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Systematic DEM calibration of two-component mixtures using 
AI-accelerated surrogate models

Ahmed Hadi *, Yusong Pang , Dingena Schott
Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft University of Technology, Delft 2628CD, the Netherlands

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Efficient DEM calibration via screening, 
surrogate modelling, and optimisation.

• Accurate surrogate modelling using GPR 
and adaptive sampling.

• Calibrated parameters for a single mass 
ratio remain valid for other ratios.

• Average values for interaction parame
ters between components yield accurate 
results.

• For segregation, DEM stochasticity 
dominates the effect of varying DEM 
parameters.
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A B S T R A C T

Calibration of discrete element method (DEM) models is crucial for the realistic simulation of granular materials. 
However, it remains a challenging task, especially for multi-component mixtures due to their higher complexity 
and larger number of parameters involved. This study presents a systematic and computationally efficient 
calibration framework designed to address these challenges, focusing on pellet-sinter mixtures, as a represen
tative case of two-component mixtures commonly used in blast furnace steelmaking. The framework integrates 
sensitivity analysis, machine learning-based surrogate modelling with adaptive sampling, and genetic algorithm- 
driven optimisation techniques to minimise the number of required DEM simulations. Using this approach, we 
achieved a high-accuracy surrogate model (R2 = 0.95) for seven DEM parameters with only 110 data points, 
highlighting the efficiency and robustness of the framework. These parameters were successfully calibrated with 
a relative error of less than 2 %. Moreover, the calibrated parameters for the base case (i.e., 50–50 pellet-sinter 
mass ratio) remained valid across different mass ratios and layering orders, eliminating the need for recalibra
tion. Overall, the proposed framework offers a reliable, cost-effective, and adaptable solution for DEM calibration 
of two-component mixtures. Its flexibility and efficiency make it a promising tool for extending to more complex 
systems, facilitating the development of DEM models for a wide range of industrial applications involving 
granular mixtures.
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1. Introduction

Granular materials are the second most handled materials in industry 
after water [1], making it important to understand their behaviour for 
optimising industrial processes. The Discrete Element Method (DEM), 
first introduced by Cundall and Strack [2], has become a widely used 
computational tool for simulating granular materials. DEM provides 
particle-level insights into complex granular flows that are virtually 
impossible to obtain through experiments [3–8]. However, the reli
ability of DEM outcomes heavily depends on the proper determination 
of input parameters, which remains a significant challenge.

Various approaches have been employed in past studies to determine 
the DEM parameters, which can be categorised into trial-and-error 
methods and systematic calibration approaches [9]. Trial-and-error, 
although still widely used [10,11], are highly inefficient, subjective, 
and often fail to produce optimal parameter sets [12].

In contrast, systematic calibration approaches offer more efficient 
alternatives by employing optimisation algorithms and can be divided 
into two distinct groups [9]. The first group couples optimisation with 
costly DEM simulations, where each parameter set update requires 
running a full DEM simulation to evaluate the objective function. 
Several studies have used this approach, using optimisation techniques 
such as particle swarm optimisation [13], and genetic algorithms 
[14–16]. However, the approach of this group suffers from the high 
computational cost associated with the large number of DEM simula
tions required.

The second group is surrogate-based DEM calibration. A Surrogate 
model (SM), also known as a metamodel, is an approximation of a more 
complex and computationally demanding model, such as DEM [17]. SMs 
are especially suitable for DEM calibration as they are effective at 
finding a global optimum, handling parameter constraints, and are 
computationally efficient [12]. In this approach, an SM is first developed 
to capture the relationship between DEM parameters and outputs. The 
outputs typically represent the differences between experimental and 
DEM measurements of key performance indicators (KPIs), which are 
minimised during the calibration process. The SM is then used during 
the optimisation process to identify the optimal (i.e., calibrated) 
parameter sets. The key advantage of this approach is the significant 
reduction in computational time, as the fast surrogate model replaces 
costly DEM simulations during optimisation [12].

With the rapid advancement of AI, machine learning (ML)-based 
surrogate modelling has gained popularity in recent years. In the context 
of DEM calibration, several studies have explored the use of various ML 
models to create surrogate models. These include Gaussian process 
regression (GPR) and Kriging [12,18–21], multi-objective reinforcement 
learning [22], Bayesian filtering [23,24], multi-variate regression 
analysis [25], neural networks [26], and random forest (RF) [27].

Despite the advancements in DEM calibration approaches, several 
challenges remain. First, while SMs can significantly accelerate the 
optimisation process, the efficient development of accurate SMs is still a 
big challenge [9]. Second, most studies develop SMs for a limited subset 
of DEM parameters. A key drawback is that the selection of the pa
rameters to be calibrated is often subjective, which can lead to over
looking other potentially significant parameters. Third, the majority of 
existing studies focus on the calibration of single-component systems, 
while DEM calibration for multi-component mixtures—despite being 
common in industrial applications—is rare [28–30]. Multi-component 
mixtures introduce additional challenges, including a larger set of 
DEM parameters for individual materials as well as their interactions, 
the need to account for varying component ratios, and changes in 
layering order.

This study aims to address these challenges by developing a sys
tematic and efficient calibration framework based on ML-based surro
gate models for DEM modelling of multi-component mixtures. As a case 
study, we apply the framework to the mixture of iron ore pellets and 
sinter, which is used in blast furnace steelmaking. The proposed 

framework integrates sensitivity analysis, efficient surrogate modelling, 
and optimisation techniques to calibrate the DEM parameters effectively 
and efficiently. Furthermore, the robustness and generalisability of the 
calibrated parameters are validated across different mass ratios and 
layering orders of the mixture.

The structure of the paper is as follows. Section 2 describes the 
experimental setup, procedures, and results. In Section 3, the DEM 
model and the proposed systematic calibration framework are outlined. 
Finally, the paper concludes with key findings and suggestions for future 
research endeavours.

2. Experiments

This section covers the materials, experimental setup, and procedure, 
as well as the methodology for measuring the key performance in
dicators (KPIs) and their corresponding results.

2.1. Materials

Fig. 1 shows iron ore pellets and sinter used in this study. As shown, 
they have similar colours, making them difficult to distinguish during 
experiments. To address this issue, we coated the pellets with a thin 
layer of water-based white/blue paint.1 In our previous work, we per
formed a comparative analysis of the angle of repose (AoR) in the ledge 
test using both painted and unpainted particles [28]. The results showed 
no significant difference in the AoR, which validates the use of painted 
particles in our experiments.

