<]
TUDelft

Delft University of Technology

RL-Guided MPC for Autonomous Greenhouse Control

Msaad, Salim; Harraway, Murray; Mcallister, Robert D.

DOI
10.1016/j.ifacol.2025.11.829

Licence
CC BY-NC-ND

Publication date
2025

Document Version
Final published version

Published in
IFAC-PapersOnline

Citation (APA)
Msaad, S., Harraway, M., & Mcallister, R. D. (2025). RL-Guided MPC for Autonomous Greenhouse Control.
IFAC-PapersOnline, 59(23), 449-454. https://doi.org/10.1016/j.ifacol.2025.11.829

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.ifacol.2025.11.829
https://doi.org/10.1016/j.ifacol.2025.11.829

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 59-23 (2025) 449454

RL-Guided MPC for

Autonomous Greenhouse Control
Salim Msaad * Murray Harraway * Robert D. McAllister *
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Abstract: The efficient operation of greenhouses is essential for enhancing crop yield while
minimizing energy costs. This paper investigates a control strategy that integrates Reinforce-
ment Learning (RL) and Model Predictive Control (MPC) to optimize economic benefits in
autonomous greenhouses. Previous research has explored the use of RL and MPC for greenhouse
control individually, or by using MPC as the function approximator for the RL agent. This
study introduces the RL-Guided MPC framework, where a RL policy is trained and then
used to construct a terminal cost and terminal region constraint for the MPC optimization
problem. This approach leverages the ability to handle uncertainties of RL with MPC’s online
optimization to improve overall control performance. The RL-Guided MPC framework is
compared with both MPC and RL via numerical simulations. Two scenarios are considered: a
deterministic environment and an uncertain environment. Simulation results demonstrate that,
in both environments, RL-Guided MPC outperforms both RL and MPC with shorter prediction

horizons.
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1. INTRODUCTION

The sustainable and efficient operation of greenhouses is
pivotal to modern agriculture, offering a controlled envi-
ronment to maximize crop yield while optimizing resource
efficiency. Modern greenhouse systems demand advanced
control strategies to dynamically manage climatic vari-
ables, such as temperature, humidity, and CO2 levels, with
fluctuating external conditions. Traditional control meth-
ods struggle to balance long-term economic objectives with
real-time operational demands. Reinforcement Learning
(RL) and Model Predictive Control (MPC) have shown
promise in addressing these challenges. Prior research has
explored RL and MPC as standalone solutions for green-
house automation. RL excels in handling stochastic envi-
ronments, while MPC leverages model-based optimization
to enforce constraints and recalibrate actions in real time.
RL approaches for greenhouse control have been studied in
van Laatum et al. (2024) and in Morcego et al. (2023). The
first study presents an open-source RL environment for
greenhouse control, comparing different RL approaches,
while the second study introduces a RL-based controller
that utilizes deep deterministic policy gradient for green-
house climate control, comparing it to a MPC controller.
Boersma et al. (2022) propose a robust MPC controller
for greenhouse climate control, showing improved perfor-
mance over traditional MPC. Mallick et al. (2025) inte-
grate RL and MPC by using MPC as a function approxi-
mator within the RL framework.

The autonomous greenhouse control problem is an eco-
nomic optimization task. Conventional MPC approaches
focus on tracking an economically optimal steady-state for
the system. However, for applications such as greenhouse

control, steady-state tracking is not desirable as optimal
economic operation requires dynamically adjusting the
temperature, humidity, and CO2 levels in the greenhouse.
Economic MPC, which uses economic costs directly in
the stage cost and does not focus on stabilizing a steady-
state target, is therefore more appropriate for greenhouse
control. Nonetheless, a steady-state or reference trajectory
is often used to improve and guarantee performance of eco-
nomic MPC implementations (Amrit et al., 2011; Risbeck
and Rawlings, 2020; Angeli et al., 2012)

This paper presents the RL-Guided MPC framework,
where an RL policy informs the terminal cost and region
constraints in the MPC optimization. The policy is used to
build a cost function approximator for the terminal cost,
while rollouts using the actor define the terminal region
constraint. This integration improves control performance
while ensuring computational efficiency in scenarios with
limited prediction horizons. The efficacy of the proposed
approach is validated through numerical simulations, com-
paring RL-Guided MPC against standalone MPC and RL
controllers. The simulations are conducted in two environ-
ments. One environment is deterministic, while the other
is stochastic with parametric uncertainty.

