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Current-induced magnetization dynamics in two magnetic insulators separated by a normal metal
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We study the dynamics of spin valves consisting of two layers of magnetic insulators separated by a normal
metal in the macrospin model. A current through the spacer generates a spin Hall current that can actuate the
magnetization via the spin-transfer torque. We derive expressions for the effective Gilbert damping and the
critical currents for the onset of magnetization dynamics including the effects of spin pumping that can be tested
by ferromagnetic resonance experiments. The current generates an amplitude asymmetry between the in-phase
and out-of-phase modes. We discuss superlattices of stacked films of metals and magnetic insulators.
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I. INTRODUCTION

Electric currents induce spin-transfer torques in hetero-
geneous or textured magnetic systems [1]. In this con-
text, magnetic insulators such as yttrium iron garnet (YIG)
combined with normal-metal contacts exhibiting spin-orbit
interactions, such as Pt, have recently attracted considerable
interest, both experimentally [2–8] and theoretically [9–15].
Since the discovery of nonlocal exchange coupling and
giant magnetoresistance in spin valves, i.e., a normal metal
sandwiched between two ferromagnetic metals, these systems
have been known to display rich physics. Some of these
effects, such as the dynamic exchange interaction [16], should
also arise when the magnetic layers are insulators. The spin
Hall magnetoresistance (SMR) is predicted to be enhanced
in such spin valves [10], although experimental realizations
have not yet been reported. Here, we consider multilayer
structures with ferromagnetic but electrically insulating (FI)
layers and normal-metal (N) spacers. In-plane electric currents
applied to N generate perpendicular spin currents via the spin
Hall effect (SHE). When these spin currents are absorbed
at the N|FI interfaces, the ensuing spin-transfer torques can
induce magnetization dynamics and switching. We consider
ground-state configurations in which the magnetizations are
parallel or antiparallel to each other. For thin magnetic
layers, even small torques can effectively modify the (Gilbert)
damping, which can be observed as changes in the line width
of the ferromagnetic resonance (FMR) spectra. We employ
the macrospin model for the magnetization vectors that is
applicable for sufficiently strong and homogeneous magnetic
fields, while extensions are possible [13–15]. Our results
include the calculation of effective (anti)damping resulting
from in-plane charge currents in FI|N|FI trilayers, magnetic
stability analysis in the current-magnetic field parameter space,
and a brief analysis of the dynamics for currents above the
critical value. We also consider current-induced effects in
superlattices. Our paper is organized as follows. In Sec. II,
we present our model for a FI|N|FI spin valve including the
SHE spin-current generation and spin pumping, modeled as
additional torques in the Landau-Lifshitz-Gilbert equation. We
proceed to formulate the linearized magnetization dynamics
and the spin accumulation in N in Sec. III. In Sec. IV, we
calculate the eigenmodes and the current-controlled effective
Gilbert damping and determine the critical currents at which

the magnetic precession becomes unstable. We discuss the
current-induced dynamics of · · · |FI|N|FI|N| · · · superlattices
in Sec. V. Finally, we summarize our conclusions and provide
an outlook in Sec. VI.

II. MODEL

FI1|N|FI2 denotes the heterostructure composed of a N
layer sandwiched between two layers of FIs (see Fig. 1). We
denote the thicknesses of FI1, N, and FI2 by d1, dN, and d2,
respectively. We adopt a macrospin model of spatially constant
magnetization Mi in each layer. The magnetization dynamics
of the two layers are described by the coupled Landau-Lifshitz-
Gilbert-Slonczewski (LLGS) equations:

Ṁi = −γ Mi ×
(

Heff,i + J

diMS,i

Mj

)
+ αiMi × Ṁi

+ τDSP
i + τ ISP

i + τ SH
i , (1)

where Mi is the unit vector in the direction of the magnetization
in the left/right layer with indices i = 1,2; MS,i is the
saturation magnetization; γ is the gyromagnetic ratio; αi is
the Gilbert damping constant; J is the interlayer dipolar and
exchange energy areal density [17], with j = 1 (2) when i = 2
(1); and Heff,i is an effective magnetic field:

Heff,i = Hext + Han,i (Mi) , (2)

consisting of the external magnetic field Hext as well as the
anisotropy fields Han,i for the left/right layer. We distinguish
direct (DSP) and indirect (ISP) spin pumping. DSP generates
the spin angular momentum current jDSP

1(2) through the interfaces
of FI1 (FI2). A positive spin current corresponds to a spin flow
toward the FI from which it originates. The DSP spin current
is expressed as

jDSP
i = �

e
g⊥,iMi × Ṁi , (3)

where g⊥,i is the real part of the spin-mixing conductance of the
N|FI1 (FI2) interface per unit area for i = 1 (2), respectively,
and −e is the electron charge. This angular momentum loss
causes a damping torque (here and below in cgs units):

τDSP
i = γ �

2g⊥,i

2e2MS,idi

Mi × Ṁi . (4)
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FIG. 1. (Color online) Spin valve of ferromagnetic insulators
(FIs) sandwiching a normal metal (N). The magnetizations M1

and M2 are collinear at equilibrium, i.e., parallel or antiparallel. A
spin-Hall-induced spin current flows in the z direction and is polarized
along x.