We measured the size distribution of both pellets and sinter using 
sieves. The particle density (ρs) was also determined by measuring the 
weight of a number of particles with known volume and dividing their 
weight by volume. The results of the particle size distribution and par
ticle density measurements are reported in Table 1.

2.2. Draw down test

The draw down test has been widely used in previous studies to 
calibrate DEM models [32,33]. Fig. 2 schematically illustrates the draw 
down test setup used in this study. The setup consists of an upper and 
lower box positioned vertically, with load cells attached to the frame 
supporting the upper box. The outlet of the upper box is initially sealed 
with a plate, which can be released using electromagnets.

The procedure for each test is as follows. First, the upper box is filled 
with 40 kg of materials (Fig. 3(a)). Next, the magnetic outlet of the upper 

Fig. 1. A mixture of iron ore pellets and sinter (from [31]).

1 Initially, we used white paint, but later discovered that blue is a better 
choice because it makes the “Lab” colour space easier and more reliable to use.
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box is manually removed, allowing the material to discharge into the 
lower box (Fig. 3(b)). During discharging, load cells continuously record 
the remaining weight of the material in the upper box at a frequency of 
50 Hz (every 0.02 s). This data is used to calculate the mass flow rate and 
the mass of the materials collected in the lower box. Once the discharge 
is finished, a photo is captured using a camera to measure the shear 
angle and the angle of repose (Fig. 3(c)). We performed experiments for 
three different mass ratios of pellet-sinter: 50–50, 75–25 and 25–75. 
Additionally, for 50–50 ratio, we conducted a set of experiments with 
reverse layering (i.e. sinter-pellets-sinter-pellets from bottom to top).

In addition to these measurements, we evaluated the segregation of 
pellets and sinter in the lower box. As shown in Fig. 3(a), the upper box 
was filled with four alternating layers of pellets and sinter. We chose this 

layering approach instead of mixing materials to keep control over the 
initial configuration and remove the uncertainty about the segregation 
produced while filling the upper box [34]. Moreover, previous studies 
have shown that the initial configuration of materials significantly in
fluences downstream segregation [31,35]. Therefore, ensuring a 
consistent initial configuration is crucial, especially when the experi
ments are used for calibrating or verifying segregation in a discrete 
element method (DEM) model. The same photo used to measure the AoR 
was analysed to evaluate the segregation in the lower box.

These measurements highlight the versatility of the draw down test 
in measuring multiple key performance indicators (KPIs) in a single 
experiment. These KPIs include the shear angle in the upper box, the 
AoR and segregation in the lower box, the mass flow rate, and the total 
mass discharged into the lower box.

2.3. Measurement of KPIs

2.3.1. Shear angle and angle of repose
We used MATLAB’s image processing toolbox to measure the shear 

angle and the angle of repose following the same methodology outlined 
in our previous work [28]. First, the raw image was pre-processed which 
involves cropping the image to focus on the region of interest (RoI), 
removing the background, and inserting an artificial background for 
improved contrast, as shown in Fig. 4(a). Next, the pre-processed image 
was binarized (Fig. 4(b)) and the edge of the particles was extracted 
(Fig. 4(c)). Finally, a linear line was fitted to the detected edge, the slope 
of which was calculated to determine the shear angle or the angle of 
repose.

We considered the average of two measured angles in the upper box 
(shear angle (left) and (right) in (Fig. 4) as the shear angle. For the angle 
of repose in the lower box, the heap was divided at the center (as shown 
in (Fig. 4(c)), and the angle of repose was determined separately for each 
half of the heap. The average of these two values was reported as the 
final angle of repose. While some studies exclude the flattened portion of 
the heap from the calculation of the angle of repose [32,36], we used the 
entire heap profile for consistency. This is because there is no clear rule 
for determining the extent of the flattened portion to exclude.

2.3.2. Segregation in the lower box
We employed image analysis to evaluate segregation in the lower 

box. Compared to physical sampling, this method is non-intrusive and 
avoids the challenge of separating the components for materials over
lapping in size [37,38]. To quantify segregation, we used the same pre- 

Table 1 
The results of the particle size distribution and particle density measurements.

Material properties Pellet Sinter

Particle size distribution 10–12.5 (mm): 48 % 
12.5–16 (mm): 52 %

5.6–8 (mm): 36.37 % 
8–10 (mm): 23.13 % 

10–12.5 (mm): 17.61 % 
12.5–16 (mm): 13.45 % 

16–20 (mm): 5.08 % 
20–25 (mm): 4.36 %

Solid density (ρs) 3602.4 ± 61.7 (kg/m3) 3449.0 ± 34.0 (kg/m3)

Fig. 2. Schematic of the draw down test setup used in this study with 
detailed dimensions.

(a) (b) (c)

Fig. 3. The draw down test procedure. (a) upper box filled with materials where white and dark grey particles represent pellets and sinter, respectively, (b) dis
charging of materials into the lower box, and (c) the end of a test.
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processed image used for calculating the angle of repose (cf. right col
umn in Fig. 4(a)). Next, we segmented the image using the colour 
thresholding capabilities of MATLAB’s image processing toolbox to 
create two separate figures: one where white pixels represent pellets 
(Fig. 5(b), right) and the other where white pixels represent sinter 
particles (Fig. 5(b), left).

Next, we divided the image into slices, either vertically (Fig. 5(c)) or 
horizontally (Fig. 5(d)), to measure segregation in the respective di
rection. We evaluated the effect of the slice size on segregation mea
surements, resulting in 6 and 3 slices for horizontal and vertical 
directions, respectively. Then, we measured the pixel fraction of each 

component (Cik ) in each slice as: 

Cik =
Nik∑n
i=1Nik

(1) 

where Nik is the number of pixels for component i in the kth slice and n is 
the total number of components (pellets and sinter). The average (μi) 
and standard deviation (σi) of pixel fractions are calculated across all 
slices for each component. Finally, the Relative Standard Deviation 
(RSD), used as the segregation index, was calculated as: 

Fig. 4. The process of measuring the shear angle or the angle of repose in an image: (a) the pre-processed image, (b) the binarized image, and (c) the extracted edge.

Fig. 5. The process of image segmentation and slicing for quantifying segregation: (a) the original pre-processed image, (b) the binary images, and the sliced images 
used for calculating (c) vertical segregation and (d) horizontal segregation.
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RSDi =
σi

μi
(2) 

where higher RSD denotes higher segregation.

