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Abstract
In this report, the conversion from spin-echo signals, obtained with a low-field hand-held MRI
scanner that was designed and built at the Leiden University, to images of the proton density
within the sample is considered. This scanner does not make use of switchable gradient coils,
but instead relies solely on the natural inhomogeneity of the field and on translations of the
sample over this field for its spatial encoding. Specifically, an attempt is made to answer the
question of how we can reconstruct a phantom using this kind of scanner.

This is done by deriving a signal model, discretising it and writing it as a linear least squares
problem. Then, we can make use of the techniques of Cojugate Gradient for Least Squares
(CGLS) wih `2-regularization and Generalized Conjugate Gradient Minimal Error (GCGME)
with `1-regularization for the difference between neighbouring pixels in order to solve this in-
verse problem.

Firstly, we theoretically consider combinations for magnetic field geometry and measure-
ment strategy for their usability for image reconstruction. After this, the obtained strategies are
tested in three experiments, with two magnets and two samples.

We start by doing this numerically, using a simulated phantom in combination with a mea-
sured magnetic field and the translation strategy. By doing this, we can determine if reconstruc-
tion is possible using that combination of field and strategy. Finally, the strategy is tested on
real samples.

Using numerical phantoms in combination with the magnetic field and translation strategy
used in the measurements, we were able to correctly reconstruct the phantoms. However, the
reconstruction broke down when data from real samples was considered. A variety of possible
improvements is discussed. The improvement that would have the most impact would be to de-
sign a magnet that has a less uniform gradient in the z-direction, and instead has some locations
in the xy-plane where the field falls slowly as function of z, but quickly in other locations.
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1. Introduction
After its proposal in 1973 by P.C. Lauterbur [1] (for which he received the Nobel prize in phys-
iology or medicine in 2003), Magnetic Resonance Imaging (MRI) has grown to be one of the
most widely adopted techniques used in diagnostic medical imaging. With MRI, a high reso-
lution image can be obtained of various body parts, from the complex structures of the brain,
to the softer tissues around knee or elbow joints. Now, MRI machines can be found in many
hospitals, with increasing size and cost and using magnets with ever increasing magnetic field
strengths.

However, MRI technology does not have to be limited to only big and complex machines
with increasingly stronger and more exotic magnets. While these developments allow for high
resolution imaging of the whole body, it makes MRI scanning an expensive and time consuming
process. In this report, the prospect of a small, hand-held MRI-scanner is explored. While this
device is no replacement for the conventional scanner design, it could prove a useful imaging
apparatus for its small size and relatively low cost. The proposed use case would be scanning
tissues that lie just below the skin (between 1 and 3 cm) for tumors or, if a suitable resolution
can be achieved, even for scanning the nerve tissues that lie within the spine.

In this report, the problem of image reconstruction with such a hand-held scanner is consid-
ered, along with some recommendations on the design of the magnet and the data acquisition
process that could make the reconstruction more accurate. The specific research question that
we want to answer in this report is: "How can we reconstruct an image from the MRI-signal of
a hand-held scanner?". To this end, a suitable signal model will be presented, along with some
design suggestions for the magnets and measurement strategies. Then, some algorithms that
can be used to invert the signal model are presented, followed by the results for both simulated
phantoms and actual measurements.

This project is a collaboration between the Leiden University Medical Center (LUMC),
where the prototypes are designed and built and the measurements are done, and the Delft In-
stitute of Applied Mathematics (DIAM), where the modelling side of the project is researched.
This thesis was carried out at DIAM, and therefore focuses more on the modelling side of the
project.

The structure of the report is as follows. An overview of the relevant theory on MRI is
given in chapter 2. The third chapter contains relevant information on the magnet design as
well as the data acquisition process. A discussion on field design is presented in chapter 4.
The numerical signal model is derived in the fifth chapter. Some results are shown in chapter
6. Finally, a discussion of these results and a conclusion can be found in chapters 7 and 8
respectively.
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2. Theory
This section is meant to provide some insight in the relevant theory for this experiment and
is by no means extensive. A more complete theory on the principles of signals for magnetic
resonance imaging (MRI signals) can be found in [2].

2.1. Larmor frequency
Some elementary particles possess a property called spin. This property is a measure of a
particle’s intrinsic angular momentum. Composite particles, like nuclei, can also have spin,
depending on their composition. When a particle has nonzero spin and is charged, it also has
a magnetic dipole moment, so that it behaves like a magnetic dipole. This magnetic dipole
can be influenced by applying an external magnetic field. The spin vector will then align
with the magnetic field, and will precess around it. The frequency at which this precession
occurs, is governed by the magnetic field strength and a particle dependent constant, called the
gyromagnetic ratio. This precession frequency, also known as Larmor frequency, is given by:

ω(r) = γB0(r), (1)

where ω0 is in rad/s, γ is the gyromagnetic ratio in rad/sT and B0 is the magnetic field
strength of the external magnetic field in T. This precession is the driving mechanism behind
nuclear magnetic resonance (NMR) and magnetic resonance imaging 1.

An important case of a charged particle with spin, that precesses around external magnetic
fields, is the hydrogen nucleus (H+, specifically 1−H+). Since hydrogen is one of the most
abundant atoms, it is the ideal candidate for medical imaging, as it can be found in a multitude
of tissues within the human body.

2.2. The RF pulse
When only a constant external magnetic field B0 = B0x̂ (we suppose it is a field in the x-
direction) acts on a large number of hydrogen nuclei, the individual spins will either align
themselves parallel or antiparallel to the field. They will however be out of phase with each
other. The total magnetisation, which is the sum of the individual magnetic dipole moments of
the nuclei, will therefore be aligned with the external field and be completely in the x-direction.
The y and z components will cancel out due to the spins being out of phase.

