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Summary

Precipitation is an important component for a range of different scientific sectors such
as hydrology, numerical weather prediction, climate modeling etc. and needs to be care-
fully monitored. However, rainfall is extremely variable meteorological phenomenon in
space and time making the measurement of rain notoriously challenging task. Point
measurements provide generally accurate direct rain observations but their lack of spa-
tial coverage is a significant limitation. On the contrary, radars are sensors capable of in-
directly measuring rainfall over extended domains with higher level of uncertainty. For
accurate rainfall estimates from weather radar, the complex microphysical properties of
the rain must be known or inferred. The raindrop size distribution (DSD) statistically
describes the microstructure of rainfall. However, similarly to rainfall, DSD also exhibits
significant variability in space and time. The work in this thesis contributes to a better
understanding of the small-scale variability of rainfall by investigating the DSD model-
ing and DSD estimation across different scales.

Initially the aspect of the DSD model was investigated. For remote sensing related
applications it is often necessary to parameterize the DSD in a form of a simple distri-
bution. Several mathematical models have been proposed in the literature to approx-
imate naturally occurring DSDs with the gamma distribution to be the most common.
Despite being the most widely accepted model, only a few studies have focused on pre-
cisely quantifying its adequacy. To investigate that, the gamma model was fitted to Par-
sivel optical disdrometer data collected during a two-month campaign in the Nether-
lands. The adequacy of the gamma model was analyzed using a combination of Kol-
mogorov–Smirnov goodness-of-fit test and Kullback–Leibler divergence. Then, the in-
fluence of the sampling resolution on the adequacy of the gamma model was studied.
The findings show that the majority of the DSDs are not perfectly gamma but are well
approximated by the gamma model at high sampling resolutions.

To better understand the DSD estimation in different scales, a widely used DSD re-
trieval technique based on polarimetric radar data was investigated. Critical assump-
tions behind the retrieval procedure were highlighted in order to outline potential
sources of errors and uncertainties. An initial step involved a sensitivity analysis on a
key component of the retrieval technique: the µ-§ relationship. The µ-§ relations are
often taken for granted without much critical discussion neglecting the fact that the dis-
drometer data used to define them correspond to much smaller sampling volumes than
the radar measurements to which they are applied. The overall analysis shows that the
relationship remains remarkably robust, regardless of the sample size, sampling reso-
lution, inter-event variability, or adequacy of the gamma model. Then, the influence
of calibration errors in radar observations and scale differences between radar and dis-
drometer observations were studied. The calibration correction significantly improved
the accuracy of the retrievals. Determining the scale correction, on the contrary, proved
to be challenging task.

Finally, the µ-§ relationship was further examined. Using twenty-month DSD data
collected by two co-located disdrometers, the observations were cross-checked reveal-
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x Summary

ing that reliable µ-§ relationships can be derived using a single disdrometer, despite
large measurement uncertainties. Even though the second-degree polynomial model
has been extensively used to represent empirical µ-§ relationships, its coefficients have
not clear interpretation. Basis on the double normalization framework a new power-law
model for representing µ-§ relationships was presented. The new power-law relation-
ship was consistent with other relationships from the literature. Then, an analysis of the
µ-§ relationship in convective and stratiform rainfall in the Netherlands was conducted
and potential differences were examined. The derived µ-§ relations were significantly
different from each other highlighting that the relationship is not a statistical artifact but
influenced by several factors such as the rainfall type, the DSD model and the moments
used to normalize the DSD.



Samenvatting1 (in Dutch)

Neerslag is een belangrijke input voor veel wetenschappelijke problemen, waaronder
hydrologie, numerieke weersvoorspelling en klimaatmodellering. Daarom moet het
zorgvuldig worden gecontroleerd en gemeten. Niettemin blijft het meten van regen-
val een uitdagende taak, vooral vanwege de grote ruimtelijke en temporele variabiliteit.
Hoewel in-situ metingen nauwkeurige lokale neerslagwaarnemingen opleveren, ontbe-
ren ze een ruimtelijke dekking, wat hun bruikbaarheid op wereldschaal beperkt. Aan
de andere kant kunnen weerradars de regenval over veel grotere ruimtelijke domeinen
meten, maar hun schattingen worden beïnvloed door hogere niveaus van onzekerheid.
Om de nauwkeurigheid van op radar gebaseerde neerslagschattingen te vergroten, moe-
ten de complexe, kleinschalige microfysische eigenschappen van de regen bekend zijn
of afgeleid worden. In deze context komt de regendruppelgrootteverdeling (DSD) naar
voren als een belangrijke parameter. Net als de neerslagcijfers vertoont de DSD ook aan-
zienlijke ruimtelijke en temporele variabiliteit, die moeilijk te meten en te modelleren
zijn. Dit proefschrift draagt bij aan een beter begrip van de kleinschalige variabiliteit van
regenval door verschillende manieren te onderzoeken om de modellering en schatting
van DSD’s op verschillende schalen te verfijnen.

Het eerste vraagstuk dat wordt onderzocht heeft betrekking op de parametrisering van
de DSD in de vorm van een eenvoudige verdeling. In de literatuur zijn verschillende wis-
kundige modellen voorgesteld om natuurlijk voorkomende DSD’s te benaderen, waar-
bij de gammaverdeling de meest voorkomende is. Er zijn echter maar heel weinig on-
derzoeken die de geschiktheid van dit model rigoureus hebben gekwantificeerd. Onze
eerste bijdrage is de ontwikkeling van een nieuwe methode om de geschiktheid van
het gammamodel te kwantificeren, gebaseerd op een combinatie van de Kolmogorov-
Smirnov goodness-of-fit-test en Kullback-Leibler-divergentie. Deze nieuwe methode
wordt vervolgens toegepast op empirische DSD’s gegevens verzameld tijdens een cam-
pagne van twee maanden in Nederland. Vervolgens werd de invloed van de temporele
bemonsteringsresolutie op de geschiktheid van het gammamodel bestudeerd. De be-
vindingen tonen aan dat de meerderheid van de DSD’s niet perfect gamma zijn, maar
goed worden benaderd door het gammamodel bij hoge bemonsteringsresoluties.

Vervolgens wordt een veelgebruikte DSD ophaaltechniek, gebaseerd op polarimetri-
sche radargegevens, onderzocht. Kritische aannames achter de ophaalprocedure wor-
den uitgelicht om potentiële bronnen van fouten en onzekerheden te schetsen. Een be-
langrijk onderdeel van de ophaalmethode, bekend als deµ-§ relatie, wordt geanalyseerd
en kritisch besproken. In de literatuur worden µ-§ relaties vaak als vanzelfsprekend be-
schouwd zonder veel kritische discussie. Studies negeren bijvoorbeeld vaak het feit dat
µ-§ relaties zijn afgeleid van disdrometer gegevens, die een groter bemonsteringsvo-
lume hebben dan de radarmetingen waarop ze worden toegepast. Uit ons onderzoek
blijkt dat dit schaalverschil toch geen groot probleem is, omdat µ-§ relaties opmerke-
lijk robuust lijken te zijn voor veranderingen in de steekproefomvang, de resolutie van
de monsters, de variabiliteit van de neerslag tussen gebeurtenissen en zelfs de geschikt-

1translated in Dutch by Wouter Paul van Brummelen
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xii Samenvatting (in Dutch)

heid van het gammamodel. Dit resultaat wordt vervolgens gebruikt om de invloed van
kalibratiefouten in radarwaarnemingen te bestuderen, evenals schaalverschillen tussen
radar en disdrometer waarnemingen.

In het laatste deel van het proefschrift wordt de µ-§ relatie verder onderzocht. Met
behulp van een dataset van twintig maanden van co-gelokaliseerde DSD metingen laten
we zien dat het ondanks de grote meetonzekerheden mogelijk is om betrouwbare µ-§
relaties af te leiden met behulp van een enkele disdrometer, zonder de noodzaak van co-
locatie. Vervolgens analyseren we de afgeleide µ-§ relaties in convectieve en stratiforme
regenval in Nederland om aan te tonen dat verschillende neerslagtypen worden geken-
merkt door verschillende µ-§ relaties. Ten slotte bespreken we kritisch het gebruik van
tweedegraadspolynomen voor het fitten van empirische µ-§ relaties, zoals gewoonlijk
in de literatuur wordt gedaan. Nadat we hebben uitgelegd waarom polynomen ontoe-
reikend zijn, stellen we een nieuw, verbeterd machtswetmodel voor, gebaseerd op het
DSD modelleringsraamwerk met dubbele normalisatie. We laten zien dat deze nieuwe
machtswetrelatie consistent is met andere relaties uit de literatuur, maar dat de parame-
ters ervan een duidelijke fysieke interpretatie hebben in termen van de onderliggende
schaalwet die de verschillende momenten van de DSD met elkaar verbindt.



Chapter 1
Introduction

Nature uses only the longest
threads to weave her patterns,

so that each small piece of her fabric
reveals the organization of the entire tapestry.

Richard Feynman

1.1 Motivation

The water cycle, i.e., the continuous transport of water throughout the ecosystem (land,
ocean and atmosphere), is a fundamental mechanism in the complex equilibrium of
the Earth. It is the process by which water evaporates from the surface, rises into the
atmosphere, and condenses to form clouds. These clouds then produce precipitation
(liquid and solid), which falls back to the surface of the Earth. The water that falls onto
the land can either evaporate, flow into rivers and streams, or seep into the ground to
become groundwater. This water eventually makes its way back to the ocean, where the
process starts all over again. The water cycle is an essential component of Earth’s natural
systems, playing a crucial role in regulating the distribution and availability of water for
all living organisms. Any alteration to the delicate balance of the water cycle could have
significant implications for the planet’s ecosystem.

Precipitation is a governing process of the global water cycle. According to the lat-
est IPCC report (Caretta et al., 2022), the climate crisis has led to more frequent heavy
precipitation events which are expected to continue increasing in intensity separated by
more prolonged dry spells. The increase in extremes over the next decades is expected to
impact water supplies, natural ecosystems, global economy, human health, transporta-
tion, agriculture and national security in a profound way. Every year, extreme precipita-
tion events cause floods and droughts, which cost innumerable human lives and billions
of dollars in damages (Ralph et al., 2014).

In this context, a continuous and reliable monitoring of precipitation at global scale

1
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is of paramount importance for a range of societal and scientific issues such as weather
forecasting, hydrology and management of fresh water resources. However, accurately
estimating precipitation, its type and intensity at planetary scale remains a challeng-
ing task. Global scale monitoring of precipitation heavily relies on remote sensing tech-
niques such as weather radars (ground-based or spaceborne). Unlike rain gauges, radars
do not directly provide the quantity of interest (i.e., the rainfall amount or rainfall inten-
sity). A weather radar only provides the backscattered signal of raindrops from which
rainfall intensities must be inferred. One of the key quantities that is needed to per-
form this conversion is the so-called drop size distribution (DSD). The DSD is a statistical
summary of the size and number density of rain droplets in a unit volume of air. Studies
have shown that similarly to rainfall rates, the DSD can be highly variable in time and
space (Berne et al., 2012; Uijlenhoet et al., 2003). This natural variability within and
between storms greatly affects the accuracy of rainfall retrievals from remote sensing
sensors.

The main objective of this thesis is to contribute to the improvement of quantitative
precipitation estimation (QPE) through a better understanding of the small-scale vari-
ability of rainfall. More specifically, our goal is to enhance the scientific understanding
of how to model and estimate raindrop size distributions across different scales. This
requires a comprehensive understanding of precipitation microphysics and small-scale
dynamics.

1.2 Rainfall microphysics

Precipitation is a dynamically interacting system of complex microphysical processes
(McFarquhar, 2022; Michaelides et al., 2009) starting from the formation of raindrops
inside the cloud (e.g., nucleation, condensation, collision-coalescence) until the later
stages when the drops exit the cloud (e.g., evaporation, breakup). Because of the chaotic
nature of the involved microphysical processes, precipitation remains notoriously chal-
lenging to analyze, measure and predict (Figure 1.1a).

The initial step in precipitation formation is the lift of an air parcel. Rising motion
in the atmosphere can be triggered by several factors such as a passing front, a moun-
tain, convergence or convection. As the air rises, it cools due to adiabatic expansion.
When the temperature falls below the dew-point, saturation is reached and the cloud
formation starts (i.e., water vapour condenses to form cloud droplets). A necessary el-
ement for cloud formation is the presence of aerosols (Barthlott et al., 2022). These are
micrometer-sized particles such as salt, dust or air pollutants which serve as condensa-
tion nuclei for water vapor. Once condensation is initiated, cloud particles continue to
grow turning into water droplets. Cloud droplets gradually increase in size through col-
lision and coalescence processes as they float. When they become too heavy to be main-
tained aloft, they start to fall. During their descent, they continue to collide with other
drops, forming larger ones that may break up into smaller ones when they become too
large. Other factors which limit the size growth of raindrops are the evaporation and the
breakup due to strong wind gusts or turbulence (Hu and Srivastava, 1995). All these pro-
cesses happening in the air (aloft) govern the DSD, which can be observed on the ground.
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Figure 1.1: A schematic representation of a) the microphysical processes in liquid-phase cloud b) the shape of
raindrops depending upon their size.

It is worth mentioning that the rainfall formation mechanism described above is called
"warm rain". There is also the "cold rain" formation process which involves ice particles
and the presence of supercooled liquid water through the Bergeron-Findeisen-Wegener
process (Findeisen et al., 2015). A more detailed description of both mechanisms and all
the individual steps involved in the formation of precipitation can be found in McFar-
quhar (2022).

Apart from the microphysical processes affecting rain droplets inside and outside the
cloud, there are few other important drop characteristics which are worth mentioning as
well: the drop shape, the drop oscillation, and the canting angle of raindrops. At the early
stage of a raindrop’s life, drop shape is approximately spherical (Figure 1.1b). However,
as a drop grows bigger, its shape also becomes more complicated due to a constant tug-
of-war between counteracting forces. According to Gorgucci et al. (2006), the surface
tension, hydrostatic pressure, aerodynamic forces, internal circulation and electric stress
are the main forces influencing the size and shape of raindrops. For small raindrops less
than 2 millimeter in size, the spherical shape is retained because of surface tension. As
raindrops grow in size, surface tension becomes insufficient to hold the water molecules
together and the shape changes from spherical to an oblate spheroid. At the same time,
as the size increases, the fall velocity of the drop also increases, causing unequal pressure
over its surface (Gorgucci et al., 2006). The increasing pressure at the bottom of the drop
overcomes the surface tension while the decreasing pressure at the top is not enough
to overcome it, making the drop keep its rounded shape on the sides and the top. This
mechanism deforms the raindrop by flattening the bottom surface and spreading the
shape sideways. Drops that are 2 to 3 mm in size are big and heavy enough to be affected
by air pushing against them as they fall (Pruppacher and Beard, 1970). In nature, the
observed drops can reach several thousands per cubic meter, with the majority having
diameters between 0.1 and 3 mm. When the diameter grows larger than 4.5 mm, drop
becomes increasingly distorted and unstable until they burst, producing a fine spray of
smaller droplets (Villermaux and Bossa, 2009). Because raindrop shapes depend on drop
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size (spherical, oblate spheroid), it is common practice to express drop sizes through the
equivolumetric spherical diameter, i.e., the diameter of a sphere that contains the same
amount of water as the considered drop (Andsager et al., 1999).

Another aspect of raindrops which should be taken in account is their oscillation. Sev-
eral field observations and laboratory studies have shown that a rain particle falling from
the sky may exhibit oscillations (Beard and Kubesh, 1991; Chandrasekar et al., 1988;
Pruppacher and Beard, 1970; Tokay et al., 2000). According to Beard and Kubesh (1991)
the oscillation of raindrops can be distinguished into three different modes: i) the ax-
isymmetric mode with oscillations between oblate and prolate shapes, ii) the transverse
mode with side-to-side perpendicular to each other movements, and iii) the horizontal
mode with oscillations in the horizontal plane.

As rain particles travel through the atmosphere, they also tend to rotate/tilt due to hor-
izontal wind variations with height and the relative airflow around droplets (Brussaard,
1974). The canting angles, combined with the oscillations, varying sizes, shapes, ve-
locities, and positions of raindrops, contribute to making rainfall an extremely complex
process of dynamically interacting particles. Since it is often impossible to measure and
keep track of all these details, simplified models of rainfall have been built that summa-
rize small-scale properties and dynamics with the help of statistics (such as the DSD).

1.3 The drop size distribution (DSD)

The DSD, denoted by N (D) [mm°1 m°3], is a statistical description of the microstructure
of rainfall that expresses the number of raindrops per cubic meter as a function of their
respective equivolume diameter D . In Figure 1.2 a schematic illustration of rainfall mi-
crostructure is presented. The DSD is defined as the product of the total concentration
of the drops (NT ) [m°3] and a probability density function f (D):

N (D) = NT f (D). (1.1)

Knowledge of the DSD in a given air volume is crucial for the quantitative analysis of
cloud and precipitation processes. DSDs also play a key role in remote sensing tech-
niques (Bringi and Chandrasekar, 2001; Marshall and Palmer, 1948), where they are

Figure 1.2: Visual illustration of rainfall microstructure in a sample volume and typical distributions of rain-
drop sizes during different rain rates.
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needed to calculate the interactions between hydrometeors and the electromagnetic
waves due to scattering and absorption. Most rainfall related variables, such as the rain-
fall intensity, liquid water content or kinetic energy, can be written as a combination of
weighted moments of the DSD. The nth moment of the DSD is defined as:

Mn =
DmaxZ

Dmi n

Dn N (D)dD, (1.2)

where the integration limits are assumed to be Dmi n and Dmax due to the finite range of
drop sizes which can occur in nature (Vivekanandan et al., 2004). The number concen-
tration is the 0th moment of the DSD and it can be expressed as:

NT =
DmaxZ

Dmi n

N (D)dD = M0. (1.3)

Both the concentration of raindrops and the probability density function exhibit sig-
nificant variability in space and time (Torres et al., 1998). Depending on the specific ap-
plication, either one of these factors can be more important. However, in many cases, a
comprehensive understanding of rainfall microstructure requires consideration of both
factors. For example high (low) drop concentrations are not always associated with high
(low) rain rates. A good example of this are drizzle events, during which a large concen-
tration of relatively small droplets can be can be observed.

An important quantity for distinguishing rainfall types is the mass-weighted mean
drop diameter (Dm) [mm], defined as the ratio of the 4th to the 3r d DSD moments:

Dm =

DmaxR
Dmi n

N (D)D4dD

DmaxR
Dmi n

N (D)D3dD

= M4

M3
. (1.4)

Depending on the application, other characteristic drop sizes can be used as well, such
as the median-volume drop diameter (D0) [mm], which represents the diameter that di-
vides the DSD sizes into two equal parts of water volume, or the mean drop diameter
(Dmean) [mm], which is the ratio of the 1st and the 0th DSD moments. D0, Dmean and
Dm are similar variables and closely linked to each other. However, for remote sensing
applications, D0 and Dm are preferred because they put more emphasis on larger rain-
drops (compared to Dmean). The median-volume drop diameter (D0) is defined as:

ºΩw

6

D0Z

Dmi n

D3N (D)dD = ºΩw

6

DmaxZ

D0

D3N (D)dD = 1
2

LW C , (1.5)

where Ωw is the density of the water [10°3 g mm°3] and LW C is the liquid water content
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[g m°3] given by:

LW C = ºΩw

6

DmaxZ

Dmi n

N (D)D3dD = ºΩw

6
M3. (1.6)

Another essential quantity for quantitative precipitation estimation is the terminal fall
velocity v(D) [m s°1] of a raindrop of equivolume spherical diameter D (Beard, 1976;
Beard, 1985). According to Atlas et al. (1973), v(D) can be approximated reasonably well
by a power-law of the form:

v(D) = ∑D∫, (1.7)

where ∑ [m1°∫ s°1] and ∫ [-] are positive coefficients. The most commonly used values
for standard conditions of pressure and temperature are ∑ = 3.778 and ∫ = 0.67 (Atlas and
Ulbrich, 1977). Using the raindrop fall velocity model above, we can calculate the rain
rate (R) [mm h°1] as the flux of water arriving at the surface over a period of time:

R = 6º10°4

DmaxZ

Dmi n

D3v(D)N (D)dD. (1.8)

If the raindrop fall velocity is approximated by Equation 1.7 with ∑ = 3.778 and ∫ = 0.67,
then R º M3.67. In other words, the rain rate is roughly proportional to the 3.67th order
moment of the DSD. The rain rate is an essential parameter of interest for hydrologists,
especially for rainfall related studies and rainfall monitoring in a macroscopic level.

1.4 Measurement of the DSD

Sensors for measuring DSDs are called disdrometers. Several types of disdrometers ex-
ist: impact disdrometers (e.g., Joss-Waldvogel disdrometer, Joss and Waldvogel, 1967),
measure the forces produced by impacting raindrops. The two-dimensional video-
disdrometer (2DVD) captures high-resolution images of falling particles at two different
heights to determine their speed, shapes, and sizes (Schönhuber et al., 2008). Optical
disdrometers measure the size and velocity of particles that fall through a horizontal
laser beam. The fall velocity of the particles is estimated from the time it takes for the
laser beam power to return to its default power. The working principle and main lim-
itations of this sensor have already been well documented (Raupach and Berne, 2015;
Tokay et al., 2014). The main issues are the discretization of the data (drop-size classes),
the limited sampling area and the underestimation of small-size particles.

DSD observations taken by disdrometers provide point measurements of rainfall char-
acteristics over specific time intervals, with a small sampling area. By contrast, weather
radar tends to have much larger resolution volumes in the order of hundreds of meters
up to several kilometers. Unlike disdrometers, weather radars cannot directly measure
DSDs. They only provide information about selected moments of the DSD, which latter
can be used to indirectly estimate DSDs. However, the accuracy of such retrievals de-
pends on many factors, such as sensor calibration, incidence angle, resolution volume
and assumptions made about the shape of the DSD during the retrieval process. Even for
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a perfectly calibrated radar, DSD estimates may still differ substantially from measure-
ments made on the ground due to vertical variations in the fall velocities of raindrops,
updrafts/downdrafts, collision and coalescence processes. The difference in scale be-
tween radar and disdrometer measurement may also play a big role. Many DSD-related
quantities such as the number concentration, mean drop size, reflectivity and rain rate
have been found to depend on the scale at which they are measured. A good under-
standing of these scale issues and how they might impact the accuracy of DSD retrievals
is a recurrent theme in this thesis.

1.5 Parametric DSD models

In the literature several parametric DSD models have been proposed. One of the earliest
and most popular is the exponential distribution introduced by Marshall and Palmer
(1948):

N (D) = N0e°§D . (1.9)

The exponential model is a good choice for representing DSDs that are integrated over
time. The original model proposed by Marshall and Palmer (1948) is a particular case of
Equation 1.9, with a fixed concentration parameter N0 = 8000 [mm°1 m°3] and only one
free parameter, the slope § [mm°1]. However, nowadays, the most accepted and used
model in the literature is the gamma (Ulbrich, 1983; Willis, 1984):

N (D) = N0Dµe°§D , (1.10)

where µ is the shape parameter [-] and N0 is an intercept parameter [mm°1°µ m°3]
whose units depend on µ. When µ = 0, the gamma model (Equation 1.10) reduces to
the exponential form (Equation 1.9). Other common parametric models are the lognor-
mal (Feingold and Levin, 1986) and Weibull (Jiang et al., 1997). Figure 1.3 show example

Figure 1.3: Illustration of several conventional DSD models (gamma, exponential, normalized gamma, lognor-
mal, Weibull).
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shapes of widely used DSD models in the literature. Moreover, it should be pointed out
that other studies recommend the use of more complicated models with more parame-
ters (e.g., Johnson SB; Cugerone and De Michele, 2015). While interestingly, DSD mod-
els with four or more parameters are not very practical in the context of remote sensing,
since it is often impossible to accurately estimate that many independent parameters
from weather radar measurements.