2.3.3. Mass flow rate and mass in the lower box
The load cell data recorded during discharge was used to calculate 

the mass flow rate. As the raw data contained significant noise, a 
Gaussian filter was applied to smooth the data. Fig. 6 shows an example 
of the mass in the upper box plotted against time. The steady mass flow 
rate was determined from the slope of the nearly linear segment between 
0.5 and 2.0 s, illustrated by the shaded area in Fig. 6. Additionally, the 
discharged mass in the lower box was determined by subtracting the 
remaining mass in the upper box from the total initial mass of the 
material.

2.3.4. Results of the experiments
Table 2 summarises the results of the measurements mentioned 

above for all tested pellets-sinter mass ratios as well as the reverse 
layering case. For the complete experimental data, readers are referred 
to the published dataset [39].

The results show that increasing the sinter ratio in the mixture leads 
to a higher angle of repose and shear angle, which aligns with the 
findings of Chakrabarty et al. [40]. This effect is expected due to the 
highly irregular shape of sinter particles compared to the near-spherical 
shape of pellets (see Fig. 1). Also, this study is one of the first of its kind 
to investigate the impact of layering order, showing that reversing the 
order slightly reduces the shear angle compared to the normal 50–50 
case, while the angle of repose remains largely unchanged.

The mass flow rate remains relatively constant across different mass 
ratios and layering orders, indicating that these factors do not signifi
cantly influence discharge behaviour under the tested conditions. The 
mass discharged into the lower box shows a negative correlation with 
the shear angle, as stated by Wasserfall et al. [32].

For segregation, interpreting the effect of mass ratio using RSD is 
challenging. Since the RSD formula (Eq. (2)) normalises the standard 
deviation by the mean, and the mean is directly linked to the mass ratio, 
no meaningful conclusions can be drawn about the influence of the mass 
ratio on segregation [31]. In the reverse layering case, lower horizontal 
and higher vertical segregation were observed, which is in agreement 
with the findings of our previous study [31].

3. Discrete element method (DEM) model

The materials and experimental setup are modelled using the 

Discrete Element Method (DEM). Before presenting the model setup in 
detail, we first introduce the calibration approach.

3.1. Systematic calibration/verification framework

Fig. 7 illustrates an overview of the systematic calibration framework 
adopted in this study. The calibration process starts with the reference 
case, i.e., 50–50 pellet-sinter mass ratio. Next, the calibrated parameters 
are validated by testing their applicability to the other two mass ratios: 
75–25 and 25–75. These steps are further explained in the following 
subsections.

3.2. Model setup

3.2.1. Contact model
We chose the Hertz-Mindlin contact model with an elastic-plastic 

spring-dashpot rolling friction model (type C, as classified by Ai et al. 
[41]) for the DEM model. This contact model has been successfully 
employed in previous studies on pellets and sinter [28,40,42]. Fig. 8
schematically illustrates the interaction forces between two particles in 
the DEM model. For a detailed explanation of the related equations, 
readers are referred to the relevant literature [40–43].

3.2.2. Fixed DEM parameters
We obtained the intrinsic material properties, including the shear 

modulus and Poisson’s ratio, from relevant literature, as listed in Table 3
[40,42]. Pellets were modelled as spheres due to their nearly spherical 
shape (see Fig. 1). However, sinter particles, which have highly irregular 
shapes (see Fig. 1), were represented using a three-sphere clump shape, 
as shown in Table 3. This shape has been successfully used in previous 
studies to model sinter particles [40,44].

For particle size distribution and particle density, we used the 
experimentally measured values reported in Table 1.

3.2.3. DEM parameters to calibrate
All DEM parameters, excluding the fixed parameters listed in Table 1, 

were considered for calibration in this study. This included both 
particle-particle and particle-geometry interaction parameters. Howev
er, the pellet-sinter interaction parameters were not directly calibrated. 
Instead, these parameters were defined as the average of the pellet-pellet 
and sinter-sinter interaction parameters, following a similar approach 
used in a previous study on the calibration of pellet-sinter mixtures [40]. 
To establish a reference case model for time step and sensitivity ana
lyses, we adopted particle-particle and particle-geometry interaction 
parameters from a similar study on pellet-sinter mixtures [40].

3.2.4. Time step analysis
Selecting the appropriate time step in DEM is a crucial aspect of the 

calibration process, which ensures numerical stability, computational 
efficiency, and accurate results [18,45]. A widely used approach is to 
consider the time step as a fraction of Rayleigh time step calculated as: 

Δt =
πr

̅̅̅
ρ
G

√

0.1631ν + 0.8766
(3) 

where r, ρ, G, ν are the minimum radius, particle density, shear modulus, 
and Poisson’s ratio of particles, respectively. We varied the time step 
from 5 % to 40 % to examine its effect on all KPIs. The results are pre
sented in Fig. 9 (a-f). It is important to note that we employed the same 
methodology used in experiments to measure KPIs in the DEM simula
tions. This consistency allowed for a direct and accurate comparison 
between the DEM results and the experimental measurements.

We used two criteria to determine the appropriate time step: (1) 
relatively stable KPI values up to the selected time step and (2) low 
standard deviation, which indicates high reproducibility. Fig. 9 shows 
that most KPIs, including mass flow rate, mass in the lower box, shear 

Fig. 6. An example of the mass in the upper box plotted against time, illus
trating the calculation of the mass flow rate and the discharged mass in the 
lower box.
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angle, and angle of repose, remained stable with low standard deviations 
up to 15 % of the Rayleigh time step (5.91e-6 s). Especially, for the angle 
of repose (Fig. 9(a)), there is a drop in value and an increase in standard 
deviation for time steps greater than 15 %. Therefore, we selected 15 % 
as it balances computational efficiency, stability, and reproducibility.

3.3. Sensitivity analysis

Given the large number of DEM parameters to be calibrated (i.e. 12), 
we conducted a sensitivity analysis to identify the parameters that 
significantly influence the KPIs. By focusing the calibration on these 
significant parameters, the computational expense of the calibration 
process is significantly reduced [31]. Moreover, the sensitivity analysis 
helps define the parameter space for calibration, reveal relationships 
between KPIs, and determine whether the selected KPIs are suitable for 
calibrating the DEM model.

We employed the definitive screening design (DSD) [46], a design of 
experiment (DoE) technique, which was successfully used in our previ
ous work to efficiently identify significant parameters [31]. With 12 
DEM parameters, the DSD required 29 simulation runs, calculated as 
2k+ 5, where k is the number of parameters [47]. The low and high 
parameter levels for the DSD, shown in Table 4, were set as the reference 
case values ±25 %, with the reference values obtained from [40]. The 
DSD design is presented in Table A.1 in the appendix.

