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Multichannel Detection of Gaussian Signals with
Uncalibrated Receivers

Amir Leshem and Alle-Jan van der Veen

~ Abstract—We consider the detection of unknown Gaussian this nominal model. This is the approach taken here. The gener-
signals received by an array of uncalibrated nonidentical sensors, alized likelihood ratio test (GLRT) for this problem turns out to
which is a problem that appears in radio astronomy. The problem e the determinant of the sample correlation matrix, a fact which

is formulated as a test on the covariance structure, the generalized . o .
likelihood ratio test (GLRT) for this problem is stated and related is not very well known in signal processing but has been used

to a simpler ad-hocdetector. We compare the method to the con- fOr @ long time in Ce'ftain other disciplines. After formU|atin9
ventional multichannel subspace detector and show its robustness the problem and stating the GLRT, we show that in first order
to nonidentical channels on data collected with the Westerbork approximation it is equivalent to a simpler detector. We then
radio telescope. demonstrate the results of the excision using the GLRT detector

and compare it to a detector which assumes identical receivers.
|. INTRODUCTION

N THIS letter, we study the detection of spatially correlated [l. PROBLEM FORMULATION

signals impinging on an array of uncalibrated nonidentical Agsyme that we have a setpharrow-band Gaussian signals

sensors inthe presence of spatially uncorrelated noise. The N@RBinging on an array of sensors. The received signal can be
covariance matrix is diagonal but otherwise unknown. described in complex envelope form by

The motivation for this study comes from an application in
radio astronomy, where we wish to detect and suppress man- 4
made interfering sources impinging on an array of telescopes. ~ X(k) = > _ a;s;(k) + n(k) = As(k) +n(k) (1)
The output of the receiver after processing is essentially a se- i=1
guence of short-term{10 s) sample correlation matrices, CoMy bere x(k) = [1(k), -, 2,(R)]T is the px 1 vector
posed of the contributions of astronomical sourcesinthe pointing received signals at ;amﬁ)leptimes A= [a, -8
direction, the additive receiver noise, and the interference. Tﬂe. the arrav response vector for thith si n;i' (k’) w
receiver noise is largely independent among the sensors, butthe> y P gnat, s y

T . .
receiver gains are not identical, with differences of up to a fe gL (k) o S(I(k).] 'S tthX 1 v_ector of gaussian sourclf _S'g
GO - . nals at sample timeks with covariance matridR, = E(ss");
dB. Calibration of this is done separately and taken into accoun . . . L
ndn(k) is thepx 1 additive noise vector, which is assumed

off-line. An interfering source is usually in the near field an have independent aaussian entries with unknown diagonal
received through the side-lobes of the parabolic dishes, he 2e'a pen gat 9
Quariance matriR,, = diag{r1, ---, v}

the received signals are correlated but with arbitrary unknowi Wi Id like to detect th t sianals satisfving th
gains. In many cases the interference is intermittent in nature ewoud II ¢ fo detec d ?pres?nce orsigha ivsadlsfyldng €
(e.g., TDMA signals, as in the GSM system), and our objective OVE mo_eo, €., g“ée?/v ada vectorl), - -+, x(IV) _ecl:(l N |
to detect its presence online on millisecond periods and discifpet efrqh— org > .'f ?d 0 not assullrtr:e paran’;ethrlc nowl-
those periods which are deemed contaminated (temporal e ge o the array manifold(¢) or a cali rat|oq of the noise
sion) [1]. Note that the astronomical signals of interest are muBRWET I e_ach channel. _Under these_ as_sumpﬂons the only way
weaker than the receiver noise and hence, itis necessary to ddfefstinguish between signal and noise is to use the fact that the
interference even if it is much below the noise power. The ast/82iS€ is spatially uncorrelated. Since parameterizing the signal
nomical signals themselves are too weak to be detected at tHils§ noise case by a (possibly) low rank matrix plus diagonal
short time scales. would lead to an untractable ML problem, we try to distinguish
When the interferers are much weaker than the system nd§ween a diagonal and an arbitrary Hermitian matrix. To sum-
and the receivers are nonidentical, the change in eigenstructi@ize, the detection problem is given by the hypotheses
of the sample covariance matrix is not detectable unless one of ) i CA(O0. R
two steps is taken. The first is precalibration and whitening. The o: x(k) ~ (0 Ro)
second, which is eas_ierto imp_lement on—_ling isto useadi_fferent Hy: x(k) ~ CN(0, Ry), k=1,---,N (2
model where the noise covariance matrix is assumed diagonal
but not necessarily equal t’I, and to detect deviation from whereCA(0, R;) denotes the zero-mean complex normal dis-
tribution with covarianc&,
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Generalizations of this problem have been studied in the psy-the spatial correlation coefficients between the different sen-
chometrics, biometrics, and statistics literature since the 193s's, and the GLRT suggests a proper way of combining these
under the heading dactor analysiswhich is concerned with different correlations. Itis also quite easy to implement and does
detecting the rank and estimating the factors of a sample coaot involve any eigenstructure computations.
variance matrix with modeR = AAY 4+ D, whereA : p x Furthermore, extrapolating the results from the real-valued
g andD > O diagonal (but usually for real-valued matricesgase [2], it is known that undét,, —2N log |C| has asymptot-
[2]. The problem has received much less attention in the sign@hlly a chi-square distribution with? — p degrees of freedom.
processing literature. Related recent work includes, e.g., dirgthis can be used to determine a threshpltbrresponding to a
tion estimation using two subarrays with mutually uncorrelatefbsired probability of false alarfz 4. According to Box [5],
noise [3], [4]. at leastV > 50 samples are needed, and a better asymptotic fit

is obtained by replacing’ by N — (1/6)(2p + 11).
Ill. GLRT DETECTOR A relatedad hocdetector to which we can compare is based
on the Frobenius-norm of the off-diagonal entriebfSince

