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Abstract

Incorporating external knowledge has been shown to improve emotion understanding in
dialogues by enriching contextual information, such as character motivations, psychologi-
cal states, and causal relations between events. Filtering and categorizing this information
can significantly enhance model performance. In this paper, we present an innovative
Emotion Recognition in Conversation (ERC) framework, called the Scene-Speaker Emotion
Awareness Network (SSEAN), which employs a dual-strategy modeling approach. SSEAN
uniquely incorporates external commonsense knowledge describing speaker states into
multimodal inputs. Using parallel recurrent networks to separately capture scene-level and
speaker-level emotions, the model effectively reduces the accumulation of redundant infor-
mation within the speaker’s emotional space. Additionally, we introduce an attention-based
dynamic screening module to enhance the quality of integrated external commonsense
knowledge through three levels: (1) speaker-listener-aware input structuring, (2) role-based
segmentation, and (3) context-guided attention refinement. Experiments show that SSEAN
outperforms existing state-of-the-art models on two well-adopted benchmark datasets in
both single-text modality and multimodal settings.

Keywords: attention mechanism; commonsense knowledge; emotion recognition in
conversation; multimodal fusion

1. Introduction
Emotion recognition has been a prominent research area in natural language process-

ing over time [1]. With the rapid proliferation of social media and online platforms, an
unprecedented volume of conversational data has become available for computational anal-
ysis [2]. This has fueled increasing interest in Emotion Recognition in Conversation (ERC),
which is essential for various downstream applications, such as emotion-driven chatbots [3],
automated customer service [4,5], and sentiment analysis on social media platforms [6,7].

Recent ERC studies have explored various strategies for modeling speaker-specific emo-
tional states. Some employ recurrence-based methods for speaker modeling [8–11], utilizing
separate recurrent networks to distinguish between speakers and listeners. Others intro-
duce Graph Convolutional Networks (GCNs) [12] to represent utterances and speaker
relationships [13–17] by effectively capturing internal emotional inertia and speaker interac-
tions. However, to capture causal information in context, these methods require extracting
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utterance-level features early on, which include the identity information of different speak-
ers. This shifts the model’s focus away from the emotional dynamics of the specific speaker
and, thus, persisting in using these features may lead to confusion.

In addition, some other ERC methods enhance emotional modeling by integrat-
ing external knowledge to better address complex speaker-related factors, such as psy-
chological states and speaking motives [18,19]. Notably, classic methods such as COS-
MIC [20] and TodKat [21] utilize structured commonsense knowledge bases like Concept-
Net [22] and ATOMIC [23], or automatically constructed knowledge graphs based on
them (e.g., COMET [24]), to enhance emotional reasoning. Results demonstrate that these
knowledge-integrated approaches significantly improve the model’s ability to capture
nuanced emotional dynamics and uncover implicit speaker intentions, thereby enhancing
overall emotion understanding in dialogue.

While a few recent methods attempt to extract additional commonsense knowledge
from the inherent knowledge of large language models (LLMs) [25] or reasoning net-
works [26], the majority still rely on structured commonsense knowledge bases as their
primary external source. These knowledge graphs typically offer nine types of relational
information. To determine the most effective combination, existing methods often evaluate
model performance under various configurations. However, the selected relation types
vary considerably across studies. For instance, some methods, such as MKIN-MCL [27],
focus on six specific relation types, while CDEA [28] and LECM [29] select six relations
based on subject–object roles in event semantics. In contrast, other methods prioritize
fewer but more relevant relations—COFFEE [30] selects two based on their correlation
with emotion labels, and TG-ERC [31] utilizes three associated with psychological states.
However, this trial-and-error process is inefficient and overlooks the potential unreliability
of generated external knowledge, often noisy or factually incorrect, which can introduce
harmful bias into the model. While some methods aim to suppress unnecessary common-
sense knowledge, for instance, the CKCL method [32] leverages contrastive learning to
reduce reliance on external knowledge when it aligns with contextual predictions, they
fail to address cases where unreliable knowledge misleads otherwise accurate predictions.
No existing approach effectively filters and aligns external commonsense knowledge at
the utterance level, which undermines its ability to serve as a positive and contextually
appropriate supplement.

To improve the efficiency of leveraging multimodal information and external common-
sense knowledge in emotion recognition in conversation (ERC), two key challenges must be
addressed: (i) Modeling a speaker’s emotional state based on global utterance-level features
may introduce noise from mixed speaker identity information, especially in multi-speaker
dialogues; (ii) External commonsense knowledge can be unreliable and noisy. There is a
lack of effective and universally applicable filtering mechanisms to ensure its relevance
and accuracy.

We propose the Scene-Speaker Emotion Aware Network (SSEAN), which employs
dual parallel recurrent networks to model both global context and individual speaker
emotions. This approach categorizes input information to capture global-level and speaker-
specific emotions independently. In multi-turn dialogues, this helps the model capture the
continuity and correlation of each speaker’s emotional state across turn transitions. It also
enhances the model’s focus on the utterance features that are truly relevant to emotion
by alleviating the noise introduced by abrupt speaker identity changes. Furthermore,
we introduce a novel dynamic screening module to enhance commonsense knowledge
across three levels, including: (1) Structuring compound single- and dual-sentence inputs
based on speaker continuity to model speaker-listener dynamics, (2) segmenting and
organizing generated commonsense knowledge into speaker and listener paragraphs at
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the output level, and (3) dynamically filtering role-specific commonsense features using a
context-guided attention mechanism. Experiments on the IEMOCAP and MELD datasets
demonstrate that our model achieves, and in some cases surpasses, SOTA-level performance
in both single-text modality and multimodal settings, underscoring the effectiveness of
our approach.

2. Related Work
ERC Methods Focused on Speaker Modeling: The interactive conversational mem-

ory network (ICON) [8] pioneered the use of distinct memory networks to handle the
interactions between speakers in dyad ic dialogues. The model first utilizes distinct gated
recurrent unit (GRU) modules to capture speaker-specific contextual representations for
each utterance, which are then integrated through global context modeling. Dialoguernn [9]
also added two new GRUs to differentiate the impact of new utterances on speakers and
listeners, enabling the model to extend to multi-party dialogues. Inspired by this, our
model also employs GRUs to update the emotional states of different speakers. In Dia-
logueGCN [14], directed graph network structures were introduced into dialogue emotion
recognition to better model the interactions between speakers and the emotional inertia
within individual speakers. They further modeled the speaker-level context by establish-
ing a graph structure of adjacent utterances to the target utterance. I-GCN [13] designed
two GCNs to process semantic information at the utterance level and relationship informa-
tion at the speaker level, respectively, and used an incremental graph structure to capture
temporal change information. Concurrently, the Directed Acyclic Graph Network for
Conversational Emotion Recognition (DAG-ERC) [17] utilized speaker information and
utterance position information to construct a directed acyclic graph neural network to
model the dialogue context, enhancing the model’s ability to capture long and short-term
sequential information. To address the limitation of recurrent networks in simultaneously
modeling dialogue structure and speaker information due to their sequential nature, we
employ parallel recurrent networks to capture these two types of information separately.