The value of this macroscopic equilibrium magnetisation is given by:

M0(r) =
γ2h̄2

4kBT
ρ(r)B0(r) =

γh̄2

4kBT
ρ(r)ω0(r)x̂, (2)

with M0(r) in J/T, γ the gyromagnetic ratio in rad/sT, h̄ Planck’s constant in Js/rad, kB Boltz-
mann’s constant in J/K and T the temperature in K and where we have used the Larmor equa-
tion (1) and that B0(r) is oriented in the x-direction to rewrite the magnetic field to a frequency

1These are two names for the same thing, but the term MRI is used in medical contexts.
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ω0(r).

However, when an additional magnetic field is introduced, the individual spins can be ma-
nipulated so that they end up in phase with one another, thereby creating a measurable trans-
verse magnetisation component in the yz-plane. This is done by generating a magnetic field
that oscillates with the specific frequency ω1. When this frequency is close to the Larmor fre-
quency, the spins will align themselves with this second magnetic field. We call this field the
B1-field or radio frequency (RF) pulse, since it oscillates in the radio frequency range and has
a short duration, and it is given by B1(t) = B1,y cos (ω1t)ŷ + B1,z sin (ω1t)ẑ, so that it is per-
pendicular to the B0-field.

Under the influence of the B1 field, the individual spins end up in phase, so that after some
time the total magnetisation vector has a component in the yz-plane that is in phase with the
B1 field. When the B1 field is switched off, the spins will precess at the Larmor frequency
given by the local magnetic field. This results in a rapid decay in the yz-component of the
magnetisation vector as the spins will again become out of phase with one another. Since this
changing magnetisation vector generates a changing magnetic field, it generates a voltage in a
nearby coil due to Maxwell’s laws of Electromagnetics and can thus be measured. From this
signal, along with knowledge of the B0- and B1-fields, it is possible to reconstruct an image
showing the proton density ρ(r) as a function of position.

2.3. Spin-echo measurement
One way to measure the number of protons that experience a range of magnetic field strengths,
is by doing a spin-echo measurement. The essential idea of this technique is to first align all
magnetisations, then let them decay for a short time and finally to flip the magnetisation by
180◦. This flipping makes it so that the magnetisation vectors that where pulling ahead, get
flipped and are now lagging behind, and vice versa. After a short time (the same time as be-
tween the initial pulse and the flipping) the magnetisations will again be in phase and an echo
can be measured. Since the receiver coil will have a finite bandwidth, only information on
proton density at places experiencing a magnetic field within this bandwidth will be measured.

2.4. Signal model
This section is adapted from [3]. The signal that is measured from the spin echo routine can
be mathematically described as follows. If we set the time at which the echo occurs as t =
0, then we know that at that time, all the magnetisations of the spins are in phase (so their
magnetisations perpendicular to the x-axis are all in phase). This transverse magnetisation is
proportional to the equilibrium magnetisation (equation (2)) and is therefore proportional to
ρ(r)ω0(r). Now, combining this with equations (2) and (1) and putting all constants into a coil
response, we can write the signal model after demodulation (now the precession frequency is
given by γB0(r) via equation (1)) as:

S(t) =

∫
r∈D

c(r)ω2(r) exp{−t/T2(r)}ρ(r) exp{−i∆ω(r)t}dr, (3)

3



where D is the scanned spatial domain, c(r) is the coil response in which we have included
all constant factors, ω(r) is the frequency corresponding to the Larmor frequency in rad/s, T2(r)
is the transverse relaxation constant in s, ρ(r) is the proton spin density in m−3, i is the imagi-
nary unit, ∆ω(r) is the difference between the frequency corresponding to the local magnetic
field via equation (1) and the demodulation frequency in rad/s and t is the time in s.

Since the measurement only takes a short time, the transverse relaxation factor can be omit-
ted. The relatively small bandwidth of the measurement as compared to the total magnetic field,
makes it so that ω2(r) can be approximated as ω2

dem (the demodulation frequency) and can be
incorporated into the coil response. Finally, we rewrite ∆ω using the Larmor equation (1) to
obtain the signal model:

S(t) =

∫
r∈D

c(r)ρ(r) exp{−iγ∆B(r)t}dr, (4)

where ∆B(r) is the difference between the local magnetic field strength and the magnetic field
corresponding to the demodulation frequency. In chapter 4, this equation will be numerically
evaluated.

4



3. Device
In this section, some of the physical aspects of the hand-held scanner, designed and built at the
LUMC, that is used in this report are discussed. This is by no means an extensive overview, as
the main focus of this project lies in the signal analysis. It is however still important to have a
general idea of the design, since it influences the final signal model.

3.1. Device design
The hand-held MRI scanner consists of two main components, namely the main magnet (around
10 × 10cm2) and a radio frequency coil (RF coil). The main magnet is made up of multiple
small permanent magnets, that are fixed at certain points within a larger, 3D printed enclosure.
Their positions are determined using a genetic algorithm as in [4] that has as input the desired
magnetic field. The fields of these smaller magnets add up to form the B0-field, or main, static
magnetic field. This field will have a large gradient in the direction perpendicular to the surface
of the magnet, since it is one sided and the field falls going away from the magnet surface. The
magnetic field close to the magnet can be manipulated by changing the positions of the smaller
magnets.

The second component of the hand-held scanner is the RF coil. This coil is responsible for
the excitation of the spins, as well as for receiving the spin echo signal. A variety of coils can
be used in combination with the magnet. The choice of coil is influenced by the parameters
of the coil, such as its bandwidth. The dimensions of the coil are also considered, since some
coils, like a solenoid coil, will limit the size of possible phantoms. A surface coil imposes no
limitations on sample size at the expense of some extra noise and a weaker signal, since it is fur-
ther away from the sample. In this report, a solenoid coil is used, with the sample enclosed in it.

A third main component of most conventional MRI scanners are the gradient coils. These
can change the static magnetic field to (as the name implies) add a gradient to the static mag-
netic field. The device used in this experiment does not have such coils. The plan is to make
use of the gradient already present in the magnetic field. Since the magnetic field cannot be
altered using gradient coils, a unique reconstruction must be made possible in some other way.
We plan on doing this by translating the sample over the magnet, so that we in some sense vary
the magnetic field.

A schematic representation of the scanner can be found in figure 1.

