MSc thesis in Building Technology Cloud-based room-centric daylight simulation application for environment design: a case study using the BIM model of TU Delft architecture faculty

Yangyu Liu

June 2024

A thesis submitted to the Delft University of Technology in fulfillment of the requirements for the degree of Master of Science in Building Technology

The work in this thesis was carried out in the:

Building Technology Track Delft University of Technology

Supervisors: Dr. Azarakhsh Rafiee

Dr. Eleonora Brembilla

External Examiner: Dr. Manuela Triggianese

Acknowledgement

I would like to express my sincere gratitude to everyone who supported me throughout the journey of completing my Master's Thesis.

First and foremost, I extend my deepest appreciation to my mentors, Dr. Azarakhsh Rafiee and Dr. Eleonora Brembilla. Your invaluable guidance and unwavering patience were crucial to the development of my thesis. Your encouragement and expertise helped me navigate the complexities and details of this challenging project. Throughout the process, their regular meetings were essential in keeping me on track and focused, and the advice and feedback helped me refine my approach and move forward with confidence. The detailed insights they provided on specific aspects of my research greatly enhanced the quality of my work.

I would also like to extend special thanks to Abdullah Alattas, who built and provided the BK BIM model for my case study. The model was perfectly suited to initiate my research and showcase the final results. Without your contribution, this thesis could not have continued.

A heartfelt thank you to my family, boyfriend, and friends for their unwavering support and encouragement throughout the challenging times. Your support has been a constant source of strength and motivation.

Finally, I am grateful to all my professors and classmates for their willingness to share their expertise and experiences. This journey of my master study in TU Delft has been wonderful, and I am thankful to have had the opportunity to learn from so many talented individuals.

Thank you all for your invaluable contributions and support. This thesis would not have been possible without your help and guidance.

Abstract

Balancing the requirements of urban planning with the need for rapid and efficient iterative design, while accurately assessing its detailed impact on existing surrounding buildings at a per-room level, presents a significant challenge in architecture and design, the conversion and integration between multiple platforms introduce additional complexity, establishing high standards for designers to achieve. Integrating Building Information Modeling (BIM), Geographic Information Systems (GIS), and per-room daylight simulation into a unified workflow offers a promising solution. This thesis develops a web application that leverages Grasshopper (GH) scripts for backend processes, Rhino Compute as the intermediary API, and MapboxGL as the GIS-based front-end platform, enabling seamless user interaction with BIM data for customized daylight simulations.

Since the advent of digital tools, architects have sought ways to enhance and streamline the design process. The integration of these technologies bridges the gap between urban planning and indoor daylight simulation, facilitating real-time interaction and data manipulation. Grasshopper scripts are developed to compute Aperture-Based Daylight Modeling (ABDM) metrics, Sunlight Beam Index (SBI), and sky lumen, providing a foundation for evaluating their relationships with traditional Climate-Based Daylight Modeling (CBDM) metrics like Daylight Autonomy (DA), Spatial Daylight Autonomy (sDA), and Useful Daylight Illuminance (UDI).

This research explores the potential of combining these advanced tools to create an interactive web application that allows users to manipulate building typology, location, scale, façade materials, and levels of detail (LOD) for surrounding city models. The study demonstrates a robust linear relationship between SBI and the daylight metrics DA, sDA, and UDI, with room geometry playing a crucial role. Sky lumens, however, show limited effectiveness as a CBDM alternative.

The thesis concludes that MapboxGL is a promising platform for integrating BIM models into room-based daylight simulations, offering an intuitive user interface for urban planners and designers. Rhino Compute technology ensures smooth data transfer and interaction, significantly enhancing the workflow. The study results show that SBI has a linear relationship with traditional CBDM metrics. However, multiple moderating variables affect this relationship, and it does not apply to north-facing rooms. Thus, SBI is not a current substitute for traditional CBDM metrics. Overall, this thesis provides a comprehensive framework for integrating BIM, GIS, and daylight simulation into a cohesive system, paving the way for more efficient urban planning and design practices.

Keywords: GIS, BIM, WebGL, Daylight, Simulation, 3D model, Interactive Application, Workflow, BIM Visualization, Urban Planning, Aperture-based daylight modelling, BIM & GIS, BIM – GIS integration

Nomenclature

ABDM Aperture-based daylight modelling

AM Airmass

ASI Aperture Skylight Index

BIM Building Information Modeling

BPSTs Building Performance Simulation Tools

CAD Computer-Aided Design

CBDM Climate-based daylight modelling

DA Daylight Autonomy
EN European Standards
EPW EnergyPlus weather

GH Grasshopper

GIS Geographic Information Systems

HB Honeybee

IES Illuminating Engineering Society

LB Ladybug

LEED Leadership in Energy and Environmental Design

LOD Level of Detail
OA Obstruction Angle

R2Coefficients of determinationsDASpatial Daylight AutonomySBISunlight beam index

SBI-AM Sunlight beam index - Airmass UDI Useful Daylight Illuminance

Ai Illuminated Area γ_s Sun Altitude

S_{tot} Total Sunlight Beam Index

 θ_z Zenith Angle

I_{am} Clear Sky Direct Beam Solar Radiation

 θ Angle of Incidence

Contents

1. Introduction

- 1.1 Context
- 1.2 Problem Statement
- 1.3 Research Questions
- 1.4 Design Objective
- 1.5 Project Scope

2. Literature Review & Related work

- 2.1 Indoor per-room Daylight Analysis
 - 2.1.1 Urban Canyons' Impact
 - 2.1.2 CBDM & ABDM
 - 2.1.3 Existing Workflow for BIM Daylight Simulation
- 2.2 3D City Models & Daylight Analysis
- 2.3 Desktop Rhino vs. Rhino Compute
- 2.4 BIM & Simulation in MapboxGL
- 2.5 Tool Selection

3. Methodology

- 3.1 Theoretical Framework
- 3.2 Methodology Workflow

4. Implementation

- 4.1 Settings & Data Preparation
 - 4.1.1 Settings
 - 4.1.2 Load 3D BAG in Rhino
 - 4.1.3 BIM Data Preparation
 - 4.1.4 Load BIM modle & New Building Models on Mapox
- 4.2 Potential to Utilize ABDM Standard Metrics
 - 4.2.1 Implement GH Script of SBI & View Lumen
 - 4.2.2 Simulation & Regression Analysis
- 4.3 Daylight Simulation Automation
 - 4.3.1 Element Selection Automation in GH
 - 4.3.2 Exterior Façade Walls of BIM Building Selection Automation in GH
 - 4.3.3 Avoid empty inputs in GH
 - 4.3.4 Rhino Compute Workflow
- 4.4 Interactive User Functionality for added building on Mapbox
 - 4.4.1 Rotation & Dragging
 - 4.4.2 Material Selection
 - 4.4.3 Scaling

- 4.4.4 Remove Selected & Remove All
- 4.5 Interactive User Functionality for Per-room Daylight Simulation
 - 4.5.1 Room Query by Name & Clicking
 - 4.5.2 Choose Daylight Metrics & Get Simulation Results
 - 4.5.3 Compare Simulation Results
 - 4.5.4 Other Functionalities
- 4.6 Workflow Optimization
 - 4.6.1 LOD 1 vs. LOD 2 of 3D City Model
 - 4.6.2 Load BIM Elements on Mapbox
 - 4.6.3 Extent of 3D City Model in Daylight Simulation
 - 4.6.4 Other Aspects & Equipment Limitations

5. Results

- 5.1 Potential to Utilize SBI & View Lumen
- 5.2 User Interface for Adding Building on Mapbox
- 5.3 User Interface for Per-room Customized Daylight Simulation

6. Conclusion & Discussion

- 6.1 Conclusions
- 6.2 Requirements for BIM as Input
- 6.3 Workflow Limitations
- 6.4 Future work

Appendix

References

Reflection

/ Introduction

1.1 CONTEXT

Daylight standard

European standard EN 17037 for daylight in buildings was approved in 2018 and became applicable to all participating countries in 2019. (Mardaljevic & Brembilla, 2022). In the Netherlands, according to Koster's research (2023), NEN 2057, Dutch Building Code 2012, is planned to be replaced in 2024 by the EN 17037 for a more accurate assessment methodology. However, its implementation of, as per NEN-EN 17037, is officially scheduled for January 1, 2026, pending a decision by the ministry in 2025. But this research will be based on EN 17037 and other Green certificates. This research prioritizes EN 17037 and other Green certificates over the original Dutch code, considering its imminent execution in the near future and clear standard. In Koster's research (2023) about daylight simulation in Dutch urban context, it is mentioned that in Dutch context for Green certificates, BREEAM-NL and WELL certificates are mostly preferred over the LEED (Leadership in Energy and Environmental Design) v4.1 certificate, which is based on Northern American standards. But in Shoshev's research (2023) about per room daylight simulation in Italy, LEED v4.1, and is also considered Illuminating Engineering Society (IES). In Schouws's research (2022) about EN 17037, LEED, and BREEAM, the difference between them is discussed. Both BREEAM and LEED include specific metrics to comprehensively quantify daylight performance. Given the consistency in building types used in these studies and the similarity in their results, this research will align with the metrics explored in Shoshev's work.

New houses' daylight impact

To address the increasing population and the resulting pressure on the housing market, many Dutch cities are planning significant expansions in housing. For instance, Amsterdam aims to build 7,500 new homes annually until 2035 (Wedia, 2024). The construction of new buildings impacts the visual comfort (daylight and views) of occupants in existing buildings. Visual comfort could be a trade-off between a lot of perspectives, and daylight simulation software is commonly used to consider and compare various visual comfort parameters, aiming to mitigate the negative impacts of new building at the planning phase (Rajus et al., 2022). In recent years, there has been less daylight research on the reflections in architectural elements and building exterior materials (Nasrollahi et al., 2016). However, this is a crucial factor in how new additions affect the daylighting of existing buildings.

Mardaljevic (2016) introduced Aperture-based daylight modelling (ABDM) standards, which offers the advantage of analyzing windows and assessing interior daylight levels without requiring knowledge of the house's interior layout. He highlighted the importance of this criterion in urban environments, noting its significant potential to make reasonable extrapolations of indoor daylight performance. This capability aids decision-making processes during the preliminary planning stages. This efficient standard also demonstrates potential for evaluating the impact of new housing developments on the daylighting of existing buildings.

Current usage of digital daylight simulation tools

According to a survey conducted by Fernandez-Antolin's group in Spain (2020-2022) with 170 people working in architecture field, complexity of use, large amount of data entry (Schlueter & Thesseling, 2009) and a poor interface are barriers to the usage of current simulation tools. And compatibility with computer-aided design (CAD) tools is the most important criteria for them. In real projects, they have to access to variety of daylight simulation tools, which can be extremely complicated (Shoshev, 2023). But 92% of them they have confidence in the future of simulation tools. Therefore, it is crucial to develop user-friendly simulation tools for designers and provide architects with clear instructions for optimal daylight analysis, especially in the context of rapid urban development and growing construction demands (Choi, 2016).

Radiance is embedded widely in variety of architectural related software (Figure 1), functioning as the most widely used daylight simulation engine (Radiance, n.d.). The significant variability among different software necessitates the use of specific tools for daylighting simulations, which complicates collaboration within design teams, hinders the sharing of results, impedes the integration of workflows, and increases the complexity of software learning.

Figure 1: Daylight simulation tools with Radiance embedded (Radiance, n.d.)

BIM - GIS integration

The integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS) has been recognized as essential for improving the efficiency, safety, and performance of complex urban infrastructure projects (Song et al., 2017). However, a significant challenge to this integration is the inherently disparate data formats. When domain-specific data are not interoperable, they create data silos that restrict access to information and resources for other stakeholders (Boschken et al., 2013). These data silos impede productivity, efficiency, innovation, and service quality (de Waal et al., 2019).

Several available map libraries including Mapbox, Cesium, and kepler.gl require technical expertise to integrate map views into applications and to enhance their functionalities (Computational Modelling Group,

2023). BIM integration with asset management and GIS technologies faces the issue of creating "island solutions" (Celeste et al., 2022). Current technological trends tend to produce isolated data silos with limited interoperability, which are neither scalable nor extensible (Quek et al., 2023). BIM GIS integration is usually restricted to certain platform with little possibility of generalization (Celeste et al., 2022).

1.2 PROBLEM STATEMENT

In the field of urban planning, especially in the early stages of design and planning, the ability of users to interact with 3D city models through interfaces is critical for effective indoor daylighting simulations and for analyzing the impact of additional buildings on existing buildings. But the current workflows and existing tools face several challenges. One major issue is the difficulty in user interaction with 3D city models. Additionally, integrating BIM with daylight simulation tools and GIS platforms is complex. This complexity hampers the intelligent identification and segregation of components by room, which is crucial for accurate and automated daylight simulation. As a result, users cannot interact efficiently with per-room BIM segments, reducing BIM's overall utility in daylight analysis. Furthermore, there is uncertainty in applying ABDM standards for urban-scale daylight studies and correlating these with traditional Climate-based Daylight Modeling (CBDM) standards. Lastly, the impact of varying Levels of Detail (LODs) on computational efficiency poses another challenge.

Sub-problems:

- 1. Existing 3D city modeling tools lack user-friendly interfaces for seamless interaction and daylight simulation. The process of loading and integrating 3D city models into Rhino and associated applications for simulation purposes is complex and inefficient.
- 2. There is a lack of effective methods for integrating BIM models into GIS platforms for daylight simulation. Users cannot interact with BIM segments at a room level within the application, impeding detailed and accurate daylight analysis.
- 3. It is unclear whether ABDM standards are related to traditional CBDM standards, and there is a lack of implementation strategies for ABDM standards in urban-scale daylight applications to enable effective visualization and reduce times.
- 4. Higher LODs in 3D city models might increase computational time. Current workflows for managing LODs are not optimized for daylight simulation efficiency in urban environments of varying densities, and it is uncommon for daylighting software to offer users the option to select different LODs.

1.3 RESEARCH QUESTIONS

Main research question:

To what extent can a web application conduct per-room daylight analysis on BIM models to effectively demonstrate the influence of dynamic changes within an urban context?

To answer the main research question, four sub-questions must be answered first. The four sub questions are:

Sub-questions:

- 1. To what extent can users interact with 3D city models through the interface? How can they be loaded in Rhino and the application for simulation and interaction?
- 2. How can a BIM model be integrated into Rhino and GIS platform to intelligently identify and segregate components by room, thereby facilitating automatic integration with daylight simulation? How can users interact with per-room BIM segments within the application?
- 3. Are the ABDM standards (SBI and view-lumen) appropriate for urban-scale daylight studies aimed at reducing simulation time, as compared to traditional CBDM standards? If applicable, how can these simulations be implemented within the application to enable effective visualization?
- 4. What is the impact of varying LODs in 3D city models on computational accuracy and time, and how can the overall workflow be optimized for efficiency?

1.4 DESIGN OBJECTIVE

The design objective is to create an innovative cloud-based daylight simulation application within a WebGL-based 3D GIS platform that enables room-specific simulations based on a BIM model, allowing users to interact with and modify urban environment (such as adding new buildings, adjusting heights, and roof types). Users can visualize the impact of these changes on indoor daylight performance in user-friendly interface with dropdown menus, checkboxes, sliders, and be able to easily compare the results before and after the changes. This research will also improve its efficiency by improving the overall workflow and details.

This thesis will also quantitatively examine the relationship between the daylight metrics of ABDM standers and those of the traditional annual CBDM standard metrics to ascertain whether SBI and sky lumen could serve as alternative metrics to Daylight Autonomy (DA), Spatial Daylight Autonomy (sDA), and Useful Daylight Illuminance (UDI) metrics, with the objective of expediting the simulation of indoor daylight outcomes in urban settings. Additionally, the study will attempt to integrate the computational capabilities of suitable ABDM within the application.

The BK faculty BIM model and its surrounding environment is used in this thesis as a case study. However, the presented development workflow is widely applicable to various BIM models. This thesis will provide a generalized methodology, including suggestions for modifying the workflow based on different levels of BIM inputs, and specify the basic requirements for BIM inputs to ensure scalability. Ultimately, its goal is to function as a valuable tool and more important, a digital workflow, for visualizing daylight performance

based on changes in environment in the early design stage, providing insights and suggestions for designers, urban planners, architects, and building owners involved in environmental design.

1.5 Project scope

Daylight Metrics

Aspects		Metrics	Target value	Reference	Honeybee
Daylight	DF	Daylight factor	≥2%	EN 17037	V
	DA	Daylight autonomy	> 50%	IESLM-83-12	√
	UDI	Useful daylight autonomy	<500lux - insufficient illumination 500 lux-2500 lux- acceptable >2500lux - bad	LEED v4.1	√
	cDA	Continious daylight autonomy	> 55%	IESLM-83-12	√
	sDA	Spatial daylight autonomy	sDA300, 50% ≥40% - sufficient sDA300, 50% ≥55% - preferable sDA300, 50% ≥75% - optimal	LEED v4.1	√
	ASE	Annual sunlight exposure	ASE1000.250h < 7% - neutral ASE1000.250h < 3% - clearly acceptable	LEED v4.1	√
Glare	GA	Glare autonomy	GA40%	EN 17037	√
	sGA	Spatial glare autonomy	sGA40%,5%	EN 17037	√
	DGP	Daylight glare probability	<20% - not validate 20%-35% - imperceptible 35%-40% - perceptible 40%-45% - disturbing >45% - intolerable	EN 17037	√
View out	/	Width of view window/s	≥ 14° (based on a 360° field of vision)	EN 17037	Х
	/	Outside distance of the view	> 6m	EN 17037	Х
	/	Landscape layer to be seen (sky, landscape and ground)	≥70% of the utilised area	EN 17037	Х
Openings	SBI	Sunlight beam index	/	ABDM	Х
	SBI 'efficiency'		/	ABDM	Х
	ASI	Aperture Skylight Index	/	ABDM	X

Table 1: Common daylight Metrics

Apart from the traditional standards CBDM, ABDM in 2019 is an upgrade of those methodologies. In EN 17037:2018, 'Daylight should be a significant source of illumination for all spaces with daylight opening(s).'1 The word 'opening' appears 139 times in the standard (Mardaljevic & Brembilla, 2022). For this part the script will be coded by my own for simulation. These metrics are designed to measure the available daylight in urban settings, providing a clear quantification of how the outdoor environment impacts window daylighting capacity. This concept is relatively new, resulting in a limited number of studies and cases, and the scripts are not available in Honeybee (Table 1). Recognizing this research gap, this thesis aims to incorporate these new methodologies, considering their absence of a target value by focusing on absolute values and changes under varying conditions. Additionally, this research will explore their correlation with traditional annual daylight metrics like DA, sDA and UDI, bridging the gap between the ABDM method and conventional CBDM approaches.

Daylight Parameters

Figure 2 offers a clear static representation of the components of daylight entry, illustrating how daylight enters and is distributed within a space through direct entry (SC), external reflections (ERC), and internal reflections (IRC) to calculate the illuminance level of a room together (Hopkinson, 1966). Based on this, DA (and sDA, UDI similarly) requires consideration of these components dynamically over time and the percentage of occupied hours during which a space receives adequate daylight, accounting for varying sky conditions, sun positions, and reflections throughout the year.

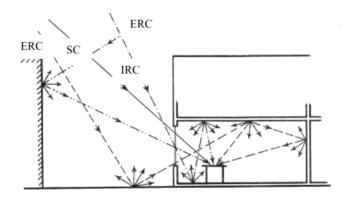


Figure 2: Different ways of daylight penetration into the building: Directly from the sky. Direct reflection from an external barrier. Reflection from the floor and ceiling. Reflection from the ground, ceiling and the walls. (Nasrollahi & Shokri, 2016)

Reflectivity of buildings and their urban context influence the energy consumption of buildings. (Chen et al.,) Also, reflections of surfaces externally and internally and urban canyons considerably contribute to the distribution of daylight in building interior. (Nasrollahi & Shokri et al.,) Light impacting the facades of surrounding buildings within an urban canyon context—often exerts a substantial influence on the overall daylight within a room. This heightened impact is attributable to the fact that vertical surfaces, such as building facades, are typically more expansive and proximal to windows compared to horizontal surfaces, and thus, they reflect light more directly into interior spaces, particularly within dense urban environments or "urban canyons." In densely populated areas with tall, reflective buildings, the facades may contribute more significantly to indoor daylight. While in less dense settings, reflections from the ground may be more influential, especially where ground surfaces are designed to enhance reflectivity, such as through the use of light-colored paving materials. Trees and vegetation also significantly affect indoor daylight performance in practical scenarios. However, due to the complexities associated with simulating paving systems and 3D vegetation within the timeframe of this thesis, this research does not account for the variation of ERC from exterior ground surfaces of different materials or plants. To simplify this, a generic material with 20% reflectivity is used as a standard. (Section 6.3).

Ideally, modifications could also be applied to the existing surrounding buildings, and in theory, this could be accomplished using 3D tiling technique. At the inception of this thesis, the integration of 3D BAG 3D tiling technique with Mapbox was still in a preliminary experimental phase (see Section 6.3 of this report). So, the

focus here is solely on the addition of new buildings in this research. But this is a trajectory worth exploring as the technique becomes more accessible.

Initial BIM model

The fidelity and quality of BIM models are significantly influenced by the actual conditions of the buildings and the modeling practices employed by the modelers. Consequently, BIM models will exhibit considerable variability, necessitating adjustments of varying degrees to conform to this universal workflow proposed in this thesis. But modifications arising from informational deficits, particularly manual alterations, do not constitute the primary focus of this thesis or the workflow. These issues will not be extensively discussed but the requirements of data input at each stage and outline potential corrective measures that may be implemented will be covered in this thesis. Certain input values are held constant during the daylight simulation and are not examined in this study.