To account for the stochastic nature of granular systems and DEM, 
we repeated the DSD analysis five times. Each repetition was analysed 
independently to identify the significant parameters. The variation in 
the KPI values can stem from two main sources: (1) the variability 
introduced by varying the DEM parameters (i.e., DSD design) and (2) the 
stochastic nature of DEM simulations (i.e., variations across repetitions). 
To quantify the contribution of each source to the overall variance, we 
employed the variance decomposition technique [48]. Variance 
decomposition is based on the law of total variance, which is expressed 
as: 

Var(Y) = E[Var(Y|X) ] +Var(E[Y|X] ) (4) 

where Y represents the KPI of interest and X denotes the set of input 
parameters. E[Var(Y|X) ] represents the variance in Y (i.e., KPI) caused 
by the stochasticity, while Var(E[Y|X] ) quantifies the variance in Y due 
to varying the DEM parameters. The variance contribution of each 
source, i.e. the DEM parameters and stochasticity, is calculated as: 

P =
Var(E[Y|X] )

Var(Y)
×100 (5) 

S =
E[Var(Y|X) ]

Var(Y)
×100 (6) 

Fig. 10 presents the variance contribution of DEM parameters and 
stochasticity for all the KPIs. It reveals that for both horizontal and 
vertical segregation, the variance caused by DEM stochasticity domi
nates the variance due to varying the DEM parameters in the DSD 
design. This indicates that the inherent stochastics of DEM, related to the 
initial position and orientation of particles, overshadows the effect of 
varying parameters on segregation.

Therefore, no meaningful conclusions can be drawn about the 

Table 2 
Results of KPIs measured in the experiments. The values are presented with their 95 % confidence intervals.

Pellets-sinter mass ratio Angle of repose (◦) Shear angle (◦) Mass flow rate (kg/s) Mass in the lower box (kg) Segregation (RSD)

Vertical Horizontal

50–50 29.47 ± 0.48 42.51 ± 1.62 10.29 ± 0.35 32.32 ± 0.55 0.264 ± 0.07 0.121 ± 0.04
75–25 28.55 ± 0.65 39.03 ± 1.49 10.29 ± 0.1 33.09 ± 0.12 0.151 ± 0.03 0.082 ± 0.02
25–75 29.63 ± 0.75 44.76 ± 1.21 10.24 ± 0.45 32.00 ± 0.48 0.422 ± 0.09 0.116 ± 0.025
Reverse layering 29.74 ± 0.47 40.92 ± 1.55 10.39 ± 0.56 32.97 ± 0.2 0.32 ± 0.03 0.112 ± 0.053

Fig. 7. An overview of the systematic calibration approach adopted in 
this study.

Fig. 8. A schematic representation of the interaction forces between particles 
in DEM (from [31]).

Table 3 
Intrinsic material properties used in DEM simulations.

DEM Parameter Pellet Sinter Geometry

Shear modulus (G) 1e+8 Pa 1e+8 Pa 2e+11 Pa
Poisson’s ratio (υ) 0.25 0.25 0.3

Particle shape NA
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sensitivity of segregation to DEM parameters. As a result, segregation 
measured in the draw down test cannot be used as a KPI to calibrate the 
DEM model. Consequently, segregation was excluded from both sensi
tivity analysis and the DEM calibration process.

For the four remaining KPIs, we used the “Fit Definitive Screening” 
platform in JMP® Pro software to perform the DoE. Stepwise regression 
with a p-value threshold of 0.01, combined with analysis of variance 
(ANOVA), was applied to identify significant parameters, following our 
previous study [31]. Since the significance of parameters varied slightly 
across the five sensitivity analysis repetitions, a parameter was consid
ered significant if it appeared as significant in at least 80 % of the rep
etitions (i.e., 4 or 5 times) for at least one of the KPIs. The final results of 
the sensitivity analysis are presented in Table 5, where the significant 
parameters are shaded to highlight seven parameters selected for 
calibration.

Fig. 9. The effect of time step on: a) angle of repose and shear angle, b) mass flow rate and mass in the lower box, c) vertical segregation, and d) horizontal 
segregation. The lines and shaded areas represent the mean and standard deviation, respectively.

Table 4 
Low, middle and high levels of DEM parameters used in DSD. (μs = coefficient of 
sliding friction, μr = coefficient of rolling friction, Cr = coefficient of 
restitution).

Parameters Low level 
(− 1)

Middle level (0) 
[40]

High level 
(+1)

Pellet-pellet
μs,pp 0.368 0.49 0.613
μr,pp 0.045 0.06 0.075
Cr,pp 0.525 0.7 0.875

Sinter-sinter
μs,ss 0.525 0.7 0.875
μr,ss 0.06 0.08 0.1
Cr,ss 0.263 0.35 0.438

Pellet- 
geometry

μs,pg 0.285 0.38 0.475
μr,pg 0.045 0.06 0.075
Cr,pg 0.525 0.7 0.875

Sinter- 
geometry

μs,sg 0.285 0.38 0.475
μr,sg 0.06 0.08 0.1
Cr,sg 0.3 0.4 0.5

Fig. 10. Results of variance contribution of DEM parameters and stochasticity 
for all the KPIs.

Table 5 
Results of the sensitivity analysis, showing the frequency of each parameter 
appearing as significant across five repetitions, with the significant parameters 
shaded. (The +/− signs indicate that with an increase in the parameter value, 
the corresponding KPI increases/decreases.)

Parameters Angle of 
repose

Shear 
angle

Mass flow 
rate

Mass in the 
lower box

Pellet-pellet
μs,pp 0 5 (+) 1 (− ) 5 (− )
μr,pp 1 (+) 5 (+) 0 5 (− )
Cr,pp 5 (− ) 1 (+) 1 (+) 0

Sinter-sinter
μs,ss 0 0 5 (− ) 4 (+)
μr,ss 1 (+) 1 (+) 3 (− ) 2 (− )
Cr,ss 1 (− ) 1 (+) 1 (+) 0

Pellet- 
geometry

μs,pg 2 (− ) 5 (+) 1 (− ) 4 (− )
μr,pg 1 (− ) 4 (+) 1 (+) 5 (− )
Cr,pg 1 (− ) 0 1 (+) 0

Sinter- 
geometry

μs,sg 3 (− ) 5 (+) 5 (− ) 5 (− )
μr,sg 1 (− ) 0 2 (+) 0
Cr,sg 2 (− ) 0 1 (+) 1 (+)
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3.4. Surrogate model development

In this section, we describe the process of establishing a surrogate 
model (SM) to map the relationship between the significant parameters 
(the seven parameters shaded in Table 5) and the KPIs.

