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Abstract

This paper addresses the issue of double-dipping in off-policy evaluation (OPE)
in behaviour-agnostic reinforcement learning, where the same dataset is used
for both training and estimation, leading to overfitting and inflated performance
metrics especially for variance. We introduce SplitDICE, which incorporates
sample-splitting and cross-fitting techniques to mitigate double-dipping effects in
the DICE family of estimators. Focusing specifically on 2-fold and 5-fold cross-
fitting strategies, the original off-policy dataset is partitioned with random-split to
get separate training and evaluation datasets. Experimental results demonstrate
that SplitDICE, particularly with 5-fold cross-fitting, significantly reduces error,
bias, and variance compared to naive DICE implementations, providing a more
doubly-robust solution for behavior-agnostic OPE.

Key words: DICE, off-policy evaluation, behaviour-agnostic, sample-splitting,
cross-fitting, 2-fold, 5-fold, variance, double-dipping, overfitting

1 Introduction

In reinforcement learning, for each state of the environment, the agent takes a certain action based on
the policy, retrieves a reward based on this action and transitions into a new state. The overarching
goal of reinforcement learning methodologies is to acquire an optimal policy which maximizes the
long-term cumulative rewards [18]. In the context of policy evaluation, off-policy evaluation (OPE)
refers to the setting where the agent estimates the value of a target policy by referring only to a dataset
of experience previously collected by other policies in the said environment [17]. The objective of
OPE is to estimate the expected cumulative (discounted) reward that a new policy (namely, the target
policy) would achieve if deployed in the environment. This is important for understanding how well
the new policy might perform before actually deploying it [21]. However, it is essential to note that
this logged experience is collected by potentially multiple and possibly unknown behavior policies
which requires the embodiment of the concept known as behavior-agnostic.

Behaviour-agnostic OPE specifically denotes an approach where the learning algorithm does not
make any assumptions about the behavior policy that generated the dataset [23]. Recent advancements
in addressing the unknown bounds of behaviour-agnostic OPE have led to the development of various
estimators collectively referred to as the "DICE" family which stands for DIstribution Correction
Estimation [13], [22], [26], [23]. These estimators are used to display the ratio between the propensity
of the target policy to visit distinct state-action pairs compared to their occurrence likelihood in the
off-policy data. DICE-based estimators exercise “a single marginal ratio to re-weight the rewards for
each state-action pair”, consequently achieving a relatively low variance for the estimate values [3].

It is worth highlighting that policy evaluation in general requires tedious consideration of the model
complexity to prevent pitfalls such as overfitting or underfitting the data. Overfitting occurs when
a modeling approach mirrors every underlying pattern of the data, resulting in high accuracy when
applied to the original dataset. However, it fails to generalize well to unseen and foreign datasets.
This is mainly caused by data with many features and/or an excessively large neural network. In
this context, double-dipping refers to the practice of overfitting a model by building (training) and
evaluating (estimating) it on the same dataset [2]. This then causes misleadingly high performance
metrics with artificially inflated statistical significance since the model is being evaluated on the data
it was trained on, leading to “circular logic”.

In the current implementation of the neural estimators, DICE algorithms employ the same dataset
to conduct the training process and the estimation of the target policy. This practice is the driving
factor for double-dipping. Another pressing issue related to the double-dipping behaviour is that the
DICE family employs primal and dual regularization techniques as a regression method to tackle high
variance and therefore to avoid overfitting [23]. The main concern regarding this choice is that this
introduces a trade-off, as regularization can bias the parameter of interest with the aim of mitigating
overfitting.

This paper aims to answer the following research question: “How does the use of sample-splitting and
cross-fitting techniques mitigate the effects of ‘double-dipping’ in behavior agnostic reinforcement
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learning?”. To break it down more clearly, the aim of this research is to adopt commonly used
techniques in double/debiased machine learning (DML), namely sample-splitting and cross-fitting,
for the DICE estimators and analyze how effective they are in mitigating the risks associated with
double-dipping. DML’s "double" behaviour comes from simultaneously estimating two predictive
models: one for the primary target of interest and another for auxiliary outcomes [7]. When compared
against naive ML estimators, their fast rates of convergence and robust behaviour with respect to a
broader class of probability distributions makes the objective of this research even more striking [7].
In this research, we introduce SplitDICE, which incorporates sample-splitting and cross-fitting into
the existing implementation of the DICE estimator.

1.1 Structure

The structure of this paper is as follows. In section 2, we explain previous work relevant to the topic
of research from different research papers whether they are in the context of double machine learning
methods and/or DICE estimators for behaviour agnostic off-policy evaluation. We list the points
of improvement and how this research contributes to mitigate such knowledge gap. In section 3,
we explain the methods in hand in technical terms with necessary mathematical observations and
calculations regarding the techniques of sample-splitting and cross-fitting.

After setting up a clear background for the integration of OPE, DICE and DML, we then go into
section 4 which demonstrates the experimental setup with regards to data generation, environment
specifications and choice of configurations. Next, section 5 presents the results of the three estimator
models and discusses the performance on a predetermined category of metrics, these being conver-
gence, relative and mean-squared error, variance and bias. We also provide a statistical analysis on the
significance of results for the relative error. After reflecting on the achieved results and discussing the
limitations of the bounds of the research in section 6, we touch upon the ethical aspects considered
during the process and the societal impact of the research in section 7. Finally, we conclude the
paper by summarizing that 5-fold cross-fit DICE estimator has a notable improvement over the naive
implementation of BestDICE achieving lower rates of error, bias and most importantly variance.

