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Abstract 
Slow modes have an increasing share in urban mobility. The lack of accurate revealed data 
has so far hampered scientific research aimed at unravelling slow mode mobility.  

Multiple types of data can be collected to gain better insight into slow mode transport and 
traffic operations, such as counts on specific locations (cross-sections), distributions of flows 
over the network and dynamics thereof. Typical data collection techniques for vehicular 
traffic, such as induction loops, cannot be applied, among other things due to the fact that 
slow modes are not restricted to lanes. Therefore, other, non-intrusive, ways to collect these 
data need to be investigated. 

In our paper we look at the applicability of Bluetooth (BT) and WiFi sensors to collect data on 
pedestrian and cycle flows, using two case studies. The first case study covers the data 
filtering process, to come from the raw sensor data to the information necessary for 
behavioural research. It describes the application of 9 sensors in the inner city of 
Amsterdam. The second case study deals with a BT/WiFi sensor network, installed in the 
station of Utrecht, the Netherlands. Using these data, we have successfully estimated choice 
models for the route choice and activity choice behaviour of departing train travellers, 
showing the potential use of BT/WiFi as a (revealed) data source for modelling travel 
behaviour in a station.  
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Slow modes in urban mobility 
Walking and cycling - “slow modes” - are important in urban mobility (Ravalet, 2013, Harms 
et al, 2014). In The Netherlands, bikes are used for over one out of four trips (27%), while 
approximately one out of six trips consists of walking (16%). In the cities of Amsterdam and 
Utrecht, the modal share of bikes is 35-40% (Ministerie van Infrastructuur en Milieu, 2013). In 
the last decades, growth for bike traffic has concentrated in the urban areas, while rural 
areas have shown a decrease (CROW-Fietsberaad, 2014). For example, in the city of 
Amsterdam the share of cyclists increased from 33% to 53%, while at the same time the 
shares of cars (from 39% to 24%) and public transport (from 27% to 21%) decreased 
(numbers extracted from the yearly national survey on mobility). Similar trends are seen in 
other traditional biking countries such as Denmark and Germany, with shares ranging 
between 10 and 20%, but also in countries where cycling is less popular (Harms et al, 2014).  
 
Although it is excellent for urban quality, sustainability and accessibility of city centres, 
growth of slow modes cause various challenges when they are too successful: 
(over)crowded city streets, traffic jams, and bicycle parking problems. For example, bicycle 
traffic jams in Utrecht city centre are reported frequently on social media, for example on 24 
April 2014 (Massa, 2014). The main shopping street of Amsterdam city centre (Kalverstraat) 
has been closed several times due to overcrowding. Pedestrian traffic in this street has 
grown spectacularly by 50%, from 50,000 on an average Saturday in 2012 to almost 75,000 
in 2014 (Parool, 2014). Similar challenges occur at large train stations in The Netherlands. 
Examples are the closure of platforms at Amsterdam Central station on 5 December 2013 
due to service disruptions caused by a storm (RTL Nieuws, 2013). More recently, platforms 
of the train station of Amsterdam Airport Schiphol were overcrowded due to a major power 
grid failure. See Figure 1 for some impressions. 
 

  
 

  
Figure 1: Clockwise, starting from upper left picture: Bicycle traffic jams in Utrecht city centre (24-04-
2014), crowding at Kalverstraat in Amsterdam City centre (28-12-2013), closed platforms at Amsterdam 
Central station (5-12-2013), and crowding at Amsterdam Airport Schiphol train station (7-4-2015). 
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Similar challenges are reported in other countries. A famous example is the historical inner 
city of Venice, Italy. The city centre consists of a network of waterways and footways, often 
limited in width. On busy days, tens of thousands of tourists visit the city and create – 
together with regular city traffic – a large pressure on the urban infrastructure (Mamoli et al, 
2012). Another example is the annual Festivities in the Belgium city of Ghent, which attract 
approximately 1.5 million visitors to the historical city centre during the 10-day event 
(Versichele et al, 2012).  
 
The main question is when do these challenges evolve into problems (so far, no major 
incidents have been reported) and how large will these problems really be, and what can be 
done to solve them. To this end, a better understanding of the underlying activity and travel 
behaviour, as well as the resulting traffic dynamics is required. However, the lack of 
accurate, revealed data has so far hampered scientific research aimed at unravelling slow 
mode mobility. Due to recent technological developments, new methods of data collection in 
traffic have become available. Some of these new technologies have found their way to slow 
mode traffic research. Examples of these new techniques are Bluetooth and WiFi sensors, 
sensors detecting the number of devices with an active Bluetooth and / or WiFi connection in 
their field of view. In this paper, we will give an overview of existing data collection 
techniques and show the possibilities of applying Bluetooth and WiFi sensors for slow 
modes.  
 
This paper starts with an overview of traditional (mostly manual) data collection methods for 
slow modes, followed by an overview of automated data collection methods. After that, we 
give a technical description of Bluetooth and WiFi sensors, resulting in a comparison of 
traditional data collection techniques and these Bluetooth and WiFi sensors. To show the 
practical applicability of Bluetooth and WiFi sensors we introduce two applications: the first 
case showing the filtering process deriving data on trips in the city centre of Amsterdam, 
while the second case covers Utrecht Central Station focusing on the estimation of choice 
models, while the second case. We end with conclusions and recommendations for further 
research. 
 
