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ABSTRACT Offloading tasks between edge nodes is a subject that has drawn a lot of attention since edge
computing first emerged. A large number of edge IoT devices utilizing increased computing resources
such as autonomous vehicles and UAVs can be used to execute Al tasks close to users. We present a
novel approach that deviates from the conventional edge computing offloading concept namely offloading
computationally intensive tasks from cloudlets to nearby end nodes. Specifically, we enhance a scenario
where end nodes assist more powerful nodes (like cloudlets) in executing Al inference tasks. In edge
computing networks, as end nodes grow in number, they build an idle computing capacity which can
solve and provide efficient solutions. Our goal is to solve a defined Multi-Objective optimization problem
with three objectives namely the overall execution time (slowest substasks), the execution accuracy, and
the total energy consumption. We address this challenging optimization problem using a novel method
with our released Multi-Objective Edge AI-Adaptive Reverse Offloading, or MOEAI-ARO, algorithm.
Using an edge computing testbed and a representative Al service, we demonstrate the effectiveness of
our reverse offloading proposal and method. The results indicate that our method further optimizes the
system’s performance compared to baseline algorithms.

INDEX TERMS Al task offloading, edge computing, multi-objective optimization, resource allocation.

I. INTRODUCTION
DGE computing is becoming a necessary component
of our lives and is constantly developing. Enabling end
nodes (such as mobile phones, Internet of Things devices,
etc.) to execute computational tasks closer to the data source
is considered a crucial component of future networks. These
tasks are often offloaded to more powerful edge devices
like cloudlets which enhances the low-latency applications in
IoT [1], [2], [3]. Edge computing improves the performance
of resource-intensive tasks by bringing computation and
storage closer to the user. This reduces the latency caused
by sending data to distant cloud servers. On the other
hand, communication costs in terms of latency and energy
consumption must be taken into account for end devices that
are powered by batteries.
Interestingly, there is a growing opportunity to investigate
the opposite direction: allowing end nodes to perform

computational tasks that are assigned to them by nearby edge
servers or cloudlets. Through the utilization of numerous
end nodes located close to the edge servers, this new
architecture has the potential to provide even greater advan-
tages by decreasing response times and improving real-time
applications. This potential architecture can be implemented
particularly in edge computing applications such as smart
cities or in industry, where many end devices either remain
idle or execute tasks that require small processing power,
thereby enabling them to assist the edge servers in the data
processing created within the edge computing network.

In the last few years, the research community has
thoroughly researched the “traditional” task offloading, from
the end devices to the edge servers. Indicating the powerful
hardware of the end devices, this new reverse task offloading
architecture can prove even more beneficial for processing
Al tasks. It is true that as end devices increase in edge

(© 2025 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/
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computing networks, they create an idle computing capacity.
This capacity can be useful if it is combined and utilized
methodically.

The use of Machine Learning (ML) inference from data
samples collected at the cloudlets has increased recently.
Pre-trained Deep Neural Networks (DNNs) are deployed on
the end nodes in large numbers thanks to improvements in
end nodes’ hardware and the creation of DNN models that
require less processing power and storage at the expense of
lower inference accuracy [4], [5], [6]. The deployment of Al
models on end nodes is enabled by dedicated AI hardware
integrated into current processors. Several Al models of
different computational characteristics are being used at the
edge. The inference time, accuracy, and energy consumption
are directly related to the model’s characteristics. In more
detail, larger models achieve more accurate results or
predictions but need longer processing time and more energy.

Demonstrating their crucial role in reducing task execution
delays and energy consumption of end nodes, task offloading
has gained significant attention in recent years [7], [8], [9].
Furthermore, the implementation of different kinds of
optimization algorithms for task allocation guarantees in
most cases the optimal use of the resources in IoT networks
which significantly reduces latency and energy usage. The
research community is continuously focusing on improving
such task allocation methods to handle real-time applications.
This enhances the opportunity to investigate the implemen-
tation of novel algorithms suited for our proposed task
offloading architecture.

In this work, we use the reverse offloading approach and
solve a multi-objective optimization problem with a newly
introduced optimization algorithm. We consider, as a use
case, an exemplary Al inference service, namely, an object
detection process on images that are located in an edge
server. Our goal in our defined multi-objective optimization
problem is to find the optimal distribution of the images
among the available edge devices (edge server, end devices)
and also find the optimal deep learning model selection
which takes into account all objectives simultaneously. In
our optimization problem, we consider three objectives: the
Al inference latency which is determined by the slowest
execution of any subtask assigned to some end node, the
accuracy of the object detection process, and the total energy
consumed for processing the images.

Since the above objectives are competitive, there is
not a single solution that optimizes the three objectives
simultaneously. For this reason, we use the notion of
Pareto-optimal solutions [10], [11]. We propose a novel
methodology for the automatic selection of a solution that
belongs to the Pareto front.

