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Abstract

In a decade, Al frontier research transitioned from the researcher’s workstation to thousands of high-end hardware-accelerated
compute nodes. This rapid evolution shows no signs of slowing down in the foreseeable future. While top cloud providers may
be able to keep pace with this growth rate, obtaining and efficiently exploiting computing resources at that scale is a daunting
challenge for universities and SMEs. This work introduces the Cross-Facility Federated Learning (XFFL) framework to bridge this
compute divide, extending the opportunity to efficiently exploit multiple independent data centres for extreme-scale deep learning
tasks to data scientists and domain experts. XFFL relies on hybrid workflow abstractions to decouple tasks from environment-
specific technicalities, reducing complexity and enhancing reusability. In addition, Federated Learning (FL) algorithms eliminate
the need to move large amounts of data between different facilities, reducing time-to-solution and preserving data privacy. The
XFFL approach is empirically evaluated by training a full LLaMAv2 7B instance on two facilities of the EuroHPC JU, showing
how the increased computing power completely compensates for the additional overhead introduced by two data centres.
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1. Introduction

The Big Data era is propelling machine learning experiments to unprecedented scales, outpacing even Moore’s law
[1]. In a decade, Al frontier research has transitioned from the researcher’s workstation (AlexNet [2], 2012, trained
for six days on two NVIDIA GTX580 3GB) to thousands of high-end specialised chips (PaLM [3], 2022, trained for
50 days on 6144 TPU v4 chips). The advent of foundation models [4] and physics-informed neural networks [5] has

* Corresponding author.
E-mail address: iacopo.colonnelli @unito.it

1877-0509 © 2024 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-ne-nd/4.0)
Peer-review under responsibility of the scientific committee of the Proceedings of the First EuroHPC user day
10.1016/j.procs.2024.07.003


http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2024.07.003&domain=pdf

4 lacopo Colonnelli et al. / Procedia Computer Science 240 (2024) 3—12

catapulted Deep Neural Networks (DNNs) to trillions of parameters, requiring an entire exascale data centre to be
trained from scratch [6]. This rapid evolution shows no signs of slowing down in the foreseeable future.

While top cloud providers may be able to keep pace with this growth rate [7], for universities and SMEs, the task
of obtaining and efficiently exploiting computing resources at that scale is a daunting challenge. Indeed, in the last
few years, this dichotomy of industry and academia has caused a reduced representation of academic-only research
teams in computing-intensive research topics, especially foundation models [8].

In this scenario, HPC federations such as the one currently promoted by the EuroHPC Joint Undertaking play
a crucial role. The massive amount of computing power at their disposal can compete with top-notch private data
centres, potentially bridging the gap between industry and academia. However, granting researchers access to public
facilities and enabling them to efficiently exploit their computing power efficiently is not trivial. Allocating an entire
data centre exclusively to a single experiment for an extended period violates the principle of fair resource usage.
On the other hand, efficiently exploiting multiple data centres without high-level techniques and tools to design and
orchestrate cross-facility workloads is almost exclusively the prerequisite of senior computer scientists with a deep
knowledge of high-performance distributed systems.

This work introduces the Cross-Facility Federated Learning (XFFL) framework to extend the opportunity to effi-
ciently exploit multiple independent data centres for extreme-scale DNN training to data scientists and domain experts.
In particular, XFFL combines two different approaches. On the one hand, hybrid workflow abstractions allow users to
quickly design and orchestrate cross-facility workloads, decoupling tasks from environment-specific technical details
to reduce complexity and increase reusability. On the other hand, Federated Learning (FL) algorithms eliminate the
need to move large amounts of data between different facilities, reducing time-to-solution and preserving data privacy.
To the best of the authors’ knowledge, this work describes the first attempt to run a large-scale XFFL experiment.

The benefits brought by the XFFL approach are evaluated on a realistic scenario, i.e., training the full LLaMAv?2
7B Large Language Model (LLM) [9] on top of two facilities of the EuroHPC JU, the Leonardo@CINECA and
the Karolina@IT4I clusters, which occupy the 6th and 113th positions in the November 2023 Top500 ranking [10],
respectively. In particular, the evaluation aims to assess whether the speedup obtained from the increased computing
power is enough to compensate for the additional overhead introduced by using two distinct facilities, e.g., the model
transfer time across the Internet or the misaligned execution times due to job queues. The results are promising, paving
the way for further experiments with larger models and wider federations of data centres.