Because the gamma model is so prevalent in literature and gamma DSDs play a key
role in remote sensing applications, researchers often take this model for granted. This
can be problematic, especially when working with DSD data from different sensors and
across vastly different spatial and temporal scales. Most of the studies which focused on
assessing the adequacy of the gamma DSD model concluded that the gamma provides
a better fit than other simple distributions while remaining simple and flexible (Adirosi
et al., 2016; Johnson et al., 2015). Adirosi et al. (2016) fitted three conventional distri-
butions, lognormal, gamma and Weibull and investigated the adequacy of them against
real observations, using the Kolmogorov–Smirnov goodness of fit test. They showed that
the gamma model has the lowest rejection rate, while the Weibull is rejected most fre-
quently. Ekerete et al. (2015) used the chi-square (¬2) goodness of fit to conclude that
gamma and lognormal distributions are not fully adequate, pointing out that empirical
DSDs appear to be somewhere between bimodal and gamma shape. They suggested
that a Gaussian mixture model with three centers fits better. Cugerone and De Michele
(2015) used the Kolmogorov–Smirnov goodness of fit and skewness-kurtosis diagrams to
show that gamma and lognormal models are not fully adequate from a statistical point
of view and that a Johnson SB distribution should be considered as an alternative choice.

Another important topic of research in the field of DSD modeling revolves around the
idea of normalization. Normalization is a useful technique to compare the shapes of
DSDs with different moments or characteristic drop diameters. Over the years, different
DSD normalization techniques have been proposed (Testud et al., 2001; Torres et al.,
1994). In this thesis, the normalized gamma distribution with two reference moments
(i.e., Dm and LW C ) proposed by Testud et al. (2001) and Bringi et al. (2003) is used:

N (D) = Nw f (µ)
µ

D
Dm

∂µ
e°(4+µ) D

Dm , (1.11)

where Nw is the generalized intercept parameter given by:

Nw = 44

ºΩw

µ
LW C

D4
m

∂
. (1.12)

In contrast to N0 (see Equation 1.10), now the Nw does not depend on µ [mm°1 m°3].
Both Dm and Nw (through LW C , see Equation 1.12) are key physical quantities with
clear physical meaning, easier to interpret. A lot of work has gone into the conceptu-
alization of single- and double-moment normalization models, that are better at cap-
turing the natural DSD variability and provide better fits to empirical DSD spectra (Lee
et al., 2004). For example, the generalized gamma model, as indicated by several studies
(Maur, 2001; Thurai and Bringi, 2018), offers greater flexibility than the standard gamma
distribution, making it more effective at describing naturally occurring DSDs. The Equa-
tion 1.11 is frequently used in atmospheric remote sensing related applications such as
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the ground-based weather radars or the spaceborne-radars (e.g., the precipitation re-
trieval algorithm from GPM Dual-Frequency Radar, Tokay et al., 2020). In this thesis,
a new method for rigorously and automatically testing the adequacy of the normalized
gamma DSD model across different temporal scales is proposed.

1.6 QPE using weather radars

Weather RADAR which stands for RAdio Detection And Ranging is an advanced system
used for monitoring (Atlas and Ulbrich, 1990; Bringi and Chandrasekar, 2001) and study-
ing the location, intensity, movement, and type of precipitation (rain, snow, hail etc.).
However, initially when it was first introduced in 1940s, radar had a different use. The
main objective of these systems was to detect ships and airplanes during World War
II. Luckily, apart from the metallic targets, radar operators noticed some "unwanted"
noise due to precipitation and the concept of the weather radar was born. Since then
weather radar has evolved to become an essential tool in meteorology, aviation, emer-
gency management, and various other sectors that rely on the accurate, real-time mon-
itoring of weather. The ability to detect and track severe weather phenomena such as
thunderstorms and hurricanes at high spatial and temporal resolutions over large do-
mains means that weather radar plays a crucial role in nowcasting (Foresti et al., 2019;
Imhoff et al., 2020).

Unlike rain gauges which provide direct, point rain observations, remote sensing sen-
sors like radars indirectly measure rainfall with better spacial coverage but with higher
observation uncertainty. A weather radar emits an electromagnetic wave into the at-
mosphere and analyzes the signal that is returned (i.e., the backscatter). Typically, the
interesting part is the fraction of the transmitted signal that is reflected back as a result
of scattering by precipitation particles. The average returned power to the radar (Pr )
[W] after interacting with the individual particles in the scanned radar volume is given
by (Battan, 1973):

Pr =
Pt G2∏2

(4º)3r 4

nX

i=1
æb,i , (1.13)

where Pt is the transmitted power [W], G is the antenna gain [-], ∏ is the wavelength of
the radar [m], r is the range of the objects in meters and æb,i [m2] are the backscatter
cross-sections for each particle. The volume containing those particles is called radar
resolution volume, and is determined by the pulse length, the beamwidth and the dis-
tance of the target. It is worth mentioning that the radar beam is not strictly uniform
over the volume. The radar energy is strongest in the center of the volume, and weaker
toward the edges. Assuming a Gaussian shape for the beam pattern, the effective volume
of the radar beam is given by:

V = º

2ln(2)

µ
rµ
2

∂2 h
2

, (1.14)

where h represents the pulse length [m] and µ is the antenna beamwidth [degrees]. Fur-
thermore, under the assumption that the particles are spherical raindrops with sizes
smaller than the radar’s wavelength (Rayleigh scattering), æb is proportional to the sixth
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power of the drop diameter D [mm]. Using this and Equation 1.14 to Equation 1.13 gives:

Pr =
º3

1024ln(2)

µ
Pt G2µ2h

∏2

∂µ | Kw |2
r 2

X

1 m3

D6
∂
, (1.15)

where | Kw | [-] is the dielectric factor of water (º 0.93). Thus, for a collection of spherical
small raindrops, the mean received power is determined by radar parameters, range, and
by two factors of the target: the value of | Kw | and

P
D6. The last factor is so important

that a separate quantity, called the equivalent reflectivity factor (Z ), is introduced for it:

Z =
X

1 m3

D6 =
DmaxZ

Dmi n

D6N (D)dD = M6, (1.16)

where Z is expressed in mm6 m°3,
P

denotes a summation over the unit volume [1 m 3]
and N (D) is the DSD. Due to its large range of variation, the reflectivity is often expressed
in logarithmic scale [dBZ, 10log10]. Using Equation 1.16 in Equation 1.15, we get the
weather radar equation:

Pr =
C | Kw |2

r 2 Z , (1.17)

where the variable C replaces all the radar-related variables from Equation 1.15 with

C = º310°18Pt G2µ2h
1024ln(2)∏2 and 10°18 being added to get the desired unit for Z [mm6 m°3]. At

this point, it is worth mentioning that Equation 1.17 and Equation 1.16 are valid under
three main assumptions: 1) there is no attenuation (i.e., no loss of power), 2) the radar
resolution volume is uniformly filled with precipitation particles and 3) we are in the
Rayleigh scattering regime (i.e., raindrops are much smaller than the wavelength of the
radar).

Unlike the returned power, the radar reflectivity factor is independent of sensor char-
acteristics and solely depends on the characteristics of hydrometeors. This is why re-
flectivity is preferred over power. Indeed, comparing the returned power signals from
two sensors directly, even if they measure the same volume, would be highly impractical
since they may differ substantially due to hardware differences between radar systems.

From Equation 1.16 it is evident that both the number and size of raindrops per cubic
meter contribute to the value of the radar reflectivity factor. However, due to the depen-
dence on D6, the reflectivity exhibits much greater sensitivity to the presence of large
raindrops compared to smaller ones. For example, one can show that a single raindrop
of diameter D gives exactly the same reflectivity as 64 half-sized raindrops of diameter
D
2 , even though the liquid water content (3r d order moment of the DSD) corresponding

to the 64 drops is 8 times larger than the LW C of the one large drop.
Radar is an invaluable tool for monitoring rainfall. But when it comes to accurately es-

timating rainfall, radar suffers from a fundamental limitation: reflectivity measurements
first need to be converted to rainfall rates. In order to perform this transformation, de-
tailed knowledge about the DSD is required. For many years, scientists have tried to
circumvent this dependence on DSD by proposing different empirical relationships be-
tween reflectivity and rain rate. The most popular approach is the famous Z -R power-
law model:

Z = aRb , (1.18)
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where Z is expressed in mm6 m°3, R in mm h°1 and a [mm6°b m°3 hb] and b [-] are
two empirical constants. Unfortunately, there is no single relation that can satisfy all
meteorological phenomena under which Equation 1.18 is valid. Values for the prefactor
typically range from 200 to 600 and 1.5 to 2 for the exponent. The combination a = 200
and b = 1.6 leads to the well known Marshall–Palmer relation for stratiform precipitation
(Marshall et al., 1955).

The key factor governing the values of a and b in the Z -R power-law is the DSD (Mar-
shall and Palmer, 1948; Uijlenhoet, 2001). Since DSDs are highly variable in time and
space, this variability has a major impact on the uncertainty affecting rainfall estimates
from weather radar. According to Lee and Zawadzki (2005), the variability of the DSD
alone can cause uncertainties in rainfall rates in the order of 40%. This is on top of all the
other measurement uncertainties and illustrates why quantitative precipitation estima-
tion (QPE) using radar is such a difficult task.

In the recent decades significant progress has been made to reduce uncertainties in
precipitation estimation by taking advantage of the full potential of polarimetric radars.
A dual-polarization radar transmits and receives electromagnetic waves in both vertical
and horizontal polarization. The returned signals at perpendicular polarization provide
additional information about the horizontal and vertical dimensions of targets, which
can be used to estimate the average size, shape, and type of precipitation particles in the
radar volume. The shape of raindrop is a key factor for the characteristics of polarimetric
measurements since the oblateness of the raindrops accounts for the different scattering
properties between horizontal and vertical polarization (Gorgucci and Baldini, 2009;
Thurai et al., 2007). A key polarimetric parameter is the differential reflectivity (Zdr ) [dB]
which is obtained by taking the logarithm of the ratio between horizontally polarized
reflectivity (Zh) and vertically polarized reflectivity (Zv ). Positive Zdr values indicate
that the dominant hydrometeors have larger sizes in the horizontal dimension, while
negative values that hydrometeors are larger in the vertical dimension. Values close to
zero suggest that the hydrometeors have similar sizes in both vertical and horizontal
dimensions such as the small spherical droplets. Utilizing Zdr along with Z can provide
information about raindrop sizes through their shape, which can lead to better rainfall
estimation algorithms than with Z alone. For example, a R(Z , Zdr ) relation can be used:

R = c Z d Z e
dr , (1.19)

where c [mm1°6d m3d h°1], d [-] and e [-] are empirical constants. According to Brandes
et al. (2002) and Ryzhkov et al. (2005), a relation with a combination of Z and Zdr is less
sensitive to variations in DSD and leads to better quantitative precipitation estimation.

Another polarimetric variable is the co-polar correlation coefficient (Ωco) [-] which
measures the degree of correlation between horizontal and vertical polarizations of the
received signals. This coefficient decreases from a maximum value of 1 as the raindrop
oblateness distribution widens. Ωco is a very useful quantity for identifying the melting
layer or distinguishing meteorological from non-meteorological targets. Other polari-
metric parameters are the specific differential phase (Kd p ) [deg km°1], linear depolar-
ization ratio (Ldr ) [dB] and differential phase shift (©d p ) [deg] however, they will not be
discussed in detail because they are not directly relevant to this thesis.
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1.7 DSD retrievals using weather radars

As explained in the previous section, DSDs play a key role in radar-rainfall estimation.
Consequently, a lot of efforts have been devoted to retrieving DSDs from various types of
remote sensing measurements. Such retrievals provide valuable insight into the micro-
physical properties of rainfall, which is essential for remote sensing, numerical weather
prediction (NWP), hydrological modeling and climate studies (Bringi and Chandrasekar,
2001; Michaelides et al., 2009). One way to retrieve DSDs from weather radar obser-
vations is to exploit the dual-polarization capabilities of modern radars, by analyzing
the backscattered signals from precipitation particles at horizontal and vertical polar-
izations. Retrieval algorithms often involve complex mathematical models and require
to take into account factors such as signal attenuation due to heavy precipitation, instru-
mental limitations, clutter, calibration issues and the high temporal and spatial variabil-
ity of the DSD.

Usually a parametric DSD model is used to represent the DSD in the radar volume. The
complexity of the DSD model (i.e., the number of the unknown parameters) depends on
radar characteristic and the number of available observations. Often, only two or three
parameters are realistic. If the number of independent radar measurements is less than
the number of DSD parameters, the degrees of freedom in the DSD model should be
reduced. This can be achieved either by fixing the value of one of the DSD parameters
(e.g., the GPM DSD retrieval algorithm assumes thatµhas a fixed value equals to 3, Tokay
et al., 2020) or by using an empirical relationship between two of the DSD parameters,
such as the well known µ-§ relationship.

The most common DSD retrieval technique is based on the gamma DSD model, two
observables from a polarimetric weather radar (Zh and Zdr ) and an empirical relation-
ship between µ and§. The retrieval method has been described in detail by Zhang et al.
(2001). Even though the µ-§ relationship is an important element for the retrieval pro-
cess, little is known about how stable it is. The relationship is often taken for granted
with no critical discussion, neglecting the potential effect of various factors such as the
sampling resolution or the the validity of the gamma assumption. Moreover, another im-
portant aspect which tends to be overlooked is differences between sensors (e.g., radars,
disdrometers) due to scale. For example little is known about the scale-related bias af-
fecting retrieved DSDs from weather radar when a µ-§ relationship derived from dis-
drometer data (which have much smaller sampling volume) is used.

1.8 µ-§ relationship

As mentioned in the previous section, the most common method to retrieve DSDs from
a dual-polarization radar requires two radar observables Zh , Zdr and a constrained re-
lationship between two of the gamma DSD parameters, e.g., Ulbrich (1983) proposed a
relation between N0 and µ. Nowadays, the most widely accepted empirical relation is
between µ and §. So far, several deterministic functions linking µ and § have been pro-
posed in the literature with the most popular being the second-order polynomial model.
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The first relationships were proposed by Zhang et al. (2001) and Zhang et al. (2003):

µ=°0.016§2 +1.213§°1.957 and §= 0.0365µ2 +0.735µ+1.935 (1.20)

respectively, using DSD observations from Florida. The µ-§ relationship shows vari-
ability across different climatological regimes, types of rain (convective or stratiform),
regions or even seasons (Chen et al., 2016; Gatidis et al., 2024; Seela et al., 2018). Ac-
cording to Zhang et al. (2001) regardless of the above factors, the DSD parameters are
governed by the following rule: large (small) µ corresponds to small (large) Dm , narrow
(broad) distribution and large (small)§, keeping in mind that large values of µ are linked
to low rain intensity (rain rate less than 5 mm h°1).

It is worth mentioning that even though initially the µ-§ relationship was conceptual-
ized because remote sensing measurements were not sufficient to fully estimate all pa-
rameters of the DSD, there are several studies questioning whether there is any real phys-
ical meaning behind such a relation. For example Chandrasekar and Bringi (1987) and
Moisseev and Chandrasekar (2007) claim that the relation is a statistical artifact caused
by the fact that the quantities are derived from the same DSD measurements. On the
other hand, other authors (Seifert, 2005; Zhang et al., 2003) suggested that the µ-§ rela-
tionship is more than a statistical artifact. According to Seifert (2005) there is a physical
correlation between the two DSD parameters which links the width of the distribution to
its mean value, especially in strong convection. However, they suggested to use the stan-
dard deviation of the drop mass distribution (æm) and the median volume diameter (D0)
which have more physical meaning than µ and § and are independent of the validity of
the gamma model.

Another important aspect of the µ-§ relation which was never questioned, is the cho-
sen model for the relationship. Even though in the literature there is a long list of differ-
ent µ-§ relationships based on different characteristics such as the rainfall regime, rain
rate intensity and seasonal/regional criteria (Chen et al., 2016; Seela et al., 2018), all of
them fit the same second-order polynomial model to the data (e.g., see Equations 1.20).
A parabolic curve can effectively approximate empirical µ-§ relationships. However, the
model coefficients lack a clear physical interpretation, and there is no theoretical justifi-
cation for the parametric form of the model.

1.9 Overview of this thesis

The objective of this thesis is to enhance our understanding of the small-scale variability
of rainfall by specifically focusing on the critical rainfall quantity: the drop size distribu-
tion. This includes a detailed investigation of the adequacy of the gamma DSD model,
the assumptions behind the DSD retrieval algorithms from weather radars, the use of
µ-§ relationships and the effect of scale differences to the DSD estimation. The thesis
is organized in 5 chapters, including the current one that serves as an introduction and
Chapter 5 which provides the conclusions and outlook of the thesis. The thesis is a com-
pilation of three published manuscripts from peer-reviewed journals, each presented in
Chapters 2, 3 and 4, respectively. More details about the structure of the thesis and the
topic of each of these chapters is provided in the following paragraphs.
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Chapter 2

A fundamental quantity to sufficiently describe the microstructure of rainfall is the DSD.
The most common model in the literature to approximate naturally occurring DSDs is
gamma distribution, even though it is generally accepted that it is imperfect. In this
chapter a precise quantification of the gamma DSD model adequacy was examined.
Based on a two-month dataset from a Parsivel disdrometer in the Netherlands, gamma
distributions were fitted and µ-§ pairs were derived. The adequacy of the gamma model
was analyzed using a combination of Kolmogorov–Smirnov goodness-of-fit test and Kull-
back–Leibler divergence. The key questions addressed in Chapter 2 are as follows.

Key Question I: How adequate is the gamma model for representing DSDs?

Key Question II: How sampling resolution can affect the adequacy of the gamma model?

Chapter 3

A common technique for DSD retrievals from polarimetric radar data is based on two
radar observables (Zh and Zdr ) and a constrained relationship between µ and §. How-
ever, radar data is likely to contain systematic errors while at the same time µ-§ rela-
tionships are frequently taken for granted without any critical thought. In this chapter,
we utilized observations from a radar and a nearby disdrometer to study several events
of light to moderate stratiform rain in the Netherlands. Initially the robustness of µ-§
relationship to sampling resolution, sample size, adequacy of the gamma model and
event-by-event variability was examined. Later the sensitivity of the retrieval algorithm
to errors linked to the radar measurements and their effect on the DSD retrievals was in-
vestigated and presented. The main questions answered in Chapter 3 are the following.

Key Question III: How much factors like sampling resolution, sample size, gamma model

validity and inter-event variability influence µ-§ relationship?

Key Question IV: Considering DSD retrieval algorithms are sensitive to errors in radar

measurements, how easy is to determine the source of the error and make a correction?

Chapter 4

In this section twenty-month DSD data from two co-located disdrometers in the Nether-
lands was used. Initially, we introduced a new power-law model based on the double
normalization framework to represent µ-§ relationships. Then taking advantage of the
two disdrometers next to each other, we applied a quality control filter based on the
mass-weighted mean drop diameter (Dm) and liquid water content (LW C ). Finally, an
analysis of µ-§ relationships in convective and stratiform rainfall was conducted and
potential differences were examined. The key questions addressed in Chapter 4 are as
follows.
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Key Question V: Given that a second-order polynomial function can sufficiently repre-

sent empirical µ-§ relationships, is it possible to use another model with better theoret-

ical justification whose coefficients have clearer physical interpretations?

Key Question VI: Are there differences in µ-§ relationships between convective and

stratiform rainfall?





Chapter 2
Evaluation of the gamma DSD
model

The adequacy of the gamma model to describe the variability of raindrop size distributions (DSD) is
studied using observations from an optical disdrometer. Model adequacy is checked using a combi-
nation of Kolmogorov-Smirnov goodness-of-fit test and Kullback-Leibler divergence and the sen-
sitivity of the results to the sampling resolution is investigated. A new adaptive DSD sampling
technique capable of determining the highest possible temporal sampling resolution at which the
gamma model provides an adequate representation of sampled DSDs is proposed. The results show
that most DSDs at 30 s are not strictly distributed according to a gamma model, while at the same
time they are not far away from it either. According to the adaptive DSD sampling algorithm, the
gamma model proves to be an adequate choice for the majority (85.81%) of the DSD spectra at reso-
lutions up to 300 s. At the same time, it also reveals a considerable number of DSD spectra (5.55%)
that do not follow a gamma distribution at any resolution (up to 1800 s). These are attributed to
transitional periods during which the DSD is not stationary and exhibits a bimodal shape that
cannot be modeled by a gamma distribution. The proposed resampling procedure is capable of
automatically identifying and flagging these periods, providing new valuable quality control mech-
anisms for DSD retrievals in disdrometers and weather radars.

This chapter has been published in Journal of Atmospheric and Oceanic Technology as:
Gatidis, C., Schleiss, M., Unal, C., and Russchenberg, H. (2020). A critical evaluation of the adequacy of
the gamma model for representing raindrop size distributions, J. Atmos. Ocean. Technol., 37, 1765–1779,
https://doi.org/10.1175/jtech-d-19-0106.1.
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2.1 Introduction

Continuous and reliable precipitation monitoring is of fundamental importance for un-
derstanding the water cycle. Every year, extreme precipitation events cause floods and
trigger landslides, which cost many human lives and billions of dollars (Ralph et al.,
2014). However, obtaining accurate precipitation measurements can be extremely chal-
lenging due to the high underlying variability of the meteorological phenomenon in
space and time (Jameson and Kostinski, 2001; Uijlenhoet et al., 2003).

One fundamental quantity needed to understand rainfall variability is the raindrop
size distribution (DSD). The DSD is considered to be the key source of uncertainty in
quantitative precipitation estimations (QPE), affecting rain rate estimates from ground-
based radars and satellites. Several studies have shown that QPE can be significantly
improved using accurate DSD observations (Rose and Chandrasekar, 2006) but is diffi-
cult in practice as natural DSDs rapidly vary in space and time and exhibit a wide range
of shapes. For radar and satellite related applications, where a limited amount of infor-
mation is available, it is often necessary to parameterize the DSD in the form of a simple
distribution.

Several mathematical models have been proposed to approximate naturally occurring
DSDs (Bringi et al., 2003; Marshall and Palmer, 1948; Testud et al., 2001; Ulbrich, 1983;
Zhang et al., 2001). The most popular and widely accepted of them in the remote sensing
community is the gamma distribution. However, the gamma distribution is not a per-
fect model and several studies have questioned its adequacy (Cugerone and De Michele,
2015; Ekerete et al., 2015; Kliche et al., 2008). Its acceptance mainly comes from the fact
that it is relatively versatile yet simple enough to be useful in practice. It is more flexi-
ble than the exponential (Marshall and Palmer, 1948) and provides a "reasonably good
fit" to measured DSDs. In addition to the conventional distributions like gamma, more
complex models have also been proposed in the literature (Cugerone and De Michele,
2015; Ekerete et al., 2015; Ignaccolo and De Michele, 2014; Thurai and Bringi, 2018). Al-
though they are better at representing real DSDs, they are more difficult to use in practice
due to their large number of parameters that cannot be retrieved using remote sensing
measurements.

Despite its being the most widely used model, only a few studies have focused on pre-
cisely quantifying the adequacy of the gamma distribution. Johnson et al. (2015) com-
pared the performance of four conventional unimodal and skewed to the right distribu-
tions that may be considered as potential DSD models. They highlighted that the gamma
model provided the best fit, followed by the lognormal, beta and, finally, the Weibull.
Adirosi et al. (2016) fitted three distributions, lognormal, gamma, and Weibull, and com-
pared their goodness of fit using the Kolmogorov–Smirnov test (K-S test). They showed
that the gamma distribution has the lowest rejection rate, while Weibull is the most fre-
quently rejected. Ekerete et al. (2015) used the chi-square goodness-of-fit test for testing
several candidate models against the observations and concluded that DSDs are some-
where between the bimodal and the gamma shape, suggesting that gamma or lognormal
distributions are not fully adequate. Their recommendation is to use a Gaussian mix-
ture model with three centers. Similarly, Cugerone and De Michele (2015) pointed out
that the gamma and lognormal model are not accurate enough based on K-S test and
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a skewness-kurtosis diagram and suggested to use a four-parameter distribution (i.e.,
Johnson SB) instead. That diagram is one of the various graphical methods for deter-
mining visually whether sample data conform to a reference distribution. Among them
the most commonly used graphical tools are the quantile-to-quantile plots or Q-Q plots
(Watanabe and Ingram, 2016; Yakubu et al., 2014) and the density plots (Adirosi et al.,
2016; Ekerete et al., 2015) as well.

