
Delft University of Technology

Faculty of Applied Sciences

Faculty of Electrical Engineering, Mathematics and Computer Science

Department of Mathematical Physics

Exoplanet Cartography Using Light
Curves With Multiple Reflection Models

by

Timo Gort
4804945

Supervisors:
Dr. P.M. Visser
Dr. A.J.L. Adam

Committee members:
Dr. A. Endo
Dr. K.P. Hart

Delft, July 22, 2022

BSc Thesis for Applied physics and
mathematics

TU Delft



i

Abstract
Context. In the near-future, exoplanets can be observed directly through telescopes. Al-
though the resolution of the planet’s image will only be one pixel at first, the intensity of
this pixel will change over time because of the orbit around its host star and its diurnal
rotation. This intensity as a function of time is called the light curve of an exoplanet. The
changes in the light curve as a result of annual and diurnal rotation can in turn be used to
obtain information about the surface of the planet, this is called spin-orbit tomography.
Aims. The aim of this study is to determine if an exoplanet’s surface can be retrieved from
its light curve for planet surfaces that can be described by Lambertian, Lommel-Seeliger
or Fresnel reflection, or a combination of these. The variation in the light curve due to
differences in the planet’s surface will be used to find a map of its continents and oceans
and to determine what surface types the planet is made of.
Methods. This thesis starts by composing a near-equal area segmentation of a sphere to
maximize the retrieval of information per pixel of the exoplanet’s surface. Additionally, a
method for generating artificial planets is described, such that the following method can
be tested on light curves, since the current telescopes are not powerful enough to measure
an exoplanet’s light curve. A linear transformation from the surface to the light curve is
constructed to obtain the light curve from the surface. Consequently, this transformation
is inverted in order to obtain information about the surface from the light curve. This
method is applied to exoplanets with a stationary surface, i.e. no clouds or changing ice
caps and is consistent of the following surfaces: water, vegetation, sand and snow, each
described by a different reflection model. Lastly, surface retrieval is tested from a light
curve with a realistic amount of photon shot noise (SNR ≈ 14).
Results. The composed near-equal area segmentation of a sphere is the Voronoi diagram
of the Fibonacci lattice. It is a very appropriate near-equal area segmentation, because
the maximum difference in facet area is 12% for 1001 points. Furthermore, the retrieval
of an exoplanet’s surface from its reflected light curve is close to perfect for exoplanets
that are described by a combination of the three reflection models if the light curve does
not contain noise and there are a sufficient number of data points. If the light curve does
contain shot noise, parts of the surface that are described by the Lommel-Seeliger law,
are not retrieved correctly. However, the general shape of the surface that is described by
Lambertian or Fresnel reflection is still retrieved correctly. If the surface can be described
by one single reflection model, the planet’s features are retrieved correctly from a light
curve with shot noise regardless of the reflection model.
Conclusions. Spin-orbit tomography in the form of a linear transformation between the
light curve and albedo map of an exoplanet is a very accurate method to retrieve the albedo
map from a single observed pixel, even with a realistic amount of shot noise.
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1. Introduction
There are many signs that extraterrestrial life has had many chances to develop and exist,
but no signs of such life have been detected yet. This is the essence of the Fermi paradox:
where are they?. It has nevertheless been shown that, statistically, most stars have planets
orbiting them (Howard et al. (2010), Bryson et al. (2020)). In fact, Dressing and Charbon-
neau (2015) and Tuomi et al. (2014) have shown that a significant amount of M-dwarfs,
stars with a maximum surface temperature of 3900 K and 0.6 M⊙, have planets inside
their habitable zone. That is, within the zone where liquid water can be present given a
sufficient atmospheric pressure.

Still, exoplanets are too small and too distant to be detected using direct imaging. Cur-
rently, their existence is inferred through transit observation (e.g. Borucki et al. (2011)),
gravitational micro-lensing (e.g. Cassan et al. (2012)) or using the star’s radial velocity
(e.g. Mayor and Queloz (1995)). Issue is, these methods do not give any information
about the properties of the planet’s surface.

In the near-future though, exoplanets will be able to be detected by telescopes as
one pixel. Nonetheless, besides the low resolution, there is another problem with the
direct imaging of exoplanets. Compared to their sun, planets are extremely dim. When
detecting Earth from interstellar space, the Sun is approximately 10 billion times brighter
than Earth. A solution for this is coronagraphy, which essentially dims the perceived light
of the star and in turn allows its planets to be visible. The first telescope that will do this
in practice is the Nancy Grace Roman Space Telescope (Romero-Wolf et al. (2021)) due
to launch in 2026.

Hence, assuming that we can observe exoplanets as one pixel, the only information
that can be induced from it comes from the changing total amount of light reflected and
scattered by the planet as it orbits its host star. This results in a change in brightness of the
observed pixel, of which the brightness as a function of time is called the light curve. The
light curve mainly changes because of two processes: the orbit around an exoplanet’s star
and changes in the illuminated surface as a result of the diurnal rotation of the planet. Fujii
and Kawahara (2012) have shown that the derivation of a planet’s albedo map from the
light curve, called spin-orbit tomography, works on specific configurations of exoplanets.
Furthering this method, Stuger (2021) has shown that the surface of a stationary (no clouds
or changing icecaps) diffusely reflective exoplanet in a circular orbit can be mapped very
accurately, even with a realistic amount of photon shot noise.

In this thesis we aim to advance this research by first composing a near equal-area map-
ping of a sphere in order to maximize the significance of every pixel of the retrieved
albedo map. Subsequently, different types of light reflection are considered and applied
to the method of planetary map retrieval from their light curve as described in Stuger
(2021). These reflection types include diffuse reflection, which is characteristic of snow,
Fresnel reflection, which is characteristic of water, and lastly reflection described by the
Lommel-Seeliger law, which is characteristic of rocky surfaces like the moon. Lastly, the
effect of shot noise on the retrieval of an exoplanet’s map is investigated.

The thesis will start with composing a near-equal area segmentation of a sphere from the
Fibonacci lattice in section 2. Next, the generation of artificial planetary maps with dif-
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ferent surface types is described. Then, different models describing light reflection and
their characteristics are described in section 4. Subsequently, the generation of the light
curve of the artificially generated exoplanets is characterised as a linear transformation in
section 5. The inversion of the linear transformation is explained and applied to the gen-
erated light curve for a noiseless signal in section 6. Lastly, the retrieval of the planetary
map from a signal with shot noise is investigated.
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2. Mapping of a sphere
In order to create a method that retrieves the surface map of an exoplanet, the curved
surface of the planet will be approximated by many flat facets. This way, we can use
a method that can easily perform calculations on each part of the planet. By definition,
planets are close to spherical (see Hogan (2006)), so we aim to approximate a sphere by
many flat facets.

Traditionally Earth’s surface is divided using the longitude-latitude lattice. In this
lattice, all points are separated by equal angles of longitude and latitude, see figure 1. A
surface can be made by making each point correspond to a flat rectangle. As illustrated in
the figure, the point distribution for this lattice is not homogeneous. The density of points
is much higher at the poles than at the equator. The largest facet in this segmentation of a
sphere is roughly 29 times larger than the smallest facet.

Figure 1: Mapping of points on a sphere using the longitude-latitude lattice for 1014 points. The
left image is centered at the pole, the middle image is centered at latitude 45◦ and the right image
is centered at the equator. (González (2009))

In this project, calculations will be done at each point, so it would be preferred to
divide the surface into facets of equal area such that every part of the sphere is represented
equally. Additionally, a lattice point should not be very stretched out, because then it will
represent a part of the surface that is far away. If each facet is close to round, then each
lattice point is a good representation for its facet.

Thus we need to divide the surface of a sphere into near-equal area facets that are close
to circular. There is not one established way to do this, because a spherical surface can
not be created using a finite number of flat discs. Because of this, a number of different
methods have been contrived that try to approach these criteria. The method that will be
used for this project is based on the Fibonacci lattice. This method is described in the
following paragraph.

2.1. Fibonacci lattice
As the name implies, this lattice is based on the Fibonacci sequence. In this sequence,
every element is the sum of the previous two, starting at 0 and 1 this sequence is: 0, 1,
1, 2, 3, 5, 8, 13, 21, ... . The ratio between element n and element n − 1 approaches the
golden ratio ϕg =

1+
√
5

2
as n approaches infinity.