ERC Methods Focused on Multimodality: Many other approaches focus on multi-
modal fusion, making full use of effective information across different modalities through
the comprehensive application of cross-attention mechanisms and feature decoupling.
The multimodal Dynamic Fusion Network (MM-DFN) [16] employs a novel graph-based
dynamic fusion module to capture the dynamics of contextual information across different
semantic spaces, significantly advancing the state of multimodal emotion recognition in
conversations. CFN-ESA [11] incorporates a cross-modal fusion network with emotion-
shift awareness, utilizing the textual modality as the primary source. It employs a novel
cross-modal encoder module to fully extract complementary and associative information
from multimodal data. Li et al. (2022) [10] made improvements in the feature extrac-
tion approach. To ensure that features extracted from each modality are more focused
on emotional information, they proposed the Emoformer module for extracting emotion
vectors to capture the subtle changes in emotions across different modalities, achieving
significant performance improvements on two benchmark datasets. Our model draws on
the method of extracting the emotional tendencies of each modality using variants of the
transformer encoder.

ERC Methods Focused on Commonsense Knowledge: Emotion recognition enhanced
by external knowledge mainly relies on two well-established commonsense knowledge
bases. The first is ConceptNet [22], which captures commonsense concepts and relation-
ships as a semantic network, covering various aspects of everyday life. The second is
ATOMIC [23], centered on events rather than entities, achieving human-competitive results
in If-Then reasoning tasks. Building on ATOMIC and ConceptNet, COMET [24], which can
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automatically construct knowledge graphs, demonstrates the potential to understand and
predict emotions, laying a foundation for incorporating commonsense knowledge into emo-
tion recognition. COSMIC [20] and TokDat [21] leverage the COMET model to incorporate
commonsense knowledge, thereby enhancing performance on dialogue emotion recogni-
tion. COSMIC [20] is a model that uses commonsense knowledge to model various hidden
emotional influence factors in conversations, significantly improving the identification of
complex emotions. Inspired by COSMIC, we also incorporate commonsense knowledge to
model the emotional states of speakers and the complex influences among interlocutors.
TokDat [21] combined a topic-augmented language model with commonsense statements,
introducing them into a Transformer-based emotion detection model, achieving excellent
accuracy. To acquire interpretable and relatively high-quality commonsense knowledge
tailored for ERC tasks, we likewise adopt COMET as our external knowledge source.
CKCL [32] is a contrastive learning framework designed to determine whether external
knowledge is necessary for understanding utterance emotions, thereby avoiding the blind
incorporation of knowledge that could hinder model training. It generates pseudo-labels
based on the consistency between the original model prediction and the predictions ob-
tained by masking either the context or the knowledge. However, this approach overlooks
the fact that, even when the predictions are inconsistent, the incorporated commonsense
knowledge may still act as noise and negatively affect the model.

Existing commonsense knowledge in ERC is typically centered around the speaker
as the subject, inherently relying on speaker-specific information and requiring intra-
speaker sequential modeling. Meanwhile, the generated commonsense knowledge may
contradict the fact, which may introduce noise and hinder understanding of speaker’s
actual state. However, existing ERC methods rarely filter such knowledge effectively. Our
proposed model employs parallel recurrent networks to separately capture scene-level
and speaker-level emotional information, enabling better use of commonsense knowledge
for speaker modeling and emotional interaction understanding, while preserving global
context comprehension. Additionally, a multi-stage attention-based filtering module is
introduced to improve the quality of generated commonsense knowledge and identify
potential noise.

3. The Proposed Method
We propose the Scene-Speaker Emotion Aware Network (SSEAN), a unified framework

for emotion recognition in conversation that jointly models global context and speaker-
specific emotional dynamics. The SSEAN employs dual parallel recurrent networks to
separately capture global scene-level context and individual speaker emotions, effectively
preserving emotional continuity across multi-turn dialogues while reducing noise from
abrupt speaker identity shifts. To further enhance reasoning with external knowledge, we
design a three-level dynamic commonsense screening module that improves knowledge
quality and relevance. The overall architecture of our model is illustrated in Figure 1.

3.1. Problem Definition

Formally, given a conversation C consists of a series of utterances C = [u1, u2..., uN ],
ui = {ut

i , ua
i , uv

i } where N is the number of utterances in the conversation, and ui denotes
the ith utterance in the conversation, which contains the representations of two modalities
ut

i (text) , ua
i (audio) and uv

i (visual). For the conversation C, speakers P = {p1, p2, ..., pM}
participate in the conversation, where M is the number of participants, and a function
pj = S(ui), i ∈ {1, 2, ...., N}, j ∈ {1, 2, ..., M} is defined for obtaining the speaker is defined
for obtaining the speaker pj of the utterance ui. The objective of emotion recognition in
conversation is to accurately predict the emotion label yi for each utterance ui in the given
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conversation C from a predefined set of emotion labels Y = [y1, y2..., yk], where k is the
number of labels.
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Figure 1. Framework illustration of Muti-model extended SSEAN.

3.2. Single Modality Feature Extraction
3.2.1. Raw Feature Extraction

First, this study utilizes pre-trained models and tools to extract raw features from
individual modalities.

Textual Features

The RoBERTa Large model [33] is utilized for extracting textual representations at
the utterance level. BPE tokenized utterances are fed into the model, where the encoder
module of RoBERTa is employed for feature extraction, and the decoder module is omitted.
In alignment with COSMIC [20], the outputs of the last four hidden layers are averaged to
enrich the features with maximal information, resulting in raw text features for enhanced
context modeling.

Audio Feature

Following several previous studies [9,34], this paper uses the standard sets ComParE
2016 from the OpenSMILE [35] as a profile for the initial processing of the audio data.
ComParE 2016 is the feature set required by The INTERSPEECH 2016 ComParE Challenge,
which contains 6373 static features obtained by computing various functions on LLD and is
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suitable for a variety of downstream tasks including emotion recognition. In this paper,
given that the feature dimensions directly output by OpenSMILE are relatively large, a fully
connected layer is utilized to reduce the dimensionality of the features, yielding condensed
audio raw features.

