

o the nearest unstructured control volumes. The entire 2D domain
f this field is meshed and then extruded in the vertical direction by
n average constant thickness of the reservoir. Different characteristic
engths are set to generate a grid with coarser and finer meshing in the
uter and inner boundaries, respectively. The finer inner resolution is
xplained by the main well locations and corresponding flow dynamics
hile the rest of the domain is located in the peripheral water drive
ith no significant flow. This helps to largely reduce the degrees of

reedom of the proxy model. However, the DiWA model can always be
urther refined or elaborated simply by adding more piece-wise linear
egments inside or at the boundary of the reservoir domain when it is
ecessary, for example, introducing the fault or extra cells around wells
s shown in Tian et al. (2021).

As for the discretization of the well, it is conducted by adding the
ell to the connection list in the form of a well head block and a
ell body block. The well head, where the well control or constraint is
ssigned, is only connected with the well body, then the well body is
urther connected to the neighboring reservoir block. This procedure
bove shows the flexibility of discretizing the reservoir and wells,
ecause we only need to update the existing connection list of the
eservoir by adding two extra connectivities (i.e. the well head to
he well body, and the well body to the reservoir block) for a well.
ne may also notice that the newly added well blocks may not be
ecessarily located in the center of the reservoir block, so that the well
ndex cannot be calculated correctly. This problem can be solved by
ntroducing an equivalent square block for the triangular cell where the
ell is located, see Eq. (32). Although this method cannot provide an
ccurate value of the well index for the given well, the approximated
ell index will be further updated in the course of training.

.3. The pseudocode for the construction and application of diwa model

The construction procedure of DiWA model is shown in Algorithm 1.
t should be noted that in this study, the sampling of the permeability 𝐾

is based on the probability density of the high-fidelity model. However,
the high-fidelity model is not the prerequisite in practice because this
sampling procedure can be done as long as there is information of the

probability density of the reservoir parameters (e.g., from logs).
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Fig. 1. The realization FY-SS-KP-8-73 and the unstructured DiWA model. Note that the realization FY-SS-KP-8-73 is a structured grid model with 44 550 active blocks, while there
are only 283 cells in the unstructured DiWA model..
Once the collection of the DiWA model candidates are finished, they
will be trained to fit the observation data by changing the values of
the transmissibility 𝑇 , well index 𝑇𝑤, and several parameters related
to relative permeability. These parameters are the control variables
in history matching and will be explained in Section 5. The trained
DiWA models can be used to predict the reservoir production, because
they are calibrated by the observation data. Production optimization is
another application of these trained DiWA model. The pseudocode of
the training and the forecast application of the DiWA models are shown
in Algorithm 2.

Algorithm 1 The construction of DiWA model candidates
1: Use several piece-wise linear segments to represent the reservoir

boundaries
2: Discretize the reservoir with very coarse unstructured 2D cells
3: Extrude the 2D mesh in vertical direction by an average constant

reservoir thickness to form a 3D model
4: 𝑠𝑒𝑒𝑑 = 1, 𝑁 = 1, and 𝑙𝑖𝑠𝑡𝑠𝑒𝑒𝑑
5: while 𝑁 ≤ 1000 do
6: Do the sampling of permeability 𝐾 for each cell
7: Generate the connection list to represent the connectivity

between the neighboring cells
8: Calculate the transmissibility 𝑇 and add them to the connection

list
9: Add the well cells to the reservoir mesh

10: Calculate the well index 𝑇𝑤 for each well and add them to the
connection list

11: Run a forward simulation for the proxy model
12: Calculate the misfit between the model response and the

observation data
13: if misfit ≤ threshold then
14: Collect this model as candidate and save the 𝑠𝑒𝑒𝑑 in

𝑙𝑖𝑠𝑡𝑠𝑒𝑒𝑑 [𝑁]
15: 𝑁 = 𝑁 + 1
16: end if
17: 𝑠𝑒𝑒𝑑 = 𝑠𝑒𝑒𝑑 + 1
18: end while

5. Governing relations for control variables

Before training the model, it is essential to scale different control
variables into suitable ranges of value. This is because some control
variables may have an extremely different scale of values compared
with other control variables in the optimization problem, and some
of the existing optimization algorithms are sensitive to the scale of
the optimization problem. There are some researches about the history
matching using log transformation to the permeability when applying
ensemble Kalman filter method (Evensen et al., 2007; Geir et al.,
2002; Park and Choe, 2006). However, the log transformation is not
applicable for the problem with highly non-Gaussian distribution (Shin
et al., 2010; Zhou et al., 2011). In this study, history matching will be
used in the Brugge field, which is not a reservoir with Gaussian distri-
bution of permeability. Also, considering that there are three different
5