Any odd number of points can be distributed near homogeneously over a sphere using
the Fibonacci lattice such that one point is exactly on the equator (González (2009)). If
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2N + 1 points are distributed, a point has longitude θ = 2πiϕg and colatitude
ϕ = arcsin

(
2i

2N+1

)
, for i ∈ {−N,−N +1, ..., N − 1, N}. Conceptually, every next point

is lowered 2
2N+1

in the vertical direction, resulting in a latitude decrease of arcsin
(

2
2N+1

)
,

while the point is rotated around the vertical axis by an angle of 2πϕg. The points are
aligned in such a way that one point is exactly on the equator, resulting in no point occu-
pying either pole. The final lattice is shown in figure 2.

Figure 2: Mapping of points on a sphere corresponding to the Fibonacci lattice of 1001 points.
The left image is centered at the north pole, the middle image is centered at latitude 45o and the
right image is centered at the equator. The distribution looks very homogeneous, more so than the
latitude-longitude lattice. (González (2009))

Constructing a segmentation of a sphere from these points is not as straight forward
as for the latitude-longitude lattice. There are two main methods to do this, the Delaunay
triangulation and the Voronoi diagram of the set of points.

In two dimensions, the Delaunay triangulation of a set of points P is defined as a
triangulation DT (P) such that no point in P is inside the circumcircle of any triangle in
DT (P) (Loera et al. (2010)). An example of the Delaunay triangulation of a set of points
in two dimensions is shown in figure 3 by the solid lines. For a sphere, the Delaunay
triangulation of points on its surface is equivalent to the convex hull of the set of points
(Aurenhammer (1991)).

The Voronoi diagram is another way to divide a surface into facets on the basis of a
set of points. The Voronoi diagram of a set of points, also called seeds, assigns a cell to
each seed. For every location in a cell, the corresponding seed is the closest seed. The
Voronoi diagram of a set of points in two dimensions is shown in figure 3 in dashed lines.
The Delaunay triangulation of the Fibonacci lattice of 1001 points is shown in figure 4
and the Voronoi diagram of the Fibonacci lattice of 1001 points is shown in figure 5.
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Figure 3: Delaunay triangulation (solid lines) and Voronoi diagram (dashed lines) for a set of
points. Uwitonze et al. (2018)

Figure 4: Delaunay triangulation and convex hull of the Fibonacci lattice for 1001 points, it con-
sists of 1998 facets. The left image is centered at the north pole, the middle image is centered at
latitude 45o and the right image is centered at the equator.

Figure 5: Voronoi diagram of the surface of the Fibonacci lattice for 1001 points. The left image
is centered at the north pole, the middle image is centered at latitude 45o and the right image is
centered at the equator.
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2.2. Comparison between the Delaunay triangulation and Voronoi
diagram of a Fibonacci lattice

A comparison between the two methods for creating a segmentation of a sphere from
a Fibonacci lattice by assessing the previously discussed criteria; the facets should be
near-equal area, and the facets should be close to circular. At first glance, the facets
of the Voronoi diagram of the Fibonacci lattice look more circular than the Delaunay
triangulation, suggesting that the Voronoi diagram would be a better method. To gain
insight into the performance on near-equal area facets, the variation of the area of the
facets is compared. For a Fibonacci lattice with 1001 points the Voronoi diagram consists
of 1001 facets and the Delaunay triangulation consists of 1998 facets. A histogram of the
area of each facet relative to the average area of the facets is given for both methods in
figure 6. The horizontal axis shows that the Voronoi diagram has a much smaller deviation
from the average than the Delaunay triangulation. To demonstrate this difference, the
fraction between the maximal area of a facet Amax and the minimal area of a facet Amin

can be used; Amax
Amin

. This fraction is 1.58 and 1.12 for the Delaunay triangulation and
Voronoi triangulation respectively.

Moreover, the standard deviation of the relative area for the Delaunay triangulation
and the Voronoi diagram are 29 · 10−3 and 6.9 · 10−3 respectively. This makes sense, be-
cause every facet of the Voronoi diagram essentially is made out of parts of the triangles
from the Delaunay triangulation. Thus the area of a facet of the Voronoi diagram is the
average of the area of the corresponding triangles divided by three. Since the standard
deviation of the Voronoi diagram is much smaller than the standard deviation of the De-
launay triangulation, it is better to use the Voronoi diagram of the Fibonacci lattice for our
purpose.

Figure 6: Histogram of the relative area of the facets for the Delaunay triangulation (blank) and the
Voronoi diagram (crossed) of the Fibonacci lattice with 1001 points. The vertical axis represents
the probability density function. Note that the bin at relative area 1 of the Delaunay triangulation
is at around 70 of the vertical axis.
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2.3. Transforming a sphere into a 2-dimensional map
For the purpose of showing maps of exoplanets in this report, it is more suitable to show
a map in its entirety at once. This is also a dilemma, because a sphere can not be mapped
onto a 2-dimensional surface without warping the surface. Just as for the problem of
dividing a sphere into equal-area facets, multiple solutions have been devised for this
problem.

An adequate solution is the Mollweide projection. However, this projection still has
distortions compared to the sphere it corresponds to. To gain insight into this distortion,
Tissot indicatrices can be used. These are ellipses that are shown over the projection that
correspond to circles on the sphere. These indicatrices show compression or expansion in
the longitude or latitude at the center of the circle. The Mollweide projection of the Earth
is shown in figure 7 with the Tissot indicatrices.

Combining the Voronoi diagram of the Fibonacci lattice of 1001 points with the Moll-
weide projection and applying this to the Earth gives us the image shown in figure 8.

Figure 7: The Earth on a Mollweide projection with Tissot indicatrices overlaid. The Tissot indi-
catrices indicate how much the vertical and horizontal axis are warped in the middle of the point.
Every ellipse corresponds to a circle with a diameter of 1000 km. (Kunimune (2018))
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Figure 8: Mollweide projection of Earth based on the blue marble (Przyborski (2002)). The used
facet area is the Voronoi diagram of the Fibonacci lattice with 1001 points.
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3. Generation of planetary maps with different types of
surfaces

Since the current telescopes are not powerful enough to observe exoplanets directly, there
is no data yet from which we can retrieve the map of an exoplanet. Thus for this research,
artificial planets will be created first. For that purpose, the concept of Bond albedo is
introduced, hereafter the method for creating artificial planets is described.

The Bond albedo of a surface is the fraction of the total incident energy of electromag-
netic radiation (light) that is scattered by the surface. Emitted radiation that is produced
by the surface is not taken into account for the Bond albedo and the reflected radiation can
not be negative, thus the Bond albedo is a value between 0 and 1. A ball of snow reflects
a lot of light, so its Bond albedo is close to 1, while a black bowling ball that is not shiny
absorbs most incident light, therefore its Bond albedo is close to 0.

From now on, Bond albedo will be referred to as albedo in this thesis. Albedo can also
be defined for a specific light wavelength or range of light wavelengths. For example, a
green leaf reflects more green light than red light, so its albedo is higher for green light
than for red light. Telescopes measure light intensity for specific wavelengths, however
in this thesis general albedo values are used to assess if the method works. When tele-
scopes become powerful enough to observe exoplanets directly, the used albedo values
for different surfaces can be modified to the wavelength or wavelengths of the telescope.

We need to know how much light reflects from each facet of the surface, we need to
know three main properties of the surface facets: the area of each facet, the orientation,
and the albedo. The area of the facets is calculated with the method described in section
2. For the orientation, we assume that the surface is approximately flat. This assumption
is justified because the angle of the landscape in hilly areas is often small compared to
the curvature of the planet, thus the amount of light reflected off a flat surface is approx-
imately the same as the light reflected off the slightly inclined surface. Furthermore, this
assumption also simplifies the model for the generation of the light curve of the planet
significantly, because the inclination of the individual sub-surfaces does not have to be
accounted for. Using this assumption on the orientation of each subsurface, the orienta-
tion is the plane perpendicular to the direction vector from the middle of the planet to the
middle of the subsurface. Lastly we need to know the albedo of every subsurface. How
this is done is described in the next subsection.

3.1. Albedo map generation
The albedo maps of fictional planets are made by first creating an altitude map by assign-
ing an altitude to every facet of the surface. Altitude is correlated with surface type: if
water oceans would be present, they would be at the lowest altitudes, snowy mountain
peaks will in turn be at the highest altitudes. From these surface types, different albedo
and reflection type can be inferred. The method for the retrieval of exoplanet’s maps de-
scribed in this thesis will be done on two types of albedo maps; discrete albedo maps and
continuous albedo maps. For both maps the altitude map is first divided into different
surface types. Then for the discrete albedo map, every facet that is of the same surface
type is assigned the average albedo of the surface type. For the continuous albedo map, a
range of albedo values is considered for every surface type and the assigned albedo value
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of a facet is in this range and depends on its altitude.