Visual Feature

Similar to the audio modality, to ensure a fair comparison, we also adopt the approach
used in previous studies and employ a 3D-CNN for visual feature extraction. 3D-CNN ex-
tracts facial features by leveraging 3D convolutional layers and 3D pooling layers, capturing
information across both spatial and temporal dimensions, and is commonly used for facial
expression recognition [36]. This is highly relevant to conversational emotion recognition.

After this step, we represent the features of the utterance ui as Ui = [Ut
i , Ua

i , Uv
i ].

3.2.2. Emotion Vector Extraction

To enhance the Scene-Speaker Emotion Aware Network’s emphasis on the continuity
and variation of emotional information while minimizing the impact of emotion-irrelevant
noise, this study draws inspiration from EmoCaps [10]. It incorporates a structure similar
to the Transformer encoder for processing each modality, facilitating the nuanced extraction
of emotional features, which has been demonstrated to be feasible in EmoCaps. In the
Emotion Vector extraction block, as illustrated in Figure 2, two encoder modules were
modified and merged, with the subsequent feed-forward network being replaced by a
multi-layer perceptron. Since the self-attention mechanism has a good ability to capture
global information from a long sequence, this paper uses it to obtain utterance-level emotion
information further. At last, the block aggregates the emotion information through the
multilayer perceptron to reduce the feature dimensions and obtain more representative
unimodal utterance-level emotion vectors. Since the input single-utterance raw features
are unrelated to the dialogue-level context, the emotional vectors extracted at this stage are
also independent of the dialogue-level context.
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For a given utterance ui, the process of computing the utterance-level emotion vector
Ei through the Emotion Vector extraction block can be expressed as follows:

A1
x
i = LayerNorm(Ux

i + so f t max(
Ux

i WqUx
i

TWT
k√

d
)Ux

i Wv)

Fx
i = LayerNorm(Ux

i + RELU(Ax
i W + b))

(1)

where Uix, x ∈ {t, a}is the text or audio component of Ui, Wq, Wk, Wv, W is the learn-
able parameter matrix, and b is the bias parameter. For each modality component, we
stack two identical self-attention–residual–LayerNorm blocks. and then fed into a multi-
layer perceptron:

We simplify the feedforward network, which usually consists of two fully connected
layers with ReLU activation functions, into one layer, retaining the nonlinear transformation
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capability while using the multilayer perceptron as a substitution to further improve the
nonlinear fitting capability and reducing the feature dimension.

Finally, we concatenation the utterance-level emotion vector Ei = [Et
i , Ea

i , Ev
i ] with the

raw feature Ui = [Ut
i , Ua

i , Uv
i ] based on modality to obtain the final representation of the

new discourse ui unimodal feature:

TFi = Et
i ⊕Ut

i

AFi = Ea
i ⊕Ua

i

VFi = Ev
i ⊕Uv

i

(2)

3.3. Dynamic Screening of Commonsense Knowledge

For a given utterance, we take it as input and use COMET [24] trained on ATOMIC,
a knowledge generation model, as the only source to acquire the corresponding common-
sense knowledge related to the speaker’s emotion state. ATOMIC is an event-centered
knowledge graph that allows for the execution of the corresponding inference task based
on the 9 if-then relation types identified as (i) xIntent, (ii) xNeed, (iii) xAttr, (iv) xEffect,
(v) xWanted, (vi) xReact, (vii) oEffect, (viii) oWant, and (ix) oReact [23].

Referring to existing work that enhances ERC with commonsense knowledge [20,21],
this paper excludes the relation types xNeed, xWant and oWant because they are predic-
tions of character actions before and after the event. Whereas in the dialogue dataset,
considering that each dialogue lasts for a shorter period, we do not assume that more
actions take place during the conversation. Yet, there is still a controversy about the role of
the remaining part of the relationship types for sentiment recognition, existing work [20,21]
have experimentally sifted the relation types used in the model species. It has been ob-
served that incorporating additional relation types into the model results in a decline in
model performance. However, even within the same dialogue, the applicability of relation
types to utterances can vary. For some utterances, all relation categories can provide valid
commonsense knowledge, while for other utterances, only some of the relation categories
may be able to provide valid commonsense knowledge. Thus, the manual selection method
can not make the best use of commonsense knowledge. In this paper, we use the remaining
six relational categories for our experiments. The usage of relationship types in related
work is shown in Table 1.

Table 1. Relation types used in related work.

Related Work xInt xRea xAtt xEff oRea oEff

COSMIC ✓ ✓ ✓ ✓ ✓
TODKAT ✓ ✓ ✓
SSEAN ✓ ✓ ✓ ✓ ✓ ✓

In addition, as COMET [37] is built upon a pre-trained GPT-2 model, the knowledge it
generates tends to be diverse and includes multiple plausible alternatives. Additionally,
the generated commonsense knowledge is inevitably speculative, based on current circum-
stances, and its reliability requires validation by subsequent factual developments. Directly
using raw dialogue utterances as input for COMET further exacerbates these challenges,
introducing additional issues that compromise the quality and relevance of the generated
knowledge. These speculative, low-quality pieces of commonsense knowledge should not
be directly adopted by the model, as they could potentially mislead it.

Therefore, to ensure that the model acquires sufficient and reliable commonsense
knowledge, we propose a three-tier dynamic filtering module to refine and enhance the
quality of commonsense knowledge. The main structure is shown in Figure 3.
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Figure 3. Commonsense knowledge dynamic screening moudle.

First, most previous studies directly use dialogue utterances as input, which presents
two key problems. The first issue is that COMET’s training data consists of descriptive
statements with subject–verb–object structures, whereas in dialogues, the speaker and
listener are often omitted from the utterances. The second issue arises from the segmenta-
tion criterion of dialogue datasets, which is typically based on punctuation marks such as
periods. As a result, some utterances contain limited information, and directly inputting
them into COMET may generate meaningless or even ambiguous knowledge.

To address these issues at the input level, we adopt a strategy that combines sentence
completion with both single- and dual-sentence inputs. Specifically, for each utterance, we
complete the missing subjects and verbs following the format of COMET’s training data.
Additionally, when a change in speaker occurs, we use the listener of the next utterance as
the object and incorporate the subsequent utterance as a response to further enhance the
input, thereby forming a dual-sentence input structure. As shown in Algorithm 1.

For each of the 6 relation types containing potentially valid information, the top k
most plausible pieces of knowledge are generated in text form as candidates.