In ballistic systems, the spin current emitted by the neighboring
layer is directly absorbed and generates an indirect spin torque
on the opposing layer [16]:

τ ISP
i,ball = − γ �

2g⊥,i

2e2MS,idi

Mi × Ṁi . (5)

In the presence of an interface or bulk disorder, the transport
is diffuse, and the ISP is

τ ISP
i = − γ �

2e2MS,idi

g⊥,iMi × [Mi × μSP(zi)], (6)

where μSP(zi) is the spin pumping contribution to the spin
accumulation (difference in chemical potentials) at the inter-
face in units of energy, with zi ≡ ∓dN/2 for i = 1,2. μSP is
the solution of the spin-diffusion equation in N as discussed
below.

Due to the SHE, an in-plane dc charge current produces a
transverse spin current that interacts with the FI|N interfaces.
Focusing on the diffusive regime, the charge current density jc

as well as the spin jSH
k current density in the k direction, where

jSH
k /|jSH

k | is the spin polarization unit vector, can be written in
terms of a symmetric linear response matrix [10]:⎛

⎜⎜⎜⎜⎝
jc

jSH
x

jSH
y

jSH
z

⎞
⎟⎟⎟⎟⎠ = σ

⎛
⎜⎜⎜⎝

1 �SHx̂× �SHŷ× �SHẑ×
�SHx̂× 1 0 0

�SHŷ× 0 1 0

�SHẑ× 0 0 1

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎝

−∇μc/e

−∇μSH
x /(2e)

−∇μSH
y /(2e)

−∇μSH
z /(2e)

⎞
⎟⎟⎟⎟⎟⎠ , (7)

where �SH is the spin Hall angle, σ is the electrical
conductivity, and μc is the charge chemical potential. μSH =
(μSH

x ,μSH
y ,μSH

z ) is the spin accumulation induced by reflection
of the spin currents at the interfaces. The spin-transfer torques
τ SH

i at the FI interfaces (i = 1,2) are then expressed as

τ SH
i = − γ �

2e2MS,idi

g⊥,iMi × [Mi × μSH(zi)]. (8)

The polarization of μSH and thereby τ SH
i can be controlled

by the charge-current direction. In the following sections, we
assume that the shape anisotropy and exchange coupling favor
parallel or antiparallel equilibrium orientations of M1 and M2.
For small current levels, the torques normal to the magneti-
zation induce tilts from their equilibrium directions, and at
sufficiently large currents, they trigger complicated dynamics,
while torques directed along the equilibrium magnetization
modify the effective damping and induce magnetization
reversal. Here, we focus on the latter configuration, in which
the spin accumulation in N is collinear to the equilibrium
magnetizations.

In the following equations, we take the thickness, saturation
magnetization, Gilbert damping, and spin-mixing conductance
to be equal in layers FI1 and FI2, with an out-of-plane hard
axis and an in-plane internal field:

Heff,1 = ωH

γ
x̂ − ωM

γ
(M1)zẑ, (9a)

Heff,2 = s
ωH

γ
x̂ − ωM

γ
(M2)zẑ, (9b)

with ωH = γ [Hext + (Han,i)x] and ωM = 4πγMS . Pure dipo-
lar interlayer coupling with J < 0 favors an antiparallel
ground-state configuration, while the exchange coupling os-
cillates as a function of dN .

III. SPIN-TRANSFER TORQUES

The spin-pumping and spin-transfer torques τDSP
i and τ ISP

i

[Eqs. (4) and (6)] cause dynamic coupling between the two
magnetizations. To leading order, these torques can be treated
separately. We now derive expressions for disordered systems
that support spin accumulations μX(z) (X = SH,SP) governed
by the spin-diffusion equation:

μ̇X = D∂2
z μX − μX

τsf
. (10)

Here, D is the diffusion constant, and τsf is the spin-flip
relaxation time. The diffuse spin current in the z direction
related to this spin accumulation follows Eq. (7):

jX = − σ

2e

∂μX

∂z
, (11)

where σ is the conductivity of N.