To tackle the challenging mixed continuous-discrete
optimization problem we introduce a novel adaptive task
offloading method that combines a Linear Programming
(LP) [12], [13] algorithm with a stochastic Non-dominated
Sorting Genetic Algorithm (NSGA) [14]. The results show
considerable performance gains and cost savings.
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A. METHODOLOGY AND CONTRIBUTIONS

We explore a scenario of a wireless edge computing network
with one access point, an edge server, and end nodes with
multiple implemented deep learning models. All end devices
are connected via links of different capacities with the edge
server.

We search for a solution that optimizes simultaneously
three objectives, namely the processing speed of the
workload, the execution accuracy, and the total energy
consumption by splitting the workload (images) among
available edge devices via the edge server and additionally
selecting the optimal deep learning model for each edge
node. The workload consists in processing images (such as
videos with a specified duration) that are distributed from
the edge server to the edge nodes (including the edge server)
where an object detector is used to locate objects of interest.
Since each edge device disposes a set of object detectors
with a specific neural network size, each combination of
device and object detector model essentially has different
performance and efficiency. Furthermore, since the devices
are connected over wireless links with varying capacities,
the transmission time from the edge server to each device
differs. The distribution or splitting of the images and the
selection of the object detector for the edge nodes are
determined by the edge server’s algorithm. For the evaluation
of the performance, gains are expressed in terms of all
objectives.

We provide a complete solution employed as a reverse
offloading method. Using a wireless testbed consisting of
three Raspberry Pis (RPis) of which one serves as an edge
server and two Nvidia Jetsons, this method is evaluated
through a series of experiments utilizing the YOLO object
detector [15]. When compared to different task offloading
baseline methods, the findings demonstrate that our imple-
mented strategy provides an improved overall performance.
Furthermore, our offloading technique which we refer to
as Multi-Objective Edge Al-Adaptive Reverse Offloading
(MOEAI-ARO), tailors its operation by considering resource
availability.

Consequently, the following contributions are provided by
this work:

« We enhance the concept that involves edge nodes
splitting up their tasks and sending the subtasks to far-
edge nodes (end devices). This is known as reverse
offloading, which is of high importance for edge
computing services and IoT networks.

« Formulation of a Multi-Objective optimization problem
that optimizes simultaneously three crucial objectives,
namely the latency, the total energy consumption, and
the execution accuracy for edge computing applications.

« Consideration of the different object detector models as
an optimization variable.

« Development of an adaptive reverse offloading algo-
rithm (MOEAI-ARO) that can be tailored to different
uniform Al tasks as well as different end devices with
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different hardware processing capacities and resource
constraints.

o Thorough performance evaluation by comparing the
proposed MOEAI-ARO algorithm with various base-
line algorithms in a wireless edge computing testbed,
which consists of end devices with different processing
capacities.

Il. RELATED WORKS

Reverse task offloading. The optimization of the system’s
latency for vehicular edge computing using a reverse offload-
ing framework was presented in [16]. Resource management
and task allocation were optimized via a greedy-based
efficient searching (GES) method for binary reverse offload-
ing strategies and the joint alternative optimization-based
bi-section searching strategy for partial reverse offloading.
Another reverse offloading framework that used a GES
algorithm was presented in [17] optimizing the system’s
services capacity in a cooperative fashion. Moreover, in [18]
the authors developed a reverse offloading strategy for
MEC (Multi-access Edge Computing). In more detail, they
implemented a heuristic-based and machine learning method,
such as Deep Reinforcement Learning, to optimize reverse
offloading decisions, effectively reducing latency and energy
consumption. In this paper, we focus particularly on handling
resource-intensive tasks, such as computer vision tasks,
using additional degrees of freedom (DoF) corresponding to
different object detector models.

Al task offloading. In recent years much work from the
scientific community has been devoted to the optimization of
Al inference tasks in edge computing networks. Researchers
in [19] formulated a Mixed-Integer Nonlinear Programming
(MINLP) problem to optimize the latency, accuracy, and
energy consumption of Al inference in edge computing
networks for videos using the so-called Channel-Aware
heuristic algorithm. Offloading of Machine Learning tasks
in edge computing networks was examined in [20]. An
Integer Linear Programming problem was defined, aiming
to maximize the processing accuracy of Al inference tasks.
In more detail, the authors’ purpose was to find the
optimal trade-off between the model size and the processing
accuracy using a Dynamic Programming algorithm. In
addition, an Automated Machine Learning framework was
proposed in [21] that optimizes the inference accuracy of Al
tasks while adhering to the minimum frame-rate constraint.
The introduced online optimization algorithm improves the
performance of the edge computing systems in real time
without violating the constraints. All the aforementioned
methods only employ continuous or integer optimization
variables. Our method shows how to treat discrete and
continuous optimization variables efficiently in a model
where an edge device (cloudlet) divides and offloads the
tasks to multiple smaller devices.