2 Related Work

The study that sustains the backbone of this research is that of Yang et al. on off-policy evaluation via
the regularized Lagrangian [23]. By showing that the previous DICE formulations are all equivalent
to regularized Lagrangians of the same linear program (LP), they specifically investigate the dual
form, namely d−LP , for off-policy evaluation. They then identify a list of choices with regards
to translating this formulation into a stable minimax optimization problem. These choices consist
of the specification of redundant constrains and the regularization of primal and dual variables.
This optimization unifies all the variants of the DICE estimators under one framework by selecting
an appropriate regularization configuration. These are listed as DualDICE [13], GenDICE [25],
GradientDICE [26], DR-MWQL and MWL [22], LSTDQ [11], Algae Q−LP [14] and BestDICE
with it being the variant that achieves the best performance out of all. This said, the estimator
introduced by our paper builds upon BestDICE as well.

There has also been studies in developing doubly-robust estimators inspired from the methods used
in machine learning. In a recent study of Kallus and Uehara, with the objective of achieving true off-
policy evaluation in time-invariant Markov processes, they develop a new estimator based on double
reinforcement learning [10]. They design an estimator that employs both estimated stationary density
ratios and q-functions. This design maintains efficiency even when both components are estimated
slowly and ensures consistency when either component is estimated accurately. The strategy used for
the double reinforcement learning also sets the initiative behind this research. In their comparative
analysis of the estimator architecture, one of the estimators used for comparison is DualDICE which
is a part of the DICE family as mentioned before. This variant uses dual regularization parameters
similar to BestDICE which makes their research especially valuable to give close attention to the
nature of dual regularized DICE estimators. However, their study lacks a comparative analysis of
different k-fold cross-fitting proportions, which our paper aims to address.

In Chernozhukov et al.’s study for double machine learning for treatment and causal parameters, they
dive into the details of Double ML and the methodology behind it in order to improve the performance
of naive ML estimators [6]. Their objective differs from previously mentioned studies since it does
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not encompass DICE estimators or off-policy evaluation in its scope. By setting up a background
for why and how modern supervised statistical/machine learning fails to provide accurate estimators
of causal parameters, they provide reasoning behind the poor performance of naive estimators one
of which being regularization bias. They come to point out that while regularization helps with
stability and convergence, it introduces a bias into the estimator. This is especially relevant to the
current research since DICE estimators use techniques of primal and/or dual regularization in order
to avoid overfitting. It is essential to note that the main objective of this study is to demonstrate
the orthogonalization of double machine learning, driven by the need to counteract bias introduced
by non-orthogonal ML estimators. However, our study is specifically motivated by addressing the
phenomenon of double-dipping, which naturally focuses on reducing variance. Since within the
DICE family, some estimators such as BestDICE have already been tailored to counteract the negative
effects of certain regularization choices on bias, our study prioritizes variance as a more valuable
performance metric than bias.

In Jacob’s study for cross-fitting and averaging for machine learning estimation of heterogeneous
treatment effects, they investigate the performance of twelve different estimators on four different
meta-learners [9]. In the aim of finding a correlation between the learning process of the meta learners
and the procedure of chosen doubly robust machine learning techniques, these estimators have varying
qualities regarding the types of sample-splitting, cross-fitting and averaging procedures used. It is
again worth to mention that this research is restrained by the bounds of machine learning and does
not concern off-policy evaluation. However, the intricacies they provide regarding the procedure used
for conducting research with varying categories of estimators and performance metrics are as much
valuable for the research at hand to establish a fair comparative analysis. Although our study does
not share the same depth for the number of techniques employed, we use the same proportions as
they do in their experiment for the cross-fit estimator, these being 2-fold and 5-fold cross-fitting. It is
essential to point out that the results achieved by the study are more significant than those of ours,
primarily because the regularization choices within the DICE framework can potentially decrease the
efficiency of double machine learning techniques. Thus, combining behaviour-agnostic off-policy
evaluation with double machine learning addresses distinct challenges separate from those of Jacob’s.

3 Background and Methodology

In this section, we start with background information that forms the basis of this research which
consists of reinforcement learning and policy evaluation. We then explain the motivation behind
off-policy evaluation and a family of OPE estimators known as DICE which are designed to operate
in behaviour-agnostic settings. In subsection 3.1 and subsection 3.2, we introduce the equations
and the formulations provided by Yang et al. [23]. Next, we present the problem of double-dipping
which forms the primary focus of this research and explain the proposed solution with regards to
sample-splitting. The last subsection introduces the technicalities behind SplitDICE which is the
estimator built to address the research question. In subsection 3.3 and subsection 3.4, with regards to
sample-splitting and cross-fitting, we introduce the concepts provided by Jacob [9] and equations
provided by Chernozhukov et al. [6].

3.1 Policy Evaluation in Reinforcement Learning

In a reinforcement learning (RL) setting, we consider an infinite-horizon Markov Decision Process
(MDP) [18]. This process is defined by the tuple M = ⟨S,A,R, T, µ0, γ⟩. This consists of a state
space (S), action space (A), reward function (R), transition probability function (T ), initial state
distribution (µ0), and a discount factor (γ ∈ [0, 1]). In RL, a policy (π) defines the agent’s strategy
or behavior in an environment. It is a mapping from states to actions, denoted as π(a | s), which
specifies the probability distribution over actions A that the agent selects when in state s at step
t ≥ 0. The environment yields a scalar reward rt = R(st, at) and then transitions to a new state
st+1 ∼ T (st, at).