Traditional data collection methods for vehicular traffic 
Real-world (non-laboratory) traffic data collection methods can be deployed for local and 
global traffic flow measurements. With “local”, we refer to the traffic dynamics at a specific 
location in the network, for example a junction, square or an entrance. In contrast, “global” 
refers to the traffic flows in the network, for example a ring road, a city centre or a pedestrian 
facility. The traffic measurements themselves can be classified into microscopic and 
macroscopic perspectives. The microscopic perspective consists of data of movements of 
individual persons, i.e. trajectories, routes or travel times. The macroscopic perspective 
consists of data of movements of traffic flows, in which individuals cannot be distinguished. 
Examples are flows and densities. An overview of the data for each category is shown in the 
table below. This table holds both for vehicular traffic and for slow modes. 
 
Table 1: Overview of data for the distinguished categories. 

 Measurement objective 
Local Global 

Measurement 
perspective 

Microscopic Trajectories Routes 
Travel times 

Macroscopic 
Counts 

Speed distribution 
Flow patterns over time 

Densities (distribution) 
over network 

OD matrix 
Travel times 
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An overview of the traditional vehicular data collection methods is given in Table 2. 
 
Table 2: Classification of traditional vehicular data collection methods. 

 Measurement objective 
Local Global 

Measurement 
perspective 

Microscopic 

Video cameras 
Probe vehicles 

License plate recognition 
Video cameras 

GPS 
RFID 

Surveys 

Macroscopic 

Inductive loops 
Pneumatic tube 

Radar 
Laser 

Video cameras 
Probe vehicles 

Infrared  

 

 
In the following, we give an overview for the data collection methods used for slow modes. 
Here, we distinguish between manual and automated data collection, as the first ones are 
the more traditional techniques, while the second ones are more recent innovations and not 
yet widely used in slow mode research.  
 
Manual data collection methods for slow modes 
Compared to car traffic, it is relatively complex to observe slow modes with the traditional 
traffic data collection methods. Most typical data collection techniques for vehicular traffic 
(see Table 2) cannot be applied, since slow modes are not restricted to lanes and they do 
not have a visible unique identifier (license plate). We first focus on the manual data 
collection techniques that have been applied for slow modes. Global macroscopic 
measurements, for example aerial observations, require a view at slow mode traffic flows 
from high altitude and without interference of the line of sight. A classic pedestrian study 
which is (partially) based on aerial observations is the work of Pushkarev and Zupan (1975). 
Global macroscopic measurements are a challenge in urban areas and cannot be applied in 
indoor environments, for example in train stations. Local macroscopic measurements require 
many observations, often at several sites depending on the attribute(s) the researcher is 
interested in. An example is the estimation of the maximum flow or critical density in a 
bottleneck, for example stairways or escalators. A classic pedestrian study in this field is the 
work of Fruin (1987). When aiming at a significant set of observations, with a sufficient range 
of flow conditions, local macroscopic measurements are labour-intensive time-consuming 
activities, and therefore expensive to implement. Moreover, human observers tend to 
underestimate the real number of pedestrians in more complex situations (Timmermans, 
2009). 
 
Manual measurement methods also cause challenges when deployed for microscopic 
measurements. Local microscopic measurements have to deal with the many lateral 
movements which are common in the movement of pedestrians and cyclists. These lateral 
movements are caused by the nature of walking and cycling, which is less stable than car 
driving. Moreover, compared to car traffic, pedestrians and cyclists have more degrees of 
freedom to (instantly) change directions, also due to the fact that slow modes are not 
restricted to lanes. Therefore, slow mode traffic flows consist of more complex, chaotic 
patterns, which cause difficulties in keeping track of individual movements. Traditional local 
microscopic measurements consist of post-processing time-lapse photography or video 
recordings by human observers, since it is impossible for human observers to accurately 
track individuals real-time in a dense flow of pedestrians or cyclists.  
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Global microscopic movements of pedestrians and cyclists pose a different kind of challenge. 
In contrast to cars, slow traffic is not equipped with a license plate, which is the unique 
identifier which can be used to match observations at multiple sites in the network. 
Frequently used manual methods are stalking and questionnaires (Bovy and Stern,1990). In 
stalking, the observer follows the traveller in an unnoticed way, while recording temporal and 
geographical characteristics of the movement. In questionnaires, the respondent is asked 
questions about a specific trip or is asked to record several trips and trip attributes in a travel 
diary. Both methods have their own specific disadvantages. Stalking is extremely labour-
intensive, since the observation time of one movement is equal to the movement time the 
traveller. Questionnaires are more efficient, but rely on the degree in which the respondent is 
able to recall sufficient information about his/her movement. Several studies have indicated 
that this is difficult for respondents, and results in a low reliability of collected data. Both 
methods are mostly suitable to collect data on routes and global paths of pedestrians and 
cyclists. Detailed operational behaviour (e.g. trajectories) is not covered. 
 
In Table 3 manual data collection methods are classified, and the previously mentioned 
examples are given. In a slow traffic environment these methods have in common that their 
low productivity causes the measurement costs to be relatively high when comparing to 
vehicular traffic. The low productivity is caused by the need of a large number of human 
observer hours in the data collection and analysis process. Moreover, many data collection 
methods have specific disadvantages which cause low data reliability and/or observation 
biases. In in-door situations, some measurement methods are not applicable at all. 
Therefore, other ways of real-world data collection need to be investigated, being preferably 
non-intrusive in order not to interfere with the normal walking or cycling behaviour. 
 