It is requested that the initial BIM model incorporates precise Type of each element, distinguishing between materials type for interior and exterior, as well as detailed room information. Ideally, the floors category should be segmented by room to facilitate detailed analysis. If the room plans are polygonal in shape, the Boundingbox method discussed in this thesis might prove inadequate; instead, the use of a Room Boundaries node would be necessary in the new workflow. Ideally it should also include large furniture information, and some interior material details, as interior daylighting simulations prioritize large surfaces as they play a crucial role in reflecting light. More information can be found in Section 6.2.

GIS platform as client

Utilizing the C# library for Rhino Compute and selecting Unity as the platform presents a potentially advantageous alternative workflow. However, given that the content related to this is primarily developed and disseminated by Jhorikawa (n.d.) and is partly utilized for commercial purposes, this approach is not explored as an alternative workflow in this study. Instead, this thesis concentrates on exploring possibilities of WebGL based GIS platform options, specifically Mapbox and Cesium. Given that Cesium Ion requires token each time a new geometry is uploaded, and considering the application's requirement for dynamic transfer of new simulation results, the implementation poses challenges. Furthermore, MapboxGL incorporates a plugin, Threebox, which integrates certain functions from Three.js to Mapbox GL. This plugin is updated and maintained more frequently compared to Cesium's Three.js plugin. This thesis selects Mapbox as the GIS platform (Section 2.5).

/ Literature Review & Related Work

2.1 INDOOR PER-ROOM DAYLIGHT ANALYSIS

2.1.1 URBAN CANYONS' IMPACT

For surrounding environment, façade materials of surrounding buildings are important factors affecting building's access to daylight. (Alenius et al, 2019). Using highly reflective materials for façades of new building in development can help compensate for interior daylight losses. (Formolli et al., 2022). Alenius's team (2019) also introduced Obstruction angle (OA), the angle between the horizontal plane and a line connecting the center point of a window and the tip point of surrounding buildings (Figure 3). This metric aims to help real estate developers meet daylight requirements during the urban planning stage.

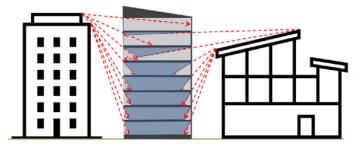


Figure 3: Obstructing angle between neighbouring buildings in an urban setting. The highlighted sections correspond to apartment areas that do not have direct access to skylight, (Pantazatou et al., 2023)

In practice, since the original building remains unchanged and only the urban context is considered, OA is typically influenced by two primary factors: the type and height of the roofs of surrounding buildings, taking into account building additions and roof replacements.

Based on several research projects (Figure 4, Figure 5), influential parameters on amount of radiation reaching building surfaces, visual comfort are as followings, listing according to their priority: geometry of Urban canyons, reflectivity of surfaces, external shading devices, roof shapes, street orientation and sky view factor (SVF). (Nasrollahi & Shokri., 2016). The more visual comfort and solar radiation reaching building facades, the higher the SVF. And study shows when height of building increases, the SVF decreases accordingly. (Nasrollahi & Shokri, 2016).

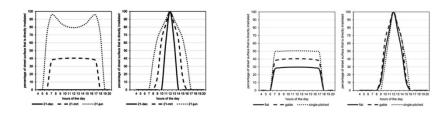


Figure 4: Influence of street direction (left two) and influence of roof shape (right two), both with east-west street(left) and north-south(right).

(Van Esch et al., 2012)

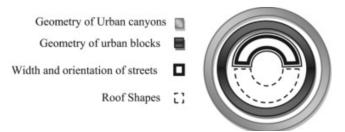


Figure 5: Hierarchy of the factors affecting the amount and quality of solar radiation (Nasrollahi & Shokri, 2016)

2.1.2 CBDM & ABDM

DA, sDa & UDI

DA measures the percentage of occupied time that daylight provides the specified illuminance at a particular spot in a space, indicating daylight availability. In Equation 1 for DA calculation, t_i is occupied hour in a year, wf_i is a weighting factor that depends on the values of $E_{Daylight}$ and E_{Limit} , which are the horizontal illuminance at a specific point due to daylight alone and the illuminance limit value, respectively.

$$DA = \frac{\sum_{i} (wf_{i} \cdot t_{i})}{\sum_{i} t_{i}} \in [0,1]$$

$$with wf_{i} = \begin{cases} 1, & \text{if } E_{Daylight} \geq E_{Limit} \\ 0, & \text{if } E_{Daylight} < E_{Limit} \end{cases}$$

$$(1)$$

sDA annually assesses if a space receives sufficient daylight on a work plane during normal business hours (Equation 2). The target, as set in this thesis, is 300 lux for at least 50% of the occupied time. Typically, sDA is calculated using a daylight simulation program that measures the daylight levels in the area for each hour of the year (Council, 2013).

$$sDA = \frac{\sum_{i}(wf_{i} \cdot DA)}{\sum_{i} p_{i}} \in [0,1]$$

$$with wf_{i} = \begin{cases} 1, & if DA \geq DA_{Limit} \\ 0, & if DA < DA_{Limit} \end{cases}$$

$$UDI = \frac{\sum_{i}(wf_{i} \cdot t_{i})}{\sum_{i} t_{i}} \in [0,1]$$

$$(2)$$

The evaluation of UDI is based on hourly or shorter time-step illuminances over a year, it divides annual illuminance into three ranges: insufficient (<lower bin), excessive (>upper bin), and useful (between). Exceeding UDI values can cause issues like glare and overheating, while too little leads to insufficient illumination. Typically, 100 lux and 3000 lux are the thresholds (Nabil, A., & Mardaljevic, J., 2005), in this standard, daylight between 100 and 3000 lux is considered "useful" for lighting. This thesis uses the common standard thresholds of 100 and 3000 lux (Equation 3).

$$\begin{split} UDI_{Overlit} & \ with \ wf_i = \begin{cases} 1, & \ if \ E_{Daylight} \geq E_{Upper\ Limit} \\ 0, & \ if \ E_{Daylight} < E_{Upper\ Limit} \end{cases} \\ UDI_{Useful} & \ with \ wf_i = \begin{cases} 1, & \ if \ E_{Lower\ Limit} \leq E_{Daylight} \leq E_{Upper\ Limit} \\ 0, & \ if \ E_{Daylight} < E_{Lower\ Limit} \cup E_{Daylight} > E_{Upper\ Limit} \end{cases} \end{split} \tag{3}$$

$$UDI_{Underlit} & \ with \ wf_i = \begin{cases} 1, & \ if \ E_{Daylight} < E_{Lower\ Limit} \\ 0, & \ if \ E_{Daylight} \geq E_{Lower\ Limit} \end{cases}$$

SBI & sky-lumen

ABDM introduces a novel approach to daylight simulation, focusing on assessing how effectively apertures connect with sunlight and the external environment. addressing the deficiency in evaluation frameworks that simultaneously consider both the solar energy potential and the qualitative aspects of sunlight/daylight during the planning stages of building projects. (Mardaljevic & Brembilla, 2021). In theory, any 3D CAD/BIM tool capable of assessing on-site visibility between two points—one within the building model and the other representing the position of the sun on the sky dome—can compute Sunlight Beam Index (SBI) and ASI (Mardaljevic & Roy, 2016). Consequently, the computations of SBI and ASI can significantly reduce computation time compared to traditional sunlight analysis via ray tracing in the early stage of design, which could take tens of minutes or even hours to complete. SBI provides a quantifiable estimate of potential sunlight availability, while the view lumen is considered an indicator of sky connectivity, suggesting a measure of potential skylighting received through openings. However, the relationship between these indices and actual indoor daylight performance remains to be fully elucidated. Specifically, the correlation between ABDM and CBDM requires further investigation (Mardaljevic & Brembilla, 2021). SBI-AM and connectivity to the sky have notable potential to make reasonable extrapolations of indoor daylight performance, thereby assisting decision-making processes during the preliminary planning stages. (Mardaljevic, 2021)

SBI is a single figure can characterize the sunlight beam potential of a building or space (Mardaljevic et al., 2016) functioning as an indicator of sunlight potential of rooms, that can clearly present the influence of outdoor environment's impact. SBI has units of m² hours, and it works for any given period of time. And it can be calculated by any 3D CAD/BIM tools as it is only based on a line-of-sight calculation, and the incorporation of inter-reflection modeling and/or the consideration of light transmission/scattering effects is unnecessary.

$$S_{\Delta t} = A_q \cos \theta \, \Delta t \qquad (4)$$

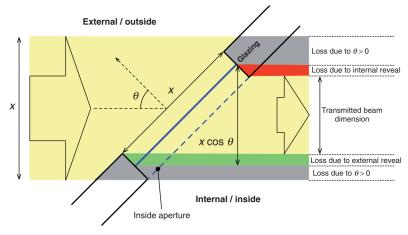


Figure 6: Definition of beam sunlight cross-sectional area entering a space (Mardaljevic & Roy, 2016)

In Equation 4, the SBI value $S_{\Delta t}$ for a duration of time can be calculated by the direct sunbeam enters a glazed aperture of area A_g with an angle of incidence θ for a time period Δt (Mardaljevic & Roy, 2016). With no obstructions, the illuminated area is equal to A_g (Figure 6).

ASI quantifies the degree of connectivity between an opening and the sky vault by assessing the illumination it receives from a uniformly bright sky dome, with the measurement averaged over the opening. In the apartment ABDM evaluation, the sky lumens lost because of the balcony, overhang and external obstruction can be calculated and visualized (Figure 7), and the actual lumen loss is always greater than that which seems apparent from the hemispherical image (Mardaljevic., 2020).

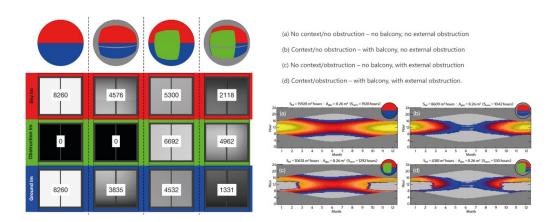


Figure 7: Lumens received at the glazing aperture of the apartment in four cases (left) and temporal maps showing annual SBI across the apertures (at 15-min timesteps) for all four cases (right) (Mardaljevic, 2020)

2.1.3 EXISTING WORKFLOW FOR BIM DAYLIGHT SIMULATION

- Revit ↔* Dynamo (Ladybug, Honeybee, Energy Analysis for Dynamo);
- Revit →** Export as .DXF/.DWG → Import to Rhino ↔ Grasshopper (to analyze all components need to be specified);
- Revit

 Rhino Inside Revit (RIR)

 Grasshopper (Honeybee, Ladybug, Dragonfly, Bombyx, Pachiderm, OneClickLCA);
- Revit ↔ Revit Connector → Import to Speckle Stream → Open Speckle Web Account
 Copy
 the link → Import as link connected to Grasshopper "Receive" node from Speckle Connector →
 Define objects attributes → further analysis on Grasshopper (Honeybee, Ladybug, Dragonfly,
 Bombyx, Pachiderm, OneClickLCA).

Figure 8: four possible BIM daylight workflow (Shoshev, 2023)

In Shoshev's research (2023), daylight simulation software like Desktop Radiance, Rayfront, Ecotect, Open Studio, Macumber, Diva4Rhino, LadyBug tools (LB), Sefaria, Climate Studio are compared and considering with BIM model, and four promising, most used and accurate workflows of transmitting data from BIM for daylight simulation purpose are listed, and the one using Rhino Inside Revit is chosen and implemented in details steps, but the rest are not tested and explained (Figure 8).

Dynamo is a text-based programming language for Revit that operates efficiently in real-time for tasks such as data transfer and geometry construction (Alisherbek, 2021). Revit has featured an accessible API since the early 2000s, designed to accommodate multiple users, including those in structural and MEP disciplines. When writing scripts targeting Revit's API, the process can be viewed as making a series of database calls constrained by the API's rules. Most online examples pertain to model management in conjunction with Dynamo (Green, 2020; Miller, 2012). The Revit API facilitates easier manipulation of properties and components, simplifying and automating processes for family creation (Shah, 2021). However, running simulations using Dynamo workflow relies on the desktop version of Revit, which may not be as user-friendly as desired. Nonetheless, Dynamo can be utilized within Revit to manage BIM information.

Both the Speckle stream and DXF/DWG workflow face challenges regarding potential loss of elements or properties during translation in post-experiment phases. This research will adopt a workflow similar to that of Porsani, additionally exploring user interaction for controlling simulations with BIM models. This approach aims to replace the conventional method of initiating simulations locally on the Grasshopper (GH) canvas with a click, thereby providing a more comprehensive exploration of the topic.

2.2 3D CITY MODELS & DAYLIGHT ANALYSIS

The most comprehensive standard for semantic 3D city models today is CityGML (City Geography Markup Language), developed by the Open Geospatial Consortium. (Pantazatou et al., 2023), Currently the most used version is CityGML 2.0 (Noardo et al., 2020), which defines five LODs (Figure 9).

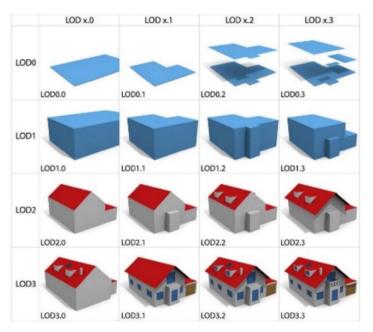


Figure 9: A refined version of LOD definitions in CityGML 2.0. LOD4 indoor representations are not included. (Biljecki et al., 2016)

In Pantazatou's team's research (2023), it is possible to use LOD1.3 3D city model for daylight analysis, since the most of the results show that both LOD2 and LOD1.3 yield similar OA-value results that don't differ more than 1° in most roof types. But in neighborhoods characterized by buildings with gabled roofs should preferably be handled utilizing 3D city models whose LOD allows for a more detailed representation of the roof geometry as the difference in OA degrees sometimes exceeds 10° (Figure 10). LOD 1.2, 1.3, and 2.2 are supported by the regional database of Delft in the Netherlands (3DBAG Viewer, n.d.). In this case study, LOD1.3 and LOD2.2 of model will be used and compared.

Figure 10: Examples of how lower LOD versions of the same building may generate higher OA than their corresponding LOD2 counterpart, when the roof type is gabled roof (Pantazatou et al., 2023)

2.3 DESKTOP RHINO VS. RHINO COMPUTE

Rhino with its visual programming language GH are particularly popular choices for modern workflows working with parametric models. However, as many CAD tools, Rhino and GH has certain level of complexity to learn, even for the most dedicated 'students' within a professional architect team that use Rhino as the working tool, it still takes 4-6 weeks for GH beginner to using it independently on projects. (Tait, 2022). Sending GH script to designer's desktop and executing locally would require designer to understand GH and set correct input and output on the script canvas, this was once also a problem in KPF team. (Leon & Pachuca, 2022). As 3D modeling and design grow more intricate, more designers and engineers are opting for cloudbased solutions to simplify their workflows and enhance collaboration with colleagues, clients, and other stakeholders (ShapeDiver, 2024). Rhino Compute, different from Rhino Desktop, can do geometry calculations through a cloud based stateless REST API, and access 2400+ RhinoCommon API calls from outside Rhino, and provides libraries with standalone C#(.NET), Python and JavaScript. (McNeel, 2020). It is an opensource project that allows you to run Rhino. Inside on a local server or in the Mcneel Rhino Compute cloud, allow you to access Rhino and GH through a web API to run the program. (Ronald, 2021). Rhino Compute helps lowers the entry barrier by simplifying complex workflows for typical architectural designers while enhancing extensibility for computational designers. As a geometry solver back-end, it facilitates the development of user-friendly front-end applications accessible through a web browser, allowing architects to perform complex parametric workflows with minimal technical effort. (Leon & Pachuca, 2022). Table 2 shows the comparison between desktop rhino and rhino compute.

Difference perspectives \ Options	Rhino Desktop	Rhino Compute server	
Deployment	Installed and run locally on a user's computer	Typically deployed on a server or cloud environment, allowing users to access Rhino functionality remotely.	
Access	Requires installation on individual machines, and users interact with the software directly on their local devices.	Allows users to access Rhino functionality through APIs (Application Programming Interfaces) over the internet, enabling remote computation.	
Performance	Performance is dependent on the user's local hardware.	Performance is influenced by the server or cloud environment's capabilities. It can provide scalability and the ability to handle more complex computations.	
Collaboration	Collaboration is limited to sharing files, and users need to have Rhino installed locally.	Supports collaborative workflows, as users can interact with Rhino functionality without requiring the software to be installed on their machines.	
Scalability	Limited to the capabilities of an individual machine.	Offers potential scalability for handling larger datasets and complex computations by leveraging server resources.	
Use Cases	Ideal for individual or small team projects where users have local access to the software.	Suited for scenarios where computation needs to be performed on a larger scale, shared across multiple users, or integrated into web applications, without local Rhino installation	
Intergration	Typically used as a standalone application	Can be integrated into web applications, custom software, or other systems through APIs, enabling a more flexible and extensible use of Rhino functionality.	

Table 2: Rhino Desktop vs. Rhino Compute Server

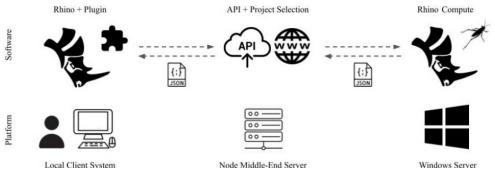


Figure 11: Rhino Compute technology (Azel, N., Pachuca, B., & Wilson, L., 2022)

Rhino Compute is used by some large architecture firms, with GH scripts managed and processed on a Rhino Compute Windows server, enabling teams to explore design alternatives without requiring GH expertise (KPF, 2020). Running complex simulations with GH plugins may require powerful hardware and user may experience long computation times for simulation, but it can save a lot of time if holding on a powerful server (Figure 11).

- 1. IAAC MaCAD track student projects (Ingrassia, M, 2021)
- 2. KPF Scout. (n.d.)
- 3. Web application workshop AEC Tech 2019 combine Rhino Compute, Three.js, vue.js, node.js, express.js, mongodb (Mm-Wang, 2019)
- 4. Arup InForm. (n.d.)
- 5. Daylight Compliance prediction web tool using Rhino.Compute (Pacheco Dieguez, A., & González, D, 2024)

Figure 12 demonstrates the results of daylight simulation of a simple room using Rhino Compute with webpage as client.

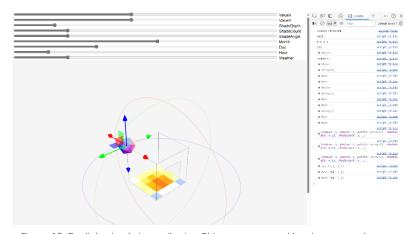


Figure 12: Daylight simulation trail using Rhino compute and hosting on a webpage

2.4 BIM AND SIMULATION IN MAPBOX GL

The visualization of BIM and GIS geometry data typically necessitates the integration of BIM data into GIS environments or vice versa, with the former approach being more common. Many of these conventional workflow process and visualize BIM a data on a GIS-based web platform, where user-friendly interfaces already exist. (Cambridge Computational Modelling Group, 2023). But not all possess the capabilities to process and manipulate BIM models (Shkundalov, D., & Vilutienė, T., 2020). Some study and examples posse capability to interact with BIM model, however, much of this interactivity is initially prominent, akin to a preview function that declines after the model is imported into the GIS platform, subsequently resulting in the loss of element-level interaction capabilities:

- 1. View Revit models inside Mapbox using Autodesk Forge (Wallabyway, 2019)
- 2. Place BIM model everywhere in Mapbox, reading IFC properties by clicking elements before placing. (Helenkwok, 2023)
- 3. A NYC park analysis tool using Rhino, Vue.js, Mapbox.gl, apex-charts, Three.js, and Tailwind CSS (Pachuca, n.d.)
- 4. The World Avatar: BIM-GIS Integration in CesiumJS (Cambridge Computational Modelling Group, 2023)
- 5. CDC BIM campus digital twin WebGL browser (CIMS lab, 2023)

The challenges of interacting with BIM data within MapboxGL are as follows:

- The objects within the model lack coordinate system recalibration and inter-object relationships, classifying them as a collective rather than a complex entity. The individual objects face challenges of being positioned by geodesic coordinates. (Shkundalov, D., & Vilutienė, T., 2020)
- 2. WebGL doesn't directly support any BIM format, thus conversion to a format that retain attribute information with 3D objects for further processing and support interconnections among the objects within the BIM model is important. (Shkundalov, D., & Vilutienė, T., 2020) The semantic conversion faces challenges, many solutions from BIM to GIS, are one-directional (Celeste et al., 2022).
- 3. Conversion coordinates system between Web supportable Mercator projection and geodesic coordinates system. (Shkundalov, D., & Vilutienė, T., 2020)

2.5 TOOL SELECTION

The comparison of using Revit and Rhino is listed in Table 3. While Forge Design Automation for Revit enables task automation within the Revit platform, it is not ideally suited for hosting and displaying intricate simulation results such as 3D meshes directly. Its primary function centers on automation and computational design within Revit, with a focus on numerical data management rather than the direct hosting and visualization of complex simulation outcomes. Although visualization outputs are feasible, producing detailed meshes as explicit outputs from the API is not typically straightforward, ultimately necessitating the use of Forge Viewer as the sole hosting option, without the flexibility to employ third-party web viewers. Considering the workflow's complexity and the required detail level for visualization, Rhino Compute provides a more straightforward method for hosting and visualizing complex simulation results. Furthermore, Rhino offers enhanced user-friendly parameterization capabilities, aligning with the objectives of further design iterations. Although Revit may initially appear advantageous due to its direct linkage with BIM models at the outset of this research, Rhino ultimately proves to be the superior tool due to its broader compatibility.