We define the value of a policy (π) by the normalized expected per-step reward it receives:

ρ(π) := (1− γ)E

[ ∞∑
t=0

γtR(st, at) | s0 ∼ µ0,∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
(1)
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In RL, the behavior policy denoted as µ refers to the policy that the agent is currently following to
interact with the environment. It is a distinct concept from the target policy π which the agent seeks
to optimize and improve during its learning (training) process. Therefore, naturally, in the context
of policy evaluation, the policy being evaluated is the target policy. In a more concrete way, with
policy evaluation, we aim to evaluate how effectively the training of the behavior policy aligns with
the target policy. The value of a target policy can be expressed equivalently in two manners using
different functions:

ρ(π) = (1− γ) · Ea0∼π(s0) [Q
π(s0, a0)]

= E(s,a)∼dπ [R(s, a)] , s0 ∼ µ0

(2)

where Qπ stands for the state-action values and dπ represents the visitations of π. More specifically,

• the function Qπ represents the Q-values associated with policy π. These values are retrieved
by mapping state-action pairs (s, a) to the expected value under policy π when executed in
the environment, starting from state s and taking action a.

• the function dπ represents the on-policy distribution of π. Keep in mind that this distribution
is normalized over all state-action pairs (s, a) to indicate the probability of encountering
(s, a) under π. It is also averaged over the entire duration with γ-discounting strategy.

3.2 Using DICE Estimators to Achieve Behaviour-agnostic Off-policy Evaluation

Off-policy evaluation (OPE) is a crucial technique in RL that aims to estimate the value of a policy
ρ(π) by using only a fixed dataset of experiences, without further interactions with the environment.
This aspect is particularly important in settings where interacting with the real environment is costly,
risky or even infeasible [21]. Therefore, OPE makes it much more practical to improve policies in a
controlled, off-line manner before any real-world deployment, thereby mitigating possible risks and
reducing high costs.

In this context, we assume that we have access to a finite dataset D = {(s(i)0 , s(i), a(i), r(i), s′(i))}Ni=1,
where s

(i)
0 ∼ µ0, (s(i), a(i)) ∼ dD are samples from some unknown distribution dD. Estimators

using DICE methods employ the following expression to derive an estimate average per-step reward
value of the target policy:

ρ(π) = E(s,a,r)∼dD
[ζ∗(s, a) · r] where ζ∗(s, a) =

dπ(s, a)

dD(s, a)
(3)

where (s, a, r) ∼ dD is used as an abbreviated form of (s, a) ∼ dD, r = R(s, a), s′ ∼ T (s, a). In
other words, this simulates sampling from the dataset D when using a finite number of samples. Most
importantly, ζ∗(s, a) stands for the distribution correction ratio. The main objective of the DICE
estimators is that they aim to approximate this correction ratio without requiring the knowledge of dπ
or dD. This is where the concept of behaviour-agnostic arises from.

3.3 Double-dipping and Sample Splitting with k-fold Cross-fitting

Double-dipping, in the context of machine learning, is a term for overfitting a model through both
building and evaluating the model on the same dataset [2]. Consequently, while the model may
exhibit low error rates within the sample, it will have high variance and poor generalizability. We
observe in the neural network of the DICE estimators that the same dataset is used for training the
estimator and estimating the value of the target policy. Keep in mind that in order to introduce more
stability into the optimization, DICE employs mechanisms to apply regularization techniques and
redundant constraints [23]. Regularization works by adding a penalty term to the loss function used to
train the model which increases the loss for larger model coefficients, thereby discouraging the model
from fitting too closely to the training data [5]. However, since now the model is constrained to be
simpler, this can prevent it from capturing the true underlying patterns in the data, and consequently
increasing bias. Therefore, the main objective of this research is to see whether the adaptation of
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a fundamental strategy from the methods of double/de-biased machine learning known as sample-
splitting is effective in reducing variance while keeping the estimator as (un)biased as before or even
less biased.

Allowing for the unbiased assessment of model performance, the technique of sample-splitting mainly
involves partitioning the original dataset into distinct subsets, in technical terms this is known as K
folds. For example, consider a 50:50 sample splitting strategy where the data is split into two equal
folds, called an auxiliary sample (A) and the main sample (M) for the estimation of the parameter of
interest. In the context of DICE estimators, training is regards to the Q-value functions and visitation
densities whereas the parameter of interest refers to the estimate value of the target policy, ρ(π). It is
important to keep in mind that sample splitting reduces the available amount of data used for both
training of the estimator and the estimation of the value of the target policy. As pointed out by Jacob,
this leads to “a loss in efficiency and statistical power in finite samples” [9]. This is where the concept
of cross-fitting comes along. To make use of the full sample and to restore efficiency, the roles of the
samples are switched thereby using sample M for training and sample A for estimation.

As suggested by Chernozhukov et al., we assume that a random sample (Wi)
i=1
N from the distribution

of W is available for evaluation and training [6]. For two fittings, we build two prediction models
based on the roles of the samples, these samples being I and Ic. The true value µ0 of the nuisance
parameter µ is estimated by µ̂0(I

c) using the training sample (Wi)i∈Ic . The true value θ0 of the
target parameter θ is estimated by the estimator θ̌0(I, Ic) using the evaluation sample (Wi)i∈I . Here,
the nuisance parameter refers to the distribution correction ratio and the target parameter refers to the
average per-step reward value, as mentioned before in Equation 3. In the aggregation of the results,
the calculation of the joint estimate value is given by:

θ̃0 =
θ̌0(I, I

c)

2
+

θ̌0(I
c, I)

2
(4)

where I and Ic represent a random 50-50 split of the dataset. Over a batched number of episodes
{1, . . . , N}, the size of I is n, the size of Ic is also n, and the total sample size is N = 2n. We then
construct an estimator θ̌0(I, Ic) that employs the nuisance parameter estimator µ̂0(I

c) where I is
used for evaluation dataset and Ic is used for training dataset. This can be interpreted as building the
prediction model (neural network) of the estimator on the training dataset, Ic. Then, we reverse the
roles of I and Ic and construct an estimator θ̌0(Ic, I) that employs the nuisance parameter estimator
µ̂0(I) where Ic is used for evaluation dataset and I is used for training dataset. We are now building
the prediction model (neural network) of the estimator on the dataset I that was used as evaluation
dataset in the first fitting. The results of the two estimators are then aggregated into a final estimate
value, θ̃0 by taking the average.