This article is organised as follows. Sec 2 introduces the preliminary concepts and analyses the related work.
Sec. 3 introduces the proposed XFFL methodology. Sec. 4 describes the experimental environment and discusses the
obtained results. Finally, Sec. 5 concludes the article and outlines future research directions.

2. Background and related work
2.1. Hybrid workflows

A hybrid workflow allows its steps to span multiple, heterogeneous, and independent computing infrastructures
[11]. Each of these aspects has significant implications. Support for multiple infrastructures implies that each step can
target a different execution environment. Such environments can be heterogeneous, with different and incompatible
protocols for authentication, communication, resource allocation and job execution. They can also be independent
of each other without the possibility of establishing direct connections to transfer data. A suitable model for hybrid
workflows must then be composite, enclosing a specification of the workflow dependencies, a topology of the involved
locations, and a mapping relation between steps and locations.

Hybrid Workflow Management Systems (WMSs) [12, 13, 14, 15, 16] are the software tools in charge of orchestrat-
ing hybrid workflow executions on top of complex, large-scale infrastructures, such as cross-facility and cloud-HPC
environments. All the complexities of heterogeneous systems coordination, job scheduling, and data transfers are
hidden behind a high-level workflow abstraction, which decouples the business code from the coordination layer.
Plus, hybrid WMSs provide advanced features out of the box, such as caching, provenance tracking, and fault tol-
erance. Hybrid WMSs have already proved their superior flexibility and performance in diverse scientific domains:
bioinformatics [17, 18], astrophysics [19], environmental science [20], and many more.
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This work relies on the StreamFlow WMS [13] to orchestrate a large-scale XFFL workload, building on the initial
work described in [21]. StreamFlow is a container-native hybrid WMS based on the Common Workflow Language
(CWL) open standard [22]. It has been designed around two primary principles. First, it allows executing tasks re-
quiring complex combinations of software container environments, supporting modern micro-services applications.
Second, it relaxes the requirement of a single shared data space, allowing hybrid workflow executions on top of
multi-cloud, multi-HPC, and mixed cloud-HPC infrastructures. Since this work requires the orchestration of a fully
containerised FL workload on top of two independent HPC facilities, it represents a perfect use case for StreamFlow.

2.2. Federated Learning

Federated learning (FL) is a collaborative, distributed approach enabling the solving of a common Machine Learn-
ing (ML) problem shared between multiple institutions [23]. The core idea behind FL is sharing locally trained models
instead of the local data itself. This simple yet powerful idea allows for overcoming the ML de facto standard data lake
approach, in which data is harvested across different sources and accumulated by a single institution. Such a gathering
process involves agreement efforts between the data-holding institutions while exposing the data to privacy attacks
and misuse. FL offers a natively privacy-preserving approach, allowing multiple parties to train a DNN on their local
data collaboratively and merge them into a global, shared DNN, retaining the knowledge extracted from all peers.

FL deployments involve a set of data-holding clients coordinated by a central server, even if other structures are
possible [24]. The training process starts with the server communicating an initial set of parameters for the shared
DNN model to each client. Each client then trains the received DNN on the local data and returns the obtained pa-
rameters to the central server. Once all (or a sufficient number) of local models are accumulated, the central server
aggregates them, obtaining a global model. Such a model is then broadcast back to the clients, and the process contin-
ues iteratively until convergence. The presented process is just a general design of the FL approach, excluding many
details such as which aggregation strategy is used [25, 26], how to make the execution more asynchronous [27, 28],
how to speed up the client-server model communication [29, 30, 31], and more [32]. FL has been successfully applied
to a variety of models ranging from deep, e.g. CNNs [23] and transformers [33], to classic [34] ML models.