3.1.1. Generation of altitude map using tetrahedral subdivision

The altitude maps are created using tetrahedral subdivision as described by Mogensen
(2010) and Stuger (2021). This method is described in detail in algorithm 1. To deter-
mine the altitude of a point, the method starts by placing a tetrahedron around the entire
Fibonacci lattice where every vertex has a corresponding altitude value. Then an iteration
starts by adding a vertex in the middle of the longest edge with a new altitude value that is
the average of the two neighboring vertices with a small added pseudo-random number.
The tetrahedron containing the point is selected. If the longest edge of this tetrahedron
is larger than resolution of the map, then the algorithm is repeated for this tetrahedron.
If the longest edge of this tetrahedron is smaller than the resolution of the map, then the
altitude of the point is the average of the altitudes of the final four vertices. Four height
maps produced by this method are shown in figure 9.

An advantage of this method over other map generation methods is that this creates a
spherical map without discontinuities. The main two reason are: the method is executed
in three dimensions so there are no discontinuities because of a two dimensional map that
is mapped onto a sphere; and secondly, the difference in altitude between two neighboring
points scales with the distance between these points to the power 3

2
, since the sphere has

radius 1, this distance is much smaller than 1 for most sphere mappings.

Algorithm 1 Tetrahedral subdivision
Input: a point p on the unit sphere for which to determine the altitude, an array v with
the coordinates of the vertices of the starting tetrahedron that contains p, an array s
with the seeds of every vertex from which to base the pseudo-random number on, and
an array h of the altitudes of these vertices.
while emax < dmin do

1. Find the longest edge with length emax

2. Rearrange the vertex array such that the edges of the longest edge are v1 and v2.

3. Create new vertex vnew with

• vnew = (v1 + v2)/2

• snew = (s1 + s2)/2

• hnew = (h1 + h2)/2 + random(snew) · e
3
2
max/100

Where random(snew) creates a random number between −1 and 1 based on the
seed snew

4. If p is inside the convex hull of {vnew, v2, v3, v4}, then set v1 = vnew, h1 = hnew
and s1 = snew. Otherwise set v2 = vnew, h2 = hnew and s2 = snew.

end while
Output: (h1 + h2 + h3 + h4)/4, the altitude of p.
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3.1.2. Creating an albedo map from an altitude map

Firstly, the altitude map is linearly scaled between 0 and 1. Subsequently, every facet is
assigned a surface type depending on its height. The surface types that are considered in
this thesis are water, vegetation, sand desert and snow. These surface types are chosen
because of their prevalence on Earth and their indicative value of potential extraterrestrial
life. It is assumed that the surface types are only correlated to altitude and not latitude,
because they do not need to be perfectly realistic, we only need mock planets to test the
method of spin-orbit tomography on. A facet with altitude h is water when h ∈ [0, 0.5),
it is vegetation if h ∈ [0.5, 0.7), sand desert if h ∈ [0.7, 0.9) and snow if h ∈ [0.9, 1].

The surface types have a range of albedos, for example a rain forest has a lower albedo
than a birch forest. This albedo range is applied to the continuous albedo map by scaling
the albedo range linearly between the altitude values such that the lowest albedo value of
the range amin is mapped to the lowest altitude of the surface type hmin and the same for the
maximum albedo and altitude. For every surface type, there is a most common albedo in
its range on earth, which is used for the discrete albedo map. Water has a constant albedo
of 0.06 NSIDC (2020), thus this value is used for both the continuous and the discrete
albedo maps. The albedo values of the other surface types are summarised in table 1.

Table 1: Table containing the Albedo values of the used surface types. The albedo range is used for
the continuous albedo maps and the discrete albedo is used for the discrete albedo maps. Kuusinen
(2014), Tetzlaff (1983) and NSIDC (2020)

Surface type Albedo range Discrete albedo
Vegetation [0.1,0.3] 0.15
Sand desert [0.3,0.5] 0.4
Snow [0.6,0.9] 0.8

The discrete and continuous albedo maps of the altitude maps in figure 9 are shown in
figure 10 and 11 respectively.

Apart from the different albedo ranges of the different surface types, the way the
surface scatters light can also differ. For example, a mirror reflects light differently than
snow. How this works in detail, is described in section 4. This property can also be taken
into account for the different surfaces, how this is done is described in section 5.
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(a) (b)

(c) (d)

Figure 9: The height map of a fictional planet composed by the tetrahedral subdivision method.

(a) (b)

(c) (d)

Figure 10: The discrete albedo maps of the artificial planets based on the height map of figure 9.
The blue part represents water with an albedo of 0.06, green represents vegetation with an albedo
of 0.15, light-brown represents sand desert with an albedo of 0.4 and white represents snow with
an albedo of 0.8.
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(a) (b)

(c) (d)

Figure 11: The continuous albedo maps of the artificial planets based on the height map of figure
9. The blue part represents water with an albedo of 0.06, green represents vegetation with an
albedo ranging between 0.1 and 0.3, light-brown represents sand desert with an albedo between
0.3 and 0.5, and white represents snow with an albedo between 0.6 an 0.9.
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4. Reflection of Light
In order to infer properties of a planet’s surface from its light curve, it first has to be known
how the surface reflects light. The analysis of this problem would be much easier if there
is one formula that simulates the reflectance of all surfaces. However we can not use one
formula for this, because different surface types reflect light differently. For example,
the gas giant Jupiter reflects light differently than the moon as can be seen in figures 12
and 13. For the images at 0◦ phase angle, the edges of Jupiter appear darker than the
middle, also called limb darkening. Phase angle is the angle between the direction of
light from the host star to the exoplanet and the direction of light from the exoplanet to
the observer. On the other hand, the full moon appears like a flat disk as seen figure 13.
This demonstrates that a regolith body like the moon reflects light differently than a gassy
body like Jupiter.

Figure 12: Jupiter at phase angles from left to right; 0◦, 50◦, 90◦ and 125◦. In the image at
90◦ phase angle, the moon Io is in front of Jupiter. Note in the 0◦ phase angle image that limb
darkening is apparent, this is characteristic of Lambertian reflection. (Mayorga et al. (2016))

Figure 13: The moon as seen from Earth at different phases. Note that the full moon appears like a
flat disk, this indicates that the moon does not reflect light by Lambertian reflection. Wright et al.
(2020)

Thus, before we can analyse the light curve of the planet, we need to know how
light reflects from the planet’s surface. For this purpose, we have considered multiple
models that are characterised by fBRDF known as the Bidirectional Reflectance distribution
Function (BRDF). The BRDF gives the fraction between reflected radiance and incident
irradiance dLr/dEi for a surface. Radiance L

[
W

sr·m2

]
is the radiant flux per unit area

per unit solid angle and irradiance E
[

W
m2

]
is the incident radiant flux per unit area. A

schematic representation of what the BRDF describes is shown in figure 14.
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Figure 14: Parameters relevant to the BRDF; the fraction between the reflected radiance dLr and
incident irradiance dEi for a surface. Here, θi, θr and ψ are the incident, emergent and azimuth
angles respectively. (Schill et al. (2004))

The considered models are the Lambertian model, the Lommel-Seeliger model and
the Fresnel reflection model. Fresnel reflection is specular reflection combined with the
Fresnel coefficient, of which the details will be explained in more detail later. The BRDF’s
of the Lambertian, Lommel-Seeliger and specular models are shown in table 2. Here θi, θr
and ψ are the incident, emergent and azimuth angles respectively, ∆θ is the angle between
the Fresnel reflection peak n⃗r an the surface normal s⃗, lastly σ is the standard deviation
of the Gaussian curve that is centered on the point where θi = θr. The angles are shown
in figure 15. The Lommel-Seeliger model has been scaled such that a surface with albedo
1 exactly scatters all incident radiation energy on average for incident angles.

Table 2: Table with the bidirectional reflective distribution functions of the Lambertian,
Lommel-Seeliger and specular reflection model.