None of these studies focused on sampling resolution as a major factor nor provided
clear guidelines for how it should be taken into account when evaluating the gamma
model. All of them used a similar resolution (1-min DSDs), ignoring questions like "Does
the gamma model perform better at lower/higher resolutions than 60 seconds?" or "When
should we not use a gamma model?" These are very relevant questions when we take into
consideration that DSD measurements at higher temporal resolutions are affected by
larger sampling uncertainties. Although it was not the main scope of their study, Adirosi
et al. (2015) suggested that the adequacy of the gamma model is likely to decrease with
higher temporal resolutions.

In this paper, we take a closer look at the adequacy of the gamma model for rep-
resenting DSDs. Our analysis starts by fitting gamma distributions on a DSD dataset
collected by an optical disdrometer over a 2-month period. The adequacy of the fit
is assessed based on a combination of Kolmogorov-Smirnov goodness-of-fit test and
Kullback-Leibler divergence. The novelty of the study lies in its focus on the influence
of the sampling resolution and how it affects the adequacy of the gamma model. A new
adaptive DSD sampling technique capable of determining the highest possible temporal
sampling resolution at which the gamma model provides an adequate fit is proposed.

The work is organized as follows. In Section 2.2, we introduce the data used in our
study, and in Section 2.3 we present the followed methodology. The adequacy of the
gamma model and its sensitivity to the sampling resolution is presented in Section 2.4.
Finally, the conclusions are provided in Section 2.5.

2.2 Data

The DSD data used in this study were collected by a Parsivel2 (Particle Size and Velocity)
optical disdrometer located at the CESAR (Cabauw Experimental Site for Atmospheric
Research) observatory during the ACCEPT (Analysis of the Composition of Clouds with
Extended Polarization Techniques) campaign in October and November 2014, in a col-
laboration between TROPOS (Leibniz Institute for Tropospheric Research, Germany)
and Delft University of Technology. Cabauw is located in the western part of the Nether-
lands, in a polder area, 0.7 m below mean sea level.

The measurement principle and performance of the Parsivel disdrometer have been
extensively described in previous studies (Löffler-Mang and Joss, 2000; Tokay et al.,
2014); it uses a horizontal laser beam with an approximately 54 cm2 measuring, sam-
pling surface. When a raindrop passes through the laser beam, the attenuation in the
received voltage and the time for the particle to leave the beam can be used to estimate
the equivolume spherical raindrop diameter and the terminal fall velocity of the rain-
drop.
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Diameter and velocity are divided in 32 non-uniformly spaced classes ranging from
0 to 25 mm and 0 to 21 m s°1, respectively. All the drops in a given class are assigned
to the center of the bin. Thus, the raw output data for a sampling interval is a 32£32
matrix of detected number of drops for each diameter and velocity class from which
the volumetric size distribution of drops [m°3 mm°1] can be estimated (Raupach and
Berne, 2015). The first two diameter classes (0.062 and 0.187 mm) in the Parsivel are
always empty due to the low signal-to-noise ratio. Therefore, the minimum detectable
drop diameter is approximately 0.25 mm. From the DSD, integrated quantities can be
inferred, such as rainfall rate (R) expressed in mm h°1 which is the amount of rain that
falls over a given interval of time and radar equivalent reflectivity factor (Z ) expressed in
dBZ which is related to the backscattered radar signal of hydrometeors. For this study,
volumetric DSD values at several temporal sampling resolutions were used, the highest
being 30 s.

As in other related DSD studies (Adirosi et al., 2014; Jaffrain and Berne, 2011; Thurai
and Bringi, 2018) a selection criterion is applied to the whole DSD dataset before the
analysis. Our selection is based on two main requirements:

• Only liquid precipitation is considered. This means that only the first 22 diam-
eter classes of the Parsivel are used, starting from the 3r d (0.25 - 0.375 mm) up
to the 22nd (6 - 7 mm), the latter corresponding to the biggest physically possi-
ble raindrops. DSDs with measurements between the 23r d and 32nd class (solid
or mixed precipitation) were discarded. Further, the classification of precipitation
particles provided by Parsivel was used, and only the following precipitation types
were accepted: drizzle, drizzle with rain and rain. All DSDs attributed to other
precipitation types were discarded.

• A threshold on the minimum number of size classes was set. All DSDs comprised
of fewer than three different size classes were discarded. Moreover, all DSDs for
which the rain rate estimated by the Parsivel is zero were discarded. This is nec-
essary in order to remove suspicious observations such as noise from insects or
other objects crossing the beam.

Table 2.1: Overview of the DSD dataset from Parsivel2 optical disdrometer during the ACCEPT campaign. Sam-
pling resolution, available number of DSD samples, accepted number of samples after applying the filtering
criteria, mean, 50%, 90%, and 99.9% quantile and maximum value of rain intensity, reflectivity factor, mass-
weighted mean diameter, and number concentration.

No. of samples
Sampling resolution No. of DSD spectra after selection

30 sec 24289 12329

Rain intensity

(R) [mmh°1]
Reflectivity factor

(Z ) [dBZ]

Mass-weighted
mean diameter

(Dm ) [mm]
Number concentration

(NT ) [m°3]

Mean 0.76 16.17 0.89 401
50.0% (median) 0.33 16.20 0.82 225

90.0% 2.02 29.36 1.33 700
99.9% 11.20 42.08 3.12 8263
Max 26.31 47.82 4.92 11193
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Figure 2.1: Time series of (top to bottom) precipitation intensity [mm h°1], reflectivity factor [dBZ], mass-
weighted mean diameter [mm], and number concentration [m°3] from disdrometer data on 12 October 2014.

The application of the selection procedure described above to the whole dataset (24289
DSD spectra) resulted in 12329 30-s DSD spectra. From the 11960 DSD that were ex-
cluded, more than 80% were discarded due to the spurious signals (noise) with only one
diameter class and around 1.5% because of solid or mixed precipitation. In Table 2.1
we present the different percentiles of rain rate, reflectivity factor, mean diameter and
number concentration corresponding to the whole dataset. These values indicate that
the dataset mostly contains light rain, with 90% of the time steps corresponding to rain
rates of less than 2 mm h°1, which in terms of reflectivity factor is less than 30 dBZ
and in terms of mean drop sizes less than 1.33 mm. This can be explained if we take
into account the fact that the ACCEPT campaign took place in October-November in the
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Netherlands, during the cold season. Hence most of the rain events are frontal in nature
and convective events are rare. However, there are also some larger values with rain rates
between 11.2 and 26.31 mm h°1, number concentration between 8263 and 11193 drops
per cubic meter and mean diameter between 3.12 and 4.92 mm. Note that the maximum
mean diameter (4.92 mm) is suspicious and probably corresponds to solid precipitation
incorrectly classified by the disdrometer highlighting the limitations of the Parsivel in
terms of detection of small/big droplets (Tokay et al., 2014). For example, an overestima-
tion of large drops is possible due to the sensor’s limited sampling area or multiple drops
passing through the laser beam at the same time, resulting in artificially larger drop sizes.

For illustration and study purposes, one particularly interesting event during the cam-
paign was chosen (12 October, 2014). This event was selected because it exhibits a large
natural variability in DSD. As can be seen from Figure 2.1, the event started at 19:00 UTC
and lasted almost 4 h. According to the measured DSDs in Figure 2.2, the event can be di-
vided into three separate parts, each of them with its own characteristics. The first part
between 19:00 and 20:00 UTC is characterized by a relatively stationary DSD, with no
remarkable changes in the number concentration (between 200 and 300 raindrops per
cubic meter) and a mean diameter mainly between 1 and 1.5 mm. During the second
part between 20:40 and 21:20 UTC, the mean drop size increases and the DSD becomes
more variable, with rain rates between 1.5 and 7.5 mm h°1. The last part between 21:58
and 22:37 UTC exhibits a more stable DSD with a large number of small drops below
1 mm (drizzle conditions). It should be noted that even though the number concentra-
tion has a peak around 22:11 UTC (NT,max = 2698 m°3), the equivalent reflectivity factor
and the precipitation intensity peak before 21:00 UTC, highlighting the larger sensitivity
of both variables to the drop sizes rather than concentration.

Figure 2.2: Volumetric drop size distributions N (D) [m°3mm°1] in logarithmic scale as a function of time for
the study case on 12 October 2014.
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2.3 Methodology

Disdrometers provide detailed information about the DSD and its variation over time.
However, when we need to derive DSDs using radar or satellite data, because of the lim-
ited set of available observables, it is necessary to summarize this information in the
form of a mathematical model. Unfortunately, it is impossible to find simple models
that perfectly capture the complex, natural properties of observed DSDs. One of the
most common DSD models used in practice is the gamma model by Ulbrich (1983):

N (D) = N0Dµe°§D , (2.1)

where N0 is the intercept parameter [m°3 mm°1°µ]; µ is the shape parameter [unitless]
and§ is the slope parameter [mm°1]. To overcome the dependence of N0 toµ, the model
is often reformulated and normalized (Bringi et al., 2003; Testud et al., 2001):

Nmodel (D) = Nw f (µ)
µ

D
Dm

∂µ
e°(4+µ) D

Dm , (2.2)

with

f (µ) = 6
44

(µ+4)(µ+4)

°(µ+4)
, (2.3)

§= 4+µ
Dm

, (2.4)

where Dm [mm] is the mass-weighted mean diameter and Nw the generalized intercept
parameter [m°3 mm°1] whose unit does not depend on µ. Various methods have been
proposed to estimate gamma DSD parameters (Nw , µ, Dm) from disdrometer observa-
tions. In this study we focus on the two most common: the Method of Moments (MoM)
and Maximum Likelihood Estimation (MLE).

2.3.1 Method of Moments (MoM)

The MoM is based on the fact that the unknown parameters of the fitted DSDs can
be expressed as a combination of different weighted moments of the DSD (Ulbrich,
1983). Different versions of MoM have been proposed depending on the application:
the µ-search method applied to normalised spectra (Thurai et al., 2014), the L-moment
method (Johnson et al., 2011; Kliche et al., 2008) and the method of truncated moments
(Ulbrich, 1985). Here we focus on the first. For each observed DSD provided by the Par-
sivel disdrometer, the Dm and Nw are calculated:

Dm =

22P
i=3

N (Di )Di
4dDi

22P
i=3

N (Di )Di
3dDi

, (2.5)

LW C = ºΩw

6

22X

i=3
N (Di )Di

3dDi , (2.6)
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Nw = 44

ºΩw

µ
LW C

Dm
4

∂
, (2.7)

where LWC denotes the liquid water content expressed in g m°3, Ωw is the density of wa-
ter [10°3 g mm°3], Di is the center of the ith diameter class, N (Di ) is the measurement
by Parsivel (volumetric size distribution), and dDi is the width of the ith diameter class.
Dm is computed as the ratio of the 4th to the 3r d moment of the DSD. Using the calcu-
lated Nw and Dm values, the shape parameter µ can be computed. The optimal shape
parameter µ is estimated for every individual time step, by determining the value of µ 2
[-3, 15] that minimizes the following cost function (Thurai et al., 2014):

C F =
22X

i=3
| log10[N (Di )]° log10[Nmodel (Di |µ)] | . (2.8)

The applied brute force search tests all possible values of µ between -3 and 15 with steps
of 0.01 and selects the one that minimizes Equation 2.8. Note that due to the large num-
ber of zeros in measured DSD spectra (N (Di ) = 0) and the numerical issues related to
log10(0) in Equation 2.8, instead of the logarithms, square roots were used in this study.

2.3.2 Maximum Likelihood Estimation (MLE)

The second method used to estimate the parameters of the gamma DSD model is the
MLE. MLE is a statistical technique for evaluating how likely it is to observe a specific
output under the assumption of a given set of model parameters. Several studies have
applied MLE method for DSD retrievals (Adirosi et al., 2016; Schleiss et al., 2009; Thurai
et al., 2014). The goal of MLE is to find a pair of µ, § values (µ§, §§) that maximizes the
log-likelihood function:

nX

i=1
ln[ f (yi ;µ§,§§)] = max, (2.9)

where y1, y2, ..., yn are the observations, f (yi ) denotes the density, and n the total num-
ber of observations. In case of a gamma distribution f (y) is given by:

f (y ;µ,§) = §µ+1

°(µ+1)
yµe°§y . (2.10)

Note that because the Parsivel disdrometer outputs the number of drops per cubic meter
and per diameter class i [N (Di )] and not the total number of observations, n is given by:

n =
22X

i=3
N (Di ). (2.11)

To take the binning into account, Equation 2.9 is rewritten in terms of the Parsivel obser-
vations:

22X

i=3
N (Di )l n[ f (Di ;µ§,§§)] = max. (2.12)
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The MLE is the pair of parameters (µ§, §§) that maximizes Equation 2.12. This is deter-
mined through numerical optimization, for example by using a steepest gradient method.
As initial values (µ0,§0) for the optimization, the results from the MoM and Equation 2.4
can be used.

One important limitation of the Parsivel data is the effect of censoring at the lower and
higher drop end. Therefore, some studies have suggested to rescale the density function
in the likelihood function over the range of observable diameter classes (Johnson et al.,
2014). In this case the density in Equation 2.10 becomes:

f (Di ;µ,§) =

Di ,maxR
Di ,mi n

§µ+1 yµe°§y

°(µ+1) d y

∞(µ+1,§D22,max )
°(µ+1) ° ∞(µ+1,§D3,mi n )

°(µ+1)

, (2.13)

where ∞ is the incomplete gamma function, Di ,max and Di ,mi n are the upper and lower
boundary of the ith diameter bin (with i = 3, 4,.., 22), respectively, with D22,max = 7.0 mm
and D3,mi n = 0.25 mm. In this study, both approaches were used whereas it should be
pointed out that the first (without rescaling) is significantly faster than the second. The
MLE for truncated and binned data will be discussed further in Appendix A.

2.3.3 Kolmogorov-Smirnov goodness of fit test (K-S test)

As mentioned before, this study primarily focuses on the adequacy of the gamma model.
This will be examined using two statistical tools. The first is the K-S test. The K-S test is a
non-parametric test that quantifies the difference Dn between the empirical distribution
function (ECDF) of the sample (Fn) and the cumulative distribution function (CDF) of a
reference distribution (F):

Dn = sup
x

| Fn(x)°F (x) |, (2.14)

where supx is the supremum of the set of distances. From Dn , a p-value can be cal-
culated which is used to reject or accept the null hypothesis (H0) that the DSD sample
comes from the theoretical gamma distribution (Adirosi et al., 2016; Cugerone and De
Michele, 2015). When the p-value is smaller than the significance level (Æ = 0.05) the
gamma model is rejected. To apply the K-S test, the function "scipy.stats.kstest" from
the SciPy Python library was used.

At this point it is worth mentioning that because the K-S test can be applied only to
continuous distributions, it is not directly applicable to a discrete dataset like the binned
DSD observations provided by a Parsivel disdrometer. To overcome this issue, random-
ization of the drop sizes based on a uniform random distribution of the raindrops over
each class was used (Chambers et al., 1983; Ignaccolo and De Michele, 2014). The drops
can also be redistributed according to the density function of a gamma distribution. But
our analyses showed that this is much slower and does not significantly change the re-
sults.

Also, it should be noted that because the K-S test is applied to estimated model pa-
rameters, the mathematically correct but computationally expensive way to determine
the p-values is through Monte Carlo simulations, as recommended by several authors
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(Adirosi et al., 2016; Ignaccolo and De Michele, 2014; Laio, 2004). Again, both ap-
proaches were considered. For the application of the K-S test using Monte Carlo simula-
tions ("exact" K-S test), the reader is referred to Appendix B.

2.3.4 Kullback-Leibler divergence

The second tool used to evaluate the adequacy of the gamma model is the Kull-
back–Leibler divergence (DK L) also known as relative entropy (Kullback and Leibler,
1951):

DK L(P “Q) =
22X

i=3
P (Di ) ln

∑
P (Di )
Q(Di )

∏
, (2.15)

P (Di ) = N (Di )
22P

i=3
N (Di )

, (2.16)

where P (Di ) denotes the probability distribution function (PDF) of the observations
from the disdrometer and Q is the PDF of the reference distribution (gamma model,
Equation 2.10). The DK L measures how much work needs to be made in order to trans-
form one distribution into the other. Values close to 0 mean that P and Q are very similar,
while a value of 1 indicates that they are completely different. In contrast to the K-S test
output which is a "Yes" or "No", the DK L provides a more nuanced answer in terms of
how close or far away the modeled DSD is from our initial gamma DSD assumption. By
combining K-S test and DK L , a more detailed assessment of the adequacy of the gamma
model can be made. Similarly to the K-S test, DK L is calculated using the Python func-
tion "scipy.stats.entropy" from the SciPy library.

2.3.5 Adaptive sampling

Natural variability in rain means that the DSD is seldomly constant over time. However,
for everything that follows, we assume local statistical stationarity in the DSD, i.e., that
the unconditional joint probability function of raindrop sizes and number concentra-
tions are invariant over small time intervals and spatial volumes. This is common prac-
tice and necessary for making inference, although questionable from an observational
point of view (see, e.g., Jameson and Kostinski (2001), Ignaccolo et al. (2009), Schleiss et
al. (2014) and Gires et al. (2015)). In fact, non-stationarity in rainfall could be one of the
reasons why the gamma model is not equally good at representing DSDs across different
aggregation time scales.

In addition to that, measurements can also be affected by significant uncertainties due
to the limited sampling area of the Parsivel. As a result, the adequacy of the model will
change depending on the considered sampling resolution. To reveal this sensitivity, the
original measurements at 30 s were resampled to lower temporal resolutions. Resam-
pling was done by averaging the 30-s DSDs (i.e., summing consecutive DSDs and divid-
ing by the number of measurements) backward in time, using overlapping 30-s windows.
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Figure 2.3: Flow-chart of the adaptive sampling algorithm for determining the highest possible resolution at
which the gamma hypothesis is adequate.

An adaptive sampling technique is used to determine the highest possible temporal
sampling resolution at which the gamma model provides an adequate fit. The ade-
quacy is assessed by using a combination of K-S test and Kullback-Leibler divergence
(DK L). As can be seen schematically (Figure 2.3), the algorithm is an iterative procedure
which starts at the highest possible sampling resolution (e.g., 30 s). At this resolution, the
gamma model is fitted and its parameters (µ, §) are retrieved. The K-S test is applied to
the fitted model and DK L is calculated. Based on the acceptance or the rejection of the
K-S test, the right or left branch of the decision tree is followed. In both cases, an addi-
tional test on the DK L with thresholds C1 and C2 determines whether the algorithm ends
or not. If DK L is greater than C1 and the K-S test is accepted or if DK L is greater than C2
and the K-S test rejects, the gamma model is rejected at this specific resolution and this
procedure continues to a lower sampling resolution. The two other cases result in the
gamma model being accepted and the algorithm moves on to the next DSD observation.
The two thresholds C1 and C2 characterize how tolerant the algorithm is with respect to
deviations from the gamma model. To set them, the gamma model was fitted for every
DSD in the database at every possible resolution from 30 seconds up to 30 minutes with
a step of 30 s and the K-S test was applied to each sample. The 90th quantile of DK L for
all cases where the K-S test was rejected was taken as an estimate for C1. Similarly, C2
was estimated by taking the 90th quantile of DK L for all cases for which the K-S test was
accepted. This resulted in C1 = 0.09 and C2 = 0.05 meaning that the tolerance level is
lower when K-S test rejects than when it accepts. The values of C1 and C2 above were
derived empirically without any considerations for performance. They are specific to
our dataset and other values can be chosen depending on user requirements. For more
discussion on the choice of C1 and C2 and how they affect the results, see Appendix C.
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2.4 Results

2.4.1 Adequacy of gamma model at 30 seconds

In the following, the adequacy of the gamma model is investigated at 30-s resolution
through the K-S test and Kullback-Leibler divergence (DK L) described in Sections 2.3.3
and 2.3.4. For the following computations, the simple K-S test (without Monte Carlo sim-
ulations) and the simple MLE (without truncation and rescaling) were used. For more
details about the other versions ("exact" K-S test, truncated MLE), see Appendixes A and
B. We start by examining the results for the study case on 12 October 2014. The p-values
from K-S test and DK L are shown in Figure 2.4. They show that 89.8% of the 30-s samples
do not pass the K-S test at a significance level of Æ = 0.05, meaning that the majority of
the observed DSDs during this event are not strictly distributed according to the gamma
model. At the same time, most DK L values during this rain event remain relatively close
to zero, indicating that the DSDs are not far away from a gamma distribution either, in
contrast to what the K-S test suggests. This can be explained by the fact that DK L only
looks at the shape of the distribution while the power of the K-S test is heavily dependent
on the number concentration, with large samples being more likely to result in rejection
(Cugerone and De Michele, 2015; Mohd Razali and Yap, 2011).

An example of this situation can been seen from 20:40 to 21:00 UTC at the beginning
of the second part of the event and from 21:45 UTC until the end of the event (third part)
where the K-S test rejects the gamma assumption but DK L is low (DK L < 0.1), suggesting
that the gamma model is a reasonable approximation. The disagreement between K-S
test and DK L during these periods was expected since the two peaks of number concen-
tration were detected here (Figure 2.1). By contrast, higher acceptance rates for the K-S
test were found in the first part of the event (19:00-20:00 UTC) which is characterized by
a relatively stable period of light rain with stationary DSD (Figure 2.2) and p-values that
are frequently above 0.05.

Two (special) periods during which the K-S test mostly accepts the gamma hypothe-
sis were identified from 20:23 to 20:37 and from 21:26 to 21:41 UTC. The first period is
characterized by a very peaked DSD covering a limited number of diameter classes (i.e.,
between 3 and 5) and forming a triangular shape distribution. The second is a transi-
tional period of very light rain between the second and the third part of the event. Both
periods are characterized by small number concentrations which is the main reason the
gamma model gets accepted by the K-S test, even though visually the distributions do
not look like a gamma distribution, especially for the transitional period (Figure 2.2).

Except for the cases when the number concentration is high enough for the p-value
of the K-S test to be equal to 0, we see that often a local maximum for the K-S test cor-
responds to a local minimum for the DK L . However, the overall agreement between the
two metrics (K-S test and DK L) remains weak (correlation coefficient of -0.31), highlight-
ing the different type of information provided by the K-S test and DK L .

Based on the output of K-S test and DK L , four interesting cases are presented in Fig-
ure 2.5. The first (Figures 2.5a and 2.5b) corresponds to a measurement made at 19:34
UTC when the p-value is high and the Kullback-Leibler divergence is almost zero. There
is an agreement between the two metrics, since K-S test clearly accepts the gamma hy-
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Figure 2.4: The p-values (K-S test) and DK L (Kullback-Leibler divergence) at 30 s on 12 October 2014.

Figure 2.5: Four interesting DSDs from the case study. a-b) High p-value and low DK L , c-d) both p-value and
DK L relatively high, e-f) p-value low and DK L high, and g-h) both p-value and DK L low.

pothesis and DK L indicates good agreement between observations and the fitted gamma
distribution (Figures 2.5a and 2.5b). However, this is not always the case, as shown by the
observation at 22:00 UTC in Figures 2.5g and 2.5h. Here the agreement between the ob-
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servations and the fitted gamma model is visually good as confirmed by a DK L value
close to zero. Nevertheless, the K-S test rejects the gamma hypothesis due to a large
number concentration (NT = 1196 m°3). The two remaining cases (Figures 2.5c, 2.5d,
2.5e, and 2.5f) correspond to spectra that cannot be approximated by a gamma distri-
bution. Figures 2.5e and 2.5f shows a DSD that exhibits bimodal characteristics (forcing
both statistical tests to reject the gamma hypothesis no matter what the number con-
centration is), while Figures 2.5c and 2.5d shows a case where the Kullback-Leibler di-
vergence is rather large (DK L = 0.217) but the K-S test accepts the gamma hypothesis
(p-value = 0.287 > Æ) due to the low number concentration (NT = 23 m°3).