Multi-objective optimization. The most reasonable
optimization problems in edge computing are those
that optimize multiple objectives. In [22] heuristic-based
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solutions are used to demonstrate significant gains in com-
putational time and energy efficiency. The proposed system,
named RAMOS, utilizes different kinds of edge nodes and
addresses a multi-objective resource-aware task assignment
and scheduling problem with modes for energy efficiency
and latency minimization. An interesting work is presented
in [23] where the authors tried to identify the optimal
trade-off accuracy and latency for deep learning tasks. They
formulated an Integer Linear Programming optimization
problem to optimize the user’s satisfaction. Additionally, a
polynomial constant-time greedy algorithm was presented to
get the neat optimal solution. Another work [24] introduced
a Constrained Multi-Objective Decomposition Evolutionary
Algorithm to optimize energy consumption and latency.
This algorithm was implemented in a UAV-assisted MEC
network. Another paper [25] attempted to challenge the
optimal management of available resources (edge devices) in
IoV networks. The NSGA-III algorithm was implemented to
optimize objectives such as latency, energy consumption, and
load balancing. Authors in [26] used a Genetic Algorithm
(GA) [27] to optimize the task processing latency while
adhering to several constraints. The presented approach
attempts to find the optimal resource allocation in the
MEC network. In our proposal, we explore further the
implementation of an evolutionary algorithm (NSGA) for
our multi-objective optimization problem with the difference
that our constraints are handled by an LP algorithm which
results in a highly efficient optimization algorithm. This
novel strategy efficiently optimizes our three objectives using
both discrete and continuous optimization variables. The
discrete variables are handled by the NSGA algorithm while
the continuous ones by the LP algorithm.

lll. MODEL AND PROBLEM FORMULATION

We present our system model and the corresponding math-
ematical formulation. A batch of images B, or else the
Batch step, is distributed by the edge server to a set A
of N devices including the edge server for processing.
We consider a wireless IoT network represented by the
set N connected over wireless links with different capac-
ities, all operating with standard IoT technologies such as
Wi-Fi. The devices execute an Al task, or more specifically,
an object detection task. For object detection, each device
in our system implements a deep learning model (neural
network). Because the models may vary in size, they may
also differ in terms of energy consumption, mean accuracy,
and computational performance. A set of M neural networks
is represented by the index y; € M for each device i € N
where M={1,2,...,M}. We set the index i = 1 for the
edge server.

We introduce an optimization variable x; € [0, 1] for each
edge device i. This variable denotes the part of B distributed
to the edge device i € [1,N]. All of these variables are
collected into a vector x = [xi,...,xy] € [0,11" and
satisfy the constraint Y% | x; = 1. We also add a discrete
optimization variable y = [y, ..., yn] which denotes the
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TABLE 1. Key parameters, functions and variables.

Description Parameters/variables

T; Percentage of the total number of images sent to
device .

Yi Object detector choice for every device 4.

B Batch of images for processing (Batch step).

Tg‘z Time to send a single image to device <.

Tél(yi) Time per image for the device 4 to execute the
object detector using the neural network y;.

Li(xi,y:) Time for the server communication and object
detection execution of device 1.

mAP(X,y) Mean accuracy of the overall object detection
process.

mAP(y;) Mean accuracy per image of the object detection
process using the neural network y;.

E(x,y) Total energy consumed for the data transmission,
data reception and object detection process.

Ei(z;,vi) Energy consumed by device ¢ for data reception
and task execution.

EfTec(y;) Energy consumed by device 4 for the object de-
tection process of one image using neural network
Yi.-

ETee Energy consumed by device ¢ for the reception
of one image.

Efr Energy consumed by the edge server to transmit

one image to device .

Eavailable Energy available for device 1.

o Auxiliary variable that serves simultaneously as
cost function and uniform bound for the latency
of each device 7.

w Vector of weight coefficients.
P Number of Pareto optimal solutions.
fCoG The Center of Gravity (CoG) of the solutions on

the Pareto front.

fi Value of objective 1.

f_non
k3

i

Normalized value of objective 3.

The i*" normalized objective of the jt solution

on the Pareto front.

distance(xj,x) | Ellipsoidal distance function which computes a

distance between two solutions x;,zy.

Tdef The solution on the Pareto front that has the

minimum distance from the CoG.

neural network selection utilized for object detection at each
edge device.

Remark: The number of the images distributed from
the edge server to the end device i € [1, N] equals x;B
and is rounded to the nearest integer value. As long as a
significant number of tasks is distributed at each batch step,
this rounding has a negligeable impact on the optimization
solution.
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A. FORMULATION OF THE OPTIMIZATION PROBLEM

In this section, we provide the analytical formulation of the
optimization problem. All key parameters, functions, and
decision variables used in our formulation are summarized
in Table 1.

