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Multichannel Detection of Gaussian Signals with
Uncalibrated Receivers

Amir Leshem and Alle-Jan van der Veen

Abstract—We consider the detection of unknown Gaussian
signals received by an array of uncalibrated nonidentical sensors,
which is a problem that appears in radio astronomy. The problem
is formulated as a test on the covariance structure, the generalized
likelihood ratio test (GLRT) for this problem is stated and related
to a simpler ad-hocdetector. We compare the method to the con-
ventional multichannel subspace detector and show its robustness
to nonidentical channels on data collected with the Westerbork
radio telescope.

I. INTRODUCTION

I N THIS letter, we study the detection of spatially correlated
signals impinging on an array of uncalibrated nonidentical

sensors in the presence of spatially uncorrelated noise. The noise
covariance matrix is diagonal but otherwise unknown.

The motivation for this study comes from an application in
radio astronomy, where we wish to detect and suppress man-
made interfering sources impinging on an array of telescopes.
The output of the receiver after processing is essentially a se-
quence of short-term (10 s) sample correlation matrices, com-
posed of the contributionsofastronomical sources in the pointing
direction, the additive receiver noise, and the interference. The
receiver noise is largely independent among the sensors, but the
receiver gains are not identical, with differences of up to a few
dB. Calibration of this is done separately and taken into account
off-line. An interfering source is usually in the near field and
received through the side-lobes of the parabolic dishes, hence
the received signals are correlated but with arbitrary unknown
gains. In many cases the interference is intermittent in nature
(e.g., TDMA signals, as in the GSM system), and our objective is
to detect its presence online on millisecond periods and discard
those periods which are deemed contaminated (temporal exci-
sion) [1]. Note that the astronomical signals of interest are much
weaker than the receiver noise and hence, it is necessary to detect
interference even if it is much below the noise power. The astro-
nomical signals themselves are too weak to be detected at these
short time scales.

When the interferers are much weaker than the system noise
and the receivers are nonidentical, the change in eigenstructure
of the sample covariance matrix is not detectable unless one of
two steps is taken. The first is precalibration and whitening. The
second, which is easier to implement on-line is to use a different
model where the noise covariance matrix is assumed diagonal
but not necessarily equal to , and to detect deviation from
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this nominal model. This is the approach taken here. The gener-
alized likelihood ratio test (GLRT) for this problem turns out to
be the determinant of the sample correlation matrix, a fact which
is not very well known in signal processing but has been used
for a long time in certain other disciplines. After formulating
the problem and stating the GLRT, we show that in first order
approximation it is equivalent to a simpler detector. We then
demonstrate the results of the excision using the GLRT detector
and compare it to a detector which assumes identical receivers.

II. PROBLEM FORMULATION

Assume that we have a set ofnarrow-band Gaussian signals
impinging on an array of sensors. The received signal can be
described in complex envelope form by

(1)

where is the 1 vector
of received signals at sample times, ;

is the array response vector for theth signal;
is the 1 vector of gaussian source sig-

nals at sample times with covariance matrix ;
and is the 1 additive noise vector, which is assumed
to have independent gaussian entries with unknown diagonal
covariance matrix .

We would like to detect the presence of signals satisfying the
above model, i.e., given data vectors decide
whether 0 or 0. We do not assume parametric knowl-
edge of the array manifold or a calibration of the noise
power in each channel. Under these assumptions the only way
to distinguish between signal and noise is to use the fact that the
noise is spatially uncorrelated. Since parameterizing the signal
plus noise case by a (possibly) low rank matrix plus diagonal
would lead to an untractable ML problem, we try to distinguish
between a diagonal and an arbitrary Hermitian matrix. To sum-
marize, the detection problem is given by the hypotheses

(2)

where denotes the zero-mean complex normal dis-
tribution with covariance

... any positive definite matrix
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Generalizations of this problem have been studied in the psy-
chometrics, biometrics, and statistics literature since the 1930s
under the heading offactor analysis, which is concerned with
detecting the rank and estimating the factors of a sample co-
variance matrix with model , where

and 0 diagonal (but usually for real-valued matrices)
[2]. The problem has received much less attention in the signal
processing literature. Related recent work includes, e.g., direc-
tion estimation using two subarrays with mutually uncorrelated
noise [3], [4].