For a fold number that is larger than 2, the same process can be followed by assigning (100− 100
K )%

of the observations to sample A and ( 100K )% to sample M and iterating till every fold is used for
estimation. The calculation for the joint estimate value is then given by:

θ̃0 =
1

K

K∑
k=1

θ̌0(Ik, I
c
k) (5)

which involves a K-fold random split of the entire sample with k = 1, . . . ,K. Then, for each fold
we construct an estimator θ̌0(Ik, Ick) that employs the nuisance parameter estimator µ̂0(I

c
k) where

Ik is used for evaluation dataset and Ick is used for training dataset. In this case, each training set
Ick =

⋃
m̸=k Im has size N ·

(
K−1
K

)
and each evaluation set Ik has size N

K and the total sample size
is N . As an example, we present the diagram in Figure 1 for a visual representation of the splitting
process that applies 5-fold cross-fitting. Each box colored with blue represents the evaluation dataset
of the corresponding iteration whereas the grey colored boxes are merged altogether to represent the
training dataset.
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Figure 1: Model representation for a 5-fold cross-fit estimator. The sample data is split into 5
folds. During each iteration of cross-fitting, one fold, Ik, serves as the evaluation dataset, while the
remaining folds are merged into a training dataset, Ick. In each iteration, a new estimator is built using
the nuisance parameter estimator µ̂0(I

c
k). The final estimate value θ̃0 is obtained after running all the

iterations and averaging out the results retrieved from each estimator.

3.4 DICE using Double/De-biased ML: SplitDICE

We now introduce SplitDICE which implements k-fold cross-fitting for the DICE estimators. The
pseudo-code provided by Algorithm 1 demonstrates the main concept of sample-splitting technique. It
is important to note that the splitting of the dataset is done by keeping the episode structure intact, this
means the original off-policy data is split by episodes rather than steps, to keep the sequential logic
of the behaviour policy same as the original. For both folding proportions, the iteration continues
until each subset is used to form a dataset for estimation whereas the leftover subsets are merged into
one training set. To ease the process of splitting, all the possible combinations of splitting are done
via the method provided in Algorithm 1 and appended to the final list of train-eval dataset pairs.

The pseudo-code provided by Algorithm 2 and Algorithm 3 shows the implementation of cross-fitting
and the training process of the DICE estimator respectively. Before running the folds, Algorithm 2
calls random_split() as provided by Algorithm 1 to retrieve all the train-eval dataset pairs. The
calculation of the final joint estimate value is performed at the end of the last fold. This occurs after
the estimator has been trained for a number of steps with the training dataset for all the K folds
and the list of estimate values is retrieved per fold. These values, stored in joint_estimates, are
calculated over the full batch of the evaluation dataset at every 100 step intervals of the training
process. Keep in mind that the fold number (K) is set as a flag, it is provided as an input in the
command line to run the file and initialized as a global variable.

Algorithm 1 Sample-splitting of the dataset with fold number K

1: procedure RANDOM_SPLIT(dataset D, training ratio α)
2: Retrieve total number of samples N from D
3: Calculate number of evaluation samples n1 ← α×N
4: Calculate number of training samples n2 ← N − n1

5: Retrieve all episodes from the dataset as a list
6: Shuffle the episodes at random ▷ to account for a fully random split
7: Initialize an empty list, F ▷ to store pairs of train-eval datasets
8: Calculate the size of each fold (subset) f ← N

K
9: for k ← 0 to K − 1 do

10: Determine start index s← k × f
11: Determine end index e← (k + 1)× f if k < K − 1 else N
12: Initialize a new off-policy dataset Deval with capacity n1 ▷ evaluation sample, Ik
13: Initialize a new off-policy dataset Dtrain with capacity n2 ▷ training sample, Ick
14: Add episodes from [s : e] to Deval

15: Add remaining episodes to Dtrain

16: Append the pair (Deval,Dtrain) to F
17: end for
18: return F
19: end procedure
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Algorithm 2 k-fold cross-fitting with fold number k

1: procedure RUN_CROSS_FITTING
2: Load the original dataset D from the directory
3: Set training ratio α← 1

k
4: Retrieve a list of all the fold pairs F by calling RANDOM_SPLIT(D, α)
5: Initialize an empty list, J ▷ to store estimate values received per fold
6: for k ← 0 to K − 1 do
7: Split into training dataset Deval and evaluation dataset Dtrain using F [i]
8: Build a DICE estimator θ̌0(Deval,Dtrain) ▷ using the nuisance parameter estimator µ̂0(Dtrain)

9: Update J by calling RUN_TRAINING_AND_ESTIMATION(θ̌0, Dtrain, Deval, J , k + 1)
10: end for
11: return J
12: end procedure

Algorithm 3 Run training and estimation per each fold with fold number K

1: procedure RUN_TRAINING_AND_ESTIMATION(estimator θ̌0, training dataset Dtrain, evaluation dataset
Deval, joint estimates J , fold index kindex)

