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Abstract: A multiple-airport system (MAS) consists of more than two airports in a metropolitan area
under a large block of terminal airspace that is managed by one or two air traffic control units. When
the capacity of an airport or of the terminal airspace drops, flight delays occur in the MAS system.
A quick estimation and predication of traffic congestion in the MAS is important yet challenging.
This paper aims to develop a queuing network model of MAS using point-wise stationary queues.
The model analyzes the changes of non-stationary queues under the principle of flow conservation
to capture flight delay propagation in the system. Regression analyses are performed to examine
the relationship between the arrival and departure efficiencies of different airports. The model is
validated with the data of Guangdong–Hong Kong–Macao Greater Bay Area airports. Simulation
results show that the model can effectively estimate flight delays in the MAS.

Keywords: queuing network model; multiple airport system; delay propagation; M/G/1 system;
airspace congestion

1. Introduction

Air transport is one of the fastest and most efficient modes of transportation among
various methods of transportation, such as road transportation, sea transportation, and
railway transportation. It is the primary choice for people in long-distance travel. As
the International Civil Aviation Organization (ICAO) states, the air transport industry is
more than a vital engine of global socioeconomic growth—it acts as a catalyst for economic
development. With the continuous development of the air transport industry, the annual
number of takeoffs and landings at airports and the number of passengers transported are
increasing gradually. The increase in air traffic demand has driven economic growth and
has simultaneously put enormous pressure on the air traffic management system. Frequent
flight delays not only cause inconvenience to passengers but also introduce environmental
problems such as increased fuel consumption and additional carbon emissions. According
to the Civil Aviation Industry Development Statistical Bulletin of China, the national
average passenger flight punctuality is 75.71%, while the average delay is 18 min per flight
during 2015–2019. One of the most frequent discussions in air transportation research is to
minimize flight delays through advanced technology and effective management [1].

Given the nature of flight operation, a flight delay that occurs at one airport propa-
gates to other airports causing other flights to be delayed. Many studies have explored the
problem of delay propagation in airport networks [2–4]. Factors that impact delay propa-
gation have been investigated, such as the connection of flights in multiple airports and
the use of common waypoints. Various methods have been applied to study flight delays
from different perspectives. For example, machine learning techniques have been widely
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applied to predict flight delays; complex networks approach has been used to uncover
the fundamental properties of the delay networks; and operations research methods have
been employed to minimize flight delays [1]. Bayesian networks have been widely used
to investigate flight delays propagation in the airport networks [5]. Delay propagation in
a network is mainly due to flight connectivity such as crew connectivity and passenger
connectivity [3]. Research efforts have also been devoted to the development of arrival
delay and congestion prediction models based on the Bayesian network [6].

Machine learning algorithms generally require a large amount of data and high
computation accuracy. The reliability of prediction results is closely related to the categories
and importance settings of influencing factors. Due to various uncertain factors affecting
the operation of an air traffic system, timely estimating flight delay status under different
operating scenarios is important. For example, given flight schedules and weather forecasts
for the next 72 h, quickly predicting flight delays is important for the rational and effective
implementation of traffic management strategies. Although fast simulations can simulate
how the system will operate in the future, the results are highly dependent on the input
parameters, the accuracy and precision of the simulation model, and the capability of
the simulation system. The computational costs can be very high when a high-fidelity
simulation is required.