Table 3: Classification of manual data collection methods. 

 Measurement objective 
Local Global 

Measurement 
perspective 

Microscopic Manual, post-processing 
of time-lapse or video 

Stalking 
Questionnaires 

Macroscopic 
Manual counts 

Qualitative description of 
traffic phenomena 

Aerial observations 

 
Automated data collection methods for slow modes 
As with vehicular traffic, emerging technologies increasingly enable automated data 
collection for slow modes. For local microscopic and macroscopic pedestrian measurements, 
several technologies are used. Image based sensors (time-lapse and video) are most 
frequently used, but infrared or laser sensors have also been applied for these objectives 
(Timmermans, 2009; Voskamp, 2012). These technologies have in common that occlusion of 
pedestrians results in measurement errors. Occlusion occurs at high traffic densities and/or 
suboptimal positioning of the sensors, and makes it difficult for the sensor to detect and 
distinguish individual pedestrians. In addition, this will lead to underestimation of large flows 
and high densities. Moreover, sensor movements cause problems in image processing 
(Duives, 2012). Specifically with respect to video and time-lapse technologies, privacy issues 
can pose limitations on their usability. Privacy regulations in many countries require strict 
limitation of access to data which potentially can be used to directly or indirectly infer the 
identity of a person who is linked to a registration of movement in the dataset (Van den 
Heuvel et al, 2013). In this context, video or time-lapse photography based sensors need to 
be capable of on-board (“embedded”) processing of images. In this situation the sensor itself 
generates the data files which describe the traffic conditions. To our knowledge, there are no 
embedded sensors which can be deployed in dense traffic situations. The alternative is that 
the sensors transmit their recordings to an off-site server, which converts the visual 
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recordings to traffic data files. Such a server would require a secure environment with 
restricted access, and high bandwidth connectivity with the on-site sensors. This poses many 
organisational challenges and high costs. Moreover, state-of-the art technologies are not 
capable of processing high-density pedestrian flows fully automatically, as shown by Duives 
(2012) at aerial measurements of the annual music event Lowlands in the Dutch town 
Biddinghuizen.  
 
With respect to global measurements, technological progress has resulted in several types of 
automated data collection methods. In the earlier mentioned study in Venice the researchers 
have used a combination of traditional on-site counts, traditional post-recording manual 
processing of time-lapse images, and an automated data collection method by GPS (Mamoli 
et al, 2012). In this study the route choice and the occurrence of bottlenecks were registered 
by following a subset of the inner city’s visitors using GPS-recorders. The objective was to 
test this technology against the traditional methods. A clear disadvantage of traffic 
measurements by GPS is intrusiveness, since travellers have to be equipped with sensors 
before entering the network. This limits the scalability of the measurements which results in 
small samples, and might introduce observer biases.  
 
A second source of automated measurement data is the mining of mobile phone data of 
telecom operators – also referred to as “mobile data analytics” – which recently has found its 
way to transport studies (Keij, 2014). A large study in the context of urban travel in Boston, 
USA and Rio de Janeiro, Brazil has been presented recently (Ҫolak et al, 2015). In this 
study, time and location registration of call records are converted to trip data. The paper does 
not report any registration of the mode of transport. In a recent paper, Alvarez and Leeson 
(2015) state that mobile phone data has proven to be valuable in vehicular traffic, but argue 
that it is very difficult to deploy for recording pedestrian movement due to spatial resolution 
limitations. The authors conclude that the development of a new, more detailed and accurate 
technology (i.e. 5G) is required. If these limitations are overcome, the mobile phone data of 
telecom operators will provide a vast amount of urban traffic data, potentially at extremely 
low costs per unit of measurement. 
 
Finally, Bluetooth and WiFi technologies allow tracking of individual travellers through a 
network by the registration of radio devices such as mobile phones, tablets and laptops. An 
early study in this field has been presented by O’Neill et al (2006). As an alternative for 
deploying GPS receivers, the researchers have installed several Bluetooth sensors in Bath 
(United Kingdom), both at the university campus and in the city centre. These sensors were 
used to detect the presence of Bluetooth-enabled mobile phones which were carried by 
pedestrians. The objective was to determine the correlation between Bluetooth 
measurements and manual gate counts by human observers. By matching the unique 
identifier of the detected Bluetooth devices of several measurements in time (single sensor) 
and space (multiple sensors) the researchers respectively induced the time spent at one site 
or the direction of movement between sites. Versichele et al (2012) have used Bluetooth 
measurements to observe human movement at the Ghent Festivities. This study focussed at 
the movements behaviour at the festival, as well as the transportation mode to the festival. In 
the latter, only public transport modes were considered. Bikes, cars and walking as access 
and egress modes were out of scope of the measurements.  
 
A third cluster of studies with Bluetooth measurements of pedestrians has been reported by 
Voskamp (2012), Ton (2014) and Van den Heuvel et al (2015). The researchers have used 
Bluetooth measurements to analyse behaviour of passengers at the main train station of 
Utrecht, which is the largest train station in The Netherlands with approximately 250,000 train 
passengers per average work day. These studies focused on the route choice behaviour at 
the train station by arriving and departing train passengers. The main disadvantage of 
Bluetooth measurements is the relatively low penetration rate: 7-8% by O’Neill (2006), 5-10% 
by Voskamp (2012), 11% by Versichele et al (2012). Versichele et al (2012) argue that a low 
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penetration rate can result in a sampling bias due to over and underrepresentation of specific 
groups of people. Since the sensors used by Ton (2014) were capable of measuring both 
Bluetooth and WiFi signals, this study reported a WiFi penetration rate of over 20%, which is 
significantly higher than Bluetooth. The main advantage of Bluetooth and WiFi sensors is the 
low cost of measurements, especially when these measurements are being deployed for 
longer time frames. 
 