Our first objective is to minimize the maximum latency.
Here, latency is defined for each device as the total amount
of time required for both, the transmission time of images
from the server to the end device i, denoted as T};C, and the
time to execute the object detection process by end device
i using the neural network y;, denoted as Tél(yi), ie.,

Li(xi,yi) = xiBT} + xiBT}(y;) = Cix; (1)
where:
G = B(T;'x + T,f,l(yi)) @)
. Datasize
1
== 3
™" DataRate )

We denote the maximum latency as:
Lipax(x,y) = mlaX Li(xi, yi) 4

The second objective corresponds to maximizing the mean
accuracy of the total object detection process, denoted as
mAP(Xx,y), which is computed as:

mAP(X,y) = ) _ ximAP(y;), 5)

1

where mAP(y;) stands for the mean accuracy of the object
detection process for one image using the neural network y;.
Finally, the third objective is to minimize the total energy
consumption (E(X, y)), which corresponds to the energy cost
for data transmission (E}"), data reception (E*‘) and task
execution (E{*¢), i.e.:

N N
E(x,y) = Y xBE™(y) + » xB(Ef“+E") (6)
i=1 i=2
Remark: In equation (6), we have considered that E}* =
0, since the edge server does not consume any energy for
data reception, and E’lr = (), since it does not transmit data
to itself.
Thus, the objective function of the multi-objective
optimization problem can be written in vector form as:

rgiyn[Lmax(X, y), —mAP(X,y), E(X,y)] @)

In real-world applications, it is also necessary to consider
the energy availability to ensure that devices are truly capable
of completing the assigned tasks. For every device i, we
need to include an additional constraint, s.t.

Ei(x;, y;) < Egvailable 8)

where E;(x;, y;) corresponds to the energy consumed by
the device i for data transmission, data reception, and task
execution, and El‘."’“ll“ble represents the energy available in
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the end device i. Depending on the device index i, the term
E;(x;,y;) is further analysed as:

N
Ei(x1,y1) = ) %BE] + x\BE{ (y1) ©)
i=2

Ei(x;,yi) = 5;BE;** + x;BE{*“(y;), i=2,...,N(10)
Therefore, the complete optimization problem reads:

Igiyn [Limax(X,y), =mAP(X,y), E(x,y)] (11.1)

S.t. Ei(xi,yi) < Elglvailable’

N
dxi=1 (113)
i=1

x; € [0, 1],

=1,...,N (11.2)

i=1,...,N (11.4) (11)

To provide a detailed explanation of the multi-objective
optimization problem formulated in (11), the objective in
(11.1) is to simultaneously optimize the three objectives,
namely to minimize the maximum latency, maximize the
mean accuracy, and minimize the total energy consumption.
Regarding the constraints of the optimization problem,
equation (11.2) ensures that end device i has the required
available energy (Efvail“ble) to execute the distributed task.
According to equation (11.3), the sum of the portion
{x;}i=1,..~y of B transmitted to all end devices must be
equal to 1. Lastly, the bound constraints for the optimization
variables {x;};=1, . n are stated in equation (11.4).

As in our previous work [28], to avoid the non-
differentiability of the max operator in L, (X, y), we adopt
the approach in [29] and introduce an auxiliary optimization
variable, denoted xg € [0, co) which serves both as a cost
function and as a uniform bound for the latency of each
device, i.e., we use the equivalence between the following
optimization problems:

min max L;(x;, y;) and min xp
X,y i X,y
S.t. Ll-(x,-,y,-) <xpi=1,...,N

Finally, the multi-objective optimization problem reads:

min [xg, —mAP(X,y), E(x,y)]
X,y

s.t. Cixi <x9, i=1,...,N

Ei(xi, y;) < Eailable =1 . N

N

in =1

i=1

X0 >0

xiel0,1], i=1,...,N (12)

The main challenges in efficiently solving the optimization
problem (12) and providing a solution that offers a well
balanced trade-off in terms of all three objectives are
explained in Section III-B and III-C correspondingly.
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B. SOLUTION OF MULTI-OBJECTIVE OPTIMIZATION
PROBLEM

The above optimization problem can be written in compact
form as:

min _{f1, /2, f3} (13)
x,y,xo€F

where F denotes the feasible set defined by the constraints of
problem (12), while f1, f2, f3 denote the corresponding objec-
tives. Using a classical Genetic Algorithm for this problem
would be too costly for a practical implementation of a task-
offloading problem, where decisions need to be taken in very
short time. More specifically, GA algorithms are not very
efficient in handling several constraints simultaneously, in
particular for problems as (12) where continuous variables
appear in the constraints formulation. This difficulty becomes
even more evident as the number of devices increases,
requiring many iterations for the algorithm to converge.