3.4.1. Parameter space
As mentioned above, one of the advantages of using a screening 

design is that it helps guide the definition of the parameter space for 
efficient calibration. To achieve this, we compared the experimental 
results with the simulation outcomes from the screening runs for each 
KPI. Fig. 11 shows the results of the screening design compared to the 
experimental values for each KPI. This comparison, combined with the 
correlations in Table 5, helped adjust the parameter space of the 
screening design (Table 4). For example, in Fig. 11(b), the experimental 
value for the shear angle is higher than all the screening design runs. 
This indicates that the parameter space for the significant parameters 
needs to be extended in a way that increases the shear angle. According 
to Table 5, all significant parameters have a positive correlation (+) with 
the shear angle. This suggests that their parameter space should be 
extended to higher values, assuming the correlation remains valid 
beyond the initial range used in the sensitivity analysis. Repeating this 
process for the other KPIs, we finalised the parameter space, which is 
presented in Table 6.

3.4.2. Objective function
With four KPIs to calibrate, there are three potential strategies for 

building SMs: 1) building a separate SM for each KPI, 2) using multi
variate models to create a single SM for all KPIs, or 3) combining all KPIs 
into a single objective and creating a single SM. Each strategy has its 
advantages and disadvantages. For simplicity and efficiency, we chose 
the third strategy. This approach simplifies the SM development process 
compared to option 2 since it involves using simpler models. Moreover, 
option 3 is more efficient than 1, as it requires only a single SM. 
Following the methodology outlined in [12], we combined the KPIs into 
a single objective using a weighted sum (WS) of the relative error (RE) 
between the experimental and DEM measurements of KPIs. The WS is 
calculated as: 

WS =
∑M

m=1
(wm.REm),with

∑M

m=1
wm = 1 (7) 

where M is the number of KPIs (four in this study), wm is the weight for 
mth KPI, and RE is the absolute relative error, computed as: 

RE =

⃒
⃒
⃒
⃒
⃒

yDEM − yExp

yExp

⃒
⃒
⃒
⃒
⃒

(8) 

Here, yDEM and yExp represent the KPI values obtained from DEM and 
experiments, respectively. Since all KPIs have equal importance in the 
calibration process, we assign the same weight (wm) to each of them. The 
weighted sum (WS) is used as the objective function to be minimised in 
the calibration process.

3.4.3. Surrogate model training
Fig. 12 provides an overview of the approach used to develop the 

surrogate model (SM) in this study. For the initial sampling, we used the 
Latin Hypercube Sampling (LHS) method as it randomly and evenly 
distributes the points in the parameter space (Table 6). Following the 
recommendation by Loeppky et al. [49], we sampled 10 points per 
parameter, resulting in a total of 70 data points. We then ran the DEM 
simulations with five repetitions for all the points and obtained the value 
for all the KPIs. These KPI values were subsequently converted into a 
single objective value, as outlined in Section 3.4.2.

To develop the SM, we used Gaussian Process Regression (GPR), a 
machine learning model known for effectively capturing complex, non- 
linear relationships. GPR was specifically chosen because our previous 

Fig. 11. Comparison between sensitivity analysis and experimental results for all KPIs. The differences between the two indicate the need to extend the param
eter space.

Table 6 
Extended parameter space used for DEM calibration.

Parameters Low band High band

μs,pp 0.613 1.0
μr,pp 0.075 0.24
Cr,pp 0.525 1.0
μs,ss 0.525 1.0
μs,pg 0.285 1.0
μr,pg 0.075 0.24
μs,sg 0.285 1.0
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work [9] demonstrated its efficiency in mapping the relationship be
tween DEM parameters and the corresponding response.

Gaussian Process Regression (GPR) is a non-parametric, Bayesian 
machine learning method that models data using kernel functions. It is 
particularly effective for small datasets and complex, nonlinear re
lationships due to its flexibility in hyperparameter tuning. A Gaussian 
Process (GP) defines a distribution over functions and is fully specified 
by its mean function, μ(x), and covariance function, k(x, x́ ), which 
together describe the joint Gaussian distribution of random variables.

The GPR model for a given set of input-output pairs (xi, yi) can be 
represented as: 

yi = f(xi)+ εi (9) 

where εi is Gaussian noise with zero mean and variance σ2, denoted as 
εi ∼ N

(
0, σ2). The goal of GPR is to predict the underlying function f 

using a prior distribution: 

f(x) ∼ GP (μ(x) , k(x, xʹ) ) (10) 

Here, the mean function μ(x) is often assumed constant and zero, 
while the covariance function k(x, xʹ) captures dependencies between 
data points.

To predict the output at a new input x*, GPR provides a Gaussian 
posterior distribution: 

f(x*)∣Y ∼ N
(
μ*, σ2

*
)

(11) 

where the predictive mean (μ*) and variance (σ2
*) are calculated as: 

μ* = μ(x*)+ k (x*)
T (

K + σ2In
)− 1

(Y − μ) (12) 

σ2
* = k(x*, x*) − k (x*)

T (
K + σ2In

)− 1
k (x*) (13) 

In these expressions, K is the covariance matrix for the training 
inputs, І is the identity matrix, and k (x*) is the covariance vector be
tween the new input and the training data.

Additionally, the predicted mean can be expressed as a weighted sum 

of kernel evaluations: 

E(f(x*) |Y ) =
∑n

i=1
k(x*, xi)αi (14) 

with weights defined as: 
⎡

⎣
α1
⋮
αn

⎤

⎦≜
(
K + σ2In

)− 1
(Y − μ) (15) 

Further details on the kernel functions used are provided in Table A.2
in the appendix.

To avoid overfitting of GPR, we employed k-fold cross-validation 
combined with Bayesian hyperparameter optimisation (details of 
which can be found in our previous work [9]). Although various metrics 
can be used to evaluate the performance of the surrogate model (SM), we 
focused on the coefficient of determination (R2). After rigorously 
training the GPR model with an initial set of 70 data points, the model 
achieved an average cross-validation R2 value of 0.84, which we 
considered insufficient for calibration. This suggests that the dataset was 
too small for the model to fully capture the relationship between the 
seven DEM parameters and the response (i.e., the weighted sum of the 
relative errors between experimental and DEM results).