Algorithm 2 The training and the forecast application of the DiWA
model
1: for N=1,2,3... do
2: 𝑠𝑒𝑒𝑑 ⇐ 𝑙𝑖𝑠𝑡𝑠𝑒𝑒𝑑 [𝑁] ⊳ 𝑙𝑖𝑠𝑡𝑠𝑒𝑒𝑑 is generated from Algorithm 1
3: Use 𝑠𝑒𝑒𝑑 to reproduce the DiWA model candidate
4: Re-scale 𝑇 , 𝑇𝑤, and

{

𝑆𝑜𝑟, 𝑆𝑤𝑐 , 𝑛𝑜, 𝑛𝑤, 𝑘𝑒𝑟𝑤𝜌𝑤∕𝜇𝑤, 𝑘
𝑒
𝑟𝑜𝜌𝑜∕𝜇𝑜

}

in
the range of (0, 1)

5: while 𝑚𝑖𝑠𝑓𝑖𝑡 > 𝑡𝑜𝑙𝑚𝑖𝑠𝑓𝑖𝑡 and 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 > 𝑡𝑜𝑙𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 do
6: Calculate the gradients with respect to 𝑇 and 𝑇𝑤 using

adjoint method
7: Calculate the gradients with respect to

{

𝑆𝑜𝑟, 𝑆𝑤𝑐 , 𝑛𝑜, 𝑛𝑤, 𝑘𝑒𝑟𝑤𝜌𝑤∕𝜇𝑤, 𝑘
𝑒
𝑟𝑜𝜌𝑜∕𝜇𝑜

}

using finite difference
method

8: Update 𝑇 , 𝑇𝑤, and
{

𝑆𝑜𝑟, 𝑆𝑤𝑐 , 𝑛𝑜, 𝑛𝑤, 𝑘𝑒𝑟𝑤𝜌𝑤∕𝜇𝑤, 𝑘
𝑒
𝑟𝑜𝜌𝑜∕𝜇𝑜

}

using the gradients
9: Calculate the misfit between the model response and the

observation data
10: end while
11: Set the total simulation time as 𝑡 = 𝑡𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 + 𝑡𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 to do the

forecast
12: Re-run the trained model using the optimized control variables
13: Calculate the errors between the model response and the

observation data
14: Plot and compare the model response and the observation data
15: end for

types of control variables (transmissibility, well index, and rock-fluid
interaction parameters) that will be used in the model training, we
choose to apply the corresponding three different scaling factors to
normalize them, instead of simply using the log transformation. For
example, the magnitude of transmissibility is usually around 10000,
while the connate water saturation and residual oil saturation are less
than 0.49. The large difference between the magnitudes of different
control variables may result in a very bad optimizer’s performance.
In this study, we choose to normalize them into the range of (0, 1).
Therefore, different scaling factors need to be chosen for different types
of control variables to make them fall into the same range of (0,
1). More details of the scaling factor can be found in Section 6. The
gradients with respect to transmissibility and well index are calculated
using the adjoint method to achieve high computational efficiency,
while the gradients with respect to rock-fluid interaction parameters
are calculated using numerical derivatives.

5.1. Transmissibility parameters

In the DARTS framework, connection list (Lim, 1995) is applied
to represent the spatial connectivity graph of the reservoir model.
The connection list contains information about the interfaces between
grid blocks and the corresponding transmissibility of those connec-
tions. The transmissibility 𝑇 𝑎𝑏 between grid blocks 𝑎 and 𝑏 is defined
following (Karimi-Fard et al., 2004):

𝑇 𝑎𝑏 = 𝑐
(

𝛾𝑎𝛾𝑏
)

, 𝛾𝑖 = 𝐴
𝑘𝑖 , (21)
𝛾𝑎 + 𝛾𝑏 𝐷𝑖
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where 𝑐 is the unit conversion factor, 𝐴 is the interface area between
block a and b, 𝐷𝑖 is the distance from the pressure node to the interface
along the line connecting two pressure nodes and 𝑘𝑖 is the grid block
permeability.