Reflection model fBRDF(θi, θr, ψ)

Lambertian π−1

Lommel-Seeliger (4 ln 2(cos θi + cos θr))
−1

specular (4 cos θi cos θr
√
2πσ)−1 exp

{
−1

2

(
∆θ
σ

)2}
The reflection of the Lambertian, Lommel-Seeliger and specular reflection model are

shown in figure 16, 17 and 18 respectively for various phase angles α.
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Figure 15: Schematic representation of the angles regarding given vectors from the planet to its
host star r⃗, from the planet to the observer o⃗ and surface normal s⃗. Here, n⃗r is the direction vector
of the reflection peak for Fresnel reflection. Here θi, θr and ψ are the incident, emergent and
azimuth angles respectively, ∆θ is the angle between the Fresnel reflection peak and the normal
surface vector and α is the phase angle of the planet.
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(a) α = 0◦ (b) α = 50◦ (c) α = 90◦ (d) α = 125◦

Figure 16: Light-intensity distribution on a homogeneous planet for Lambertian reflection
for different phase angles α.

(a) α = 0◦ (b) α = 50◦ (c) α = 90◦ (d) α = 125◦

Figure 17: Light-intensity distribution on a homogeneous planet with the Lommel-
Seeliger law for different phase angles α.

(a) α = 0◦ (b) α = 50◦ (c) α = 90◦ (d) α = 125◦

Figure 18: Light-intensity distribution on a homogeneous planet for Fresnel reflection for
different phase angles α. Here, σ = 2π

100
in the BRDF of Fresnel reflection shown in table

2.
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4.1. Normalisation of the BRDF’s
Before the BRDF’s are used to create light curves, a normalisation step has to be in
place. A BRDF is normalised when the total scattered light intensity from a point on
the planet equal the incoming light intensity to this point. The fraction between the re-
flected light intensity and the incoming light intensity cr is calculated with the following
integral (Mungan (1998)):

cr(θi) =

∫ π
2

0

∫ 2π

0

fBRDF(θi, θr, ψ) sin θr cos θrdψdθr (1)

If cr = 1 then the model is normalised and is physically correct. On the other hand,
if cr ̸= 1 then the model is not physically correct, because with an albedo of 1 then
either not all incoming light is reflected or extra intensity is created. The normalisation
is calculated for the Lambertian, Lommel-Seeliger in appendix A.1. The normalisation
of the specular reflection BRDF is calculated numerically and can be found on the public
GitHub repository1. Of these models, only the Lambertian model is normalised for all
incident angles. The value of cr as a function of θi is shown in figure 19 for the Lommel-
Seeliger and specular models.

Note that the Lommel-Seeliger law is scaled such that it is normalised on average
for incident angle, and since the normalisation is not constant for all incident angles, the
normalisation has parts above 1 and parts below. The specular reflection is normalised
for angles smaller than 0.4π, this is as expected, because a spherical mirror reflects all
light. The drop in reflected light at incident angles around π

2
is also sensible, because

the Gaussian curve around n⃗r is not fully visible as this point approaches the edge of the
visible domain.

Figure 19: Fraction between total reflected light intensity and incident light intensity cr as
a function of the incident angle θi for the Lommel-Seeliger model in the dotted line and
the specular model in the full line. The drop of the specular reflection near π

2
is caused by

the fact that the visible circle drops behind the horizon for incident angles near π
2
.

1Link to GitHub repository: https://github.com/SwederB/BEP-Exocartography
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4.2. Fresnel reflection
One surface type that will be used is water to model oceans on the surface of the planet.
Water will be modeled by the specular model multiplied by the Fresnel coefficientR. The
Fresnel coefficient depends on the polarisation of light and the refractive index of the first
and second medium. In this case the Fresnel coefficient is used for light refraction from a
vacuum to water at 25◦ C and unpolarised light. This Fresnel coefficient is the average of
the Fresnel coefficient for s-polarised and p-polarised light,Rs andRp respectively: (Rs+
Rp)/2, of which the formulas are shown in equations 2 and 3 respectively. The average of
these is plotted in figure 20 (Konijnenberg et al. (2021)). In practice, the variables needed
to determine the Fresnel coefficient can be determined before the measurements of the
light curve of the exoplanet. Thus, the assumed values do not impede the demonstration of
application of this model when a planet has an ocean with different optical characteristics.

Rs (θi) =

∣∣∣∣∣∣cos (θi)− 1.33
√

1−
(

1
1.33

sin (θi)
)2

cos (θi) + 1.33
√

1−
(

1
1.33

sin (θi)
)2
∣∣∣∣∣∣
2

(2)

Rp (θi) =

∣∣∣∣∣∣1.33 cos (θi)−
√

1−
(

1
1.33

sin (θi)
)2

1.33 cos (θi) +
√

1−
(

1
1.33

sin (θi)
)2
∣∣∣∣∣∣
2

(3)

Figure 20: Plot of the Fresnel coefficient R to the angle of incidence θi for a refraction factor of
n = 1.33 and neglected the effects of an atmosphere.

4.3. Phase curves of a homogeneous exoplanet for different models
The phase curve describes the perceived light of a body as a function of its phase angle.
There are a lot of nearly homogeneous bodies in the solar system like the Moon, Jupiter
and the Sun. Therefore, it is interesting to see what the phase curve of a homogeneous
planet is for the different reflection models. This way, we can see what near-homogeneous
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bodies in space are described by which model. The resulting phase curves are shown in
figure 21.

(a) Lambertian reflection (b) Lommel-Seeliger model

(c) Fresnel reflection

Figure 21: Phase curves of a homogeneous planet with albedo 1 for different reflection models.
The vertical axis is scaled to the maximum value of the perceived light intensity and the horizontal
displays the phase angle α. The Fresnel reflection is for light refraction from a vacuum to water at
25◦ C and unpolarised light with σ = 2π

100 in the Fresnel BRDF (table 2).
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5. Light curve of an exoplanet
In this section a coordinate system is defined such that the light curve of an arbitrary
exoplanet can be analysed. Consequently, this light curve is composed numerically for
the sphere mapping illustrated in section 2. In conclusion, the method for generating a
light curve is applied to a fictional exoplanet constructed with the method illustrated in
section 3.

5.1. The coordinate system
For the analysis of the reflection of light off the planet the coordinate system illustrated
in figure 22 is used; the spherical planet with radius ρ orbits the star in the xy-plane in
circular motion with angular velocity ω and radius R. The observer can be placed in the
positive xz-plane, because there is symmetry with respect to this plane. This vector is
time-invariant, so it does not need to have a y-component since the observed exoplanet is
sufficiently far away. Furthermore, the planet rotates around its own axis n̂ with angular
frequency Ω, n̂ is shown in equation 4. Here βe is the equinox angle, which is the angle
between the projection of n̂ onto the xy-plane and x̂. βo is the obliquity of the planet, this
is the angle between n̂ and ẑ.

n̂ =

cos βe sin βo
sin βe sin βo

cos βo

 (4)

In addition, the vectors shown in equation 5 will be used to analyse the light curve
of the planet. ô is the unit vector from the planet to the observer defined by γ the angle
between the observer and x̂. ŝ the surface normal unit vector defined by spherical coordi-
nates ϕ and θ. Lastly, r̂ is the unit vector from the planet to the star, where at time t = 0
the planet is on the positive x-axis.

ô =

sin γ
0

cos γ

 , ŝ =

cosϕ sin θ
sinϕ sin θ

cos θ

 , r̂ =

− cos(ωt)
− sin(ωt)

0

 (5)

5.2. Light curve of an exoplanet
In order to retrieve the surface of an exoplanet, we can not use direct imaging because the
planet is only a pixel in our image. We only see the total light reflected at a given time.
This is signal is observed as the intensity of light, denoted by f(t). The magnitude of this
signal is the product of three terms; the light from the star that reaches the planet Iin, the
fraction of light that is reflected by the surface in the direction of the observer, and the
fraction of light from the planet that reaches the observer cobs.