Similar to the previous section, Table 4 presents the various examples of automated data 
collection methods which have been presented in this section. In contrast to the traditional 
methods, a clear distinction between the two measurement perspectives cannot be made, 
since the technologies are or can be used for both perspectives. However, the classification 
according to the measurement objective has been made. Video, time-laps, infrared and laser 
technologies are used to local measurements, while GPS, Bluetooth, WiFi and mobile phone 
data are used for global measurements. 
 
Table 4: Classification of automated data collection methods. 

 Measurement objective 
Local Global 

Measurement 
perspective 

Microscopic Video 
Time-lapse 

Infrared 
Laser 

GPS 
Bluetooth, WiFi 

Mobile phone data Macroscopic 

 
We can conclude that recent slow mode traffic automated measurements haven been 
deployed in studies of pedestrian traffic in a broad set of traffic conditions: from low traffic 
volumes in Bath to extremely high volumes in Ghent and Biddinghuizen; in several travel 
motives, from commuting and travelling in Utrecht, shopping in Bath and to leisure in Venice, 
Ghent and Biddinghuizen. We have found no studies with automated measurements of 
bicycle traffic. With respect to the technology we can conclude that Bluetooth/WiFi are 
currently the most suitable technologies for measuring slow mode traffic flows in an urban 
network, especially to derive the distribution of flows and route choice in the network. In the 
next sections we will further explore the technology and its potential. Firstly by defining the 
technology capabilities in the context of traffic research in general, and secondly by 
illustrating two applications in automated slow mode traffic measurements in urban mobility.  
 
Bluetooth/WiFi technology for automated slow mode urban traffic measurements 
Bluetooth and WiFi are radio modules embedded in many devices which are carried by 
people, both when staying at one location and while travelling. Bluetooth and WiFi allow its 
parent device to communicate with other devices in the vicinity without being physically 
connected by a cable. Commonly used examples are mobile phones, tablets and laptops. In 
this context, the Bluetooth functionality is mostly used to pair with accessories, for example 
headsets, car kits and input devices (keyboard, mouse, etc.). Invented in 1994, Bluetooth 
has broadly become available since the ‘00’s. For mobile phones, a penetration rate of 90% 
has been reported for 2014 (Bluetooth Interest Group, 2015). The WiFi functionality is used 
to connect to a wireless network. Like Bluetooth, WiFi found its way to the market in the ‘00’s 
after being invented in 1997. Initially, its main application was at home, to share one internet 
connection over multiple computers without cables (The Economist, 2004). Currently, WiFi is 
also used to offer wireless networks in public spaces used by many kinds of devices, in many 
cases used to connect to the internet. For example, smartphones are commonly used 
devices. It is estimated that currently about half of the adult population on earth owns a 
smartphone. By 2020 this share will increase to 80% (The Economist, 2015). The maximum 
range of a single unit of both technologies is about 100 meters, but is often less due to local 
radio interference (The Economist, 2004; Bluetooth Interest Group, 2015). The areas of 
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applications of both Bluetooth and WiFi are increasing rapidly, under what is often referred to 
as “the Internet of Things”.  
 
As the wide-spread application of both technologies is relatively recent, its use in the context 
of traffic measurements is even more recent. Due to the widespread use of these 
technologies by travellers, potential sample sizes have become attractive for traffic research. 
Moreover, an increase in suppliers combined with the continuous decrease of cost of 
computer chips, has driven cost of large-scale deployment of Bluetooth and WiFi sensors 
down. This has made the technical, automated measurement solution competitive to 
traditional, labour intensive methods. Thirdly, the reports on the first use cases in traffic 
research, both in practice and in academics, show promising results and invite others to 
exchange ideas and experience. This contributes to the generation of new use cases and 
applications. Fourthly and finally, the privacy of travellers (as carrier of the mobile device) 
can be respected relatively easy, at low cost. Despite the ongoing debate about this topic 
(Abbord-Jard et al, 2013), the authors expect this advantage to contribute to a public 
acceptance of the deployment of radio based technologies for traffic research. 
 
For traffic measurements, Bluetooth and WiFi technology have three fundamental, technical 
characteristics in common:  
1. Detection. The first is the periodic, low-interval search of the mobile device for other 

devices, which in other research are referred to as “swipes” or “inquiries”. Bluetooth 
inquiries may take up to 10 seconds due to the large number of frequencies to be 
scanned. WiFi inquiries potentially have a much lower interval time of 8 milliseconds 
(Abbord-Jard et al, 2013). Since inquiries by radio modules consume energy, device 
manufacturers set the inquiry interval at a rate which balances the time to establish a 
connection and the battery life. For traffic research, every inquiry which is detected by a 
sensor, confirms the presence of a mobile device within scanning range of the sensor 
(location) at a specific moment (time). In this concept, a mobile device acts as a proxy for 
a traveller;  

2. Identification. Secondly, the the Bluetooth of WiFi module can be identified by a Media 
Access Control Address. This MAC address is a unique, but anonymous identifier which 
is used for establishing the link between a (mobile) device and other devices in the 
network (Abbord-Jard et al, 2013). For traffic research, the MAC address enables the 
identification of identical mobile devices (and the traveller to which it belongs) at different 
sensors in the network. Routes can be generated by combining detections of the same 
mobile device by different sensors;   

3. Location. Thirdly, the strength of the wireless signal – received signal strength indicator, 
or RSSI - provides information about the quality of the connection, either of a short swipe 
or of an established connection. The higher the signal strength, the faster and more 
stable the connection tends to be (Versichele et al, 2012). For traffic research, signal 
strength data provides some information about the position of the mobile device to the 
sensor. This position information is relative to other detections. Information about the 
exact location or direction of movement cannot be derived by the RSSI-data only. 