3.2. Data acquisition
The signal is measured at equally spaced discrete time points for some duration. We introduce
δt and N as measurement parameters as the time between the time points and the number of
time points respectively. The data is acquired by measuring the voltage over the RF coil during
the decay of the magnetisation vector. Before discretising, the signal is demodulated with the
frequency ω0, corresponding to the frequency of the RF coil. The signal is also filtered by a
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Gaussian filter in the time domain, with mean t = 0 and standard deviation of about 0.5ms so
that noise is attenuated where no echo signal is expected (or in other words, the echo signal
is amplified). Furthermore, the measurement is repeated and the average is taken in order to
further improve the signal to noise ratio.

Figure 1: Schematic of the prototype hand-held scanner as viewed from the side, with the main
magnet indicated in blue, the sample container in red and the RF coil in gold. All the parts are
also indicated with arrows and a top-down view is added in the top left corner of the figure. It
can be seen that the RF coil wraps around the sample in this prototype.
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4. Magnetic field design
The goal of an MRI scanner is to make an image of the density of protons for all positions in
the region of interest. For this, equation (1) can be used, which says that the frequency of the
precession is a function of the external magnetic field strength at a given point. In conventional
MRI, gradient coils that can be switched on and off are used to assign a unique combination of
frequency and phase to each location within the field of view. Since the hand-held scanner does
not make use of gradient coils, this unique encoding must be achieved in another way. This
is done by making use of the inhomogeneity in the field generated by the magnet. If we were
to take only one measurement, the encoding that is obtained would still not be unique. This is
because the magnetic field strength will be constant on surfaces in R3. A unique encoding can
be achieved by translating the sample over the magnet. If the geometry of the planes allows
this and a sufficient amount and combination of translations is done, each place in the region
of interest is uniquely determined by an ordered set of magnetic field strengths.

For this to work, it is important that the planes are laid out in such a way, that a translation
in fact yields new information, i.e. that points that were on the same surface before the transla-
tion, lie on different surfaces after the translation.

In order to determine if a magnetic field is usable for this kind of encoding (with transla-
tions), we must attempt to find a set of translations such that for each point in the region of
interest, the resulting set of magnetic field strengths coupled to that point, is unique. In other
words, there exists a finite ordered set T of translations T (r) such that the function B(T (r))
that couples an ordered set of translations to an ordered set of magnetic field strengths, is in-
jective on the domain D, where D is the domain in space of interest. When such a T exists, the
field can be used to make an image using translations.

The question now arises if we can find a field B, such that the function T contains as few
translations as possible. In that way, the translations we do, will yield the largest amount of
new information. Since D is three dimensional and the magnetic field strength is a scalar, a
lower bound on the number of translations in T is 3.

It is quite difficult to directly look for a field for which a T with three translations actually
exists. It is however possible to consider some simple field maps and check if a T exists and
how many elements it has. We do this graphically and first in two dimensions. The general-
ization to three dimensions is quite straightforward and the two dimensional figures are more
accessible.

4.1. Constant field
We first consider a two dimensional field with no gradient at all, so that the magnetic field
strength is constant over the whole domain. This field clearly is not suitable for imaging us-
ing translations, since every translation will not move any points to different magnetic field
strengths (the field is constant) and no additional information is gained.
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4.2. Constant linear gradient
The next field we consider is a field with a constant gradient in some direction. Another way
we can represent a field, is by drawing the curves where the magnetic field strength is equal
(this is done for a linear constant gradient field in figure 2 and a circular field in figure 4). We
find that in the case of the constant gradient, these curves are all lines of the form

r0 + λs, (5)

where r0 is some point on the line, λ is a real constant and s is a vector in the direction of
the line. Furthermore, the vector s is the same for all lines. This field is also not suitable for
imaging using only translations. This can be seen by simply translating a copy of figure 2
over itself (see figure 3) or mathematically. We thereto consider two arbitrary points r1 and r2
that lie on the same line, and an arbitrary translation by rt. Then, we can set, without loss of
generality

r0 = r1, (6)

and, since r1 and r2 lie on a line with the same field strength, we have that

r2 = r0 + λs, (7)

for some λ and the same r0. We now translate by rt. Now, the point r1 is translated to

r′1 = r0 − rt, (8)

and
r′2 = r0 − rt + λs, (9)

where the minus sign is because the field is translated in the opposite direction compared to
the sample. And we find that the points r′1 and r′2 again lie on a line with equal field strength.
Therefore, there are no translations that yield new information and this field is also unsuitable
for imaging using translations. 2

4.3. Circular field
The last field we consider is the field where the curves of equal field strength are concentric
circles (figure 4). This field is suitable for image reconstruction using translations. This can be
seen by translating a copy of figure 4 over itself (figure 5) and observing that the each red circle
only crosses a black circle once, twice or not at all, but they never have completely overlapping
segments (unless one considers a translation with rt = 0, but that is trivial). With this field, it
is possible to uniquely reconstruct an image after just three measurements (one measurement
with the non-translated field, one with the field translated along the x-axis and one with the
field translated along the y-axis).

2This field would work well if the imaging were to be done using rotations rather than translations, this can be
seen by rotating a copy of the lines of equal field strength (figure 2) over itself and observing that a pair of lines
intersects at most once.
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Figure 2: A magnetic field with a linear constant gradient. The curves in the figure represent
sets in R2 where the magnetic field strength is equal. Note that the different lines represent
different field strengths.

This is one more translation than the theoretical minimum amount of translations (that
would be 2, due to the two dimensional nature of the problem considered here). This is because
the field has symmetry along all lines through the midpoint of the circles, and this symmetry
results in an extra mirrored image, if the translations are only along one line of symmetry.
Theoretically, there are fields that only require two measurements to yield a unique reconstruc-
tion. For example, a field with curves that are semicircles (if not translated along the remaining
symmetry line) or quarter circles. However, since the circular field is more viable to create in
practice, a magnet with a field similar to this will be used in some of the experiments. The three
dimensional version of this field is the field where the surfaces (they are now two dimensional)
with equal magnetic field strength have paraboloidal shapes that are rotated around the z-axis.