A. Spin-pumping-induced torques

The total spin current into an FI is the sum of the spin-
transfer and spin-pumping currents. Disregarding interface
spin-flip scattering, the boundary conditions for the left/right
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layer are

−1

e
g⊥Mi × [Mi × μSP(zi)] + jDSP

i = ∓jSP(zi). (12)

The minus (plus) sign on the right-hand side is due to the
opposite flow direction of the spin currents at the left (right)
interface. We expand the magnetization direction around the
equilibrium configuration as

M1 = x̂ + m1, (13a)

M2 = sx̂ + m2, (13b)

as long as |mi | � |Mi | or mi · Mi = O(|mi |2). The parameter
s = 1 when the equilibrium configuration is parallel; s = −1
when it is antiparallel. The FMR frequency is usually much
smaller than the diffuse electron traversal rate D/d2

N and spin-
flip relaxation 1/τsf rate; thus, retardation of the spin flow may
be disregarded. In the steady state, the left-hand side of Eq. (10)
vanishes. We solve Eq. (10) for the adiabatic magnetization
dynamics with boundary conditions (12) to obtain the spin
accumulation:

μSP = −�

2
x̂ × [(ṁ1 + sṁ2)
1 (z) − (ṁ1 − sṁ2)
2 (z)] ,

(14)

where lsf = √
Dτsf is the spin-diffusion length and


1 (z) ≡ cosh (z/lsf)

cosh (dN/2lsf) + σ sinh (dN/2lsf) /2g⊥lsf
, (15a)


2 (z) ≡ sinh (z/lsf)

sinh (dN/2lsf) + σ cosh (dN/2lsf) /2g⊥lsf
. (15b)

The torques are

τ ISP
i = γ �

2e2MSd
g⊥μSP(zi). (16)

Because the spin accumulation is generated by the dynamics of
both ferromagnets, we obtain spin-pumping-induced dynamic
coupling that is quenched when dN � lsf . In the limit of van-
ishing spin-flip scattering, the spin accumulation is spatially
constant and is expressed as

μSP dN�lsf→ −�

2
x̂ × (ṁ1 + sṁ2). (17)

The corresponding diffusive torque is then a simple average
of the contributions from the two spin-pumping currents,
in contrast to the ballistic torque that depends only on the
magnetization on the opposite side.

B. Current-induced torques

A charge current in the y direction causes a spin Hall
current in the z direction that is polarized along the x direction
(see Fig. 1). At the interfaces, the current induces a spin-
accumulation μSH that satisfies the diffusion equation (10)
and drives a spin current (dropping the index z from now on):

jSH = − σ

2e

∂μSH

∂z
− jSH

0 x̂, (18)

where jSH
0 = �SHjc. Angular momentum conservation at the

left and right boundaries leads to

−1

e
g⊥Mi × [Mi × μSH(zi)] = ∓jSH(zi). (19)

When Mi ‖ μSH, the spin Hall current is completely reflected,
and the spin current at the interface vanishes, while the
absorption and torque are maximal when Mi⊥μSH. Spin
currents and torques at the interface scale favor mi for small
magnetization amplitudes. Let us define a time-independent
μSH

0 for collinear magnetizations and spin-current polarization.
For small dynamic magnetizations,

μSH = μSH
0 + δμSH, (20)

where δμSH ∼ mi . The spin-Hall-induced spin accumulation
leads to an (anti)damping torque in the trilayer, while con-
tributing to the real part of the frequency in superlattices (see
Sec. V).

Solving the diffusion equation (10) with boundary condi-
tions, Eq. (19) yields

μSH
0 = −2elsf

σ
jSH

0
sinh(z/lsf)

cosh(dN/2lsf)
x̂. (21)

The dynamic correction

δμSH = − 1

2

2elsf

σ
jSH

0 tanh(dN/2lsf)

× [(m1 + sm2)
2(z) − (m1 − sm2)
1(z)] (22)

generates SHE torques [Eq. (8)]:

τ SH
i = − γ �

2e2MSd
g⊥

[
mi

(
μSH

0 · x̂
) − δμSH(zi)

]
. (23)

Equation (1) then reduces to four coupled linear first-order
partial differential equations for mi .