Let the star have total stellar power of I0 and let the distance from the star to the planet
be R, then the intensity of light that reaches an infinitesimal part of the planet’s surface
dA is I0

4πR2 ⟨r̂, ŝ⟩d2Ωs, where d2Ωs is the solid angle of dA seen from the star. Thus the
irradiance that reaches dA is dEi = I0

4πR2 ⟨r̂, ŝ⟩. Furthermore, the radiance from dA is
dLr = adAfBRDFdEi where adA is the bond albedo of dA and fBRDF is the bidirectional
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(a)

Figure 22: Schematic representation of the planetary system. The planet with radius ρ is in a
circular orbit at a distance R around its host star with angular frequency ω. Furthermore, the
planet rotates with angular frequency Ω about the axis n̂, defined by the obliquity βo and equinox
angle βe. Moreover, at time t, the unit vectors from the planet to its host star and the observer
are r̂ and ô respectively. ŝ is the unit vector perpendicular to the planet’s surface. Lastly, % is the
observable domain that is both illuminated and visible by the observer. Images from Stuger (2021)

reflectance distribution function described in section 4. Lastly, the observed light intensity
from dA is Iobs = dLr ⟨̂s, ô⟩d2ΩodA. Intensity of light is often measured relative to
the star’s measured intensity I0d2Ωo/4π (Winn et al. (2008)), so the contribution of an
infinitesimally small surface element dA of the planet to the light curve can be written as

fdA =
adAfBRDF

R2
⟨r̂, ŝ⟩⟨̂s, ô⟩dA (6)
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Before we can construct the total light curve of the planet, we need to know what part
of the surface contributes to the signal, since only a part of the planet’s surface contributes
to the signal at a time. Firstly, the observer can see the hemisphere that is facing their
direction. From figure 22 it can be seen that for this hemisphere, the angle between ô and
r̂ is between −π

2
and π

2
, thus ⟨ô, r̂⟩ ≥ 0. However, this hemisphere is not fully lit up by

the star most of the time. Only the hemisphere that is lit up by the star can be seen, for
this hemisphere the angle between r̂ and ŝ is between −π

2
and π

2
, so ⟨r̂, ô⟩ ≥ 0. Thus

the part of the surface that contributes to the light curve, called the observable domain, is
denoted by %:

% = {⟨r̂, ô⟩ ≥ 0 ∧ ⟨̂s, r̂⟩ ≥ 0}.

In order to obtain the total light curve at time t the integral of equation 6 is taken over the
observable domain %:

f(t) =
1

R2

x

%
a(ϕ, θ)⟨r̂, ô⟩⟨̂s, r̂⟩fBRDF(r̂, ŝ, ô)d

2Ωs

=
ρ2

R2

x

%
a(ϕ, θ)⟨r̂, ô⟩⟨̂s, r̂⟩fBRDF(r̂, ŝ, ô) sin(θ)dϕdθ

(7)

However, we have a finite resolution in our signal. If we also compute the planet’s
map with a resolution, the integral can be written as a matrix product:

f = Ta. (8)

Here f = [f(t1), f(t2), ..., f(tn)] is the signal where ti is the time at measurement i, and
a = [a1, a2, ..., am]

T the Bond albedo at every pixel on the map, where the resolution of
the signal and map is n and m respectively. T is the transformation matrix that maps the
contribution of every surface part to every light measurement.

First, it has to be seen what the contribution of every surface part to every light mea-
surement should be. For all time-steps, the coordinate (ϕj, θj) corresponding to vector ŝj
corresponds to the same pixel in the coordinate system, so it does not point to the same
surface element of the planet because ŝj does not rotate with the planet’s rotation. To
compensate for this, a number of rotations illustrated in figure 23 have to be performed.
Firstly, for time step ti the vector has to be rotated by Ωti radians around the z-axis for the
planet’s daily rotation, then it has to be rotated βo and βe radians around the y-axis and
z-axis respectively to compensate for the planet’s axial tilt. The vector that will always
point to the same pixel on the planet’s surface can be computed using the elementary
rotation matrices:

ŝ′j = Rz(βe)Ry(βo)Rz(Ωti)̂sj (9)

If ŝ′j is not in the observable domain at time ti, then either ⟨r̂i, ŝ′j⟩ < 0 or ⟨̂s′j, ô⟩ < 0.
In these cases we should have Ti,j = 0. To get an explicit expression of % in T , we use
the function g+ = max{0, g} = 1

2
(g + |g|) on ⟨r̂i, ŝ′j⟩ and ⟨̂s′j, ô⟩. Thus for time ti and

surface part ŝj , the corresponding entry of T is;

Ti,j =
ρ2

R2
⟨r̂i, ŝ′j⟩+⟨̂s′j, ô⟩+fBRDF(r̂i, ŝ

′
j, ô) sin(θj)dAj (10)
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x̂ ŷ

ẑ

βe
βe

n̂

βo

βo

x̂′

ŷ′

ωt

ωt

Figure 23: Figure based on Dorian (2017) illustrating how the planet is rotated according to its
equinox angle βe, obliquity βo and diurnal rotation ωt.
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The phase curves in figure 21 are constructed using a unity albedo vector, representing
a homogeneous planet, indicating that the method returns logical light curves. To further
illustrate this, consider the planet in figure 10(a). Using only Lambertian reflection, the
light curve of this planet for three of its days around α = 0 is shown in figure 24.

Even though the light reaching the planet is approximately constant, there are signif-
icant fluctuations in the light curve. This is exactly what is expected, because one side
contains a lot of water with low albedo and the other side has a lot of high-albedo snow
and sand. This argumentation can also be reversed. If this light curve is measured, we
know that one hemisphere has a higher albedo than the other. Thus it is possible to infer
properties of the planet’s surface by only observing the light-curve.

Figure 24: Light curve of the exoplanet shown in figure 10(a) for three days using only Lambertian
reflection. The fraction between the intensity of the star and the intensity of the exoplanet is shown
on the vertical axis, the phase angle α in degrees of the planet is shown on the horizontal axis. This
planet’s orbital period equals 365 diurnal periods.

5.3. The linear mapping for a combination of reflection models
The methods described previously only works for one reflection model at one time. In
practice, the planets that are in our interest have different surface types with different
reflective properties. This is solved by assigning multiple albedo values for a facet, one
for every reflection model. For instance, if a surface is Lambertian and has 1 albedo,
then the Lambertian albedo is 1 and the Fresnel and Lommel-Seeliger albedos are 0.
Furthermore, if a surface is partly diffuse and partly specular, this property can be easily
be accounted for using this method.

As a consequence, the albedo vector a in equation (8) has an increased size. To keep
the mapping from the albedo to the light curve a linear transformation, the albedo vector
has to remain as a vector. It will now be

a =

aLa

aLS

aw

 ,
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where aLa, aLS and aw are the respective albedo vectors for Lambertian reflection, the
Lommel-Seeliger model and Fresnel reflection. The corresponding change in the trans-
formation matrix T is T = [TLa TLS Tw], where again TLa, TLS and Tw are the transfor-
mation matrix corresponding to Lambertian reflection, the Lommel-Seeliger model and
Fresnel reflection respectively. Thus, the mapping from the albedo vector to the light
curve for the three discussed reflection models is:

f = [TLa TLS Tw]

aLa

aLS

aw

 (11)

5.4. Light curve with shot noise
Exoplanets are very far away, the closest star being at 4.2 light-years from the solar sys-
tem. Since exoplanets are also very dim, the light intensity observed is very low. Because
of this, the observed light will be subject to shot noise. Shot noise is caused by the dis-
crete nature of light, the photons that make up a signal are not emitted at a constant rate.
The number of photons emitted in a given time interval tint is described by the Poisson
distribution. Thus the probability that k photons are emitted is;

P(k) =
N̄ke−N̄

k!
(12)

where N̄ is the expected number of emitted photons.
The expected number of emitted photons in time interval tn by an exoplanet is given

by the following formula;

N̄ =
8

3
Ṅstartint

(
d

4d0

)2 ( ρ

2R

)2

(13)

where Ṅstar is the total photon emission rate of the host star, d0 is the distance from the
planetary system to the observer, d is the diameter of the observing telescope and ρ and
R are the radius of the exoplanet and its exoplanet around the host star respectively.

For an earth-twin in a twin solar system (ρ = 6.4 · 106 m, R = 1.5 · 1011 m and
power of the star Pstar = 3.8 · 1026 W) with an observation time of 1 hour by the James-
Webb telescope (d0 = 6.5 m) at wavelength 0.4 µm at a distance of 5 light-years gives
an expected number of photons N̄ ≈ 187. This corresponds to a signal to noise ratio
SNRmax =

√
N̄ ≈ 14. This is an upper bound of the signal to noise ratio for such a

planet, because other sources of noise are also present, such as Gaussian noise caused by
the measuring instrument, and background starlight that pollutes the signal. Furthermore,
this expected number of photons is for an albedo 1 Lambertian planet that is observed
with phase angle 0. To compensate for this, the expected number of photons is scaled
linearly to the signal without noise.
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6. Retrieval of the albedo map from an ideal signal
From the light curve of an exoplanet, its map can be retrieved. To achieve this, the trans-
formation matrix, introduced in section 5, will be inverted to give a map from the light
curve to the albedo vector. Consequently, the retrieval of planets that can be fully de-
scribed by one reflection type, Lambertian, Lommel-Seeliger or Fresnel is tested. There-
after, the reflection models are combined for a planet that consists of different surfaces
that are each described by one of these reflection models.