Another widely used approach to estimating the state of a system is the development
of a model based on queuing theory. Queuing theory has been applied to model many
congestion problems. Early research mainly focused on the dynamic service process at
single airports. Kivestu investigated the M/G/K queuing theoretical model for systems
served by multiple servers simultaneously, where customers’ arrival rates obey Poisson
distribution, while service rates obey generally independent distribution [7]. One study
demonstrated the derivation and application of the time constant of the M/G/l system,
and proposed the concept of the delay algorithm. It has been proved that the algorithm
can effectively simulate the dynamic process of the M(t)/Ek(t)/1 system. To simulate the
approximate queuing process of flights in the airport, a delay model based on stochastic
dynamic queuing theory and a Monte Carlo model was developed and validated with real
data from two airports in New York: John F. Kennedy Airport (ICAO code: KJFK) and
Newark Airport (ICAO code: KEWR) [8]. The point-wise stationary fluid flow approxi-
mation model was developed to determine the average queue length of a general arrival
service distribution [9]. The model combines steady-state queuing and fluid flow modes
to establish a linear differential equation for a single queue. Parameters of the service
system under different service laws were analyzed. A method to calculate the queue
length of different systems was proposed. Experimental results show that the model has
good applicability to general queuing systems. An integrated surface–airspace departure
model was developed to predict the time for an aircraft to taxi from the gate to the final
departure point [10]. The model was further simplified into a relatively simple ordinary
differential equation (ODE) based on the point-wise stationary fluid flow approximation.
The movement process of the flight on the airport surface is modeled as a queuing network.
Overall, the queuing theory has been demonstrated to be a very useful and suitable tool to
simulate airport operations.

It is well known that flight delays propagate through airline networks and airport
networks due to sharing of resources such as aircraft, crews, or airports. The approximate
network delay model was originally proposed by Malone [11], and was further explored
by Pyrgiotis et al., who developed an airport network delay (AND) model [2]. The key idea
of the AND model is to capture the effects of primary delay on the overall network. The
model consists of two modules: queuing engine (QE), which calculates the delay generated
at each airport; the delay propagation algorithm (DPA), which updates the flight schedule
and demand of all airports in the network. Although the AND model can effectively
simulate flight delay trends, it does not consider en route congestion. In a recent study, a
multilayer air traffic network delay model (multilayer air traffic network delay—MATND)
was presented that captures the effect of the congestion in the air traffic network on flight
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delays [12]. The MATND model consists of two parts: the air traffic network model and
the stochastic dynamic queuing network model. The former is used to construct the air
traffic network from the automatic dependent surveillance broadcast (ADS-B) data, and
then the stochastic dynamic queuing model is used to calculate the delays caused by flights
at each node and continue to track the impact on the subsequent servers. The stochastic
model is based on the M/E/1 system, taking the airport and air congestion points as a
single server, and uses non-stationary arrival and k-Erlang distribution to simulate flight
operations. The model can estimate queuing situation at each node at different times. The
MATND model is validated and shows good performance in quantifying delays in China’s
air traffic network.

In addition to the studies of flight delays in an individual airport or in airport networks,
there has been extensive work on multi-airport system (MAS) operations. Among the
many MASs worldwide, the New York MAS, the San Francisco Bay Area MAS, and
the Los Angeles MAS have been widely investigated [13]. The research has focused on
airspace operation [14], traffic flow pattern recognition [15–19], departure metering [20],
and capacity improvement [21–23]. However, little research has been performed on the
estimation of flight delays in a MAS. Given their geographical locations, the operations of
each airport in a MAS are interdependent. Modeling and estimating flight delays in a MAS
is challenging. In this paper, we present a flight delay estimation model for a MAS that
considers the characteristics of airport and airspace operation based on queuing theory.
The overall modeling framework is shown in Figure 1. The virtual airport in the figure
represents all other airports except the ones in the MAS. Our model uses stable fluid flow
to estimate the average length of queues with general service distribution characteristics
and Poisson arrival distribution. It can track the propagation of individual server delays in
the MAS. We validate our model with real data from the MAS in Guangdong–Macao–Hong
Kong Great Bay Area (GBA). The main contribution of this paper is the development of
a queuing model for a MAS considering terminal airspace constraints. We explore the
correlation between the service efficiency of inbound and outbound flights from different
airports in the MAS. The model can serve as a decision support tool for the traffic managers
to alleviate airspace congestion and improve the operational quality of the MAS.

Figure 1. Schematic diagram of a queuing-based model of a multiple airport system. The model
of the MAS system is divided into four parts: the arrival waypoints, the departure waypoints, the
airports in the MAS, and other airports.