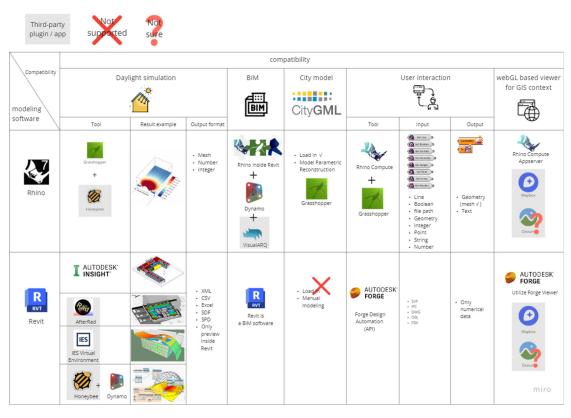


Table 3: Revit and Rhino workflow's compatibilities

The tools used in this thesis is listed in Table 4.

Dataset or Software	Source	Usage
3DBAG Delft	(3DBAG Viewer, n.d.)	Database containing detailed 3D model for Delft and BK building's neighborhood. Used as context geometry in HB daylight simulation.
Rhino 7.36	(Robert McNeel & Associates, n.d.)	Modeling software function as a visualization platform for setting up daylight simulation, built-in tool GH can parametrically adjust the geometry
Grasshopper	(Grasshopper, n.d.)	Visual programming language inside Rhino, used to give instruction to Rhino Compute to run daylight simulation
Ladybug/Honeybee 1.8.0	(Ladybug Tools Home Page, n.d.)	Daylight simulation plugin for GH
Mapbox	(MapBox Maps, Navigation, Search, and Data, n.d.)	WebGL based development 3D map platform for per-room daylight application
Threebox	(Jscastro, n.d.)	Three.js plugin for Mapbox GL JS, for loading and interacting with building geometries and simulation mesh result
Three.js	(Three.js – JavaScript 3D Library, n.d.)	JavaScript library using WebGL that enables the creation and display of 3D geometry in web browser
Revit 2024	(REVIT for Architecture & Building Design AutoDesk, n.d.)	Modeling software to store and modify BIM information,
Dynamo	(Learn - Dynamo BIM)	Revit's API, used to tag room information and export BIM data
Rhino Compute	(Mcneel, n.d.)	Rhino's API, JavaScript library is used for web application
RhinoCityJSON	(Cityjson, n.d.)	Rhino/ GH plugin that enables direct use of the CityJSON format in Rhino and GH.
DiStem	(DiStem Bundle for Autodesk Revit - Productivity Revit Plugins by DiRoots)	To export Revit model to gITF file format
Conveyor v4	(Proving Ground)	Plugin for geometry and data management between Rhino and Revit
GitHub	(Github, n.d.)	Hosting of application
VS Code 2023	(Visual Studio)	Used to add functions and build dashboard on Mapbox

Table 4: Tools and data used in the thesis

7 Methodology

3.1 THEORETICAL FRAMEWORK

This thesis is centered around three primary themes: BIM, GIS, and daylight simulation (per-room), culminating in a web application that integrates these elements into a cohesive workflow. The workflow utilizes GH script as the back-end, Rhino Compute as the API connecting the front-end and back-end, and MapboxGL as the front-end and GIS platform for user interaction (Figure 13).

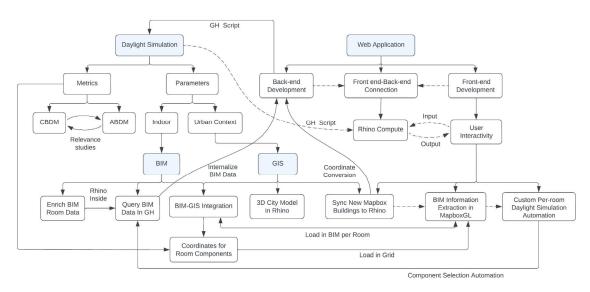
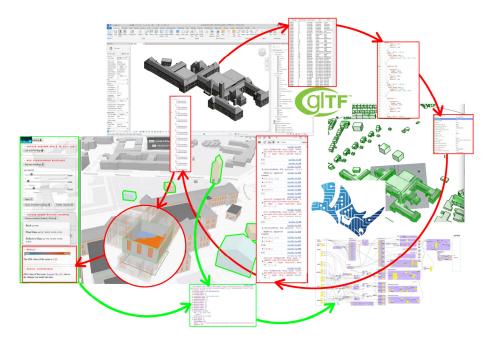



Figure 13: Project theoretical framework

The conceptual framework (Figure 14) depicts the transformation process of data and 3D information across multiple platforms. The result enables users to interact with the web application, utilizing BIM data extraction in MapboxGL and custom per-room daylight simulations, seamlessly integrating BIM into GIS for effective urban planning and design.

28

Figure 14: Project conceptual framework

3.2 METHODOLOGY WORKFLOW

The methodology of this study is structured from four distinct perspectives: Daylight, BIM, GIS, and Application, which integrates the first three. This thesis is organized into several key sections: research framework, literature review, implementation section that includes settings and data preparation, and the final section that presents results, discussions, and conclusions (Table 5).

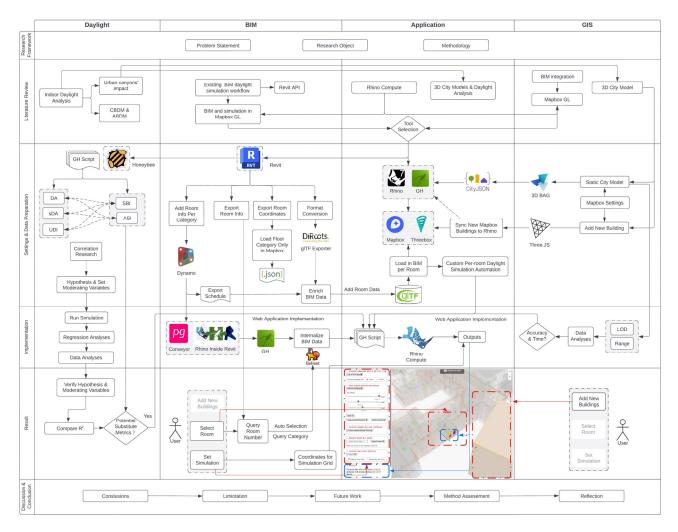


Table 5: Project workflow

SBI simulation

Mardaljevic (2021) highlighted certain factors such as space types, obstruction scenarios and climate conditions that needs further investigation to provide calibration data for comparative assessments between CBDM and ABDM. In practice, the configuration of a room and its windows is subject to a myriad of variables that impact "interior daylighting effect," consequently impacting the relationships among SBI, Sky lumen, and daylight metrics such as DA, SDA, and UDI. These variables encompass diverse factors including the quantity and dimensions of windows, their orientation, materials and angular disposition relative to the

floor, their distribution within the room, window-to-wall ratios of the façade, height of window sills, the presence or absence of canopies and extended shades, the design of outdoor balconies, and the availability of internal shading mechanisms like curtains or blinds. Moreover, the intrinsic characteristics of the room itself, such as its dimensions and geometric layout, alongside external factors like geographic properties, surrounding environment, and local climatic conditions, contribute significantly to this complex interplay.

To compute total annual SBI, denoted as Stot, the cumulative sum of SBI throughout the entire year with a sun altitude γ_s greater than 0 was computed. This parameter, γ_s , can be acquired through the LB Sun Path component (Equation 5).

$$Stot = \sum_{\gamma_S > 0} (Ai \cos \theta \Delta t)$$
 (5)

Moreover, the individual St values spanning the entire year can be utilized to populate a two-dimensional matrix, T (Equation 6). For hourly data with a time step of 1 hour, T possesses dimensions of 24 * 365. The time step is set to 15-min interval as suggested by Mardaljevic & Roy (2016). The disparity between the actual solar position at each time step and the nearest precomputed point on the sky vault is less than 2.38. This discrepancy is approximately equivalent to a 9-minute interval, yet it does not entail unnecessary consumption of computational resources.

$$T = \begin{bmatrix} S_{1,1} & \cdots & S_{1,365} \\ \vdots & \ddots & \vdots \\ S_{24,1} & \cdots & S_{24,365} \end{bmatrix}$$
 (6)

In order to address the substantial impact of the low-angle sun on vertical apertures and its consequential effect on SBI value, a new airmass coefficient, is proposed by Mardaljevic & Brembilla (2021), which serves as an attenuation factor characterizing the optical density of the atmosphere from sea level to the zenith. Its introduction rectified the original formulation of SBI-Classic, enhancing its accuracy and comprehensiveness (Figure 15). thereby culminating in the revised model termed SBI-AM. *AM* is first employed by Kasten (1965) (Equation 7).

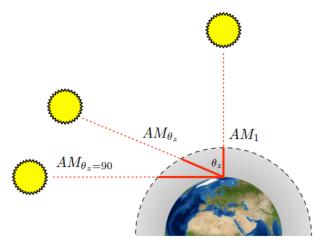


Figure 15: Airmass (AM) as a function of solar zenith angle θz (Mardaljevic & Brembilla, 2021)

$$AM = \left[\cos_{\theta_z} + 0.15(93.885 - \theta_z)^{-1.253}\right]^{-1} \tag{7}$$

The correlation between altitude angle, zenith angle and angle of incidence is shown in Figure 16. In the case study of this thesis, all apertures of BK building are perpendicular to the ground, Consequently, angle of incidence (the angle between the sunlight and the window normal), denoted as θ is numerically equivalent to γ_s .

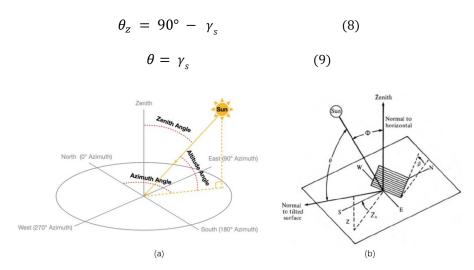


Figure 16: correlation between altitude angle, zenith angle and angle of incidence

The solar constant, representing the solar irradiance outside earth's atmosphere under air mass 0 conditions (Equation 10), is $I_0 = 1.353 \, kW/m^2$ (Wikipedia, 2023). h is the elevation level above sea level in km (Meinel and Meinel, 1976). On Netherlands topographic map, the elevation level of Delft especially around the BK building is 0.004m (Netherlands Topographic Map, Elevation, Terrain, n.d.). This also functions as the elevation input for LB Construct Location component in GH, note that this input should be provided in meters.

$$I_{am} = I_0[(1 - 0.14h)0.7^{AM^{0.678}} + 0.14h)$$
 (10)

 f_{am} (Equation 11) for a given solar angle is an inherent property of a particular location (Mardaljevic & Brembilla, 2021), Another metrics called SBI-efficiency can be calculated by deviding SBI by the area of the aperture (Equation 12).

$$f_{am} = \frac{I_{am}}{I_1} \tag{11}$$

$$S_{tot_{eff}} = \frac{Stot}{S} \tag{12}$$

Sky Lumen Simulation

In comparison to the angular view, the hemispherical fisheye view is of greater accuracy in depicting the illuminance received at the sensor point. (Mardaljevic, 2021). Existing photo processing methods predominantly entailed the transformation of fisheye images into conventional viewpoints, thus, the techniques for generating hemispherical fisheye view and conducting subsequent color analysis emerged as the starting point for resolving this challenge.

The approach adopted in this thesis is employing the imaging principle of hemispherical fisheye to construct circular geometric sensors units directly in Rhino. Inside these units, different segments corresponding to building projection, sky projection, ground projection, and shade projection are assigned specific colors. Subsequently, the area of each color-coded section was calculated and their respective proportions within the sensor unit is assessed. This approach is inspired by Inanici's research in 2009. The 3D geometry of the surrounding buildings is first projected onto a hemisphere that is perpendicular to the aperture plane (Figure 17).

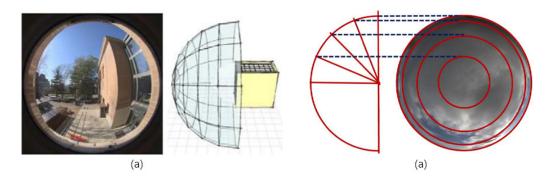


Figure 17: Vertical hemispherical fisheye image of the aperture (a); hemispherical projection of sky (b) (Inanici, 2009)

Subsequently, this projection onto the hemisphere is further transformed onto a circular sensor unit aligned parallel to the aperture. (Figure 18).

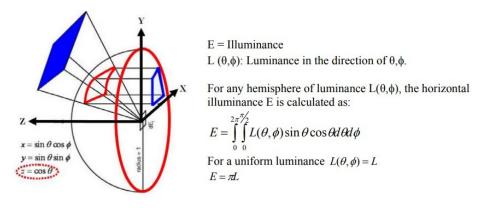


Figure 18: Calculation of illuminance from luminance values in hemispherical fisheye projection (Inanici, 2009)

As shown in Equation 13, the illuminance of three layers adds up to 2000lux (Mardaljevic, 2021).

$$2000 = E_{skv} + E_{skv} + E_{and} (13)$$

And according to Equation 14, the total lumens φ of an aperture with area of A can be determined by multiplying A by the mean illuminance \overline{E} (Mardaljevic, 2021).

$$\varphi = \overline{E}A \tag{14}$$

The "lost" lumens refer to those lumens that are obscured due to the shading effects of the reveal (Mardaljevic, 2021) can be calculated using Equation 15. φ_{sky} , which holds paramount importance in the study can be calculated in a similar approach..

$$\varphi_{lost} = 2000A - (\varphi_{sky} + \varphi_{obs} + \varphi_{gnd})$$
 (15)

In the end, for any aperture of specific dimensions, the task is assessing the relative allocation of area occupied by different colored patches.

Daylight research

Simulations will be conducted in simplified room settings modeled under varying conditions to explore the correlation between SBI, sky lumens (ABDM), and CBDM daylight metrics DA, sDA, and UDI. Initially, GH scripts for SBI and sky lumens will be developed based on established physical principles and extant research. Subsequently, experimental rooms will be configured to facilitate the assessment of data correlations and potential influencing factors. Post-simulation, the data will undergo preliminary analysis. Should the correlation prove elusive or subject to numerous influencing variables, efforts will be made to elucidate the factors potentially affecting these correlations, with the aim of integrating these insights into the Mapbox application.

The hypothesis is: There may exist a correlation between SBI, Sky Lumen (explanatory variable) with DA, sDA and UDI (independent variable), however, this correlation fluctuates depending on the influence of moderating variables.

It can be readily pictured and comprehended that by dividing a central window on a façade and shifting each part towards the edges, the light distribution on a horizontal plane parallel to the floor inside the room changes. This adjustment likely improves illumination in the room's corners adjacent to the façade. However, the overall direct sunlight exposure and sky visibility through the two openings may remain relatively stable, especially when distant and small obstructions are present. This implies that the positioning of openings is a potential moderating variable affecting the correlation metrics.

It is important to note that validating the moderation variables involves comparing the fit of two subsets of data within the larger dataset. This is done by comparing the R^2 values between the two subsets and the

regression line (Eqs. 16-19). An R^2 value can be negative, indicating a very poor fit. To calculate evaluate this, the mean of actual values \bar{y} was calculated from actual values y_i and predicted values \hat{y}_i . With the number of data points n being 6 in this case, the total sum of squares SS_{tot} and the residual sum of squares SS_{res} were computed. The R^2 value was then determined.

$$\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$
 (16)

$$SS_{\text{tot}} = \sum_{i=1}^{n} (y_i - \bar{y})^2$$
 (17)

$$SS_{res} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (18)

$$R^2 = 1 - \frac{SS_{res}}{SS_{tot}} \tag{19}$$

Get BIM 3D data to Rhino & Mapbox

There are four primary methods for transferring BIM models and information from Revit to Rhino (Table 6). The first involves using Speckle, an open-source 3D data platform widely recognized in the AEC industry (Speckle, 2024). One limitation of Speckle is that it transfers models as mesh surfaces, which complicates adjustments in GH during later stages, and it requires manual addition of attributes to maintain data index correspondence. Despite these challenges, Speckle holds considerable promise and warrants further exploration. The second method is by using VisualARQ, in preliminary trials, it was noted that some elements, such as walls, could not be converted. Due to the time constraints of this study, a comprehensive exploration of the plugin's extensive capabilities was not possible. Alternatively, Rhino Inside Revit allows direct BIM integration. Shoshev (2022) investigated per-room daylight simulations using this method. Nevertheless, the complexity and scope of the BIM model in this thesis, characterized by multiple room tags and a vast array of elements, make this approach less appropriate. A third-party plugin was necessary to effectively transfer attribute data, due to time constraints within this study, a more expedient commercial plugin was employed - Conveyor. Upon utilizing the surveyor, the value and key of all relevant Revit information can be accessed directly from the attribute column of the Rhino panel. This information can subsequently be retrieved using the eleFront plugin (eleFront, n.d.), as will be detailed in Section 4.3.

GLTF is identified as the best format for importing BIM models into Mapbox. In the study, the DiStem plugin is utilized, multiple comparable plugins are also available. The choice of plugin significantly affects the final file size and display materials. For instance, in this case study, the bin file generated using the e-verse plugin

is 71,021kb, more than double the size of the bin file generated by DiStem, which is 32,536kb. A more extensive comparison of plugins is limited due to the commercial nature of most software, restricting the breadth of analysis possible within this study.

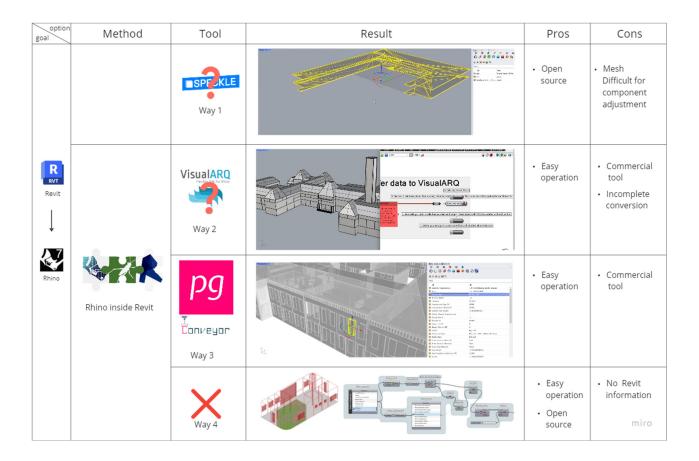


Table 6: Tool selection for Revit to Rhino conversion

BIM-GIS integration

For the BIM-GIS integration, the objective is to develop a web application using the BK BIM model as a case study, encompassing the entire workflow. Following the selection of tools based on literature review, the initial step involves setting up and preparing data for both BIM and Mapbox. Rhino serves as the intermediary platform connecting these two data formats during this stage. While Rhino is not necessary for the application to run, it plays a crucial role in the construction process. This process involves three key steps: extracting room information from BIM elements and preparing it for import into Rhino, importing the interactive BIM model into the Mapbox platform, and synchronizing user-added buildings in Mapbox with the back-end GH.

Integrating BIM to WebGL generally involves workflow in Figure 19 (Yan, Z et al., 2023), BIM data is first separated into geometric and non-geometric parts. Geometric data is processed as gITF to reduce the size of the 3D asset and the computational load required to unpack and use it at runtime. Non-geometric or attribute data is exported as JSON files, a lightweight data exchange format. Element IDs link these two data types. This workflow of first separating and then matching data enhances the flexibility of data integration.

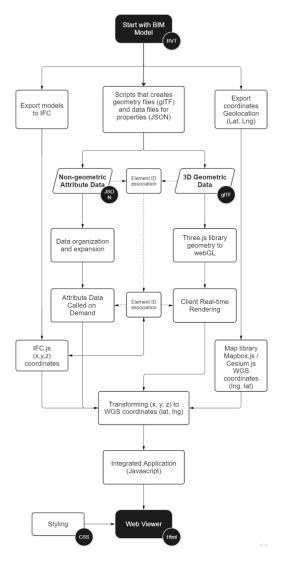


Figure 19: WebGL based interactive application workflow - BIM / GIS (Yan, Z et al., 2023.)

Synchronize added building coordinates in Mapbox & Rhino

Mapbox is proficient in interpreting the coordinates of all appended geometries, whereas Rhino operates with xyz coordinates rather than latitude, longitude, and altitude, underscoring the necessity of converting the coordinates from Mapbox to Rhino. Given the procedural sequence in which the BK BIM model is imported initially, followed by the user's addition of surrounding buildings for interaction, it is essential to ensure that the coordinates transmitted to Rhino as input exclude those of the previously added BK model. The amount of imported sub models of BK building is closely associated with the chosen method of import. This exclusion is $\frac{1}{36}$

crucial to maintain the integrity of the spatial data handling in the project.

The requisite coordinate transformation in this context entails converting Geodetic coordinates to ENU (East-North-Up) coordinates (Figure 20). This is due to the fact that within the Rhino, the model is pre-aligned with the correct north orientation, and the center of the imported BIM model is designated as the world's center.

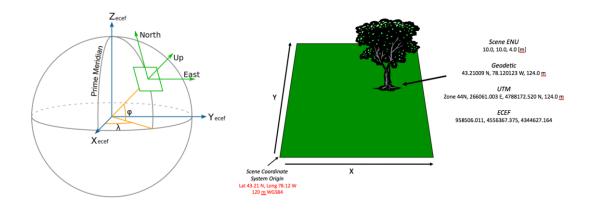


Figure 20: Relationships between Geodetic, ECEF and Scene ENU coordinate systems. (Wikipedia, 2010) (left) DIRSIG allows the user to use a host of coordinate systems to position objects (DIRSIG model, 2023) (right)

Tag elements' room information in Dynamo per category

Revit model exported in GLTF format includes an "Element ID" and "Family Name" for each mesh, which facilitates the subsequent enrichment of this data. It is necessary to identify each mesh by these identifiers before additional attributes can be appended. Choosing "Family Name" for identification is challenging because each name may correspond to multiple elements. Attempts to append suffixes to the Revit type have been made in Dynamo; however, due to the unique settings of system families such as floors and walls in Revit, this method proves infeasible. Consequently, "Element ID" has been selected for identifying individual elements. The initial step involves using Dynamo to label each element with a Revit "Element ID," which is then cataloged under the project parameter named "Element ID". The script is available in Appendix 4.