The retrieval method is only done for edge-on observation of the planetary system
in this thesis, however note that the angle of inclination γ can be set to fit any specific
planetary system in the method.

6.1. Inverting the transformation matrix
Inverting matrix T is not trivial, because it is not necessarily square and if it is, its deter-
minant can be zero so that T has no inverse. The dimensions of T are (nt,m× ns) where
nt is the number of measurements, m is the number of reflection models used and ns is
the number of pixels used for the mapping. Nevertheless, we can use the Moore-Penrose
inverse, or pseudo inverse, that always exists.

The pseudo inverse of T can be computed by finding the singular value decomposition
T = UΣV T where U and V are orthogonal matrices and Σ is a rectangular diagonal
matrix containing the positive non-zero singular values of T . The number of non-zero
entries of Σ is equal to the rank of T . Consequently, the pseudo inverse of T is T+ =
V Σ+UT , where Σ+ is the pseudo inverse of Σ, which is computed by taking the reciprocal
of each singular value and transposing the matrix. However, some singular values could
be very small but non-zero, because of noise or numerical errors, causing their reciprocal
to be very large. A solution for this is to introduce a singular value cutoff (SVC) such that
singular values smaller than the SVC are set to zero.

Using this pseudo inverse, the albedo map that is retrieved from the signal f is

a = T+f .

However, to compute T in the first place, the axial tilt of the planet has to be known and
this can not be directly observed from its orbit. Among others, Stuger (2021) has shown
that the axial tilt can be accurately determined for discrete albedo maps of Lambertian
planets by minimizing the following distance: ||f − T (βe, βo)T

+(βe, βo)f ||. In order to
focus on the map retrieval from a signal with shot noise, the axial tilt is assumed to be
known from this method.

6.2. Albedo map retrieval for individual reflection models
The method described in the previous section is applied to three versions of the planet
shown in figure 25(a). Every version of the planet reflects light by one of the three reflec-
tion models presented in section 4, then the albedo map is retrieved with the knowledge
that the planet reflects light by the corresponding model.

The maps for the Lambertian and Lommel-Seeliger reflection are exactly as shown in
figure 25(a); the surface is divided into four surface types with a corresponding albedo.
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For the Fresnel reflection, the albedo vector a does not represent albedo, it rather consists
of binary values (0 or 1) indicating if there is water (1) at the corresponding facets or not
(0). The resulting map is shown in figure 25(b), where white represents water and black
represents land.

Using the transformation f = Ta, the computed light curves of each version of the
exoplanet without noise are shown in figure 26 with equinox βe = π

2
and obliquity βo = π

6
.

Notice that the maximal amplitude of a Lambertian planet is much higher than the other
reflection types. So, if a planet has Lambertian, rocky and water parts, then at the right
angles the Lambertian surface will be brighter in comparison.

Using the Moore-Penrose pseudo inverse of T with the light curves, the planet maps
shown in figure 27 are retrieved.

(a) (b)

Figure 25: The discrete albedo map of the fictional planet (left) generated by tetrahedral subdivi-
sion described in section 3 and its water map (right). In the water map, black is land and white is
water.

It is seen that the retrieval quality is close to perfect for the Lambertian and Lommel-
Seeliger reflections. For Fresnel reflection, the water map is retrieved perfectly up to π

6

radians from the equator. However, the facets farther away are not retrieved correctly.
But, because of the axial tilt of the planet, the facets that are more than π

6
radians from the

equator never reflect light from the sun. As a result, the retrieved albedo of these facets is
zero.

6.3. Surface map retrieval using multiple reflection models
In the previous paragraph it is shown that the retrieval of an exoplanet’s albedo map can
be done very accurately for individual light reflections. In this paragraph, a more realistic
planet will be considered that consists of surfaces that are described by different light
reflections.

The considered surface types are assigned the following albedo values for every model.
Water has an albedo factor of 1 for Fresnel reflection, sand is 0.4 albedo for the Lommel-
Seeliger model and finally snow has 0.8 albedo for the Lambertian model. Furthermore,
leaves are neither fully diffuse nor fully specular, but a combination of the two (Grant
(1987)). However, since most areas of vegetation consist of many leaves from plants and
trees in different orientations, the Lambertian model is assumed to be a good approxima-
tion of the light reflection of vegetation and the albedo is 0.15. Using these values for the
planet shown in figure 25(a), the light curve for edge-on observation is plotted in figure
28.
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(a) Lambertian reflection (b) Lommel-Seeliger model

(c) Fresnel reflection

Figure 26: Light curves for edge-on observation of the fictional exoplanet shown in figure 25.
The vertical axis shows the light-intensity relative to the planet’s host star and the horizontal axis
shows the product of time t and the angular frequency of the planet’s orbit. Figure (a) shows
the light curve when the planet reflects light diffusely, figure (b) shows the light curve when the
Lommel-Seeliger law describes the planet’s reflection, and figure (c) shows the light curve when
the water reflects light by Fresnel reflection and the land does not reflect light. For this planet’s
orbit a day is 24 hours and there are 365 of these days in its year. The planet has an equinox angle
βe =

π
2 and obliquity βo = π

6 . There are 1500 time measurements spread out evenly over the year.

Using the Moore-Penrose pseudo inverse of T on the light curve returns three albedo
maps, one for every reflection type. These maps are shown in figure 6 with the map of the
mean squared error (MSE) between the original and retrieved map for the corresponding
reflection type.

Similar as for the albedo retrieval for individual reflection types, the Lambertian and
Lommel-Seeliger maps are retrieved perfectly and the water map is only retrieved cor-
rectly up to 30◦ from the equator. This indicates that, with enough measurements, the
different reflections can be distinguished from one light curve. With this information, the
surface types can also be retrieved.

In our method, the retrieved surface type for a given facet is taken to be the one for
which the distance between the retrieved albedo vector of the facet af = (af,La, af,LS, af,w)
and the albedo vector of the surface type as = (as,La, as,LS, as,w) is minimal. Addition-
ally, in ideal conditions water facets that never reflect a significant amount of light, return
a zero albedo vector. Since no other considered surface type has a zero albedo vector, the
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(a) Lambertian reflection (b) Lommel-Seeliger model

(c) Fresnel reflection

Figure 27: Retrieved albedo maps from the light curves shown in figure 26 with the knowledge
of the reflection type of the planet. For Lambertian reflection and Lommel-Seeliger, the retrieved
maps are identical to true map. For Fresnel reflection, the facets up to roughly π

6 radians from the
equator are retrieved perfectly, but the other facets all have zero albedo. This is because the glint
from the star does not reach these regions.

distance between the retrieved albedo vector and the zero vector is also considered for the
determination of a water facet. So consider the retrieved albedo of af = (0.2, 0.4, 0.05),
then the norm for water, vegetation, sand and snow is respectively 1.05 or 0.45, 0.41, 0.21
and 0.72, so the retrieved surface type is taken to be sand as the norm of the difference is
the smallest. Using this method, the planet map that is retrieved is shown in figure 30.

From all facets, only one out of the 1001 has been assigned the wrong surface type
when the signal is ideal; a water facet is retrieved as vegetation. This shows that the
method also works very well for a more realistic planet with a small number of different
surface types.
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Figure 28: Light curve for noiseless edge-on observation of the planet shown in figure
10(a) using Lambertian reflection for the vegetation and snow, the Lommel-Seeliger for
sand, and Fresnel reflection for water. For this planet’s orbit a day is 24 hours and there
are 365 of these days in its year. The planet has an equinox angle βe = π

2
and obliquity

βo =
π
6
. There are 3500 time measurements spread out evenly over the year.
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(a) Retrieved Lambertian map (b) MSE in retrieved Lambertian map

(c) Retrieved Lommel-Seeliger map (d) MSE in retrieved Lommel-Seeliger map

(e) Retrieved water map (f) MSE in retrieved water map

Figure 29: The retrieved albedo maps ((a), (c) and (e)) from the noiseless signal from figure 28
using the method described in section 6.1. The MSE indicating the accuracy of the retrieval is
shown in (b), (d) and (f), it is zero in (b) and (d).
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Figure 30: The retrieved planet mapping per surface type from the albedo values for every consid-
ered reflection model shown in figure 29. The blue, green, brown and white facets represent water,
vegetation, sand desert and snow respectively.
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6.3.1. Retrieval with continuous albedo values

In practice, the albedo of a specific surface type can be different for different points on
the planet as described in section 3. These albedos applied to multiple reflection models
gives them the following albedo vectors: water is kept at the constant albedo vector of
(0, 0, 1), vegetation ranges from (0.1, 0, 0) to (0.3, 0, 0), sand ranges from (0, 0.3, 0) to
(0, 0.5, 0), and snow ranges from (0.6, 0, 0) to (0.9, 0, 0). The created albedo map from
the altitude map of figure 9a is shown in figure 31(a)-(c). From these, the surface map is
created using the same method to determine the surface type from the albedo values as
with the discrete albedos, but now computing the distance to the mean albedo of a surface
type. This is shown in figure 31(d).