2. The Queuing Network Model for the MAS

Here, we discuss the development of our queuing network model for the MAS in
GBA. The data used to construct the model are from two sources: empirical flight data and
airspace operation data. The model can explore the impact of flight congestion generated
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by individual servers (e.g., an airspace route point in the MAS) on the MAS. The local
queue lengths of each server including the waiting time are computed by taking upstream
servers into account. The MAS network model proposed in this paper is based on the single-
queue equation of point-wise stationary approximate fluid flow. The airports and airspace
congestion points are assumed to be single-server queuing systems. By combining with
approximate queuing and fluid flow methods in stationary state, the model can capture
the dynamic process of flights entering and leaving the queue through sliding the time
window. Figure 2 shows the flow chart of the model. The dashed line box in the figure is
the input of the model, where the parameters are obtained from the input flight data. The
changes of the queue at each server are computed in every five-minute intervals starting
from t0.

Input flight schedule: flight 
number, taking off and landing 
airport/time,  airline, route, etc.

Airport server: compute the 
number of flights, service rate 
time 𝑢"#, at time t!

Waypoint Server: compute service 
rate 𝑢"

$ from historical data

Airport Server: count the arrival 
rate of airport, and calculate 
flight delays

Compute the arrival rate of 
flights at the waypoint, and 
calculate flight delay

𝑡" = 𝑇%&'

End

Continuously serve 
flights in queue, and 
track queue length

𝑞" > 𝑞()*

Update flight 
departure time

Adjust flight demand 
at the airport

Unimpeded 
movement time 𝑡$#

𝑡 = 𝑡 + ∆𝑡

No
No

Yes

Yes

Figure 2. The overall flow chart of the model.

2.1. Single-Queue Model

For a single-server queuing equation with non-stationary dynamics, let us assume that
the average queuing length at time t is x(t). Then, the flow change at t is x(t) = dx(t)/dt.
According to the principle of flow conservation, the change of the queue is equal to the
difference between the inflow and outflow of the queue at time t. Denote the outflow and
inflow in the queue at time t by fi(t) and fo(t), respectively, then we have:

ẋ(t) = − fo(t) + fi(t) (1)

The outflow can be expressed as fo(t) = µ(t)ρ(t), where µ(t) denotes the service of
queue at time t, ρ(t) is the utilization rate of the service rate. In the case of no limit on
queue length, the inflow can be expressed as fi(t) = λ(t), where λ(t) is the arrival rate at
time t. Equation (1) can be rewritten as:

ẋ(t) = −µ(t)ρ(t) + λ(t) (2)

The expression of ρ(t) in Equation (2) depends on the service rate distribution of
the queuing systems. Determining the exact expression for ρ(t) is difficult even for the
simplest queues. Therefore, we employ a point-wise stationary method to determine the
utilization rate. Here, the average queue length is given as x = G1(ρ). Then, the average
utilization rate can be obtained as G−1

1 (x(t)). The queuing system used in our model is
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M/G/1, where the arrival process is subject to Poisson distribution, and the service time is
subject to arbitrary distribution. According to the Pollaczek–Khintchine (P–K) formula, the
average queuing flight of the steady-state system is:

x = ρ +
ρ2(1 + C2

v
)

2(1− ρ)
(3)

where C2
v is the square of the coefficient of variation of service time. The corresponding

expression of ρ with respect to x is:

ρ =
x + 1−

√
x2 − 2C2

vx + 1
1− C2

v
(4)

By substituting Equation (4) into Equation (1), we obtain the approximate equation of
the point-wise stationary fluid flow for the single-column M/G/1 queuing system:

ẋ(t) = −µ(t)
x(t) + 1−

√
x(t)2 − 2C2

vx(t) + 1
1− C2

v
+ λ(t) (5)

2.2. The Queuing Network Model of a MAS

We extend the above single-queue model to a multi-queue network model based on
the principle of flow conservation. We connect the servers (i.e., airports, or waypoints)
according to the flight path. The input and output of each service system are obtained
from empirical flight data. The output of the upstream server is used as the input of the
downstream server. The average queue length of each server in the network model is then
given as follows:

ẋ(t) = −µi(t)
xi(t) + 1−

√
xi(t)2 − 2C2

vixi(t) + 1

1− C2
vi

+ λi(t) + ∑
j

f ji
(
t− τji

)
(6)

where f ji
(
t− τji

)
represents the number of flights entering queue i after leaving queue j

at time t− τji. τji is the unimpeded movement time between servers i and j. λi(t) is the
inflow that has not been served by other servers before entering queue i (in this paper, it
is the traffic flow outside the MAS or the number of flights departing from the airport).
Therefore, the inflow of servers in the queuing network can be grouped into two categories:
(i) the outflow that has been served by the upstream server; and (ii) the external input that
has not passed through other queues and does not contain the queuing waiting time of
non-local servers. The network model established by Equation (6) includes the waiting time
of the flight in the upstream server and the time consumed by the service process when
computing the waiting time of each flight. It can compute the time of each flight when it
enters the queue of a server and the time when leaving the queue. Thus, we can calculate
the delay time of each flight. The local delay that occurred at each server is guaranteed to
be propagated to the downstream server along the flight’s path.

To illustrate how the model works, we plot a simplified queuing network model in
Figure 3. The model has five independent servers, with three airports, and two waypoints.
Assume that a flight departs from its origin airport to route points servers A and B at time
t. We can see that number of the flights i and j flow to service system A and B through
original airport. The unimpeded flight times from departure airport to service systems A
and B are τi and τj, respectively. In addition, the traffic λ from other airports (flow from
other airports or route points other than the five servers in the figure) arrives at service
system A at time t and enters the queue to wait for service. The calculation of the dynamic
queue length changes for servers A and B are as follows:
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ẋA(t) = −µA(t)
xA(t) + 1−

√
xA(t)2 − 2C2

vAxA(t) + 1

1− C2
vA

+ λ(t) + foA(t− τi) (7)

ẋB(t) = −µB(t)
xB(t) + 1−

√
xB(t)2 − 2C2

vBxB(t) + 1

1− C2
vB

+ foB
(
t− τj

)
(8)

The service rate for the servers A and B are µA and µB. CvA and CvB are the coefficient
of variation of the service rate, respectively. The difference between the calculation of the
two queue lengths is linked to the flow entering the queue as external input λ into server
A. In the following section, we discuss how to obtain the service rate, and traffic arrival
rate from empirical flight data.

Figure 3. An example showing traffic flow between servers.

2.3. Data Processing and Analysis
2.3.1. Airport Service Rate

The main input of the model is demand rate, service rate, and the route of flights.
Parameters such as demand rate and flight route can be obtained directly through flight
schedules and historical flight information. Service rates of airports and main route points
need to be processed through historical data. First, the entire day from 0:00 to 24:00 will be
divided into 280 equally time windows, ti. Let i be the ith five minutes window of the day.
The service rates µ and arrival rates λ are assumed to be constant within each time window.

To compute the service rate of an airport, we should consider two factors: the number
of incoming flights and the impact of weather. Flight data operated during extreme weather
was cleaned out. We select the date when the number of departing flights reaches at least
70% of the maximum departures. Then, we compute the number of arrival and departure
flights in every five minutes, such that the trade-off between departures and arrivals
is captured.

Figure 4 presents an example of the computation of average service rate for a certain
time window. Figure 4a shows the service rate of different percentiles when there is only
one flight departing from the airport. The red line is the 85th percentile of the data. We
found that the corresponding service rate when selecting the 85th percentile is close to
the actual service efficiency at the airport. Thus, it is taken as the final service efficiency
under this condition in the model. Figure 4b shows the service rate and its linear fitting
results under different numbers of incoming flights. The time period selected is an off-peak
period, when the operating efficiency of the airport has not yet reached saturation. It is not
difficult to find from the figure that as the number of arrival flights increases, the service
efficiency of the airport for departing flights gradually decreases. This indicates that the
arrival flights have higher priorities than the departing flights.
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(a) (b)

Figure 4. Service rate computation. (a) Average service rate (five minutes); (b) Service rate estimation.