2: Retrieve the target dataset, Dtarget

3: Initialize an empty list,R ▷ to store estimate values received over training
4: for each step from 0 to 10000 do
5: Retrieve a batch of transitions T from Dtrain

6: Retrieve a batch of initial steps S from Dtrain and preprocess initial steps batch
7: Perform a training step for θ̌0 using S, T , and Dtarget

8: if step is a multiple of 100 or step is the last step then
9: Estimate average per-step reward r using Deval and Dtarget ▷ via Equation 3

10: Append estimate r toR
11: if step is the last step then
12: Update J by calling CALCULATE_JOINT_ESTIMATE(R, J , kindex)
13: end if
14: end if
15: end for
16: returnR
17: end procedure
18:
19: procedure CALCULATE_JOINT_ESTIMATE(running estimatesR, joint estimates J , fold index kindex)
20: AppendR to J
21: if kindex equals K then
22: Compute the mean θ̃0 of all the foldsR1,R2, . . . ,Rk in J ▷ via Equation 5
23: Log the results for θ̃0
24: end if
25: return J
26: end procedure

4 Experimental Setup

For the purposes of this research, Google’s DICE-RL codebase was forked for own use [24], it is
made publicly available on the GitHub platform [1].

The datasets used for the experiment were generated using OpenAI Gym
which is an open source Python library and a standard API for reinforcement
learning. It provides simulated training environments to train as well as test
reinforcement learning agents. The environment simulated to create datasets
for the experiment is Frozenlake-v0 which features discrete action and
observation space. In the FrozenLake environment, the agent navigates a grid
world represented as a frozen lake, encountering holes and frozen surface
(which leads to failure with the reward of 0) and a goal (which leads to success
with the reward of +1). The visual representation of this environment can be
seen via Figure 2. Figure 2: Grid view
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This process can be reproduced by running the following command for all the defined seed numbers:

for alpha in {0.0, 1.0}; python3 scripts/create_dataset.py

--save_dir=./tests/testdata --load_dir=./tests/testdata

--env_name=frozenlake --num_trajectory=200 --max_trajectory_length=100

--alpha={alpha} --seed={seed} --tabular_obs=0

where α = 0.0 refers to the dataset for the behaviour policy and α = 1.0 refers to the dataset
for the target policy. The aim is to estimate the average per-step reward value of the target policy
(also referred as cumulative normalized expected reward) using the behaviour policy. In addition
to the environment specifications, as given in the default experimental setup of Nachum et al., 20
datasets are created with 20 unique seed numbers (from 0 to 19, inclusive) for generalization purposes
[13]. The number of trajectories and the maximum length of each trajectory are set to 200 and 100
respectively for all replications.

For all the datasets separately, the estimator is trained for 10000 steps and the value of the target policy
is estimated at intervals of 100 training steps. Initially set as default at 100000 training steps with
estimations made every 500 steps, this configuration was adjusted due to the Frozenlake environment’s
faster convergence, necessitating fewer training steps for accurate estimator performance. This process
can be reproduced by running the following command for all the defined seed numbers. Keep in mind
this is for running SplitDICE and the fold number is adjusted accordingly depending on the choice of
k-fold strategy. For the experiment at hand, we use SplitDICE with 2-fold and 5-fold cross-fitting:

python3 scripts/run_neural_dice_split.py

--save_dir=./tests/testdata --load_dir=./tests/testdata

--env_name=frozenlake --num_trajectory=200 --max_trajectory_length=100

--alpha=0.0 --seed={seed} --tabular_obs=0 --fold_number={k-fold}

For the estimator configurations, we use the default choice of parameters as provided in the codebase.
More specifically, from the unified framework of DICE estimators, the configurations used for the
experiment are those belonging to BestDICE, this consists of the following arguments which can be
attached to the command given above if deemed necessary:

--primal_regularizer=0. --dual_regularizer=1. --zero_reward=0
--norm_regularizer=1. --zeta_pos=1

5 Results

In this part of the paper, we systematically present the results of the experiment and analyze what they
indicate for the objectives of the research. Separated into three subsections, we start with 5.1 which
exhibits results for relative error calculations obtained per seed for all the considered estimator models
with a statistical analysis on significance. Then, 5.2 provides further analysis on other performance
metrics measured as single value generalized from all the 20 seeds. Finally, 5.3 demonstrates levels
of convergence to the ground truth and a final remark on the most significant metric of the research,
which is variance.

5.1 Error Calculation and Comparison

In order to evaluate the estimator’s error, (absolute) relative error is chosen as a metric. The motivation
behind this choice was that relative error normalizes the absolute error by the true value. This provides
a dimensionless measure, which is particularly useful when comparing errors across different scales.
This is indeed the case for the experiment in hand since the datasets created with different seeds may
have different ground truth values for the average per-step reward of the target policy. This makes it
evident that the significance of an error is not just in its absolute magnitude but in how it compares to
the true value.

The results shown via Figure 3a demonstrate the relative error for each scenario at a given seed
number starting from 0 to 19 (inclusive). The comparisons are made between the three values plotted
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per seed since datasets with different seeds have different ground truths. The error is calculated by
comparing the value of ground truth (retrieved from the target policy) against the final estimated
value for average per-step reward (retrieved from the trained behaviour policy).