In this section, we first give a short derivation of the GLRFhe diagonal entries are equal to 1, it is equivalent to take the
for the detection problem (2). Note that both hypotheses &{gym of  itself, i.e.,

composite and we have to derive maximum likelihood estimates

(MLESs) of the parameters for each of the hypotheses. Under Hi
the as_sumpti_ons_ for either hypothesis the likelihood function Ty = ||(3||F z ' (5)
assumingH; is given by Ho
N In fact, it is straightforward to prove that, for weak signals,
L(X[H,) = L(X|R¢) = < 1 Ctr(Rﬁf“t)) the performance of this detector must be approximately equal
|R¢| to that of the GLRT. Indeed, for weak signals, the eigenvalues
/=01 of C are equal to\; = 1 + ¢;, for smalle;. Note that tr(C) =

7

p=2,AN=p= >, ¢ =0.Wecan write
where X = [x(1),---,x(N)], andR = (1/N)¥r, S o
x(k)x(k)" is the sample covariance matrix,. | denotes the L= H Ai = eeei TR
determinant and ¢r) the trace operator. The ML estimate of

R, is found by maximizingL(X|R.) overR,, or equivalently = log(Ty) = log \; = 6 — L+ 0
the log-likelihood function 27: 27: 2 ’

L(X|Re) = N (~log(|Re) - (R 'R))

UnderH,, we have to estimate,, - - -, v,,. To that end we set whereas
the derivative ofZ with respect to; to zero, giving—(1/v;) + ) A2 ) 5
(Ri;/v?) = 0. This yields?; = Ry;. Undery, we obtain ;= IClF = Z A= Z L+2e +¢
similarly that the ML estimate dR; is given byR. Therefore ! !
the GLRT test statistic is given by the “Hadamard ratio” = _% (T —p) = — Z % e
AN
L(X[Ho) = LR = |C N (3) Since a monotonic transformation of a test statistic does
L(X[Hy) HRA not change the outcome of the test if the threshold is modified
e} v accordinglyt the two detectors are equivalent up to third

order. Computing the Frobenius-norm requires o6ilyp?)
whereC is the sample correlation matrix given By= WRW  operations, versu§(p®) for the determinant test (implemented

andW — diag{(l/\/f{—n), ) /f{pp)}- Note that0 < via a Cholesky factorization dof).

|C| < 1, where equality to 1 is obtained asymptotically for

N — oo if ¢ = 0. Thus, for a certain threshold = ~(N)
between 0 and 1, the GLRT is To test the performance of the detector in a simulation, we

have used an array with eight elements, with receiver noise
covariancR,,, = diag|[0, 0,0, -3, -4, -5, -6, -7] dB. We consider

a single signal, with SNR at the input of the first sensor varied
from —24 dB to—10 dB. Both signal and noise are Gaussian.
Each experimentis based 8h= 50 samples of the array output.
This result is identical to that in the real-valued case (see [2,

p. 137]). The EXpression 1S rather SaUSfaC'ForY bl the _abINote that the decisions in (4) and (5) are opposite, hence, the change of sign
sence of sensor calibration data all the spatial information existshe second transformation.

IV. SIMULATION RESULTS

i
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Fig. 2. Time-frequency spectrum of channel 1, showing GSM interferenc:
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Fig. 1 shows the probability of detection versus SNR for varioys
s . ig. 4. Power spectra and cross-spectra of channels 1 and 3, before and after
probabilities of false alarn#’r 4. The graph is based on 100 00Qnterference excision.

experiments per value of the SNR. We see that indeed the per-
formance of both detectors is similar.
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Since N = 21 is small, we have not used the theoretical
thresholds. Instead, we have excised the worst 10% of the data
at each frequency channel and generated spectral estimates by

The main motivation for the detection problem aboveurther averaging the covariance matrices of the remaining 90%
stems from an application to interference mitigation in radief the data. The processing structure is shown in Fig. 3.
astronomy. We apply the detector to sample data collected withFig. 4 shows the power spectrum of channel 1 and the cross-
the Westerbork radio telescope. The data was recorded usipgctrum of channels 1 and 3, respectively, before and after
the 8-channel NOEMI project data recorder [1]. We selectedotanking. Without excision, we can see that several interfering
bandwidth of 2 MHz, around 899 MHz, with a duration of 3 ssignals are present, most weak but one rather strong. We can
This band is contaminated with various GSM mobile telephonyearly see that while both detectors excised properly the strong
signals. Such signals are intermittent, occupying time slots ipterference, the detector based on Big = #?I assumption
length 0.577 ms in frames of 4.6 ms. A segment of the daled to excise the weak features of the interference.
is shown in Fig. 2. The received data channels were split into
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