III. GLRT DETECTOR

In this section, we first give a short derivation of the GLRT
for the detection problem (2). Note that both hypotheses are
composite and we have to derive maximum likelihood estimates
(MLEs) of the parameters for each of the hypotheses. Under
the assumptions for either hypothesis the likelihood function
assuming is given by

where , and
is the sample covariance matrix, denotes the

determinant and tr the trace operator. The ML estimate of
is found by maximizing over , or equivalently

the log-likelihood function

Under , we have to estimate . To that end we set
the derivative of with respect to to zero, giving

0. This yields . Under , we obtain
similarly that the ML estimate of is given by . Therefore
the GLRT test statistic is given by the “Hadamard ratio”

(3)

where is the sample correlation matrix given by

and . Note that

, where equality to 1 is obtained asymptotically for
if 0. Thus, for a certain threshold

between 0 and 1, the GLRT is

(4)

This result is identical to that in the real-valued case (see [2,
p. 137]). The expression is rather satisfactory since in the ab-
sence of sensor calibration data all the spatial information exists

in the spatial correlation coefficients between the different sen-
sors, and the GLRT suggests a proper way of combining these
different correlations. It is also quite easy to implement and does
not involve any eigenstructure computations.

Furthermore, extrapolating the results from the real-valued
case [2], it is known that under , has asymptot-
ically a chi-square distribution with degrees of freedom.
This can be used to determine a thresholdcorresponding to a
desired probability of false alarm . According to Box [5],
at least samples are needed, and a better asymptotic fit
is obtained by replacing by .

A relatedad hocdetector to which we can compare is based
on the Frobenius-norm of the off-diagonal entries of. Since
the diagonal entries are equal to 1, it is equivalent to take the
norm of itself, i.e.,

(5)

In fact, it is straightforward to prove that, for weak signals,
the performance of this detector must be approximately equal
to that of the GLRT. Indeed, for weak signals, the eigenvalues
of are equal to , for small . Note that tr

0. We can write

whereas

Since a monotonic transformation of a test statistic does
not change the outcome of the test if the threshold is modified
accordingly,1 the two detectors are equivalent up to third
order. Computing the Frobenius-norm requires only
operations, versus for the determinant test (implemented
via a Cholesky factorization of ).

IV. SIMULATION RESULTS

To test the performance of the detector in a simulation, we
have used an array with eight elements, with receiver noise
covariance [0, 0, 0, -3, -4, -5, -6, -7] dB. We consider
a single signal, with SNR at the input of the first sensor varied
from 24 dB to 10 dB. Both signal and noise are Gaussian.
Each experiment is based on 50 samples of the array output.

1Note that the decisions in (4) and (5) are opposite, hence, the change of sign
in the second transformation.
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Fig. 1. Probability of missed detection versus SNRP = 0.3, 0.1, 0.01,
0.001.

Fig. 2. Time–frequency spectrum of channel 1, showing GSM interference.

Fig. 1 shows the probability of detection versus SNR for various
probabilities of false alarm . The graph is based on 100 000
experiments per value of the SNR. We see that indeed the per-
formance of both detectors is similar.

V. APPLICATION

The main motivation for the detection problem above
stems from an application to interference mitigation in radio
astronomy. We apply the detector to sample data collected with
the Westerbork radio telescope. The data was recorded using
the 8-channel NOEMI project data recorder [1]. We selected a
bandwidth of 2 MHz, around 899 MHz, with a duration of 3 s.
This band is contaminated with various GSM mobile telephony
signals. Such signals are intermittent, occupying time slots of
length 0.577 ms in frames of 4.6 ms. A segment of the data
is shown in Fig. 2. The received data channels were split into
subbands of 83 kHz by means of windowing and short-term
FFT’s, and subsequently correlated per frequency bin. Each
covariance matrix is an average based on 21 samples and covers
a period of 0.24 ms. Two detectors have been applied. The first
is the detector of (3), and the other one is given by

(6)

where is the sample covariance matrix. This detector is a
GLRT assuming identical channels (or ) [2].

Fig. 3. Computational structure of the blanking process.

Fig. 4. Power spectra and cross-spectra of channels 1 and 3, before and after
interference excision.

Since 21 is small, we have not used the theoretical
thresholds. Instead, we have excised the worst 10% of the data
at each frequency channel and generated spectral estimates by
further averaging the covariance matrices of the remaining 90%
of the data. The processing structure is shown in Fig. 3.

Fig. 4 shows the power spectrum of channel 1 and the cross-
spectrum of channels 1 and 3, respectively, before and after
blanking. Without excision, we can see that several interfering
signals are present, most weak but one rather strong. We can
clearly see that while both detectors excised properly the strong
interference, the detector based on the assumption
failed to excise the weak features of the interference.
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