There are two general approaches for expanding the dataset to 
improve the performance of the SMs [50]: 1) traditional space-filling 
sampling, and 2) adaptive sampling (also known as active learning) 
approaches. Compared to the space-filling methods, adaptive sampling 
methods have a higher potential for improving model performance with 
fewer points by targeting the most informative areas of the design space 
[50]. Therefore, we adopted adaptive sampling to expand the dataset in 
this study.

Specifically, we employed the Expected Improvement (EI) criterion 
for adaptive sampling, which is well-suited for expensive computational 
models such as DEM [12,51]. EI balances exploration (sampling in re
gions of high uncertainty) and exploitation (sampling in regions with 
promising predicted performance) [50,52]. In this approach, let fmin 
denote the best (i.e., smallest) observed function value (or weighted sum 
of the relative errors) to date. For any candidate point x, the improve
ment is defined as: 

I(x) = max{0, fmin − f(x) } (16) 

The expected improvement is then given in closed form by: 

EI(x) = (fmin − μ(x) )Φ
(

fmin − μ(x)
σ(x)

)

+ σ(x)ϕ
(

fmin − μ(x)
σ(x)

)

(17) 

where Φ(.) and ϕ(.) are the cumulative distribution function and prob
ability density function of the standard normal distribution, respectively 
(with the convention that EI(x) = 0 when σ(x) = 0). The next sample 
point is selected by maximising the expected improvement: 

xnew = argmaxEI(x). (18) 

Adaptive sampling was applied iteratively by adding 10 new data 
points in each iteration until the stopping criterion was met. An R2 value 
of 0.95 was chosen as the stopping criterion to achieve a balance be
tween high model accuracy and computational efficiency.

Fig. 13 shows the actual responses plotted against the surrogate 
model’s predicted values. In the first iteration, adaptive sampling fo
cuses on exploring the parameter space to improve the model’s global 
accuracy. From the second iteration onwards, the sampling strategy 
shifts towards exploiting regions with lower response values, which are 
of particular interest for model calibration. The performance of the 
model across different iterations of the adaptive sampling process is 
presented in Table 7.

This integrated approach, which combines GPR with an EI-based 
adaptive sampling strategy, allows us to efficiently expand the dataset 

Fig. 12. Flowchart illustrating the surrogate model development approach 
used in this study, based on [50].

A. Hadi et al.                                                                                                                                                                                                                                    Powder Technology 464 (2025) 121190 

9 



by focusing on the most informative regions. As a result, the accuracy of 
the SM is improved while minimising computational costs.

3.5. Optimisation algorithm

We employed the Genetic Algorithm (GA) to efficiently optimise the 
surrogate model. GA is a population-based optimisation technique 
inspired by the principle of natural selection and genetics [53]. GA was 
chosen as it is well-suited for solving complex, high-dimensional, and 
non-linear optimisation problems where traditional gradient-based 
methods may struggle [12,54]. However, a common drawback of GA 
is its slow convergence and the high number of objective function 
evaluations required [54]. In our study, this limitation is mitigated by 
using a fast surrogate model instead of computationally expensive DEM 
simulations during the optimisation process. The parameters of GA are 
listed in Table A.3.

We executed the GA to search for a global minimum. Basically, it 
searches for DEM parameter sets that minimise the objective func
tion—the weighted sum of the relative errors between experimental and 
DEM measurements for all KPIs. We performed the optimisation using 
two approaches: 

1) Restricted optimisation: The GA was constrained to search for DEM 
parameter values below 0.9, as higher values are not reported for 
sinter and pellets in the literature [31].

2) Unrestricted optimisation: The GA was permitted to search the entire 
parameter space.

The results of both approaches, including the two best-performing 
parameter sets from each, are presented in Table 8. Since the opti
mised DEM parameters show negligible differences, we proceed with the 
results from the restricted optimisation.

The surrogate model inherently contains some stochasticity, which 
may lead to slight variations in its predictions. To take this variability 
into account, we trained the surrogate model 10 times and performed 
the GA optimisation separately for each trained model. In each run, we 
identified the parameter set with the minimum fitness value, i.e., the 

minimum weighted sum of errors. This process resulted in slightly 
different calibrated parameter sets, as shown in Table 9. However, since 
the variations between these sets were minimal, we selected only one 
parameter set with the lowest fitness value (run 4 in Table 9) as the final 
calibrated parameter set.

3.6. Verification of the calibrated parameters

To verify the calibration, we performed DEM simulations using the 
calibrated parameters highlighted in Table 9. Fig. 14 presents the rela
tive errors between the experimental measurements and DEM results, 

calculated as 
((

yDEM − yExp

)
/yExp

)
× 100. The consistently low relative 

errors (all below 2 %) confirm the success of our calibration approach.
As shown in Fig. 7, bulk density in DEM is reassessed after calibration 

to ensure it matches the experimental bulk density. This is crucial 
because bulk density can be affected by particle-particle friction co
efficients [45,55]. To achieve this, we used the maximum heap height in 
the lower box as a comparison metric. Fig. 15 shows that the heap height 
in DEM (HDEM) is lower than in the experiments (HExp), indicating a 
higher bulk density in the DEM model.

To calibrate the bulk density, the particle density in DEM was 
adjusted by multiplying it by the ratio HDEM/HExp. The average of this 
ratio across all the repetitions was calculated as 0.93. As a result, the 
calibrated particle densities for pellets and sinter were updated to 3350 
(kg/m3) and 3208 (kg/m3), respectively.

We conducted a new set of DEM simulations using the calibrated 
particle densities. The results, presented in Fig. 16, show that the errors 
for most KPIs remain low, confirming the effectiveness of our calibration 
approach. However, a noticeable increase in the error for the mass flow 
rate was observed after reducing the particle density. This outcome was 
anticipated, as the mass flow rate is highly sensitive to changes in par
ticle density [56]. This finding highlights the importance of including 
particle density as a calibration parameter when an accurate modelling 
of mass flow rate is of interest. Incorporating particle density in the main 
calibration process would improve the model’s ability to capture this 
behaviour more accurately.

Fig. 17 provides a visual comparison between the DEM simulations 
and experiments at different time instances, demonstrating a strong 
agreement throughout the discharging process. This showcases the 
model’s ability to accurately capture the flow dynamics over time.

3.7. Validation of the calibrated parameters

To validate the robustness of the calibrated model developed for the 
50–50 pellet-sinter mass ratio, we extended the simulations to three 
additional cases: 75–25 and 25–75 mass ratios as well as the reverse 
layering. In these validation simulations, the pellet-sinter interaction 
parameters were kept as the average of the pellet-pellet and sinter-sinter 
interaction parameters, consistent with the parameters used for the 
50–50 mixture. The results of these simulations are presented in Fig. 18, 
demonstrating good agreement between the DEM results and the 
experimental measurements for all KPIs. The accuracy of the developed 

Fig. 13. Actual vs. predicted responses (i.e. weighted sum of relative errors as 
defined in Eq. (7)) during the surrogate model development process using 
adaptive sampling.