2.3.2. The Correlation between Airport Service Rates in the MAS

The airport capacity envelope, as a representation of airport capacity, is widely used to
study the relationship between airport departure rates and airport arrival rates. It has been
extended to analyze the relationship between arrivals and departures between different
airports in a MAS. To capture the relations between departures and arrivals, quantile
regression is used to estimate the linear relationship between the two variables. Let τ be the
probability of a data point in the dataset that is less than or equal to a certain value y, i.e., τ
quantile of y, for which the general expression is τ = P(Y ≤ y(τ)). When using quantile
regression to analyze the correlation of traffic flows at airports i and j, it is necessary to
set the number of quantile points to minimize the residuals. The number of arrival flights
at airport i and the number of departing flights at airport j are calculated. The following
segmented linear functions is established.

Rτ

(
yj | xi

)
= αkxi + γk, xi ∈

[
0, 1, 2 . . . xi

max

]
(9)

where xi and yi are the numbers of arrival (departure) flights at airport i and j. The range
of xi is from 0 to the maximum value of the number of arrivals (departures) per unit of time
in the airport i; αk and γk represent the slope and intercept of the kth function, respectively.
A linear programming model is established to minimize the residuals. Please refer to [24]
for more details.

In the MAS we studied, Guangzhou Baiyun Airport and Shenzhen Baoan Airport are
the two hub airports that are about 120 km apart. Figure 5 plots the envelope diagrams of
arrival–departure envelops for the two airports. The larger the point, the more occurrences
of the same number of arrivals and departures. It can be seen that when the arrival
capacity of Shenzhen Airport is saturated, the departure efficiency of Guangzhou Airport
is about 12 flights per 15 min. The maximum departure efficiency of Guangzhou Airport
is flights per 15 min. However, due to the influence of Shenzhen Airport, the number of
departures at Guangzhou Airport is reduced to 12 flights per 15 min. It is about 66.7% of the
efficiency of its full departure. It can be seen that there is a clear downward trend but the
efficiency decreases slowly. With the increase in arrivals at Shenzhen Airport, the number
of departures at Guangzhou Airport has decreased significantly but relatively slowly. All
the envelope shapes in the figures are rectangles except for Figure 5a. The rectangle in the
regression model indicates that there is no close relationship between the regressor and
the explained variable. The possible reason is that although the distance between the two
airports is close, the destinations of the flights do not overlap with each other, or the shared
used airspace is not saturated. Generally speaking, when flights from different airports
need to pass through a shared waypoint, they may have a restrictive effect on the flights
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departing from other airports. They will have a higher impact on each other due to airspace
capacity constraints at peak hours especially.

(a) (b)

(c) (d)

Figure 5. Airport capacity coverage curves. (a) Shenzhen (arr)–Guangzhou (dep); (b) Shenzhen
(dep)–Guangzhou (dep); (c) Shenzhen (arr)–Guangzhou (arr); (d) Shenzhen (dep)–Guangzhou (arr).

2.3.3. Unimpeded Movement Time between Servers

When calculating the queue of flights entering and leaving different servers, it is
necessary to calculate the unimpeded movement time between two nodes. In this study,
the time refers to the flying time between the airport and the waypoint. The time for flights
flying between an airport and a waypoint may vary in a certain range. Large deviations
from the nominal flying times are generally caused by the maneuver clearance given by air
traffic controllers to avoid weather or conflict. To account for such variations, the flying
time can be modeled as two parts: the free movement time and queuing time. However,
tested results show that the variation of flying time has little impact on the model computed
flight delay. Thus, the flying times between the airport and waypoint is set to be a constant
value in the model.

