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Natural Disasters: Wider Urban Impacts on Built Environment
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Increasing Disaster Frequency

400 All disasters

300

200

100

0

r T T T T T 1
1900 1920 1940 1960 1980 2000 2023

Disaster Frequency / #

[ O
Context Fragility Recovery Resilience Traffic Reinforcement Learning Reward Experiment Conclusion



Significant Economic Shocks
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Exceeding Human Losses
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Landslide in Switzerland Flash floods in Spain

Buildings are dependent on the damage from debris of
neighbouring buildings.

Cascading effects of vehicle debris on traffic.

Earthquake in Morocco
Lack of centralised planning in rural areas makes
government financing challenging.
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What are Interdependencies?
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Interdependencies
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Network Network
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Road Capacity is Dependent on Building Debris

N

2023 Inskenderun Earthquake, Turkey
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How Can We Predict Damage To Infrastructure?
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Large Scale Damage Prediction

Infrastructure in Anaheim, US.
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Stochastic Damage Prediction

_ -7 Infrastructure Component
- e.g Circuit Breaker, Road
Pavement etc..

Probability

Repair Time
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Fragility Curves

o Fragility of S5L: Exceedance Probability Curves Fragility of S5L: State Probablity Curves
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Fragility Curves
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Fragility Curves

Fragility of S5L: Exceedance Probability Curves

Fragility of S5L: State Probablity Curves
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Fragility Curves

o Fragility of S5L: Exceedance Probability Curves Fragility of S5L: State Probablity Curves
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Fragility Curves

o Fragility of S5L: Exceedance Probability Curves Fragility of S5L: State Probablity Curves
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Devising Optimal Repair Strategies
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Hypothesis

MARL can perform better than Importance-based repair scheduling of interdependent infrastructure networks.

Game / Environment Machine Learning
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“Optimal” Joint Action

____________________________________________

Repair
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Outcome (Reward)
e.g Decreased Travel Time,
Improved Pavement Quality etc.
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Hypothesis

MARL can perform better than Importance-based repair scheduling of interdependent infrastructure networks.

Game / Environment Machine Learning

__________________________________________________________________________________________
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“Optimal” Joint Action
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How Do We Measure The Success Of A Repair Policy?
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Measuring Success With Resilience
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Measuring Functionality
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Methodology
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Action Space
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Results

Cumulative Losses (CL) Distributions per Policy, over 1000 Rollouts, toy-city-4
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Deep Centralised Multi Agent Actor Critic (DCMAC)

Earthquake Repair Scheduling Rollout
toy-city-30
Policy: DCMAC
Quake Magnitude: 7.5 | CL: 283.76
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DCMAC

. Repair time = 0 days

. Repair time = 500 days
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DCMAC
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DCMAC

. Repair time = 0 days

. Repair time = 500 days

t = 100
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Importance Based (IMPB)

Earthquake Repair Scheduling Rollout
toy-city-30
Policy: importance based
Quake Magnitude: 9.0 | CL: 394.57
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IMPB

. Repair time = 0 days

. Repair time = 500 days
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IMPB

. Repair time = 0 days

. Repair time = 500 days
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Conclusions
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Work Presented

Two environments are modelled (4 components, 30 components)
Stochastic earthquake scenario set

Stochastic fragility and vulnerability functions

Importance based repair scheduling is compared to DRL

Policy Performance Comparison Across Environments
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Key Takeaways

DRL performs better in the early recovery phase (effective early prioritisation)
IMPB performs better in full recovery (poor early prioritisation)

DRL is resource-hungry, requiring approx. 40 hrs of training

DRL performs better for environments with more, complex interdependencies

Policy Performance Comparison Across Environments
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