On average, over the whole event, only 1 out of 10 DSDs at 30 s strictly conformed to
the gamma model (according to K-S test only). A similar low acceptance rate was found
for the whole dataset. Out of 12329 DSD spectra at 30-s resolution, 42% were accepted
as gamma, of which only 21% were accepted by both K-S test and DK L which means that
almost 79% were not perfectly gamma according to the K-S test, but it is close enough
to be approximated by one according to the DK L . One reason to explain the low ac-
ceptance rate can relate to the cases with large NT values. Another reason which could
explain the high rejection of the gamma hypothesis is related to the limitations of the
measurements, since Parsivel is susceptible to errors in the recorded drop concentra-
tions, particularly for small and large drops (Raupach and Berne, 2015; Tokay et al.,
2014). However, the implications of this are not fully clear yet. For example, another
study (Thurai and Bringi, 2018) has suggested that there might be larger deviations from
the gamma model at smaller diameters than suggested by the Parsivel, meaning that the
rejection rates could be even higher in case better data at the low end of the spectra were
available. Therefore, several other studies (Lee et al., 2004; Thurai and Bringi, 2018) pro-
posed to use the generalized gamma formulation, which is a more flexible model with
additional parameters that appears to better fit naturally occurring DSDs than the stan-
dard gamma.

2.4.2 Influence of sampling resolution on gamma model adequacy

In Section 2.3.5, a novel adaptive sampling technique was proposed where the tempo-
ral sampling resolution is adapted until the gamma model provides an adequate repre-
sentation of raindrop size distributions. The approach is based on an iterative use of
Kolmogorov-Smirnov goodness-of-fit test and Kullback-Leibler divergence (Figure 2.3).
In the following, the technique was applied to the whole dataset for 60 different sam-
pling resolutions, starting from 30 s (sampling resolution of the original disdrometer
DSD data) up to 30 m in regular steps of 30 s. If the gamma model is rejected at all
resolutions, the procedure stops and the sample is flagged as being incompatible with
the gamma model. Resolutions lower than 30 m were not used as the main objective is
to work at the highest possible temporal resolution to capture the dynamics and micro-
physics of the rain and not mix different DSDs together.

In Figure 2.6 the application of the decision tree algorithm to the study case is pre-
sented. It shows that for the majority of the time-steps (86.8%), the gamma model was
accepted at resolutions between 30 and 300 s. Most of the time (73.8%), the right part of
the flow-chart was followed (DK L < C2) which means that the gamma hypothesis is not
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Figure 2.6: The output of the adaptive sampling algorithm for determining the highest possible resolution at
which the gamma hypothesis is adequate (applied on the study case on 12 October 2014).

accepted by K-S test but the model is close enough to the observations to be useful. On
the other hand, there are also a few interesting cases where lower resolutions are needed.
One example is the period between 20:48 and 21:07 UTC during which the highest reso-
lution at which the gamma assumption is acceptable increases at every time-step. Look-
ing closer, we can see that at the beginning of that period (20:45 UTC), the gamma hy-
pothesis was accepted at rather high resolution (below 90-s resolution). However, for
the rest of the period, the DSDs were consistently incompatible with the gamma model,
forcing the algorithm to downsample until the beginning of the period was included.

For a deeper understanding of the adaptive sampling algorithm, some examples high-
lighting the sensitivity of the results to the sampling resolution are presented. The four
cases which were already discussed in the previous section (Section 2.4.1, Figure 2.5) are
analyzed further here. Figures 2.7 and 2.8 present the fitted gamma DSDs, the p-values
(K-S test output) and DK L (Kullback-Leibler divergence) for different sampling resolu-
tions (30, 60, 90 seconds etc.) until the iterative resampling algorithm stops. Together,
these four cases cover all four possible paths in the decision tree algorithm.

The first case at 19:34 UTC (Figures 2.7 left, 2.5a, and 2.5b). is an example of a DSD
for which the gamma model gets accepted right at the beginning at the 30-s sampling
resolution (K-S test: 0.603 > 0.05, DK L : 0.004 < 0.09). Thus, there is no need to down-
sample. Similarly for the spectra at 22:00 UTC (Figures 2.7 right, 2.5g, and 2.5h). The
only difference in this example is that the gamma hypothesis gets rejected by K-S test
(K-S test: 0.001 ⇧ 0.05) but accepted by DK L (DK L : 0.004 < 0.05) which means that we
follow the right branch of the flow-chart instead of the left one. This example demon-
strates the importance of the DK L criterion in the algorithm when the K-S test decisions
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Figure 2.7: DSDs at 19:34 (left) and 22:00 UTC (right) at 30 s. The fitted gamma distribution is shown in blue.
The p-values (K-S test) and DK L (Kullback-Leibler divergence) result in acceptance of the gamma hypothesis.

Figure 2.8: DSDs at 20:21 (left) and 21:55 UTC (right) for different sampling resolutions (30, 60, 90 s etc.) until
the iterative resampling algorithm stops.

are heavily influenced by sample size. The two remaining cases are examples of situa-
tions where downsampling is required and more iterations of the algorithm are needed
in order to have an acceptable agreement between the gamma model and the observa-
tions. The case at 20:21 UTC (Figures 2.8 left, 2.5c, and 2.5d) is an example of a DSD
that passes the K-S test (p-value = 0.287 > 0.05) at 30-s resolution due to low sample size
but is rejected by DK L (0.217 ⌅ 0.09). A lot of downsampling is required until both K-S
test and DK L accept the gamma assumption at 1500-s resolution (K-S test: 0.117 > 0.05,
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DK L : 0.082 < 0.09). The last case (21:55 UTC, (Figures 2.8 right, 2.5e, and 2.5f) is an
example of a bimodal distribution. For that particular case, the distribution is too far
away from the gamma model. Therefore, the algorithm rejects the gamma at all sam-
pling resolutions up to 30 m. This last case is particularly interesting because it shows
that the algorithm is also capable of revealing entire time periods during which the DSDs
are completely incompatible with the gamma assumption irrespective of the temporal
resolution. The latter is very valuable as mismatches between the model and the obser-
vations may not always be obvious to spot by eye just by looking at the disdrometer data.
In our study case, two such periods were found (Figure 2.6). They last for approximately
4 min and can be characterized as transitional rain periods corresponding to the begin-
ning of the second and third part in the event (see Section 2.2). Visual inspection of these
two periods confirms that the DSDs are indeed bimodal. The first one (20:38-20:42 UTC)
relates to a transition from peaked DSDs to broad DSDs with a large number of small
raindrops. The second one (21:52-21:56 UTC) is just before the drizzle mode starts. A
possible physical explanation for the second transition could be a raindrop break-up
process during which larger drops break up into smaller ones. Both transitional periods
are characterized by a bimodal shape resulting from the mixture of two different DSDs
which is impossible to model by a gamma distribution. As long as the old and the new
DSD regime overlap and none of them dominates the other, the model cannot be used.

For a more general overview of the performance of the resampling procedure, the de-
cision tree algorithm was applied to the whole DSD dataset. Table 2.2 shows the accep-
tance rates for every possible resolution over the entire dataset. In addition, for every
acceptance rate, the percentage which corresponds to the left part of the flow-chart (K-S
accepts and DK L <C1) and the percentage due to the right branch of the decision tree (K-
S rejects and DK L < C2) are given. We see that the acceptance rate of the gamma model at
30 s is 42.14%. When combined with the 60-s resolution, acceptance increases to 60.02%.
When all the resolutions up to 300 s are combined, the overall acceptance rate is about
85.81%. While this is encouraging, it also means that in 15% of all cases, the gamma
model did not fit the data reasonably well at high resolutions (5 min or higher). The high
resolution requirement is crucial for hydrological applications or remote sensing since
DSD can change quickly over the course of an event. Among the 15%, approximately
one-third (5.55%) correspond to DSD spectra that do not follow a gamma distribution at
any resolution (up to 1800 s), highlighting the importance of a careful DSD inspection
and selection before the fitting procedure.

From the table we can also see a clear trend in the contributions of the left and right
parts of the flow-chart which remain stable around 25-75% regardless of which sampling
resolution was selected. This means that three out of four times the observed distribu-
tion is not perfectly gamma according to the K-S test, but it is close enough to be approx-
imated by one according to the Kullback-Leibler divergence. Above 900 s, that propor-
tion changes to 35-65%; however, the cases are noticeably fewer, representing only 2.3%
of the entire dataset.

At this point it is worth highlighting that these results depend on the choice of C1 and
C2, and will change for different thresholds and levels of tolerance. Even though for this
study specific values for C1 and C2 were chosen, these are not optimal and other combi-
nations can be used depending on the application. If one wants to be extremely strict,
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Table 2.2: Acceptance rates for all possible resolutions from 30 to 1800 s for the whole dataset and the relative
contributions of the left and right branches of the flow-chart to the acceptance rate.
Sampling resolution [s] Acceptance rate [%] Accepted both by K-S test [%] Rejected by K-S test but

and DK L [%] accepted by DK L [%]
30 42.14 21.04 78.96
60 17.88 30.17 69.83
90 9.17 27.43 72.57

120 5.26 26.50 73.50
150 3.54 24.08 75.92
180 2.34 18.34 81.66
210 1.73 25.82 74.18
240 1.46 24.44 75.56
270 1.26 25.16 74.84
300 1.03 24.41 75.59

[ 30 , 300 ] 85.81 24.27 75.73
[ 330 , 600 ] 4.59 23.67 76.33
[ 630 , 900 ] 1.75 20.37 79.63

[ 930 , 1200 ] 1.22 33.11 66.89
[ 1230 , 1500 ] 0.67 37.35 62.65
[ 1530 , 1800 ] 0.41 33.33 66.67

>1800
(never accepted) 5.55 - -

C1 and C2 can be lowered, which will result in a drop of the acceptance rates, especially
at higher resolutions. In this case the algorithm becomes equivalent to a single K-S test
output. On the other hand, in case C1 and C2 are increased, the algorithm will accept the
vast majority of the spectra, even the ones that are very far away from a gamma distribu-
tion. In general, results are more sensitive to C2 than C1 because the former defines the
level of tolerance for the right branch of the decision tree (where the most of the accep-
tance comes from). For more details about the influence of C1 and C2 and the sensitivity
of the results to the choice of these values, see Appendix C.

2.4.3 Model adequacy based on bulk variables (R , Z , Dm , NT )

In the previous section, we showed how well the gamma model can describe DSD ob-
servations, based on the entire DSD spectra. However, for many applications only in-
tegrated values of the DSD (R, Z , Dm , NT ) are needed. Since these bulk variables are
related to weighted moments of the DSD, the adequacy of the gamma model can also be
examined as a function of these moments. For a deeper investigation of the importance
of the method used to fit the DSDs, two different DSD parameter estimation methods
(MoM and MLE) were used for the retrievals of µ and §, described in Sections 2.3.1 and
2.3.2.

The four bulk variables corresponding to the fitted DSDs during the case study are
presented in Figure 2.9, together with the "true" values calculated directly from the dis-
drometer data. We can see that the observed bulk variables (R, Z , Dm , NT ) measured
by the disdrometer and the bulk variables derived from the fitted gamma models using
MLE and MoM do not always agree with each other, especially when the MLE is chosen
as the parameter estimation method. This is clearly visible during the second part of the
rain event (and partly during the first) during which MLE strongly underestimates Dm ,
R, and Z compared with the Parsivel and MoM.
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Figure 2.9: Time series of (top to bottom) precipitation intensity [mm h°1], equivalent reflectivity factor [dBZ],
mass-weighted mean diameter [mm], and number concentration [m°3] on 12 October 2014 using MoM and
MLE. The black line represents the value measured by the Parsivel disdrometer.

The disagreements can be explained by the fact that most DSDs during the second
time period are not well approximated by the gamma model according to Figure 2.6.
Also, the DSD spectra include bigger drops which are known to have a large influence on
higher order moments. Even though MoM makes the same mistake as MLE by assum-
ing that the DSD is gamma, it is a better choice than MLE during this particular period
because it explicitly tries to conserve the liquid water content, which is closely related
to Dm and R and (to a lower degree), to the reflectivity factor Z . By contrast, MLE does
not conserve the liquid water content, giving more weight to the smaller more numer-
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ous drops in the spectra. Nevertheless, one should not discard MLE simply on that basis
that it produces biased rainfall rates and reflectivities, as it can also lead to superior per-
formance for lower-order moments of the DSD (such as NT ). Also, it is very important
to point out that MLE performs very well in cases where the DSD is in good agreement
with the gamma hypothesis. This can be seen during the third part of the event during
which the gamma hypothesis is reasonable and both methods (MLE and MoM) are in
good overall agreement with the Parsivel observations.

Table 2.3 provides a more general overview of the performance of MLE and MoM for
the whole dataset, showing the root mean square errors for 4 bulk variables (R, Z , Dm
and NT ). We can see that MoM results in errors that are almost 3 times smaller for rain
rate and 9 times for reflectivity. On the other hand, MLE performs much better than
MoM for low order moments, such as NT . The conclusion is that both MoM and MLE
can be good/bad choices depending on 1) the intended application and 2) how close or
far the observed DSDs are from the gamma distribution.

Focusing on the third part of the event, the gamma DSD assumption is reasonable and
the MLE method is capable of accurately estimating R and Z . This can be seen more
clearly in Figure 2.10 where a scatter plot between the observations of Dm and the es-
timations of Dm using MLE are presented. It shows that for mean diameters up to 1
mm, there is good agreement between mass-weighted mean diameter observations and
model estimates regardless of the acceptance or rejection of the gamma assumption. On
the other hand, for diameters above 1 mm, MLE estimates of Dm tend to be underesti-
mated compared with the observations. This underestimation is more severe when the
gamma model is rejected than when it is accepted. Consequently, the performance of
MLE bulk parameters depends both on the acceptance or rejection of the gamma hy-
pothesis and on the value of Dm .

From the last two examples (second and third parts of the rain event), it is evident that
the gamma model should not be viewed as an absolute truth for all DSDs but as an ap-
proximation whose validity needs to be assessed on a case by case basis. Failing to do
so can result in large errors between calculated and measured moments. The same ar-
gument applies to the DSD estimation methods based on MoM and MLE, which have
different behavior and properties depending on the validity of the gamma assumption
and the Dm value. For example, while MLE is superior to MoM for cases where the DSD
is gamma, it should be avoided in cases where the gamma DSD assumption is question-
able or Dm is large. Similarly, in case the DSD is not perfectly gamma, it is better not to
use truncated and rescaled MLE (for more details see Appendix A). The adaptive sam-
pling algorithm presented in this paper can provide information about the adequacy of

Table 2.3: Root-mean-square error for the four bulk variables (R, Z , Dm , NT ) at 30-s resolution, for the whole
dataset using Method of Moments (MoM) and Maximum Likelihood Estimation (MLE).

Method of Moments
(MoM)

Maximum Likelihood Estimation
(MLE)

Rain intensity (R) [mm h°1] 0.28 0.75
Reflectivity factor (Z ) [dBZ] 0.41 3.53

Mass-weighted mean diameter (Dm ) [mm] 0.02 0.21
Number concentration (NT ) [m°3] 64.11 3.98
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the gamma model from a statistical point of view, which can be helpful for interpreting
changes in the microphysics of rain and selecting the most appropriate fitting method.
This is an often overlooked aspect of DSD analyses that is crucial for creating robust and
representative DSD databases for use in radar retrievals.

Figure 2.10: Scatter plot between the observations of Dm (from the Parsivel) and the estimated values D̂m
using MLE when the gamma DSD hypothesis is accepted and rejected for the case study on 12 October 2014.

2.5 Conclusions

A critical evaluation of the adequacy of the gamma model for representing raindrop size
distributions was presented. The results are based on DSD data collected by a Parsivel
optical disdrometer during a 2-month campaign in the Netherlands. A study case was
presented and a table summarizing the results for the whole DSD dataset was provided.
At first, the adequacy of the gamma model at 30 s was analyzed using the K-S test and
Kullback-Leibler divergence and four interesting cases were highlighted. Then, the influ-
ence of the sampling resolution on the adequacy of the gamma model was investigated.
A novel adaptive sampling technique was proposed to determine the highest temporal
sampling resolution at which the gamma model provides an adequate representation of
sampled DSDs. Finally, in order to assess the gamma DSD model from a more practi-
cal point of view, the accuracy of retrieved bulk variables (R, Z , Dm , NT ) was examined.
According to the results the following conclusions can be drawn.

1. The majority of the DSD spectra are not perfectly gamma but are well approxi-
mated by the gamma model at high sampling resolutions (60.02% of the DSDs up
to 60 s, 85.81% of the DSDs up to 300 s). However, a substantial number of DSDs
(5.55%) were absolutely not complying with the gamma model, which means that
careful selection of the DSD spectra is needed before fitting.
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2. About three out of four times (across all temporal scales), the gamma hypothesis
gets accepted not because of the K-S test (it is not perfectly gamma) but because of
the Kullback-Leibler divergence. Thus, most DSDs are not truly gamma but come
close to it.

3. One should not fit the two parameters µ and § of the DSD using MLE when the
distribution is not perfectly gamma or, at least, very close to it. The same argu-
mentation holds for truncated and rescaled MLE. Failing to do so results in un-
derestimated Dm and R values. In this case the safer option is to use the MoM
assuming that we want to retrieve high-order moments of the distribution (e.g.,
rain intensity, reflectivity factor).

4. The adaptive sampling algorithm proposed in this paper is capable of automati-
cally identifying transition periods during which the DSD cannot be represented
by a gamma model (at any resolution). These may not be easily visible in the data
but become very clear after applying our algorithm.

Finally, it should be mentioned that this study is not a statement against the use of
the gamma model which is often a good approximation. However, it highlights the im-
portance of checking the adequacy of these assumptions. It also lays the foundation for
a better automatic quality control of DSD retrievals for use in remote sensing applica-
tions. The main idea could also be applicable to other relevant research in the future,
including an evaluation of the gamma model assumption on µ-§ relationships used in
polarimetric radar retrievals.



Chapter 3
Sensitivity analysis of DSD
retrievals based on theµ-§
relationship

Raindrop size distributions (DSDs) play a crucial role in quantitative rainfall estimation using
weather radar. Thanks to dual-polarization capabilities, crucial information about the DSD in a
given volume of air can be retrieved. One popular retrieval method assumes that the DSD can be
modeled by a constrained gamma distribution in which the shape (µ) and rate (§) parameters are
linked together by a deterministic relationship. In the literature, µ-§ relationships are often taken
for granted and applied without much critical discussion. In this study, we take another look at
this important issue by conducting a detailed analysis of µ-§ relations in stratiform rain and quan-
tifying the accuracy of the associated DSD retrievals. Crucial aspects of our research include the
sensitivity of µ-§ relations to the temporal aggregation scale, drop concentration, inter-event vari-
ability and adequacy of the gamma distribution model. Our results show that µ-§ relationships
in stratiform rain are surprisingly robust to the choice of the sampling resolution, sample size and
adequacy of the gamma model. Overall, the retrieved DSDs are in a rather decent agreement with
ground observations (correlation coefficient of 0.57 and 0.74 for µ and Dm ). The main sources of
errors and uncertainty during the retrievals are calibration offsets in reflectivity (Zhh ) and differen-
tial reflectivity (Zdr ). Measurement noise and differences in scale between radars and disdrometers
also play a minor role. The raindrop concentration (NT ) remains the most difficult parameter to
retrieve, which can be off by several orders of magnitude. After careful data filtering and removal
of problematic Zhh /Zdr pairs, the correlation coefficient for the retrieved NT values remained low,
only slightly increasing from 0.12 into 0.24.

This chapter has been published in Atmospheric Measurement Techniques as:
Gatidis, C., Schleiss, M., and Unal, C. (2022). Sensitivity analysis of DSD retrievals from polari-
metric radar in stratiform rain based on the µ-§ relationship, Atmos. Meas. Tech., 15, 4951–4969,
https://doi.org/10.5194/amt-15-4951-2022.
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3.1 Introduction

Understanding the natural variability of raindrop size distributions (DSDs) is crucial
for radar remote sensing applications and microphysical parameterization in numeri-
cal weather prediction models (e.g., Thompson et al., 2004). Most precipitation-related
quantities (e.g., rain rate, mean drop diameter, number concentration, fall velocity, or
liquid water content) directly depend on the DSD. Similarly, most radar observables (e.g.,
Zhh , Zdr ) are weighted moments of the DSD. For these reasons, DSD retrieval methods
play a central role in numerous weather radar studies.

Efforts to improve quantitative rainfall estimates by retrieving information about DSDs
from radar and satellite observations have captured a great deal of interest in the mete-
orological community, especially after the introduction of polarimetric weather radar
(Seliga and Bringi, 1976). Retrievals based on the reflectivity factor at horizontal polar-
ization (Zhh), differential reflectivity (Zdr ), and specific differential phase (Kd p ) are the
most common choices because of their natural link to raindrop concentrations, sizes,
and shapes.

According to the literature, DSDs can be parameterized in the form of relatively simple
models such as a gamma distribution with the three parameters µ, § and N0 represent-
ing the shape, scale, and concentration, respectively. Algorithms for DSD retrievals take
advantage of different relationships between radar observables and the three parame-
ters of the gamma. Three main categories of retrieval methods can be distinguished:
the first one consists of methods that use two radar observations Zhh and Zdr , as well
as a constrained relationship between µ and § (Zhang et al., 2001; Zhang et al., 2003)
or N0 and µ (Ulbrich, 1983). The second category proposed by Bringi et al. (2002) and
Gorgucci et al. (2002) uses the three radar observables Zhh , Zdr , and Kd p . However, this
method is known to be very sensitive to noise in Kd p estimates. To reduce the uncer-
tainty, the differential phase needs to be filtered and down-sampled, which limits the
accuracy and spatial resolution of the retrievals. The last category consists of various re-
trieval techniques that require special types of radars or measurements, such as double
frequency (Rose and Chandrasekar, 2006), triple frequency (Mróz et al., 2020), and/or
Doppler power spectra (Unal, 2015). In this paper, only the first category will be dis-
cussed.

The main challenges when retrieving DSDs from Zhh and Zdr are the choice of the N0-
µ orµ-§ relationship and its validity across different rain types as well as spatial and tem-
poral aggregation scales. In the literature, µ-§ relationships are often taken for granted
or transferred from one location or scale to another without much critical discussion.
And while some studies have documented large differences in relationships across rain
types (e.g., stratiform vs. convective), little is known about the sensitivity ofµ-§ relation-
ships to the temporal sampling resolution of the disdrometer data used to infer them or
the validity of the gamma assumption. Another important issue concerns the fact that
the disdrometer data used to define µ-§ relationships correspond to much smaller sam-
pling volumes than the radar measurements to which they are applied. Therefore, it
might be necessary to first apply a statistical transformation to the radar data before re-
trieving DSDs based on µ-§ relationships or, equivalently, modify the µ-§ relation to
account for the difference in scale.
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Finally, one last issue that tends to be overlooked is that radar measurements are likely
to contain systematic errors in the form of calibration offsets in Zhh and Zdr . A possible
error in the latter could induce large biases in the retrieved DSDs, especially in light rain
with low Zdr and a small signal-to-noise ratio. Several operational polarimetric weather
radar networks such as the US Nexrad (Hubbert and Pratte, 2006) and the German DWD
network (Frech and Hubbert, 2020) have already devoted extensive efforts toward mit-
igating these calibration issues. However, achieving and maintaining good calibration
over time for research radars remain challenging.