At the output level, we implement an initial filtering step. Our experiments reveal
that the generated outputs often contain meaningless words or symbols, such as “none”,
“.”, “ ”, “y”, “x”, and “n/a”. We first eliminate such outputs and, for utterances that fail
to produce meaningful commonsense knowledge, we apply padding using [pad] as a
fallback mechanism. After that, by adding descriptive sentence components or subjects,
we integrate all candidate knowledge into two general knowledge paragraphs according
to subject differences. The detailed methodology is provided in Algorithm 2. The final
filtered knowledge output from these steps is treated as input features for our end-to-end
trainable model. Therefore, the inclusion of these algorithms does not break the end-to-end
trainability of the SSEAN architecture.

To further ensure the reliability of commonsense knowledge across different subjects,
we apply an additional filtering and guidance process to the generated commonsense
knowledge paragraphs. Specifically, for the commonsense knowledge extracted from
the current discourse, we identify the current discourse (for the speaker’s knowledge
paragraph) and the subsequent discourse (for the listener’s knowledge paragraph) as
valid facts. Commonsense knowledge that exhibits greater similarity to these valid facts is
considered more reliable.
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Algorithm 1: Speaker-listener-aware input structuring.
1 Dialogue D = [u1, u2, . . . , un] with speaker annotations Transformed input sequences

D̂ = [û1, û2, . . . , ûn]
2 Initialize D̂ ← []
3 for i = 1 to n do
4 u← ui
5 s← speaker(u)
6 u← CompleteSubjectVerb(u) ▷ Complete missing subject/verb using COMET

format
7 if i < n and speaker(ui+1) ̸= s then
8 v← ui+1
9 l ← speaker(v)

10 v← CompleteSubjectVerb(v)
11 v← InsertListenerAsObject(v, l)
12 û← u + “after that” + v
13 else
14 û← u
15 end
16 Append û to D̂
17 end
18 return D̂

Algorithm 2: Generate speaker and listener paragraphs.
Input: topk, model COMET, speaker identity S(·),
Descriptive_Components =
{xInt: ‘wanted to’, xRea: ‘will feel’, xAtt: ‘is seen as’,
xEff: ‘will’, oRea: ‘will feel’, oEff: ‘will’}
Output: SpeakerParagraph, ListenerParagraph

1 for all c ∈ {xInt, xRea, xAtt, xEff, oRea, oEff} do
2 filtered = [];
3 result = COMET.getCKsequence( , c, topk);
4 for all event in result do
5 if event is not ’none’, not ’.’, and not an empty string then
6 Add the event to filtered;
7 end
8 end
9 if c ∈ {xInt, xRea, xAtt, xEff} then

10 if length of filtered is 1 then
11 sentence = descriptive_components[c] + filtered[0] + “.”;
12 else
13 sentence = descriptive_components[c] + concatenate all event in filtered with

’ and ’ + “.”;
14 end
15 SpeakerParagraph = SpeakerParagraph + “ ” + sentence;
16 else
17 if length of filtered is 1 then
18 sentence = descriptive_components[c] + filtered[0] + “.”;
19 else
20 sentence = descriptive_components[c] + concatenate all event in filtered with

’ and ’ + “.”;
21 end
22 ListenerParagraph = ListenerParagraph + “ ” + sentence;
23 end
24 end
25 return SpeakerParagraph, ListenerParagraph

Using the same encoder as for the raw textual modality, we obtain utterance features
fs, fl (current speaker and next-utterance listener) and the corresponding candidate knowl-
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edge features Cs, Cl from COMET. For each role n ∈ {s, l}, queries, keys and values are
computed as

Qn = fnW n
q , Kn = CnW n

k , Vn = CnW n
v ,

where W n
q , W n

k , W n
v are learnable parameter matrices. The most informative and reliable

knowledge representation is obtained through a single cross-attention layer followed by a
position-wise feed-forward network:

CF n
i = FFN

(
softmax

(QnK⊤n√
d

)
Vn

)
, n∈{s, l}.

where the FNN is a two-layer feedforward network containing a ReLU activation layer.
Since the attention mechanism is used as a filter here, no residual structure is added.
The obtained output CFs

i , CFl
i is the speaker commonsense feature vector and listener

commonsense feature vector for the given discourse ui.

3.4. Dual-Strategy Framework

In this paper, we propose the Scene-Speaker Emotion Aware Network (SSEAN),
a dialogue emotion recognition framework that employs dual-strategy parallel modeling
to distinguish between the global conversational context and speaker-specific context,
enabling the simultaneous utilization of multimodal and multi-source information.

Conversational Emotion recognition differs from general emotion recognition tasks in
that it is difficult to make correct judgments about emotion by focusing only on utterance-
level features. A significant amount of information is contained within the dialogue-
level context and the multi-turn interactions among speakers. The components that can
reflect the emotions of the utterances require selection and extraction through effective
modeling methods.

Fundamentally, based on contextual relevance, we categorize emotional information
within dialogues into two mutually exclusive types. The first type exhibits contextual rele-
vance at the global dialogue level but loses this relevance within the same speaker, which
involves the textual modality of utterances. Conversely, the second type includes com-
monsense knowledge about speaker states and the audio modality of utterances, showing
contextual relevance within the same speaker while containing a lot of redundant speaker
information at the global dialogue level. In this paper, this type involves textual modality
of utterances and commonsense knowledge related to the speaker’s state. To minimize the
introduction of redundant information for these two types, we adopt different modeling
strategies. We propose a parallel structure designed to capture the dialogue-level context,
the emotional states of speakers, and multi-turn interactions between speakers independently.
This architecture ensures that information about each dialogue participant remains distinct,
minimizing redundant speaker-related data. The specific structure is shown in Figure 1.

A significant portion of information in dialogue is often embedded within long-term
dependencies. Therefore, global-level contextual relationships can help the model better
comprehend the overall progression and state of events throughout the conversation.
By maintaining and updating dialogue history across multiple turns, the model gains a
deeper understanding of the emotional tone underlying the conversation. Consequently,
we refer to the features extracted based on global contextual information as global vectors.
The Scene Emotion Vector is utilized to aid the model in understanding the continuity
of emotions between adjacent utterances, such as being consistently neutral or negative
throughout a particular paragraph. In this paper, we use a Bi-directional Long Short-Term
Memory (Bi-LSTM) network [38] to model the global conversational context and extract
the Scene Emotion Vector for each utterance from both video and textual modality features.
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Escene
i = LSTM(TFi ⊕VFs

i ) (3)

Throughout the process, emotional information can naturally be categorized according
to the participants of the conversation. For the same event, the identity of the conversation
participants might have a significant impact on the emotion of the utterances, which is
particularly evident in multi-participant dialogues. Thus, we refer to the features extracted
based on the state of conversation participants as Speaker Emotion Vectors. The update
mechanism of the Speaker Scene Vector is utilized to help the model understand the inertia
of emotions within the same speaker and the emotional interactions triggered between
different speakers by the utterances. Due to the model’s structure, information centered
on different conversation participants remains independent, preventing cross-interaction.
This design minimizes the introduction of speaker-related redundant information and
mitigates its negative impact on model performance. To ensure this, we automatically
assign independent GRU networks [39] to each speaker based on speaker labels, allowing
the model to update the emotional states of individual speakers and obtain a Speaker
Emotion Vector for each utterance.