IV. EIGENMODES AND CRITICAL CURRENTS

After linearizing Eq. (1) and Fourier transforming to the
frequency domain Ṁi → iωm̂i , Eq. (1) becomes

Mv = 0, (24)

where vT = (m̂1,y,m̂1,z,m̂2,y,m̂2,z) and M is a 4 × 4
frequency-dependent matrix that can be decomposed as

M = M0 + JMJ + (α + α′)Md + α′MSP + jSH
0 MSH,

(25)
with

M0 =

⎛
⎜⎜⎜⎝

−iω −ω̃H − ωM 0 0

ω̃H −iω 0 0

0 0 −iω −sω̃H − sωM

0 0 sω̃H −iω

⎞
⎟⎟⎟⎠ ,

(26a)

Md =

⎛
⎜⎜⎜⎝

0 −iω 0 0

iω 0 0 0

0 0 0 −isω

0 0 isω 0

⎞
⎟⎟⎟⎠ , (26b)
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MJ =

⎛
⎜⎜⎜⎝

0 0 0 ωx

0 0 −ωx 0

0 sωx 0 0

−sωx 0 0 0

⎞
⎟⎟⎟⎠ , (26c)

MISP =

⎛
⎜⎜⎜⎝

0 iωF ′ 0 isωG′

−iωF ′ 0 −isωG′ 0

0 iωG′ 0 isωF ′

−iωG′ 0 −isωF ′ 0

⎞
⎟⎟⎟⎠ , (26d)

MSH =

⎛
⎜⎜⎜⎝

−F 0 −sG 0

0 −F 0 −sG

G 0 sF 0

0 G 0 sF

⎞
⎟⎟⎟⎠ . (26e)

Here, M0 describes dissipationless precession in the effective
magnetic fields, Md arises from Gilbert damping and the
direct effect of spin pumping with a renormalized damping
coefficient α̃ = α + α′ and

α′ = γ �
2

2e2Msd
g⊥, (27)

MJ represents interlayer exchange coupling, MISP represents
spin-pumping-induced spin transfer, and MSH represents
the spin transfer caused by the spin Hall current. The
external and possible in-plane anisotropy fields are modified
by the interlayer coupling, ωH → ω̃H = ωH + ωx , where
ωx = γ J/(Msd). The matrix elements F ′, G′, F , and G are
generalized susceptibilities extracted from Eqs. (16) and (23):

F ′ = 1

α′
∂
(
τ ISP

1

)
y

∂ṁ1,z

, (28a)

G′ = 1

α′
∂
(
τ ISP

1

)
y

∂(sṁ2,z)
, (28b)

F = − 1

jSH
0

∂
(
τ SH

1

)
y

∂m1,y

, (28c)

G = 1

jSH
0

∂
(
τ SH

1

)
y

∂(sm2,y)
. (28d)

The explicit expressions given in Appendix A are simplified
for very thick and thin N spacers.

Thin N layer. When dN � lsf , the interlayer coupling G′
due to spin pumping approaches F ′, the intralayer coupling:

G′ → F ′ → 1
2 , (29)

which implies that the incoming and outgoing spin currents
are the same. This outcome represents the limit of strong
dynamic coupling in which the additional Gilbert damping due
to spin pumping vanishes when the magnetization motion is
synchronized [18]. In this regime, the SHE becomes ineffective
because F and G scale as dN/lsf . F/G → 2 because F

contains a contribution from both the static and the dynamic
spin accumulations.

Thick N layer. In the thick-film limit, dN � lsf , the interlayer
coupling vanishes as G → 0 and G′ → 0, while

F ′ → 1

1 + σ
2g⊥lsf

, (30a)

F → γ �

2eMSd

1

1 + σ
2g⊥lsf

. (30b)

Introducing the spin conductance Gsf ≡ Aσ/2lsf, G⊥ =
Ag⊥, and Rtot = (G⊥ + Gsf)−1, the total resistance of the
interface and the spin active region of N. Then F ′ → RtotG⊥,
represents the backflow of pumped spins. The same holds for
the part of F that originates from the dynamic part of μSH,
while the static part approaches a constant value when dN

becomes large (see the Appendix). In this limit, the system
reduces to two decoupled FI|N bilayers.

The eigenmodes of the coupled system are the solutions
of det[M(ωn)] = 0 with complex eigenfrequencies ωn. The
SHE spin current induces spin accumulations with oppo-
site polarizations at the two interfaces. In the parallel case, the
torques acting on the two FIs are exerted in opposite directions.
The torques then stabilize one magnetization, but destabilize
the other. When the eigenfrequencies acquire a negative
imaginary part, their amplitude grows exponentially in time.
We define the threshold current jSH

0,thr by the value at which
Im[ωn(jSH

0,thr)] = 0. Because the total damping has to be
overcome at the threshold, jSH

0,thr ∼ α̃. We treat the damping
and exchange coupling perturbatively, thereby assuming α̃ �
1 and ωx � ω0, where ω0 = √

ω̃H (ω̃H + ωM ) is the FMR
frequency. The spin Hall angle is usually much smaller than
unity; thus, jSH

0 is treated as a perturbation for currents up to the
order of the threshold current, implying that |Im[ωn(jSH

0 )]| �
|Re[ωn(jSH

0 )]|.
The exchange coupling ωx = γ J/(Msd) for YIG|Pt|YIG

should be weaker than that of the well-studied metallic
magnetic monolayers, where it is known to become very small
for d � 3nm [19]. In the following sections, we assume that
ωx � ωM may be treated as a perturbation.

