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Natural Disasters: Wider Urban Impacts on Built Environment
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Disaster Frequency / #
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Increasing Disaster Frequency



Economic Losses / % GDP / yr

Significant Economic Shocks
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# people req. assistance (2019)

Exceeding Human Losses
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Increased Global Hazard Risk
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Hazard Risk Contributors



Indirect
Losses

Direct
Losses

Hazard Risk Contributors
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Flash floods in Spain
Cascading effects of vehicle debris on traffic.

Landslide in Switzerland
Buildings are dependent on the damage from debris of 
neighbouring buildings.

Earthquake in Morocco
Lack of centralised planning in rural areas makes 
government financing challenging.

Examples of Damage
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What are Interdependencies?



Road Capacity is Dependent on Building Debris

Health
Network

Building 
Portfolio

Electrical Power 
Network

Visibility and Rescue Operations affected by Smoke 
by Electrical Substation
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2023 Inskenderun Earthquake, Turkey

Transportation 
Network

Created by Rofidatul Hasanah
from Noun Project

Interdependencies



How Can We Predict Damage To Infrastructure?
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Infrastructure in Anaheim, US.

Large Scale Damage Prediction



Stochastic Damage Prediction
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Fragility Curves
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Fragility Curves
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Fragility Curves
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Fragility Curves
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Devising Optimal Repair Strategies
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Hypothesis

MARL can perform better than Importance-based repair scheduling of interdependent infrastructure networks.

MARL vs Importance-Based decision making
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Hypothesis

MARL can perform better than Importance-based repair scheduling of interdependent infrastructure networks.

MARL vs Importance-Based decision making

Examples Of General Importance-Based Ranking

Players, Decision Makers = Agents
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How Do We Measure The Success Of A Repair Policy?
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Measuring Success With Resilience

(Community 
Functionality)

(Community 
Robustness)

Community Functionality / Time
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Recovery Phase
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Optimal Repair (Repair at Every Timestep) of a Highway Road Segment Sub-optimal Repair (Random Intervention at Every Timestep) of a large shopping mall

Measuring Functionality

Community Functionality

Sub-system Functionality

Sub-system Loss



Methodology
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Testbed Production

Toy City 30

Toy City 4
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Seismic Hazard Assessment

Dataset of Earthquakes from 5.0 - 9.0 M with 0.5 increments for 100 realisations per magnitude

Results of Earthquake Impact to Community Functionality
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Traffic
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Effect of Debris on Traffic Link Capacity

Traffic Link Capacity Calculation



Traffic
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Traffic Link to Road Mapping



Action Space

Action 0 - Do Nothing
Action 1 - Repair
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Action Space

Road Repair Constraint
Repair Crew Constraint
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Reward
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Reward
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Illustration of Reward Function



Results
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Deep Centralised Multi Agent Actor Critic (DCMAC)
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Repair time = 0 days

Repair time = 500 days
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DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Repair time = 0 days

Repair time = 500 days

Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion

DCMAC



Importance Based (IMPB)
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IMPB
Repair time = 0 days

Repair time = 500 days
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IMPB
Repair time = 0 days

Repair time = 500 days



Conclusions
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Two environments are modelled (4 components, 30 components)
Stochastic earthquake scenario set
Stochastic fragility and vulnerability functions
Importance based repair scheduling is compared to DRL

•	 DRL performs better in the early recovery phase (effective early prioritisation)
•	 IMPB performs better in full recovery (poor early prioritisation)
•	 DRL is resource-hungry, requiring ~10 - 40 hrs of training
•	 DRL performs better for environments with more, complex interdependencies

Work Presented
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•	 Two environments are modelled (4 components, 30 components)
•	 Stochastic earthquake scenario set
•	 Stochastic fragility and vulnerability functions
•	 Importance based repair scheduling is compared to DRL

DRL performs better in the early recovery phase (effective early prioritisation)
IMPB performs better in full recovery (poor early prioritisation)
DRL is resource-hungry, requiring approx. 40 hrs of training
DRL performs better for environments with more, complex interdependencies

Key Takeaways
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