In this paper, we perform a detailed analysis of the sensitivity of DSD retrievals from
polarimetric radar to various error sources such as the validity of the µ-§ relationship
and its sensitivity to the temporal sampling resolution, inter-event variability, changes
in number concentrations, and adequacy of the gamma distribution model. We also
examine the sensitivity of the retrievals to measurement biases in Zhh and potential bi-
ases in Zdr due to differences in measurement scale. We illustrate the importance of all
these issues by retrieving DSDs during several episodes of light to moderate stratiform
rain in Cabauw, the Netherlands, and indirectly validating our retrievals by comparing
them to disdrometer observations on the ground. The main focus is not on optimizing
the DSD retrieval algorithm but on understanding its sensitivity to potential sources of
errors, either directly linked to the radar measurements or indirectly through the critical
modeling assumptions behind the method.

This paper is organized as follows. In Section 3.2, the data used are introduced. In
Section 3.3, the methodology is presented. In Section 3.4, the main results for the µ-§
relationship analysis are shown, followed by the sensitivity analysis of the DSD retrievals
in Section 3.5. Finally, the conclusions are provided in Section 3.6.

3.2 Data

The data used in this study were collected in the Netherlands during the ACCEPT (Analy-
sis of the Composition of Clouds with Extended Polarization Techniques) campaign be-
tween October and November 2014. During this campaign, a variety of different in situ
and remote sensing measurements were collected at the CESAR (Cabauw Experimental
Site for Atmospheric Research) observatory.

3.2.1 The disdrometer data

The ground DSD spectra used for calibration and validation were collected by a Parsivel2

(Particle Size and Velocity) optical disdrometer. The working principle, strengths, and
limitations of the Parsivel2 have already been discussed in great depth in previous stud-
ies and will not be part of this study (Battaglia et al., 2010; Löffler-Mang and Joss, 2000;
Raupach and Berne, 2015; Thurai et al., 2011; Tokay et al., 2014). For example, the Par-
sivel is susceptible to errors in the lower drop diameter range, which can affect the DSD
shape and number concentrations. However, no efforts have been made to try to correct
for these issues within the context of this study. The raw DSD data consist of particle
counts across 32 non-uniformly spaced diameter classes ranging from 0 to 25 mm with a
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sampling resolution of 30 s. From the raw DSD, integrated quantities such as rainfall rate
(R) and radar equivalent reflectivity factor (Z ) can be derived (Bringi and Chandrasekar,
2001; Thurai and Bringi, 2008). The disdrometer measurements were used to fit gamma
DSD models and derive constrained relations between µ and § parameters at different
temporal resolutions, which is necessary for retrieving DSDs from polarimetric radar
measurements. At the same time, the disdrometer measurements were also used to (in-
directly) validate the radar retrievals and study their consistency over time and across
different events.

Similarly to Gatidis et al. (2020), pre-processing is applied to the disdrometer data:

1. Only the liquid type of precipitation was considered for further analysis. All DSDs
with observations above the 22nd diameter class (drop diameters greater than
7 mm) were discarded, since they correspond to mixed or solid precipitation.

2. Each DSD should be comprised of at least three different diameter size classes in
order to exclude spurious observations not related to rain.

3.2.2 Radar data

The radar data used to perform the DSD retrievals were collected by TU Delft’s polari-
metric S-band (∏ = 9.1 cm) FMCW radar TARA (Transportable Atmospheric RAdar; Heij-
nen et al., 2000) in Cabauw, the Netherlands. TARA radar was collocated with additional
sensors. This included a Parsivel disdrometer (see Pfitzenmaier et al., 2018, Figure 1)
provided by the Leibniz Institute for Tropospheric Research (TROPOS). For this experi-
ment, the radar antenna elevation angle of TARA was fixed at 45° with constant azimuth.
The collected polarimetric radar observables included the reflectivity factor at horizon-
tal polarization (Zhh) and differential reflectivity (Zdr ) at 200 m of height (correspond-
ing to the minimum range of TARA). The full specifications of TARA during the ACCEPT
campaign are given in Table 1 of Pfitzenmaier et al. (2018).

In order to make the radar data comparable with the disdrometer data, all Zhh and
Zdr measurements were down-sampled over successive 30 s sampling intervals. The
radar and disdrometer data were then synchronized by determining the time shift that
maximized the correlation coefficient between Zhh Parsivel and Zhh TARA.

Concerning the calibration of Zhh and Zdr , noise measurements were performed ev-
ery day to account for possible variations in range, especially at the beginning and end
of the IF-filter. Before the start of the campaign, the calibration of Zdr was verified us-
ing vertical profiling of drizzle and very light rain. The resulting histograms showed a
mean offset of -0.11 dB with a standard deviation of 0.05 dB. Consequently, an offset of
+0.11 dB was added to the measured Zdr for the whole ACCEPT campaign. For the cali-
bration of Zhh , the transmit power was stored in the dataset, and there was a near-field
correction for the non-full-overlap of the transmit and receive antenna beams using the
method described in Sekelsky and Clothiaux (2002). However, an end-to-end calibration
for Zhh was missing.
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3.2.3 List of events

A total of seven rain events over the whole measurement campaign were selected for
further analysis. The criteria used to select events were as follows:

1. Each event must consist of predominantly stratiform rain and exhibit a well-
defined melting layer signal in the radar data.

2. Each rain event must be at least 2 h in duration. This was deemed necessary to
have enough data to fit a reliable µ-§ relation and compute relevant performance
metrics.

3. There should be no clear sign of changes in dynamics or microphysics (Gorgucci
et al., 2001; Jameson and Kostinski, 2001; Uijlenhoet et al., 2003) with no long dry
periods within each event.

4. Each event must contain several Zdr and Zhh values larger than 0.1 dB and 5 dBZ,
respectively.

Table 3.1 presents a summary of the duration, rain intensity and mass-weighted mean
diameter (based on the disdrometer data) for each of the seven selected events. As can
be seen, most of the events last between 120 and 150 minutes. The longest on November
3 is slightly longer than 4 hours. The low rain intensity and mass-weighted mean drop
diameter values confirm that the selected events are mostly comprised of light to mod-
erate stratiform rain. This makes sense given the criteria used to select the events and
the fact that the ACCEPT campaign took place in October-November in the Netherlands
at a time when heavy convective events are rare.

For illustration purposes, one of the seven events (E2, 11 October, 2014) is plotted in
Figure 3.1. As can be seen, this event mostly consists of stratiform rain with a moderate
intensity of approximately 1.8 mm h°1 and a total duration of approximately 3 hours
between 10:30 and 13:45 UTC, including a short break between 12:45 and 12:55 UTC
according to disdrometer observations on the ground (Figure 3.2). The mass-weighted
mean diameter is 1.1 mm, which is typical for light stratiform rain and small raindrop

Table 3.1: Overview of the selected events. Date, duration, number of samples, average rain intensity (RR),
average mass-weighted mean diameter (Dm ), average number concentration (NT ), parameters of the µ-§
relationship (Æ, Ø), their corresponding percentage relative errors, correlation coefficient between µ and §
for each event, and root-mean-square deviation (RMSD) between µ and § points of each event as well as the
overall relationship. Note that only the DSDs conforming to the gamma model (see Section 3.3.1, DSD model)
were considered when computing these statistics.

Percentage Percentage
relative relative

Duration No. of RR Dm NT error error Correlation

Event Date [hh:mm] samples [mm/h] [mm] [m°3] Æ Æ [%] Ø Ø [%] coefficient RMSD
1 8 Oct 2:00 77 1.22 1.08 279 0.514 0.0 1.347 0.6 0.971 0.836
2 11 Oct 3:15 88 1.81 1.12 383 0.227 55.84 1.720 28.45 0.938 1.772
3 15 Oct 2:30 147 0.86 0.9 295 0.676 31.52 1.241 7.32 0.95 1.339
4 16 Oct 2:20 110 2.46 1.18 418 0.354 31.13 1.494 11.58 0.93 1.73
5 24 Oct A’ 2:00 38 1.0 1.02 254 0.415 19.26 1.410 5.3 0.962 1.053
6 24 Oct B’ 2:00 27 2.76 1.44 315 0.178 65.37 1.795 34.06 0.913 0.653
7 3 Nov 4:25 165 0.78 0.92 292 0.832 61.87 1.144 14.56 0.922 1.617

Overall - 18:30 652 1.37 1.03 323 0.514 - 1.339 - - -
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Figure 3.1: Height-time plots (top to bottom) of reflectivity factor [dBZ] and differential reflectivity [dB] on 11
October 2014.

sizes. Event 2 was chosen because it has a relatively stable, well-defined melting layer
around 2 km height as shown by the enhanced values of Zhh and Zdr in Figure 3.1 at
the top and bottom, respectively. The event also has a relatively low horizontal wind
speed, which makes it easier to compare the radar retrievals aloft with the disdrometer
measurements on the ground.
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Figure 3.2: Time series of (top to bottom) precipitation intensity (mm h°1), reflectivity factor (dBZ), mass-
weighted mean diameter (mm) and number concentration (m°3) from disdrometer data on 11 October 2014.

3.3 Methods

3.3.1 DSD model

The model used to approximate raindrop size distributions (DSDs) in this paper is the
gamma distribution proposed by Ulbrich (1983):

N (D) = N0Dµe°§D = NT
§µ+1Dµ

°(µ+1)
e°§D , (3.1)
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where N (D) is the raindrop size distribution in mm°1 m°3, µ is the shape parameter
[unitless],§ is the slope parameter [mm°1], N0 is the intercept parameter [mm°1°µ m°3]
and NT is the total number concentration [m°3]. The advantage of NT over N0 is that
its unit does not depend on µ (Bringi and Chandrasekar, 2001). For convenience, the
gamma model is reformulated in terms of the mass-weighted mean diameter Dm [mm]
and the generalized intercept parameter Nw [mm°1 m°3] (Bringi et al., 2003; Testud et
al., 2001) to:

N (D) = Nw f (µ)
µ

D
Dm

∂µ
e°(4+µ) D

Dm , (3.2)

where f (µ), Nw , and Dm are given by:

f (µ) = 6
44

(µ+4)(µ+4)

°(µ+4)
, (3.3)

Nw = 44

ºΩw

µ
LW C

Dm
4

∂
, (3.4)

Dm = 4+µ
§

. (3.5)

In the equations above, LWC denotes the liquid water content [in g m°3], and Ωw is the
density of liquid water [10°3 g mm°3].

It should be mentioned that even though the gamma distribution is the most popular
and widely accepted model for representing DSDs in the literature, several studies have
questioned its adequacy (Adirosi et al., 2016; Cugerone and De Michele, 2015; Gatidis
et al., 2020; Thurai et al., 2019), setting criteria and proposing different tools to check
the gamma hypothesis on a case-by-case basis.

3.3.2 Parameter fitting

The best parameters (µ, Dm , and Nw ) for describing the DSDs measured by the disdrom-
eter are obtained by using normalized parameterization of the gamma DSD model based
on Dm (ratio of 4th to 3r d order moment). To estimate µ, we first calculate Dm and Nw
(directly from the measured DSD spectra). The value of µ is determined by testing all
possible values of µ between -3 and 15 and choosing the one that minimizes the cost
function (CF, Equation 3.6):

CF =
22X

i=3
| log10[Nobs(Di )]° log10[N (Di |µ)] |, (3.6)

where Di is the center of the ith diameter class in the Parsivel disdrometer and Nobs(Di )
represents the volumetric size distribution measurements for each diameter class. Note
that the index i ranges from 3 to 22 because the first two diameter classes in the Parsivel
are always zero and the diameter classes above 22 correspond to particles that are too
large to be associated with rain. Finally, we derive § through its relationship with Dm
and µ (Equation 3.5).
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3.3.3 µ-§ relationship

When an empirical relation between shape and scale parameters is used the gamma
model is often called constrained gamma. Note that the term "constrained gamma"
denotes a gamma DSD model in which the shape and rate parameters are linked by a
deterministic function. Mathematically, this is equivalent to reducing the number of
free parameters from three to two, which is convenient in radar-based DSD retrievals.
However, the uncertainty related to estimating µ and § based on observed DSD spectra
remains. Hence, the constrained gamma DSD model and all its associated moments still
remain stochastic in nature.

Numerous studies have used and proposed constrained relationships between these
two DSD parameters. The most common models are based on second-order polynomial
fits, firstly introduced by Zhang et al. (2001) and Zhang et al. (2003). Since then, sev-
eral other studies have proposed updated polynomial µ-§ relationships based on either
seasonal (Seela et al., 2018) or regional criteria (Chen et al., 2016). Polynomial models
between µ and § were also proposed for DSD retrievals using microwave link measure-
ments (Berne and Schleiss, 2009; van Leth et al., 2020). In this study, µ-§ relationships
are modeled using a slightly different power-law model:

§=Æ(µ+3)Ø, (3.7)

with two coefficients Æ and Ø as given in Equation 3.8.

The power-law model above was chosen mainly for mathematical reasons since it
ensures that § remains positive across all scales and avoids the problem of having to
choose between a first-, second- or third-order polynomial. The power-law model is
also easier to justify than a parabola from a physical and mathematical point in light of
the scale invariance of DSDs under proper normalization, as pointed out by previous re-
searchers (Testud et al., 2001; Torres et al., 1994). However, for the sake of completeness,
we also examined the polynomial model during our study and concluded that it did not
make a big difference from a practical point of view (i.e., it has similar goodness of fit
over the considered range of µ values). Nevertheless, we decided to use the power-law
model in this study since it is more appropriate than a polynomial from a theoretical
point of view.

Note that the goal of this study is not to question the validity of previous µ-§ relation-
ships nor optimize the parameters behind them (which depend on the dataset used) but
to take a closer look at the sensitivity of the obtained fits to various underlying assump-
tions. Critical aspects that were investigated include whether the µ-§ relation remains
stable with respect to different sampling resolutions, drop number concentrations, types
of stratiform rain events, or the validity of the gamma DSD hypothesis itself. At the same
time, one has to keep in mind that the limitation of the Parsivel in terms of the detection
of small droplets might lead to overestimated Dm and µ values, since the width of the
distribution will be underestimated.
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3.3.4 DSD retrieval method

Because the gamma DSD model involves three parameters, three different radar mea-
surements representative of three weighted moments of the DSD are required to retrieve
the DSD in a given radar resolution volume. The retrieval method used in this paper is
described in Zhang et al. (2001). It involves a combination of reflectivity factor at hori-
zontal polarization (Zhh), differential reflectivity (Zdr ), and a empirical relationship be-
tween the DSD shape parameter (µ) and slope parameter (§), commonly referred to as a
µ-§ relationship. The main steps of the retrieval method can be summarized as follows:

1. Impose a µ-§ relationship§ = g (µ) based on nearby disdrometer observations or
literature values. In our case, a power-law relationship is used:

§= 0.514(µ+3)1.339, (3.8)

where the prefactor and exponent were determined by combining all the data from
all seven events in Table 3.1.

2. Consider all possible values of µ between -3 and 15 in steps of 0.01. For each µ
value, calculate Zdr through Equation 3.9:

Zdr =
Zhh

Zv v
=

DmaxR
0

N (D)æhh(D)dD

DmaxR
0

N (D)æv v (D)dD

=

DmaxR
0

Dµe°g (µ)Dæhh(D)dD

DmaxR
0

Dµe°g (µ)Dæv v (D)dD

= h1(µ)
h2(µ)

, (3.9)

where æhh [mm2]and æv v [mm2] are the copolar radar cross-sections of raindrops
with equivolume spherical diameter D at horizontal and vertical polarizations, re-
spectively, and Dmax [mm] is a reasonable maximum drop diameter (e.g., 7 mm
in our case). In the literature several studies tried to link Dmax with D0 such as
Ulbrich and Atlas (1984), who concluded that Dmax / D0 > 2.5 is what is typically
observed in natural rainfall, and Carey and Petersen (2015) who recommended us-
ing Dmax = 3 · D0. The detailed expression of the radar cross-sections can be found
in Equation 3 in Unal (2015).

3. Keep the µ value for which the Zdr value in Equation 3.9 is closest to the measured
Zdr value by the radar.

4. Infer Nw from Zhh in Equation 3.10, where µ̂ is the retrieved µ value from the pre-
vious step:

Zhh = Nw
∏4 f (µ̂)
º5| Kw |2

DmaxZ

0

µ
D

D̂m

∂µ̂
e
°(4+µ̂) D

ˆDm æhh(D)dD, (3.10)

where ∏ is the radar wavelength in millimeters, (i.e., 90.96 mm for TARA), | Kw |2 is
the dielectric factor of water, and D̂m = 4+µ̂

g (µ̂) .
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5. Retrieve N̂T by integrating the retrieved DSD:

N̂T =
DmaxZ

0

N̂ (D)dD =
DmaxZ

0

N̂w f (µ̂)
µ

D

D̂m

∂µ̂
e
°(4+µ̂) D

ˆDm dD. (3.11)

3.4 Analysis ofµ-§ relationship

3.4.1 Variations inµ-§ relationship from one event to another

In the following, we analyze the variations of the µ-§ relationships from one event to
another. For this, a filter was applied identical to Gatidis et al. (2020), and only the
cases which satisfied the gamma model hypothesis were considered. The adequacy
of the gamma model was assessed based on a combination of a Kolmogorov–Smirnov
goodness-of-fit test and Kullback–Leibler divergence. In total, approximately 40% of
the DSDs passed the tests and were accepted. On an event-to-event basis, that num-
ber varies between 36% and 45%.

In order to investigate and visualize possible differences between events, all seven
events were plotted using different colors in Figure 3.3. The overall relationships by
Zhang et al. (2001) and Zhang et al. (2003) were added for comparison. As can be seen
in Figure 3.3, most of the event-specific µ-§ relations stay relatively close to the overall
relation, except for events 2 and 6 for which larger deviations for higher values of µ (i.e.,
µ > 8) are visible. For event 6, the differences can be explained by the limited range of µ,
with most values remaining between 3 and 5, and only a single observation falling be-
tween 5 and 15. This limited range of variability significantly affects the reliability of the
estimated µ-§ relationship, especially for values smaller than 3 and larger than 5. For
event 2, the differences can be explained by the presence of a few outliers in the upper-
right part of the scatter plot, corresponding to DSDs with low number concentrations
and high sampling uncertainties.

For each selected event, the sample sizes, the fitted power-law parameters Æ and Ø,
and their percentage relative differences against the overall relation are presented in Ta-
ble 3.1. The relative errors of the parameters depend on the characteristics of each event,
with event 1 being the closest to the overall relation and event 6 exhibiting the largest
differences. In order to have a more complete picture of each event, the correlation co-
efficient between µ and§ as well as root-mean-square deviation (RMSD) between µ and
§ points of each event and the overall relationship were calculated and are presented in
Table 3.1. Even though event 6 has the weakest correlation coefficient, it has the lowest
RMSD mainly due to its small sample size (the smallest in the event list) and the way
the data are concentrated close to the fitted line. Event 1 shows the strongest relation
between µ and §, while at the same time event 2 has the highest RMSD because of its
outliers in the upper-right part of the scatter plot.

The event-specific and overall µ-§ relations are clearly different from previously pro-
posed relations by Zhang et al. (2001) and Zhang et al. (2003). For a fixed µ value, the
overall µ-§ relation for the seven selected events predicts higher § values compared
with the ones by Zhang et al. (2001) and Zhang et al. (2003). This can be explained by
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Figure 3.3: Scatter plot between µ and § of the selected events colored by event (only gamma DSDs were
considered). The µ-§ relationship of each event was fitted and plotted against the overall relationship. The
proposed relations by Zhang et al. (2001) and Zhang et al. (2003) were plotted as a reference from the literature.

the fact that § is inversely proportional to the mass-weighted mean diameter and that
the previous relations were derived under different climatological conditions in Florida
in the US, where convective rain events with larger raindrops are more common than in
the Netherlands.

Although the overall relationship might not necessarily be optimal for each individual
event, our results show that it still provides a fairly good approximation of the average µ-
§ relationship across all the seven considered events. Also, one has to keep in mind that
the low sample sizes and limited ranges for µ make it practically impossible to derive
reliable and representative µ-§ relations for each individual event. To avoid sampling
issues such as those encountered in event 6 and increase the robustness of our results, all
remaining sensitivity analyses and retrievals were therefore conducted using the overall
µ-§ relation.

3.4.2 Sensitivity ofµ-§ relationship to gamma hypothesis

One crucial factor that could affect the µ-§ relationship is the gamma DSD assump-
tion. To investigate this issue, we temporarily added back all DSDs that were excluded
from the previous analysis because they did not conform to the gamma model according
to the criteria set by Gatidis et al. (2020). For each event, we re-calculated the individ-
ual µ-§ relationship and compared the new results to the ones obtained using only the
DSDs that satisfied the gamma assumption. In six out of seven cases, the inclusion of
the non-gamma cases resulted in larger Æ and smaller Ø values. However, these changes
were not reflected visually in the µ-§ scatter plot as the two opposite changes compen-
sate for each other. Therefore, apart from slightly changing the parameter values, the
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gamma hypothesis does not appear to have a strong effect on the overall µ-§ relation.
Also, the changes to Æ (0.518 from 0.514) and Ø (1.328 from 1.339) were rather small and
not statistically significant. The fact that the overall µ-§ relation is rather stable with
respect to the gamma DSD hypothesis is an interesting result, especially given the fact
that there are large differences in sample sizes between non-gamma (1829) and gamma
DSDs (652).

3.4.3 Sensitivity ofµ-§ relationship to NT

Using the overall relationship from Section 3.4.1 as a reference, the influence of the num-
ber concentration on the µ-§ relationship was investigated. It would be interesting to
investigate whether the events for which the DSD is predominantly number-controlled
lead to more or less stable µ-§ relationships than events with size-controlled DSDs.
Three different NT thresholds corresponding to different percentiles of NT (25%, 50%
and 75%) were applied, and only the DSDs with number concentrations above these
thresholds were considered. In Figure 3.4, the three derived µ-§ relations obtained af-
ter applying the NT filters are shown against the overall relation (no filter). As the NT
threshold is increased from 225 to 300 and 390 m°3 (Figures 3.4b, 3.4c, and 3.4d), the
µ-§ relation remains relatively stable for lower µ values, gradually getting closer to the
one proposed by Zhang et al. (2003), especially for higher values of the shape parameter
(µ > 7). This can be partly explained by the fact that, on average, higher NT values cor-
respond to higher rainfall intensities and larger drop diameters. Also, the average mass-
weighted mean diameter increases by approximately 10% as we increase the threshold
on NT . This may not represent a big change, but it can be enough to slightly affect the
µ-§ relation. However, we believe the main reason the µ-§ relation changes with in-
creasing NT is sampling uncertainty. Indeed, our dataset predominantly features strati-
form rain events with low rainfall intensities, low number concentrations, and relatively
low and constant mass-weighted mean diameters (see Table 3.1). As we apply higher
thresholds on NT , the DSD samples that only contain a small number of drops and are
associated with a higher sampling uncertainty get removed. Consequently, the remain-
ing DSDs with higher number concentrations tend to be associated with lower sampling
uncertainties, which leads to more reliable µ-§ estimates. Moreover, it is worth point-
ing out that because of the way µ is estimated through the cost function in Equation 3.6,
the error distribution of µ tends to be positively skewed. On average, we are therefore
more likely to overestimate µ and underestimate the spread of the DSD rather than the
opposite. Since µ and § values are positively correlated through their relation with Dm
in Equation 3.5, any overestimated µ value automatically results in an overestimated §
value (to compensate and get the correct Dm). Consequently, as we increase the NT
threshold, sampling errors get reduced and the positively skewed outliers with high µ
and § values progressively disappear. This removes more and more points on the up-
per side of the µ-§ curve, pushing the new relation down towards the one proposed by
Zhang et al. (2003). Regarding the sensitivity of the Æ and Ø parameters describing the
µ-§ relationship, our analyses show that they exhibit an opposite behavior, increasing
and decreasing, respectively, as we increase the threshold on NT . The latter can be at-
tributed to a gradual flattening of the relationship and increase of the intercept parame-
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ter. Note that another similar approach to reduce the uncertainty in the estimated µ-§
relationship without applying a threshold on NT could be to consider temporal aggrega-
tion intervals longer than 30 s. However, this would significantly reduce the amount of
data available for analysis.