It is noticed that 𝑇 𝑎𝑏 can be considered as a linear parameter with
espect to the flux term in Eq. (5), though it is nonlinear in respect
o the loss function. The initial guess of transmissibility can be gener-
ted based on Eq. (21) with an appropriate estimate of petrophysical
nformation. The number of transmissibility parameters is large in the
roxy model, which corresponds to the high cost of gradient evaluation
ased on numerical gradients. In order to speed up these calculations,
he adjoint method has been adopted for these parameters.

.2. Well index parameters

Considering that the extremely coarse grid will be used to represent
he complex real field, we introduce the well index as a control variable
n the history matching. The well index can be seen as an additional
egree of freedom to compensate for the extremely coarse scale of the
ontrol volumes. Well index is a measure of well potential to inject fluid
nto the reservoir or extract fluid from reservoir (Peaceman, 1983). For
single-phase flow, well index can be defined as:

𝑤 = 𝑐
2𝜋𝛥𝑧

√

𝑘𝑥𝑘𝑦
ln 𝑟𝑜∕𝑟𝑤 + 𝑆

, (22)

where

𝑟𝑜 = 0.28

[

(

𝑘𝑦∕𝑘𝑥
)1∕2 𝛥𝑥2 +

(

𝑘𝑥∕𝑘𝑦
)1∕2 𝛥𝑦2

]1∕2

(

𝑘𝑦∕𝑘𝑥
)1∕4 +

(

𝑘𝑥∕𝑘𝑦
)1∕4

. (23)

Here 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧 are the block size in x, y, and z direction, respec-
tively; 𝑘𝑥 and 𝑘𝑦 are the permeability in 𝑥 and 𝑦 direction, respectively;
𝑟𝑤 is the radius of the well; 𝑆 is skin factor.

It is noticed that 𝑇𝑤 is also a linear parameter between the pressure
gradient and the well rate. The amount of well index parameters is
equal to the number of wells in the reservoir. In this study, the gradient
evaluation with respect to well index parameters is also performed by
the adjoint gradients approach.

5.3. Rock-fluid interaction parameters

For rock-fluid interactions, we use Brooks and Corey (1964) model
to generate two-phase data. To cover the three-phase systems, we
utilize the Stone 1 model (Stone, 1970) describing the relations of
relative permeabilities between oil, water, and gas. In this model, the
three-phase water relative permeability 𝑘𝑟𝑤 depends only on water
saturation and is identical to 𝑘𝑟𝑤𝑜 measured in the water/oil system:

𝑘𝑟𝑤(𝑆𝑤) = 𝑘𝑟𝑤𝑜(𝑆𝑤). (24)

This is also true for relative permeability of gas in three-phase system:

𝑘𝑟𝑔(𝑆𝑤) = 𝑘𝑟𝑔𝑜(𝑆𝑔). (25)

As for the relative permeability of oil 𝑘𝑟𝑜, it depends on water and gas
saturations:

𝑘𝑟𝑜(𝑆𝑤, 𝑆𝑔) =
1

𝑘𝑟𝑜𝑤(𝑆𝑤𝑐 )
𝑆∗
𝑜
𝑘𝑟𝑜𝑤(𝑆𝑤)
1 − 𝑆∗

𝑤

𝑘𝑟𝑜𝑔(𝑆𝑔)
1 − 𝑆∗

𝑔
, (26)

where 𝑆∗
𝑜 , 𝑆∗

𝑤 and 𝑆∗
𝑔 are the scaled saturations of oil, water and gas,

espectively:

∗
𝑜 =

𝑆𝑜 − 𝑆𝑜𝑚
1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑚

, 𝑆∗
𝑤 =

𝑆𝑤 − 𝑆𝑤𝑐
1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑚

, 𝑆∗
𝑔 =

𝑆𝑔
1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑚

.