With this three dimensional field it is possible to achieve a unique reconstruction with a
small amount of translations in the xy-plane. In practice, the image is translated more often
than this, to combat noise artefacts and to minimize effects of local field inhomogeneities.

To see the effect that translating only along a symmetry line has, this was numerically
simulated with the circular field and a numerical phantom drawn in figure 13. The result of this
can be seen in figure 6. When, additionally, translations perpendicular to that symmetry line
are done, the phantom is correctly reconstructed, see figure 7.
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Figure 3: A visual representation of a translation using the lines of equal field strength. In this
figure, the black lines represent the untranslated magnetic field, while the red lines represent the
translated field. These lines completely overlap, therefore, this field is unsuitable for imaging
using translations.

Figure 4: A magnetic field with a magnetic field strength that is radially symmetric. The curves
in the figure represent sets in R2 where the magnetic field strength is equal. Note that the
different lines represent different field strengths.
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Figure 5: A visual representation of a translation using the curves of equal field strength. In this
figure, the black curves represent the untranslated magnetic field, while the red lines represent
the translated field. For any pair of a red and black curve, there are only one, two, or no
intersections, making this field suitable for imaging using translations.

Figure 6: Reconstruction using GCGME (see chapter 5) when only translating along a symme-
try line in the field. The phantom is reconstructed, but a mirror image is also visible.
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Figure 7: Reconstruction using GCGME (see chapter 5) when translating along a symmetry
line in the field and perpendicular to it. The phantom is now correctly reconstructed.
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5. Numerical model

5.1. Discretisation of the integral
In this report, an attempt is made to solve the signal model equation (4) for the variable ρ(r) by
discretising the integral. To this end, we divide the space into voxels that are small enough so
that the magnetic field strength within a voxel can be assumed constant (for this, we take the
magnetic field strength in the center of the voxel). Furthermore, we also assume that the proton
density within the voxels is constant.

The signal model then becomes:

S(t) =
M∑
j=1

ρ(rj)c(rj) exp
{
−iγ∆Brj t

}
δxδyδz, (10)

where M is the total number of voxels and the δx, δy and δz are the dimensions of the voxels.

Since we take discrete measurements (N samples) at specified times ti, we can rewrite
equation 10 as:

Si =
M∑
j=1

ρ(rj)ai,j, (11)

with
ai,j = c(rj) exp{−iγ∆B0(rj)ti}δxδyδz, (12)

where i goes from 1 to N and j from 1 to M . Since the goal of this project is not to obtain
quantitative data on the proton density, but rather to see the relative densities and try to find the
shape of the phantom, the factors δx, δy and δz are omitted from now on.

Equation (11) defines a linear system that can be written in as a matrix equation:

Ax = b, (13)

where A is the matrix with elements ai,j as specified by equation (12), x is the vector with
elements ρ(rj) and b is the vector with elements Si.

In this experiment, the used phantoms were all constant in the z-direction. This makes it
possible to reduce the number of elements in the matrix A significantly. That the phantom does
not change in the z-direction, implies that all proton densities in the vector x at places with the
same location in the xy-plane are equal. This means that we can reduce the second dimension
of A by a factor Mz, where Mz is the number of voxels in the z-direction, by simply adding
the columns corresponding to the same location in the xy-plane.3

3We will keep using j as a matrix index and assign m as the index for the slices in the z-direction.
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5.1.1. Incorporating translations

If one would try to solve equation (13) for x, the obtained solution would not be unique, since
the scanned domain consists of surfaces where the magnetic field strength is equal. To make
unique reconstruction possible, the sample is translated over the magnet multiple times. Rather
than solving the matrix problem separately for all different translations, it is possible to com-
bine the data from all the translations into a single problem.

Firstly, translating the sample only slightly changes the matrix A. If we do K measure-
ments, the matrix A(k) for the kth measurement will have entries given by:

a
(k)
i,j = c(rj) exp

{
−iγ∆B(rj − r(k))ti

}
, (14)

where r(k) is the vector by which the sample is translated, k = 1, . . . , K and the minus
sign is there because a translation of the sample corresponds to an inverse translation of the
magnetic field.4

Similarly, we denote the received signal for the kth measurement as b(k). Then, we can
write the combined matrix equation as

Acombx = bcomb, (15)

with

Acomb =


A(1)

A(2)

...
A(K−1)

A(K)

 (16)

and

bcomb =


b(1)

b(2)

...
b(K−1)

b(K)

 . (17)

The vector x remains the same. This matrix problem can then be solved using the tech-
niques described in the next sections.

5.1.2. Bandwidth

The excitation pulses generated by the RF coil do not have an infinite bandwidth. The coil can
also only receive signals from a limited bandwidth. In fact, since the magnetic field changes
significantly in the domain covered by the voxels, the signal coming from some voxels will not
be received by the coil. It is essential to correct for this, otherwise the model expects a signal

4This equation is an adaptation from equation (12). Therefore, j here is still an index for all the voxels,
including those in the z-direction.
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from voxels that lie outside this bandwidth for a given translation. The bandwidth of the coil
was determined from the frequency spectra of the measurements. After this, the matrix A is
tweaked to correct for this. This is done by incorporating the bandwidth in the coil sensitivity.
We further assume that the coil sensitivity does not explicitly depend on r. The coil sensitivity
is given by:

c(∆B(r)) = fGauss(∆B(r), 0, Bcoil), (18)

where fGauss(∆B, 0, Bcoil) is the probability density function for the normal distribution with
variable ∆B, mean 0 and standard deviation Bcoil, which is a measure of the bandwidth of the
RF coil in T (can be converted to frequency by using the Larmor equation (1)).

5.1.3. Time-domain filtering

In an effort to improve the signal to noise ratio, the signal is attenuated in the time domain
where no echo is expected by a gaussian filter with a mean at t = 0ms and a standard devia-
tion of about 0.5ms. This can be incorporated in the model quite easily, since it corresponds
to a left multiplication with a diagonal matrix of the vectors bk and therefore also with a left
multiplication with the same diagonal matrix of matrices Ak. We will call the diagonal matrix
corresponding to this filter D.