Section 2 outlines the greenhouse model, simulation envi-
ronments, and the optimization problem tackled by the
RL agent, MPC, and RL-Guided MPC. Section 3 and
Section 4 describe the RL agent and MPC controller,
while Section 5 introduces the RL-Guided MPC frame-
work. Numerical results are presented in Section 6, and
the conclusions are presented in Section 7.

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
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Table 1. Physical meaning of input u, state x, and disturbance d

u;  COg injection (mgm~2s71) | 21  dry weight (kgm™2) dy  solar radiation (W m™2)

ug  ventilation (mms~!) z2  indoor CO2 (ppm) dy  outdoor CO2 (kgm™3)

ug  heating (Wm™2) z3  indoor temperature (°C) | d3  outdoor temperature (°C)
z4  indoor humidity (%) ds  outdoor humidity (kgm~—3)

2. BACKGROUND
2.1 Greenhouse Model

The greenhouse and crop model utilized in this paper is
the same as in Van Henten (1994). The model is discretised
with the fourth order Runge-Kutta method with a sample
period At = 1800 s (30 minutes), resulting in the following
state space model:

z(k +1) = f(z(k),u(k),d(k), p) (1)
with discrete time k € Z¥, state variable xz(k) € R%,
control input u(k) € R® and weather disturbance d(k) €
R*. The parameter p € R?? represents all parameters
used in the model. The values and meaning of p and the
nonlinear function f(-) are described in Boersma et al.
(2022). State estimation is not considered in this work. It
is assumed that the state variable x(k) is always known.
Table 1 provides the physical meaning of the state, input,
and disturbance variables.
The weather data for simulations and training was sourced
from the Venlow Greenhouse in Bleiswijk, covering the
period from January 30 to March 11, 2014. The weather
is assumed to be deterministic and known at each time
step. This dataset spans a 40-day growing period with a
time step of 30 minutes, resulting in a total of 1920 time
steps. For the numerical simulations, two scenarios are
considered: a deterministic environment and a stochastic
environment. In a real-world greenhouse, uncertainty is
present in all aspects of the model. Uncertainty may
arise in the weather prediction, measurement noise on the
outputs, and the control inputs may not be exact. As done
in Boersma et al. (2022), the uncertainty in the stochastic
environment is modelled as parametric uncertainty, which
aims to offer a simplified representation of the real-world
uncertainties. It is assumed that the uncertain parameters
P € R?2 follow the uniform probability distribution

p~U(p(l =6),p(1+19)), (2)
where vector p represents the nominal values of the pa-
rameters and J is a percentage that defines the range of
the distribution. The value of § is set to 5% for all of
the stochastic simulations presented in Section 6. For each
simulation in the stochastic environment, a new set of
uncertain parameters p is sampled from the distribution
in (2), and the system dynamics in (1), with p = p, are
used for simulation.

2.2 Optimization Problem

Optimal greenhouse control involves maintaining suitable
environmental conditions for crop growth, including tem-
perature, humidity, and CO5 levels, while minimizing re-
source use. This is achieved through control inputs for
heating using heating pipes, ventilation by controlling
window openings, and COs injection. The goal is to max-
imize crop yield while minimizing resource consumption.

Table 2. Pricing and penalty factors

Symbol  Value Unit

c1 1.906-10"1  €mg~!

c3 1.281-1071 €J°1

T 20.93" €kg™!

A2 5.107° €(ppm m?)~1
A3 51073 €(°Cm?2)~1
A 7-1074 €(% m?)~!