Figure 3.4: Four scatter plots between µ and§ of the selected events using four different minimum NT thresh-
olds corresponding to different percentiles of NT . The µ-§ relationship of each NT threshold was fitted and
plotted against the proposed relations by Zhang et al. (2001) and Zhang et al. (2003). a) NT,mi n = 0 m°3 (no
filter), b) NT,mi n = 225 m°3, c) NT,mi n = 300 m°3, and d) NT,mi n = 390 m°3.

3.4.4 Influence of sampling resolution on the overallµ-§ relation

In the following, the DSD data corresponding to the seven selected events were re-
sampled at four different temporal resolutions of 30, 60, 240 and 480 s to investigate
the sensitivity of the µ-§ relationship to the choice of the temporal resolution (Figures
3.5a, 3.5b, 3.5c, and 3.5d). Similarly to before, only the re-sampled DSDs which satisfied
the gamma hypothesis were kept for analysis. Figure 3.5 shows that the overall µ-§ rela-
tionship remains very stable, regardless of the considered sampling resolution. Table 3.2
shows more details about the fitted power-law parameters Æ and Ø at each resolution,
including their percentage relative differences against the overall relation at 30-s. We
can see that the relative error affecting the parameters slightly increases as the temporal
resolution is reduced. The latter can be attributed to the lower number of samples avail-
able for fitting the parameters. Apart from these obvious sampling effects, the choice of
the temporal aggregation scale seems to have very little effect on the overall µ-§ rela-
tionship, which remains rather stable across multiple aggregation timescales.
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Figure 3.5: Four scatter plots between µ and § of the selected events using different resolutions. The µ-§
relationship of each resolution was fitted and plotted against the proposed relations by Zhang et al. (2001) and
Zhang et al. (2003). a) 30 s, b) 60 s, c) 240 s, and d) 480 s.

Table 3.2: The parameters of theµ-§ relationship (Æ,Ø) for different sampling resolutions and their percentage
relative error against the corresponding values at 30 s.

Percentage Percentage
relative error relative error No. of

Resolution (sec) Æ Æ (%) Ø Ø (%) samples
30 0.514 - 1.339 - 652
60 0.518 0.78 1.337 0.15 519

240 0.529 2.92 1.329 0.75 200
480 0.527 2.53 1.328 0.82 115

Note that as we decrease the temporal resolution, the mean values of µ and § (Fig-
ure 3.5) also decrease. This means that there is a progressive transition from peaked
DSDs at higher sampling resolutions to broader, more widespread DSDs at lower reso-
lutions. Decreasing the sampling resolution therefore causes the µ and § values to shift
toward the bottom-left part of the scatter plot. However, while the points shift, they re-
main remarkably close to the initialµ-§ curve derived at the highest temporal resolution
of 30 s. The fact that the µ and § values change with resolution but that the overall rela-
tion between them is preserved across scales suggests that there is a fundamental phys-
ical link between certain moments of the DSD, such as the spread and the mean. Also,
this relation seems to be quite robust regardless of whether the gamma assumption is
valid or not and is only slightly affected by NT . In steady rainfall conditions, it should
therefore be possible to use the same µ-§ relationship for DSD retrievals across multiple
temporal scales. This is of high importance given the fact that µ-§ relations are often
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used to retrieve DSDs from radar observations, which have different sampling volumes
and levels of aggregation than disdrometer data. Moreover, the use of a µ-§ relationship
may still be justified from a physical point of view, even if the underlying DSDs do not
strictly comply with the gamma distribution hypothesis. Obviously, the fact that we have
selected relatively similar stratiform events with low rainfall intensities and low tempo-
ral variability is a crucial factor here since it means that by resampling, we do not signif-
icantly change the properties of the DSDs or mix together different rainfall regimes. By
contrast, larger differences in µ-§ relationships can be expected for mixed-type rainfall
events with multiple and rapid alternations between stratiform and convective rain.

On the other hand, there is still substantial controversy in the literature around the
reason why µ-§ relations exist in the first place and why certain DSD parameters are
linked to each other. One justification could be that the effective number of parame-
ters needed to describe most DSDs is probably fewer than three. In other words, under
proper normalization, all DSDs look rather similar to each other. For example, Torres
et al. (1994) introduced a single DSD normalization technique based on one reference
moment (usually the rain rate). Later, Testud et al. (2001) and Lee et al. (2004) proposed
a more general normalization technique based on two reference moments (usually the
3r d and 6th moments). The existence of a µ-§ relationship may just be the consequence
of such scaling laws. In their study, Moisseev and Chandrasekar (2007) have also argued
that data filtering can have a strong influence on the relation itself, leading to spurious
links between µ and §. However, this is not the case in our study. On the contrary, our
results show that when events with similar characteristics are chosen, the overall µ-§
relationship can be rather stable, barely depending on the different filters applied to the
data (e.g., inclusion or exclusion of non-gamma DSDs or minimum threshold for Zhh
and Zdr ). Other studies have pointed out that the constraints linking µ and§ during pa-
rameter fitting can lead to correlated errors between estimated gamma DSD parameters
and biased relations (Moisseev and Chandrasekar, 2007; Williams et al., 2014). Indeed,
because of the way we fit µ and§ through Dm (see Section 3.3.1), the parameters end up
being positively correlated with each other. In other words, if µ is overestimated, § will
also be overestimated because it has to compensate for the bias in µ. To address this,
Williams et al. (2014) proposed a æ’-Dm relation, wherein æ’ is the new mass spectrum
standard deviation, defined and constructed to be statistically independent of Dm . Even
though their approach seems to lead to smaller biases, our results show that it is also
possible to derive reliable µ-§ relations without defining a new æ, simply by excluding
the non-gamma DSDs cases and carefully filtering out DSDs with very low NT values.

3.5 Sensitivity of DSD retrievals

In this section, the sensitivity of the DSD retrieval method as a whole is evaluated. First,
the TARA and Parsivel observations are compared with each other to highlight their dif-
ferences and understand how possible biases in reflectivity or differential reflectivity af-
fect the accuracy of the retrievals. Then, the sensitivity of the retrieved DSD parameters
to different bias corrections, scale corrections, and data filters is quantified, and possible
ways to mitigate errors during retrievals are proposed.
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3.5.1 Overall agreement between radar and disdrometer

Agreement of Zhh and Zd r observations between TARA and Parsivel

In this section the agreement between the Parsivel and TARA measurements is investi-
gated. For the sake of the comparison between TARA and Parsivel observables, the radar
equivalent reflectivity factor derived from disdrometer data was used as the measured
reflectivity factor at horizontal polarization (Zhh,Par s ). As for the differential reflectivity,
using Rayleigh scattering, the calculated radar cross-sections of raindrops with equiv-
olume spherical diameter D at horizontal and vertical polarization were used (Equa-
tion 3.9) for estimating reflectivity at horizontal and vertical polarization, respectively.
From those, the differential reflectivity value from the Parsivel (Zdr,Par s ) can be obtained.

The goal is to quantify how well the measurements of the two sensors agree with each
other before the DSD retrievals. Figure 3.6 shows the scatter plots of the reflectivity factor
(Zhh , top) and differential reflectivity (Zdr , bottom) from the disdrometer versus TARA at

Figure 3.6: Scatter plot between (top to bottom) the observations of Zhh [dBZ] and Zdr [dB] from the disdrom-
eter and the radar.
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200 m of height. For this first comparison, the Zhh and Zv v measurements of TARA were
aggregated (in linear scale) to 30 s in order to be comparable with the disdrometer data.
No other additional filter was applied. Figure 3.6, top shows that Zhh measurements are
highly correlated (correlation coefficient = 0.94). However, the radar significantly under-
estimates Zhh compared with the disdrometer. The offset in Zhh slightly varies with time
but is of the order of 6 to 7 dBZ (overall bias 6.44 dBZ). Additional bias analyses at a differ-
ent height of 400 m show that the offset does not change substantially with height, which
suggests that the FMCW incomplete beam overlap correction at near ranges (see Section
3.2.2, radar data) works well and that the offset in reflectivity is likely due to calibration
issues of TARA rather than range-related issues. Unlike Zhh , the differential reflectiv-
ity measurements appear to be in much better agreement with the disdrometer (overall
bias -0.03 dB), as can be seen in the bottom panel of Figure 3.6. However, the correlation
for Zdr is lower (correlation coefficient = 0.71) and there is significant scatter, especially
for higher values of Zdr . Note that the vast majority of Zdr values are small (less than
0.2 dB), which makes sense given that we are mostly dealing with light stratiform rain
and that the elevation angle of 45± in TARA further reduces the magnitude of Zdr .

Zhh -Zd r relationships for TARA and Parsivel

In the top panel of Figure 3.7, the Zhh-Zdr relation of each sensor is presented. It shows
that most of the time, TARA measures higher Zdr values for a given Zhh than the dis-
drometer. Once the calibration bias in Zhh is removed (Figure 3.7, bottom), the agree-
ment improves and the radar and disdrometer-derived relationships nicely overlap with
each other. Nevertheless, and despite the bias correction, TARA still tends to measure
slightly higher Zdr values than the Parsivel for a given Zhh . This can be due to a differ-
ence in height or scale between the two measurements. The absence of a clear relation
between Zhh and Zdr is not really a problem for the DSD retrieval method itself. In fact,
a relation between Zhh and Zdr is not always expected since Zhh depends on NT , while
Zdr does not. However, the fact that TARA and the Parsivel disdrometer exhibit differ-
ent Zhh-Zdr relationships might negatively impact the accuracy and consistency of the
retrieved DSDs.

First DSD retrievals

In the following, we apply the DSD retrieval method described in Section 3.3.4 using
Zhh and Zdr measurements from TARA and compare the results to the disdrometer data
at 30 s resolution. For the retrievals, we used the overall µ-§ relationship inferred in
Section 3.3.4 (DSD retrieval method) from the disdrometer observations at 30 s sampling
resolution.

For illustration purposes, the event on 11 October 2014 was chosen. The time series of
retrieved µ, Dm , and NT as well as observed Zhh and Zdr values for this event are pre-
sented in Figure 3.8 and Figure 3.9. Overall, we see that there is rather good agreement
in terms of the retrieved µ and Dm values as long as the Zdr values are not too low (i.e.,
> 0.1 dB). When Zdr is low (e.g., between 12:20 and 13:15 UTC), we see that the retrievals
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Figure 3.7: Zhh -Zdr relations between the disdrometer and the radar (top to bottom) before and after the
calibration bias in Zhh is removed.

become very uncertain, exhibiting much larger fluctuations over time.
Compared with µ, the retrieved NT values are substantially more uncertain. There are

some outliers, and, on average, the retrieved NT values from TARA are about 100 m°3

lower than those from the Parsivel disdrometer (Figure 3.9a). This bias is attributed to
the 6-7 dB offset in Zhh in TARA, which propagates non-linearly to NT through the link
between Zhh and NT in Equations 3.10 and 3.11. On the other hand, we also see some
isolated cases in which NT is overestimated, such as at the beginning (10:57 UTC) and
end (13:15 and 13:23 UTC) of the event. These periods are characterized by underesti-
mated Zdr and Dm values by TARA, which, in combination with the relatively high Zhh
values, leads to an overestimation of NT .

For a better overview, the retrieved DSD parameters (µ, Dm , and NT ) for all selected
events are plotted against the ones from the disdrometer in Figure 3.10. We can see that
the retrieved µ values from the radar tend to be lower compared with the disdrometer.
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Figure 3.8: Time series of (top to bottom) the DSD retrievals (µ and Dm ) as well as Zhh and Zdr observations
from the disdrometer and the radar.

The overall bias in the retrieved µ values is 2.11, which is rather large and not imme-
diately apparent from the case study on 11 October (Figure 3.8, top). Note that the re-
trieved µ values from TARA can never exceed 8 due to the 0.1 dB cutoff applied to Zdr
observations (very light rain, peaked DSDs). Because of this, there is a slight conditional
bias in the retrieved µ values for low Zdr values. Since µ values are unaffected by the bias
in reflectivity and Zdr measurements appear to be well-calibrated, the bias we see in µ
values must either be due to the µ-§ relationship or to differences in scale, height, and
measurement principles between the two sensors. Unlikeµ, there is better agreement for
Dm retrievals with -0.09 overall bias. This holds true for the case study on 11 October as
well, for which Dm retrievals from Parsivel and TARA are almost similar throughout the
event (Figure 3.8, middle) except for the period between 12:45 and 13:00 UTC when Zdr
is low. Looking at the number concentration (Figure 3.10, bottom), we see a significant
underestimation in NT from TARA (overall bias = 276 m°3, multiplicative bias = 4.52),
which can be explained by the large 6.44 dBZ bias in Zhh in TARA and is consistent with
the previously reported underestimation for the event on 11 October 2014.

Despite the fact that NT values tend to be underestimated on average, we can also
see several large spikes in retrieved NT values, such as during the second half of the
case study event (Figure 3.9a). If we perform a more in-depth analysis of this period
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Figure 3.9: Time series of a) the NT retrievals from the disdrometer and the radar on 11 October 2014, b) the
NT retrievals (zoomed version for the period between 12:30 and 13:30 UTC), c) and the corresponding Zhh
and Zdr observations.

(i.e., between 12:30 and 13:30 UTC) in Figure 3.9b and compare it with the Zhh and Zdr
observations of the corresponding period (Figure 3.9c), we see that all five spikes in NT
correspond to low values of Zdr and relatively high Zhh values. The low Zdr leads to large
µ values and underestimated raindrop sizes during the retrieval. To compensate for this
and achieve the correct reflectivity, NT needs to be increased by a lot. Note that spikes in
NT can still occur even if Zhh is modest or decreasing locally, as long as Zdr is very small;
for example, for the spikes 2 and 3 there is a local maximum for Zhh , while for the other
spikes the Zhh decreases.

The differences documented above are important because they show that DSD re-
trievals can be very sensitive to combined biases in Zdr and Zhh relative to each other.
The latter can be linked to calibration issues. However, inconsistencies can also arise
due to differences in height, sampling volumes and temporal aggregation scales between
radar and disdrometer measurements, also known as non-uniform beam-filling prob-
lem (Durden and Tanelli, 2008; Ryzhkov, 2007).
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Figure 3.10: Scatter plot of (top to bottom) DSD retrievals (µ, Dm , and NT ) between the radar and disdrometer.

3.5.2 Sensitivity to calibration bias correction

Given the systematic underestimation of the reflectivity factor in TARA, a bias correc-
tion was applied before proceeding with the DSD retrievals. Indeed, the bias correction
was considered essential to get more reliable results, especially for NT . Since the NT
retrievals require the reflectivity to be converted from logarithmic [dB] to linear scale
[mm6 m°3], a multiplicative adjustment factor known as the G/R ratio (i.e., the ratio of
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the sum of Parsivel to TARA reflectivity values) was used to bias-correct the TARA mea-
surements, treating the disdrometer observations as the reference truth. The value of
the G/R ratio was 4.52, which confirmed the large calibration bias of TARA. To address
the bias, all TARA reflectivity values (in linear scale) were multiplied by 4.52 and the new
DSD parameters were retrieved. As expected, the first two DSD parameters µ and Dm
were completely unaffected by the bias adjustment, as they only depend on Zdr (see
Section 3.3.4, DSD retrieval method). Figure 3.11, on the other hand, shows that NT re-
trievals were substantially improved, and the bias decreased from 276 to 89 m°3. Despite
the lower bias, we can see that large uncertainties remain in the retrieved NT values, as
highlighted by the large scatter and frequent outliers.

Figure 3.11: Scatter plot of NT retrievals between the radar and disdrometer after applying the calibration bias
correction to Zhh .

3.5.3 Sensitivity to scale bias correction

In the following, a small additional bias adjustment was applied to Zdr to try to account
for the large difference in sampling volumes between the TARA radar and the Parsivel
disdrometer. This second adjustment is conceptually different from the one applied to
Zhh , which was primarily due to calibration issues. Contrarily to Zhh , the differential
reflectivity Zdr of TARA is assumed to be well-calibrated. Therefore, the differences in
mean and standard deviation are primarily attributed to differences in scale, height, and
measurement principles. Note that this scale bias also applies to Zhh . However, for Zhh ,
the effect is masked by the large calibration bias and the two cannot be separated.

According to Figure 3.6 (bottom), the average Zdr values measured by TARA are 0.03 dB
larger than the ones from the Parsivel disdrometer; this makes sense given that the radar
sees a larger measurement volume, which makes it more likely to contain at least a few
larger drops. Even though a 0.03 dB difference seems small, such a bias can have a sig-
nificant effect on the DSD retrievals given that the majority of Zdr values are rather small
(e.g., between 0.1 and 0.2 dB). A 0.03 dB bias in Zdr therefore represents a relative error
of 15-30%.
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Figure 3.12: Scatter plot of (top to bottom) DSD retrievals (µ, Dm , and NT ) between the radar and disdrometer
after applying the scale bias correction to Zdr .

Figure 3.12 shows the retrieved DSD parameters after correcting for the scale bias. We
see a reduction of the bias affecting µ and Dm , which are directly linked to Zdr . The
bias affecting µ is halved from 2.11 to 1.12, and the bias affecting Dm is reduced from
-0.09 to -0.02 mm. The correlation coefficient remains relatively stable, regardless of
the scale correction. Despite the improvements for µ and Dm , the NT retrievals remain
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problematic, with a low correlation coefficient of 0.12 (compared to 0.17 without scale
bias correction) and moderate bias of -32 m°3 (compared to 89 m°3 without correction).
Also, the average NT value increased significantly from 261 to 382 m°3 (+46%), which
highlights the large sensitivity of NT to changes in the differential reflectivity.

3.5.4 Sensitivity of NT to outliers

The results presented in the previous sections have shown that, unlikeµ and Dm , the un-
certainty surrounding the NT retrievals tends to be much larger. This can be explained
by the fact that NT is the last parameter to be retrieved in Equation 3.11, which makes
it more susceptible to error propagation and accumulation during the first steps of the
retrieval procedure. Errors in retrieved NT values can be due to the retrieval method it-
self (e.g., the assumed µ-§ relation and gamma DSD model), biased radar observations
(e.g., calibration errors in Zhh or/and Zdr ), or additional biases due to differences in
measurement scale, height, and measurement principle between radars and disdrom-
eters. Considering the fact that the events used in this study mainly consist of weak or
light stratiform rain, the errors and uncertainty affecting the measured Zdr values are
very likely to play an important role.

The scatter plot of retrieved NT values versus disdrometer data in Figure 3.10, bot-
tom shows a low correlation coefficient and a significant underestimation from TARA,
mainly due to the huge bias in Zhh (6.44 dBZ). However, it is worth noticing that even
after applying a calibration bias correction to Zhh , there was no substantial improve-
ment in terms of the NT retrievals (Figure 3.11). Even though the bias in NT was reduced
(89 m°3 compared to 276 m°3), the scatter increased and the correlation coefficient re-
mained low (0.17). The scale correction for Zdr results in even worse agreement (correla-
tion coefficient 0.12; Figure 3.12, bottom). In general, two distinct groups of data points
with drastically different error properties can be seen. For the first, the retrieved NT val-
ues are severely overestimated compared to the Parsivel disdrometer by up to 1 order of
magnitude. For the second group, the retrieved NT values are up to 10 times lower than
the disdrometer values.

The conclusion is that there are two different types of combinations of Zhh-Zdr that re-
sult in unreliable NT retrievals. The first group is comprised of low Zdr values compared
to Zhh , which results in overestimated NT values. These are all the pairs of Zhh-Zdr in
the lower-right part of Figure 3.13. Since Zdr is low, the only way to get a high reflectivity
is by increasing NT . The second group consists of relatively high Zdr values compared to
Zhh , which leads to underestimated NT values. These points correspond to the top-left
part of Figure 3.13. Since Zdr is large, the only way to get a low Zhh is to decrease NT . To-
gether, these two different types of outliers are responsible for the large scatter observed
in retrieved NT values.

Each retrieval has its own uncertainty and error characteristic, depending on the pair
of Zhh-Zdr . For example, the scale correction has different impacts on the different sub-
groups. Even though there is a general increase in NT to compensate for the new reduced
value of Zdr , the aforementioned correction had a significant impact on the subgroup
which corresponds to the points that are overestimated by TARA and negligible for the
ones that are underestimated.
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Figure 3.13: Example of the filtering based on the Zhh -Zdr relationship with the overall power-law fit and the
corresponding ones for the upper and lower end using ± 6 dBZ.

Table 3.3: Filter performance (correlation coefficient, bias) of DSD retrievals (µ, Dm , and NT ) for different
levels of tolerance (± 2, 4, 6, 8, and 10 dBZ).

correlation coefficient / bias
± dBZ % of data removed µ Dm NT

10 (No filter) 0 0.57 / 1.12 0.74 / -0.02 0.12 / -32
8 2.34 0.59 / 1.19 0.75 / -0.02 0.20 / -17
6 8.57 0.60 / 1.14 0.78 / -0.03 0.24 / 10
4 23.12 0.61 / 1.06 0.81 / -0.03 0.21 / 33
2 56.36 0.62 / 1.20 0.85 / -0.03 0.15 / 51

A possible way to reduce the uncertainty affecting the NT retrievals and thereby avoid
large errors is to filter out all potentially problematic combinations of Zhh-Zdr . In the
following, a filter which aims to control the uncertainty in NT by removing certain Zhh-
Zdr combinations that are difficult to handle is applied. Note that these "outliers" in the
Zhh-Zdr space are not necessarily wrong. They are just problematic in the sense that
they can potentially result in very large errors in terms of retrieved NT . The applied filter
is two-dimensional depending on both Zhh and Zdr values since the uncertainty derives
from their combination. A power-law model was used to fit the radar observables Zhh
and Zdr after calibration and scale bias correction, respectively. Based on that model, an
upper and lower curve defining the limits of acceptable Zhh and Zdr pairs is obtained by
adding or subtracting a given tolerance from Zhh as in Figure 3.13. For illustration pur-
poses ± 6 dB was selected, but several other options (i.e., ± 2, 4, and 8 dB) were examined
as well. Table 3.3 lists all options together with their corresponding performances for µ,
Dm , and NT . We see that by removing certain points beyond the lower and upper limits
in the Zhh-Zdr space, it is possible to improve the correlation between the observed and
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retrieved µ, Dm , and NT values while keeping a similar bias. For µ and Dm , the best tol-
erance (in terms of correlation) seems to be ± 2 dB and ± 4 dB. However, these are rather
strict, which means that a large fraction of the data points would have to be discarded
(i.e., 56% and 23%, respectively) for a modest gain in performance. For the NT retrievals,
the optimal tolerance appears to be ± 6 dB, which discards less than 9% of the data but

Figure 3.14: Scatter plot of (top to bottom) DSD retrievals (µ, Dm , and NT ) between the radar and disdrometer
after applying the Zhh -Zdr relation outlier removal.
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still manages to increase the correlation (0.12 to 0.24) and decrease the absolute value
of the bias (-32 to 10 m°3). Note that, contrarily to µ and Dm , filtering out more data
points does not necessarily increase the performance in terms of the NT retrievals. Fig-
ure 3.14 shows the final radar DSD retrieval results after applying a filter with a tolerance
of ± 6 dB.

3.6 Conclusions

A previously proposed method for retrieving DSDs based on radar reflectivity measure-
ments (Zhh), differential reflectivity (Zdr ), and an empirical relation between the shape
(µ) and slope (§) parameters of a gamma DSD model was investigated. Observations
from a nearby optical disdrometer were used to derive the µ-§ relationship as well as
for performing an indirect validation of the retrieved DSDs. While the retrieval method
itself is well-known, this study primarily focused on the critical assumptions behind it
in order to outline potential sources of errors and uncertainties. First, a thorough sensi-
tivity analysis of the µ-§ relation to various factors such as the temporal sampling res-
olution, the adequacy of the gamma model hypothesis, sensitivity to the concentration
number (NT ), and event-by-event variations was conducted. Then, the influence of cal-
ibration errors in radar observations and scale differences between radar and disdrome-
ter observations were highlighted and investigated. Finally, a filter designed to mitigate
uncertainty during NT retrievals was proposed. According to the results the following
conclusions can be drawn.