(27)
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ccording to Fayers and Matthews (1984), 𝑆𝑜𝑚 is defined as:

𝑜𝑚 = 𝛼𝑆𝑜𝑟𝑤 + (1 − 𝛼)𝑆𝑜𝑟𝑔 , 𝛼 = 1 −
𝑆𝑔

1 − 𝑆𝑤𝑐 − 𝑆𝑜𝑟𝑔
. (28)

here 𝑆𝑜𝑟𝑤 is the residual saturation of oil for a water/oil system, 𝑆𝑜𝑟𝑔
s the residual saturation of oil for a gas/oil system.

The whole reservoir may be divided into several flow regions, where
n a given region we assume that the fluid flow is governed by the
ame set of rock-fluid interaction parameters. For a water/oil system,
he vector of these parameters are:

𝑛 =
{

𝑛𝑤, 𝑛𝑜, 𝑆𝑤𝑐 , 𝑆𝑜𝑟, 𝑘
𝑒
𝑟𝑤𝜌𝑤∕𝜇𝑤, 𝑘

𝑒
𝑟𝑜𝜌𝑜∕𝜇𝑜

}

(29)

he first four parameters are dimensionless, and the last two parame-
ers are scaling of 𝛽𝑐 operator in Eq. (7). For a water/oil/gas system,
his vector is written as:

𝑛 =
{

𝑛𝑔 , 𝑛𝑜, 𝑛𝑤, 𝑆𝑔𝑐 , 𝑆𝑜𝑟, 𝑆𝑤𝑐 , 𝑘
𝑒
𝑟𝑔 , 𝑘

𝑒
𝑟𝑜, 𝑘

𝑒
𝑟𝑤

}

(30)

he gradients with respect to the rock-fluid interaction parameters are
alculated using numerical derivatives in the course of model training.

. Results

In this section, we start with an example that proves the applicabil-
ty of the DiWA approach for truly 3D models with a three-phase flow.
esides, this example demonstrates that the trained proxy model can
ecover the petrophysical information when the initial guess is close
nough to the true solution. Finally, we will show an efficient approach
or the generation of the DiWA proxy models which can be used in
ncertainty quantification or robust optimization.

.1. Deterministic reconstruction of permeabilities

To test the framework, we take a refined SPE 1 model (Odeh, 1981)
or the generation of true data. In this model, there are mainly three
ifferent layers with constant permeability. Apart from the oil and
ater phase, the gas phase is also considered in this model and the gas

s injected from the top layer at one of the reservoir corners. We build
coarse model and train it based on the observation data generated

rom the modified SPE 1 model. After the coarse model is trained,
e interpret the regressed transmissibility back into permeability and

ompare them with the permeability distribution of the original SPE 1
odel.

SPE 1 model is a basic test for the three-phase three-dimension
lack-oil reservoir modeling technique, see Fig. 2. In our modified
ersion, there are 37500 grid blocks in total [50 × 50 × 15]. The block
imension in both 𝑥 and 𝑦 directions is 60 m. In z direction, each layer
s divided into 5 grid blocks, and the block sizes for three layers in z
irection are 1.2 m, 1.8 m, and 3 m, respectively. The porosity is 0.3.
he permeabilities for three layers from top to bottom are 500 mD, 50
D, and 200 mD, respectively. There are two wells (one injector and

ne producer) are located in the opposite corners of the reservoir. Gas
s injected into the top layer and oil is produced from the bottom layer.
he initial pressure of this model is 330 bar. The initial molar fraction
f gas, oil, and water are 0.001, 0.648, and 0.351, respectively. The
njector is set at a constant BHP control of 400 bar, and the producer is
et at a constant BHP of 150 bar. The total simulation time of this model
s 2000 days. More details about the parameters of PVT and relative
ermeability used in this model can be found in Appendix A.