* Corresponding to 1.07 €kg~! for fresh weight.

Table 3. Input and output constraints and
initial conditions

Symbol  Value | Symbol Value Symbol  Value
unin 0 ulnax 1.2 u1(0) 0

ufpin 0 ufax 7.5 u2(0) 0

uipin 0 ulpax 150 u3(0) 50
pinin 0 pinax oo z1(0) 0.0035
zpin 500 oax 1600 z2(0) 0.001
zinin 10 gpax 20 z3(0) 15
zipin 0 gipax 80% (78%)" | z4(0) 0.008

* Constraint tightening of 2% for the stochastic case.

Deciding the harvest time is also an important factor in
profitability. However, in this study, a fixed growing period
of 40 days is chosen instead of including this decision in
the optimization problem. This approach aligns with other
studies in the literature (Boersma et al. (2022); Morcego
et al. (2023); Mallick et al. (2025)). At the conclusion of
this growing period, the crop is harvested and sold, mark-
ing the end of the cultivation cyle. The revenue generated
from the sale is then used to calculate the Economic Profit
Indicator (EPI), which is determined by subtracting the
heating and COg costs from the total earnings, as follows:
tf
EPI =rxz(t;) — Y (crua(k) + caus(k))At,  (3)
k=0

where ¢y denotes the final time, set at 40 days, c; represent
the COs injection cost coefficient, c3 the heating cost
coefficient, r the revenue coefficient from lettuce sales, and
At the sample period. The values of these pricing factors
are listed in Table 2.
The EPI defines the objective function for the greenhouse
control problem. However, directly optimizing (3) using
MPC or RL is difficult due to the sparse reward structure,
since rewards are given only at the end of the growing
period. To overcome this challenge, the following economic
stage cost is defined for each time step:

le(x(k),u(k)) = —r(z1(k) — 21(k — 1)) (1)
+ (crui (k) 4 czuz(k)) At.

The cumulative sum of the stage costs in (4) over the
growing period is equivalent to the EPI in (3), but
with the opposite sign. State constraints are essential to
ensure the system operates within realistic and feasible
bounds. Temperature, humidity, and COs concentration
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must stay within specified minimum and maximum limits.
However, due to inherent uncertainties, these constraints
cannot be strictly enforced. Instead, they are treated as
soft constraints by incorporating three penalty terms into
the objective function to account for any violations. As a
result, the following stage cost function is defined:

C(w(k),u(k)) = Ce(x(k), u(k)) + g2(z2(k)) 5)
+ g3(x3(k)) + ga(za(K)),
where g¢o, g3, g4 are the penalty functions for the indoor

CO; concentration, temperature, and humidity, respec-
tively. These penalty functions are defined as

Ni(zi(k) — 2o if a(k) > @,
Ni(@ — i (k) if ai(k) < 2P, (6)
0 otherwise.

gi (Ii(k)) =

The penalty coefficients Az, A3, and A4 are defined in
Table 2. The state’s minimum and maximum threshold
values z™" and z® are defined in Table 3. In addition
to the state constraints, the control inputs are also subject
to constraints. The heating injection, ventilation, and CO4
injection are bounded by their respective minimum and
maximum values, as defined in Table 3. Moreover, the
control inputs are subject to rate constraints to prevent
abrupt changes in the control actions. For each control
input 7 = {1,2,3}, the absolute rate of change is limited
to du®* = u** /10.

Considering the objective function in (5), along with the
state and rate constraints, the optimal greenhouse control
task is described by the following optimization problem:

min > ¢(x(k),u(k), (Ta)
k=0

s.t. z(k+1) = f(z(k),u(k),d(k),p), (7b)
Umin S uz(k) S Umax (70)
lu(k) — u(k — 1)| < dumax- (7d)

The RL agent, MPC and RL-Guided MPC all seek to
solve the optimization problem in (7) and are ultimately
evaluated based on the cumulative cost in (7a). The initial
conditions, detailed in Table 3, were kept constant for
every episode and for both the deterministic and stochastic
cases.