FL can also be seen as a device that further increases the scalability of a distributed ML system. FL allows multiple
computing infrastructures to train copies of the same model on different data partitions simultaneously, similar to a
distributed data-parallel approach. Nevertheless, differently from other data-parallel strategies [35, 36], data are never
shuffled among worker nodes, heavily reducing the communication overhead. Note that FL is not computationally
equivalent to a centralised data lake scenario. The federation’s number of clients, local and global data distribution,
aggregation strategy, and many other hyperparameters heavily influence the final global model performance [37].
FL thus offers a novel trade-off between speeding up ML training and the obtained model performance; however,
commercial FL frameworks [38, 39, 40, 41] do not seem to consider this aspect, preferring to focus on its privacy-
preserving features rather than supporting complex, large-scale deployments.

FL of billion- and trillion-parameter foundation models is a promising approach to improve time-to-solution [42].
Indeed, FL reduces per-site memory occupancy and computing time and minimises inter-site communication com-
pared to standard distributed training [43]. There are already few attempts to fine-tune foundation models in scientific
literature [44, 45]. However, to the best of the authors’ knowledge, this work describes the first attempt to train a full
LLM on multiple HPC facilities through FL.

3. Cross-facility Federated Learning

By enabling researchers to harness the joint computing power of multiple clusters, we can mitigate the compute
divide mentioned in Sec. 1. If a large, complex workload can be split into multiple independent sub-computations,
they can run concurrently on different facilities. The partial results obtained on each machine can then be combined,
leading to the final outcome of the global computation. In the case of iterative processes, these global results can be
returned to the clusters, initiating a new iteration.

However, it is crucial to acknowledge that not all computations are amenable to this approach. Cluster-to-cluster
communications are orders of magnitude slower than intra-cluster, node-to-node communications. Moreover, they are
subject to varying bandwidths and network speeds typical of the public Internet network, making the process slow



6 lacopo Colonnelli et al. / Procedia Computer Science 240 (2024) 3—12

and error-prone. For these reasons, problems that necessitate frequent and large data transfers between clusters are not
ideal candidates for cross-facility executions.

To ensure more equitable resource usage, lengthy iterative processes can be divided into multiple job submissions,
each handling one or more iterations. This strategy also allows for the delegation of cross-facility orchestration to a
third party, such as the control plane of a hybrid WMS. This way, a group of HPC centres can be treated as a single,
geographically distributed supercluster, with all the technical aspects managed by the WMS runtime. However, it is
crucial to consider queue waiting times and their variability whenever a new set of tasks is submitted to different
HPC centres. Queue time is generally unpredictable and can range from minutes to hours, depending on the current
cluster utilisation and the requested resources. Therefore, the computing time should be sufficiently long to offset the
potential delays introduced by waiting times.

For ease of understanding, consider the well-known Bulk Synchronous Programming (BSP) model [46]. A BSP
computation is structured into a sequence of supersteps, each consisting of three phases: a concurrent computation
phase where each component performs local computations; a communication phase where components exchange data;
and a global synchronisation phase where each component waits until all other components have reached the same
barrier. When submitting a BSP computation consisting of S supersteps to solve a problem of size n as a single job to
an HPC cluster with p nodes, the total time 7 can be calculated as:

S N
Ti=q+ ) [winp)+g-hnp)=q+ ) Tynp) )
s=1

s=1

where ¢ is the waiting time, w is the computing time on p nodes, /4 is the amount of data to communicate among
p nodes, and g is the speed of the interconnection network. Note that we omitted the synchronisation overhead, as
it does not change significantly in the different scenarios discussed below. Instead, if we submit each superstep as a
separate job to the HPC workload manager, each superstep is subject to queueing time, increasing the total time 7’ to:

S S S
Ty= lgs+winp)+ g himp)l = Y qo+ Y Tynp)> T @
s=1 s=1 s=1

However, note that if the queue waiting time is much shorter than the execution time, i.e., g < T(n, p), then Tp =~
Zle T(n, p) =~ T;. If now we consider F facilities having the same networking technology (i.e., g; = g, forany i € F)
but different sizes (i.e., p; # p; forany i # j € F) totalling Zfil pi processors, the total time 75 can be calculated as:

F P
qs.r +wg p(n, Z pi) + g hyy(n, Z Di)

i=1 i=1

S
=2 {f?

s=1

+G'H‘Y(n’p17-~~’pl‘*)}
; (3)