A proxy model with 300 grid blocks [10 × 10 × 3] is constructed and
rained based on the observation data generated from the high-fidelity
odel. To make sure the well positions of the coarse model are identical

o the high-fidelity model, we set the injector and producer at the grid
lock (1,1,1) and (10,10,3), respectively. Since three phases are con-
idered in this problem, Stone 1 Model (Stone, 1970) is implemented
o calculate the three-phase relative permeability, and the same sets of

he parameters of the Stone 1 Model are applied in both high-fidelity
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Table 1
The iterations and the errors between the rates of the DiWA and the high-fidelity model before and after
training under different perturbations around the true transmissibility.
Perturbation Error-initial, % Error-trained, % Iteration

2% 0.1167 0.0525 3
5% 0.0846 0.0501 4
10% 0.3057 0.0414 5
20% 2.0281 0.0436 2
40% 10.4036 0.0429 3
80% 45.8739 0.0450 12
100% 82.5188 0.0197 34
Fig. 2. SPE 1 model with two wells located at the opposite corners. The injector and
its perforations are located at grid block (3,3,1–5). The producer and its perforations
are located at grid block (48,48,11–15). The dimension in z direction is exaggerated
15 times for better visualization.

and proxy model and they are not adjusted in the course of model
training. Only the control variables of transmissibility and well index
are adjusted in the course of model training using the adjoint gradients.
The initial guess for transmissibilities and well indexes are generated
by adding a random perturbation around the true transmissibility of
the high-fidelity model. The scaling factors for transmissibilities and
well indexes are 10000 and 1000, respectively. The error between the
trained parameters and the true data is calculated using the following
equation:

𝐸 =
𝛿𝑡(𝑇𝑜𝑏𝑠)

∑𝐾
𝑘=1

∑𝑛𝑤
𝑤=1

∑𝑛𝑝
𝑗=1

(

𝒒𝑘,𝑤,𝑗 −𝑸𝑘,𝑤,𝑗
)2

∑𝐾
𝑘=1

∑𝑛𝑤
𝑤=1

∑𝑛𝑝
𝑗=1

(

𝑸𝑘,𝑤,𝑗
)2

. (31)

The training results are shown in Table 1 and Fig. 3.
It can be seen from Table 1 that as the increasing perturbation to

the true transmissibility, the errors between the proxy and high-fidelity
model increase from 0.1% to 83%. After the training, all proxy models
can achieve a very small error value. It is noticed that the error after
training for the 100%-perturbation case is 0.0197%, which is even
smaller than the error of 0.0525% of the 2%-perturbation case. This
can be explained by the non-uniqueness of the minimization procedure
since the errors after training of all cases are close to zero.

However, a smaller error between the DiWA model and the high-
fidelity model does not guarantee that the true solution is recovered
due to the ill-posedness of the inverse problem. In Fig. 3, the mean
values and deviations of the permeability values for each layer of the
proxy model demonstrate significant divergence for the perturbation
larger than 20%. This indicates that the selection of initial guesses
can largely affect the characterization results of geological information.
When the initial guess of the proxy model is generated based on
highly reliable geological information, the trained model can recover
the true petrophysical characteristics. However, when the geological
information is missing or not sufficiently constrained, we need to apply
a sampling procedure to generate the proxy model candidates. An
example of the sampling procedure and training results is described
next.
7

Fig. 3. The mean and the deviation of the horizontal permeability of DiWA model
after training. The dots and the error bars represent the mean values and the deviation
for the whole grid blocks in each layer, respectively.

6.2. The training and production forecast of the diwa proxy model

We choose the unstructured model Case 1 and Case 5 from Tian
et al. (2021) to test the proposed framework. Both grids are shown
in Fig. 4. The control variables of the coarser proxy model consist
of 394 transmissibility, 30 well indexes, and 6 rock-fluid interaction
parameters. As for the finer proxy model, there are 953 transmissibility,
30 well indexes, and 6 rock-fluid interaction parameters.

We will first show the training and production forecast results
based on the coarser model. The reservoir initial pressure, initial oil
saturation, and BHP control in the DiWA model are kept identical to the
high-fidelity model. Unlike the conventional process of the generation
of prior geological models that requires detailed well logging data,
seismic data, etc., we randomly sample the permeability for each cell
of the DiWA model based on the probability density of the realization
FY-SS-KP-8-73 shown in Fig. 5. The generation of these stochastic
DiWA models can be done in the situation of very limited geological
information, while it incorporates the basic geological statistics of the
field.