3. REINFORCEMENT LEARNING

Actor-critic methods combine elements of both policy-
based and value-based approaches, enabling stable and
efficient learning. The actor is responsible for learning a
policy, while the critic evaluates the quality of actions
taken. By leveraging this dual structure, actor-critic al-
gorithms allow policies to improve based on both direct
experience and feedback from the critic. One key advan-
tage of actor-critic algorithms is their ability to handle
continuous state and action spaces effectively (Sutton and
Barto (2020)), in contrast to other methods, such as Q-
learning, that are better suited to discrete environments.
This makes them well-suited for complex control tasks,
such as greenhouse climate optimization. The actor-critic
algorithm employed in this study is soft actor-critic (SAC)
(Haarnoja et al. (2018)), a widely used actor-critic algo-
rithm. SAC introduces an entropy term into the reward
function, explicitly balancing exploration and exploitation.

Table 4. Hyperparameters for the RL agent

Parameter Value
Training episodes 100
Warm-up episodes 9
Hidden layers 2
Neurons per hidden layer 128
Batch size 1024
Learning rate 5.1073
Buffer size 100,000
Activation function ReLU
Discount factor ~ 0.95

This leads to the learning of a policy my(s(k)), function
of the current observation s(k) and parameterized by 0,
where the entropy term determines policy randomness.
By optimizing both the expected cumulative reward and
entropy, the agent encourages diverse action selection.
Careful selection of the agent’s observation space is cru-
cial for effective learning. Providing insufficient informa-
tion may hinder the agent’s ability to learn meaningful
strategies, while excessive information can make it difficult
to extract relevant patterns. In a real-world greenhouse
setting, expert growers do not have direct access to the
current dry weight of the lettuce crop. However, in this
study, it is assumed that this value, denoted by z1(k),
is available to the RL agent, to MPC and to RL-Guided
MPC. The agent also receives data on the greenhouse’s
indoor temperature z2(k), COq2 concentration zz(k), and
humidity x4(k), which are typically measured by sensors
in real-world greenhouses. Moreover, the previous input
u(k — 1) is included in the observation space. This infor-
mation is crucial, since the difference between the current
and previous control inputs is constrained, by (7d), to
prevent abrupt changes. The weather disturbance d(k) is
also available to the agent, as it is for the MPC and for the
RL-Guided MPC. Finally, the agent is designed to be time-
aware, meaning that the current time step k is explicitly
provided. This allows the agent to make decisions based on
the stage of the growing period. Without this information,
the agent would not be able to distinguish between early
and late stages of the growing period, which is crucial
for effective control. Therefore, the observation space is
defined as:

s(k) = (a(k), u(k — 1), d(k), k). (8)
To ensure that the control input u(k) adheres to the
constraints specified in (7), the agent’s action, denoted as
a(k) = ma(s(k)) with a € [—1,1]3, is interpreted as an
adjustment to the previous control input:

u(k) = max(umin,
min(tmax, w(k — 1) + a(k)dtmax))- ©)

The reward function that the RL agent is trained to
maximize is the same objective function defined in (5)
but with an inverted sign. This formulation ensures that
both methods operate under a consistent optimization
framework, allowing for direct comparisons between all
approaches. The discount factor, v, is a crucial hyperpa-
rameter. For long-term tasks, v = 1 allows the agent to
consider the entire growth period and optimize long-term
economic outcomes. However, it can destabilize training.
To address this, we used v = 0.95, which improved policy
effectiveness. Table 4 lists all RL agent hyperparameters.
Two different RL agents were trained, one for the de-
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terministic environment and the other for the stochastic
environment. Both agents were trained using identical
hyperparameters, with the only difference being the envi-
ronment, and consequently, the datasets they were exposed
to during training.