3. Results

We apply the queuing network model to study the MAS in Guangdong–Hong Kong–
Macao Greater Bay Area. There are five airports in the MAS which are Guangzhou Baiyun
International Airport (ICAO code: ZGGG), Shenzhen Bao’an International Airport (ICAO
code: ZGSZ), Zhuhai Jinwan Airport (ICAO code: ZGSD), Huizhou Pingtan Airport
(ICAO code: ZGHZ), and Macau Airport (ICAO code: VMMC). Hong Kong airport is not
considered because its traffic flow has been separated from these five airports. The two
main airspace route points YIN and LMN are identified by the air traffic control authorities
that have a huge impact on the whole MAS operation. We obtained the 2019 flight data
to calculate the parameters of the model. Figure 6 shows the geographical positions of
the airports and route points. The gray line is the boundary of the terminal airspace of
the MAS.



Aerospace 2022, 9, 390 9 of 14

Figure 6. Location of airports in Guangdong–Hong Kong–Macao Greater Bay area.

3.1. Time Average Queue Length

Figure 7 depicts the departures demand and service rate every 15 min throughout the
day at Guangzhou Airport and YIN route point. We can see that the demand and service
rates for flights suddenly increase from 06:00 and gradually decrease after 20:00 for both
the airport and the route points.

Figure 8 presents the estimation results by the model for each airport and waypoint.
The orange line is the actual number of flights departing every 5 min in the queue, and
the blue line is the model estimation result. It can be seen that the two lines fluctuate to a
similar degree. There is a good match between the queue lengths derived from the model
and the actual results. The model captures the actual departure situation and can reflect
the possible delay peak period.

The difference between the model estimated results and the actual ones may be due to
the fact that the sequence of flights entering the queues in the model is determined by the
flight schedule on a first-come-first-served (FCFS) basis. Taxiing on the airport surface is
not considered in the model. In practice, the air traffic controller can adjust the sequence of
departure/arrival according to the situation at the airport. This may lead to the deviations
of modeled queue length from the actual queue length. In addition, the model operation
effect of the route point server is slightly less accurate. This is because of the uncertainties of
flying times for flights from the airport to the route points. We chose the medium of flying
times from historical data as free movement time between queuing systems. In practice,
the scheduled flight time between airports is usually composed of the minimum flight time
plus a certain amount of redundant time. The uncertainty of flight time can lead to a bias in
the delay estimation of the route point queuing system. In addition, flights passing through
a designated route point are usually affected by the service efficiency of the upstream server.
The queue length, therefore, includes the waiting time at the upstream server, which is one
of the reasons for the inconsistency between the estimated and actual results.



Aerospace 2022, 9, 390 10 of 14

(a)

(b)

Figure 7. Demand and service profile at airport and waypoint. (a) Demand and service profile at
ZGGG; (b) Demand and service profile at YIN.

The model proposed in this paper does not consider flight cancellations. The daily
takeoffs and landings at Huizhou Airport are relatively small. There is a capacity constraint
at this airport. Major flight delays were caused by upstream airports or route points. Thus,
the operation of this airport is considered to has little impact on the whole MAS operation.

Two parameters are directly related to the reliability of the estimation results: the
service efficiency and flight arrival distribution of the server. It can be seen from Figure 8
that at the beginning and end of the day the estimated results of the model are not much
different from the actual data. The model can capture the changes in the number of
flight departures accurately; this is because flight arrivals and service efficiency during
off-peak periods are less affected by external factors. The amount of tactical adjustments
during real operation is small. When congestion occurs in the airport or airspace during
peak hours, tactical traffic controls depend on the traffic situation. There is a certain gap
between the model parameters obtained through historical data and the actual operation.
In addition, we found that the model curve is relatively stable with few upward and
downward fluctuations. This is because there are no abrupt changes in service rates of the
adjacent time windows in the model. Even if it is affected by the queue length, the service
rate changes slowly. In general, the model can still capture the overall operation of the
MAS and can estimate flight delays in the MAS.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Hourly departure traffic at the four airports and two waypoints (LMN and YIN). (a) ZGSZ;
(b) ZGGG; (c) VMMC; (d) ZGSD; (e) LMN; (f) YIN.