=2, {I}z

F
qsr + T r(n, Zpi) +G - Hin,p1,.. -,PF)}

i=1

s=1

where G is the speed of the cluster-to-cluster network, H is the amount of data to communicate among different
facilities, and max rer models that we need to wait for the slowest facility f to finish before the global communication
phase. If the problem is scalable enough, then w; ¢(n, Zf;l Di) < wss(n, py) forany f € F. However, G can be orders of
magnitude higher than g and queue times can vary significantly from cluster to cluster. Therefore, a good cross-facility
approach should try to:

e minimise cross-cluster communications to reduce Hy(n, py, ..., pr);
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e keep wy r(n, Zle pi) large enough to compensate for the overhead of ¢, r;
e balance the workload of different clusters e and f such that T (n, Zf:l pi) = T p(n, Zf:l pi)foranye, f € F.

If all these conditions hold, Eq. 3 can be rewritten as

F F

S S F
Ty =Y |wyn, ) p)+g-hyim, Y p)| = D Tun, Y p) < T @)
s=1 s=1 i=1

i=1 i=1

The classical data-parallel distributed training of a DNN is much more complex than a pure BSP computation
[35]. However, each model update can be approximated with a BSP superstep that locally computes the forward
pass and back-propagation on each node, communicates the gradients to all other nodes, and globally synchronises
the process to compute the resulting gradients. Unfortunately, this algorithm necessitates substantial communication
among all involved facilities, leading to a communication-bound problem [43]. In contrast, the FL approach simplifies
this process by only requiring the exchange and aggregation of models, thereby minimising cross-cluster data transfers
(each superstep models one FL round). Each cluster trains a model on the local data, which is then exchanged to update
the global model before a new FL round starts. By carefully tuning the amount of data available on each cluster, we
can ensure a balanced workload among different, potentially heterogeneous facilities. The key question that remains to
be answered is whether the training time of foundation models is large enough to offset the queuing times variability
and the increased communication overhead in cross-cluster settings, which is the primary focus of Sec. 4.

4. Evaluation
4.1. Test case

We used XFFL to continue training LLaMAv2 [9], a foundation model for natural language processing. LLaMAv?2
is a family of large language models ranging up to 70B parameters based on the transformer architecture [47] and
pre-trained with up to 2T tokens. The tokens stem from a mix of text corpora selected to provide a fair mix of
demographic representations along five axes: religion, gender and sex, nationality, race and ethnicity, and sexual
orientation. Nevertheless, the corpora are heavily centred on the English language (89.7%), with the second most
represented language (German) lagging far behind (0.17%).

Inspired by this imbalance, we fine-tuned a LLaMAv2 7B model specifically for Italian and Czech using the
clean_mC4._it [48] and mC4_cs [49] datasets. The mC4_cs dataset is the plain version of the mC4 corpus Czech split,
while the clean.mC4_it dataset is a filtered version of the mC4 corpus Italian split. This filtering involved removing
documents containing despicable words, sentences that are too short (<3 words) or too long (>1000 characters),
sentences not ending with end-of-sentence punctuation, documents which are either too short (<5 sentences or 500
characters) or too long (>50000 characters), and so on. The result is a cleaned Italian corpus of 103 million documents,
comprising 41 billion words.

Due to the size of the entire corpus, which was incompatible with our experiment’s time requirements, we opted
to use the “tiny” split. During preprocessing, the documents have been converted into fixed-length sequences of 2048
tokens through the standard LLaMAv2 tokeniser. As a result, the Italian dataset used consisted of 10 million documents
comprising 4 billion words, converted into a total of 4085342 training samples and 13252 testing samples with 2048
tokens each. We retained the same quantity of data from the mC4_cs dataset to ensure balanced execution times. Each
dataset occupies about 102GB of disk space, much more than the 13GB required by the half-precision representation
of the LLaMAv2 7B weights. Due to limited resource availability, the total execution time required to train LLaMAv?2
7B on the whole clean_.mC4_it and mC4_cs datasets had to be estimated. This is possible since the training time is
linear in the training dataset size, modulo having fixed hyperparameters. Once the aggregate data processing speed
(usually expressed in terms of iterations/second) is stable, estimating the total execution time becomes straightforward,
knowing the number of iterations needed for the dataset (1 iteration = 1 data batch = 4 data samples = 8192 tokens in
our testbed).
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Fig. 1. Pictorial representation of the XFFL hybrid workflow. Steps are represented as rectangles, ports as circles, and dependencies as arrows with
black-filled heads. Locations are represented in the lower rectangles, and communication channels between them as arrows with white-filled heads.
Finally, mapping relations are expressed as dotted arrows.