4. MODEL PREDICTIVE CONTROL

The MPC controller in this study is designed to solve the
optimization problem defined in (7). At time step kg, the
following optimization problem is solved:

ko+N,
%r)l > l(x(k), u(k)), (10a)
k=ko
s.t. x(k+1) = f(x(k),u(k),d(k),p), (10b)
Umin < u(k) < Umax; (100)
|u(k) - u(k - 1)' S 6umaxa (10d)
x(ko) = Tk, (10e)

where N,, is the prediction horizon, and xy, is the system’s
state at time kg. Once the optimization problem is solved,
the first control input is applied to the system, and the
optimization problem is solved again at the next time step.
This process is repeated at each time step until the end of
the growing period. Moreover, to help with the feasibility
of the optimization problem, the solver is warm-started
with the previous solution. The optimization problem is
solved numerically using the open-source software frame-
work CasADi (Andersson et al. (2019)) and the IPOPT
solver (Wachter and Biegler (2006)).

Two different MPC controllers are designed, one for the
deterministic environment and the other for the stochastic
environment. The MPC formulation in (10) is used for
both environments. The only modification for the stochas-
tic case is a tighter indoor humidity constraint z**, 78%
instead of 80%. This constraint tightening in the MPC for-
mulation reduces the risk of violating the actual constraint
at 80% in the stochastic simulation environment.

5. RL-GUIDED MPC

In the following, we outline the RL-Guided MPC frame-
work, which incorporates the agent trained in Section 3
into the MPC optimization problem of Section 4. First,
we outline how the terminal cost is derived from the critic.
Next, we describe how the actor is utilized to define the
terminal region constraint. Finally, we illustrate how the
actor helps to provide a warm-start initial guess for the
RL-Guided MPC optimization problem.

5.1 Terminal cost

In the RL-Guided MPC framework, the terminal cost is
directly obtained from the actor network of the SAC agent
trained in Section 3. Using the learned policy 7y, multiple
closed-loop trajectories are generated. This data is then
used to train a cost function approximator J, that esti-
mates the expected return for a given state. This approach
enables the RL-Guided MPC to account for long-term
effects over the entire growing period without extending
the prediction horizon.

The cost function approximator is trained through ex-
pected return learning. Given a nominal state trajectory

Table 5. Hyperparameters for the cost function

approximator
Parameter Value
Hidden layers 2
Neurons per hidden layer 128
Batch size 1024
Learning rate 1-1073
Buffer size 1024
Activation function tanh

x™(k), 1000 time steps are uniformly sampled from the
interval {0,1,...,t¢}. For each sampled time step k@ an

initial state z(k(*)) is sampled from a uniform distribution
within a range defined by the nominal trajectory:

£(KD) ~ U (i (KO, b (KD)) (11)

where
Tmin (k) = 2" (k)(1 — o),

2 (k) = 2" (k)(1 + o).

max

(12)

The parameter o, set at 50%, determines the spread of the
sampled initial states around the nominal trajectory.

Next, from each sampled state a:(k(i)), the respective
agent’s observation s(k()), defined in (8), is constructed
and the policy 7y is used to obtain a closed-loop trajectory
that extends until the end of the growing cycle ¢¢. The
cumulative cost of each trajectory is then defined as:

ty
Trg (s(K™)) = > £(a(k), mo(s(k)))- (13)
k=Fk

The cumulative cost of each trajectory is collected together
with its respective dry weight xl(kz(i)) and sampled time
k™ to form dataset D. This dataset is divided into training
and validation sets, with 80% of the data used for training
and 20% for validation. To construct the cost function
approximator Jg, a neural network parameterized by ¢
is trained using the values of z;(k?) and k() as inputs
and the values of J,(s(k(")) as targets. The following loss
function is minimized using the Adam optimizer (Kingma
and Ba (2017)):

Ng 2
£6:D) = 3 3 (FalorKD), b) = 1, s(6D))) "

The hyperparameters used for the cost function approxi-
mator are indicated in Table 5.
The cost function approximator is then added as a term to
the objective function of the MPC optimization problem
defined in (10). At each time step kg, the cost function for
the RL-Guided MPC is thus defined as

ko+N,,

D t(x(k), uk)) + Ty (w1 (ko + Np), ko + N).