For a clear comparison of distribution of points, Figure 3b provides a categorical whisker diagram for
these error values. It indicates that DICE estimators used with 2-fold and 5-fold cross-fitting exhibit
lower rates of error mostly in the spread of the central portion of the data. As seen from shorter
whisker lengths, the variance in error values exhibits notable reduction with SplitDICE, particularly
when applied with a 5-fold cross-fitting. Although 2-fold SplitDICE is the only model without any
outliers, the error values are concentrated towards the edges of the box on the 1st and 3rd quartiles,
indicating a skewness in the distribution. Another important finding is that the median line overlaps
the mean for 5-fold cross-fitting, this implies that the data is not skewed heavily in one direction and
that there are no significant outliers pulling the mean away from the median. This is noteworthy to
mention since it confirms that higher-fold cross-fitting provides better estimates due to more thorough
validation, demonstrating its validity [6].

(a) The results are categorized by the considered esti-
mator models, with the mean relative error displayed
for each as a general summary of all the data points.

(b) The results are categorized by the considered estimator
models, with the (non-outlier) data points displayed as a
randomized swarm to avoid overlaps.

Figure 3: Scatter (a) and box-whisker (b) plots showing the relative error between the final
estimated average per-step reward value and the ground truth. The results are obtained for all
the 20 seeds from 0 to 19, inclusive.

Before moving on with any statistical analysis on significance, we conducted Anderson-Darling and
Shapiro-Wilk tests to determine whether the data is normally distributed and thereby decide whether
to continue with parametric or non-parametric approaches. Since the results of the test determined at
least one of the datasets to be not normally-distributed, non-parametric approaches were considered
and therefore Kruskal-Wallis test was determined suitable. This analysis aim to compare different
estimators’ performance and determine whether there exists statistically significant disparities in
the results of the relative error values. The results for Kruskal-Wallis test-statistic and p-value are
reported as 5.73377 and 0.05688 respectively, with the alpha value set to 0.1 (i.e. significance level of
10%). A higher test-statistic suggests a greater likelihood of significant differences among the groups.
The obtained p-value indicates that there is a 5.688% chance of reaching the observed test-statistic
value if the null hypothesis were true (i.e. there are no significant differences between groups).
However, given that the p-value is less than the predetermined significance level, the null hypothesis
is rejected. Therefore, we infer that at least one of the estimator categories exhibits a mean that is
significantly different from the others.

However, since Kruskal-Wallis is an extension of Mann-Whitney U test for three or more categorical
and independent groups, we also conducted Mann-Whitney U test for post-hoc pairwise comparisons
to identify which group(s) contributes to the significance. The results of this test are reported via
Table 1. From all the pairwise comparisons, the only significant result comes from Naive versus
5-fold. With the adjusted p-value surpassing the significance level and a considerably high U-value,
the difference in the median values of of the two estimator models in terms of rank sums shows a
significant disparity. Keep in mind that if the significance level was set to 5%, the results would show
no statistically significant difference for any of the pairwise comparisons.
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Table 1: Mann-Whitney U Test Results for Relative Error Comparison

Group 1 Group 2 Test-statistic
(U-value) p-value Adj. p-value after

Holm correction Reject

2-fold SplitDICE 5-fold SplitDICE 230.0 0.42488 0.42488 False
2-fold SplitDICE Naive DICE 258.0 0.11986 0.23971 False
5-fold SplitDICE Naive DICE 286.0 0.02073 0.06220 True

5.2 Evaluation of Performance Metrics

Additionally, other metrics such as mean-squared error, bias and variance have been calculated
from the average per-step reward values of 2-fold and 5-fold cross-fit estimators and a naive single
estimator. Keep in mind the final values were obtained after having all the aforementioned estimators
trained for a given number of training steps, in this case this number was set to 10000 for all. As
suggested by Jacob, the formula used for these performance metrics are provided via Equation 6
for mean-squared error, bias and variance respectively [6]. Keep in mind the formula for variance
calculation is adjusted to account for the subtle fluctuations in the ground truth values such that the
the outcome is relative to the truth.

MSE =
1

S

S∑
s=0

[
θ̃s0 − θs0

]2
, Bias =

∣∣∣∣∣ 1S
S∑

s=0

θ̃s0 − θs0

∣∣∣∣∣ , Var =
1

S

S∑
s=0

[
θ̃s0
θs0

− θ̃s0
θs0

]2

(6)

where θs0 refers to ground truth obtained from the target policy and θ̃s0 refers to the estimate value
obtained from the model estimators, in the case of cross-fit estimators, this value is the average over
K folds. s here is for the seed number since per each seed, the calculated final estimate value and the
ground truth might differ. These values have been provided in Table 2.

We can say that the results advocate for the advantages of using cross-fitting methods over the naive
estimator. The naive estimator has the highest MSE, marking less accuracy in prediction. On the
contrary, 2-fold cross-fitting significantly reduces the MSE value reflecting a nearly 55% improvement.
As we move on to 5-fold cross-fitting, we see even a further reduction in the MSE performance
with approximately a 70% improvement over the naive estimator and a 25% improvement over
2-fold. Additionally, bias is substantially lower with cross-fitting methods compared to the naive
estimator, although surprisingly enough 5-fold demonstrates a slight increase in bias compared to the
2-fold approach. As expected so, variance also show improvements with cross-fitting; again with
5-fold cross-fitting achieves the lowest in both, establishing more consistent and precise results of
estimation.

Table 2: Performance measures for the considered estimators
Scenarios MSE Bias Variance

Naive estimator 7.773960e-06 0.000309 0.035533
2-fold cross-fit 3.424816e-06 0.000144 0.015937
5-fold cross-fit 2.487964e-06 0.000172 0.011163

5.3 Convergence of Average Per-Step Reward over Training

Plots provided by Figure 4 demonstrate the trend for average per-step reward over 10,000 training
steps. Since the experiment is repeated over 20 datasets each with a distinct seed value, the results
are then generalized with the median plotted and error bars at 25th and 75th percentiles. The average
per-step reward value of the target policy is used as the ground truth (true value), in order to account
for all the 20 seeds we use the mean of average per-step reward values of all target policies.