Eq. (21) is then applied to compute the connection list and the
corresponding transmissibilities for the coarser model. These transmis-
sibilities are taken as the initial guess of transmissibility parameters
and are bounded in the range of (0.01, 50 000). The scaling factor
for the transmissibility is 50000. As for the initial guess for well
indexes, Eqs. (22) and (23) provide an approximation of well index
for the structured grid. Here we introduce an equivalent length of the
triangular cell in the unstructured grid to replace the structured block
size 𝛥𝑥 and 𝛥𝑦 in Eq. (23). They are given by:

𝛥𝑥 = 𝛥𝑦 =
√

𝐴𝑡𝑟𝑖, (32)

where 𝐴𝑡𝑟𝑖 is the area of the given triangular cell. Eq. (32) assumes that
the triangular cell in the unstructured grid has the same effect on the
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Fig. 4. Two DiWA models with different grid resolutions from Tian et al. (2021).
Fig. 5. The probability density for the permeability of the realization FY-SS-KP-8-73. The 𝑥 axis of the right figure represents the logarithmic permeability.
well index as the square block with the same area in the structured
grid. The well index is bounded in the range of (0.001, 10 000), and
they are normalized by the scaling factor 10000. The initial guess of 6
rock-fluid interaction parameters are uniformly sampled from the range
of (0.00001, 5), (0.00001, 5), (0, 0.49), (0, 0.49), (100, 3000), and (10,
2000), respectively. These 6 rock-fluid interaction parameters will be
applied in the whole reservoir, and they are normalized by the scaling
factors 5, 5, 0.49, 0.49, 3000, and 2000, respectively. The parameters
of relative permeability and the PVT data of oil used in the Brugge
high-fidelity model can be found in Appendix B.

The high-fidelity model runs for 3720 days to generate true obser-
vation data. For every 120 days, the BHP controls of injection wells are
set as 170 bar plus uniformly distributed random perturbations ranging
from 1 to 30, and the BHP controls of production wells are set 130 bar
minus uniformly distributed random perturbations ranging from 1 to
30, see Fig. C.14 in Appendix C. We choose the first 3000 days as the
training period to train the DiWA model. After that, the DiWA model
continues to run for 720 more days in order to test the accuracy of the
forecasting period compared with the true response.

Before the training of the DiWA model, we first sample for many
different realizations and then check their misfit of the total oil and
water rate between the model response and observation data. The
threshold for the rate variability is taken as 60% of true rate, and we use
this threshold to filter out the outliers. Only the realization that meets
this threshold will be retained otherwise discarded. This sampling
procedure would not stop until 1000 candidates of prior realization are
collected. Later, these 1000 realizations are set as the initial guesses
to train the DiWA model. Note that the training procedure for the
ensemble of proxy models can be finished within a limited time thanks
to the high efficiency of gradient calculation using the adjoint method
and the utilization of computer clusters. The total training time of the
1000 realizations took below 12 hours on 10 cluster nodes with total
40 Intel Xeon CPU E5-2650 v3 processors.

The results of the total oil and water production rate of 100 best
realizations are shown in Fig. 6. The gray and blue curves represent
the rate before and after training, respectively. The red curves show
the true data. The vertical dashed lines separate the training periods
and the prediction periods. It is clearly seen that proxy models cannot
capture the characteristics of the first time period (i.e. transient period
that is completed at 400 days) of oil production due to the coarse
8

representation of well connectivity in the proxy methodology. How-
ever, the later period is captured quite well and the deviation of the
model response from the true solution is very limited. This deviation
increases when the model switch from training to forecast period which
is expected.

More detailed comparisons of oil rates for 20 production wells are
plotted in Fig. 7. The results show that the mean error of the training
period and prediction period of oil rate are 0.59% and 0.62%, respec-
tively. As it can be seen from Fig. 7, the oil rates of production wells
have a good match with the true data in the training period (before
the vertical dashed lines). It can be seen that only a few production
wells have a relatively larger spread of oil rates in the forecast period
compared with the spread in the training period. The water production
curves of these 20 production wells are shown in Fig. 8. As it can
be seen that most of the wells also have a good match with the true
data of water production rates. There are three wells (Well:P01, P04,
and P05) that have water breakthrough after the training period. We
plotted these three wells in Fig. 9 separately. Note that the magnitudes
of 𝑦 axis (water production rate) of these three wells are smaller than
the rest of the wells. Most of the realizations capture the timing of
the water breakthrough. But the water rates of these realizations after
water breakthrough have a relatively larger spread compared with the
curves before water breakthrough. Again, these results are expected
since proxy models have a limited forecast capability.