 
Combining these technical characteristics of Bluetooth and WiFi generates a powerful source 
of traffic data. Firstly, routes of travellers through the network can be reconstructed by 
combining detections of MAC addresses by multiple sensors in the transport network. This 
reconstruction is based on the logical order of the MAC address detections at the different 
locations, which is directly linked to the sequence of the movement by the traveller. Signal 
strength (RSSI) data can be used to improve validity, by filtering out potential noise (i.e. 
traffic at adjacent links). Moreover, RSSI data can used to determine the order of detections 
in time in facilities with a dense grid of sensors which causes mobile devices to be scanned 
by multiple sensors at once. Secondly, travel times can be derived from the difference 
between start and end time of trajectories. Thirdly, transport network occupancy can be 
estimated by presenting the total number of detections at each moment in time. 
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To illustrate the potential of Bluetooth and WiFi sensors for slow mode traffic measurements, 
two cases are presented in the next two sections. The first case is about the walking patterns 
and flows in the main shopping street of Amsterdam, The Netherlands. Delft University of 
Technology has performed temporary measurements of pedestrian flows in the Kalverstraat. 
This case study shows the data filtering necessary to come from raw data to travel behaviour 
information. Particularly challenging was the separation of pedestrians from cyclists in the 
sensor data. Secondly, the traveller operations in the main train station of the city of Utrecht 
is presented. Utrecht is the fourth largest city in The Netherlands, and its main station is the 
largest station in terms of daily train passenger volumes. To measure pedestrian flows inside 
the facility as part of the SMART Station program, train operator and station manager 
Netherlands Railways (NS) has deployed a large number of Bluetooth and WiFi sensors in 
the station hall since 2012.  
 
Case 1: City Centre of Amsterdam 
The municipality of Amsterdam increasingly deals with (over)crowding by pedestrians and 
cyclists in its inner city, not only during special events (e.g. Kingsday), but also during regular 
operations (e.g. during peak hours). In order to quantify the potential problems with respect 
to safety and capacity, insight is needed into the magnitudes of pedestrian and bicyclist flows 
at particular locations as well as the relations between the different parts of the inner city. To 
investigate the latter, the Delft University of Technology has collected data through hybrid 
Bluetooth / WiFi sensors at several locations in the inner city of Amsterdam (Baelde, 2015). 
In the following, we first introduce the setup of the data collection. Then, we give some 
details on the filtering process. From the filtered data links between observed locations have 
been identified. We show how sensitive the results are for filtering and we discuss the 
practical issues in such data collection efforts. 
 
Data collection setup 
As indicated before, the data collection has taken place in the inner city of Amsterdam, see 
the figure below. We have focused on the main shopping street in the area, the Kalverstraat, 
observed by three sensors, and an intersection, Muntplein, with 6 sensors. The sensors used 
for the data collection are combined Bluetooth / WiFi sensors. These have two long-range 
antennas, with a range of about 70 meters, thus each sensor has a range in the shape of an 
ellipse with a length of 140 meters, a width of 30 meters and the location of the sensor as its 
centre point. In the figure the field of view of each sensor has been indicated by the semi-
transparent red areas, where the black cross indicates the position of the sensor. Here, it can 
be seen that the sensor view is blocked by the buildings alongside the roads, leading to 
irregularly shaped (approximations of) fields of view. Each sensor has been attached at a 
height of 4m above street level. The data collection has taken place on Friday 7 November 
2014 and Saturday 8 November 2014. The duration was limited since the sensors are 
capable of functioning stand-alone during 40 hours.  
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Figure 2: Overview of the inner city of Amsterdam, with the locations and fields of view of the sensors. 

Table 5 shows the characteristics of each sensor, being the name of the street, the type of 
traffic observed by the sensor, the start and end time of the observations, and the number of 
raw data points for both the Bluetooth and the WiFi sensor. The number of WiFi-data points 
is larger than the number of Bluetooth-data points. This is according to our expectation (and 
literature), as more people have WiFi enabled on their devices. However, the ratio between 
Bluetooth- and WiFi-data points differs for the different sensors, with a minimum of 1.52 for 
the sensor at Amstel and a maximum of 5.14 for the sensor at the Kalverstraat South. There 
seems to be a relation between this ratio and the type of traffic observed: high ratios hold for 
sensors with only pedestrians, while sensors also observing cars have a much lower ratio. 
This can be expected, as modern cars often have Bluetooth equipment installed (e.g. car 
communication kits), implying a relatively high probability that a car is detected by the 
Bluetooth sensor. 
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6 
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Table 5: Characteristics of each sensor. 