Table 7 
Performance of the SM across adaptive sampling iterations, shown as the [mean 
± standard deviation] of R2 from 5 seed runs).

Iteration Number of data points R2 of the SM

Initial LHS sampling 70 0.84 ± 0.01
1st iteration 80 0.88 ± 0.03
2nd iteration 90 0.92 ± 0.01
3rd iteration 100 0.93 ± 0.01
4th iteration 110 0.95 ± 0.01

Table 8 
The results of the DEM calibration using the restricted and unrestricted genetic 
algorithms (GA).

Parameters Restricted GA Unrestricted GA

μs,pp 0.73 0.75
μr,pp 0.12 0.11
Cr,pp 0.76 0.76
μs,ss 0.90 0.91
μs,pg 0.90 1.0
μr,pg 0.16 0.17
μs,sg 0.83 0.79
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DEM model for different mass ratios and layering orders confirms the 
generalisability and reliability of the calibrated parameters.

4. Conclusion

In this study, we proposed an efficient and systematic calibration 
framework for DEM modelling of multi-component mixtures. We suc
cessfully applied the calibration framework to pellet-sinter mixtures, 
which are used in blast furnace steelmaking. The framework integrates 
sensitivity analysis based on definitive screening design (DSD), ML- 
based surrogate modelling using Gaussian process regression (GPR) 
with adaptive sampling, and optimisation techniques using genetic al
gorithms (GA) to minimise the number of required DEM simulations. 
The main findings can be summarised as follows: 

• The proposed framework achieved a high-accuracy surrogate model 
(R2 of 0.95) for 7 DEM parameters using only 110 data points. This 
represents a 25 %–82 % reduction in dataset size compared to pre
vious studies [27,57], while also achieving higher accuracy. These 
results highlight the efficiency of our framework in minimising 
computational costs while maintaining robust performance.

• Calibrated parameters for a 50–50 pellet-sinter mass ratio were valid 
across the other tested mass ratios and the reverse layering order. 
This suggests that, within the tested conditions, calibrating DEM 
parameters for one mass ratio and layering order is sufficient, elim
inating the need for re-calibration of DEM parameters for different 
mixture ratios and layering configurations.

• Recalibrating the particle density at the end of the calibration pro
cess introduced errors in predicting the mass flow rate, while the 
errors for other KPIs remained low. This highlights the importance of 
actively calibrating particle density when dynamic processes are 
targeted.

• Interaction parameters for two-component mixtures can be effec
tively estimated as the average of the coefficients for the individual 
materials.

• Sensitivity analysis is a crucial step in calibrating a DEM model. It not 
only reduces the number of parameters to be calibrated but also re
veals the sensitivity and relationship of KPIs to the DEM parameters. 
This insight helps determine whether certain KPIs are suitable for 
calibrating specific parameters. Moreover, it assists in defining an 
appropriate parameter space.

• Applying variance decomposition to the sensitivity analysis results 
revealed that the change in segregation, both in horizontal and 
vertical directions, is mostly caused by DEM stochasticity, hence no 
meaningful conclusion about the sensitivity of segregation to any 

Table 9 
Results of the genetic algorithm optimisation across 10 repetitions of surrogate model training for 
DEM calibration. The selected parameter set with the lowest fitness value is shaded in green.

Repetition
, , , , , , ,

Fitness value (weighted 

sum of errors)

1 0.73 0.12 0.76 0.9 0.9 0.16 0.83 0.5532

2 0.65 0.12 0.75 0.9 0.9 0.17 0.89 0.5975

3 0.62 0.11 0.72 0.9 0.89 0.2 0.9 0.5567

4 0.74 0.12 0.76 0.9 0.9 0.16 0.83 0.5475

5 0.62 0.12 0.72 0.9 0.88 0.19 0.9 0.5676

6 0.69 0.12 0.76 0.9 0.9 0.17 0.85 0.5724

7 0.65 0.12 0.75 0.9 0.9 0.17 0.88 0.595

8 0.62 0.12 0.73 0.9 0.87 0.18 0.9 0.5856

9 0.74 0.12 0.76 0.9 0.9 0.16 0.83 0.5579

10 0.62 0.12 0.73 0.9 0.88 0.18 0.9 0.5811

Fig. 14. DEM calibration results, showing the relative error between experi
mental measurements and DEM results for each KPI. The exact values of DEM 
results are provided in Table A.4.

Fig. 15. Comparison of the height of the heap in the lower box between the 
experiment and DEM.

Fig. 16. DEM calibration results with calibrated particle density, showing the 
relative error between experimental measurements and DEM results for each 
KPI. The exact values of DEM results are provided in Table A.5.
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DEM parameter can be drawn. Therefore, the segregation measured 
in the draw down test, cannot be used for calibration.

The proposed calibration framework shows great promise for cali
brating two-component mixtures with high efficiency and accuracy. 
Future work should focus on extending this approach to three or more 
components, incorporating additional KPIs, and exploring more 
advanced machine learning techniques to further improve calibration 
performance. Furthermore, validation across a broader range of test 
conditions is needed to assess the generalisability of the findings and 
reinforce the applicability to more complex granular systems.
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Appendix A. Appendix

Table A.1 
Definitive screening design matrix.