Similarly, we implement the identical filtering and training strategy
for the finer model in Fig. 4, which is a much finer unstructured grid
and has more degrees of freedom compared with the coarser model.
The total production rates of oil and water are shown in Fig. 10. The
oil rates of 20 production wells are plotted in Fig. 11. It can be seen
that the spread of the oil rates has been reduced for some wells. The
resulting mean error of the training period and prediction period are
0.44% and 0.17%, respectively. The total training time took below
23 h on the same cluster setup. The water production curves of these
20 production wells are plotted in Fig. 12. The forecast results of
water breakthrough of Well:P01, P04, and P05 are shown in Fig. 13.
Similar conclusion can be drawn that the spread of the water rates is
reduced compared with the results of Case 1 in Fig. 8, and most of the
realizations are able to capture the timing of water breakthrough. The
forecast after water breakthrough also has a relatively larger spread
compared with the curves before water breakthrough.
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Fig. 6. The total oil (left) and water (right) production rate of 100 best fit realizations before and after training of Case 1 (coarse model).
Fig. 7. The oil rates of the 100 best fit realizations (blue curves) and the observation data (red curves); 𝑥 axis shows the production time (days), 𝑦 axis shows the oil production
ate (m3/day); the mean error of training period and prediction period between these 100 realizations of DiWA model of Case 1 (coarse model) and the observation data are
.59% and 0.62%, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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. Conclusion and discussion

In this study, we presented a new adjoint framework using an
perator-Based Linearization (OBL) approach. This framework takes

he advantage of the high efficiency of the OBL technique and exploits
n abstract interpretation of physics benefiting computational perfor-
ance for a forward simulation. The adjoint framework is implemented

n the Delft Advanced Research Terra Simulator (DARTS) and applied
or calculating the gradients with respect to transmissibility and well in-
exes. Later, these adjoint gradients and the numerical derivatives with
espect to the rock-fluid parameters are intergrated for the training of
roxy models based on gradient optimization. We constructed Discrete
ell Affinity (DiWA) data-driven proxy model with a limited number

f degrees of freedom and impressive forward simulation performance.
he main idea of the DiWA model is that it uses very coarse grid
nd very basic geological information to represent a complex reservoir
tructure and the fluid flow in the reservoir. The coarse grid can be
ither structured or unstructured. DiWA model includes the geological
roperties like the average reservoir thickness, porosity, etc. But more
9

p

eological properties can also be added to the DiWA model if they are
vailable.

In this work, we tested a simple 3D proxy model with multiple
ayers and three flowing phases. This model was trained to match
bservation data generated from a modified SPE 1 model. The results
howed that the proxy model can be used to characterize geological
nformation of the reservoir when the initial guess is generated based
n reliable geological information. But this may not be true when the
nitial guess for the model is far from the true geology.

This inspires us to introduce an efficient sampling approach where
ach statistical member has been trained to match the true data.

high-fidelity Brugge model was utilized to generate true data for
odel training and test the performance of the proposed approach. In

he procedure of true data generation, uniformly distributed random
erturbations were added to BHP control. The generated true data were
sed then to train the DiWA model. The proxy model used in this study
nly contains some basic geological information like the contour and
he average thickness of the original reservoir model. However, more
nformation can be added to this framework to improve the training
rocess with appropriate regularization.
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Fig. 8. The water production rates of the 100 best fit realizations (blue curves) and the observation data (red curves) for Case 1; 𝑥 axis shows the production time (days), 𝑦 axis
shows the oil production rate (m3/day). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. The water production rates of the 100 best fit realizations (blue curves) and the observation data (red curves) for Well:P01, P04 and P05 of Case 1; 𝑥 axis shows the
production time (days), 𝑦 axis shows the oil production rate (m3/day). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 10. The total oil (left) and water (right) production rate of 100 best fit realizations before and after training of Case 5 (fine model).
The proposed framework has several benefits. Firstly, the OBL tech-
ique helps to increase the efficiency of the assembly of the residual
nd the Jacobian in both forward simulation and adjoint gradients
alculation. Secondly, the performance of the training improved sig-
ificantly since the cost of the adjoint gradient calculation is almost
10
equivalent to a single forward run, which makes feasible a proposed
stochastic DiWA proxy methodology. Furthermore, if more control
variables are introduced to the model, a higher convergence efficiency
of the adjoint method can be obtained compared with the numerical