Sen-
sor 
id 

Name Traffic type Start time End time Number 
of raw 
BT data 
points 

Number 
of raw 
WiFi 
data 
points 

BT/Wi
Fi 
ratio 

1 Nieuwendijk Pedestrians 07-11-2014 
15:08  

08-11-2014 
22:21  

51,824  247,579  4.78 

2 Dam Pedestrians, 
trams 

07-11-2014 
14:22  

09-11-2014 
00:59 / 
01:43  

80,561  130,098  1.61 

3 Kalverstraat 
North 

Pedestrians, 
bicycles, cars 

07-11-2014 
14:41  

09-11-2014 
00:27  

60,556  105,092  1.74 

4 Kalverstraat 
South 

Pedestrians 07-11-2014 
11:46  

08-11-2014 
22:26  

96,692  496,605  5.14 

5 Rokin Pedestrians, 
bicycles, 
cars, trams 

07-11-2014 
12:10  

09-11-2014 
00:23  

87,452  195,981  2.24 

6 Amstel Pedestrians, 
bicycles, cars 

07-11-2014 
12:33  

08-11-2014 
22:43  

66,462  101,057  1.52 

7 Reguliersbree-
straat 

Pedestrians, 
trams 

07-11-2014 
13:00  

08-11-2014 
22:07  

96,248  417,300  4.34 

8 Vijzelstraat Pedestrians, 
bicycles, 
cars, trams 

07-11-2014 
10:42  

08-11-2014 
22:35  

193,631 411,707  2.13 

9 Singel Pedestrians, 
bicycles, cars 

07-11-2014 
09:38  

08-11-2014 
22:38  

70,445  265,754  3.77 

 
Data filtering 
The first task in the data analysis is the filtering of the data, as the sensors do not only detect 
traffic participants (pedestrians, bicyclists, drivers), but also static devices with Bluetooth or 
WiFi connections. As the filtering methodology does not depend on the time period and the 
type of data, we will focus on the data filtering on the Friday evening peak from 16:00 – 18:00 
for the Bluetooth data. For this time period, the number of raw Bluetooth data points is 
57,584. 
 
The filtering consists of the following steps: 

1. Remove overlap in detection period for a single sensor. 
2. Remove devices with many observations. 
3. Identify pedestrians. 

 
The first filtering step consists of removing data points with overlap in the observed time 
period. So if one data point indicates that a device has been detected at a certain sensor 
between 16:00:44 and 16:01:10 and the second data point indicates a detection period 
between 16:00:59 and 16:01:34 at the same sensor, then these two data points are 
combined into one data point, with the combined detection period. This resulted in a 
reduction of about 20% to 46,427 data points. 
 
The second filtering step consists of removing data points of devices that have a large 
amount of observations at different sensors. We expect that pedestrians will walk directly 
from their origin to their destination, passing a limited number of sensors. Even tourists or 
shoppers are not expected to walk back and forth through the area for too many times. 
Figure 2a shows the number of observations at different sensors for each device, with a 
difference in the total amount of observations in blue and the number of observations with 
difference in sensors in red. Where we would expect a limited amount of sensors for a single 
trip, we found that up to 500 observations have been included for this individual (implying 
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someone walking around in circles). When looking into detail for one (example) device, these 
many observations are limited to two sensors, that is, during the 2 hour period, this device 
moves from the one sensor to the other sensor and back, or sometimes leaves the sensor 
area for a short period of time and then returns (see Figure 3b). These are obviously not 
logical movement patterns for pedestrians, so the devices with more than 100 observations 
at sensors are filtered. This leads to 29,903 remaining data points. 
 

  
a. Number of observations per device. b. Sensors where a device with more than 

500 observations has been recorded. 
Figure 3: Characteristics of observations at sensors for each device. 

The third filtering step relates to identifying pedestrians, and removing other traffic 
participants from the data set. We do this based on the walking speed. Typically, the average 
pedestrian speed appears to be 1.34 m/s (Buchmueller and Weidmann, 2006), with a 
standard deviation of 0.37 m/s. As upper boundary, we use a speed of 2 m/s: all devices 
moving faster than this speed will be removed from the data. Here, some of the technical 
properties of the sensors need to be considered, in particular the delay of the observation by 
the sensors. Previous experiments show that these delay are in the range of 3-10 seconds 
(Kostakos, 2008; O’Neill et al., 2006). Based on the distance between sensors and the 
maximum speed, we calculate the minimum travel time between two sensors and remove the 
detection delay (which is the worst case scenario). The resulting threshold values are given 
in Table 6. If the delay between two detections is shorter than this minimum travel time, the 
data point is removed from the data set. This leads to a data set of 712 data points. Based 
on this data set, we will identify the flows between the different locations in the inner city of 
Amsterdam. 
 
Table 6: Minimum walking times between Bluetooth sensors in seconds. 