As it can be seen clearly, all three estimators show convergence to the true value of the target
policy. The convergence has a more fluid movement for SplitDICE however whereas for the naive
implementation, there seems to be more extremities and peaks throughout the training process. The
deviation in the convergence trend of Naive DICE shown via Figure 4a is smoothed out when applied
cross-fitting. Another noticeable remark is that both folds of SplitDICE start with a relatively high
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peak at the start of the training process, although variance is generally high this is not the case for
Naive DICE. This could be attributed to sampling variability meaning the training set created as
an outcome of random split of the original dataset may not generalize well to the overall dataset
thereby leading to estimations that are far from the ground truth until the estimator adjusts to the true
distribution during the later stages of training. This is also an apparent occurrence between the two
different folds since 2-fold SplitDICE shown via Figure 4b reaches a higher initial peak (between
0.05 and 0.06) compared to the 5-fold SplitDICE shown via Figure 4c (between 0.04 and 0.05). This
would also indicate that by splitting of the data into higher number of folds, the training set is more
likely to be a better representative of the original dataset’s variability.

(a) The sample data is used both as a training and an
evaluation dataset.

(b) The sample data is split into two distinct subsets
at random, namely training and evaluation. Then, the
roles of the two datasets are reversed for the second
fitting. The final estimate value is calculated as the
average of the two fittings.

(c) The sample data is split into five distinct subsets at
random. The fitting is continued until each subset is
assigned the role for estimation whereas the leftover
four subsets are merged into one for training. The
final estimate value is calculated as the average of the
five fittings.

Figure 4: Convergence to the true value (average per-step reward of the target policy) over
the entire training process of Naive DICE (a), 2-fold SplitDICE (b) and 5-fold SplitDICE (c).
The estimation of the average per-step reward value is done at every 100-step intervals of the entire
training process, which totals 10000 steps overall.

In order to truly understand the effects of the double-dipping behaviour, we also need to touch upon
variance observed in the results of average per-step reward. According to the hypothesis of this
research, we expect to observe a descending trend in variance when comparing the naive DICE
estimator to SplitDICE (with former exhibiting higher variance). Naturally, this also proves that
the regularization strategies employed by the generic neural DICE estimator in order to avoid the
possibly overfitted results that would arise from using the same dataset for training and estimation,
can be strengthened by use of double machine learning methods. As seen from Figure 5, there is
an apparent difference between the interquartile ranges of the estimators. Both folds of SplitDICE
exhibit a concentration of points near the median whereas Naive DICE shows this pattern only for
a few data points. This observation indicates not only that there is a descending trend in variance
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from Naive to 5-fold SplitDICE but also that SplitDICE (more significantly for the 5-fold version)
densely clusters data points around the desired range achieving a more stable and focused distribution.
Additionally, for SplitDICE the gap between the mean and the median is much smaller suggesting
that distribution of reward values is more symmetric and centered around the true value.

Figure 5: Box-whisker plot showing the estimated of average per-step reward value (calculated
at step=10000) for each seed. The results are categorized by the considered estimator models, with
the (non-outlier) data points displayed as a randomized swarm to avoid overlaps. Additionally, the
mean ground truth value is displayed as a reference criterion for comparison.

6 Discussion

The detailed analysis of the results allowed for us to make conclusions from different aspects. While
variance holds particular significance in investigating the risks of double-dipping, it was definitely
worthwhile to explore how the cross-fit strategy affects bias, given the inherent trade-off between
the two. The difference between the results for bias was relatively smaller compared to variance but
still there was a downwards trend from Naive DICE to SplitDICE. Another interesting finding was
between the two whisker plot diagrams as provided in Figure 3b and Figure 5. Although the error
values retrieved by the estimators had relatively similar interquartile range widths with each other, the
differences between the overall group of values was notable. However, this pattern was conceptually
reversed for the average per-step reward values. In this case, the estimate values for each model
showed similar closeness to the true value, but their interquartile ranges differed from each other
much more significantly. To summarize, this indicates that variance in error was (nearly) unaffected
changing to SplitDICE but the variance in the average per-step reward values decreased noticeably.

Now, we move on to discussing the limitations behind the research starting with the environment cho-
sen for the experiment which was Frozenlake-v0 featuring a discrete action and observation space.
This environment was selected due to its considerable simplicity and the manageable computational
effort and resources required for experimentation. However, more complex environments such as
Reacher-v2 and Cartpole-v0 were excluded from the scope of this study. These environments,
while potentially offering richer datasets with discrete action space and continuous observation space,
require significantly higher computational efforts due to the relative increase in the number of training
steps needed to achieve convergence to the true value as witnessed in the results of the previous DICE
papers [23]. This decision was made to ensure that the experiments could be completed within a
reasonable time-frame and with available computational resources.

When splitting the dataset, the episodes retrieved from the off-policy dataset are shuffled in order to
achieve a fully random split. This is because random shuffling helps prevent any bias that might arise
from the order in which the data was collected initially. In order to mitigate the possible fluctuations
that might be caused by the variability of the shuffling process, the results were generalized across
multiple seeds as suggested in previous experimentation conducted on DualDICE [13]. It is notewor-
thy that although the episodes were shuffled for randomness, the seeds used for generating random
numbers during the experiments were not randomized. Instead, they were systematically defined
to cover a range of values, from 0 to 19 inclusive. This approach was chosen to ensure consistency
across different runs of the experiment and the reproducibility of the setup. However, a randomized
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approach for the collection of seed values could improve the reliability of the results by giving a more
stable analysis that is less susceptible to randomness.