Run μs,pp μr,pp Cr,pp μs,ss μr,ss Cr,ss μs,pg μr,pg Cr,pg μs,sg μr,sg Cr,sg

1 0.613 0.06 0.525 0.525 0.1 0.263 0.285 0.045 0.875 0.475 0.1 0.3
2 0.4905 0.045 0.525 0.525 0.06 0.263 0.285 0.045 0.525 0.285 0.06 0.3
3 0.4905 0.075 0.875 0.875 0.1 0.438 0.475 0.075 0.875 0.475 0.1 0.5
4 0.368 0.045 0.875 0.875 0.08 0.438 0.285 0.045 0.525 0.475 0.1 0.3
5 0.368 0.075 0.875 0.525 0.1 0.263 0.475 0.045 0.525 0.285 0.1 0.3
6 0.613 0.075 0.525 0.875 0.1 0.438 0.475 0.075 0.525 0.475 0.06 0.3
7 0.368 0.045 0.875 0.875 0.06 0.263 0.475 0.075 0.7 0.475 0.1 0.3
8 0.613 0.045 0.875 0.525 0.06 0.3505 0.285 0.075 0.875 0.475 0.06 0.3
9 0.613 0.045 0.7 0.525 0.06 0.438 0.475 0.045 0.525 0.475 0.1 0.5
10 0.368 0.045 0.525 0.875 0.1 0.263 0.285 0.075 0.875 0.38 0.1 0.5
11 0.613 0.075 0.525 0.525 0.08 0.263 0.475 0.075 0.875 0.285 0.06 0.5
12 0.613 0.045 0.525 0.875 0.1 0.438 0.285 0.06 0.525 0.285 0.1 0.3
13 0.613 0.075 0.525 0.875 0.06 0.263 0.475 0.045 0.875 0.475 0.1 0.3
14 0.368 0.075 0.875 0.7 0.1 0.438 0.285 0.045 0.875 0.475 0.06 0.3
15 0.368 0.075 0.525 0.525 0.06 0.438 0.38 0.075 0.875 0.285 0.1 0.3
16 0.613 0.045 0.875 0.525 0.1 0.438 0.475 0.075 0.875 0.285 0.1 0.3
17 0.613 0.045 0.525 0.7 0.06 0.263 0.475 0.075 0.525 0.285 0.1 0.5
18 0.613 0.045 0.525 0.875 0.06 0.438 0.285 0.075 0.875 0.475 0.06 0.5
19 0.368 0.045 0.525 0.525 0.1 0.438 0.475 0.045 0.875 0.475 0.08 0.5
20 0.368 0.045 0.525 0.875 0.06 0.438 0.475 0.045 0.875 0.285 0.06 0.3
21 0.613 0.075 0.875 0.875 0.06 0.438 0.285 0.045 0.875 0.285 0.1 0.5
22 0.368 0.075 0.525 0.525 0.06 0.438 0.285 0.075 0.525 0.475 0.1 0.4
23 0.368 0.045 0.875 0.525 0.06 0.263 0.285 0.045 0.875 0.285 0.1 0.5
24 0.368 0.075 0.7 0.875 0.1 0.263 0.285 0.075 0.875 0.285 0.06 0.3
25 0.613 0.075 0.875 0.525 0.1 0.263 0.285 0.075 0.525 0.475 0.1 0.5
26 0.368 0.045 0.875 0.525 0.1 0.438 0.285 0.075 0.525 0.285 0.06 0.5
27 0.613 0.045 0.875 0.875 0.1 0.263 0.475 0.045 0.875 0.285 0.06 0.4
28 0.613 0.075 0.525 0.525 0.1 0.438 0.285 0.045 0.7 0.285 0.06 0.5
29 0.368 0.075 0.875 0.525 0.06 0.263 0.475 0.06 0.875 0.475 0.06 0.5

Table A.2 
Kernel functions of GPR and the relevant equations.

Kernel name Kernel function (k(x, x́ ))

Exponential σ2
f exp.

(

−
r
σl

)

Squared exponential σ2
f exp.

[

−
1
2

r2

σ2
l

]

Rational quadratic σ2
f

(

1 +
r2

2ασ2
l

)− α

Matern 5/2 σ2
f

(

1 +

̅̅̅
5

√
r

σl
+

5r2

3σ2
l

)

r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − xʹ)T(x − xʹ)
√

is Euclidean distance between x and xʹ.
σ2

f is the signal variance of the function f.
σl is the characteristic length scale.
α is a positive-valued scale-mixture parameter.
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Table A.3 
Parameters used for genetic algorithm.

Parameter Value Description

Population size 1000 Number of individuals in each generation.
Max. number of generations 2000 Maximum number of generations for algorithm to solve.
Crossover probability 0.6 The proportion of the population selected for crossover in each generation.
Mutation probability 0.05 Mutation fraction used to introduce diversity into the population.
Function Tolerance 1e-6 Stopping criterion based on the minimal improvement in fitness function.

Table A.4 
DEM calibration results for 50–50 pellet-sinter mass ratio, presenting the comparison between DEM results and experimental measurements, along with the relative 
errors for each KPI.

Angle of repose (◦) Shear angle (◦) Mass flow rate (kg/s) Mass in the lower box (kg)

Experiments 29.47 ± 0.48 42.51 ± 1.62 10.29 ± 0.35 32.32 ± 0.55
DEM 29.36 ± 0.5 41.88 ± 0.93 10.46 ± 0.11 32.43 ± 0.19
Relative error (%) − 0.38 − 1.48 1.67 0.33

Table A.5 
DEM calibration results for 50–50 pellet-sinter mass ratio with calibrated particle density, presenting the comparison between DEM results and experimental mea
surements, along with the relative errors for each KPI.

Angle of repose (◦) Shear angle (◦) Mass flow rate (kg/s) Mass in the lower box (kg)

Experiments 29.47 ± 0.48 42.51 ± 1.62 10.29 ± 0.35 32.32 ± 0.55
DEM 29.93 ± 0.62 42.03 ± 1.08 9.68 ± 0.08 32.47 ± 0.06
Relative error (%) 1.56 − 1.12 − 5.91 0.46

Table A.6 
Validation result of the calibrated DEM parameters for 75–25 and 25–75 pellet-sinter mass ratios as well as the reverse layering order, presenting the comparison 
between DEM results and experimental measurements, along with the relative errors for each KPI.

Case Angle of repose (◦) Shear angle (◦) Mass flow rate (kg/s) Mass in the lower box (kg)

75–25
Experiments 28.55 ± 0.65 39.03 ± 1.49 10.29 ± 0.1 33.09 ± 0.12
DEM 28.09 ± 0.48 39.81 ± 1.71 9.55 ± 0.12 33.22 ± 0.16
Relative error (%) − 1.60 1.99 − 7.23 0.39

25–75
Experiments 29.63 ± 0.75 44.76 ± 1.21 10.24 ± 0.45 32.00 ± 0.48
DEM 31.04 ± 0.34 44.21 ± 0.56 9.84 ± 0.12 32.45 ± 0.08
Relative error (%) 4.76 − 1.23 − 3.87 1.39

Reverse
Experiments 29.74 ± 0.47 40.92 ± 1.55 10.39 ± 0.56 32.97 ± 0.2
DEM 28.99 ± 0.34 41.55 ± 0.67 10.37 ± 0.18 33.42 ± 0.12
Relative error (%) − 2.52 1.54 − 0.17 1.37

Data availability

I have shared a link to the dataset.
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