Espeaker
i = eS(ui)

i = GRUs(e
S(ui)
i−1 , (AFi ⊕ CFs

i )) (4)

In addition with the help of commonsense knowledge, we have also modeled the
interaction between different speakers. Carrying on from the work in the previous section,
we extracted the commonsense knowledge features by obtaining two commonsense knowl-
edge feature vectors CFs

i , CFl
i whose subjects are the speaker and the listener of utterance ui,

respectively, where CFl
i contains the current speaker’s influence on the listener’s emotion

state, which is used to update the listener’s emotion state.
This maintenance of the listener’s state effectively captures the interaction dynamics

between speakers in each turn. This mechanism also increases the window in which the
model understands changes in emotion, i.e., the emotion of each utterance is judged jointly
by information from at least two utterances, and can increase the probability of correct
classification when the sentiment state changes.

For the current utterance, we select the GRU network corresponding to the next
speaker to update the listener’s emotion state.

eS(ui+1)
i = GRUs(e

S(ui+1)
i−1 , CFl

i ) (5)

The listener here is the chivalrous listener, precisely defined as the speaker of the next
time step, expressed as the hearer for ease of understanding. Since the listener knowledge
paragraph uses the next utterance as a fact, to ensure the validity of the commonsense
knowledge paragraph, when a dialogue consists of more than two participants, the lis-
tener’s commonsense knowledge feature is only used for updating the status of the speaker
of the next utterance, and the status of the other non-current speakers remains unchanged.

e
pj
i = e

pj
i−1, pj ̸= S(ui+1) ∧ j ∈ {1, 2, ..., M} (6)

Ultimately, we add the Scene Emotion Vector and the Speaker Emotion Vector of the
same utterance together and input the result into the softmax layer after going through a
linear layer to obtain the final emotion classification of each utterance.

pi = so f t max(Ws max(Escene
i + Espeaker

i ) + bs max)

ŷi = arg max
k

(pi[k])
(7)
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4. Results and Discussion
4.1. Datasets

Our experiments were conducted on two benchmark datasets for conversation emotion
recognition tasks: MELD [40] and IEMOCAP [41].These datasets are widely recognized
in the community for their diversity in emotional expression, multi-speaker dialogue
structures, and rich multimodal annotations (e.g., text, audio, and video), making them
well-suited for evaluating models’ ability to understand emotional dynamics in realistic
conversational settings.

IEMOCAP consists of dialogue videos performed by ten actors in pairs, making up
five sessions in total, including both audio and textual modalities. It comprises 7433 utter-
ances across 151 dialogues, with each utterance labeled with an emotion. The emotions are
categorized into six classes: happiness, sadness, neutral, anger, excitement, and frustration.
Since IEMOCAP does not have a predefined split for training/validation/testing, to ensure
fairness in subsequent comparisons, we follow previous studies [20] by training on the first
four sessions and testing on the last session.

MELD features multi-person dialogue videos from the TV show “Friends”, also
including corresponding audio and video modalities. It includes 1433 dialogues and
13,708 utterances, with each utterance assigned an emotion label. The labels categorize
the emotions into seven classes: anger, disgust, sadness, joy, surprise, fear, or neutral. We
adhere to the predefined training/validation/testing split in MELD to maintain the fairness
of our experimental results.

The dataset partitioning is summarized in Table 2, and the corresponding label distri-
bution is illustrated in Figure 4.

Table 2. Statistics of datasets.

Dataset
Dialogue Utterances

Train Valid Test Train Valid Test

IEMOCAP 108 12 31 5163 647 1623
MELD 1038 114 280 9989 1109 2610

Figure 4. The class distribution of IEMOCAP and MELD.

4.2. Training Setup

We leverage both audio, visual and textual modalities in the MELD and IEMOCAP
datasets. The specific dimensionality of different modalities is shown in Table 3.
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Table 3. Feature dimensionality for different modalities.

Modality MELD IEMOCAP

Textual 600 100
Audio 300 100
Visual 300 100
Commonsense Knowledge 600 100

The common settings for both datasets include 30 training epochs, a batch size of 64,
the Adam optimizer [42], L2 regularization weight λ of 0.001, and a dropout rate of 0.2.
For the MELD dataset, the learning rate is set to 0.0001, and for the IEMOCAP dataset, it is
set to 0.0003.

Both the IEMOCAP and MELD datasets exhibit severe class imbalance issues, as shown
in Figure 4.

To address class imbalance, we employ Focal Loss [43] during training. By introducing
a focal factor γ, Focal Loss directs the model to focus on difficult, misclassified examples and
prevents over-representation of majority classes in the loss function. For both datasets, γ is
set to 2.0; since the balancing parameter α only applies to modifying binary classification
loss weights, we use the transformed class weights ˆweight as a substitute.

The initial class weight for class i is computed as:

weighti =
1

log(freqi + ϵ)
(8)

To stabilize training, we apply logarithmic compression and linear scaling to the class
weights, which suppresses extreme values while preserving minority class contributions:

weight’ =
log(1 + weight)

max(log(1 + weight))

ˆweight =
1
2
× weight′ +

1
2

(9)

4.3. Evaluation Metrics

Similarly, due to the class imbalance in the datasets, we adopt weighted Average
accuracy (WA-Acc) and weighted Average F1-score (WA-F1) as the evaluation metrics for
overall model performance. Additionally, for a more detailed assessment and analysis, we
compute the F1-score for each individual class separately.

The formula for computing the F1-score for a single classi is:

F1i =
2× Precisioni × Recalli

Precisioni + Recalli
(10)

Precisioni =
TPi

TPi + FPi
(11)

Recalli =
TPi

TPi + FNi
(12)

The formula for computing accuracy (ACC) for a single classi is as follows:

Acci =
TPi + TNi

TPi + TNi + FPi + FNi
(13)

Among them, TPi, TNi, FPi, FNi represent the True Positives, True Negatives, False
Positives, and False Negatives of the predicted class, respectively.
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The formulas for weighted average accuracy and weighted average F1-score are
as followed:

WA-Acc =
N

∑
i=1

wi ×Acci (14)

WA-F1 =
N

∑
i=1

wi × F1i (15)

4.4. Comparison with Other SOTA Methods
4.4.1. SSEAN-Uni

There are currently few attempts to enhance multimodal models with commonsense
knowledge, and these approaches lack representativeness. Therefore, to ensure a fair evalu-
ation while verifying the effectiveness of our proposed model, particularly the three-level
commonsense knowledge dynamic filtering module, we first compare our model (SSEAN-
Uni, with its structure shown in Figure 5) with other state-of-the-art (SOTA) models using
only the text modality enhanced with commonsense knowledge. The results are presented
in Table 4.