To treat the damping, spin pumping, spin-Hall-induced
torques, and static exchange perturbatively, we introduce the
smallness parameter ε and let α → εα, α′ → εα′, jSH

0 →
εjSH

0 , ωx → εωx . In the following sections, a first-order
perturbation is applied by linearizing in ε and subsequently
setting ε = 1.

We transform M by the matrix U that diagonalizes M0

with eigenvalues (ω0,ω0, − ω0, − ω0). We then extract the
part corresponding to the real eigenfrequencies, which yields
the following equation:

∣∣∣∣(D)11 (D)12

(D)21 (D)22

∣∣∣∣ = 0, (31)

where D = U−1MU . We thus reduce the fourth-order secular
equation in ω to a second-order expression. To the first order,
we find for the parallel (s = 1) case,

ωP = ω̃0 + i
αP

eff

2
(2ω̃H + ωM ), (32)
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where we introduced a current-controlled effective Gilbert
damping:

αP
eff =α + α′(1 − F ′)

±
√(

α′G′ − i
ωx

ω0

)2

+ 4(F 2 − G2)
(
jSH

0

)2

(2ω̃H + ωM )2
. (33)

The imaginary part of the square root in Eq. (33) causes a
first-order real frequency shift that we may disregard, i.e.,
Re[ωP] ≈ ω̃0 ≈ ω0. We thus find two modes with nearly the
same frequencies but different effective broadenings.

The critical current j
SH,P
0,thr is now determined by requiring

that αP
eff vanish, leading to

j
SH,P
0,thr = ±

√
[α + α′ (1 − F ′)]2 − (α′G′)2

2
√

F 2 − G2

×
√

1 +
(

ωx/ω0

α + α′(1 − F ′)

)2

(2ω̃H + ωM ), (34)

while the critical charge current is jP
c,thr = j

S,P
0,thr/�SH. Spin

pumping and spin flip dissipate energy, leading to a higher
threshold current, which is reflected by 1 − F ′ � G′. The
reactive part of the SHE-induced torque (G) suppresses the
effect of the applied current and thereby increases the critical
current as well. The static exchange couples M1 and M2,
hence increasing j

SH,P
0,thr . The critical spin current decreases

monotonically with increasing dN/lsf, implying that the spin
valve (with parallel magnetization) has a larger threshold
current than the FI|N bilayer (with thick dN).

Analogous to the parallel case, we find two eigenmodes for
the antiparallel case (s = −1), with eigenfrequencies

ωAP = ω0 +
(

±−ωx

2ω0
+ i

αAP
eff

2

)
(2ω̃H + ωM ) (35)

and corresponding effective Gilbert damping parameters

αAP
eff =α + α′(1 − F ′)

± α′G′ ωM

2ω̃H + ωM

+ 2

2ω̃H + ωM

FjSH
0 , (36)

which depend on the magnetic configuration because the
dynamic exchange coupling differs, while the resonance
frequency is affected by the static coupling. In the AP
configurations, the spin Hall current acts with the same sign
on both layers due to the increase/decrease in damping on
both sides depending on the applied current direction. The
corresponding threshold current is expressed as

j
SH,AP
0,thr = − [α + α′(1 − F ′)](2ω̃H + ωM ) − α′G′ωM

2F
, (37)

with j
SH,AP
c,thr = j

SH,AP
0,thr /�SH. Again, the threshold for current-

induced excitation is increased by the spin pumping.
To zeroth order in the smallness parameter ε, we find that

the eigenvectors for the parallel configuration take the form
vP = (u,βu)T , where u is the two-component vector

u =
(

i
√

1 + ωM/ω̃H

1

)
. (38)

The imbalance in the amplitudes of both layers is parameter-
ized by

β =
2jSH

0 F ∓
√

4(F 2 − G2)
(
jSH

0

)2 +
(
α′G′ − i ωx

ω0

)2
(2ω̃H + ωM )2

−2jSH
0 G +

(
α′G′ − i ωx

ω0

)
(2ω̃H + ωM )

, (39)

where ∓ corresponds to ± in Eq. (32). For the symmetric
case, the applied current favors out-of-phase oscillations.
It can be demonstrated that in the limit of large currents
and low spin-memory loss, the corresponding amplitude
difference is β = −1, with jSH

0 = 0, and an interlayer coupling
dominated by either dynamic or static exchange β = ∓1,
which correspond to an optical mode and an acoustic mode,
respectively. We use the labels “acoustic” and “optic” even
though the phase difference is not precisely 0 or π due to the
static exchange interaction. Note that β(−jSH

0 ) = 1/β(jSH
0 )

is required by symmetry; inverting the current direction is
equivalent to interchanging FI1 and FI2. For ωx = 0, β(jSH

0 )
is a pole or node depending on the current direction for
the acoustic mode in which the magnetization in one layer
vanishes. Above this current, β change signs, and both modes
have a phase difference of π (see Fig. 2). The critical current
lies above the current corresponding to the node at which
the acoustic mode becomes unstable. The ballistic model also
supports acoustic and optical modes [16], with the optical
mode being more efficiently damped.