k=ko

(14)

5.2 Terminal region constraint and initial guess

For the first time step, the terminal region constraint
and the initial guess are constructed using the initial
conditions, defined in Table 3, and the actor’s policy. The
agent’s observation s(0) is constructed using the initial
conditions. Policy 7y is then used to compute the closed-
loop trajectory from the initial time step to N, + 1:

{s(0),s(1),...,s(Np + 1)}, (15)
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and its respective control input trajectory:

{u(0), u(1),. .., u(Np)}. (16)
where u(k) = mp(s(k)). From the computed closed-loop
trajectory in the observation space defined in (15), the
respective state trajectory is obtained:

{2(0),2(1),...,2(Np + 1)} (17)
The center of the terminal region constraint for the next
optimization problem is then defined as the last state in
this trajectory, i.e. 2y = (N, + 1). The terminal region
constraint for this initial optimization problem is then
defined as

(1= e)zy, (L +e)ay], (18)

where ¢, expressed as a percentage, defines the size of the
terminal region around z ;. For the warm-start of the next
optimization problem, the last N, elements of the input
trajectory defined in (16) are used as the initial guess.
This terminal region constraint and initial guess construc-
tion is only used for the first time step. For subsequent time
steps, the terminal region constraint and initial guess are
constructed using the solution of the previous optimization
problem and the actor’s policy. The solution of the RL-
Guided MPC optimization problem at each time step kg
is denoted as

{u(ko), u(ko +1),...,ulko + Np — 1)} (19)
and the corresponding predicted states are denoted as

{z(ko+1),2(ko +2),...,z(ko + Np)}. (20)
The terminal region constraint and the initial guess for
the next optimization problem are constructed using these
solutions and the actor’s policy. Starting from the final
predicted state x(ko + N,), the agent’s observation s(ko +
N,) is constructed and policy mp is used to obtain the
center of the terminal region for the next optimization
problem:

wy = f(z(ko + Np), mo(s(ko + Np)), d(ko + Np),p). (21)
The terminal region constraint for the next optimization

problem is then defined as in (18). The initial guess for the
next optimization problem is constructed as
{U(ko + 1),’&(]{0 + 2)) sy

u(ko + Np — 1), mg (S(ko + Np))}.
Two RL-Guided MPC controllers were developed, one
for the deterministic environment and the other for the
stochastic environment. These controllers differ in the
policy used to construct the terminal region constraint
and the initial guess. Moreover, for the stochastic case,
the indoor humidity constraint x** is tightened to 78%
to account for model uncertainties, reducing the risk of
constraint violations, as for the MPC for the stochastic
case in Section 4.

(22)

6. RESULTS

The performance of the RL agent, MPC, and RL-Guided
MPC is evaluated in both the deterministic and stochastic
environments. The results for an additional variant of
RL-Guided MPC are also presented in the deterministic
environment. For each environment, the three methods
are compared based on the EPI, defined in (3), and the
cumulative reward, equal to (7a) with the oppposite sign.
For the figures in this section, we use the name ‘RL-MPC’
for the RL-Guided MPC for the sake of brevity.

6.1 Deterministic case

For the deterministic case, an additional variant of RL-
Guided MPC is evaluated. This variant, denoted as ‘RL-
MPC-VFO’, is identical to RL-MPC, except that the ter-
minal region constraint is not included in the optimization
problem. The simulation results for the deterministic en-
vironment are shown in Figure 1. In the EPI comparison,
MPC and RL-Guided MPC exhibit similar performance
across all prediction horizons, though RL-Guided MPC
slightly outperforms MPC at shorter horizons. In contrast,
the RL agent performs significantly worse than both meth-
ods. The RL-Guided MPC variant without the terminal
region constraint performs similarly to MPC.