Text
Feature

Utterance t+1

◆
◆

...
...
◆
◆
◆

◆
◆

...
...
◆
◆
◆Utterance t

Commonsense
Feature

Commonsense knowledge
dynamic screening module

Listener
paragraph

GRU i

Robert EV extractor
block

◆
◆

...
...
◆
◆
◆

Bi-LSTM

Sence Emotion

Softmax

...
...

Text

GRU j

Speaker Emotion

 Parallel Structure Dual-Strategy Model

concatenation

Audio

Text

Commonsense Knowledge

Speaker
paragraph

Figure 5. Framework illustration of commonsense knowledge-Enhanced Scene-Speaker Awareness
Model for ERC.

To verify the stability and robustness of the model, we trained it using five different
seeds and computed the mean, standard deviation, and Coefficient of Variation (CV) of
the results, shown in Table 5. A CV value of less than 1 indicates that the model’s results
are stable.

SSEAN-Uni achieved superior F1 performance compared to all state-of-the-art (SOTA)
models on the IEMOCAP dataset, attaining a score of 72.12, which achieves the best perfor-
mance among all baseline models. On the MELD dataset, SSEAN-Uni also outperformed
most models, ranking just slightly behind EmotionIC and InstrucERC. The performance
gap with InstrucERC is minimal, and through seed adjustments, SSEAN-Uni can achieve
results (66.38%) exceeding EmotionIC. However, compared to InstrucERC, there remains a
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more significant performance gap. Since InstrucERC is a generative multi-task framework
based on large language models (LLMs), we hypothesize that the complexity of emotional
states in the MELD dataset poses a challenge for SSEAN-Uni, given its model size and
the length constraints of single inputs. This limitation may hinder its ability to fully cap-
ture long-term emotional dependencies. Nevertheless, SSEAN-Uni offers a substantial
advantage in terms of computational efficiency.

Table 4. The overall F1 scores of ERC on the IEMOCAP and MELD datasets.

Models IEMOCAP MELD
WA-F1 WA-F1

COSMIC [20] 65.28 65.21
CauAIN [44] 67.61 65.46
TodKat [21] 61.33 65.47
SKAIG [45] 66.96 65.18

EmotionIC [46] 69.44 66.32

MKFM [47] 68.88 65.66
InstrucERC [48] 71.39 69.27

SSEAN-Uni 72.12 66.17
Bold values indicate the best performance on the corresponding dataset.

Table 5. Experimental results with different random seeds.

SEED IEMOCAP MELD

0 72.44 66.03
42 71.88 65.97

100 72.21 66.12
1000 72.03 66.38
4027 72.12 66.17

mean 72.13 66.13
standard deviation 0.209 0.158

Coefficient of Variation 0.289% 0.239%

4.4.2. SSEAN-Multi

In Tables 6 and 7, we showcase the performance comparison of the SSEAN-Multi
model with other state-of-the-art (SOTA) multimodal models on the emotion recognition
in conversation (ERC) task on the IEMOCAP and MELD datasets. The experiment results
demonstrate that SSEAN achieves the latest performance benchmarks on both datasets.

Table 6. The F1 results of ERC on the IEMOCAP dataset.

Models Happy Sad Neutral Angry Excited Frustrated WA-F1 WA-Acc

DialogueRNN [9] 32.2 80.26 57.89 62.82 73.87 59.76 62.89 63.52
Emocaps [10] 71.91 85.06 64.48 68.99 78.41 66.78 71.77 -

DialogueGCN [14] 42.75 84.54 63.54 64.19 63.08 66.99 64.108 65.25
MMGCN [49] 51.57 80.48 57.69 53.95 72.81 57.33 62.89 63.22
MM-DFN [16] 42.22 78.98 66.42 69.77 75.56 66.33 68.18 68.21

BiF-BiAGRU [50] 54.50 72.70 59.40 61.00 66.60 61.60 63.00 62.80

SSEAN-Multi 73.72 87.10 69.09 68.39 79.78 68.54 73.94 73.91
Bold values indicate the best performance on the corresponding dataset.
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Table 7. The F1 results of ERC on the MELD dataset.

Models Neutral Surprise Fear Sadness Joy Disgust Angry WA-F1 WA-Acc

DialogueRNN [9] 76.97 47.69 - 20.41 50.92 - 45.52 57.66 60.31
Emocaps [10] 77.12 63.19 3.03 42.52 57.50 7.69 57.54 64.00 -

DialogueGCN [14] 72.10 41.70 2.80 21.80 44.20 6.70 36.50 54.70 54.90
MMGCN [49] 76.97 47.69 - 20.41 50.92 - 45.52 57.66 60.31
MM-DFN [16] 77.76 50.69 8.00 38.50 54.70 11.80 43.50 60.80 60.80

UniF-BiAGRU [50] 76.40 49.70 11.50 27.00 52.40 14.00 39.40 58.10 60.30

SSEAN-Multi 80.02 58.80 27.27 41.40 64.40 36.07 52.28 66.43 67.04
Bold values indicate the best performance on the corresponding dataset.

On the IEMOCAP dataset, the SSEAN model significantly outperforms all other
models, obtaining the highest Weighted Average F1 Score (WA-F1) of 73.95% and an
accuracy of 73.96%. This performance is notably robust across all categories except “Angry”,
indicating the model’s robustness in recognizing complex emotional states. Particularly,
the SSEAN model shows a significant improvement in the “Happy” category, with notable
improvements in “Sad” and “Excited” categories as well, highlighting SSEAN’s capability
to discern subtle emotional expressions. This outstanding performance can be attributed
to SSEAN’s comprehensive contextual and speaker-level modeling, enabling it to more
accurately capture emotional dynamics.

In the MELD dataset, SSEAN once again sets a new benchmark, with a WA-F1 score of
66.43% and an accuracy of 67.04%. It exhibits significant improvements across all categories.
Notably, SSEAN’s effective utilization of multimodal information and dynamic filtering
mechanisms to extract and leverage relevant emotional cues is evidenced by its performance
in the “Fear” and “Disgust” categories, which are traditionally challenging to model due to
their subtle expressions and dependence on the speaker’s state information.

SSEAN’s performance enhancement stems from the effective utilization of a vast
amount of information. The overall leading results affirm the efficacy of our model struc-
ture in handling information from multiple sources and modalities and reducing the
accumulation of redundant information.