4.2. Execution environment

The experiment has been performed on two HPC systems, Leonardo@CINECA and Karolina@IT4I. They occupy
the 6th and 113th positions in the Top500 ranking [10] (November 2023), respectively. In particular, we trained
LLaMAvV?2 on the reduced clean_mC4_it dataset on Leonardo@CINECA, while we relied on Karolina@IT4I to train
the model on the mC4_cs data.

Leonardo is a pre-exascale system with a performance peak of 238.70 PFlop/s (LINPACK R,.,) hosted by
CINECA in Bologna, Italy. It consists of 4992 liquid-cooled compute nodes interconnected through an NVIDIA Mel-
lanox network, with Dragon Fly+, capable of a maximum bandwidth of 200Gbit/s between each pair of nodes. Each
of the (Booster) nodes used in our experiment mount a custom BullSequana X2135 “Da Vinci” blade equipped with
an Intel Xeon 8358 Ice Lake CPU (32 cores, 2.6GHz), 512GB DDR4 RAM (8 x 64GB, 3200MHz), 4 NVIDIA cus-
tom A100 GPUs (64GB, HBM2e), and 2 NVIDIA InfiniBand HDR 2x100Gb/s network cards. Karolina, on the other
hand, is a petascale system hosted by the [T4Innovations National Supercomputing Center at the VSB-Technical Uni-
versity of Ostrava, Czech Republic. Each of its GPU nodes mounts an HPE Apollo 6500 Gen10 Plus blade equipped
with an AMD EPYC 7763 CPU (64 cores, 2.45GHz), 1TB DDR4 RAM (8 x 128GB, 3200MHz), 8 NVIDIA A100
GPUs (40GB, HBM2), and 4 InfiniBand HDR 200Gb/s network cards. Both facilities rely on SLURM [50] for job
submission and workload management.

After each training round, the model aggregation averages the model weights through FedAVG, which has been
shown effective also on transformer-type models [51]. This operation is executed on a Virtual Machine (VM) with 96
vCPUs and 720GB RAM, hosted on the OpenStack-based Ada cloud @CINECA. Despite being geographically near
the Leonardo@CINECA facility, the Ada cloud@CINECA VMs do not mount any direct interconnection with the
HPC computing nodes, requiring all data to be routed on the Internet to be transferred between the two environments.
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Table 1. LLaMAv2 7B training performance on Leonardo@CINECA. 1 it = 1 data batch = 4 data samples = 8192 tokens

Loading Queuing Estimated execution Aggregate data .
#Nodes  #GPUs time (s) time (s) time (hours) processing speed (it/s) Speedup  Efficiency
2 8 34 2 774 0.35 2.00 1.00
4 16 34 2 385 0.99 4.02 1.00
8 32 34 2 193 2.83 8.02 1.00
16 64 34 2 98 8.16 15.80 0.99
32 128 38 2 49 23.19 31.59 0.99
64 256 90 222 25 66.32 61.92 0.97
128 512 120 438 14 179.02 110.57 0.86

4.3. Implementation

The training process relies on the PyTorch 2.2.0 framework [52], manually compiled and optimised on both HPC
facilities. As a future work, we want to make the experiment more portable and reproducible by relying on software
containers (e.g., Singularity [53]), which have also recently shown promising results for performance portability.

First, datasets have been tokenized and manually moved to each HPC centre as described in Sec. 4.1. As assumed
in standard FL practice, we assume data to be local to each facility. At each facility, the LLaMAv2 model has been
distributed among the available computing nodes through the Fully Sharded Data Parallel (FSDP) methodology [54,
55], using different sharding strategies for each infrastructure to fit the local hardware characteristics better. From a
high-level perspective, the LLaMAv2 model is sharded at the intra-node level, following a model parallel approach,
and replicated on each node, embracing a data parallel approach. At the end of every round, models are aggregated on
the Ada cloud@CINECA VM.