1. The µ-§ relationship derived from a nearby disdrometer proved quite robust to
the choice of the temporal sampling resolution, validity of the gamma model hy-
pothesis, sample size and event by event variability. However, only seven, rather
similar stratiform rain events were considered. More research is necessary to fully
understand and quantify inter-event variability of µ-§ relationships in convective
rain.

2. Radar calibration biases significantly affect the accuracy and reliability of the re-
trieved DSDs. Both Zhh and Zdr must be bias-corrected before retrieving the DSD.

3. Even for well-calibrated radars, a small, additional bias correction to account for
the scale difference between radar and disdrometer observations can be useful to
reduce conditional biases in retrieved µ and NT values.

4. Finding the right bias and scale corrections for Zhh and Zdr is not straightforward.
Often the bias due to scale differences cannot be separated from the bias due to
calibration errors and measurement noise. In our case, Zdr was very well cali-
brated which allowed us to investigate the scale correction in more detail. How-
ever, due to the large calibration offset, the scale correction for Zhh could not be
determined.

5. Despite our best efforts, the retrieved NT values remained highly uncertain. Two
different types of outliers were identified, resulting in severely underestimated or
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overestimated NT values. A simple filter for removing outliers in the Zhh-Zdr space
was proposed. The filter gets rid of some problematic cases, which slightly im-
proves the reliability of the NT retrievals. But improvements remained modest
and removing more data did not systematically result in better performances.

Finally, it should be mentioned that we do not expect the exact same adjustments to
hold for other DSD retrieval algorithms or radar systems. The adjustments mentioned in
this study are specific to the TARA radar and Parsivel optical disdrometer. For example,
the radar elevation angle was 45±, which is not ideal for such retrievals. Uncertainties for
lower elevation angles would probably be smaller due to higher Zdr values. Depending
on the radar system, corrections more elaborate than a simple shift in Zdr might be nec-
essary to achieve optimal performance across a larger number of rain events. Similarly,
more convective rain events should be included to study the performance and reliability
of DSD retrievals based on µ-§ relationships during heavy convective rain with larger
drop sizes. Finally, future work could look at the importance of µ-§ relations in DSD
retrievals from other relevant rainfall sensors, such as satellite observations, which have
much larger sampling volumes and errors than ground-based radar and for which the
scale corrections might therefore play a more important role.





Chapter 4
Power-lawµ-§ relationships in
convective and stratiform rainfall

In this study, we take a closer look at the important issue of µ-§ relationships in raindrop size dis-
tributions (DSDs) by conducting a systematic analysis of twenty months of data collected by dis-
drometers in the Netherlands. A new power-law model for representing µ-§ relationships based on
the double normalization framework is proposed and used to derive separate µ-§ relationships for
stratiform and convective rain events. The sensitivity of the obtained relationships to measurement
uncertainty is studied by applying two different quality control filters based on the mass-weighted
mean drop diameter (Dm ) and liquid water content (LW C ). Our results show that there are signifi-
cant differences in µ-§ relationships between convective and stratiform rainfall types. However, the
retrieved relationships appear to be quite robust to measurement noise and there is good agreement
with other reference relations for similar climatological conditions.

This chapter has been published in Atmospheric Measurement Techniques as:
Gatidis, C., Schleiss, M., and Unal, C. (2024). A new power-law model for µ-§ relationships in convec-
tive and stratiform rainfall, Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024.
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4.1 Introduction

The µ-§ relationship in rainfall microphysics refers to a deterministic function linking
the shape (µ) and scale (§) parameters of a gamma raindrop size distribution (DSD)
model (Zhang et al., 2001). Such relationships are important for understanding the mi-
crostructure and dynamics of precipitation and are essential for retrieving DSDs from
polarimetric radar measurements. The primary use of µ-§ relationships in radar remote
sensing is to reduce the number of model parameters (from three to two) in DSD re-
trieval algorithms. However, DSD retrieval remains challenging and subject to various
sources of uncertainty, including the accuracy of the remote sensing observations, the
limitations of the DSD retrieval algorithms, and the choice of the µ-§ relationship.

Numerous µ-§ relationships have been proposed in the literature, with second-order
polynomial functions being the most popular. The first relationships were proposed by
Zhang et al. (2001) and Zhang et al. (2003) using DSD data collected in Florida, USA.
Since then, several other relationships have been proposed for different datasets and
rainfall climatologies. For example, van Leth et al. (2020) derived a relationship for the
Netherlands using nine months of disdrometer data in Wageningen. Their relationship
differs from those reported by Zhang et al. (2001) and Zhang et al. (2003), which is rea-
sonable given that stratiform rain dominates in the Netherlands and convective and
stratiform precipitation have different DSDs. Notably, the drop sizes in convective rain
tend to be larger and more variable, which results in a broader DSD with smaller µ and
§ values. Conversely, raindrops in stratiform rain are typically smaller and more uni-
form in size, corresponding to larger µ values for a given §. Vivekanandan et al. (2004)
pointed out that correlation between µ and § exists but may vary across different types
of rain, highlighting the need for further understanding of µ-§ variability. Despite the
fact that the µ-§ relationship changes depending on rain-type, Chu and Su (2008) have
shown that µ-§ relations exhibit similar behavior for small µ values, which usually cor-
respond to heavier rainfall events, while the relations start to deviate asµ and§ increase,
indicating light to moderate rain events.

At the microphysics scale, Bringi et al. (2003) showed that a linear relationship with a
negative slope exists between the generalized intercept parameter (Nw ) in logarithmic
scale and the mass-weighted mean diameter (Dm) for stratiform rainfall. For convective
rain, two clusters of data emerge, with one cluster consisting of maritime-like convec-
tive points and the other of continental-like points. The latter is characterized by larger
raindrop sizes and lower concentration, whereas the former exhibits the opposite trend,
with a higher concentration of smaller-sized drops.

Similarly, other studies have examined discrepancies in µ-§ relationships based on
either regional (Chen et al., 2016) or seasonal criteria (Seela et al., 2018), showing that
both factors are influenced by the prevailing climatic conditions and the dominant rain
type. Besides the rain type and climatology, other factors that could potentially affect
the µ-§ relation have also been partially investigated, such as sampling errors (Zhang
et al., 2003), temporal sampling resolution, and the adequacy of the gamma model itself
(Gatidis et al., 2022). Zhang et al. (2003) discussed how sampling errors or deviations
from the gamma distribution could result in a correlation between µ and §. Using DSD
observations of moderate-intensity stratiform rain events in Cabauw, the Netherlands,
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Gatidis et al. (2022) found that the µ-§ relationship remained robust regardless of the
sampling resolution and the validity of the gamma model.

Another issue that arises when studying µ-§ relationships is the rainfall classification.
Several techniques have been proposed to classify rainfall into stratiform and convec-
tive regimes using a variety of different sensors. These methods may include weather
radar data, Micro Rain Radar (MRR) vertical profiles, and machine learning models for
the bright-band detection (Ghada et al., 2022; Powell et al., 2016; Qi et al., 2013; Ro-
matschke and Dixon, 2022). For example, Yang et al. (2019) used a K -nearest neigh-
bor supervised machine learning algorithm for the classification and Doppler radar data
to train the model. Other studies use a combination of ground-based sensors like rain
gauges or disdrometers and radar data (Bringi et al., 2003; Tokay and Short, 1996; Ul-
brich and Atlas, 2007). In this work, the stratiform and convective classification relies
primarily on rain intensity estimations by disdrometer, data from a cloud radar, and ver-
tical profiles of reflectivity from an MRR for detecting the melting layer. Additionally, a
combination of CAPE and lightning activity data assists in making the final classification
decision.

In this paper, we take a closer look at µ-§ relationships for convective and stratiform
rain. A total of twenty months of DSD data were collected in the Netherlands using
two co-located Parsivel2 optical disdrometers. Our analysis starts by applying a quality
control filter to Dm and liquid water content (LW C ) to discard observations for which
the two sensors showed large disagreement. Within the double-moment normalization
framework, a new µ-§ power-law relationship is introduced and fitted to the remaining
data, resulting in coefficients with meaningful physical interpretation. Finally, the data
are classified into convective and stratiform rain, and differences between the derived
µ-§ relationships are highlighted.

The work is organized as follows. In Section 4.2, we introduce the data used, and in
Section 4.3 the methodology is presented. In Section 4.4, the main results for the qual-
ity control filter and the µ-§ relationship analysis for the different rainfall regimes are
shown. Finally, the conclusions are provided in Section 4.5.

4.2 Data

The DSD data used in this study were collected by two co-located, perpendicularly ori-
ented Parsivel2 (Particle Size and Velocity) optical disdrometers (hereafter Parsivel 1 and
Parsivel 2) in Cabauw, a polder area located in the western part of the Netherlands be-
tween 1 January 2021 and 31 August 2022. The disdrometer data were collected within
the framework of the Ruisdael Observatory, a national research infrastructure that con-
sists of a large network of observations and models in the Netherlands where data are
merged together to study atmospheric processes across scales and achieve a better un-
derstanding of climate change and weather (Russchenberg et al., 2022). The measure-
ment principle and characteristics of the Parsivel2 have already been extensively de-
scribed in previous studies (Löffler-Mang and Joss, 2000; Thurai et al., 2011; Tokay
et al., 2014) and will not be repeated here. In the past, several studies have highlighted
the effect of strong winds on Parsivel data (Friedrich et al., 2013a; Lin et al., 2021), which



4

72 4. Power-law µ-§ relationships in convective and stratiform rainfall

could result in unrealistic big raindrops with small fall velocities. Thus, Friedrich et al.
(2013b) proposed a quality control method for removing all these spurious observations.
In the present work even though no action was taken in this direction, the observations
from the two co-located sensors were compared to each other. Whenever the agreement
between the two sensors was low, the DSDs were removed from the analysis. The total
dataset used for this study consisted of 21,178 1-minute DSDs. After filtering, the dataset
was reduced to 16,975 DSDs. A detailed description of the filtering process will be given
in a following section. No effort was made to investigate the reasons behind the occa-
sional disagreements. The latter have already been extensively studied and documented
in the literature and include, among others, errors due to wind, sampling, splashing and
internal processing.

In addition to the disdrometer data, the following resources were used for visualization
purposes and qualitative precipitation classification:

• Radar data collected by CLARA (CLoud Atmospheric RAdar), a dual-frequency (35-
94 GHz) polarimetric scanning cloud radar in Cabauw (https://cloudnet.fmi.fi/
search/data?site=cabauw).

• Vertical profiles of reflectivity from an MRR at Cabauw (https://dataplatform.
knmi.nl/dataset/ruisdael-mrr-cabauw-2).

• Convective available potential energy from ERA5, ECMWF reanalysis data, (https:
//doi.org/10.24381/cds.adbb2d47).

• Lightning activity (strikes) from the ZEUS long-range cloud-to-ground lightning
detection system (https://www.meteo.gr/talos/en/).

4.3 Methodology

The methodology can be summarized as follows. Firstly, rain events are classified into
two types: convective and stratiform. The data from the two co-located disdrometers
are then used to fit a gamma model for each 1-min time interval and derive the corre-
sponding shape (µ) and slope (§) parameters. The data from the two disdrometers are
cross-checked and any time steps for which the two sensors disagree with each other are
removed. The remaining data are used to fit the overall µ-§ relation, as well as the rela-
tions for convective and stratiform rainfall types. Finally, the results are compared with
those available in the literature to ensure consistency and validity.

4.3.1 DSD model and parameter fitting

The DSD N (D) [mm°1 m°3] is modeled using a normalized gamma distribution with
shape parameter µ [-], slope § [mm°1], and intercept Nw [mm°1 m°3] as in Bringi et al.
(2003) and Testud et al. (2001):

N (D) = Nw f (µ)
µ

D
Dm

∂µ
e°(4+µ) D

Dm , (4.1)

https://cloudnet.fmi.fi/search/data?site=cabauw
https://cloudnet.fmi.fi/search/data?site=cabauw
https://dataplatform.knmi.nl/dataset/ruisdael-mrr-cabauw-2
https://dataplatform.knmi.nl/dataset/ruisdael-mrr-cabauw-2
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.adbb2d47
https://www.meteo.gr/talos/en/
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f (µ) = 6
44

(µ+4)(µ+4)

°(µ+4)
, (4.2)

Nw = 44

ºΩw

µ
LW C

Dm
4

∂
, (4.3)

Dm =

DmaxR
Dmi n

N (D)D4dD

DmaxR
Dmi n

N (D)D3dD

= 4+µ
§

, (4.4)

LW C = ºΩw

6

DmaxZ

Dmi n

N (D)D3dD. (4.5)

In the equations above, Dm [mm] is the mass-weighted mean diameter, LW C [g m°3]
the liquid water content, Ωw [10°3 g mm°3] the density of liquid water, and Dmi n-Dmax
the integration limits due to the finite range of drop sizes which can occur in nature.
This model has been extensively used and assessed in the literature (Gatidis et al., 2020;
Thurai et al., 2019). Similarly to Bringi and Chandrasekar (2001), Gatidis et al. (2020) and
Thurai et al. (2014), the method of moments and more particularly the 3r d and 4th DSD
moments were used to fit the gamma DSD and estimate the three unknown parameters
µ, §, and Nw from empirical DSD spectra, with µ values ranging between -3 and 15, as
described by Thurai et al. (2014). The advantages and disadvantages of the method of
moments with respect to other methods such as maximum likelihood estimation were
discussed in previous studies (Gatidis et al., 2020; Kliche et al., 2008; Smith and Kliche,
2005; Smith et al., 2009) and will not be repeated here.

4.3.2 µ-§ relationship

Numerous empirical µ-§ relationships have been proposed and discussed in the litera-
ture (Gatidis et al., 2022; van Leth et al., 2020; Zhang et al., 2003). The most common
is the second-order polynomial model proposed by Zhang et al. (2001) and Zhang et al.
(2003):

µ=°0.016§2 +1.213§°1.957, (4.6)

§= 0.0365µ2 +0.735µ+1.935. (4.7)

While polynomial relationships are a practical way to represent empirical µ-§ rela-
tionships, they lack theoretical justification, and their coefficients do not have clear phys-
ical interpretations. Thus, we propose an alternative model that offers better justifica-
tion and interpretation. Our model is:

§=Æ(µ+3)Ø(µ+4)1°Ø, (4.8)

where Æ [mm°1] and Ø [-] are two model coefficients inferred using a non-linear least-
squares fit on pairs of (µ,§) values.
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Justification

The µ-§ relationship in Equation 4.8 can be derived from the double-moment nor-
malization framework by Lee et al. (2004). In this framework, the DSD is expressed as
N (D) = Nc h( D

Dc
) where Dc [mm] is a characteristic drop diameter that depends on two

references moments, Nc [mm°1 m°3] is a drop number concentration parameter, and
h is a template function for describing the shape of the normalized DSD. The two refer-
ence moments Mi and M j used for the normalization depend on the application. In all
generality,

Dc =
µ

M j

Mi

∂ 1
j°i

, (4.9)

Nc = M ( j+1)( j°i )
i M (i+1)(i° j )

j . (4.10)

To simplify, we consider the special case in which j = i + 1 and Dc = M j / M j°1. For
example, when j = 4 and i = 3, we get Dc = M4 / M3 = Dm . If in addition we assume that
the DSD is gamma, then we get the model for N (D) as in Equation 4.1.

One key property of the double-moment normalization framework is that any mo-
ment Mn of the DSD can be expressed as a power-law of the characteristic drop size Dc :

Mn =
1Z

0

Dn N (D)dD = NcªnDn+1
c , (4.11)

where

ªn =
1Z

0

xnh(x)d x. (4.12)

However, since the DSD variability might not be fully captured by two reference mo-
ments, we will assume that

Mn = Nc anDbn
c , (4.13)

where an and bn are two empirical coefficients which can be slightly different from their
theoretical expressions in Equation 4.11. Assuming Equation 4.13 holds, we must have

Mn

Mn°1
= an

an°1
Dbn°bn°1

c . (4.14)

Considering that the DSD is assumed to follow a gamma model and given thatR1
0 Dae°bD dD = °(a + 1)/b(a+1) and °(a + 1) = a°(a), where °(a) is gamma function,

then Dc (the ratio of two successive reference moments with i = j °1) is given by:

Dc =
M j

M j°1
= µ+ j

§
. (4.15)

Combining Equations 4.14 and 4.15 yields:

Mn

Mn°1
= an

an°1

µ
µ+ j
§

∂bn°bn°1

. (4.16)
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For a gamma DSD, the left-hand side is: µ+n
§ . Therefore,

µ+n
§

= an

an°1

µ
µ+ j
§

∂bn°bn°1

, (4.17)

which can be rewritten as:

§=Æn(µ+n)Øn (µ+ j )1°Øn , (4.18)

whereØn = (bn°1°bn+1)°1 andÆn =
≥

an°1
an

¥Øn
. This leads to a generalµ-§ relationship

of the form:
§=Æ(µ+n)Ø(µ+ j )1°Ø, (4.19)

where Æ and Ø depend on the two chosen pairs of consecutive reference moments
(M j°1,M j ) and (Mn°1,Mn). In particular, if n = 3 and j = 4, then we get Dc = Dm and
Equation 4.8, which is the equation we will use in this study. Note that the choice n = j
is impossible because it just leads to a self-consistency constraint Dc = µ+4

§ . In other
words, for any characteristic drop size Dc , two additional moments are needed to esti-
mate the scaling law linking Mn to Dc .

Equation 4.19 is interesting because it shows that within the framework of double-
moment normalization, the relationship between µ and§ depends on the chosen refer-
ence moments used to fit and/or model the DSD. This is a finding that has been previ-
ously hinted at by other studies, such as Seifert (2005), but has not been fully explained
until now.

4.3.3 DSD filtering

One advantage of having co-located disdrometers is that the DSD measurements can be
cross-checked to make sure they are consistent with each other. Suspicious DSDs are
identified in a two-step procedure: First, the Dm values for both disdrometers are calcu-
lated from the measured DSD spectra. If the absolute value of the difference in Dm val-
ues for two co-located measurements exceeds 0.5 mm, both DSD spectra are discarded.
The 0.5 mm threshold is inspired by the Global Precipitation Measurement (GPM) mis-
sion, which states that Dm should be known to within ± 0.5 mm (Tokay et al., 2020).
Then, a second filter that uses a relative error threshold of ± 50% on the LW C between
Parsivel 1 and Parsivel 2 is applied. The justification for this second filter can be found
in Equation 4.3, which shows the linear relation between Nw and LW C (assuming Dm
is known). The use of a relative error threshold means that the DSDs corresponding to
low values of LW C (i.e., low rainfall intensities) are filtered more strictly than the DSDs
corresponding to moderate and high values of LW C .

4.3.4 Convective-stratiform classification

In the literature, various methods have been introduced for rain type classification, uti-
lizing different datasets, sensors, and techniques. One popular method referred to as



4

76 4. Power-law µ-§ relationships in convective and stratiform rainfall

BR03 (Bringi et al., 2003) based on disdrometer data uses the standard deviation of
the rain rate over a 10-minute moving time window. If the standard deviation exceeds
1.5 mm h°1, the period is classified as convective; otherwise, it is labeled as stratiform.

Figures 4.1 and 4.2 illustrate the application of the BR03 method to our cloud radar and
disdrometer data, respectively, collected in Cabauw on 22 May 2021 during a 3-hour pe-
riod of stratiform rain. The BR03 method identified two short convective periods within
the event. However, the 35 GHz cloud radar co-polar correlation coefficient (Ωco) [-] re-
veals a distinct melting layer signature throughout the entire event, which contradicts
the classification suggested by BR03 (Figure 4.2).

Figure 4.1: Classification of a stratiform event on 22 May 2021 based on the BR03 method. Height–time plots
(top to bottom) of reflectivity factor [dBZ] and co-polar correlation coefficient [-] from cloud radar.
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To avoid issues with an automated procedure for rain type classification, we manu-
ally classified each time period based on the available data sources. To be classified as
convective, a time period had to meet the following criteria:

1. Rainfall intensity (by disdrometer) above 10 mm h°1.

2. No melting layer signature in the cloud radar and MRR.

3. Convective available potential energy (CAPE) above 1000 J/kg.

4. Lightning activity around Cabauw.

Figure 4.2: Classification of a stratiform event on 22 May 2021 based on the BR03 method. Time series (top
to bottom) of precipitation intensity [mm h°1], equivalent reflectivity factor [dBZ] in the Rayleigh scattering
regime, mass-weighted mean diameter [mm], and number concentration [m°3] from the disdrometer. Note
that after 09:00 UTC there is a peak in rainfall intensity that caused strong attenuation of the cloud radar signal.
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To determine the convective events, we start by identifying all 1-min DSD measure-
ments for which the rain rate exceeds 10 mm h°1. We then remove all periods for which
there is a clear melting layer signature, since these correspond to stratiform rain. Re-
garding requirements 3 and 4, please note that no processing was performed on the as-
sociated datasets. CAPE and lightning activity are only used as additional diagnostic
variables to help with the final classification decision. For the final selection of convec-
tive events, only the periods for which the CAPE values were larger than 1000 J/kg and for
which lightning strikes were detected over the Cabauw area are kept. A high CAPE level
indicates favorable conditions for strong updrafts and storm development, potentially
leading to convective rain, while lightning is a phenomenon that can accompany con-
vective storms. However, it is important to state that they are not the exclusive drivers of
convective processes (Schumacher et al., 2013). In this study, they are used as an addi-
tional indicator for potential convection which together with the high rain intensity and
the absence of the melting layer will ensure that no false convective events are identi-
fied. The reasoning behind this approach is that we think it is preferable to be too strict
and exclude a few convective events rather than being too tolerant and including some
stratiform or mixed-type events in the convective dataset.

Table 4.1 presents an overview of the eight convective events that were identified in
this way, together with some basic statistics for R, Nw , Dm , and LW C . All eight convec-
tive events occurred during late spring and summer and were associated with moist un-
stable atmospheric conditions (i.e., thermal convection). The average rainfall intensity
for the convective events is between 15.1 and 123.1 mm h°1, and the highest intensity
occurred on 19 May 2022 (mean LW C of 6.1 g mm°3 and average Dm of 2.4 mm).

Table 4.1: Overview of the selected convective events, including the date, number of 1-minute samples, mean
(x) and standard deviation (æ) of rain intensity (R), generalized intercept parameter (Nw ), mass-weighted
mean diameter (Dm ), and liquid water content (LW C ). Note that the number of samples denotes the total
number of 1-min samples available after filtering (both disdrometers combined).

No. of R (x / æ) Nw (x / æ) Dm (x / æ) LW C (x / æ)
Event Date samples [mm h°1] [mm°1 m°3] [mm] [g m°3]

1 17/08/2022 10 32.4 / 13.5 708.3 / 232.9 2.8 / 0.7 1.4 / 0.5
2 30/06/2022 16 15.2 / 4.5 974.7 / 138.1 1.7 / 0.2 0.9 / 0.2
3 24/06/2022 22 66.1 / 33.6 2604.7 / 341.2 2.4 / 0.4 3.5 / 1.6
4 19/05/2022 9 123.1 / 11.1 4460.4 / 597.2 2.4 / 0.2 6.1 / 0.5
5 05/07/2021 19 16.0 / 3.5 1193.0 / 258.3 1.6 / 0.2 1.0 / 0.2
6 04/07/2021 14 15.1 / 4.1 443.8 / 62.7 2.2 / 0.2 0.7 / 0.2
7 03/07/2021 A’ 21 18.8 / 8.2 982.9 / 222.2 1.8 / 0.3 1.0 / 0.3
8 03/07/2021 B’ 31 20.9 / 5.5 898.1 / 458.5 2.5 / 0.5 1.0 / 0.3

Overall convective - 142 30.8 / 29.9 1315.5 / 977.5 2.2 / 0.5 1.6 / 1.5
Overall stratiform - 16833 1.8 / 3.9 394.3 / 417.4 1.2 / 0.4 0.2 / 0.4

Note that while we are confident that all our convective events were indeed convec-
tive, it is likely that some additional cases of convective rainfall were missed and wrongly
attributed to the stratiform case because they did not meet all of the requirements men-
tioned above. However, since the Netherlands experiences predominantly stratiform
rainfall, the inclusion of a few convective cases in the stratiform category is likely to have
a minimal impact on the results.
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4.4 Results

4.4.1 Quality control of DSD data

For the quality control of the DSD data, initially the Dm filter is applied as was described
in Section 4.3.3. This first filter substantially reduces the measurement uncertainty af-
fecting the Dm values. The root-mean-square difference (RMSD) of measured Dm values
decreases from 0.32 mm to 0.14 mm and the Pearson correlation coefficient increases
from 0.53 to 0.88. However, the scatter of log10(Nw ) is still high (RMSD of 0.32 and cor-
relation of 0.70).