4.5. Ablation Study and Analysis
4.5.1. SSEAN-Uni

To further validate our model’s proficient performance in processing commonsense
knowledge and effectively avoiding the introduction of redundant information, we con-
ducted extensive ablation experiments.

The ablation studies shown in Table 8 assessed the impact of components—such as
the audio modality, commonsense knowledge, and speaker/scene emotion vectors—on the
performance of SSEAN on the IEMOCAP and MELD datasets, highlighting the importance
of each component for achieving state-of-the-art emotion recognition in conversation (ERC).

Notably, the most dramatic performance drop is observed when the Global Emotion
vector is removed, with WA-F1 scores plummeting by 36.72% and 12.93% on IEMOCAP
and MELD, respectively. This decline accentuates the critical role of the fundamental
vector in capturing the core emotional tendencies across conversations, underlining its
importance in the model’s framework. This finding aligns with conclusions drawn from
many other studies.
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Table 8. The F1 results of Ablation Study.

IEMOCAP MELD
WA-F1 Accuracy WA-F1 Accuracy

w/o CK dynamic screening module 70.69 (↓ 1.43) 70.57 (↓ 1.66) 62.04 (↓ 4.13) 63.35 (↓ 3.07)
w/o speaker identity modeling 71.48 (↓ 0.64) 71.26 (↓ 0.97) 64.69 (↓ 1.48) 65.41 (↓ 1.01)

w/o Speaker Emotion vector 69.82 (↓ 2.3) 69.53 (↓ 2.7) 63.22 (↓ 2.95) 64.03 (↓ 2.39)
w/o Global Emotion vector 35.40 (↓ 36.72) 37.79 (↓ 34.44) 53.24 (↓ 12.93) 56.82 (↓ 9.6)

SSEAN 72.12 72.23 66.12 66.56
Bold values indicate the best performance on the corresponding dataset. The ↓ indicate performance decrease
compared to the full model.

Specifically, removing the CK dynamic screening module led to a 1.43% drop in WA-
F1 on IEMOCAP and a 4.13% drop on MELD. This decrease is comparable to or even
greater than the impact of not using commonsense knowledge, emphasizing the three-level
dynamic screening module’s crucial role in filtering relevant knowledge and reducing noise
in the commonsense knowledge base, thus, ensuring the quality of knowledge integration.

Excluding speaker identity modeling also resulted in significant performance drops,
particularly on the multi-party MELD dataset (1.48%). This underscores the necessity of
capturing speaker-specific emotional states and interactions to avoid the introduction of
redundant or irrelevant information due to speaker changes in multi-turn dialogues.

4.5.2. SSEAN-Muti

We investigated the impact of integrating commonsense knowledge with different
modality combinations on model performance, as shown in Table 9. As expected, the tri-
modal configuration achieved the best performance compared to bi-modal settings.

For the single-text modality model enhanced with commonsense knowledge, on the
IEMOCAP dataset, adding any additional modality consistently improved the model’s
WA-F1 and WA-Acc. Similarly, on the MELD dataset, incorporating any new modality
led to improvements in WA-Acc. This demonstrates that our Dual-Strategy Framework
effectively utilizes multimodal information while mitigating the interference caused by
redundant information across different modalities.

Table 9. Performance on IEMOCAP and MELD datasets.

Methods IEMOCAP MELD
WA-F1 WA-Acc WA-F1 WA-Acc

Text (w CF) 72.12 72.23 66.17 66.42

Text (w CF) + Visual 73.36 ↑ 73.32 ↑ 65.68 65.54
Text (w CF) + Audio 73.14 ↑ 73.19 ↑ 65.85 66.73 ↑

Text (w CF) + Audio + Visual 73.94 ↑ 73.91 ↑ 66.43 ↑ 67.04 ↑
Bold values indicate the best performance on the corresponding dataset. The ↑ indicates performance improvement
compared to the text-only modality.

In the MELD dataset, although the model’s overall performance slightly declined when
only the textual and visual modalities were incorporated, a closer analysis of individual
emotion categories (shown in Appendix B) reveals that the visual modality contributes to
higher F1 scores in categories such as Neutral, Joy, and Angry.

4.6. Case Study

Commonsense knowledge occasionally incorporates extraneous information that may
not align with the actual facts, thereby impeding the training process of models. However,
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dynamic filtering mechanisms have the capability to mitigate this impact by selectively
filtering out such irrelevant information.

Through existing research, we have identified the superior ability of commonsense
knowledge in facilitating the transition of emotions in conversations and the classifica-
tion of similar emotional categories. However, this introduces some challenges. Figure 6
presents a study case from the MELD dataset, where the conversation is entirely neutral.
For traditional models that classify emotions solely based on text, this does not pose much
of a challenge. However, models incorporating commonsense knowledge often make
errors in such scenarios. As shown in Figure 6, the commonsense knowledge generated
from the third utterance includes a listener’s reaction that does not match reality. This
kind of commonsense knowledge introduces sorrowful emotional information into sub-
sequent judgments, leading to misclassification of the utterance’s emotion. Through the
dynamic filtering module for commonsense knowledge, such unrealistic commonsense
information is filtered out, thus, removing sorrowful emotional information and avoiding
classification errors.

Chandler

Marjorie

Hi.
So uh, what are

you in for?

Hi. I talk in my sleep.

You mind if I...

No, please.

... Marjorie will want to eat
dinner and get a drink or ask

someone else if they can ask
them out or think it is rude..

Listener paragraph

Inconformity

With unscreened
Commonsense Knowledge

paragraph

without Commonsense
Knowledge paragraph

with screened
Commonsense Knowledge

paragraph

Commonsense knowledge
dynamic screening module

utterances conmmin sense kmowledge paragraphAnger Neutral

Figure 6. Case study from MELD dataset.

5. Conclusions
In this paper, we proposed the Scene-Speaker Emotion Aware Network (SSEAN) to

address key challenges in emotion recognition in conversation (ERC). We introduced a
dual-strategy framework that effectively models both global conversational context and
speaker-specific emotional dynamics by leveraging two parallel recurrent networks. Our
model captures long-term dependencies in dialogue while mitigating the interference of
speaker identity information on emotional representation. Furthermore, we designed a
three-level dynamic filtering module to refine and enhance the utilization of commonsense
knowledge, improving its reliability and effectiveness in ERC tasks.