In the antiparallel case, acoustic and optical modes are
characterized by amplitudes

vAP
A =

⎛
⎜⎜⎜⎝

i ω0
ω̃H

1

i ω0
ω̃H

−1

⎞
⎟⎟⎟⎠ , vAP

O =

⎛
⎜⎜⎜⎝

i ω0
ω̃H

1

−i ω0
ω̃H

1

⎞
⎟⎟⎟⎠ , (40)

where the optical (acoustic) mode corresponds to the plus
(minus) sign in Eq. (35) (see Fig. 3). The labels optical
and acoustic are kept because of the difference in effective
damping; a 180◦ rotation about the y axis of FI2 maps these
modes to the corresponding modes for the parallel case.

When the composition of the spin valve is slightly asym-
metric, the dynamics of the two layers can still be synchronized
by the static and dynamic coupling. However, at some critical
detuning �ω = ω2 − ω1, this technique no longer works, as
illustrated by the eigenfrequencies for the asymmetric spin
valve in Fig. 4. Here, we employ YIG|Pt|YIG parameters but
tune the FMR frequency of the right YIG layer. In practice, the
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FIG. 2. (Color online) The acoustic mode for the parallel case
and different applied currents, ranging from zero to just below the
critical current. For large currents the oscillations of the two FIs
become out of phase.

tuning can be achieved by varying the direction of the applied
magnetic field [18]. When the FMR frequencies of the two
layers are sufficiently close, the precessional motions in the
two layers lock onto each other. The asymmetry introduced by
higher currents is observed to suppress the synchronization.

The nonlinear large-angle precession that occurs for cur-
rents above the threshold is not amenable to analytical
treatments; however, numerical calculations can provide some
insights. Because the dissipation of YIG is very low, the
number of oscillations required to achieve a noticeable change
in the precession angle is very large. To speed up the
calculations and make the results more readable we rescale
both g⊥ and α by a factor 0.005/α; in this way the effective

FI1 FI2N

M0

FI1 FI2N

(a)

(b)

m1M0

m1

m2

m2

m1M0

m1

M0

m2
m2

FIG. 3. (Color online) The eigenmodes of the antiparallel con-
figuration. (a) and (b) are the acoustic and optical modes described
by Eq. (40), respectively. For the acoustic (optical) mode the in-plane
(out-of-plane) component is equal in the two layers but the out-of-
plane (in-plane) components oppose each other.

FIG. 4. (Color online) The lowest resonance frequencies of a
parallel FI1|N|FI2 spin valve calculated for the parameters in
Table I as a function of the detuning of the FMR frequencies
of the individual layers and for different currents jSH

0 /jSH
0,thr =

0%,10%,50%, represented by the solid blue, red dashed, and
green dashed lines, respectively. At zero applied current the
two magnetizations move in phase when detuning is small.
The current suppresses synchronization almost completely when
reaching the threshold value. The inset shows the corresponding
broadenings.

damping is rescaled. Figure 5 shows the components of
the magnetization in the two layers as a function of time
when a large current is switched on for an initially parallel
magnetization along x with a slight canting of Mi,y = 0.01 for
i = 1,2. We apply a current jSH

0 /j
P,SH
0,thr = 110% at t = 0. For

5T � t < 40T , where T = 2π/ω0, the precession is out of
phase, and the amplitude gradually increases. At t = 40T ,
the applied current is ramped up to jSH

0 /j
P,SH
0,thr = 130%.

At t ∼ 60T , the precession angle is no longer small, and
our previous perturbative treatment breaks down. However,
we can understand that the right layer precesses with a
large angle, while the left layer stays close to the initial
equilibrium from the opposite direction of the interface spin
accumulations μSH

0 .
The macrospin model is a good approximation only in the

presence of sufficiently strong applied magnetic fields that
stabilize single-domain states. This might not be the case in
the antiparallel configuration, and results should be viewed
with some caution. Spin waves have a wave-number-dependent

TABLE I. Material parameters and sample dimensions used in
the numerical calculations.