For this reason, as in [28], we search to tailor a Genetic
Algorithm with an LP algorithm. The former aims to find
the optimal choice of neural networks while the latter is
occupied with choosing the optimal task distributions and
satisfying all the set of constraints for each choice of neural
networks.

To formulate such an LP problem, we need to construct
a single-objective optimization problem. Since all our con-
straints are linear (for fixed y), the objective function shall
also be chosen to be linear. An evident choice is to construct
a weighted sum of f1.f>.f3, i.e.,

min_ wifi +wafr + (1 — w1 —w2)f3

x,y,xo€F

(14)

where w1, wy, w3 > 0 are positive weight coefficients.

However, the choice of the above weights is not straight-
forward. It seems more natural to produce a front of
Pareto-optimal solutions for different values of weights, and
then choose accordingly. However, it would be too costly
to solve the above optimization problem for a great number
of weight combinations. Another idea, adopted in this work,
consists in adding w = [wi, w2, w3] as an optimization
variable in the Genetic Algorithm, searching at the same
time for combinations that create Pareto-optimal solutions.
Therefore, the NSGA-II algorithm creates Pareto-optimal
solutions for the optimization problem:

wift +wafr + (1 — w1 — w2)f3 (15)

min
x,y.w,xo€F
by evolving a population of solutions {y, w} while for each
member of the population the optimization variables x, xg
are determined via the solution of the LP-problem:

min_ wif] + wafa + (1 — wi — wa)f3
x,xo€F

(16)

To achieve a better scaling for the three objectives in the
weighted sum (16), all values are normalized such that
fo™e[0,1],i=1,2,3, using the formula:
fnorm — ﬁ _f;mm (17)
i - fmax _ffnin
] 1
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where fl.m“x, fimi" are the maximum and minimum possible
values for each objective.

Remark: Let us emphasize that several Evolutionary
Algorithms could be used instead of the proposed Genetic
Algorithm, without expecting any significant influence on
the performance of the method. The central idea of the
methodology lies in the combination of any Evolutionary
Algorithm with an LP algorithm. Our choice of GA lies
purely in its simplicity of implementation.

C. DEFAULT SELECTION AMONG PARETO-OPTIMAL
SOLUTIONS
By definition, all Pareto-optimal solutions are equivalent.
Without additional specifications, we propose a methodology
for default selection among Pareto-optimal solutions, based
on a distance function, which ensures a proper equilibrium
with respect to all objectives.

First, we compute the Center of Gravity (CoG) of the
solutions on the Pareto front. Each coordinate of the CoG
vector reads:

ZP:]OO norm
j=1_ Jij
P

where P is the number of Pareto optimal solutions on the
front and fi’fjf”m denotes the i normalized objective of the
j™ solution on the front.

Then, we define an ellipsoidal distance function which
computes a distance between two points X;,X; on the Pareto
front as:

CoG
££0 =

,i=1,2,3 (18)

norm __ fnorm
ij ik

3 2
distance(x; Xk) = E : (19)
Al p
( ) (maxlfi”’l"”" — mlnlﬁ’l"rm)

i=1

In the above definition, all three objectives are re-normalized
based on their maximum and minimum values among
solutions of the front (max fl”l"’ " min fl”l"’ ™) which provides
a better scaling among objectives of different scales and thus
an improved equilibrium.

Finally, the default selection is found as:

Xdef = argmin distance(CoG, X/') (20)
. X .

i.e., we choose the solution on the Pareto front that lies

closer to the CoG in terms of the distance function (19).

IV. PROPOSED ALGORITHM

First, the initial population Py is created. It consists of Z y
vectors that combine different neural network indices along
with different weight vectors w. Every individual in Py has
to solve a Linear Programming (LP) problem to evaluate its
fitness function. Subsequently, the generation counter ¢ is
set to zero. In every iteration, operators for crossover and
mutation are applied to P; in order to produce an offspring
population Q;, for which we evaluate its fitness function.
R; = P;UQ; is the result of combining the populations of the
parents and offspring. Non-dominated sorting is performed
on R;, and crowding distances are computed to measure the

VOLUME 6, 2025

Algorithm 1 NSGA-II-LP (MOEAI-ARO) Algorithm
1: Initialize population Py of size Z.
2: Solve the LP problem and evaluate the fitness for each
individual in Py.

3:t < 0.

4: while termination condition not met do

5: Apply crossover and mutation operators on P; to
generate offspring population Q.

6: Solve the LP problem and evaluate the fitness for

each individual in Q;.

7: Combine parent and offspring populations: R; = P;U
Or.

8: Perform non-dominated sorting on R;.

Calculate crowding distance for each individual in

each front.

10: Form new population P, by selecting the best Z
individuals from R; based on rank and crowding distance.

11: t<—t+1

12: end while

13: Select the default Pareto optimal solution.