3.2. Average Delay Time

Figure 9 shows the average hourly delays at Guangzhou and Shenzhen airports in
November and December 2019. The blue curve in the figure is the real average hourly
delay, while the shadow covers the 95% confidence interval of the delay. The orange line is
the estimated delays on 21 December in 2019 by the model. It can be seen from the figure
that there is a slight discrepancy between the model estimated results and the actual delay.
The fluctuation trends of the two lines are the same.

Figure 10 compares the actual average delay and the average delay estimated by the
model for each airport and route point. Overall, the model can effectively estimate the
average flight delay. The average delay time estimated by the model is slightly different
from the actual one, partly due to the interference of other factors during real operation,
such as tactical adjustments. Compared with other airports, the gap between actual and
estimated delays of Macau Airport are bigger. This is because the number of flights in
this airport is relatively small, and there are not many flights delayed due to the sufficient
airport capacity; flight delays are mainly caused upstream delays.
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(a) (b)

Figure 9. Hourly delay computed from 2-month historical data and simulated data. (a) Average
hourly delay at ZGGG; (b) Average hourly delay at ZGSZ.

Figure 10. Average flight delay at the airports and waypoints.

We observed that there is notable difference between the actual delay and estimated
delay at ZGSD as well. One possible reason is that the service rate for the model is lower
than the actual service rate. The maximum number of hourly scheduled flights at ZGSD is
20, which is much smaller than the capacity of a single-runway airport. Given the limited
information, we cannot adjust service rate in the model manually. Second, we found in the
operational data that a certain number of flights were taking off earlier (5–10 min) than the
scheduled time, while the flight delay is generally caused by the upstream delay. Therefore,
the averaged actual flight delay is very low. The estimated results could be improved if
more detailed information were provided.

The modeling results for the airports are better than the route points, which is con-
sistent with the queue length estimated results. The main reason is influenced by the
uncertainty of the flying time between airports and route points.

4. Conclusions

This paper proposes a queuing network model for a multi-airport system (MAS)
which aims to estimate the queue length and flight delays at airports and route points. The
model was validated through flight data in 2019 of the Guangdong–Hong Kong–Macao
Greater Bay Area MAS. The results show that the point-wise stationary network model
can effectively capture the phenomenon of flight congestion and delay propagation. The
model can be used as a tool for flight schedulers and traffic managers to quickly estimate
flight delays. Compared with the high-fidelity simulation tools, the main advantage of
the model is that it is very easy to use and can quickly calculate flight delay and traffic
values between airports and waypoints. The model can support traffic managers in various
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ways. First, it can quickly compute flight delays and traffic throughput at the airport
and waypoint once the traffic demand and service rate are input. The estimated traffic
situation helps traffic managers to maintain situation awareness, such that appropriate
traffic management initiatives and resource allocation plans can be prepared in advance.
For example, preparations can be made if a thunderstorm is predicted at the airport next
day. Airlines, airports, and air traffic control authorities work together to determine the
plan to reduce flights to balance traffic demand and capacity. When a schedule is decided,
all stakeholders can be aware of the estimated traffic situation. Second, the model can
help traffic managers to test “what-i f ” scenarios. Since the operations of airports in the
multiple airport system are correlated, the change of airport capacity at one airport or at a
waypoint may have unanticipated impact on the performance of the whole system. The
slot allocation department can use the model to test various slot allocation schemes when
the capacity is changed.

There are some limitations to this study, as all nodes (airports and route points) are
assumed to be served sequentially by a single server system on a first-come-first-served
basis. When there are multiple servers (such as multiple runways), the presented model
cannot simulate the operation of flights on the airport surface. It will result in differences in
the arrival queue order and departure time of flights, thus causing the difference between
the estimated and actual results. Therefore, future work could investigate queuing models
that include airport surface operations and introduce real-time calculations to more accu-
rately predict delay peak adjustment decisions. In addition, the direction of airport runway
operations and other user activities in the airspace are also important factors affecting flight
operations. All of these factors can be implemented in further refining the model.
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