From noiseless observation of this planet with equinox βe = π
2

and obliquity βo = π
6
,

the retrieved albedo map is shown in figure 32 with the MSE per reflection type. From
the retrieved albedo maps, the surface shown in figure 33 is retrieved.

(a) Lambertian component (b) Lommel-Seeliger component

(c) Fresnel component (d) Surface map

Figure 31: Created albedo maps based on the height map of figure 9a for each considered reflection
type for a continuous range of albedo values per surface type in (a)-(c). The combined surface map
is shown in (d).
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(a) Retrieved Lambertian map (b) MSE in retrieved Lambertian map

(c) Retrieved Lommel-Seeliger map (d) MSE in retrieved Lommel-Seeliger map

(e) Retrieved water map (f) MSE in retrieved water map

Figure 32: The retrieved albedo maps from the signal generated by the map in figure 31 with 3500
time measurements spread evenly throughout the year where the planet has equinox angle βe = π

2
and obliquity βo = π

6 .
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Figure 33: The retrieved planet mapping per surface type from the range of retrieved albedos for
every considered reflection model shown in figure 32. The blue, green, brown and white facets
represent water, vegetation, sand desert and snow respectively. Darker facets indicate a lower
albedo than lighter facets. The original map is shown in figure 31 (d), note that the only incorrectly
retrieved facet is a small island in the north of the left ocean.
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6.4. Surface map retrieval from signal with shot noise
In the previous paragraphs it has been shown that an exoplanet’s map can be retrieved very
accurately using spin-orbit tomography when the signal consists of enough measurements
in time and there is no noise. In the following paragraphs, the method will be tested on
signals with shot noise. The generation of these signals is described in section 5.4. First,
the map retrieval is tested for every reflection type individually, then the map retrieval is
tested on a planet with different surface types.

6.4.1. Albedo retrieval for individual reflection models with shot noise

To start, the albedo retrieval for individual reflection models with shot noise is investi-
gated. The corresponding light curves are shown in figure 34, from the light curves the
albedo maps retrieved with multiple Singular Value Cutoff Ratio’s (SVCR’s) are shown
in figure 35. As mentioned in section 6.1, a key part in the correct retrieval from a noisy
signal is the truncation of the pseudo-inverse of the transformation matrix T in the form
of a singular value cutoff. As a result of this cutoff, small components of the signal f are
rejected. If this cutoff value is too small, anomalies in the signal caused by noise are not
filtered out, resulting in an erroneously retrieved map as seen in figure 35 (c)-(e). If this
cutoff value is too large, not only will the noise be filtered out of the signal, true informa-
tion about the surface is also filtered out. This results in an undetailed map retrieval, as
shown in figure 35 (i)-(k). The perfect value of the cutoff is one that is as low as possible
to retain as much information about the surface as possible, while filtering out the shot
noise.

A more detailed analysis of the retrieval quality of albedo maps from a signal with
shot noise and the effect of different SVCR’s follows. A SVCR of 0.005 is too low, as the
retrieved map is dominated by noise for the Lambertian and Lommel-Seeliger reflection.
This is expressed in the retrieved map by sharp spikes in albedo values that are unrelated to
the original map. The water map shows that the main body of water is retrieved adequately
where glint occurs. However, the surface would not be retrieved correctly if the planet
would consist of small parts of water or small islands. Since the surface near the equator
has many small anomalies, if the true surface is made out of small islands, the anomalies
could not be distinguished from the islands. Furthermore, to compare SVCR = 1

14
and

SVCR = 0.25, it can be noted that these maps are not dominated by noise, because
there are no sharp peaks of albedo values. Thus, by the argument made in the previous
paragraph, the higher SVCR is preferred, concluding that the best SVCR of these three is
1
14

. It also makes sense that the SVCR = 1
14

gives the best retrieval, because the signal to
noise ratio of the signal is SNRmax ≈ 14 and the cutoff approximately removes values that
are smaller than 1

14
of the maximum value of the signal. The main features of the retrieved

Lambertian and Lommel-Seeliger maps are very close to the original map, demonstrating
that the map of an exoplanet that is fully described by either of these reflections can be
realistically retrieved as long as it satisfies the assumptions made (stationary, earth-twin,
etc.).

Furthermore, in figure 35(h), it can be seen that the retrieval of the water map fails
at the equator, contrary to the noiseless retrieval. This is caused by the following occur-
rence; since the planet is tilted towards the observer, the surface at around π

6
radians from

the equator is in the glint when the phase angle is close to π
2
. Conversely, glint around the
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equator is only present at small phase angles. Because of the Fresnel coefficient as seen
in figure 20, the signal from the glint is weak at small phase angles. Also, small values
are truncated out of the signal by the singular value cutoff in the pseudo-inverse of trans-
formation matrix T . Thus in the attempt to filter small noise values, the small intensity of
light that is reflected from water at the equator is filtered out of the signal.

(a) Lambertian reflection (b) Lommel-Seeliger model

(c) Fresnel reflection

Figure 34: Light curves for edge-on observation of the artificially generated exoplanet shown in
figures 35(a) and (b) with shot noise with SNR ≈ 14 at the peak of the light curve. The solid blue
curves show the noisy signal and the overlaid transparent orange curve shows the noiseless signal.
The vertical axis shows the light-intensity relative to the planet’s host star and the horizontal axis
shows the product of time t and the angular frequency of the planet’s orbit ω. Figure (a) shows
the light curve when the planet reflects light diffusely, figure (b) shows the light curve when the
Lommel-Seeliger law describes the planet’s reflection, and figure (c) shows the light curve when
the water reflects light by Fresnel reflection and the land does not reflect light. This planet’s orbital
period equals 365 diurnal periods and it has an equinox angle βe = π

2 and obliquity βo = π
6 . There

are 1500 time measurements spread out evenly over the year.
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(a) (b)

(c) SVCR = 0.005 (d) SVCR = 0.005 (e) SVCR = 0.005

(f) SVCR = 1
14 (g) SVCR = 1

14 (h) SVCR = 1
14

(i) SVCR = 0.25 (j) SVCR = 0.25 (k) SVCR = 0.25

Figure 35: The retrieved albedo maps (c)-(k) from the signal with shot noise generated from a
fully Lambertian planet (a) for the retrieved maps (c), (f) and (i), from a planet (a) described fully
by the Lommel-Seeliger law for the retrieved maps (d), (g) and (j), and for the planet (b) described
by Fresnel reflection for the retrieved maps (e), (h) and (k). The planet has an equinox angle
βe =

π
2 and obliquity βo = π

6 . There are 1500 time measurements spread out evenly over the year.
Different singular value cutoff ratio’s (SVCR) are used, indicated below the retrieved images.

6.4.2. Retrieval of surface map from a signal with shot noise

To extend the results of the previous paragraph to a planet with multiple surface types,
the map retrieval described in section 6.3 is performed on a signal with shot noise. This is
done for planets with all an equinox of βe = π

2
and obliquity of respectively βo = π

2
, π
6
, 0

in order to also gain insight on the retrieval with different tilt angles. Their light curves
are shown in figure 36, from these light curves the retrieved albedo and surface maps are
shown in figure 37.

Firstly, the effect of obliquity on the retrieval quality is assessed. It is clear that a
greater obliquity results in a better quality of the retrieved map, because the retrieved
surface map at obliquity βo = π

2
resembles the original map more than the retrieved
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surface at obliquity βo = 0 does. To explain this, note that the method used to compute a
surface map from a light curve is based on the diurnal and seasonal variations caused by
the surface. If these variations are greater, then the map can be retrieved more accurately.
In addition, if the obliquity is closer to π

2
, the seasonal changes are larger, thus it makes

sense that the retrieval gets better as the obliquity gets closer to π
2
.