The principle is minimizing the number of project parameters created within Revit. Evidence from an experiment depicted in Figure 21 reveals that only a single data can be appended to each project parameter; creating lists is unfeasible because new data entries overwrite previous ones. Consequently, for elements that traverse multiple rooms (such as walls) or are shared by several rooms (such as doors), it is imperative to establish multiple room tags to adequately capture and store this information.

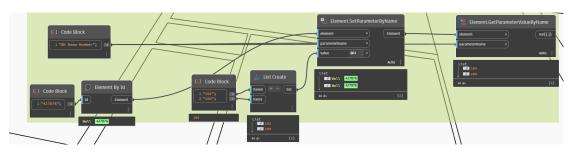


Figure 21: Every project parameter can hold one data in Revit

There is no standardized workflow for assigning room tags to elements across various categories. In a blog posted by Jeremy Tammik (2021), potential solutions proposed by Mastjaso and Matt were discussed. The applicability and outcomes of these solutions are contingent upon the initial BIM model. However, the overarching strategy involves implementing category-specific actions—such as creating dot matrices, offsets, etc.—to intersect with a room's bounding box or its boundary. These actions differ based on the type of element, such as floors, windows, doors, and walls.

In this thesis, the methodology primarily relies on whether the bounding box contains a center point or intersects with another bounding box, with the specific script detailed in Appendix 2, 3, 5. For the floor category, the center point is shifted upward for better accuracy. For doors, Clockwork package facilitates direct retrieval of information "from" and "to" rooms (Figure 22).

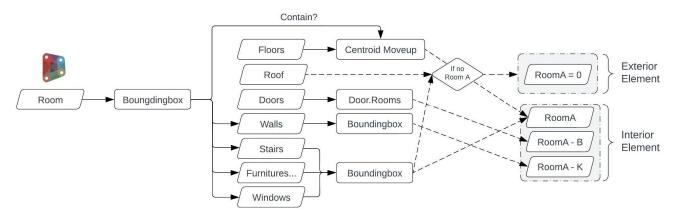


Figure 22: Framework for tagging room for different categories in Dynamo

Rhino Compute for Per room simulation automation

During the implementation phase, it is essential to filter elements and automate the process for each room, which includes converting the BIM model into GH. Another key focus is managing the inputs and outputs of Rhino Compute, ensuring that the simulation results are accurately displayed at the correct coordinates on the front-end.

Each time a user selects a room in the front-end, the room number, based on the CSV data from Section 4.1.3, is recorded and sent to Rhino Compute as input. The room number and category name are then queried in GH on the back-end to differentiate between the various rooms for the sunlight simulation. To accurately simulate sunlight, the geometry of the room must be processed to distinguish between different components and apply appropriate materials. For instance, since ceilings are not a predefined category in BIM, they can be created by copying and panning the floor (Figure 23).

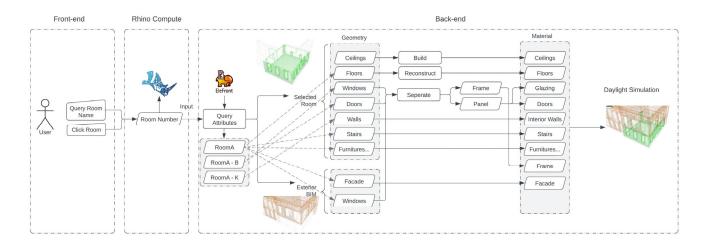


Figure 23: Workflow for BIM element selection automation in daylight simulation

At a broader level, the workflow for running a per-room daylight simulation involves the front-end, back-end, data processing, and Rhino Compute in between (Figure 24). When a user inputs data, it is transferred to Rhino Compute as integers, numbers, and strings. Based on the user's selection of LOD and metrics, Rhino Compute selects the corresponding GH script file (Appendix 12 is an example for DA simulation) for the server to execute (a copy of the GH file). The server performs the sunlight simulation according to the GH script instructions. Additionally, if the user adds extra buildings in Mapbox, the coordinates, materials, rotation angles, and other details are transmitted as lists to prevent null values when certain building types are

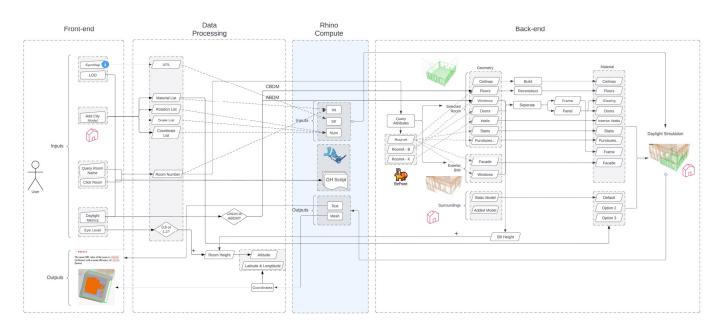


Figure 24: Rhino Compute workflow for BIM element selection automation in daylight simulation

absent, as discussed in Section 4.3.3.

Another consideration in the data derived from the Revit model concerns the coordinate axes for each room for visualization of simulation result, which are indirectly obtained due to Revit's lack of a default latitude and longitude coordinate system. Two potential solutions are proposed to address this issue. The first involves integrating latitude and longitude information directly into Revit, assigning these coordinates as project parameters for each room for export in the same way as room tag information. The second solution requires separately importing the floors into Mapbox to ascertain latitude and longitude, followed by exporting in JSON format from Mapbox. The first approach carries a risk of discrepancies and uncontrollable deviations between the latitude and longitude assigned in Revit and those imported into Mapbox. In contrast, the second approach offers strategic benefits for future scalability. It allows for the workflow used in importing floors to be adapted for importing other elements into Mapbox at a later stage. This thesis employs the second approach based on its practical application and adaptability.

BIM models are frequently imported in Mapbox with an initial scale factor and a predefined degree of rotation, the process of rotating a point around a specific point on a 2D plane. When rotating a point situated at coordinates (x, y) around the origin, the coordinates of the newly positioned point will be (x', y'). θ represents the angle of rotation (Equation 20).

$$\begin{pmatrix} x' \\ v' \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x \\ v \end{pmatrix} \tag{20}$$

In Threejs, the children's position is influenced by multiple layers of parents' position (Figure 25).

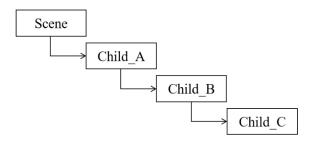


Figure 25: Children's position and parents' position

Workflow optimization

Comparing the effects of various LODs and static 3D data ranges is necessary to optimize the GH script and workflow. In the final phase, the main focuses are building the front-end platform, enhancing user functionality and interactivity, ensuring the correct input and output for Rhino Compute, and processing and storing detailed data to improve overall functionality.

The benchmark comparison evaluates the time and accuracy of daylight simulations using LOD 1.3 and LOD 2.2, with the assumption that LOD 2.2 provides more accurate results, which due to its inclusion of more detailed roof information, resulting in more precise OA values for per-room daylight simulations (Equation

$$Percentage\ Difference\ = \frac{|Value_{LOD\ 1.3}\ -\ Value_{LOD\ 2.2}|}{Value_{LOD\ 2.2}}\times\ 100\% \tag{21}$$

To optimize the workflow, the influence of the spatial extent of surrounding buildings on the accuracy and computational duration of daylight simulations are also evaluated. The geometric center of the BK model was used as the origin for range radius expansions, encompassing 200m, 250m, 300m, and 350m (There are different radius ranges for different BIM initial model sizes).

Figure 26: 4 radii for static 3D city model for case study

The benchmark for simulation accuracy regarding radius is based on the 350m range radius. This range is considered the most accurate as it encompasses the most extensive model information, ensuring a comprehensive analysis of surrounding buildings' impact on daylight simulation. Therefore, all other radius options (200m, 250m, and 300m) are evaluated against the 350m radius to determine their effectiveness and efficiency. For different radius, the dimensions of the planar geometry representing the ground varies, as shown in Figure 26. The ground material was configured using the HB Shade component and the HB Translucent Modifier. To simulate typical ground reflectance, the "diff_ref" value was set to 0.2, and the "diff_trans" value was set to 0. This represents ground materials like soil, grass, and concrete, which do not transmit light but instead reflect and absorb it

/ Implementation

4.1 SETTINGS & DATA PREPARATION

4.1.1 SETTINGS

Mapbox Settings

There are a few settings that need to be made to the Mapbox before the actual implementation (Figure 27).

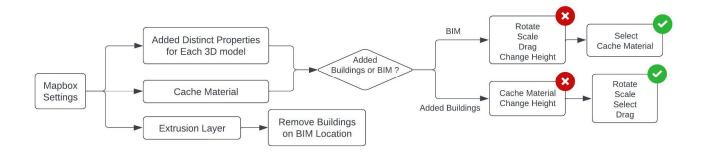


Figure 27: Settings in Mapbox

In the original Threebox library, the functionality over user interaction was limited to displaying Boolean values in the console bar to indicate whether an imported object had been selected. For enhancements, a more nuanced control mechanism was necessary, particularly for the manipulation of newly integrated 3D elements. The desired functionality for the newly added surrounding building geometry model included enabling selection, rotation, and translational movements without altering the object's altitude, while the BIM models imported subsequently were to be selectable without the capabilities for rotation, translation, or altitude modification.

Prior to the proposed modifications, the source code allowed only uniform properties of selectability, rotation, and movement across all objects rendered on the canvas. The specific requirement entailed the introduction of distinct properties for each loaded geometry within the application. These properties would govern the individual object's selectability, rotation, movement, and altitude change. Furthermore, it was imperative to develop a mechanism to store and display these properties within the console bar for continuous accessibility and monitoring. This enhancement would facilitate a more granular control over the interaction with different 3D models within the Mapbox environment. This enhancement was done by modifying the source code of Three.js as shown in Appendix 1.

Upon completion of the modifications, interacting with any geometry imported into Mapbox will allow for the retrieval of Boolean information, indicating whether the object is selectable, rotatable, draggable, and capable of altitude adjustment (Table 15).

To set up a 3D building layer within Mapbox, the default 3D buildings located in the vicinity of the BIM

model on the 'add-3d-buildings' layer should be selectively filtered out by their IDs. This process requires manual adjustments. The integration of Threebox with Mapbox facilitates the activation of tooltips. These tooltips display on fill-extrusion layers and 3D models, allowing for the identification of existing building IDs at the BIM model's specified location. Subsequently, these buildings can be filtered using their IDs. In this case study of BK building, the relevant IDs are 44383237, 44383236, 253723359, 1081796637, 975016695, 975016694, 975016698, 975016697, 975016696, 1081796635, 1081796636, 253724106, and 44383240.

Threebox automatically caches materials, implying that any additional new buildings of the same type will retain the identical material. This function significantly enhances the efficiency of loading BIM model with static materials subsequently, but for newly added surrounding buildings, the cache must be manually deactivated to ensure material updates are applied.

GH Settings for per room daylight simulation

In less dense or low-rise areas where buildings do not over shadow each other significantly, the amount of light entering through windows primarily depends on direct sunlight and sky diffused light. The interior design elements have significant impact on indoor light levels. Thus, the selection of interior materials requires precise accuracy. This research will only focus on large surfaces and material options will also be set accordingly based on an additional requirement outlined in EN 12464-1.

The material database employed is sourced from the Spectral Materials Database: Home (n.d.). Selections were made based on the actual conditions within the BK interior. However, given the diverse color range of the flooring and walls, the materials were simplified for this analysis to a grey carpet and a white plaster wall. Since materials with roughness greater than 0.2 are not realistic in real life (Translucent Modifier | HB-Radiance Primer, n.d.), the roughness of some materials in the library has been slightly adjusted. The material selection can be found in Appendix 11.

Considering the current detail level of the BK BIM model and the need to balance accuracy with computing time, the input detail level for HB Radiance Parameter is set to 1, "medium". The recipe type is set to 2, "rfluxmtx | annual," to accommodate the annual daylight metric. The thresholds for metrics are listed in Table 7.

	DA	sDA	UDI
Settings	$E_{Threshold} = 300 lux$ The minimum required illuminance level	$T_{Target} = 50\%$ 300 lux for at least 50% of the occupied time	$E_{Lower\ Limit} = 100 lux$ $E_{Upper\ Limit} = 3000 lux$

Table 7: Settings of threshold for different daylight metrics in GH

Experiment and GH Settings for ABDM & CBDM correlation studies

Several potential moderating variables were investigated within the context of daylight simulation. Two basic room prototypes were modeled in Rhino: a small room (3m x 3.5m x 3m) and a larger room (5m x 4m x 3m). Two window sill heights (0.9m and 1.3m) were considered, with all windows sized at 2m x 1m. Windows were oriented either portrait or landscape, uniformly offset from the façade's center. Scenarios with (a) and without (b) extended shading were compared, as shown in Figure s, and denoted by letters A (North) to H, and I (North) to P. The angles shift counterclockwise with increasing alphabetical order (Figure 28). In (a), cells 4 and 5 are empty due to the inherent uncertainty regarding the number of windows and the presence or absence of a shading system, which could introduce additional moderating variables. Consequently, these scenarios are excluded from the experiment. Experimental room groups were named with a combination of letters and numbers (e.g., M4).

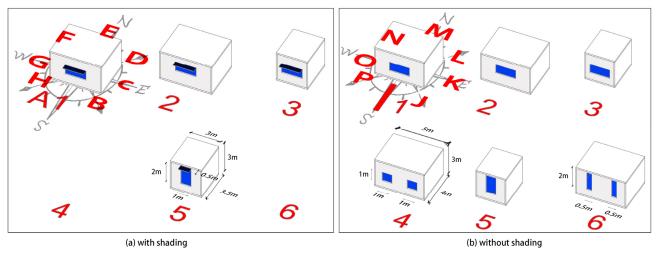


Figure 20. Settings of basic room modeled in knillo (a) with shading, (b) without shading

The surrounding buildings were grouped into six clusters, varying from 1 to 4 stories in height. The distance from these buildings to the experimental room's center ranged between 31 to 42 meters, mirroring the building density and D/H ratio around the BK faculty building in Delft. The material composition inside the HB model was standardized, with the room's four façades set at 100mm thickness, and the ceiling and floor at 150mm. The glazing was 10mm thick (Figure 29).

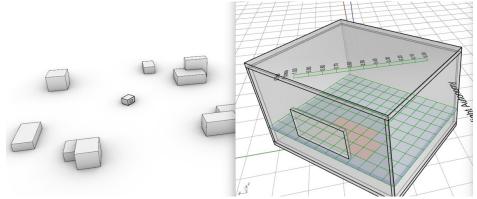


Figure 29: The settings of surrounding buildings and room daylight simulation

Compare:

The comparison scenarios and moderating variables settings in the experiment can be found in Table 8The simulation results were analyzed (Table 8) through fitting and regression line analysis, followed by a comparison of their R Square values. Conclusions were drawn based on the validity of assumptions regarding these moderating variables. Preliminary evaluations were made on how these variables impact correlation coefficients. The GH script for the simulation and the complete simulation results datasheet are available in the Appendix 10.

Table 8: Experimental comparison scenarios and moderating variable configurations

Rhino Compute Settings

The Rhino compute timeout threshold in App server Config.cs file need to be reset. In this case study, the value is set to 1000s in line 31(Figure 30).

Figure 30: Reset Rhino compute timeout threshold

```
A MARIAN DE CONTRACTOR DE CONT
```

In the instance where the initial timeout setting is configured at 100 seconds, the web page will display an error as depicted in Figure 31. However, the webpage does not provide detailed content regarding the error. On the application server side, it is explicitly noted that the request was cancelled "due to the configured HttpClient.Timeout of 100 seconds elapsing."

4.1.2 LOAD 3D BAG IN RHINO

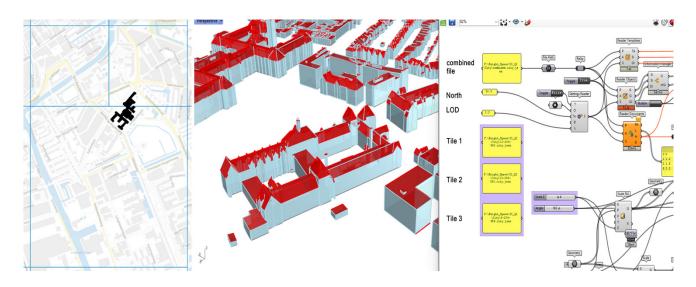


Figure 32: Load in 3D BAG combined tiles using RhinoCityJSON

Initially, the 3D tile location in the 3D BAG Viewer (3DBAG Viewer, n.d.) must be identifies where the relevant imported BIM model is positioned for daylight simulation surrounding settings. In this case study, BK building is situated at the confluence of tiles 10-284-560, 10-286-560, and 9-284-556, which encompass the modeling of the environment required for daylighting simulations. These three JSON files are merged into a single JSON file used as the input file (Figure 32) by using RhinoCityJSON plugin in GH (Cityjson, n.d.). Additionally, it is essential to ensure the north direction is set to align with the rotation angle of the BK BIM model imported into Mapbox later. The LOD in this thesis is specified as either 2.2 or 1.3, given as an input.

4.1.3 BIM DATA PREPARATION

Tag elements' room information in Dynamo per category

This section starts with Create project parameters in Revit, set up as follows (Figure). The implementation follows the workflow in Section 3.2, tagging by category.

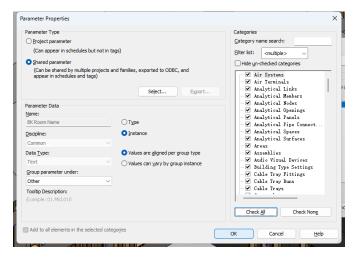


Figure 33: Create project parameters in Revit

Walls involve the creation of project parameters ranging from RoomA to RoomK, with the most intricate wall shared by 11 rooms (Figure 33). This aligns with actual construction practices, where walls are not segmented by room but cast as a single unit. While this does not compromise the accuracy of interior daylight simulations,

Figure 33: A wall in orange hall with 11 room tags in Revit

it does add complexity to the simulation process and affects visualization within web applications.

It should be noted that some elements, such as parts of the stairs, and the roof, do not belong to any room because they are positioned externally. Since all the RoomA tags were previously initialized to zero, all elements are tagged with room labels and thus further imported into Mapbox. Additionally, this workflow omits dealing with ceilings. Even in rooms with sloped roofs where the ceiling remains flat indoor, considering ceilings from a user interactivity perspective can obscure other room elements when selected. For 48

the purposes of daylight simulation, the ceiling can effectively be regarded as a z-axis duplicate of the floor geometry, this means that the corresponding ceiling can be easily created while retrieving the floor of the room, rendering it unnecessary to include in the tagging process. This will be further discussed in Section 4.3.1 and follow Figure 23.

Get Room Info CSV

In this phase, it is necessary to generate two CSV files to export information about elements and rooms. This is achieved by navigating to Revit's "View" menu, selecting "Schedules," and creating a Multi-Category Schedule for the current phase. One of the schedules should capture room number, name, and level information. The room information csv data structure is shown in Table 9.

Room Number	Room Name	Room Level
341	BG.Oost.560	BG
497	BG+ west 610	BG+
12	01.Oost.010	1st floor
213	01+.West.866	1st floor +
215	02.Mid.010	2nd

Table 9: Room information csv data structure

In the BIM model used for this case study, measuring the height of each floor is straightforward. This measurement is crucial for acquiring the altitude data needed to display the simulation grid results on the front-end. In this case study, the original model included a basement level; however, since the basement lacked windows, studying daylighting for it was not relevant. Consequently, the basement portion was removed from the model, resulting in non-sequential numbering of the selectable rooms. The room level and height correlation in this case study is shown in Table 10.

Room Level	BG	BG +	1st floor	1st floor +	2nd
Height on floor	0.15	2.85	5.85	9.05	11.75
surface (Unit: m)					

Table 10: Room Level and height in case study

The other should document comprehensive details including all elements, element IDs, and information spanning from RoomA to RoomK like shown in Table 11. (Full csv of wall category can be found in Appendix 14).

Element	Room	Category										
ID	A	В	C	D	Е	F	G	Н	I	J	K	
730775	50	47										Doors
1478881	368											Doors
370171	25											Floors
1495879	143											Railings
1446262	44											Stairs
381882	400	435	436	450								Walls
1614994	38	39	40	46	56	57	161	169	346	357	724	Walls
1400406	251											Windows

Table 11: BIM element room information csv data structure

Initially, an approach was employed where all BIM models were imported per room directly. The relative positioning was determined based on the hierarchical parent-child relationships, as illustrated in Figure 25. The coordinates for the room's bounding box were acquired using the unprojectFromWorld method. However, this method encountered issues with walls shared by multiple rooms, which resulted in deformation of the bounding boxes, which led to inaccuracies in the positions of the simulation results imported subsequently (Figure 34 (a)). Later considerations involved importing each room floor individually, utilizing the coordinates of the entire BIM model's parent element. But this resulted in a uniform displacement across all room coordinates, attributable to the alteration of the geometric center of the entire model when importing the complete BIM model versus only the floor category (Figure 34 b). The methodology and its implications shown in Table 15, with the final implementation outlined in Algorithm 1 (Figure 34 (c)).