TABLE 2. NGSA-II algorithm parameters.

Optimization parameters Values
population size 100
number of parents (y) 100
number of children (\) 100
number of mutants 5

max number of iterations 100

density of solutions surrounding a specific individual. Based
on the rank and crowding distance, the best Z individuals
from R; are chosen to form the new population P;;;. Once
the termination condition is satisfied (e.g., maximum number
of iterations), the algorithm stops and the default Pareto-
optimal solution is computed.

Our selection of parameters for Algorithm 1 can be found
in Table 2 following an extensive amount of numerical
testing.

A. COMPLEXITY ANALYSIS

The computational complexity of the proposed MOEAI-
ARO method can be computed as a combination of
the corresponding complexities of the NSGA-II [30] and
SIMPLEX algorithms [31]. First, the complexity of the
classical NSGA-II algorithm for a population of size Z and
K objectives is known to be O(ZK?). Then, although the
SIMPLEX method has exponential worst-case complexity, its
average complexity is polynomial and approximately O(N?)
where N is the number of variables. This holds because
the number of variables may grow significantly, but the
number of inequalities remains very limited. Therefore, the
total average complexity of the MOEAI-ARO algorithm is
estimated as O(ZNZKZ).
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B. SCALABILITY

In our previous research [28] we proposed a clustering
methodology for handling large-scale testbeds using the
EAI-ARO method. The same strategy could be applied to
its multi-objective version, i.e., the proposed MOEAI-ARO
method, solving one multi-objective optimization problem
per cluster of devices.

Since the complexity of the MOEAI-ARO method is K2
higher compared to EAI-ARO, one should expect that the
size of clusters are smaller in size. However, the exact
optimal size depends highly on the corresponding imple-
mentation of the MOEAI-ARO method. Using programming
languages that are suitable for high performance computing,
then exploiting the possibility of massive parallelism, allows
to reduce significantly the solution time of the optimization
problem and thus the impact on the total latency.

Furthermore, in our current implementation the actual
dynamic problem is approximated by a series of static
problems and the distribution of images occurs after the
optimization problem is resolved. This is an unfavourable
scenario for the scalability of the method, since the
optimization problem could be solved continuously, updating
the dynamic parameters at every iteration. Once the tasks
have been executed, the current optimal solution could be
used for the next distribution. This strategy could improve
significantly the scalability of the method.

All of the above directions have not been examined in
this work and are addressed as future work.

V. RESULTS

In this section, we demonstrate numerical and experimental
findings utilizing the suggested adaptive offloading method.
We introduce our testbed and compare the MOEAI-ARO
with different baseline methods.

For all baseline methods, the same methodology is used
to choose a default solution on the Pareto front, illustrated in
Section III-C. More specifically, for each baseline method,
we compute the first Pareto front of the solutions across
all neural network (NN) model combinations (see Figure 5).
Then, we select the solution closest to the center of gravity
of this front. The evaluation process takes into account all
three objectives.

The baseline methods used to verify the effectiveness of
our proposed method are the following:

o Local: Every task is executed locally at the edge server.
This can be considered as a greedy method [32] that
minimizes the network delay [33].

o First Available (FA): The edge server initially assigns
an equal amount of tasks to the end devices and
to itself. Once a device completes its assigned tasks
and becomes idle, the server reallocates new tasks to
it, as described in [22]. More specifically, the total
batch of images is divided into equal smaller batches.
When a device becomes idle the server immediately
sends the next batch of images for processing. It is
important to highlight that for this method, the TCP
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socket connection is maintained open while the devices
are processing images. This choice results in lower
latency, since we need no additional time to create the
connection, but higher power consumption (4.5 Watt for
the testbed considered herein).
e Random: The edge server simultaneously assigns tasks
to all end devices according to a random distribution.
e Round Robin: The edge server distributes the
tasks uniformly across all edge devices. In more
detail, the distribution for this baseline is x =
[0.2,0.2,0.2,0.2, 0.2] which corresponds to 20% of the
batch distributed to the five devices. This method is a
commonly used baseline method [22], that ensures that
the workload is equally distributed, regardless of the
system’s network condition.
All the above baseline methods are parameter-free, which
permits one to avoid any unintentional bias during the
comparison that may occur from parameters’ calibration.

A. TESTBED DESCRIPTION

Figure 1 shows our heterogeneous edge computing setup,
containing four end devices, an edge server, and a Wi-Fi
access point. The four end devices in the illustration are two
Raspberry Pi’s 4 and two Nvidia Jetson’s, each having 4GB
of RAM and varying capacities of wireless connectivity to
the edge server (see Figure 2). The edge server is also a
Raspberry Pi’s 4 with 8 GB RAM. All edge devices including
the edge server are equipped with various YOLO object
detectors. According to Table 3, each end device may have
many object detection models, each implemented with a
different input image size, energy consumption value, and
mAP value. Regarding the energy consumption, the Nvidia
jetson (Enyigia(vi)) values are much lower than those of the
Raspberry pi’s (Erasp(yi)) because of the fast processing
time of each image (7).