The cross-facility interactions have been modelled as a hybrid CWL workflow [22], ensuring reproducibility and
reusability. In detail, the workflow has been specified using CWLv1.2 with the cwltool:Loop extension [21], as the
current CWL standard does not support iterative workflows. However, this extension is currently under evaluation to
be included as a native feature of CWLv1.3. At runtime, the workflow has been orchestrated by a StreamFlow [13]
instance deployed on the Ada cloud@CINECA VM. From the VM, StreamFlow can communicate with each HPC
centre through SSH connections, interacting with the workload managers to submit and monitor the training steps.
StreamFlow also manages all the data transfers, i.e., it collects an instance of the model from each facility at the end
of each training round and transfers back a copy of the updated model to each facility after the aggregation step. The
aggregation step is performed directly on the VM since it has a low complexity with respect to model training. Note
that the datasets are never moved, according to the FL principles. Fig. 1 depicts the whole XFFL workflow and its
mapping onto the cross-facility execution environment described in Sec. 4.2. All the code is available as Open Source
on GitHub'.

4.4. Discussion

First, we executed a large-scale training of the LLaMAv2 7B model on the clean.mC4._it dataset on top of the
Leonardo@CINECA facility to study the strong scaling of the training process itself. The goal was to check how
much we can scale on a single facility and how the requested resources affect the queueing time. The queueing times
and an estimation of the execution times ranging from 2 to 128 nodes are reported in Table 1. In our experiments,
queueing times were negligible for up to 32 nodes but increased to over 7 minutes for 128 nodes. However, execution
times were orders of magnitude higher, ranging from 774 (on 2 nodes) to 14 (on 128 nodes) hours. Therefore, despite

! https://github.com/alpha-unito/xffl
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Table 2. LLaMAv2 7B cross-facility federated training overhead

Leonardo@CINECA Karolina@IT4I Model aggregation

Transfer time (s) Transfer time (s) time (s)

Min 138 178 118
Avg 217 242 133
Max 360 344 143

showing a very good strong scaling, training times offset queueing times even for large amounts of computing power,
making it perfectly feasible to separate different training rounds into multiple job submissions without a major impact
on the overall performance.

Another factor to consider is the loading time, which is the time required for all nodes to perform initial operations,
such as loading the model and dataset into RAM and GPU memory and initialising the communication layer between
all participating nodes. However, even considering the loading time overhead, which ranged from 34 to 120 seconds,
separating iterations into different submissions remains a viable and sustainable option.

Having validated the overall approach as viable on one HPC centre, we ran the full experiment using the FL
workflow described in Sec. 4.3 and measured all the additional sources of overhead, i.e., the transfer times between
the Ada cloud@CINECA VM and the two HPC facilities and the time needed to aggregate the model on the Ada
cloud@CINECA VM. We repeated the experiment five times and collected maximum, minimum, and average values
reported in Table 2. Note that these times do not depend on the resources allocated in each HPC facility. Again,
empirical measures promote the feasibility of the XFFL approach: none of the measured times exceeds hundreds of
seconds, making them negligible compared to the tens of hours needed by each training round.

5. Conclusion and future work

In this work, we propose XFFL as a powerful tool to address the compute divide between industry and academia.
By harnessing the capabilities of multiple independent computing centres for extreme-scale DNN training, XFFL of-
fers a promising solution. Hybrid workflows, a key component of XFFL, allow users to abstract complex technical
details and orchestration strategies of cross-facility workloads, making the training process more accessible. While
this approach introduces some overhead due to additional queueing and loading times, these are insignificant com-
pared to the time required for local training. Additionally, XFFL minimises cross-cluster interconnections, which
are significantly slower than intra-cluster communications. Our empirical results demonstrate that model transfer and
aggregation times are negligible compared to training round times, further highlighting the efficiency of XFFL.

Looking ahead, full-scale experimentation on a larger federation of EuroHPC facilities is already underway. We
also plan to explore a diverse set of models and datasets to test the results’ generality better. Another future develop-
ment of this technology aims to ease workflow design by providing a customisable and parametric CWL workflow
template while promoting better integration with StreamFlow and software container technologies, such as SLURM
and Singularity. Indeed, other than fostering reproducibility, optimised NVIDIA PyTorch Singularity containers offer
a considerable performance boost compared to bare-metal deployments.
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