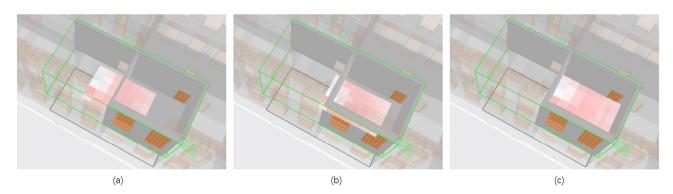


Figure 34: Coordinates of room in three methods

Algorithm 1: Get Simulation Center Coordinates JSON File of Each Room

```
Input: Floor GLTF, roomList of valid rooms, loadCoordinates, Initial Scale Factor (0.0415552), Initial Rotate Degrees (50.5)
```

Output: floorCoordinates.JSON

```
floorCoordinates \leftarrow \{ \}
radRotate ← Initial Rotate Degrees * Pi / 180
procedure addElement (i, {roomNumbers})
   load Floor GLTF on 'custom-BKElement layer'
      at loadCoordinates with rotation: { x: 90, y: 0, z: 0 }
   old (x, y) \leftarrow Floor GLTF (position.x, position.y)
   new (x,y) \leftarrow (\text{old } x * \cos(\text{radRotate}) - \text{old } y * \sin(\text{radRotate}), \text{old } x * \sin(\text{radRotate}) +
   old y * cos (radRotate))
   floorCoordinates (x, y) \leftarrow \text{unprojectFromWorld} (old x + \text{new } x * \text{Initial Scale Factor}, old y
   + new y * Initial Scale Factor)
   \{floorCoordinates\}[i] \leftarrow roomCoordinates(x, y)
procedure mapRoomNumber ({roomNumbers})
   load Floor GLTF
   for i in Amount of GLTF meshes do
      if mesh[i]["RoomList"] exist and mesh[i]["name"] = "Generic 150mm" then
         for every RoomTag in roomList do
           add i to {roomNumbers}[RoomTag]
      return {roomNumbers}
load GLTF on 'custom-BKElement layer'
   at loadCoordinates with rotation: { x: 90, y: 0, z: 0 }
   roomNumbers \leftarrow \{ \}
```

Initially, when importing only the floor component, it is feasible to configure a download button on the webpage that facilitates the acquisition of the floor's coordinate data, in this case study a temporary "download" button is created on the dashboard on the left. This data file can be accessed and utilized during the comprehensive importation of all BIM elements (Section 4.1.4 per Element vs. per Room Method). This process is depicted in the console bar displayed on the right side of the picture. The evaluation of positional accuracy can be conducted by selecting a random room at and retrieving its central latitude and longitude from the Mapbox console bar. This geographic data can then be entered into Google Maps to ascertain the precise location of the point. floorCoordinatesJSON can be found at Appendix 13.

4.1.4 LOAD BIM MODEL & NEW BUILDING MODEL ON MAPBOX

Enrich components' GLTF database with extra BIM information

JSON format is used to export the mesh components of the GLTF file, which encompass Section 4.1.3 containing the BIM data that require modification. Subsequently, incorporate the room tag list into the multicategory schedule CSV file, as also developed in Section 4.1.3. The final step involves reintegrating the revised JSON file into the preceding GLTF file. After revising, for instance, the "extras" key of element ID 528608 will be:

```
"extras": {
    "Revit Element Info": {
        "Element Id": "528608",
        "RoomList": ["503", "505", "518"]
}
```

These three processes can be efficiently executed using Python scripts, with Algorithm 2 specifically detailing the step involved in modifying the JSON file.

```
Algorithm 2: Enrich JSON File with Room Information Exported from Revit

Input: RoomTagMax (RoomK), originalJSON, BIM Information CSV
Output: newJSON

open originalJSON
open CSV skip the title line
for every row in CSV do:
| for every line in originalJSON do
```

```
if line.ElementID = row.ElementID do

| listJSON ← [ ]
| for i in range (RoomTagMax) do
| if row.RoomTag = empty do
| | continue
| if row.RoomTag >= 0 do
| | add row.RoomTag to listJSON
| line.RoomList ← listJson
| break
| open newJSON
| JSONdump
```

per Element vs. per Room Method

The integration of BIM model into Mapbox requires a careful balance between interactivity, duration of import, and the precision of selection per room. This balance necessitates a strategic approach to segmenting the model and determining the appropriate geometry unit for user interaction. Furthermore, it necessitates tackling the complexities that arise with overlapping elements, such as shared walls. which is an inevitable complication in this context.

	Load in as a whole	Load in per BIM element	Load in per room way 1	Load in per room way 2	Load in per room way 2 (duplicate of multiple tag elements)
Element	1	7520	477	477	477
Time	10s	10+ min	1min	35s	48s
Interaction	-	++	+	+	+
Accuracy	-	++	+	+	++

Table 12: Comparison of different load in methods

Existing research predominantly focuses on importing the BIM model in its entirety, a method that is highly efficient in terms of time but offers limited interactivity. Importing each BIM element as an individual unit faces challenges of substantial number of units. Typically, a moderate-sized building could contain hundreds of elements, in this case study, can extend the import process to over ten minutes, significantly slowing down the webpage. To enhance efficiency, the model was initially imported by room, with each element possessing multiple room tags imported only once (attributed to the first room serial number that appears). which negatively impacted daylighting simulations, is no longer employed. A refined approach is importing these elements multiple times, assigning each import to a different room. Another strategy to expedite the process involved categorizing each element by room prior to importation (Algorithm 3). This method allows for iterating through a pre-organized list of rooms, which results in a time savings of 10-20 seconds compared to sequentially reading and immediately importing each element (Table 12).

```
Algorithm 3: Load GLTF BIM 3D Model Per Room on Mapbox
```

Input: GLTF, roomList of valid rooms, loadCoordinates

Output: GLTF 3D BIM geometry on Mapbox

filter default 3D buildings at BIM Model's location on 'add-3d-buildings' layer by ID procedure addElement (i, {roomNumbers})

```
load GLTF on 'custom-BKElement layer'
  if i < length of roomList then
     show spinner
     for j in range (length of {roomNumbers}[i]) do
      GLTF.{roomNumbers}[i][j].materialFormat ← THREE.RGBAFormat
     roomSimuResult[i] ← initial dummy value
  if i = 0 then
   mesh unselectable
  GLTF get BoundingBox
procedure mapRoomNumber ({roomNumbers})
  load GLTF
  for i in Amount of GLTF meshes do
     if mesh[i]["RoomList"] exist then
        for every RoomTag in roomList do
         add i to {roomNumbers}[RoomTag]
     return {roomNumbers}
load GLTF on 'custom-BKElement layer'
  at loadCoordinates with rotation: { x: 90, y: 0, z: 0 }
  roomNumbers \leftarrow \{ \}
  mapRoomNumber ({roomNumbers})
  for i in range (length of roomList) do
   addElement (roomList[i], {roomNumbers})
re-render the scene
```

It should be noted that at the time of import, each room is assigned a provisional simulation value. This facilitates the comparison of results, as detailed in Section 4.5.3 and Section 5.3.

Load 3 basic typologies on Mapbox FBX vs. glTF

Three foundational building typologies were initially modeled using Rhino: a flat roof, a single slope roof, and a double slope roof. Each model was constructed based on the dimensions of a 25m x 25m x 25m cube (Figure 35). A dropdown menu was implemented for user interaction on Mapbox web application, enabling users to select a specific added building type. Upon user's selection from the dropdown menu, the models are consistently positioned at a predefined location on the map each time. In this case study, the coordinates for this fixed point are set to [4.371029663172603, 52.007102014389176], located on the eastern side of the garden in front of the north gate of the BK building.

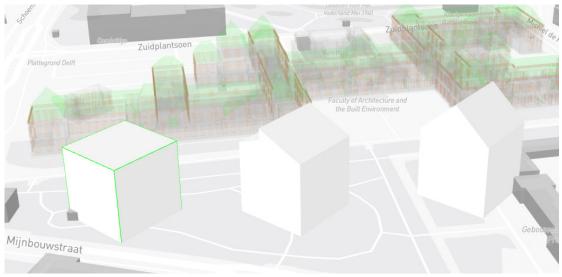


Figure 35: 3 typologies of added buildings

Threebox supports external 3D models files in OBJ, glTF, FBX and DAE formats (Jscastro, n.d.). In the conversion process, a Rhino model transformed into GLTF format typically exhibits a smaller file size compared to the FBX format, while also retaining the capability to preserve materials and alter colors for user interaction (Table 13). Therefore, the GLTF format has been selected in the thesis for importing new 3D building models into Mapbox. It is important to note that for GLTF format, the default rotation parameters should be set as { x: 90, y: 0, z: 0 }. Furthermore, the framework allows users to integrate their customized geometries into the map. It is crucial, however, to ascertain that the models defined in GH script are in alignment with these custom models to preserve a uniform workflow. This thesis provides a foundational workflow that could potentially be expanded to support such customization.

	Type 1	Type 2	Type3	Material
FBX	27kb	28kb	28kb	×
glTF	4kb	4kb	6kb	✓

Table 13: Comparison of FBX and GLTF file sizes and material retention

4.2 POTENTIAL TO UTILIZE ABOM STANDARD METRICS

4.2.1 IMPLEMENT GH SCRIPT OF SBI & VIEW LUMEN

SBI

Computing SBI doesn't require lighting simulation per se; instead, it relies solely on line-of-sight calculations. (Mardaljevic & Roy, 2016). The accuracy depends mainly on the simulation time-step, the solar discretization scheme (both are interrelated) and window aperture sensor grid density (Mardaljevic & Roy, 2016). The overall workflow in GH is shown in Figure 36.

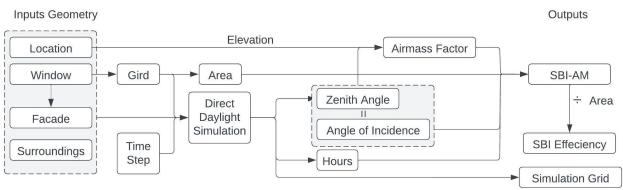
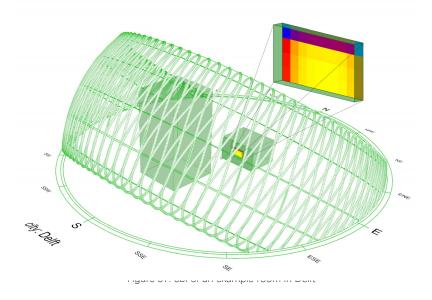



Figure 50. WORKHOW FOR IMPROHESTING SERVICE OF I

As illustrated in Figure 37, an very simple space in Delft featuring a single window is used for the experiment: height width depth is 3m 5m 4m, with a 2m*1m glazed aperture positioned centrally in one wall at the height of 1.2m. with another sheltered building with a height of 12m (4 floors) positioned 4m in front of the space, affecting the direct sunlight hours. The grid size input of GH component LB Direct Sun Hours is configured at 0.2m (40 grids) to accommodate the experimental arrangement. Notably, Mardaljevic and Roy (2016) employed the Radiance toolkit to produce sensor grids for apertures and provided 'stencil method' of creating sensor grids for arbitrary shapes and non-horizontal planes through two rotational transformations. But in the context of this particular case study which mainly utilizing GH as back-end tool in workflow, considering that all windows are oriented perpendicular to the ground, direct utilization of the LB component was opted for.

The TM array has dimensions 96 * 365. The GH script is implemented as shown in Figure ..., 35040 time periods were created initially and 50.91% (17839) of the time has $\gamma_s > 0$ according to LB simulation result.

To compare among different individual windows, SBI efficiency, also called the normalized annual total SBI, can be calculated by SBI value divided by the sum area of the glazed aperture with unit of kW (Mardaljevic & Roy, 2016). The GH script used the Mass Addition component to aggregate the annual SBI values for the given aperture and subsequently divides this sum by the aperture's area to determine its SBI efficiency value. The entire GH script of computing SBI-AM and SBI efficiency can be found in Appendix 7.

In the context of application features, the aperture properties may serve as proxies for the daylighting attributes of the selected room. This chapter will explore the correlation between SBI and CBDM metrics, with the potential to establish them as viable indicators of indoor daylighting performance during the planning phase.

View Lumen

ASI metric measures how well an aperture connects to the sky dome by determining the average light it receives from a uniform luminance sky dome. In their study, Mardaljevic and Roy (2017) introduce the concept of "view lumen" to measure this connectivity to ground, foreground, and sky layers, using luminous flux as a proxy for quantification. The workflow is shown in Figure 38.

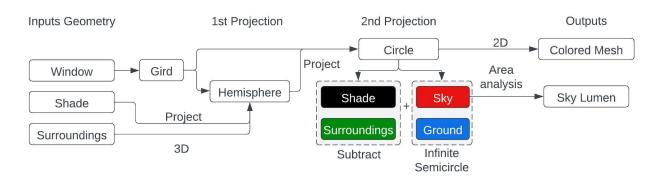


Figure 38: Workflow for implementing Sky lumen in GH

Very similar to SBI experiment, a simple room measuring 5m * 4m * 3m was built in GH, featuring a singular 2m * 1m aperture. Positioned before the aperture were 3 buildings as obstructions, serving to elucidate principles governing projection phenomena. The grid_size input of HB Sensor Grid from Apertures component is configured to 0.3m.

One may envision a hypothetical scenario wherein a vertical hemisphere is conceptually positioned in front of each of the 18 sensor units as delineated in Figure 39. The size of these hemispheres is immaterial, provided they do not overlap with the internal or external geometries. A straightforward method is creating spheres centered at each of the 18 sensors, subsequently trim them with aperture planes to yield hemispheres. It is imperative to scale them appropriately to prevent any intersection between the surface of the hemispheres, the shading geometry (not excessively small) and surrounding geometries (not excessively large). This adjustment process may require manual intervention. Note that the geometric seam inherent in spheres created in Rhino software exhibits a C-shaped seam, and in instances where the plane of this seam deviates from the plane of the window (e.g., when the window orientation is not South-North), it disrupts the outcomes of subsequent

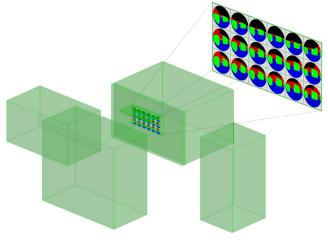


Figure 39: View lumen for an example room in Delft

cuts and projections. Thus, it's important to rotate the spheres to match the orientation of the aperture for consistency.

The two projections of the surrounding buildings and shading is similar, as shown in Figure 40. During the initial projection, the Deconstruct Brep component is utilized to extract all edges. Following this, the Extrude Point component is employed to establish connections between the center point of each sensor unit and these edges to form polyhedrons. The difference lies in the shading along the inner surface of the hemisphere, contrasting with the positioning of surrounding elements on the exterior, which involves intersecting the initial intersection of the shaded geometry with a scale factor corresponding to the previously constructed hemisphere dimensions. This intersection creates the result of the first projection by using Brep | Brep component. In the second projection, the project component is invoked to project the shape of the hemisphere onto the plane aligned with the sensor unit's position. The complete projection line is discernible by using the internal edges of the Brep Edges, as illustrated in Figure 40(b). Ultimately, all sensor grids are resized to their original diameter of 0.3 meters at their center points.

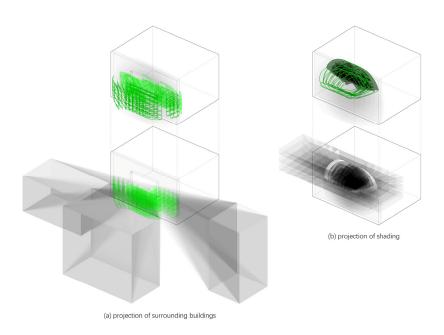


Figure 40: Two projections of surrounding buildings(a) and shading(b)

The original way was using Radiance lighting simulation system (Ward Larson et al., 1998), the sky and ground are at infinity. In Rhino, the infinite ground and sky planes can be represented directly in the second projection by simply bisecting the circular sensor from the center height. Note that these planes are frequently obscured by shading (black) and the surrounding buildings (green) layers, and attention must be devoted to both the stacking sequence and the arrangement of Region Difference operations (Figure 42). The principle is that objects situated further away from the aperture should occupy the lowermost positions within the projection layers and allow more overlaid layers. This approach aims to calculate the percentage of the overall sensor unit area occupied by the colored block by employing Region Difference component on the layers,

executed in a sequential manner from the topmost to the bottommost layer thus duplication of area measurement should be avoided.

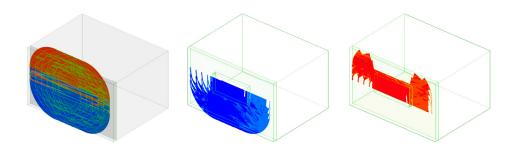


Figure 42: Create infinite sky and ground layers on sensor unit directly in GH

Figure 41: Visualization for two projections

The other method of creating hemispherical view involves utilizing the HB View component in GH, which is primarily designed for glare analysis. A value of 1 is given as input for view_type for Hemispherical fisheye. Note that radiance_par for HB Point-In-Time View-Based should be configured to "-ab 0 -aa 0 -ad 0 -ar 0" to deactivate certain aspects of ambient lighting computations. This may lead to quicker renderings but with potentially reduced accuracy, as it disables various components such as ambient bounces, considering only direct sunlight, omitting ambient accuracy calculation and divisions, as well as neglecting ambient cache for indirect lighting. Given the primary emphasis on color block and outline within this implementation rather than intricate color differentials, such outcomes align with the intended objectives. HB Certain Illuminance component is used to create an evenly illuminated sky (Figure 43).

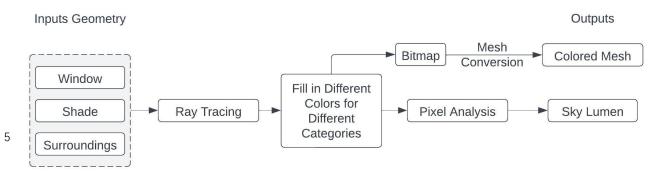


Figure 43: Workflow for implementing Sky lumen in GH (Ray tracing method)

Subsequent to this, there arises the necessity to contemplate methodologies for discerning and applying distinctive colors to buildings, ground and shade, alongside the undertaking of pixel analysis on fisheye photographs aimed at delineating the proportion of red, blue, green, and black (or varying shades of gray). Due to the length of the thesis and time constraints, this avenue of research is regrettably precluded from further exploration. Furthermore, although rendering time was greatly reduced by omitting some of the complex ray tracing, each simulation still demands approximately 20 seconds, thereby diminishing the discernible advantage of employing View Lumen as an ABDM metrics through arithmetic operations. However, this special approach holds potential for future research.

The complete GH script for view lumen can be found in Appendix 8, It is advised to carefully consider the data structure throughout the script's development process.

4.2.2 SIMULATION & REGRESSION ANALYSIS

The average simulation durations were 50 seconds per session for small rooms and 1.1 minutes per session for larger rooms. The following section details the regression analysis and conclusions:

DA and SBI-AM

Figure illustrates the relationship between the independent variable DA (x-axis) and the dependent variable SBI-AM (y-axis). Each line represents a distinct room scenario, denoted by different colors and point styles labeled 1 to 6. The regression lines, each with their equations and R^2 values, suggest varying degrees of positive correlation between DA and SBI-AM across different scenarios. This preliminarily confirms the previous hypothesis. The slopes of the regression lines range from 87.86 to 117.27, with R^2 values above 0.95, demonstrating a strong linear relationship in each dataset. Alterations in the variables do not significantly influence the gradient of the DA and SBI-AM relationship (Figure 44).

Comparing scenario 1(low sill height) to 2(high sill height), the rate of increase in SBI-AM with respect to DA is slightly steeper in scenario 1 compared to scenario 2, but scenario 2 starts from a higher initial value. I has a slightly better fit to the regression model.

Comparing scenario 1(big room) to 3(small room), SBI-AM has a faster increase in scenario 3 but starts at a lower value, and 3 marginally lower R^2 value.

Comparing scenario 1(one aperture) to 4(two apertures), scenario 4 has a lower slope value suggesting a milder increase in SBI-AM with DA, but begins lower. 4 has a better fit than 1.

Comparing scenario 4(square aperture) to 6(rectangular aperture), SBI-AM in scenario 6 has a slightly slower rate with respect to DA, and has a much higher starting value, scenario 6 has the best fit in this chart.

In summary, the analysis reveals a robust linear relationship between DA and SBI-AM. The variables previously discussed all serve as moderators within the DA and SBI-AM relationship, indicating that variations in these factors can alter the linear association to some extent. The most prominent influencing factor is the geometry of the room; notably, in smaller spaces, the horizontal and vertical dimensions of windows significantly impact the relationship. Conversely, in larger environments, alterations such as modifications to the window sill height or the shape of the space predominantly affect the intercept rather than significantly altering the slope of the relationship. Thus, while the basic linear relationship remains strong across different conditions, the specific parameters of this relationship can vary depending on room size and configuration.

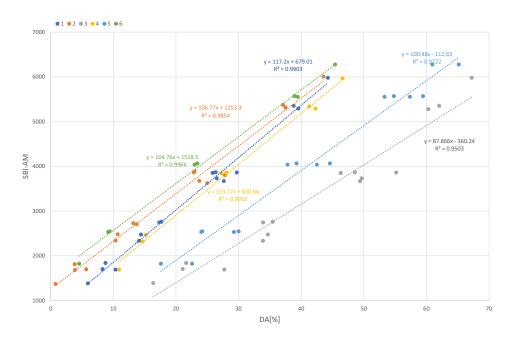


Figure 44: Linear regression plot of Relationship between DA and SBI-AM

A segregated analysis of data from four specific room scenarios (Rooms 1, 2, 3, and 5) based on orientation—southward (due south, southwest, southeast) and northward (due north, northwest, northeast)—as delineated in Figure, was conducted to determine which direction has a better fit.