Furthermore, it can noted that the retrieved surface maps only include water and veg-
etation; sand and snow are not retrieved. This is a result of the retrieved albedo maps
of the reflection types. The retrieved Lommel-Seeliger map is approximately zero for all
obliquities except βo = π

2
, so almost no facets are retrieved as sand. This is caused by

the smaller intensity of Lommel-Seeliger reflection compared to Lambertian reflection as
shown in section 4. As a result of the SVCR, apart from noise, also small values are fil-
tered out, resulting in near-zero retrieved Lommel-Seeliger and water maps. Additionally,
the Lambertian map only contains small values, causing no facet to be retrieved as snow.
This occurs because the signal that is created by the snow originally, can also be caused
by a larger diffuse area with lower albedo after filtering the noise.

In an attempt to retrieve non-zero Lommel-Seeliger and water maps, the SVCR is
decreased to 0.005, the result of this for the planet with obliquity βo = π

6
and equinox

βe = π
2

is shown in figure 38. The figure shows that the water map is retrieved with
great accuracy at the ocean glint peaks around π

6
radians from the equator. However, the

Lambertian and Lommel-Seeliger maps are polluted by noise, this subsequently explains
the inaccurate retrieval of the surface map. Hence, it is not a solution to lower the SVCR
for multi-reflectional retrieval. Nevertheless, a lower SVCR can be used to verify that
large bodies of liquid are present on the planet around the glint peaks, which would be a
great accomplishment if achieved with real data.

In conclusion, for an exoplanet at 25 light-years that is in a twin solar system and has
Lambertian surfaces, rocky surfaces can not be retrieved accurately because this either
reflects too little light compared to the Lambertian surface or a distinction can not be ac-
curately made Lambertian reflection and Lommel-Seeliger reflection. This can be solved
by reducing the shot noise, this can be done by increasing the measuring time interval or
using a larger telescope. Additionally, the general shape of Lambertian surface areas of
an exoplanet can be retrieved including rough albedo estimates. Furthermore, the global
water map can not be retrieved since glint only occurs at specific band on the planet, but
the presence of water on the glint peak band can be retrieved in detail.
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(a) (b)

(c)

Figure 36: Light curves for edge-on observation of the fictional exoplanet shown in figure 37 row
1 with shot noise with SNR ≈ 14 at the peak of the light curve. The solid blue curves show the
noisy signal and the overlaid transparent orange curve shows the noiseless signal. The vertical axis
shows the light-intensity relative to the planet’s host star and the horizontal axis shows the product
of time t and the angular frequency of the planet’s orbit. The light curves are for the planet with
equinox βe = π

2 and different obliquity: βo = π
2 ,

π
6 and 0 for figure (a), (b) and (c) respectively.

For this planet’s orbit, a day is 24 hours and there are 365 of these days in its year. There are 3500
time measurements spread out evenly over the year.
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βo a b c d

π
2

π
6

0

Figure 37: The retrieval of an exoplanet’s map from a signal with shot noise for different obliquity
angles. The signal consists of 3500 measurements of the exoplanet’s intensity spread out evenly
across one orbital rotation. The original map is shown in row 1, rows 2, 3 and 4 show retrieval
for equinox βe = π

2 and obliquity βo = π
2 ,

π
6 , 0 respectively. Column d shows the surface map,

columns a and b respectively show the Lambertian and Lommel-Seeliger components of the sur-
face and column c shows the water map. The colors in the surface maps represent the following
surfaces; blue is water, green is vegetation, brown is sand and white is snow. A singular value
cutoff ratio of 1

14 is used to filter the shot noise from the signal.

(a) (b) (c) (d)

Figure 38: Retrieved albedo maps from a signal with shot noise retrieved with SVCR = 0.01 for
the Lambertian, Lommel-Seeliger and water map in (a), (b) and (c) respectively, and the surface
map resulting from these albedo maps is shown in (d). The signal is computed for the planet shown
in figure 37 row 1 with equinox βe = π

2 and obliquity βo = π
6 . The colors of the retrieved surface

are the same as in figure 37.
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7. Conclusion
In this thesis, first a near-equal area segmentation of a sphere in flat facets was composed.
Then, the surface maps of generated artificial exoplanets were retrieved using spin-orbit
tomography with Lambertian, Lommel-Seeliger and Fresnel reflection both separately
and collectively. This was first done from an ideal signal and then from a signal with added
photon shot noise. The spin-orbit tomography was executed by taking the matrix product
of the vector of the albedo map with a so-called transformation matrix, this connects
the light curve and the albedo map by a linear transformation. Consequently, the albedo
vector was computed from the light curve by taking the matrix product of the Moore-
Penrose inverse of the transformation matrix with the light curve.

A few limiting assumptions were made in the method; the exoplanet’s surface was
assumed to be stationary, inhibiting clouds or changing ice caps, and it was assumed that
the surface could be described by any combination of the considered reflection models,
so surface types that reflect and scatter light differently were not considered.

The composed near-equal area segmentation of a sphere is the Voronoi diagram of the
Fibonacci lattice. For 1001 points on the sphere, the largest facet is only 12% larger than
the smallest facet. This is much better than the more traditional segmentation of a sphere
by the longitude-latitude lattice, as this difference is 2864 % for this segmentation.

The retrieval of an exoplanet’s surface from a signal without noise is close to perfect
for both an exoplanet that can be described by one single reflection model (Lambertian,
Lommel-Seeliger or Fresnel) and an exoplanet that is described by a combination of these
reflection types. In addition, the general shapes of the big features of an exoplanet’s sur-
face and its albedo distribution are retrieved very accurately from a signal with shot noise
with a signal to noise ratio SNR ≈ 14 is very successful for individual reflection models.
However, when an exoplanet’s surface is described by a combination of these reflection
models, only the general shape of the water and Lambertian surfaces are retrieved cor-
rectly, the surface area with Lommel-Seeliger reflection is not retrieved correctly.

Retrieval quality is better when the planet has a greater obliquity. This is a result
of a greater seasonal variation: there is a clearer distinction between information from
one hemisphere and the other. Moreover, if the planet has no obliquity, then for edge-
on observation a distinction can not be made between the signals from the northern and
southern hemisphere. This causes the retrieved map to be symmetric around the equator.

In conclusion, spin-orbit tomography first described by Fujii and Kawahara (2012)
that is advanced to include multiple light reflection models, is a realistic way to retrieve
an exoplanet’s albedo map from its scattered light curve. Thus, when the next-generation
telescopes will launch in this decade, their data can be used to infer general information
about the surface of exoplanets.

In order to improve the described method, the following recommendations are made:

• The addition of time-dependent components in the planet’s map, like clouds and
changing ice caps.

• Testing the retrieval quality of different planet surfaces. For example a planet con-
sisting of many small islands, or a fully diffusely reflective planet.

• Testing the retrieval quality with a lower resolution of the light curve. For this
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purpose, a lower resolution of the retrieval map could be used, but the original map
from which the light curve is created, should retain a higher resolution.
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A. Appendix

A.1. Normalisation of BRDF’s
With the reflective domain R = {θr ∈ (0, π

2
), ψ ∈ (0, 2π)}.

For Lambertian reflection fBRDF = 1
π

and the integral over the reflective domain is:

x

R

1

π
sin θr cos θrdθrdψ =

∫ π
2

0

sin 2θrdθr = 1

For the Lommel-Seeliger model fBRDF = 1
4π(cos θi+cos θr)

and the integral over the
reflective domain is:

1

4π

x

R

sin θr cos θr
cos θi + cos θr

dθrdψ =
1

2

∫ π
2

0

sin θr cos θr
cos θi + cos θr

dθr

=
1

2

∫ π
2

0

sin θrdθr −
cos θi
2

∫ π
2

0

sin θr
cos θi + cos θr

dθr

=
1

2
− cos θi

2

∫ cos θi

1+cos θi

−1

u
du

=
1

2
− cos θi

2
ln

(
1 + cos θi
cos θi

)
Here the substitution u = cos θr + cos θi, du = − sin θrdθr is used. Since θi ∈ (−π

2
, π
2
),

The last equality is more precise for smaller σ, because the approximation originates
from the fact that the integral over the Gaussian is taken over a finite domain. When σ is
smaller, the peak of the Gaussian is more sharp inside the integral domain, so the integral
is closer to 1.

A.2. Link to GitHub repository
The code used for this project is saved on the following GitHub repository: https://github.
com/SwederB/BEP-Exocartography.