5.2. Signal model summary
Since the signal model has now been built up over several chapters and sections, it is shortly
summarized here for the sake of clarity.

The final signal model is given by:

Afinx = bcomb, (19)

with bcomb unchanged from equation (17) and

Afin =


DA

(1)
cor

DA
(2)
cor

...
DA

(K−1)
cor

DA
(K)
cor

 , (20)

where D is the time domain filter matrix, K the total number of measurements (translations)
and the elements of A(k)

cor are given by:

a
(k,cor)
i,j =

Mz∑
m=1

f(∆B(r
(m)
j )) exp

{
−iγ∆B(r

(m)
j − r(k))ti

}
, (21)

where m is the index for the slice in the z-direction, going from 1 to Mz, j from 1 to MxMy

is the index for the xy-position and i is the index for the time ti, going from 1 to N (not to

15



be confused with the first i in the exponential, which is the imaginary unit). The function f is
given in equation (18), ∆B(r

(m)
j ) is the difference between the local magnetic field strength

and the magnetic field strength corresponding to the demodulation frequency and γ is the gy-
romagnetic ratio. From now on, we will refer to the matrix and vectors in equation (19) as A
and b to make the future notation more compact.

5.3. Solving the inverse problem
We will attempt to solve the inverse problem, so determining x from A and b with the al-
ready known routines of Conjugate Gradient for Least Squares (CGLS) [5], [6] with possible
`2-regularization and Generalized Conjugate Gradient Minimal Error (GCGME) [3] with `1-
regularization. To this end, we must rewrite the problem as a least squares problem:

min
x

1

2
||Ax− b||22 + λR(x), (22)

where λ is the regularization parameter and R(x) is some kind of regularization function.

We regularize this problem in two different ways. Using CGLS with `2-regularization us-
ing the identity matrix, so that R(x) = ||x||22, and using GCGME with `1-regularization, with
this second algorithm, we actually carry out anisotropic total variation regularization, that is,
regularization for the difference between neighbouring pixels. We do through choosing the
regularisation matrix. The details of how this is done can be found in [3]. These algorithms
were provided as MATLAB code by M.L. de Leeuw den Bouter.

Due to the nature of the samples, the regularization done with the second algorithm is more
suitable for the reconstruction, since neighbouring pixels tend to have similar proton density
and the used form of GCGME penalizes jumps between pixels. However, the algorithm fails
without regularization if the problem is ill-posed and with too much regularization, it will re-
turn a reconstruction that looks like a phantom, but is actually just a result of the regularisation.
For this reason, results obtained with GCGME should be approached carefully when CGLS
yields a poor result for the same problem.

5.4. Imaging artifacts due to data collection
Since the spin echo data is acquired as a finite amount of discrete samples, some artifacts may
be introduced in the final reconstruction, depending on the parameters used in the data collec-
tion. Two of these effects are described in this section.

5.4.1. Aliasing

The image reconstruction does not suffer from aliasing if:

2fmax < fs, (23)
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where fmax is the highest frequency in the signal and fs is the sampling frequency. This can be
rewritten to a relation between the absolute difference in magnetic field over the field of view
∆Bmax and the time between samples δt. We find that the image does not suffer from the effects
of aliasing if:

δt <
π

γ∆Bmax
, (24)

where γ is the gyromagnetic ratio of a proton (in rad/sT). If the time between sampling
is chosen larger than this, reconstructions could contain artifacts such as in figure 8. We do
note that the bandwidth correction could remove some of these artifacts, when the bandwidth
is small enough.

5.4.2. Smearing

The image reconstruction process resembles the computation of a discrete Fourier transform
[2], where a sequence of N samples in the time domain is transformed to a sequence of N
coefficients for N different frequencies. These frequencies are equally distributed over the in-
terval [0, 2π

δt
] and are therefore separated by 2π

Nδt
. This imposes a limit after which adding more

pixels to the reconstructed image has no effect, since the reconstruction cannot differentiate be-
tween frequencies that differ by less than this separation. Therefore, the maximum resolution
that can be obtained from the data is determined by the number of samples that are collected.

This is as follows: in order to distinguish two points with a given field, there must be some
orientation of the field so that these points lie at places where the difference in the magnetic
field strength is large enough, so that the corresponding frequency difference is greater than 2π

Nδt
.

The signal corresponding to an arbitrary point in the field is of the form exp(γ∆Bt), which we
can rewrite to exp(γ∆Bnδt), where n is the sample number. Signals from other points are
similar, and only differ due to a different value for ∆B. For any two points, we can denote
this difference in ∆B by δB, so that the difference in frequency between the signals of the two
points becomes γδB rad/s. The two points are then distinguishable if this difference is greater
than 2π

Nδt
. We therefore find points differing a by certain value for δB can be distinguished if:

N >
2π

γδBδt
. (25)

From this we find that increasing the resolution of the image is capped at the point where
the difference between the magnetic field for all pairs of neighbouring pixels is lower than δB
for the chosen N . If the number of samples is too low for a given field, artifacts such as in
figure 9 are present in the reconstructed image. We will call this effect smearing. 5

5Another way to see this, is that the surfaces of equal field strength (as described in chapter 4), that are infinitely
thin in theory, obtain a thickness that is given by δB. This makes it harder to obtain a good reconstruction.
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Figure 8: Figure showing the effects of aliasing. These effects are present when the time
between samples is too long. This result was obtained using a simulated phantom and field,
making the units irrelevant.

Figure 9: Figure showing the effects of smearing. These effects are present when the number
of samples is too low for the translations that are carried out, in combination with the magnetic
field. This result was obtained using a simulated phantom and field, making the units irrelevant.
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6. Results

6.1. Magnetic field maps
Two different magnets were used in this experiment. Both were designed and made by S.
Tewari at the Leiden University. All measurements were also obtained by him. The design of
the first magnet was more focused on having a homogeneous field in the xy-plane, while having
a stronger gradient in the z-direction. The second magnet was designed to have a paraboloidal
field, like a simple bar magnet, so that it is closer to the three dimensional version of the cir-
cular field discussed in chapter 4. To give an idea of the field of both of the magnets, images
of the middle planes of the measured magnetic field strengths are plotted in figure 10 for the
first, more homogeneous magnet and in figure 11 for the second magnet, that has a paraboloidal
field. From the plotted figures we can see that this is indeed the case, but that also for the second
magnet, the gradient in the z-direction is still quite strong and roughly the same everywhere in
the xy-plane.