Before conducting the statistical analysis for the relative error comparison, first determining the
normality of the datasets required choosing between several normality tests, primarily the Shapiro-
Wilk test [19] and the Kolmogorov-Smirnov (K-S) test [4] as the two most popular techniques. Main
limitation of the K-S test is its high sensitivity to extreme values. Thus, it is recommended to use the
K-S test for sample sizes ≥ 50 [12] or to apply the Lilliefors correction, which makes the test less
conservative [8]. Another pressing issue is that if parameters such as location, scale, and shape are
estimated from the data, the critical region of the K-S test becomes invalid, necessitating simulation
of such variables [16]. Unfortunately, both these limitations are pertinent to the results of the current
experiment at hand. Considering that previous studies show that The Shapiro-Wilk test is more
suitable for smaller sample sizes, [8] and to still account for the empirical power of the K-S test,
we employed both Anderson-Darling test [20] (a refinement of the K-S Test) and Shapiro-Wilk
test. The former revealed that the data for 2-fold and Naive were not normally-distributed. The
latter also concluded that only 2-fold was not normally distributed (bearing in mind that the p-value
calculated for the naive dataset was right above the boundary of significance). The results of these
normality tests made it necessary to choose non-parametric approaches for further analysis, this being
Kruskal-Wallis. However, to account for false negatives, under the assumption that all the groups are
in indeed normally-distributed, we would rely on parametric approaches: one-way ANOVA could be
conducted with Tukey’s HSD Test for post-hoc [15]. The results of this statistical analysis concludes
that there exists a significant difference between the Naive estimator and 5-fold SplitDICE at the
significance level of 5%. This approach offers better significance since with the non-parametric
methods, the best significance level achieved was 10%.

7 Responsible Research

To ensure the reproducibility of the results, the data was generated with seed specifications as
described in section 4 and then the final results for MSE, bias and variance were retrieved as the
average across all the output. For the convergence of average per-step reward over the number of
training steps, the median was selected. This measure made it possible that the presented results
accurately reflected the performance of the estimators, instead of merely depicting a favorable
outcome. Additionally, given the precision of the values obtained at the end of the experiment and the
close comparisons, the results required careful analysis and interpretation. Statistical analyses were
conducted when applicable to determine the significance of the results and to compete against an
academically accepted and well-known criteria. The outcome of these tests can be seen via Table 1
by means of ensuring a fair and informed critique.

From a broader societal perspective, especially the objective behind this research has high relevance
for societal trust in AI applications with regards to conducting better off-policy evaluation and better
estimating the outcome of a strategy. Considering certain critical sectors, more reliable OPE metrics
can lead to better treatment recommendations in healthcare, ensure safer decision-making processes
in autonomous driving and lead to more accurate risk assessments in finance. By creating a more
accessible and discussable framework for combining behaviour-agnostic reinforcement learning with
double machine learning, SplitDICE contributes to the development of more trustworthy AI systems.
In such hopes, the field of the research and the motivation behind it benefit society by promoting
more effective technology applications.

8 Conclusion

In this research, we aimed to answer the following research question: “How does the use of sample-
splitting and cross-fitting techniques mitigate the effects of ‘double-dipping’ in behavior agnostic
reinforcement learning?”. This was in the scope of integrating the techniques of sample-splitting and
cross-fitting with the current implementation of the DICE estimators which have had inspiring results
for the estimation of the target policy in off-policy and behaviour-agnostic settings. This approach
was proposed under the name SplitDICE and for the results of this research the estimator was built
on the configurations of BestDICE.
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As the fundamental stage of the research, the data was split into a a number of subsets with the specific
number determined by the type of cross-fitting employed. The process of cross-fitting necessitated
several iterations of training on the estimator till each subset was used for the estimation of the average
per-step reward value of the target policy. In order to conduct the experiment, DICE-RL codebase
created by Google Research was forked for own use to make alterations to the implementation of
the neural DICE estimator. For the scope of this research, three different estimator models were
considered: Naive DICE (or in other words, BestDICE), 2-fold SplitDICE and 5-fold SplitDICE.
Results divided into three main focus points (5.1, 5.2, 5.3 respectively) indicated that: 1) 5-fold
SplitDICE has lower rates of relative error than the Naive DICE at a significance level of %10 2) in
overall performance measures for MSE, bias and variance generalized from the final estimate value
of average per-step reward obtained from 20 seeds show a descending trend from Naive DICE to
5-fold SplitDICE and most importantly; 3) variance calculated at the end of 10000 steps from all the
observations show a descending trend going from Naive DICE to 2-fold SplitDICE and from 2-fold
SplitDICE to 5-fold SplitDICE, aligning with the trend of smoothness seen from the plots.

8.1 Future Work

Future work into the field could include use of more noise or more complex environments with
larger number of trajectories and trajectory lengths. The initial phase of the research focused on
getting familiar with the structure of the DICE estimators due to the extensive and broad setup of
the DICE-RL codebase. Therefore, simplicity and computational efficiency was a priority when
selecting the type of environment. However, it is noteworthy to mention that there is potential for
scalability and enhanced performance by testing these methods in more challenging environments.
Testing the methods on continuous observation spaces that features more customized and unique
reward functions can yield more scalable and reliable results.

The methods of sample-splitting and cross-fitting were only adopted for BestDICE variant of the
unified DICE family. It is also worthwhile to extend these techniques by applying other existing
variants of DICE such as DualDICE, GradientDICE etc. since they have varying constraints on
primal/dual regularization as well as other parameters of interest for the neural network of the
estimator.
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