Batches of images selected from the COCO dataset [34]
for object detection are distributed to the available edge
devices via the edge server which is a typical edge device
(Raspberry Pi’s 4). The edge server sends the images via
sockets. The latency of the device that processes the last
image is considered as the latency objective. The edge
server sends the images via TCP sockets, each managed
by a dedicated thread. The results which are labels for
each processed image and its related bounding boxes, are
subsequently sent back by the end devices to the edge server.

Regarding the energy characteristics of our testbed, all
devices are connected to a battery with a capacity of
20000mAh (20A for 1 hour). To provide a clear under-
standing of our system’s energy consumption for example
we assume that the edge server sends 100 images to the
Raspberry Pi that consumes 200mA for one minute, or 1/60th
of an hour, and the consumption of the device comes to
3.3mAh. This indicates that the battery capacity dropped
from 20000mAh to 19996.7mAh, i.e., 0.0165% [35]. It is
noteworthy that temperature affects battery life and that
supply voltage may decrease with increasing load capacity
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TABLE 3. Characteristics of object detection models.

i Input Image | mAP(yi)| ERrasp(yi) Envidia(yi)
index Size (Joule/image) | (Joule/image)

1 224x224%3 0.33 0.6 0.15

2 320%320%3 0.438 1.22 0.195

3 480x480x3 0.497 2.16 0.305

4 640x640x3 0.541 4.8 0.55

over time, both of which may affect the performance of
the device, but we simplify our modelling by neglecting the
above factors.

In our experimental process, we use a total batch of 20000
images with an average size of 150 KB per image. After
10 batch steps of 2000 images, the images located at the
edge server are processed. The current network status is
considered to solve the defined multi-objective optimization
problem, i.e., a set of static problems is used to approximate
the actual dynamic problem. Python is used to code the
entire distribution method.
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B. TESTBED SIMULATION RESULTS

In our previous work [28] we proposed a reverse task
offloading algorithm that optimizes the task distribution to
minimize the latency of the slowest subtask while adhering
to energy and accuracy constraints. In this work, we take
our method one step further and solve a multi-objective
optimization problem to provide our proposed (default)
Pareto optimal solution for the three objectives.

We illustrate the Pareto front with 100 optimal solutions
in Figure 3 for one batch step (2000 images) along with
a fitting surface to enhance the visualization of the front.
Every solution in the Pareto front corresponds to a vector
X = [x1,...,xn] € [0, 11V, a vector y=1[1,...,yn], and a
vector w = [w1, wo, w3] where X represents the distribution
percentage, y the selected object detection models for each
device and w the three weight values. As expected, when the
accuracy increases more resource-intensive object detection
models are selected which results in longer processing time
and consequently higher energy consumption.

In Figure 4, we illustrate the process of computation
described in Section III-C. The Center of Gravity (CoG)
of the Pareto front corresponds to the point ‘X’ in green
color. Then, using the defined distance metric, the Nearest
Point to CoG is shown in red dot and corresponds to the
decision variables x = [0.271, 0.323, 0.052, 0.304, 0.050],
y =1[1,4,3,3,4] and w = (0.846, 0.095, 0.059). The same
procedure for each baseline method is shown in Figure 5.
The decision variables for all methods for this typical batch
step are shown in Table 4.

1) COMPARISON WITH BASELINE METHODS

To provide an extensive evaluation of our proposed method,
we compare it with all previously defined baseline methods.
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FIGURE 4. Default solution selection of MOEAI-ARO method (normalized values).

We execute all methods 100 times, under dynamic network
conditions (10 batch steps), and compute the average values
for all objectives. The results are summarized in Table 5 and
detailed in the sequel:

e Local: The MOEAI-ARO method outperforms the
Local execution solution in two objectives, namely
95.5% for the latency and 1.5% for the accuracy
objective. This significant difference in latency is mainly
due to the limited processing power of the edge server
used. Regarding the energy objective the Local method
outperforms the MOEAI-ARO by a difference of 47.1%,
which is expected since the Local baseline method does
not consume energy for data transmission and reception.

o First Available (FA): Our proposed method outperforms
the FA method in two objectives, namely 18.5%
for the latency and 39.2% for the energy objective.
However, the FA method default solution exhibits better
performance in accuracy by 1.2%.

e Random: The Random method outperforms our
proposed method in terms of accuracy by 2% but
is significantly worse in terms of latency 94.2% and
energy consumption 45.1%. The difference in latency
derives from distributing an important part of images to
devices with low processing power and slow network
connections. Regarding the accuracy objective, the
difference of 2% is due to the fact that images
were processed using neural networks with higher
accuracy.

o Round Robin: MOEAI-ARO outperforms Round Robin
in all objectives, namely 88.2% for the latency, 48.2%
for the energy, and 2.6% for the accuracy objective.
This method is very sensitive to the existence of some
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FIGURE 5. Selection of the default solution among the Pareto front for all baseline
methods (normalized values).