(a) xy-plane at z = 20.11mm

(b) xz-plane at y = 0mm (c) yz-plane at x = 0mm

Figure 10: Map showing the magnetic field of the magnet with the more homogeneous field,
with in (a) the map for the xy-plane at z = 20.11mm, in (b) the map for the xz-plane at
y = 0mm and in (c) the map for the yz-plane at x = 0mm.
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(a) xy-plane at z = 28.22mm

(b) xz-plane at y = 0mm (c) yz-plane at x = 0mm

Figure 11: Map showing the magnetic field of the magnet with the paraboloidal field, with in
(a) the map for the xy-plane at z = 28.22mm, in (b) the map for the xz-plane at y = 0mm and
in (c) the map for the yz-plane at x = 0mm.
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6.2. Phantoms
For the measurements, two phantoms were created by S. Tewari at the Leiden University. The
first phantom consisted of three tubes that are arranged like an equilateral triangle. These tubes
were filled with oil so that they could be imaged using MRI techniques. A schematic of this
phantom can be found in figure 12(a). A numerical version of this phantom was also created
by M.L. de Leeuw den Bouter at DIAM. With this numerical phantom the proposed recon-
structions can be tested. In this numerical version, the proton density is different in every tube.
This numerical phantom can be found in figure 13. We will call this phantom the ’three-tube’-
phantom or ’three-tube’-sample.

The second phantom that was created by S. Tewari consisted of a single channel in the shape
of the letter ’M’. This channel was also filled with oil so that it could be measured. A schematic
of this phantom can be found in figure 12(b). We will call this phantom the M-phantom or M-
sample.

(a) Three tubes sample (b) M sample

Figure 12: Schematic of the two phantoms that were imaged in the three experiments. The
white area’s in the schematic correspond to channels in the 3D printed phantoms that can hold
oil. These white spaces are therefore the part that is imaged by the scanner. The phantom
consisting of three tubes can be found in (a), and the M-phantom can be found in (b).
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Figure 13: The numerical phantom used to test whether a combination of translations and
magnetic field can be used for reconstruction. This phantom was created by M.L. de Leeuw
den Bouter.

6.3. Experiments
With these two magnets and two samples, three sets of measurements were acquired by S.
Tewari. The first set was obtained with the first magnet in combination with the ’three-tube’-
phantom. In this experiment, the sample was translated over the sample, so that a measurement
was obtained from 28 translations. These measurements consist of 1024 time samples with
δt = 5µs (these parameters make sure that aliasing and smearing is prevented). The demodula-
tion frequency in this experiment was 1.079MHz and the bandwidth of the received signal was
around 20kHz.

The second set of measurements was obtained using the paraboloidal magnet, combined
with the M-sample. For this set, 39 translations were done. The individual measurements again
consist of 1024 time samples with δt = 5µs. The demodulation frequency in this experiment
was 2.138MHz and the bandwidth of the received signal was again around 20kHz.

Te last set of measurements was again obtained using the paraboloidal magnet, combined
with the M-sample. Only now, 7 translations were measured instead of 39, and all measure-
ments consist of 512 time points instead of 1024. The δt did remain 5µs. The demodulation
frequency in this experiment was 2.124MHz and the bandwidth of the received signal was
around 70kHz.
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6.4. Singular values
In order to determine if a problem is ill-posed or not, the singular values (σ) of the matrices
A were determined for each of the data sets. If there are singular values close to zero, the
problem is ill-posed, and will require regularization in order to create an image. If a problem
is very ill-posed, it could also be a sign that the translations are far from optimal in combina-
tion with the field or that the number of translations is too small to obtain a good reconstruction.

The singular value decompositions for the three experiments, along with a map of the trans-
lations that were done in order to obtain the set of measurements can be found in figure 14 for
the first experiment, figure 15 for the second experiment and figure 16 for the third measure-
ment.

We see that the first and third set of measurements have singular values that are close to
zero, making the reconstruction more difficult (the lowest from the first experiment is in the
order of 101 and the lowest singular value from the third experiment is in the order of 10−2).
The lowest singular value for the second experiment lies just below 100 indicating that this ex-
periment will require the least amount of regularisation in order to reconstruct correct images.

(a) Translations (b) Singular value decomposition

Figure 14: Visualisation for all the translations done to obtain the first set of measurements,
along with the singular value decomposition of the corresponding matrix A. In the plot for the
translations (a), the yellow squares indicate positions in the xy-plane to which the center of
the phantom was translated. The plot in (b) contains the singular value decomposition of the
matrix A, with the singular values (σ) on a logarithmic scale and with an index on the x-axis.
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(a) Translations (b) Singular value decomposition

Figure 15: Visualisation for all the translations done to obtain the second set of measurements,
along with the singular value decomposition of the corresponding matrix A. In the plot for the
translations (a), the yellow squares indicate positions in the xy-plane to which the center of
the phantom was translated. The plot in (b) contains the singular value decomposition of the
matrix A, with the singular values (σ) on a logarithmic scale and with an index on the x-axis.

(a) Translations (b) Singular value decomposition

Figure 16: Visualisation for all the translations done to obtain the third set of measurements,
along with the singular value decomposition of the corresponding matrix A. In the plot for the
translations (a), the yellow squares indicate positions in the xy-plane to which the center of
the phantom was translated. The plot in (b) contains the singular value decomposition of the
matrix A, with the singular values (σ) on a logarithmic scale and with an index on the x-axis.
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6.5. Bandwidth correction
In order to correct for the limited bandwidth of the coil, the elements of A are multiplied by
a weighting factor that depends on the frequency of the signals from the corresponding voxels
and the bandwidth of the receiver coil. This factor is given by equation (18). The value of the
factor is plotted for neighboring slices in figure 17 for the first set of measurements, figure 18
for the second set of measurements and figure 19 for the third set of measurements.