Our experiment results on the IEMOCAP and MELD datasets demonstrate that SSEAN
achieves state-of-the-art (SOTA) performance in both single-text modality and multimodal
settings. Further analysis confirms the effectiveness of multimodal integration and com-
monsense knowledge enhancement in ERC. Additionally, our commonsense knowledge
filtering strategy significantly reduced noise from unreliable external knowledge, allowing
SSEAN to make more accurate emotion predictions specifically in those classes with few
samples. The model’s stability and robustness were further validated through multiple
training runs with different random seeds, showing low variance in performance, which
underscores the statistical significance of our results.

While our method improves the quality and relevance of integrated commonsense knowl-
edge, it remains limited in modeling long-range knowledge that requires reasoning across
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multiple dialogue turns. Future work may involve leveraging large language models (LLMs)
to enable extended context understanding and more advanced commonsense reasoning.
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Appendix A. Comparative Analysis of Knowledge
Representation Filtering

By adding a two-layer feedforward classification head to the knowledge representa-
tions, we directly applied the commonsense knowledge to emotion classification. As shown
in Table A2, the filtered knowledge consistently leads to improved classification accuracy
across all emotion categories. The results of ten-fold cross-validation further confirm
that the filtered knowledge achieves consistently better overall performance, providing
additional evidence for the effectiveness of our proposed knowledge filtering module.

Table A1. F1-score comparison of knowledge representation before and after filtering.

Emotion Category Pre-Filtering F1 Post-Filtering F1 Improvement

0 (Neutral) 0.8966 0.9120 +0.0154
1 (Surprise) 0.2444 0.4286 +0.1842
2 (Fear) 0.1600 0.2500 +0.0900
3 (Sadness) 0.3077 0.4828 +0.1751
4 (Joy) 0.1527 0.3089 +0.1562
5 (Disgust) 0.2500 0.5000 +0.2500
6 (Anger) 0.1644 0.4235 +0.2591

Accuracy 0.8125 0.8462 +3.37%
Weighted Average F1 0.7595 0.8086 +4.91%
Macro Average F1 0.3108 0.4723 +16.14%

Appendix B. Multimodal Fusion Analysis on MELD
In the MELD dataset, although incorporating only the textual and visual modalities

leads to a slight decline in overall model performance, a more fine-grained analysis of
individual emotion categories indicates that the visual modality contributes to improved
F1 scores in categories such as Neutral, Joy, and Angry. Compared to other emotion types,
Joy and Angry are more strongly associated with pronounced bodily movements and
facial expressions—such as smiling, frowning, or dynamic gestures—which are effectively
captured by visual features. This finding suggests that the video features extracted by the

https://sail.usc.edu/iemocap/
https://sail.usc.edu/iemocap/
https://github.com/declare-lab/MELD
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3D-CNN still offer complementary information, especially for recognizing emotions that
rely on non-verbal cues.

Table A2. MELD: Text (w/ CF) + Visual and Text (w/ CF) configurations.

Emotion Label Text (w/ CF) + Visual Text (w/ CF)

Neutral 0.7937 ↑ 0.7892
Surprise 0.5787 0.5921
Fear 0.1707 0.3077
Sadness 0.3701 0.4377
Joy 0.6551 ↑ 0.6462
Disgust 0.3248 0.3193
Anger 0.5330 ↑ 0.5262

WA-F1 65.68 66.17
WA-Acc 66.54 66.42

The ↑ indicates performance improvement compared to the text-only modality.

Appendix C. Evaluation of the Inference Efficiency

Table A3. Evaluation of the inference efficiency of the SSEAN-Multi model on two datasets.

Dataset Total Parameters Inference Time (ms/Sample) FLOPs (Forward Pass)

IEMOCAP 7.3 M 19.03 1.2 GFLOPs
MELD 23.7 M 21.30 1.5 GFLOPs

Despite a larger number of parameters, the model maintains acceptable inference time
and computational cost.

It is worth noting that the parameter count on the MELD dataset is relatively high,
primarily due to its dialogues often involving multiple speakers—up to nine in extreme
cases—which is rare in everyday conversations.

To address this scalability challenge, our model adopts a dynamic GRU instantiation
strategy, where GRU units are assigned only to speakers who actually appear in a given
dialogue. This design effectively avoids redundant computation in scenarios with fewer
participants. In practice, only two to three GRU units are typically activated during
inference, which significantly reduces computational overhead. This observation is further
supported by the reported FLOPs and inference time.

Additionally, when speaker identity information is unavailable or ambiguous in
the data, the model naturally degrades to a simplified two-GRU version, maintaining
scalability and adaptability. This design choice is further validated by our FLOP analysis,
which supports the efficiency of the proposed framework.

In comparison, although the SSEAN-Multi model contains more parameters than its
SSEAN-Uni counterpart, the latter achieves better inference efficiency, making it a more
favorable choice when runtime performance is a priority.

Appendix D. Error Analysis Based on the Confusion Matrix of
SSEAN-Multi

To better understand where our model underperforms, we conduct an in-depth analy-
sis based on the confusion matrix of the IEMOCAP and MELD dataset.
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Figure A1. Confusion matrix of emotion recognition on IEMOCAP.

Figure A2. Confusion matrix of emotion recognition on MELD.

From the confusion matrices of both the IEMOCAP and MELD datasets, consistent
misclassification patterns can be observed, revealing the model’s challenges in handling
ambiguous emotional boundaries and low-resource emotion categories.

In the IEMOCAP dataset, although Frustrated and Excited exhibit some misclassifi-
cations, SSEAN still achieves the highest classification accuracy on these two categories.
Notably, most of their misclassified instances fall into emotionally similar classes: Frus-
trated is often confused with other negative emotions such as Neutral, Sad, or Angry, while
Excited tends to be misclassified as positive or neutral emotions, such as Happy or Neutral.
This reflects a tendency toward semantic polarity-consistent misclassification, which is
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generally more tolerable in practical applications and suggests that the model captures
emotional polarity effectively, even if fine-grained distinctions are not always accurate.

In the MELD dataset, the classification of Fear and Disgust proves significantly more
challenging. These categories are frequently misclassified as Sadness, Neutral, or Angry.
The main causes are twofold: first, these categories suffer from extreme data scarcity,
which limits the model’s ability to learn distinctive features; second, their linguistic and
acoustic similarity to other negative emotions contributes to confusion, and the external
commonsense knowledge introduced by the model is not yet sufficiently effective in
modeling the emotional causality associated with Fear and Disgust.

Moreover, both datasets exhibit a notable tendency for Neutral to absorb a large
number of misclassifications. In cases of emotional ambiguity, incomplete multimodal
input, or unclear signals, the model tends to make conservative predictions toward Neutral.
This is closely related to the overrepresentation of Neutral samples in both datasets and
suggests that the model adopts a risk-averse strategy when facing uncertainty, favoring
safety over discrimination.
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