Therefore, the second filter on LW C values is used. Figure 4.3 shows the Nw values in
logarithmic scale before and after the two filters on Dm and LW C . We can see that the
combination of these two filters greatly reduces the scatter. The correlation coefficient
increases from 0.70 to 0.86 and the RMSD decreases from 0.32 to 0.16. The LW C filter
also slightly improves the agreement of Dm (correlation coefficient increases from 0.88
to 0.90 and RMSD is reduced from 0.14 to 0.12 mm). In total, 19.8% of the DSDs were
discarded during the filtering.

Figure 4.3: Scatter plots of log10Nw between Parsivel 1 and Parsivel 2 (left to right) before and after the Dm
and LW C quality control filter.

4.4.2 Fittedµ-§ relationships

First, the overall µ-§ relationship without any distinction for the rainfall type is pre-
sented. For this part, all 1-min pairs of (µ,§) values from the two disdrometers were
combined into a single dataset and the optimal Æ and Ø coefficients of the power-law
in Equation 4.8 were fitted using non-linear least squares. To assess the effect of the
quality control procedure, the analysis was done with and without the Dm-LW C filters.
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However, to our surprise, the optimal power-law coefficients (Æ = 1.632 and Ø = 5.038)
of the µ-§ relationship with and without filters were almost the same. Similarly, the
RMSD values and goodness of fit with and without filters were identical. The results
above are highly encouraging, as they suggest that the suspicious DSDs removed dur-
ing quality control were mainly affected by random noise rather than systematic errors.
Consequently, the filters applied did not significantly impact the overall µ-§ relation-
ship, except for reducing the measurement uncertainty. Furthermore, the µ-§ relation-
ship for each disdrometer was obtained and then compared. There is relatively good
agreement between the two sensors, particularly for smaller µ values (µ < 4) where the
RMSD of § values is 0.28 mm°1. For cases with µ greater than 4, the RMSD increases to
1.1 mm°1. The slightly bigger differences between the two relations for higher µ values
can be explained by the existing sampling uncertainty in the lower rainfall intensities. All
of the above implies that a single disdrometer may suffice to derive representative µ-§
relationships without requiring co-location.

Next, the convective-stratiform classification procedure as described in Section 4.3.4
was applied. Note that for this part of the analysis, only the DSD measurements that
passed the Dm-LW C filters were used. The obtained µ-§ relationships for each rain-
fall type are presented in Figure 4.4. We can see that there are two clearly different µ-§
relationships for the stratiform and convective rain events. Although the DSD data for
the convective regime originate from eight distinct events, the (µ,§) pairs correspond-
ing to them nicely align with each other along the fitted power-law. This is remarkable
given that the µ values cover a relatively large range from -1 to 9. However, it should
be highlighted that predictions for µ > 9 in convective events should be interpreted very
carefully, given that we do not have any observations beyond this range. The data for the
stratiform cases also nicely follow the power-law model, albeit with larger scatter. The
µ values corresponding to the stratiform cases also cover a larger range of values from
-2 up to 15, with the most probable value being between 2 and 6. Note that µ values
exceeding 15 are possible but only the DSDs with µ < 15 were used in this study.

The stratiform relationship shows striking similarity to the results obtained by van Leth
et al. (2020) and Gatidis et al. (2020), who also focused on stratiform rain in the Nether-
lands with low to moderate rainfall intensities. Compared to the convective one, the
stratiform relationship predicts higher § values for a given µ, which is consistent with
lower Dm values. The convective µ-§ relationship is similar to the ones obtained by
Zhang et al. (2001) and Zhang et al. (2003) in Florida during the summer months in an
environment that is prone to convection due to thermal instability and tropical cyclones.
It is worth noting that for small µ values ranging from -2 to 4, corresponding to higher
rainfall rates, the stratiform and convective relationships exhibit remarkable similarity,
reflected in an RMSD of 0.77 mm°1 for § values. For µ values greater than 4, larger de-
viations between the two relationships can be noted (RMSD = 4.96 mm°1). The fact that
the two relationships diverge for higher µ values can be attributed to the fact that the
characteristic drop sizes for a given DSD shape tend to be higher for convective events,
which becomes more visible when the DSDs are peaked (i.e., large µ). The fact that the
Parsivel struggles to detect small raindrops is unlikely to explain the differences since all
suspicious DSDs for which the two co-located disdrometers disagreed with each other
were removed prior to analysis.
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Figure 4.4: a) µ-§ pairs for convective rain (stars) and stratiform rain (points). The density of stratiform points
increases from blue to green. b) µ-§ relationships for convective and stratiform rain types, together with com-
monly cited models from the literature.

The significant differences we see between convective and stratiform µ-§ relation-
ships suggest that choosing a good relationship is key for retrieving physically mean-
ingful and realistic DSDs from polarimetric radar observations, even though the exact
consequences of a wrong µ-§ relation for the DSD retrieval procedure still require fur-
ther investigation. Using a single, global µ-§ relationship regardless of the rainfall type
could be problematic, especially for lower rainfall rates and very peaked DSDs.
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4.5 Conclusions

A study was conducted to analyze µ-§ relationships in convective and stratiform rainfall
in the Netherlands. A total of twenty months of DSD data were collected in Cabauw
using two co-located Parsivel2 optical disdrometers. A quality control filter on Dm and
LW C was applied to eliminate periods during which the two disdrometers showed large
disagreement. Subsequently, the data from both sensors were combined, and a new µ-
§ power-law relationship based on the double-moment normalization framework was
fitted. According to the results the following conclusions can be drawn.

1. The Dm-LW C filter based on two co-located disdrometers substantially reduces
the uncertainty affecting the measured DSDs but does not change the µ-§ rela-
tionship. This means that reliable µ-§ relationships can be obtained using a single
disdrometer.

2. The µ-§ relationships differ significantly between convective and stratiform pre-
cipitation, particularly for higherµ and§ values, which correspond to more peaked
DSDs and lower-intensity rainfall (less than 5 mm h°1).

3. The obtained µ-§ relationships are consistent with other relationships from the
literature.

4. The new power-law model looks very similar to previously proposed polynomial
models but offers better physical interpretation. For example, Equation 4.19 shows
how the order of the moments used to fit the DSD data influences theµ-§ relation-
ship.

While this study gives further insight into µ-§ relationships and their differences be-
tween stratiform and convective rainfall in the Netherlands, it is still necessary to further
investigate the impact of having two clearly different relations during DSD retrievals and
whether the correct choice of the relationship matters for a given retrieval algorithm and
rainfall intensity. Also, more convective-type events should be considered to get a more
representative idea of the natural variability of µ-§ relations within and between events.
Currently, a new extended DSD dataset is being prepared, which is expected to provide
further insights into these issues. Finally, a future work could further investigate the
characteristics of the discarded DSDs to determine when the two sensors exhibit the
most significant differences and under which rainfall regime.



Chapter 5
Conclusions and Outlook

This chapter presents the conclusions that can be drawn from the work discussed in the
previous chapters, followed by an outlook of possible future work.

5.1 Conclusions

Precipitation is a profoundly important meteorological process and crucial component
of the hydrological cycle. However, accurately measuring rainfall remains notoriously
difficult. The complexity of the rainfall field, characterized by strong spatio-temporal
variations in raindrop sizes, shapes and concentrations, affects the reliability of remotely-
sensed rainfall estimates. The drop size distribution (DSD) plays a crucial role in this
context, by offering valuable insights into the microphysical properties of precipitation
and linking radar observations to physical quantities such as liquid water content and
rainfall rate. However, in most of the cases, the DSD in the radar target volume remains
unknown, and simple mathematical models must be used to approximate it. The choice
of the DSD model, the mathematical assumptions behind it, and how well the model
performs across different spatio-temporal scales can have significant effects on the ac-
curacy of rainfall estimates and DSD retrieval techniques. These issues are often over-
looked in the literature.

The objective of this PhD thesis was to better understand the small-scale variability of
rain and improve the quantitative estimation of rainfall using weather radar by investi-
gating important aspects linked to the modeling, measurement and retrieval of DSDs.
The conclusions are related to the main research questions posed in Chapter 1 (see Sec-
tion 1.9), which are covered in depth in Chapters 2, 3 and 4 and are briefly listed as fol-
lows.
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5.1.1 Evaluation of the gamma DSD model

In Chapter 2, the adequacy of the gamma model for representing DSDs was evaluated.
Initially, the gamma model was fitted on disdrometer DSD data and a combination of
Kolmogorov–Smirnov goodness-of-fit test (K-S test) and Kullback–Leibler divergence
(DK L) was used to assess the adequacy of the model. The question was: do DSDs re-
ally follow a gamma distribution? The results show that the majority of DSDs do not
strictly follow the gamma model, even though they are well approximated by it. In
fact, only 42% of the DSD spectra satisfied the gamma DSD hypothesis. Among these
(42%, gamma DSD accepted cases), nearly 79% were not perfectly gamma according
to K-S test, but close enough to be approximated by one according to DK L . The work
showed that using the K-S test can be problematic, as results can be strongly affected by
sample size. Indeed, the K-S test is more likely to accept the gamma model for DSDs with
low drop number concentrations and much more likely to reject it for high drop number
concentrations. By contrast, the DK L metric, which mainly focuses on the shape of the
distribution, can be used to assess how well the gamma model approximates the empir-
ical distribution. The combination of both metrics leads to a better and more nuanced
testing procedure.

Next, the effect of sampling resolution and how it affects the adequacy of the gamma
DSD model was investigated. An adaptive sampling algorithm for determining the high-
est possible resolution at which the gamma hypothesis is adequate was introduced and
applied. For the majority of the cases (around 85%), the gamma model hypothesis was
found to be acceptable at resolutions between 30 and 300 s. This means that 15% of the
recorded DSD spectra were not well approximated by a gamma model at high tempo-
ral resolutions. Among these special cases (15%, non-gamma DSD spectra), one third
(around 5.5%) did not comply with the gamma model at any resolution (up to 1800 s).
By testing the gamma model across different time scales, our algorithm can reveal en-
tire periods during which the DSDs are not distributed according to the gamma model,
irrespective of the temporal resolution. Our work shows that these periods often corre-
spond to transitions between different rainfall types or regimes. Therefore, in addition
to improving DSD modeling and fitting, our method also turns out to be a good way to
identify time intervals with interesting rainfall dynamics.

5.1.2 Sensitivity analysis of DSD retrievals based on theµ-§
relationship

In Chapter 3, a well-known DSD retrieval technique based on polarimetric radar obser-
vations was studied. Using DSD observations from a disdrometer, the gamma model
was fitted and the µ-§ relationship was derived. Initially, a sensitivity analysis of the µ-§
relation to various factors was conducted. According to the analysis, the relationship
was found to be remarkably robust, regardless of the choice of sampling resolution,
sample size, inter-event variability, or gamma model hypothesis.

Then, based on radar data for the same events, the DSD retrieval method was com-
pared against DSD observations from a disdrometer. Various factors contributed to er-
rors and uncertainties during the retrievals, including calibration biases in Zhh and Zdr ,
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measurement noise and differences in scale between the two sensors. According to the
analysis, the calibration bias affecting Zhh was large (around a factor of 4.5). The cali-
bration correction significantly improved the accuracy of the retrieved NT values, re-
ducing the bias from 276 to 89 m°3. However, determining the scale correction for
Zhh turned out to be complicated. The large calibration offset in Zhh meant that the
bias due to differences in scale between radar and disdrometer could not be properly
determined. Nonetheless, since Zdr was very well-calibrated, we were still able to cor-
rect for the scale difference in retrieved µ values. In the end, we managed to obtain good
agreement with the ground measurements for Dm and µ (correlation coefficient of 0.74
and 0.57, respectively), but the retrieved NT values remained highly uncertain.

5.1.3 Power-lawµ-§ relationships in convective and stratiform
rainfall

In Chapter 4, an analysis of the µ-§ relationship in convective and stratiform rainfall in
the Netherlands was conducted. Taking advantage of the fact that the two disdrome-
ters were next to each other, a two-level filter based on the mass-weighted mean drop
diameter (Dm) and liquid water content (LW C ) was applied to the DSD spectra to re-
move all suspicious observations. The first level of the quality control removed errors
affecting Dm values while the cross-check of the LW C measurements improved the un-
certainty associated with the generalized intercept parameter (Nw ). Interestingly, the
analyzes showed that the applied filters do not affect the overall µ-§ relationship but
only help reduce the overall scatter due to random noise. This suggests that reliableµ-
§ relationships can be derived using a single disdrometer, despite large measurement
uncertainties.

The main contribution of this third paper was a new power-law model for represent-
ing µ-§ relationships based on the double normalization framework. The new power-
law model is visually very similar to previously proposed second-degree polynomials.
However, its coefficients have clear physical meaning, which leads to better interpre-
tation and understanding. Using the new power-law model, we derived separate µ-§
relationships for stratiform and convective rainfall events. The two µ-§ relationships
were consistent with other relationships from the literature and significantly differ-
ent from each other, especially for high µ and § values. The fact that stratiform and
convective events are characterized by different µ-§ relationships means that we can-
not use a single, universal relationship during DSD retrievals. Most importantly, our
research shows that µ-§ relationships are not a statistical artifact but a natural con-
sequence of the scaling laws linking the different moments of the DSD to each other.
These relationships are influenced by multiple factors, including the rainfall type, but
also the choice of the DSD model and even the choice of moments used to normalize
the DSD.
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5.2 Outlook

The work presented in this thesis represents a substantial contribution to the field of
DSD modeling and retrieval. Several answers to a number of scientific questions were
provided. However, many issues still remain unanswered. In this section, a few recom-
mendations and ideas for further research are given.

In previous sections we discussed the issues affecting DSD retrievals from ground-
based weather radars and the different assumptions that we had to make when going
from smaller scales to larger ones. Since continuous precipitation monitoring is needed
at global scale, this type of research could be further extended to satellite retrievals, e.g.,
from Global Precipitation Measurement (GPM) mission. In particular, one should take a
closer look at the importance ofµ-§ relations and bias corrections in DSD retrievals from
GPM, which has a much larger sampling volume and different measurement errors than
ground-based radar. For GPM, the scale-related bias corrections in Zhh and Zdr might
therefore be more important for retrieving accurate DSDs. Moreover, the spatial scale
dependence on the µ-§ relationship for GPM can be investigated by deploying a large
network of spatially distributed disdrometers (other studies have only partially explored
this aspect e.g., Adirosi et al., 2021 and Gatlin et al., 2020). Other related activities can
involve cases when the GPM sampling volume is heterogeneously filled (e.g., different
rainfall types, non-uniform beam-filling).

In Chapters 3 and 4, the importance ofµ-§ relationship for the DSD retrieval was high-
lighted. A possible step forward could be to conduct a quantitative study on the derived
convective and stratiform relations and their influence on the actual DSD retrievals from
a polarimetric radar. For example the impact of using the wrong relationship when re-
trieving DSDs could be studied for different types of rainfall regimes. Furthermore, an-
other recommendation is to study the stability of the µ-§ relationship across different
types of convective events. Indeed, the nature of convective rain is more complicated
and chaotic than stratiform events. The strong vertical motions and short-lived convec-
tive cells can result in vastly different DSDs, and there might be differences in µ-§ from
one storm to another. In addition, by studying the possible changes in µ-§ relation-
ship over time, further insights can be gained regarding the physical characteristics that
lead to different relations. Based on bulk variables (e.g., rain rate, number concentration
etc.) the available data can be stratified into groups. For each group, a unique µ-§ rela-
tionship can be fitted. Then the characterization of each µ-§ relationship could reveal
variables potentially controlling how the relation changes over time.

In Chapter 4, a new power-law model for representingµ-§ relationships based on dou-
ble normalization framework was introduced. According to the underlying philosophy
of the model, it is possible to establish a relationship as a function of the DSD moments
utilized for normalization. Practically, this means that there is a whole family of µ-§ re-
lationships from which the user can choose one that fits best with the data at hand and
intended application. For example, if the radar reflectivity and differential reflectivity are
used, two of the normalizing moments should be M6 and M7, which will lead to differ-
ent µ-§ relations than if we use M4 and M3. But other choices are possible and further
investigations are necessary to verify this idea and enhance our understanding of the
underlying linking mechanism between µ and§.



Appendix A
MLE for truncated and binned
data

The rescaling of the likelihood function in Equation 2.13 and the theoretical complica-
tions that follow from it are heavily dependent on the assumption that the DSD is indeed
a gamma distribution, which we know is hardly ever the case. As a result, the corrections
are not necessarily beneficial and could actually make the fit worse. To quantify this,
we applied the rescaling and truncation to the case study. With this new way of fitting,
we saw a drastic decrease in the cumulative acceptance rate up to 5 min from 86.8% to
65.3%. This can be explained if we take into account that most of the spectra of the case
study at 30-s resolution are not gamma (according to K-S test only 10% are accepted).
Consequently, the correction (rescaling) for the remaining 90% of them was based on
the wrong initial hypothesis which led to a worse MLE fit than before.

To investigate this issue further, we applied the new rescaled and truncated MLE fit to
the entire DSD dataset at 30-s resolution and we calculated the four bulk variables (R,
Z , Dm , NT ) corresponding to the fitted DSDs. Combining them together with the "true"
values calculated directly from the disdrometer, we derived the root-mean-square error
(RMSE) of the bulk variables for the whole campaign (Table A.1).

Table A.1: Root-mean-square error for the four bulk variables (R, Z , Dm , NT ) at 30-s resolution, for the whole
DSD dataset, for the non-gamma DSDs, and for gamma DSDs using MLE for truncated and binned data.

All DSDs non-gamma DSDs gamma DSDs
Rain intensity (R) [mm h°1] 0.89 0.97 0.37
Reflectivity factor (Z ) [dBZ] 7.41 7.81 2.63

Mass-weighted mean diameter (Dm ) [mm] 0.31 0.34 0.12
Number concentration (NT ) [m°3] 22.27 50.79 9.14

The results show that the RMSE of each variable calculated using the truncated and
rescaled MLE increased compared with the values presented in Table 2.3 (MLE without
rescaling). The RMSE of the rain intensity increased from 0.75 to 0.89 mm h°1, reflectiv-
ity from 3.53 to 7.41 dBZ, Dm from 0.21 to 0.31 mm, and NT from 3.98 to 22.27 m°3. This
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is attributed to the fact that most of the time, the DSDs are not strictly gamma. This can
be seen very clearly if we calculate the RMSE of the bulk variables separately for all the
DSDs which satisfy the gamma assumption (according to our algorithm) and for those
which do not (Table A.1). For the gamma shaped DSDs, the truncation and rescaling
resulted in lower RMSE values from 0.89 to 0.37 mm h°1 for rain intensity, from 7.41
to 2.63 dBZ for reflectivity, from 0.31 to 0.12 mm for mean diameter, and from 22.27 to
9.14 m°3 for number concentration. On the other hand, for the non-gamma DSDs the
RMSE increased to 0.97 mm h°1 for rain intensity, 7.81 dBZ for reflectivity, 0.34 mm for
mean diameter, and 50.79 m°3 for the number concentration.

All the above shows that the best way to estimate the parameters when we are not sure
whether the distribution is really gamma or not is to use:

• Estimates which are based on a few moments calculated directly from the sample
(see Table 2.3, RMSE MoM), instead of fitting the whole density function as in MLE.

• Simple numerical solutions which make as little assumptions as possible about
the underlying distribution (MLE without rescaling and truncation).



Appendix B
"Exact" K-S test (using Monte
Carlo simulations)

An alternative way to apply the K-S test, suitable for cases when population parameters
are unknown and must be estimated by sample statistics was implemented. Specifically,
we applied the "LcKS" function from the KScorrect package (R programming language),
which uses Monte Carlo simulations to estimate the p-values. A total of 4999 random
samples (recommended by the authors of the package) were drawn from a gamma dis-
tribution with parameters calculated from the sample. Based on these simulations we
found that there were no significant changes to the final results. For the study case, the
acceptance rates at resolutions between 30 and 300 s differed by less than 1% compared
with the previous ones, increasing from 86.8% to 87.3%. Also, because the "exact" K-S
test resulted in a lower rejection rate, the left branch of the decision tree was followed
slightly more often (from 25%/75% it went to 28%/72%). But overall, no big differences
could be observed. This is due to the algorithm construction itself, which is mostly based
on the value of DK L . The purpose of the K-S test is mainly to give a first opinion, but the
final decision is always based on DK L .

Because there is no significant difference in term of acceptance and rejection rates and
because the "exact" K-S test is computationally very expensive and slow, we recommend
using the simpler, slightly biased version of the K-S test without Monte Carlo simulations
when applying the resampling algorithm.
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Appendix C
Sensitivity analysis for C1 and C2

A sensitivity analysis was carried out in order to investigate the stability of the acceptance
and rejection rates of the gamma hypothesis for different C1 and C2 values. A total of four
new combinations of C1 and C2 values were considered, corresponding to twice/half the
original values (see Table C.1). For each combination, the adaptive resampling algorithm
was applied at every possible resolution from 30 seconds up to 5 minutes with a step of
30 seconds. The cumulative acceptance rates (up to 5 minutes) and the contributions of
the two branches were derived (Table C.1).

Table C.1: Sensitivity analysis of the thresholds C1 and C2 (case study only). The impact of different C1 and
C2 on the cumulative acceptance rates up to 5 min of the gamma DSD hypothesis is assessed. The relative
contributions of the left and right branches of the flow-chart are also given. The first combination of C1 and
C2 values (C1 = 0.09 and C2 = 0.05) is the one used in this study.

C1 / C2 Acceptance rate [%] Accepted both by K-S test Rejected by K-S test but
and DK L [%] accepted by DK L [%]

0.09 / 0.05 86.83 25.12 74.88
0.18 / 0.05 87.07 27.73 72.27

0.045 / 0.05 85.12 23.06 76.94
0.09 / 0.1 94.88 14.91 85.09

0.09 / 0.025 66.59 57.51 42.49

Table C.1 shows that when C2 is fixed (C2 = 0.05) and we change C1 (from 0.09 to either
0.18 or 0.045), the results remain relatively stable. The acceptance rate varies by ± 1%
and the left and right branch contributions of the decision tree by ± 2%. When C1 is
fixed (C1 = 0.09) and C2 takes different values, the results are more sensitive. When we
increase the DK L tolerance (C2) from 0.05 to 0.1, almost 95% of the cases get accepted,
mainly through the right branch of the decision tree (ª15/85). However, it should be
noted that this specific combination of values (C1 = 0.09 and C2 = 0.1) is not realistic
since by definition C1 should be greater than C2 to ensure a lower tolerance on DK L in
case the K-S test gets rejected. As for the last case where the tolerance on DK L is much
lower (C2 = 0.025), we see a drastic drop in the acceptance rate to 66%.

Overall, from the sensitivity analysis we conclude that:
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• Values for C1 and C2 can be adapted depending on user requirements and appli-
cation.

• The algorithm is more sensitive on C2.

• Results depend on the choice of C1 and C2. The chosen values for this study are
not claimed to be optimal.
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