As shows in Figure 45, across all scenarios, the South-facing direction generally shows a stronger correlation between DA and SBI-AM than the North-facing direction. This directional difference is most pronounced in scenarios with weaker overall correlations (Scenarios 3 and 5). When using DA to predict SBI-AM value, it is crucial to account for direction, and the South-facing direction tends to prove more reliable predictive power.

The variance of the combined dataset is typically lower than the variance of individual subsets, and the combined regression line can better capture the overall trend due to the increased number of data points and the reduction in the influence of outliers or extreme values.

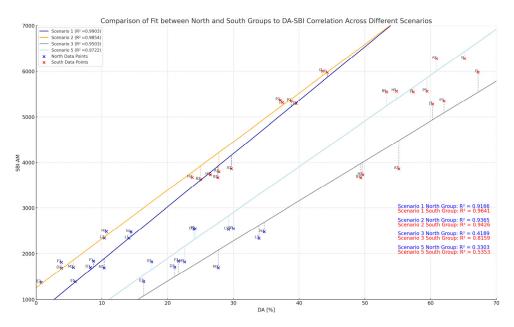


Figure 45: Comparison of linear regression plot of relationship between DA and SBI-AM in North facing direction and South facing direction

sDA and SBI-AM

A comparable analytical approach is employed to examine the relationship between sDA and SBI-AM, where generally, the linear correlation between these metrics is marginally lower than that observed between DA and SBI-AM. It is noteworthy that in scenario 6, an exceptionally low R^2 value of 0.0851 is recorded, suggesting that the relationship may be weak in certain real-world situations. Regarding variations in slope, Scenario 2 and 4 exhibit similar gradients, while Datasets 3 and 5, which represent the portrait and landscape orientations of apertures, respectively, also demonstrate comparable slopes. The similarity in slopes between Datasets 2 and 4 is coincidental, as there are alterations in two variables between these datasets. Consequently, it can be provisionally concluded that the portrait and landscape orientations of apertures exert minimal impact on the slope of the relationships between sDA and SBI-AM (Figure 46).

Comparing scenario 1(low sill height) to 2(high sill height), scenario 1 has a significantly steeper slope than 2, and higher R^2 value. But 2 start with much higher value.

Comparing scenario 1(big room) to 3(small room), scenario 1's slope is dramatically steeper than 3, but they both have high R^2 value.

Comparing scenario 1(one aperture) to 4(two apertures), scenario 1 has a steeper slope than 4, and has higher R^2 value, but starts with a lower intercept.

Comparing scenario 4(square aperture) to 6 (rectangular aperture), the relationship is very weak in scenario 6. Atypical orientations of portal windows may disrupt the correlation between sDA and SBI-AM in actual settings.

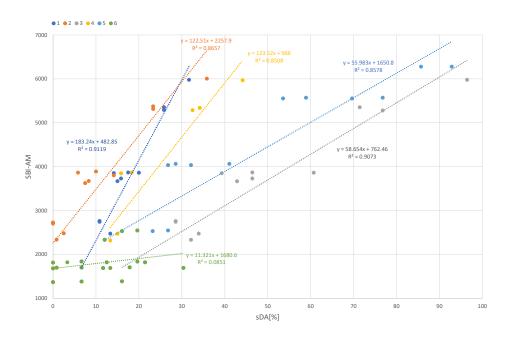


Figure 46: Linear regression plot of Relationship between sDA and SBI-AM

In a similar way, when comparing cases with south-facing and north-facing orientations individually (Figure 47), In most scenarios, the South group consistently shows better correlation, and the significant difference in R² values between two direction groups suggests that the orientation plays a crucial role in the relationship between sDA and SBI-AM.

The negative R² values observed for the North group in Scenarios 1, 2, and 5 suggest that the linear model is inadequate for these scenarios. This underscores the necessity for alternative modeling approaches or the inclusion of additional factors for North-facing directions.

More research and investigation are needed to understand the poor correlation for the North group in several scenarios. This includes examining environmental factors, data collection methods, and non-linear models.

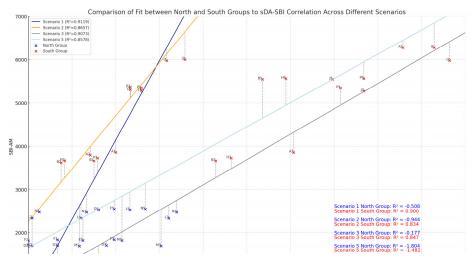


Figure 47: Comparison of linear regression plot of relationship between sDA and SBI-AM in North facing direction and South facing direction

UDI and SBI-AM

In the correlation between UDI and SBI-AM, scenario 3 and 5 exhibit lower coefficients of determination. Notably, only four instances demonstrate a linear relationship between two metrics. Upon comparison of the slopes, it is observed that the slopes of scenarios 1.2 and 4.6 are comparable, suggesting that modifications in the height of window sills and the configuration of combined windows exert small impact on the linear relationship between UDI and SBI-AM, but the number of windows can make a big difference.

Comparing scenario 1(low sill height) to 2(high sill height), they have similar model fit. Scenario 2 has a slightly flatter slope and smaller negative intercept.

Comparing scenario 1(big room) to 3(small room), a reduction in room size disrupts the linear association between the two metrics, as evidenced by the validation of the data from Scenario 5 as well.

Comparing scenario 1(one aperture) to 4(two apertures), Scenario 4 shows a higher model fit. Scenario 4 has a much steeper slope and a significantly large negative intercept.

Comparing scenario 4(square aperture) to 6 (rectangular aperture), both scenarios show strong linear fits, scenario 4 features a steeper slope and lager negative intercept.

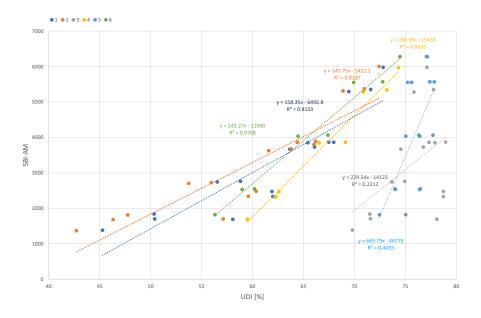


Figure 48: Linear regression plot of Relationship between UDI and SBI-AM

In the analysis comparing north- and south-facing orientations (Figure 49), in all scenarios, the North group has a negative R^2 value and poorer fit than South group, the poor fit is especially pronounced in Scenario 3 and 5, while the South group shows moderate fits in scenario 1 and 2 with positive R^2 values of 0.6086 and 0.6826 respectively. In Scenarios 3 and 5, the fit of South group is still poor but better compared to the North group.

Scenarios 3 and 5 do not adequately fit the data for either group, suggesting that SBI-AM is not a suitable predictor of UDI in some contexts. In contrast, Scenarios 1 and 2 provide better models for the overall relationship between UDI and SBI-AM.

Considering the definition of UDI, which is based on hourly or shorter time-step illuminances over a year and categorizes annual illuminance into three ranges, and exhibits non-linear jumps between categories as values change, the correlation between UDI and SBI-AM is inherently non-linear. This complexity cannot be effectively captured by simple models.

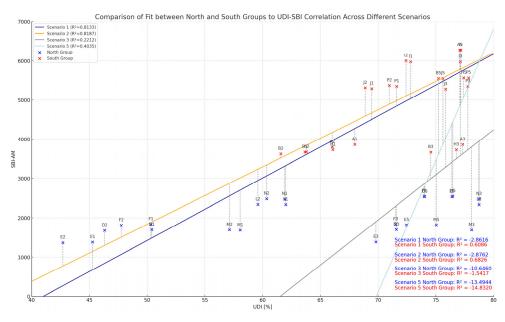


Figure 49: Comparison of linear regression plot of relationship between UDI and SBI-AM in North facing direction and South facing direction

DA and Sky Lumen

Following the evaluation of multiple fitting functions, quadratic regression has been identified as more suitable for modeling the relationships between DA, sDA, UDI, and Sky Lumen, especially influenced by the presence or absence of shading devices. This is likely due to the lower density of residential structures in the experimental setup, similar to conditions at the case study site in Delft. Except for Scenario 1 with shading, which shows a notably low correlation, other scenarios demonstrate good correlations with R^2 values exceeding 0.7 (Figure 50). A comparative analysis of orientation was not conducted due to the dataset division into subgroups based on shading, resulting in limited data in each subgroup.

The graph distinctly segregates into three segments. The upper section, comprising six datasets without shading, shows uniformity with similar vertex values. The lower three datasets, all with shading, also demonstrate comparable vertex values. The middle section is unique, representing Scenario 5 with shading, distinguished by distinct vertex values. Aside from the invalidated Scenario 1 with shading, the relationship lines among the other datasets show a notable degree of similarity, analogous to the patterns observed in the DA and SBI relationship.

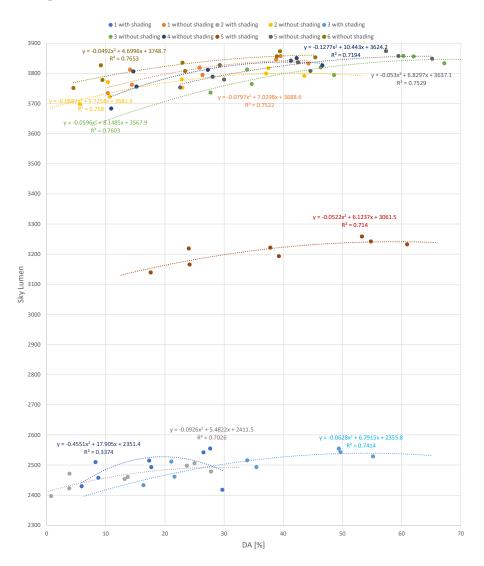


Figure 50: Quadratic regression plot of Relationship between DA and Sky Lumen

sDA and Sky Lumen

In Figure 51, segmented into three distinct parts, Scenario 5 with shading persists as a notably unique case. This scenario continues to stand out distinctly within the dataset. All R^2 values were observed to range between 0.55 and 0.72, indicating a generally lower model fit compared to the relationships between DA and Sky Lumen.

From the analysis of the six data sets without shading, a discernible similarity among scenarios 6, 2, 4, and 1 is evident, as well as between scenarios 3 and 5. These groupings suggest that alterations in the geometric configuration of the room (or room size), serve as another significant moderating factor influencing the relationship between sDA and Sky Lumen apart from the presence or absence of shading.

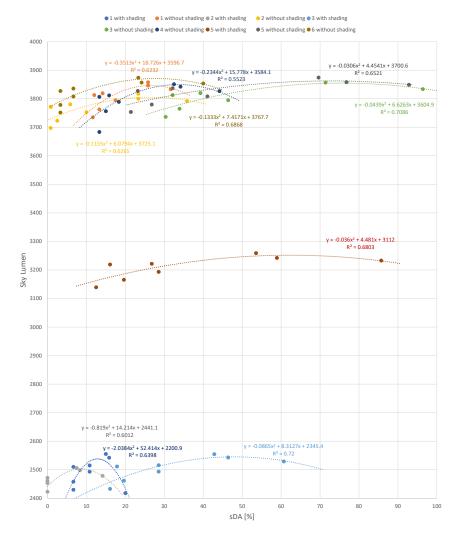


Figure 51: Quadratic regression plot of Relationship between sDA and Sky Lumen

UDI and Sky Lumen

Regarding the correlation between UDI and Sky Lumen, Scenarios 3 and 5 without shading, as well as Scenario 1 with shading, exhibit poor model fits, and the data continues to be categorically segmented into three distinct groups. Furthermore, the patterns of the curves for Scenarios 3 and 5 with shading markedly diverge from the others, indicating that the geometric configuration of the room, or room size, significantly influences this relationship. Alongside the impact of whether shading is present or absent, the spatial configuration of the room emerges as another crucial factor regulating the interaction between UDI and Sky Lumen (Figure 52).

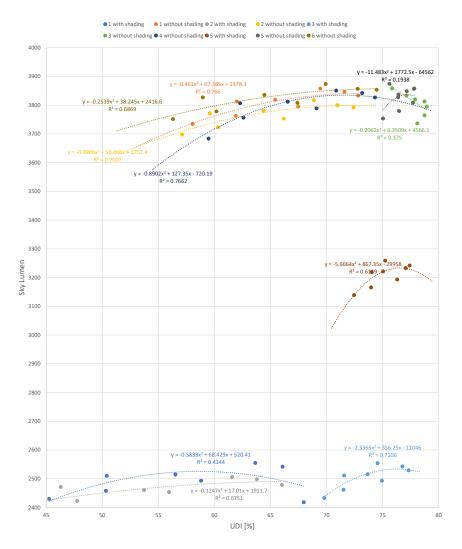


Figure 52: Quadratic regression plot of Relationship between UDI and Sky Lumen

4.3 DAYLIGHT SIMULATION AUTOMATION

4.3.1 ELEMENT SELECTION AUTOMATION IN GH

Given that each execution of Rhino Compute replicates the GH file for processing, no internalized data should exist within the GH script aside from Rhino Compute inputs. On the other hand, directly internalizing geometry leads to attributes loss. To address this issue, Figure 53 illustrates a solution whereby JSON attributes are extracted and added following the internalization of geometry.

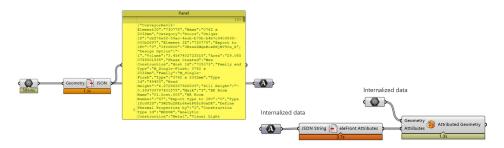


Figure 53: Internalize geometry by adding internalized attributes data

The floor's geometry needs to be reconstructed to ensure uniform grid distribution (Figure 54). Additionally, doors and windows, which often appear as a block, must be separated from their frames and panels to assign the correct materials.

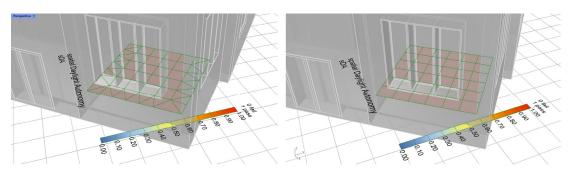


Figure 54: Rebuild floor (a) for evenly distributed sensor grid (b) in GH

4.3.2 EXTERIOR FACADE WALLS OF BIM BUILDING SELECTION AUTOMATION IN

GH

An additional consideration for daylighting simulations in multi-room buildings is the building's self-shading and the influence of indirect daylight because of its façade system. For instance, the room depicted in Figure 55, situated at a corner and shaded by building segments on both sides of the corridor, also experiences the facade's impact on light. As outlined in Section 6.2, the original BIM model does not distinguish between interior and exterior materials. Nevertheless, to enhance the accuracy of the daylighting simulations, a project parameter called "Exterior" was manually created, with all facade walls assigned a value of 1. Whenever a specific room is selected, not only are the four walls enclosing the room considered, but all facade parts that are not belonging to the room are also selected dynamically as geometry for a new HB Shade component named "Facade". When considering daylighting simulation, surrounding walls in the selected room represents

the indoor segment, which were given a white concrete paint material; the remaining facade is treated to represent the impact of external shading and reflection and is designated as exterior red brick material. All the materials can be found in Appendix 11.

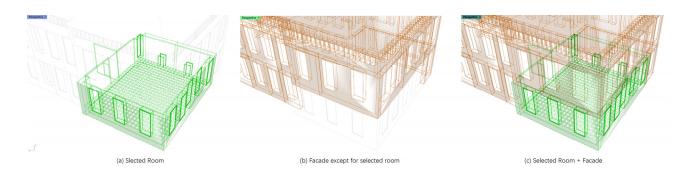


Figure 55: Selected room(a) and the rest of façade considered (b)

Ideally, the analysis should also include windows and their frames, necessitating that the BIM model differentiates between interior and exterior windows, which are typically components of the façade. However, due to the considerable time investment required for such detailed manual modifications, this part is not implemented in the thesis.

4.3.3 AVOID EMPTY INPUTS IN GH

The processes of drag and drop, rotation, scaling, and material selection on the Mapbox and dashboard can be segmented into four discrete steps in GH to achieve synchronization of geometric information between frontend and backend. In GH, when the same type of building is present in multiple locations, the duplicate data components were initially used to make duplication at the original site, followed by scaling, rotation, and removal operations. The sequence in which these steps are executed is not critical; however, it is essential to use Scale NU component, which scales the object along the x, y, and z axes respectively, and the Plane input for this component is the XY plane, originating from the initial location. This configuration guarantees precise scaling with each operation.

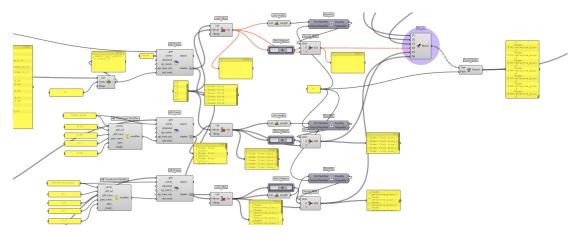


Figure 56: Extracting non-empty data while ensuring no empty inputs in GH workflow

The dispatch component is then employed to filter materials, which are subsequently organized into three categories based on material types. This categorization facilitates the creation of multiple distinct groups of HB shade. In this study, includes three selectable materials as outlined in Section 4.4.2 and Table 16. In instances where not all material types are employed in a scenario (i.e. all added buildings are brick), the input data for this HB Shade component(s) become(s) null, unwanted inputs induce a failure in the daylight simulation. This problem is typically manually rectified within the GH workflow by enabling the component with null output through a middle mouse button click. Nevertheless, for an automated daylight simulation process, a comprehensive solution that accommodates both null and non-null inputs is necessary to ensure robust simulation results.

The strategy is generating an arbitrary geometry at the origin or any coordinate point, and integrating it with the object list containing three materials to circumvent the issue of an empty set. It is important to note that the sequence in which data is accessed affects the functionality of Merge component; this arbitrary geometry must be accessed first. In the case study, a cube is constructed, resulting in six faces. For the HB Shade outputs, the process begins with flattening, followed by the use of the Cull Index component to eliminate the first six items. Subsequent to this operation, the data structure ascends to $\{0;0\}$, with the previously empty set of shades reverting to an empty state, and the non-empty set returning to its initial condition. The use of list length and stream filter implements conditional logic: if the set is empty, maintain the path $\{0;0\}$; if not, flatten $\{0;0\}$ to $\{0\}$. This adjustment allows the subsequent merge component output to exclusively filter non-empty datasets with the path name $\{0\}$ using the Tree Branch component (Figure 56). Attention must be devoted to data structures and pathnames during the development of the GH script. The complete GH script is available in Appendix 12.

4.3.4 RHINO COMPUTE WORKFLOW

The simulation results include a compressed mesh simulation grid and numerical results in text format, which are outputs from Rhino Compute. These results are then parsed into the correct format for display on the

Mapbox front-end web page during data processing. It's crucial to ensure that the grid is placed at the correct coordinates upon import. If the user selects the CBDM metric, the latitude and longitude are based on the floor location; if the ABDM metric is selected, they are based on the window location. The height is determined by the room level (as detailed in Section 4.1.3) and the user's chosen simulation height level. The specific implementation process is described in Algorithm 4.

```
Algorithm 4: Rhino Compute of Selected Room
     Input: Simulation Metrics, Selected Room Num, Added Surrounding Building's Info, SiLevel,
    LOD of 3D City Model
    Output: Mesh Simulation Result showing on Mapbox, Numerical Result and comparison on
    Dashboard
    if no Simulation Metrics then
       show spinner
       remove previous 'rhinoComputeObject_layer'
       compute (Simulation Metrics, LOD of 3D City Model)
    procedure compute (Simulation Metrics, LOD of 3D City Model)
        if no Selected Room Num then
          display message
        else
           start to count Compute Time
           Inputs ← Inputs and GH_[Simulation Metrics][LOD of City Model]
           send POST request to APP Server
             JSON.stringify (Inputs)
           process response
              collectResults (responseJson)
              stop to count Compute Time
              display result on Mapbox and Dashboard based on Simulation Metrics, LOD
     procedure collectResults (responseJson)
        for every data tree do
             for every branch do
                load Rhino Mesh geometry into doc
                   decode JSON using rhino.DracoCompression.decompressBase64String
                parseFloat Numerical Result
        load Rhino doc into three.js scene
        load Rhino doc on 'rhinoComputeObject layer'
             at simulationLocation (x, y, z) of Selected Room Num
             with rotation: \{ x: 0, y: 0, z: 180 \}
        hide spinner
```

4.4 Interactive User Functionality for Added Building on Mapbox

4.4.1 ROTATION & DRAGGING

The method employed here estimates the variation in the x and y coordinates based on the differences in latitude and longitude observed before and after a positional adjustment. The circumference of the earth is

considered 40,075,000 meters. Errors associated with movements in the north-south direction tend to be more substantial compared to those in the east-west direction. But within a limited spatial context, given that the center of the BIM model has been manually established as the center of the world inside GH, discrepancies are negligible for incorporating a new building in proximity to the existing BIM building. As demonstrated in Table 15, the building added in Mapbox and the building synchronized to GH align closely, essentially occupying the same position. The implementation of syncing added building to GH back-end is explained in Algorithm 5.

```
Input: World, BIM Building, Amount of rooms in the BIM Building
Output: Added Buildings' rotation degrees and x, y value in Rhino

rotationList ← [ ]
latitudeList ← [ ]
longtitudeList ← [ ]
longtitudeList ← [ ]
add rotation.z * (180 / Pi) to rotationList
add (coordinates[0] - originLongtitude) * (40075000 / 360) to longtitudeList
add (coordinates[1] - originLatitude) * (cos (originLatitude * Pi / 180) / 360) to latitudeList
rotationList.remove_first (Amount of rooms in the BIM Building)
longtitudeList.remove first (Amount of rooms in the BIM Building)
longtitudeList.remove first (Amount of rooms in the BIM Building)
```

4.4.2 MATERIAL SELECTION

In the initial phases of building planning, three alternative materials - float glass, reflective glass, and brick were evaluated for façade application in this case study, providing a representative sample of local materials to effectively demonstrate the potential impact of new buildings. Notably, when implementing reflective glass material, the HB Glass Modifier is not used because it already incorporates predefined reflective properties (Ladybug Tools Forum, 2023), HB Translucent Modifier component is employed instead, which offers diffuse reflectance, transmitted diffuse, transmitted specular, and specular reflection four customizable inputs (HB-Radiance Primer, 2022), enhancing the flexibility of material settings. The brick material is sourced from the library available through the HB Search Modifiers. In cases involving materials with low transparency, such as bricks, the critical parameter is the diffuse reflectance value. For this material, a reflectance value of 0.5 is typically utilized (Figure 57). The default material for all newly added buildings is brick. Besides, the "HB Shade" is the lightest among HB objects since it has no boundary conditions or children (Ladybug Tools Forum, 2020), these material modifiers are also attached to the shade component.