 Nwd Dam KvsN KvsS Rokin Amstel Rbs Vijzels Singel 
Nwd X 25.8 65.8 359.3 425.1 455.9 474.2 409.4 349.5 
Dam 25.8 X 0 291 356.8 387.6 405.9 344.4 284.5 
KvsN 65.8 0 X 253.5 319.3 350.1 368.4 329.9 270 
KvsS 359.3 291 253.5 X 0.8 24.1 42.4 27.8 13.0 
Rokin 425.1 356.8 319.3 0.8 X 16.5 35.1 20.5 14.7 
Amstel 455.9 387.6 350.1 24.1 16.5 X 27.8 13.0 47.1 
Rbs 474.2 405.9 368.4 42.4 35.1 27.8 X 24.9 65.1 
Vijzels 409.4 344.4 329.9 27.8 20.5 13.0 24.9 X 14.9 
Singel 349.5 284.5 270 13.0 14.7 47.1 65.1 14.9 X 
 
Identifying flows between locations 
From the resulting data set, the number of pedestrians travelling directly from one sensor to 
another sensor has been derived, see Table 7. We can clearly see the different flow sizes 
between the sensor combinations, identifying the main connections (e.g. from the Dam to the 
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Kalverstraat North) and the smaller connections, typically between sensors not directly 
connected (indicated by the yellow in the table). 
Table 8 shows the total amount of observations at one sensor, which is the sum of all arrivals 
and departures shown in Table 7 and the number of pedestrians that have only been 
observed at the sensor (thus not walking through the network). As we do not have ground 
truth measurements, we can only give a first impression of the quality of the data set. We 
would expect about 2500 pedestrians per hour passing the main sensors (Dam, Kalverstraat 
Noord, Kalverstraat South). From the table, it can be derived that we have observed at 
maximum 164 pedestrians during 2 hours, leading to a penetration rate of 3-4%, which is 
slightly lower than we would expect. We can thus conclude that Bluetooth / WiFi sensors are 
a promising technique to be applied, but the filtering does have a major effect on the results. 
  
Table 7: Number of movements for each sensor pair. In yellow the sensors located next to each other. 

 Nwd Dam KvsN KvsS Rokin Amstel Rbs Vijzels Singel 
Nwd 0 5 2 0 0 0 0 0 0 
Dam 7 0 25 2 2 1 0 1 2 
KvsN 1 39 0 1 3 1 0 1 1 
KvsS 0 2 3 0 2 0 1 0 4 
Rokin 0 2 0 6 0 5 0 4 8 
Amstel 0 3 5 0 6 0 4 9 2 
Rbs 0 3 1 0 0 3 0 0 2 
Vijzels 1 2 0 1 0 7 3 0 23 
Singel 0 7 4 3 1 5 0 5 0 
 
Table 8: Total observations of pedestrians per sensor. 

 Nwd Dam KvsN KvsS Rokin Amstel Rbs Vijzels Singel 
Arrivals 9 63 40 13 14 22 8 20 42 
Departures 7 40 47 12 25 29 9 37 25 
Single obs 4 61 6 57 3 4 3 3 2 
Total 20 164 93 82 42 55 20 60 69 
 
Case 2: Utrecht Central Station  
At an average workday Utrecht Central Station serves over 170,000 arriving and departing 
train passengers, and almost 60,000 passengers who transfer between trains. The station 
consists of seven central platforms. Every platform is connected to the station hall by two 
escalator and one stairway. The station hall is located on top of the central section of the 
platforms. In the train station, the vertical infrastructure – escalators and stairs – are common 
bottlenecks in the pedestrian network. This is particularly the case when train arrivals 
coincide at both sides of one central platform, or at the two platform sections - A and B – of 
one platform side. This occurs frequently, since the station acts as train hub in the Dutch 
railway network with arrivals and departures of approximately 40 trains per hour. 
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Figure 4: Overview of Utrecht Central station. 

At Utrecht Central station, Bluetooth and WiFi sensors have been used to measure 
pedestrian flows since 2012. As the stations and real estate division of Netherlands 
Railways, NS Stations has been implementing new technologies for pedestrian flow 
measurements under the SMART Station program. The main objective of this program is to 
develop new sources of pedestrian behaviour data inside train stations. This data is being 
used for station (re)design, management and operation. Currently, there are two other 
SMART Stations in The Netherlands: Leiden Central station and Amsterdam Airport Schiphol 
train station.  
 
Since the start of the program, the SMART Station data has supported a large number of 
studies, both practical and scientific. In this paper we will present two cases which are the 
result of the graduation projects of two master students. Both studies were aimed at 
determining factors which contribute to route choice of train passengers inside Utrecht 
Central station.  
 
The first case study has been performed in 2012 by analysing the impact of congestion at 
bottlenecks on route choice behaviour by arriving train passengers (Voskamp, 2012 and Van 
den Heuvel et al, 2015). For this study a limited number of nine Bluetooth sensors has been 
installed at platform 18/19, both A and B section. The research objective was to determine 
the factors which are relevant for the choice of vertical infrastructure to exit the platform 
(Figure 5). Three potential factors have been tested: 1. the type of vertical infrastructure – 
escalators or stairs -, 2. the waiting time due to queueing for the congested escalator or 
stairs and 3. the destination of the pedestrians inside or outside the station hall. 
 

  
Figure 5: Route choice behaviour by arriving passengers. 
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In the second case study the route choice behaviour in the station hall by departing train 
passengers has been analysed (Ton, 2014 and Ton et al, 2014). This study has used data 
collected by over 30 hybrid Bluetooth/WiFi sensors which were already present in the station 
hall (Figure 6). One of the research objectives was to determine the factors which contribute 
to the choice of escalator or stairway to leave the station hall and access the platform. Seven 
potential factors have been tested: 1. walking distance to the escalator or stairway in the 
station hall, 2. walking time to the escalator or stairway in the station hall, 3. the train stop 
location alongside the platform, 4. occurrence of train delays, 5. visibility of the escalator or 
stairway in the station hall, 6. orientation of the escalator or stairway relative to the direction 
of approach of the passenger and 7. peak or off-peak time of the day as a proxy for 
familiarity at the station. Because this platform offered the best situation for this study, data of 
pedestrian traffic to platform 11/12 was used. 
 