These figures are relevant, as we can visualize the evolution of the sensitive region between
the slices in the z-direction using these. If the bands move significantly, then the resolution in
the z-direction is too low and should be increased, since then some xy-values miss a frequency
that in fact also can originate from there. This increase can either be done by measuring or by
interpolating the existing field data. If the bands are stationary, the resolution in the z-direction
could be lowered for faster calculations or the resolution in the x- and y-directions could be
increased for a higher resolution reconstruction. From all the figures, we see that the evolution
over the slices is sufficiently slow (the figures are almost identical) in all three experiments, and
could even be decreased a bit in order to aid in performance.

(a) xy-plane with z = 20.11mm (b) xy-plane with z = 20.13mm

Figure 17: Maps showing the bandwidth correction that is applied to terms in A corresponding
to the voxels in the slices corresponding to z = 20.11mm (a) and z = 20.13mm (b) for the first
set of measurements. These values are given by equation (18).
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(a) xy-plane with z = 28.22mm (b) xy-plane with z = 28.25mm

Figure 18: Maps showing the bandwidth correction that is applied to terms in A corresponding
to the voxels in the slices corresponding to z = 28.22mm (a) and z = 28.25mm (b) for the
second set of measurements. These values are given by equation (18).

(a) xy-plane with z = 28.22mm (b) xy-plane with z = 28.25mm

Figure 19: Maps showing the bandwidth correction that is applied to terms in A corresponding
to the voxels in the slices corresponding to z = 28.22mm (a) and z = 28.25mm (b) for the
third set of measurements. These values are given by equation (18).
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6.6. Image reconstructions

6.6.1. Numerical phantoms

A good way to test if the combination of a field and translations could be used for imaging is by
considering numerical phantoms. One then essentially tests whether the algorithms are capable
of carrying out the inverse problem. This was done by multiplying matrix A with the numerical
phantom (figure 13) to obtain the ’artificial’ signal vector b. This signal is fed back into the
algorithm, where it tries to reconstruct the phantom again. These reconstructions were done for
all three experiments and can be found in figure 20 for the first experiment, figure 21 for the
second experiment and figure 22 for the third experiment. All these reconstructions were done
using CGLS and without regularization and with GCGME with regularization. From this, we
see that the routine for the first set was less successful in reconstructing the phantoms, in order
to get a good reconstruction, the use of GCGME with regularization was required. The routines
of the second and third experiments did result in a good reconstruction, even using CGLS and
without regularization. For all results, the regularization parameter is included in the caption of
the figure. For the figures obtained with CGLS, a tolerance of 1× 10−6 and a maximum of 500
iterations was used. For figures obtained with GCGME, the tolerances were kept at 1 × 10−6

while the maximum number of outer iterations was kept at 10 and the maximum number of
iterations was kept at 50.

(a) CGLS (b) GCGME

Figure 20: Results for the reconstruction of the numerical phantom using CGLS without any
regularization (a) and GCGME with regularization parameter 1 × 10−6 (b), using the strategy
from the first set of measurements.
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(a) CGLS (b) GCGME

Figure 21: Results for the reconstruction of the numerical phantom using CGLS without any
regularization (a) and GCGME with regularization parameter 1×10−6, using the strategy from
the second set of measurements.

(a) CGLS (b) GCGME

Figure 22: Results for the reconstruction of the numerical phantom using CGLS without any
regularization (a) and GCGME with regularization parameter 1 × 10−6 (b), using the strategy
from the third set of measurements.
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6.6.2. Real phantoms

Finally, the combinations of magnetic field and translations were tested with the ’real’ phan-
toms. The results of those experiments can be found in figure 23 for the first experiment, figure
24 for the second experiment and figure 25 for the last experiment. These reconstructions were
unsuccessful, as no part of the phantom was reconstructed. When adding regularisation and
using GCGME, the results are somewhat better, in that there is some signal from the image,
although the location is not as expected, but there is a high possibility these spots are just arte-
facts due to the regularization and the field geometry.

(a) CGLS (b) GCGME

Figure 23: Results for the reconstruction of the ’three-tube’-sample using CGLS without any
regularization (a) and GCGME with regularization parameter 1 × 103 (b), using the data from
the first set of measurements.

(a) CGLS (b) GCGME

Figure 24: Results for the reconstruction of the M-sample using CGLS without any regulariza-
tion (a) and GCGME with regularization parameter 1× 104 (b), using the data from the second
set of measurements.
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(a) CGLS (b) GCGME

Figure 25: Results for the reconstruction of the M-sample using CGLS without any regulariza-
tion (a) and GCGME with regularization parameter 5 (b), using the data from the third set of
measurements.
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7. Discussion
While the model can correctly reconstruct numerical phantoms, it fails when signals from real
phantoms are considered. The inability to reconstruct the phantom could have several causes,
of which this discussion will mention a few, along with suggestions for possible improvements
in the signal model, measurement techniques and design of the scanner, which could be imple-
mented in order to possibly obtain a system capable of reconstructing real phantoms.

7.1. Improvements in signal model
Since the signal model comprises the main part of this report, this will be the first place to
look for possible improvements. In order to derive the used signal model, a number of approx-
imations were done and assumptions were made. A logical place to start would be to look at
whether or not these were justified.

One of the first assumptions is that the factor concerning T2 relaxation can be omitted. This
assumption is justified, as T2 is much larger than the time between the first RF pulse and the
echo. The factor ω(r) is assumed constant for the whole scanned domain, this assumption is
also justified. As the bandwidth (converted to frequency using equation (1)) of the measure-
ment is generally a factor 20 to 30 smaller than the total magnetic field strength.