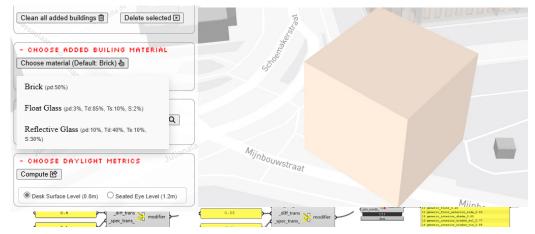


Figure 57: 3 materials settings in GH and user interface on Mapbox

4.4.3 SCALING

From the source code of Object3D.js (Threejs, 2024), object's scale, position, rotation properties are immutable. Threebox inherited this characteristic. This indicates that adjusting the scale of added geometry does not inherently alter its properties, these properties are set only upon the object's importation, and any forced alterations revert to their original state upon the next scene refresh. The approach discussed in this thesis involves the scaling function removing the existing geometry and promptly introducing new geometry. It is crucial to preserve the original geometry's characteristics, position, and material as inputs for the new geometry. Concurrently, with the removal of the old geometry, the associated list of features must also be erased at that particular index (Algorithm 6). From user's end, it straightforward to give dimensions of building being added in meters as inputs, when these dimensions are transferred to GH, scaling factors, which is calculated by dividing the user-entered dimensions by original dimensions (in this case study are established at 25 meters) are employed, due to the necessity of pre-preparing the GLTF for basic typologies as discussed in section 4.1.4, which must then be morphed accordingly. For newly added buildings that do not undergo scaling modifications, the default setting for the scaling factor array remains at [1, 1, 1].

```
Algorithm 6: Scale Selected Added Buildings
                          Input: Selected Added Building Object OS, Width, Depth, Height, if Selected
                          Output: Scaled building 3D geometry on Mapbox, scalefactorList
                          procedure applyScale
                          if if Selected = true then
                                     scalefactor(x,y,z) \leftarrow (Width / originalHeight, Depth / originalDepth, Height / originalDepth / origin
                                     originalHeight)
                                     OS.coordinate(x,y,z) \leftarrow unprojectFromWorld (OS.position.x, OS.position.y, 0)
                                     for every Added Building Info List do
                                                  remove OS.property at OS.index of List
                                                add OS.property to the end of List
                                     scalefactorList \leftarrow scalefactor(x,y,z)
                                     load GLTF OS.type on 'custom-add newbuilding layer'
                                                  at OS.coordinate(x,y,z) with scalefactor(x,y,z)
                                                  for every surface of the Added Building
                                                        surface.material.color ← OS.color
                                     re-render the scene
                          return scalefactorList
```

4.4.4 REMOVE SELECTED & REMOVE ALL

The functionality to delete selected added buildings and to clear all added buildings offers considerable convenience for users, preventing the need for page reloads. To remove a selected building, the building's index is located by checking the unid of selected building, and then deletes the corresponding entry from the tracking record's list. It is essential to repaint the map afterwards to update the rendering. For clearing all added buildings, the most efficient approach involves verifying the presence of the layer and then emptying the 'custom-add_newbuilding_layer'. Subsequently, all entries in the tracking record's list should be reset to 'undefined' to erase old data.

4.5 Interactive User Functionality for Per-Room Daylight Simulation

4.5.1 ROOM QUERY BY NAME & CLICKING

It is convenient for users to have the ability to query rooms by name through a dropdown menu equipped with a search box, in addition to direct selection via clicking. Room names tend to be more recognizable to users compared to room numbers, such as "BG.sOost.050". The list of room names is derived from CSV data exported as detailed in Section 4.1.3. Regardless of the method used for room selection, the input for room selection processed by Rhino Compute remains the room number integer. It should be noted that the bounding box in Threebox is automatically generated upon a hover or click event (Algorithm 7). However, for implementing querying room by name feature, it is necessary to activate the bounding box when importing geometry per room into Mapbox.

```
      Algorithm 7: Room Information CSV Parsing and Room Query Option Generation

      Input: Room Information CSV File

      Output: {room[Num]:Name}, {room[Num]:Level}, [roomName] to show On Mapbox

      Room Query Drop Down Menu

      fetch 'RoomInformation.csv'

      add room 0 to [roomNum] for roof and other elements don't have a room tag

      for every line in CSV do

      trim line and split by ','

      if line [0] exist then

      add line[1] to [roomName]

      room[line[1]] ← int line[0]

      room[line[0]] ← line[2]

      for every roomName i in [roomName] do

      create option tag ← i

      add i to datalist element
```

Whenever a user selects a room, or conducts a query and opts to "preview Room," the unselected segments of the BIM model are rendered 97% transparent to emphasize the selected room visually (Algorithm 8).

```
Algorithm 8: Selected Room Preview on Mapbox
     Input: Selected Room Object (OS) by Clicking / Querying by name
     Output: All rooms on Mapbox become 97% transparent except the preview room
     procedure roomPreview (OS)
        if OS exist then
            for i in range (length of roomList) do
               if world.children[i].uuid != Selected Room Object.uuid then
                   for every component j in room[i] do
                      world.children[i][j].materialTransparent \leftarrow true
                      world.children[i][j].materialOpacity \leftarrow 0.03
                      world.children[i][j].materialDepthWrite \leftarrow false
               else Selected Room Num ← i
            for every component i in Selected Room do
               world.children[Selected Room Num][j].materialTransparent ← false
               world.children[Selected Room Num][j].materialOpacity ← 1
               world.children[Selected Room Num][j].materialDepthWrite \leftarrow true
```

4.5.2 CHOOSE DAYLIGHT METRICS & GET SIMULATION RESULTS

This application incorporates standard annual daylight metrics, including DA, sDA, UDI, and the validated SBI, which has potential to supplant the conventional CBDM standard. Users select these metrics via a dropdown menu on the front-end, with the system recording a sequence number corresponding to the chosen metric and retrieving the appropriate file based on this identifier. Although it is theoretically possible to use a single GH file with the serial number as an input, this methodology is avoided to prevent making the GH file unwieldy. For instance, if the user chooses LOD 1.3 and UDI as the metrics, a metric file named selectRoom 3 1.gh will be selected and executed by Rhino Compute.

When connecting the "text" and "mesh" components in the GH output, it is imperative to maintain the correct sequence to ensure accurate parsing of JSON data, thereby distinguishing between geometric and numeric results. Furthermore, the innertree path names differ among the various metrics. In this workflow, the sequence of connecting the mesh first and then the text is utilized in all GH files. Shading ensures that the number to be parsed consistently remains at index 1.

The legend for each metric appears only after the user makes a selection from the dropdown menu. The coordinates of the mesh grid also differ depending on whether CBDM or ABDM is selected. CBDM is based on the indoor layout and requires floor coordinates, whereas ABDM is based on aperture and necessitates the coordinates of the windows. Given the regular type and distribution of windows in this case study, the window heights can be determined based on the floor heights.

Distinct from general daylight simulation software, this application provides comprehensive explanations for each metric to assist designers in comprehending the implications of the daylight metrics (Table 14).

Metrics	DA	sDA	UDI	SBI
Standard	CBDM	CBDM	CBDM	ABDM
GH Name	selectRoom_1_2(LOD).g	selectRoom_2_2(LOD).g	selectRoom_3_2(LOD).gh	selectRoom_4_2(LOD).gh
Innertree	{0;0}	{0;0;0}	{0;0}	{0;0}
response Json	▼ (2) [(-), (-)] ▼ (0) ▼ (0) ▶ InnerTree: {(0): Array(1)} ₱ Paramisar: "PassBod+"	▼ (2) {(-), (-)} ▼ (2) ▼ (3) ▼ (4) ▼ (4) ▼ (5) ▼ (6) ▼ (6) ▼ (7) ▼ (7)	<pre>v(2) {(c), (c)} # v marrier: v(0): Arry(1)</pre>	▼ (2) {(-), (-)}
Coordinates Based on	Floor	Floor	Floor	Windows
Result Exampleon Application	On average, the selected room receives at least 300 lux daylight for [8:35% of the cocupied hours, throughout the year with a standard deviation of [3:35%] (DA)	- RESULT FAIL Sits of the area of the selected room receives at least 300 lux of natural daylight for at least 506 of the occupied hours throughout the year. (sDA)	on average, [70.16% of the time during occupied hous throughout the year, the 110minanne levels within the room are between 100-3000ki. With a standard deviation of [12.69%]. Annually [14.97%] of the time it is too dark, and [4.37%] of the time it might cause glare. (UDI)	The mean SBI value of the room is 78.94 (m2hours) with a mean efficiency of 7.50 (hours)

In Table 15, the JSON file containing floor coordinates was procured and interpreted as an object, comprising solely latitude and longitude data. To ascertain the altitude information, it is necessary to integrate the simulating surface level with the floor height (Algorithm 9). In Revit, the floor heights for each level can be extracted from the section view, and subsequently combined with the simulating surface level specified in Section 4.5.4.

```
Input: floorCoordinates.JSON, Selected Room, Selected Eye Height
Output: simulationLocation (x, y, z)

fetch ' floorCoordinates.JSON '
parsedObject ← JSONdata
procedure getSimulationLocation
simulationLocation (x, y) ← parsedObject [Selcted Room] (x, y)
set different altitude for different room level based on BIM model
simulationLocation (z) ← selectRoomLevelHeight + selectedSimulationSurfaceHeight
```

4.5.3 COMPARE SIMULATION RESULTS

Common daylighting software typically cannot retain results from previous simulations. In this application, numerical results from each calculation are temporarily recorded for comparison with subsequent simulations. Initially, the result comparison column is blank. When the application is first run, this column remains empty. If it's the first calculation under a specific LOD or grid surface level option, it will display "This is the result of the first simulation in this case." If the LOD or grid surface level changes during the simulation, the results will be re-recorded (Figure 58).

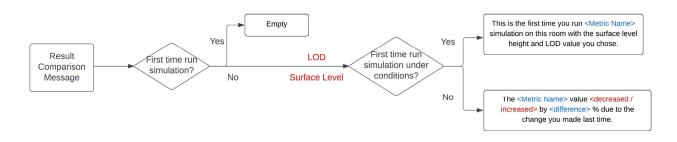


Figure 58: Result comparison message showing in the application

4.5.4 OTHER FUNCTIONALITIES

The application incorporates other functionalities such as selecting the 3D City LOD, based on data from the 3D Bag website. This application supports LOD options of 1.3 and 2.2, with the default setting at 2.2, which can be adjusted via a radio button interface.

For simulating surface levels for CBDM metrics, two radio buttons are available, offering options of 0.8 meters and 1.2 meters, with the default set to 0.8 meters. A height of 1.2 meters simulates daylight conditions

at the average eye level of a seated person, accurately reflecting lighting for tasks like reading or computer work. Conversely, a height of 0.8 meters assesses daylight performance on desk surfaces, helping designers evaluate natural light adequacy for tasks such as writing, reading, or using a computer. When the corresponding simulation grid is imported into Mapbox, the varying heights of the simulation surfaces will be reflected accordingly.

In consideration of potential application scalability, the EnergyPlus weather (EPW) file input feature allows users to navigate to the EPW map website, select the desired location, and copy the corresponding URL (refer to Section 5.2 for further details).

4.6 WORKFLOW OPTIMIZATION

4.6.1 LOD 1 vs. LOD 2 of 3D CITY MODEL

The DA metrics were analyzed to examine the impact of LOD variations on accuracy and computation time. For this analysis, 11 rooms located on the outer part of the BK model were selected to compare the DA metric results.

As shown in Figure 59 and Figure 60, differences in simulation results are minimal across all rooms, indicating that LOD 1.3 closely approximates the results of LOD 2.2. But the percentage differences in simulation time vary significantly, with certain rooms (e.g., Room 35, Room 227, and Room 378) showing

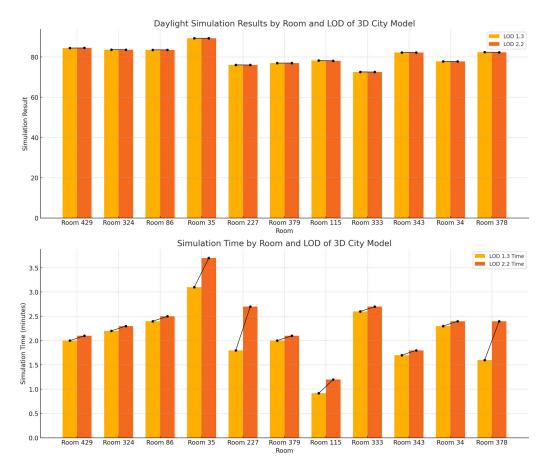


Figure 59: Simulation accuracy and time comparison of LOD 2.2 and LOD 1.3 of static surrounding building models

substantial increases in time required for LOD 2.2 compared to LOD 1.3.

This may be attributed to Delft's characteristics of low housing density, short building heights and minimal urban canyon effect. Despite the prevalence of pitched roofs in Delft, the impact of the building shapes is mitigated by the overall low density. Consequently, this finding might not be applicable to other locations, such as the city center of Amsterdam, where higher density could result in greater variation in simulation results between LOD 1.3 and LOD 2.2.

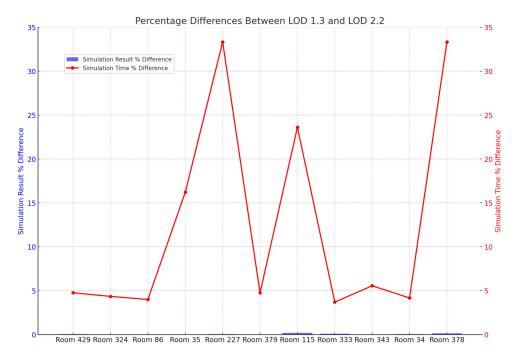


Figure 60: Percentage difference of simulation time and accuracy between LOD 1.3 and LOD 2.2

In conclusion, within this workflow, it is recommended to use LOD 1.3 for simulations as it delivers results comparable to LOD 2.2 without prolonging computational time. Nevertheless, users retain the flexibility to select either LOD 1.3 or LOD 2.2 for the final application.

4.6.2 LOAD BIM ELEMENTS ON MAPBOX

As discussed in Section 4.1.4, multiple methods exist for integrating a BIM model into Mapbox. To realizing automated daylight simulation on a room-by-room basis, the optimal approach is to categorize it accordingly by room initially and import the model by individual rooms.

4.6.3 EXTENT OF 3D CITY MODEL IN DAYLIGHT SIMULATION

Seven rooms of differing orientations were selected for the study. The mean DA value for each room was used as the evaluative metric for daylight simulation accuracy. All simulations were conducted with a detail level of 1, a grid size of 0.6m, and a height of 0.8m, using the LOD 1.3 model from 3D BAG. Simulation Results. Figure 61 presents a comparative analysis of the mean DA values and computation times for different range radius.

Across all rooms, the DA mean values are quite consistent regardless of the range radius, indicating that increasing the radius beyond 200m doesn't significantly affect the accuracy of the daylight simulation results. This also suggests that smaller radii might be sufficient for accurate daylight simulations, so in the GH script of all the metrics and LOD options, the 200m radius model is used for regular simulations due to its efficiency in computation time without compromising accuracy.

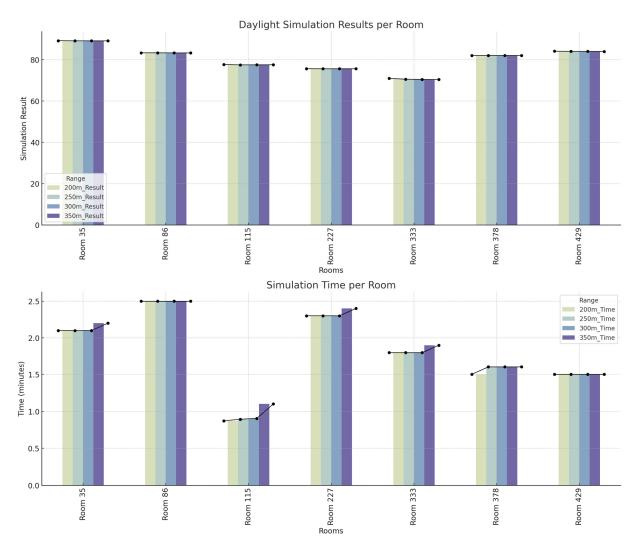


Figure 61: Simulation accuracy and time comparison of different radius of spatial extent of surrounding buildings

As the range radius expands, computation time increase in most of the cases. GH records time with only one decimal place when it is more than 1 minute, potentially obscuring minor variations. Despite this, the overall trend shows a clear upward trajectory, highlighting the increase in computational load as more model details are included.

4.6.4 OTHER ASPECTS & EQUIPMENT LIMITATIONS

HB Shade component is the lightest and meshes can help speed up the computation process (Ladybug Tools Forum, 2020), Complex shapes in the GH script are converted to mesh at the beginning. Owing to the

constraints of this thesis, Rhino Compute was only operated on a locally. Consequently, the velocity of the simulation execution is contingent upon the local RAM capacity, and the performance in the plug-in state is notably superior to that observed in power-saving mode computing. The experiments in this section were conducted under computer's optimal efficiency.

/ Results

5.1 POTENTIAL TO UTILIZE SBI & VIEW LUMEN

The R^2 value distribution in South orientation and North orientation across scenarios is shown in Figure 62.

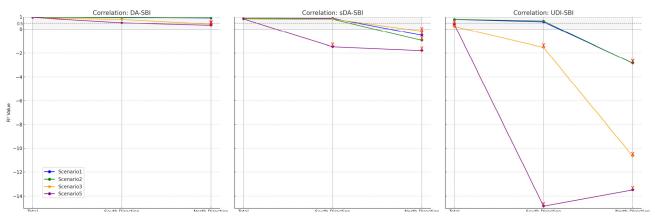
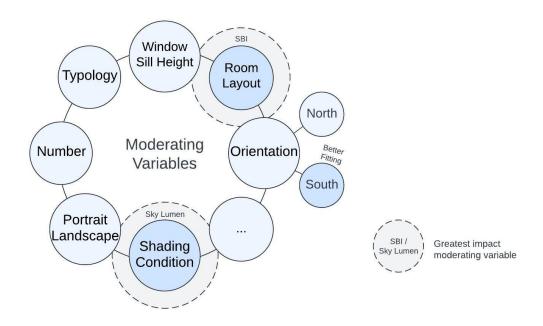
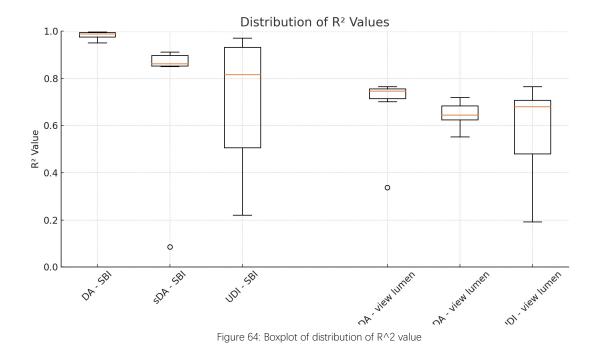


Figure 62: R² value distribution across scenarios: Total, South, and North

The analysis and visualization of values for the correlation metrics (DA-SBI, sDA-SBI, and UDI-SBI) across different scenarios and orientations (South Direction, North Direction) reveal several insights:

- 1. The combined datasets generally provide a better fit for the regression models due to averaging effect and more data points (16 in total, compared to 6 each for North and South), it captures the variability from both directions, leading to a more accurate fit.
- 2. For all correlations, the south-oriented scenarios consistently show better fits than the north ones. Orientation is an important moderating variable among the correlations.
- 3. Red crosses in the plots denote R^2 value less than 0.5. Several north-oriented scenarios for the sDA-SBI and UDI-SBI correlations falls below this threshold too much, emphasizing weak predictive power in these cases.
- 4. R^2 values across different scenarios implies that specific conditions or configurations play a significant role in determining the strength of the relationship between daylight metrics, for example Scenarios 1 and 2 generally exhibit higher R^2 values for both North and South compared to Scenarios 3 and 5, warranting further investigation into the factors influencing these outcomes.




Figure 63: Moderating variables for correlations between CBDM and ABDM metrics

In summary, the analysis of the data from the Section 4.2.2 confirms the initial hypothesis that all the design's moderating variables are valid. Among the metrics correlated with SBI, room layout emerges as the most influential factor, while for sky lumen correlation, the presence or absence of shading as a moderating variable has the greatest impact (Figure 63).