  
Figure 6: Sensor configuration at Utrecht Central station 

For both studies, the concept of “disaggregate travel demand models based on discrete 
choice analysis” has been used (Ben Akiva and Lerman, 1985). In these “discrete choice 
models” a traveller is assumed to make choices from sets of alternative options for his/her 
trip. Each set of alternative options has to comply with the MECE-principle: mutually 
exclusive and collectively exhaustive. Consistent with the model assumption of utility 
maximization, it is assumed that the traveller choses the (one) option which delivers the 
highest utility at the time the choice is made. Like many other applications in transport 
research, route choices by passengers inside a train station can be considered as discrete 
choices of routes with different attributes. 
 
The 2012-study of route choice of arriving train passengers has revealed that waiting time at 
congested vertical infrastructure has a significant impact on route choice. To illustrate the 
waiting time effect, a sample of “raw” Bluetooth measurements is projected in the left graph 
of Figure 4. Each dot in this graph represents the detection of a Bluetooth-device, which is 
carried by a passenger at the platform, directly after the arrival of train 8827 at 10 April 2012 
during morning peak hour. Red dots represent route choices for the escalator, which is the 
primary route between train and station hall. Blue dots represent passengers who walked to 
the station hall by the stairway which becomes the main alternative when the primary route 
(escalator) gets congested. The green marked dots indicate that passengers tend to choose 
the primary route when no congestion has formed yet. After about 30 seconds after the train 
arrival, the primary route gets congested, and a share of arriving passengers starts to use 
the alternative route (indicated by the yellow marked dots). The red marked dot is an error, 
caused by a detection of a person who was already at the platform (just) before the train 
arrived.  
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Figure 7: left: Bluetooth data of train 8827 (10-04-2012); right: model estimation (adapted from Voskamp, 
2012). 

The right graph of Figure 7 shows an aggregation of observations at the escalator bottleneck 
for 269 train arrivals. Each dot represents one train, and gives the share of arriving 
passengers who chose the bottleneck route and the waiting time due to congestion. The red 
graph and the equation represent the model which has the best fit with the observations. The 
model shows at a waiting time of approximately 45 seconds, about half of the passengers 
chose the alternative, non-congested route to the station hall. Under non-congested 
conditions about 90% takes the primary route to leave the platform. 
 
The 2014-study of route choice of departing train passengers has revealed that route time is 
also an important attribute for departing passengers (left side in Figure 8). The relation has 
an inverse nature: the longer a route takes, the less travellers tend to choose this route. 
Distance has a similar, but less strong impact. Escalator or stairway orientation relative to the 
direction of approach by the passenger also proved to be a route attribute with significant 
impact. The better the orientation attribute of a route alternative is, the more people tend to 
choose for it. The study results indicate that travellers tend to favour right over left turns 
when leaving the station hall to enter the platform. Finally, the train location is a significant 
factor. Trains at Utrecht Central station can stop at three locations alongside the platform: A-
section, B-section or central platform section (A+B). This result indicates that departing 
passengers, when choosing their route in the station hall, also include expectations about the 
walk at the platform before boarding the train. 
 

 
 

Figure 8: departing passengers; route choice factors (left; Ton, 2014) and route distribution (right; Ton et 
al, 2014). 

Conclusions 
In this paper we have identified various ways to observe slow modes. In addition to the 
traditional manual data collection techniques, recently developed automated data collection 
techniques have been presented. One of the new sensor classes, hybrid Bluetooth / WiFi 
sensors, has been applied in the inner city of Amsterdam to observe flow patterns and in a 
large train station to observe route choice. Both cases illustrate the potential of these sensors 
for slow mode traffic research. As individual (but anonymous) movements of pedestrians and 
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cyclists can be automatically measured for a long time period, the collected datasets are 
extremely rich and useful for many applications in traffic research for slow traffic modes. To 
the best knowledge of the authors, this type of data cannot be collected by the traditional 
methods.  
 
The cases also have illustrated that the researcher should be aware of several issues to 
avoid invalid research conclusions. Firstly, not all devices detected by the sensors are 
pedestrians, cyclists or other traffic participants in scope of the research. This means that it is 
always required to filter the collected data in a thorough, extensive and well-defined way. In 
other words: the filter itself is an important determinant for data quality and therefore for the 
validity of the research results. Secondly, the sensors themselves have a detection delay due 
to the design of the technology. Research design and filtering procedures have to be able to 
cope with this issue. Thirdly, and finally the penetration rate is rather low, especially for 
Bluetooth sensors (~5-10%). This might introduce a selection bias. Although to a lesser 
extent, the same issue occurs with WiFi sensors (~ 20% penetration rate). Currently, it is not 
clear whether these ratios will increase or decrease in the future. A downward trend is 
caused by (semi-)automatic off and on switching of Bluetooth or WiFi due to privacy 
concerns and/or the extension of battery life of the mobile device. An upward trend is caused 
by the increasing number of wearables with Bluetooth and or WiFi (i.e. smart watches). Only 
the future will tell which trend will be dominant. We will continue our research in testing the 
suitability of automated data collection methods in our slow mode research. 
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