EPI (euro/m’) Cumulative Reward (euro/m”)
4.2
1.0
3.8 —— \IPC —&— MPC
RI-MPC 275 RI-MPC

3.6 == RL-MPC-VFO =>&= RL-MPC-VFO
" He— bt { 250 === == EL -

1 2 3 4 5 6 1 2 3 4 5 6

Horizon (hours) Horizon (hours)

Fig. 1. Comparison of EPI and cumulative reward be-
tween RL, MPC, and RL-Guided MPC, at different
prediction horizons, for the deterministic case.

EPI (euro/m?)

3.7
// 26 -
3.6
24

3.5

9
Cumulative Reward (euro/m~)

2.2
34 —&— MPC —A— MPC
RL-MPC RL-MPC
331 & RL 1| AR RL
1 2 3 4 5 6 1 2 3 4 5 6

Horizon (hours) Horizon (hours)

Fig. 2. Comparison of EPI and cumulative reward be-
tween RL, MPC, and RL-Guided MPC, at different
prediction horizons, for the stochastic case.

Although comparing controllers using EPI is informative,
all controllers aim to maximize the cumulative reward.
In the cumulative reward comparison, a clear distinction
emerges between MPC and RL-Guided MPC at lower
prediction horizons, where RL-Guided MPC significantly
outperforms MPC. This advantage stems from the RL-
Guided MPC’s ability to leverage the learned policy to
account for long-term effects. However, as the prediction
horizon increases, the difference in cumulative rewards
diminishes, and beyond four hours, both methods exhibit
similar performance. Meanwhile, the RL agent contin-
ues to perform significantly worse due to its difficulty
in handling constraints effectively. In contrast, MPC and
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RL-Guided MPC are explicitly designed to manage con-
straints, allowing them to operate near constraint bound-
aries without incurring penalties. The RL-Guided MPC
variant without the terminal region constraint performs
similarly to MPC. This result highlights the importance
of the terminal region constraint in the RL-Guided MPC
framework, which enables the agent to guide the optimiza-
tion problem without relying solely on the learned cost
function approximator.

6.2 Stochastic case

For the stochastic case, 30 different realizations of param-
eter p, in (2), were generated. For each realization, the
RL agent, MPC, and RL-Guided MPC were evaluated and
the results were averaged. The outcomes are shown in Fig-
ure 2, where the shaded regions indicate the range between
the minimum and maximum values. The results for the
stochastic case show similar trends to the deterministic
case, with some small differences. Considering the EPI
comparison, RL-Guided MPC outperforms MPC at short
prediction horizons. Unlike the deterministic case, the RL
agent surpasses both MPC and RL-Guided MPC in terms
of EPI at short horizons. Consistent with the determin-
istic case, the cumulative reward analysis confirms RL-
Guided MPC’s advantage over MPC at shorter horizons,
particularly showing a notable improvement at a one-hour
horizon.

7. CONCLUSIONS

This paper introduced the RL-Guided MPC framework for
autonomous greenhouse control, combining the strengths
of RL and MPC. By training an RL agent and integrating
its learned policy into the MPC formulation through the
construciton of a terminal cost and terminal region con-
straint, the proposed approach leverages RL’s robustness
to uncertainties and MPC’s constraint-handling capabili-
ties. Simulations in deterministic and stochastic environ-
ments demonstrated that RL-Guided MPC outperforms
standalone RL and MPC with shorter prediction horizons.
These results emphasize the value of embedding learned
policies into MPC for enhanced performance, without the
need to extend prediction horizons. However, it is im-
portant to note that the RL policy trained in this study
did not perform as well as expected, with the cumulative
reward being lower than that of the other methods, for
every prediction horizon. In future work, we aim to inves-
tigate the potential impact of a better-performing policy,
which we expect to result in substantial improvements.
Additionally, using a policy derived from RL algorithms is
not the only approach. There are various ways to obtain
a suitable policy. For greenhouse control, for example,
an expert knowledge rule-based controller could serve as
an alternative policy, potentially offering valuable insights
and improved performance.
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