Another, more significant, assumption is taken in the discretisation of the model. There,
the first assumption is that the magnetic field can be approximated by a so called "center of
voxel" approximation. This is only valid if the difference between neighbouring pixels is small
enough. When the magnetic field for example changes significantly within a voxel, frequencies
that are in fact originating from that voxel, cannot be traced back to that voxel by the model,
since it assumes that that voxel only generates a signal of one distinct frequency. This can be
mitigated by measuring the magnetic field on a finer grid, or, though this may result in sig-
nificant errors in the magnetic field strength values, by interpolating field data measured on a
coarse grid. In this report, the magnetic field was measured on a grid with a spacing of 1mm be-
tween the grid points (in all dimensions), after which these results were interpolated to as much
as 61× 61× 321 (x× y× z). This could have resulted in a significant error between the points
of the actual measurement, but that should not result in a significant error in the reconstruction,
as frequencies will be moved at most 1mm in every direction, and probably significantly less
than that, assuming that there are no small inhomogeneities with a large amplitude within the
field.

The final assumption that is made lies within the coil sensitivity. In all experiments, this
sensitivity was implemented by means of a normal distribution, with the bandwidth estimated
from the signal characteristics. This bandwidth could however be measured, after which one
could fit some function to it and implement this function in place of (18). The second as-
sumption in the coil sensitivity, is that it not explicitly depends on position, but only implicitly
through the magnetic field strength. This assumption is justified, since the samples were en-
closed in the coil and the coil was translated along with the sample.
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A third assumption was made in the geometry of the phantoms, namely that they are con-
stant in the z-direction. This assumption results in a much smaller matrix A and vector x, but
could be problematic if this continuity is not satisfied. Since the dimensions of the phantoms
are much bigger than the tolerances of a 3D printer, this assumption should be valid, but one
could always omit this simplification. Then, the obvious drawback is the need for more com-
putational power.

A different simplification in the model, that could cause the reconstruction to fail, is the
assumption that the RF pulses have the same effect on at all points in the bandwidth. This
might not be the case, since the magnetic field has a significant component in the z-direction at
the edges of the field of view. Ideally the B1-field (which is also not perfectly oriented in the
z-direction away from the center, due to the geometry of the coil) should be oriented perpen-
dicular to the B0-field. In the center, these fields are perpendicular, but at the edges, this is not
the case. Since the phantoms were kept relatively close to the center, the errors caused by this
misalignment should be minimal.

7.2. Improvements in measurement
Another area where errors could arise is in the measurement of the signals. Excessive noise
there could make it so that the actual data is drowned out. Some improvements that could re-
sult in less noise or in more data, are discussed in this next section.

While the measurement is repeated hundreds of times already in order to improve the signal
to noise ratio, the noise could be attenuated further by repeating the measurement even more.
This would however increase the time it takes to do the measurements, most likely so that
fewer translations can be measured. The goal should therefore be to find a balance between
these two. All experiments suggest it could be beneficial to measure fewer translations, but
repeat the measurement more often, so that the final vector b is smaller in size, but also more
accurate. This is because the reconstructions seemed to suffer from a the noise in the signal,
and not from having carried out an insufficient amount of translations, which would result in
only loss of the shape of the signal, but not in no signal at all.

A second improvement that could be made in order to improve the reconstruction, would
be the use of an RF coil with a larger bandwidth, so that more of the sample can be measured
in a single measurement. A drawback of coils with a larger bandwidth, is that they also pick
up more noise, so that it is necessary to repeat the measurement even more often. Since the re-
construction of the numerical phantom was successful for the bandwidth of the coils that were
used in this experiment, more of an improvement could be made in other areas.

An obvious way to eliminate noise is to attenuate it with the use of a filter. It appeared that
for the used measurements, this was not done as much as possible, as there were frequencies
in the signal far outside the bandwidth of the coil. When the bandwidth of the signal is known,
the signal should be low-pass filtered even before discrete samples are taken to prevent unnec-
essary noise in the lower frequency range. The signal was low-pass filtered in this experiment,
but only digitally and after the signal was sampled. Better results could be obtained if the fil-
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tering were to be done by an analog filter, before the sampling takes place.

7.3. Improvements in scanner design
The last area where improvements could be made, is in the design of the scanner itself. A few
ways in which the design could be altered are discussed in this section.

The gradient in the field of the used magnets was quite flat in the z-direction. While these
fields were suitable for reconstructing phantoms, as can be seen from the results for the nu-
merical phantom, it might be difficult in reality because of the relatively flat gradient in the
z-direction. This flat gradient makes it so that for the signals coming from different places
in the field are quite similar, since the thickness (in the z-direction) of the bandwidth only
changes slightly between different places. If the gradient in this direction would vary more
with position, the reconstruction might be easier.
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8. Conclusion
In an effort to answer the question of how a phantom could be reconstructed using a hand-held
MRI-scanner, relevant information on magnetic fields was obtained. Namely that it is essential
to have the curves of magnetic field strengths not be flat planes, but have some curvature and
preferably minimal symmetry.

While the results obtained using the numerical phantom would suggest that the magnetic
field of the magnets in combination with the translations that were done with each of the mea-
surements is capable of reconstructing correct images from the measured spin echo signals,
the model failed to reconstruct the samples used in the measurements. Only with significant
`1-regularization for the difference between adjacent pixels, some proton density was recon-
structed in the domain, but this is most likely a result of the geometry of the field, in combina-
tion with the regularization.

The combination of translations and magnetic field was shown to be suitable for image re-
construction, since the model was able to correctly reconstruct numerical phantoms. That the
reconstruction fails when considering real phantoms could be because of either an approxima-
tion or assumption in the model that is invalid or because of excessive noise in the measure-
ments. Further research is required in order to determine which of these possibilities causes the
reconstructions to fail.

Ways in which the reconstruction might be improved were discussed in the previous chapter.
Some of these are easier to implement than others. The alteration that potentially has the
most effect is using a magnet with a gradient in the z-direction, that changes significantly over
the imaging domain. With such a magnet, the differences between the signals from different
pixels in the xy-plane would be significantly increased. Then, the reconstruction should be less
influenced by noise and errors in the magnetic field strength. In addition, the coil sensitivity
could be measured instead of estimated, making the model more accurate.
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