Constant Value Units

g⊥ 3.4 × 1015a cm−2 e2/h

σ 5.4 × 1017b s−1

4πMS 1750c G
Hint 0.2 × 4πMS G
α 3 × 10−4c

lsf 10 nm
d1,dN ,d2 10, 5, 10 nm

aReference [20].
bReference [21].
cReference [22].
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FIG. 5. (Color online) Magnetization dynamics for the parallel
configuration and currents above the threshold. The magnetization in
the (a) left and (b) right layers as a function of time in units of T =
2π/ω0. The effective damping is rescaled by letting g⊥ → g⊥0.005/α

and α → α 0.005/α. The numerical calculation was carried out by a
fourth-order Runge-Kutta method with a step size �t = T/50.

damping enhancement [13], which implies that the dynamic
coupling in spin valves should be mode dependent [23], which
cannot be treated by our model. In the nonlinear regime and FIs
with dimensions exceeding the exchange length lex (∼17 nm
for YIG), the energy separation between the modes may be
coupled by the large-angle dynamics, increasing dissipation
and reducing the oscillation amplitude [24], which again is
outside the scope of the present study.

V. SUPERLATTICES

A periodic stack of FIs coupled through Ns supports spin-
wave excitations propagating in the perpendicular direction.
The coupling between layers is described by Eq. (24); however,
each FI is coupled through the N layers to two neighboring
layers. The primitive unit cell of the superlattice with collinear
magnetization is the FI|N bilayer for the collinear configura-
tion and two bilayers in the locally antiparallel configuration,
or “synthetic antiferromagnet.” We introduce the layer index
i ∈ Z for the local magnetization with equal (normalized)
modulus

Mi = si x̂ + mi , (41)

where si = 1 for the parallel ground state and si = (−1)i

for the antiparallel ground state. We can linearize again the

equations of motion with respect to the small parameters mi .
For long-wavelength excitations the local magnetization for
the parallel configuration, as well as the staggered field for an
antiferromagnetic ordering, can be treated in the continuum
limit. Denoting the total thickness of a unit cell b = dN + dFI,
we find for the parallel case (si = 1)

∂tm = x̂ × {ωH m + ωMmzẑ + [α + 2α′(1 − F ′ − G′)]∂tm

−α′G′2∂t,zzm − ωxb
2∂zzm + 2jSH

0 Gb∂zx̂ × m}.
(42)

For m = m0e
i(ωt−kzz), the linearized dispersion relation is

ω =
√

ωH (ωH + ωM ) + 1

2
(2ωH + ωM )

ωx

ω0
b2k2

z − 2jSH
0 Gbkz

+ i
1

2
(2ωH + ωM )

[
α + 2α′(1 − F ′ − G′) + α′G′k2

z b
2
]
.

(43)

The applied current thus adds a term that is linear in kz

to the real part of the frequency. The direct effect of the
SHE now vanishes because the torques on both sides of
any FI cancel. However, when m0 �= 0, a net spin current
flows normal to the stack, which affects the dispersion. In
the ferromagnetic layers, this phenomenon is equivalent to
a pure strain field on the magnetization and is therefore
nondissipative. While generating jSH

0 causes Ohmic losses,
the magnetization dynamics in this limit do not add to the
energy dissipation, explaining the contribution to Re ω. In this
regime, there are no external current-induced contributions or
instabilities.

Synthetic antiferromagnets with Pt spacers might not be
so easy to realize experimentally since, as noted above, the
nonlocal exchange coupling is believed to be weak. In this
configuration the unit cell is doubled as is the number of
variables in the equation of motion. Determining the coupling
coefficients from Eq. (26) is straightforward but cumbersome
and is not presented here. Naively, one could expect that the
SHE-induced torque would act quite differently in synthetic
antiferromagnets. The SHE acts in a symmetric manner on
the FI(↑)|N|FI(↓) system, stabilizing or destabilizing both
layers simultaneously. However, similar to the ferromagnetic
superlattice, the direct SHE cancels also in the synthetic
antiferromagnet: each FI is sandwiched by Ns, with spin
accumulations of opposite sign on the left and right sides of
the interfaces, leading to the same cancellation as above.

We can also envision a multilayer in which individual
metallic layers can be contacted separately and independently.
N|FI|N structures have been predicted to display a magnon
drag effect through the ferromagnetic film [25], i.e., a current
in one layer induces an emf in the other one. A drag effect also
exists in our macrospin model: if we induce dynamics by a
current in one layer by the spin Hall effect, the spin pumping
and inverse spin Hall effect generate a current in the other
layer, but only above a current threshold.