gradients approach.
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Fig. 11. The oil rates of the 100 best fit realizations (blue curves) and the observation data (red curves); 𝑥 axis shows the production time (days), 𝑦 axis shows the oil production
rate (m3/day); the mean error of training period and prediction period between these 100 realizations of DiWA model of Case 5 (fine model) and the observation data are 0.44%
and 0.17%, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 12. The water production rates of the 100 best fit realizations (blue curves) and the observation data (red curves) for Case 5; 𝑥 axis shows the production time (days), 𝑦
axis shows the oil production rate (m3/day). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
11
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Fig. 13. The water production rates of the 100 best fit realizations (blue curves) and the observation data (red curves) for Well:P01, P04 and P05 of Case 5; 𝑥 axis shows the
production time (days), 𝑦 axis shows the oil production rate (m3/day). (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Appendix A

SPE 1 model is a three-phase three-dimensional black-oil model
from the SPE-9723-PA paper (Odeh, 1981), which means there are
dissolved gas existing in the reservoir fluids. The density of oil, water,
and gas at the surface condition are 786.5 kg/m3, 1037.8 kg/m3, and

3 −5 −1
12

0.97 kg/m , respectively. The rock compressibility is 4.35 × 10 bar
Table A.2
The parameters of relative permeability used in SPE 1 model.

Phase Oil Water Gas

Residual saturation 0.103 0.197 0.013
End point relative permeability 0.584 0.910 0.830
Saturation exponent 2.54 1.01 1.62

Table A.3
The formation volume factor and viscosity of the gas phase in SPE 1 model.

Pressure (bar) Formation
volume factor
(–)

Viscosity (cp)

1 166.666 0.008
18 12.093 0.0096
35 6.274 0.0112
69 3.197 0.014
137 1.614 0.0189
171 1.294 0.0208
205 1.08 0.0228
273 0.811 0.0268
341 0.649 0.0309
613 0.386 0.047

when the reference pressure is 277.0 bar. The water formation volume
factor, compressibility, and viscosity at the same reference pressure are
Fig. C.14. The BHP control of production wells; 𝑥 axis shows the production time (days), 𝑦 aixs shows the BHP of production wells (bar); The vertical dashed lines separate the
training periods and the prediction periods.
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Table A.4
The formation volume factor, gas oil ratio, and viscosity of the oil phase in SPE 1 model.
Pressure (bar) Formation

volume factor
(–)

Gas oil ratio (–) Viscosity (cp)

1 1.062 0.001 1.04
18 1.15 0.0905 0.975
35 1.207 0.18 0.91
69 1.295 0.371 0.83
137 1.435 0.636 0.695
171 1.5 0.775 0.641
205 1.565 0.93 0.594
273 1.695 1.270 0.51
613 1.579 1.270 0.74
E

E

F

F

G

G

G

H

J

J

J

K

K

K

K
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K
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Table B.5
The parameters of relative permeability used in Brugge high-fidelity model.

Phase Oil Water

Residual saturation 0.15 0.225
End point relative permeability 0.4 1.0
Saturation exponent 3.0 3.0

Table B.6
The formation volume factor and viscosity of oil in the Brugge model.

Pressure (bar) Formation
volume factor
(–)

Viscosity (cp)

1 1.0007 1.294
170 0.9780 1.294
500 0.9337 1.294

1.029, 4.54 × 10−5 bar−1, and 0.31 cp, respectively. The parameters
elated to the relative permeability and PVT data of oil and gas phases
an be found in Tables A.2–A.4.

ppendix B

The dead oil model is applied in the Brugge field. There are only
il and water phases existing in the reservoir throughout the pro-
uction period. The density of oil and water are 897.0 kg/m3 and
002.8 kg/m3, respectively. The rock compressibility is 5.08×10−5 bar−1

hen the reference pressure is 170.0 bar. The water formation volume
actor, compressibility, and viscosity at the same reference pressure are
.9927, 4.35 × 10−5 bar−1, and 0.32 cp, respectively. The parameters
elated to the relative permeability and PVT data of oil can be found
n Tables B.5 and B.6

ppendix C

See Fig. C.14
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