TABLE 4. Decision variables for the default solution of each method in
Figures 4 and 5.

Methods X y
MOEAI-ARO | [0.271, 0.323, 0.052, 0.304, 0.050] | [1, 4, 4, 3, 4]
Local [1,0,0,0,0] 3,1, 1,1, 1]
First Available [0.10 0.40, 0.05, 0.40, 0.05] [2,3,1,4, 3]
Random [0.20 0.54, 0.11, 0.15, 0.10] [3,4,2,4,2]
Round Robin [0.2,0.2, 0.2, 0.2, 0.2] [2,4,2,4,2]

slow device and/or network connection and is mainly
used when the network conditions are unknown.

To enhance the visualization of the results, we provide in
Figure 6 a bar chart that corresponds to Table 5. The above
findings show that our method considerably improves the
average system performance compared to all tested baseline
methods. Even when some baseline method outperforms the
MOEAI-ARO solution for some objective, the average gain
for all objectives is significantly higher, providing a better
equilibrium for the overall performance of the system.

Remark: Note that the gain in accuracy shall not be
compared in absolute values to the corresponding gains
in latency or energy, since the different neural networks
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TABLE 5. Improvement for every objective using the MOEAI-ARO method compared
to all baseline solutions, using numerical simulation.

Baseline method | Latency (%) | Energy(%) Accuracy (%)
Local 95.5 -47.1 1.5
First Available 18.5 39.2 -1.2
Random 94.2 45.1 -2
Round Robin 88.2 48.2 2.6

considered present significantly lower variation in accuracy
compared to the rest of the objectives.

C. TESTBED EXPERIMENTAL RESULTS

In Table 6 we illustrate the experimental results obtained
after implementing all the methods on our testbed which
correspond to the results illustrated in Figure 7. Same as
for the simulation results, we execute all the methods 100
times under dynamic network conditions (10 batch steps)
and compute the average values for all objectives. For the
baseline methods, instead of testing all possible combinations
of neural networks, we utilize the y vectors obtained from the
default solutions of the baseline methods from the simulation
results.

One can observe that numerical and experimental results
are in good accordance, validating the numerical observa-
tions. The slight deviation is mostly due to variations in the
network conditions.

Remark: Every edge device in our testbed can be used as
an edge server. Depending on this choice, the results change
accordingly but the general conclusions are still valid. For
example, we illustrate in Figure 8§ the results of our method
for a virtual testbed, in which all edge devices (the edge
server included) are Nvidia Jetsons. Once more, we verify
that the overall performance of the system is better using
our proposed methodology.
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TABLE 6. Improvement for every objective using the MOEAI-ARO method compared
to all baseline solutions, using experimental validation.

Baseline method | Latency (%) | Energy(%) Accuracy (%)
Local 94.2 -45.2 1,2
First Available 10.8 34.5 -1.1
Random 84.2 41.2 -1.7
Round Robin 81.7 49.6 2.7
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FIGURE 7. Average gain for each objective comparing the MOEAI-ARO with all
baselines (experimental).
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FIGURE 8. Simulation results for each objective comparing the MOEAI-ARO with all
baselines, for a virtual testbed (simulation) composed of Nvidia Jetsons devices.

VI. CONCLUSION

We implemented an efficient multi-objective distribution
mechanism enhancing the reverse task offloading strategy
for a common Al application in IoT topologies. This work
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is motivated by the increasing speed at which the computing
power and storage capacity of Internet of Things (IoT)
devices are growing which opens up new possibilities for
IoT applications. MOEAI-ARO (Multi-Objective Edge Al-
Adaptive Reverse offloading) is a distribution mechanism
that solves related multi-objective optimization problems by
methodically determining the best task-splitting strategy that
optimizes the three objectives simultaneously. We suggest
a novel method that solves the formulated optimization
problem by combining two algorithms, namely the NSGA
and the Linear Programming. Moreover, we propose a
method for the default choice of a solution belonging
to the Pareto front which provides a proper equilibrium
among all objectives. We thoroughly evaluated our proposal’s
performance by applying it to an object detection appli-
cation running on a heterogeneous testbed. The outcomes
clearly show that our mechanism outperforms the considered
baseline algorithms and enhances the system’s overall
performance. Our results provide exciting novel opportunities
for future investigation. These include predictive offloading
methods that could improve the effectiveness of our reverse
offloading computing systems by depending on decisions
via machine learning models predicting future network
conditions.
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