With separate contacts to the layers one may drive opposite
currents through neighboring films. In that case, the spin
current absorbed by a ferromagnetic layer is approximately
twice as large as that found for the FI|N bilayer and of opposite
sign for neighboring magnetic layers, thereby reducing the
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critical currents needed to excite the parallel configuration.
Such a staggered current distribution can also stabilize an
antiparallel order even in the absence of static exchange
couplings. When competing with an applied magnetic field,
the current-induced forces should lead to intricate dynamics.
An alternative to the staggered current distribution would
be structures with metals supporting spin Hall angles of
opposite sign, such as Pt and Ta [26]. When grown in the
alternating fashion · · · N1|FI|N2|FI|N1· · · , a uniform charge
current generates a staggered spin Hall current distribution that
can be used to force a synthetic antiferromagnetic order on the
superlattice.

VI. CONCLUSIONS

We study current-induced magnetization dynamics in spin
valves and superlattices consisting of insulating magnets
separated by metallic spacers with the spin Hall effect. The
current-induced torques experienced by the two magnetic
layers in an FI(↑)|N| FI(↑) spin valve caused by the spin
Hall effect are opposite in sign. A charge current in N normal
to the magnetization leads to a damping and an antidamping,
stabilizing one and destabilizing the other magnetization. We
calculate the magnetization dynamics when the two layers
are exchange coupled and in the presence of the dynamic
exchange coupling induced by spin pumping. In an antiparallel
configuration FI(↑)|N|FI(↓) the interlayer couplings play a
minor role in the current-induced effects. The threshold
currents at which self-oscillation occurs are higher for parallel
than for antiparallel spin valves. We predict interesting current-
induced effects for superlattices and multilayers in which the
metallic spacer layers can be individually contacted or have
spin Hall angles with opposite sign, such as current-induced
synthetic ferromagnetic order.
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APPENDIX A: MATRIX ELEMENTS

Here, we derive the response coefficients F , G, F ′, and G′,
which determine the torques, depending on the properties of
the normal metal. Let us first discuss the coefficients related

to the torques induced by the SHE. The functions F and G are
extracted from the derivatives of Eq. (23) with respect to the
transverse components of the dynamic magnetizations mi . F

governs the SHE-induced torque in one layer due to displaced
magnetization in the same layer and can be computed as

∂
(
τ SH

1

)
y

∂m1,y

= ∂
(
τ SH

1

)
z

∂m1,z

= −
∂
(
τ SH

2

)
y

∂(sm2,y)
= − ∂

(
τ SH

2

)
z

∂(sm2,z)
= −FjSH

0 .

(A1)
Thus,

F = γ �

2e2MSd
g⊥

2elsf

σ
tanh(dN/2lsf)

×
[

1 − 1

2

1 (dN/2) − 1

2

2 (dN/2)

]
. (A2)

Similarly, we can identify G, which governs the cross-
correlation of the SHE-induced torque in one layer arising
from a displaced magnetization in the other layer, from

∂
(
τ SH

1

)
y

∂(sm2,y)
= ∂

(
τ SH

1

)
z

∂(sm2,z)
= −

∂
(
τ SH

2

)
y

∂m1,y

= −∂
(
τ SH

2

)
z

∂m1,z

= GjSH
0 .

(A3)
Thus,

G = γ �

2e2MSd
g⊥

2elsf

σ
tanh(dN/2lsf)

× 1

2
[
1 (dN/2) − 
2 (dN/2)] . (A4)

Torques generated by spin pumping contain terms of the
form x̂ × mi and couple the y and z components of the
magnetization dynamics. We find

∂
(
τ ISP

1

)
y

∂ṁ1,z

= −∂
(
τ ISP

1

)
z

∂ṁ1,y

=
∂
(
τ ISP

2

)
y

∂(sṁ2,z)
= − ∂

(
τ ISP

2

)
z

∂(sṁ2,y)
= F ′α′,

(A5)
where

2F ′ = 
1 (dN/2) + 
2 (dN/2) . (A6)

Similarly,

∂
(
τ ISP

1

)
y

∂(sṁ2,z)
= − ∂

(
τ ISP

1

)
z

∂(sṁ2,y)
=

∂
(
τ ISP

2

)
y

∂ṁ1,z

= −∂
(
τ ISP

2

)
z

∂ṁ1,y

= G′α′,

(A7)
where

2G′ = 
1 (dN/2) − 
2 (dN/2) . (A8)

We finally note that some of the coefficients are related:

G

G′α′ = 1

�

2elsf

σ
tanh(dN/2lsf). (A9)

[1] A. Brataas, A. D. Kent, and H. Ohno, Nat. Mater. 11, 372 (2012).
[2] H. Nakayama, M. Althammer, Y.-T. Chen, K. Uchida,

Y. Kajiwara, D. Kikuchi, T. Ohtani, S. Geprägs, M. Opel,
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