Figure 64 is the boxplot of distribution of the R^2 value of correlations between ABDM metrics and CBDM metrics, by analyzing the median values, DA demonstrates the most robust average effectiveness in predicting variations in SBI and view lumen as dependent variables. Both DA-SBI and DA-view lumen exhibit the greatest consistency across different conditions, as evidenced by the interquartile range comparison. It is important to note the presence of outliers in the sDA-SBI and DA-view lumen distributions, indicating that in real-world scenarios, there may be instances where neither SBI nor view lumen correlate with CBDM measures. The range of R^2 values is most extensive for UDI in its relationships with both SBI and view lumen. Overall, SBI is revealed as the most consistent and predictable metric for assessing general daylight availability in CBDM.

Overall, SBI appears to be a strong candidate for replacing traditional metrics like DA and reasonably effective for sDA but exhibits limited applicability in replicating the performance of UDI. Sky lumen consistently demonstrates lower R^2 values across all metric comparisons, suggesting its limited reliability as an alternative to established daylight metrics such as DA, sDA, or UDI.

Although a robust correlation exists between the SBI values and both DA and sDA values, the practical application of SBI to predict DA and sDA must acknowledge that the relationship can be influenced by varying conditions (such as room characteristics, window features, and obstructions in the surrounding environment). Meanwhile, the correlation lacks strong predictive accuracy in north-facing rooms due to poor data fit. Further research is needed to include additional moderating variables and to establish a definitive quantitative mathematical relationship between these metrics.

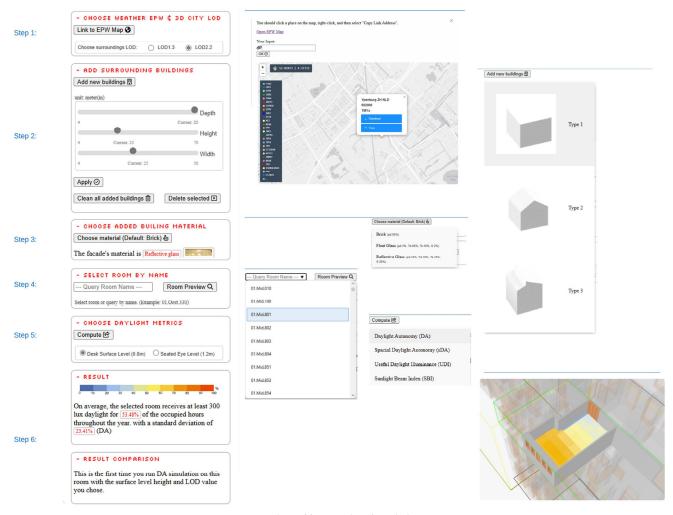
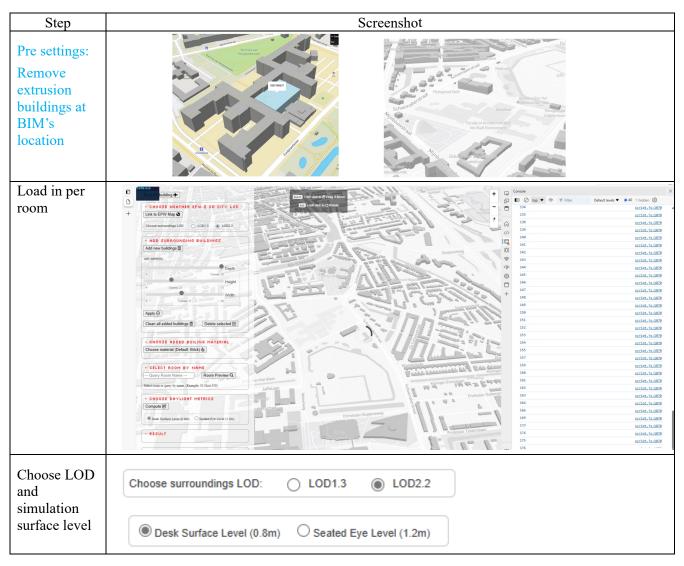
The SBI metric is implemented on the web application as an option as shown in Figure 65.

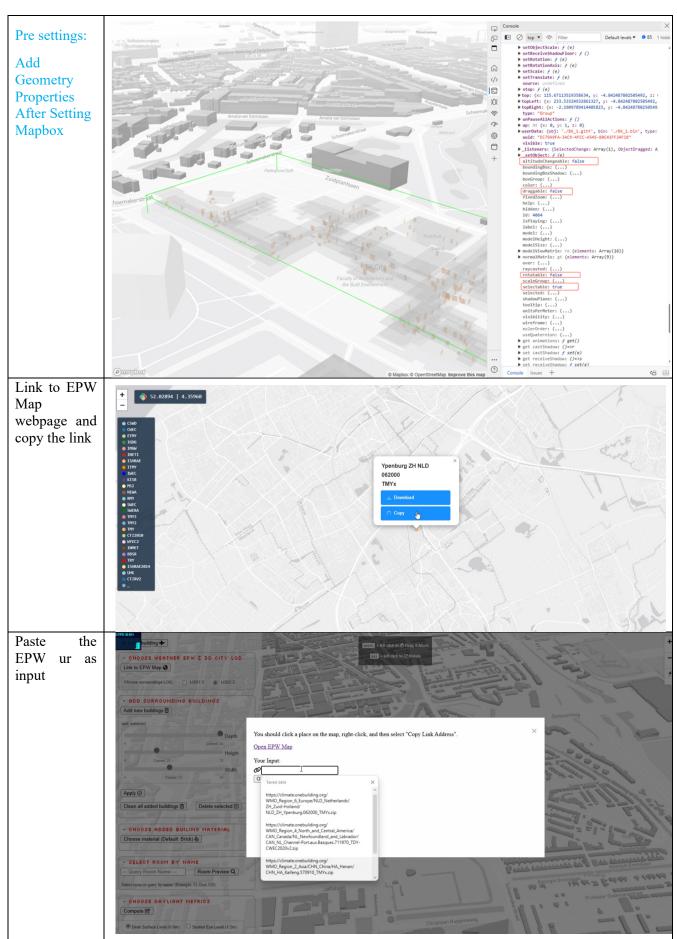
Figure 65: SBI as a metric option on web application

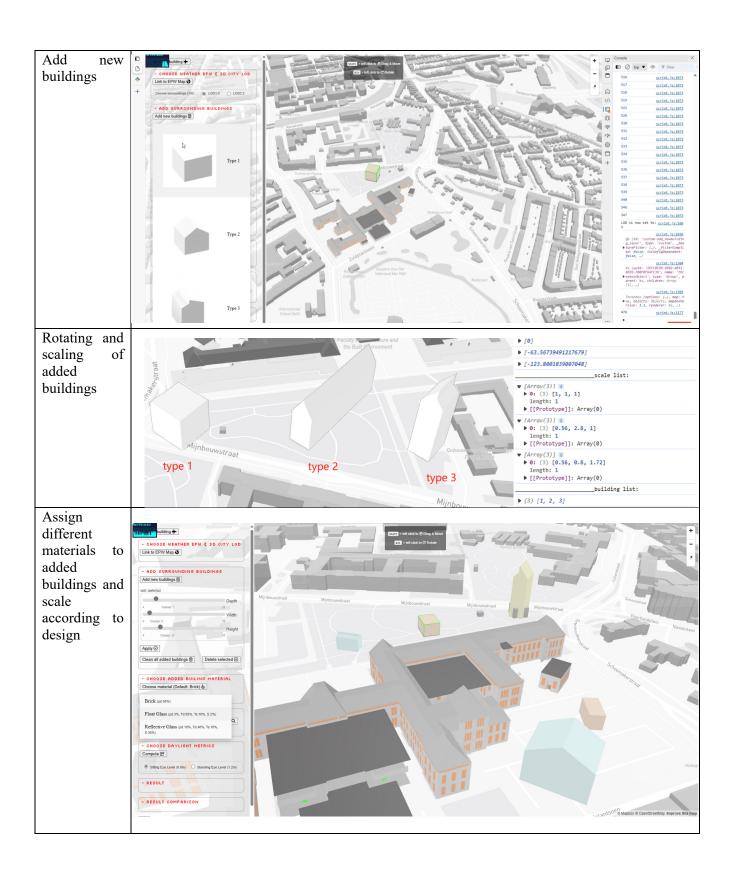
5.2 USER INTERFACE FOR ADDING BUILDING ON MAPBOX

User interface design

Part of the functionalities discussed in Section 4.4 involves user interaction via the dashboard, while the other part is performed directly within the Mapbox interface. For instance, actions such as clicking on a room, rotating, dragging and dropping a newly added building, and obtaining a simulation mesh are handled through the Mapbox interface. The dashboard design is depicted in Figure 66.


Figure 66: User interface design


The first step involves setting up the static urban environment and EPW data, which are typically site-specific and do not require frequent adjustments. The second step features a drop-down menu offering three prototypes for adding new buildings. These buildings are initially positioned in a default location and can be resized using a slider. Users can preview adjustments by clicking "Apply." There are also two buttons to clear all newly added buildings or delete selected ones. In the third step, users can modify the materials of the newly added buildings, choosing from three available options. Material changes can be previewed in Mapbox, with corresponding color changes. Users can click on any newly added building to view its material information.

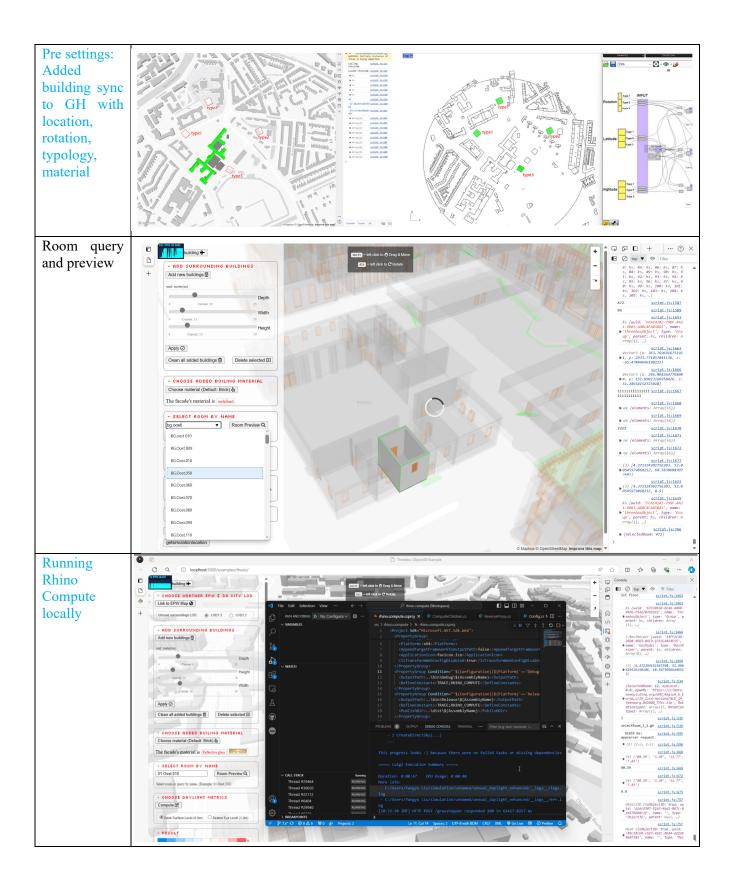

The fourth step involves selecting the room for simulation. Users can either click directly on the room or enter its name in the drop-down menu. Clicking "Preview Room" will make the buildings surrounding the selected room translucent. This process can be repeated for multiple rooms. The fifth step requires selecting metrics from a drop-down menu for sunlight simulation and setting the simulating surface height as needed. The sixth and final step involves obtaining the simulation results, along with descriptions and comparisons with previous simulation results under the same conditions.

Table 15 illustrates the detailed steps and corresponding pages for each stage. The blue text represents the pre-settings process, which does not affect the visual representation of the final result but is solely part of the performance or verification process. For example, the initial order of addition is type 3, followed by type 2, and then type 1, with the building list initially recorded as [3, 2, 1]. However, since building 1 remains unchanged and types 2 and 3 undergo sequential scaling, the final building list is reordered to [1, 2, 3]. each modification of the material results in a corresponding change in the building's color. When a building is selected, the currently chosen material is prominently displayed on the dashboard.

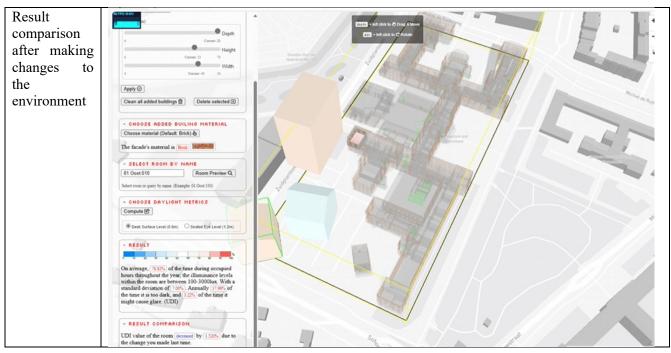


Table 15: Results and pre-settings for the application's interface

Material Selection of added buildings

The incorporation of various materials in the newly added building influences the indoor daylight dynamics of BIM model. To empirically demonstrate this effect, an experiment was conducted: A simple room was modeled in Rhino, where a basic box was positioned outside the window to act as an obstruction. Three distinct materials were selected for the box, and the resulting DA variations within the room were recorded. These changes are depicted in Table 16. This indicates that the choice of materials for the facade of a new building is a crucial parameter.

Material	Display in the application	Results	
Float Glass		Material 1	

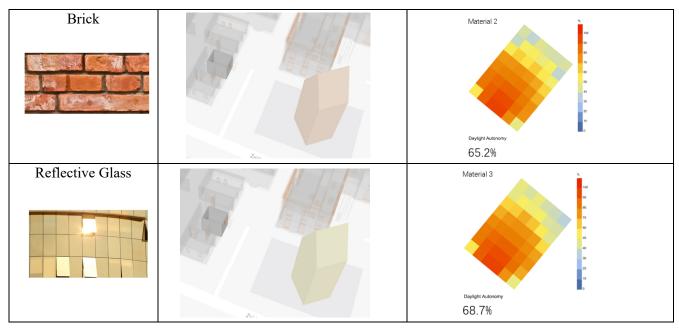
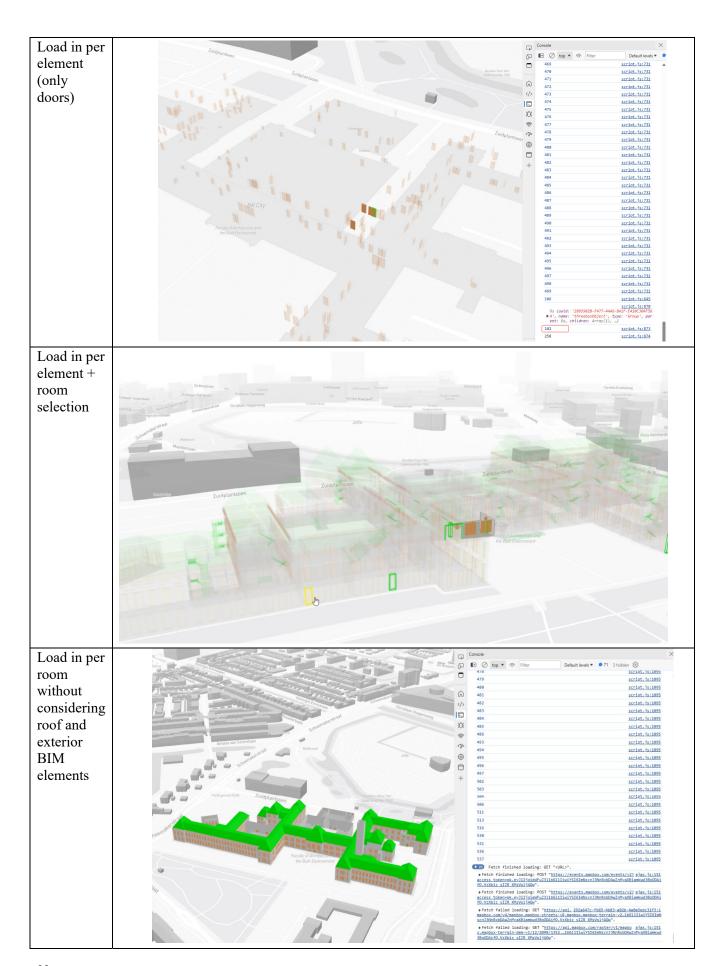


Table 16: Changes of DA value of a room due to material changes of obstruction


5.3 USER INTERFACE FOR PER-ROOM CUSTOMIZED DAYLIGHT SIMULATION

Load in BIM 3D Data on Mapbox & Get Room Coordinates

In Section 4.1.4, it was determined that importing the BIM model by room is the most effective approach. Table 17 illustrates the process of importing the BIM model by individual elements. This method results in a significantly larger page, thereby prolonging the import duration for all elements.

Furthermore, prior to optimization, importing by room directly can lead to errors in element selection, particularly with walls that traverse multiple rooms. These walls necessitate multiple room tags and are treated as common components of several rooms, leading to multiple imports of the same wall. This increases both the import time and the file size, though these increases are still manageable.

The table also demonstrates the process of importing the BIM model by element. By separately importing the floor category to acquire coordinates, a temporary download button was created on the dashboard, the data was saved and subsequently imported it into the official Mapbox page with all categories imported.

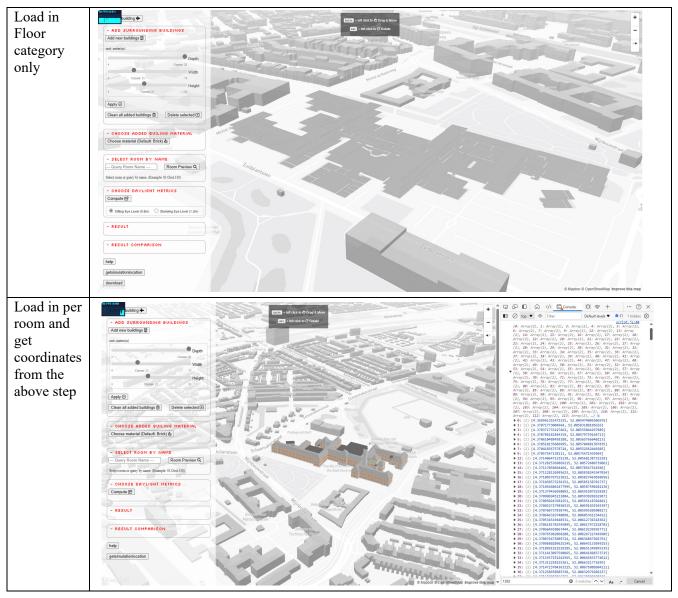


Table 17: Importing BIM models in Mapbox

Get Simulation Results

There are two versions of importing mesh on Mapbox through Rhino Compute Appserver, after trying both the one with brighter colors is chosen. Additionally. Table 18 provides an example of the simulation results for the four metrics. It includes importing the simulation grid into the Mapbox interface (with the SBI based on the window positions) and displaying the numerical results in the result column of the sidebar.



Table 18: Simulation results for different metrics on the application

/ Conclusions & Discussions

6.1 Conclusions

The thesis research was about providing a workflow ...

1. To what extent can users interact with 3D city models through the interface? How can they be loaded in Rhino and the application for simulation and interaction?

Section 6.3 outlines reasons for not adopting 3D TILE; however, the potential for utilizing 3D BAG 3D TILE to import into MapboxGL and facilitate interaction with the pre-existing built environment is acknowledged. Users have the capability to incorporate new buildings into the web application, manipulate building typology, and perform actions such as rotation, dragging, delete selection, and scaling in three dimensions. Additionally, users can modify façade materials and select the LOD for the surrounding static city model. The 3D BAG model is imported using RhinoJSONCity, with coordinate adjustments made in Rhino before internalizing into GH. Upon initiating an HTTP request, data within the existing Mapbox scene is categorized by building typology and transmitted to the GH backend for geometric modifications: duplicating, rotating, scaling, and moving, to ensure synchronization with Mapbox data, and the final geometry is organized according to the materials to build the HB Shade component. Alterations to the Treebox source code are necessary to add attributes to each imported object, thereby enabling customization of their selectability, rotatability, draggability, and altitude adjustability.

2. How can a BIM model be integrated into Rhino and GIS platform to intelligently identify and segregate components by room, thereby facilitating automatic integration with daylight simulation? How can users interact with BIM room within the application?

Section 4.1.4 details the process for importing BIM models by individual rooms into Mapbox, enabling users to interact with the model through direct clicks or queries by room name, rendering the surrounding rooms transparent for easier previewing. Additionally, users may adjust the simulating surface height height and link to the EPW Map to select appropriate weather files. Dynamo is used within Revit to assign room tags using distinct scripts for various categories. The exported information, retrieved via element IDs, is then incorporated into the gITF file in JSON format. This process includes exporting detailed room information and floor coordinate data. During sunlight simulation, GH script filters and processes elements such as doors, windows, walls, exterior facades, floors, window frames, and ceilings, while also assigning materials that mirror real-life specifications. The numerical and mesh results were then sent back to Mapbox and the dashboard. These results are compared with prior outcomes to visually assess the effects of changes in the external environment.

3. Are the ABDM standards (SBI and view-lumen) appropriate for urban-scale daylight studies aimed at reducing simulation time, as compared to traditional CBDM standards? If applicable, how can these simulations be implemented within the application to enable effective visualization?

Section 4.2.1 introduces GH scripts developed to derive SBI and Sky Lumen outcomes without using ray

tracing, based on their physics definitions. Subsequently, Section 4.1.1 establishesd experiments that employ SBI and Sky Lumen as explanatory variables, with DA, sDA, and UDI serving as independent variables to validate a hypothesis that the relationship between these variables is influenced by certain moderating variables. The findings confirm a robust linear relationship between SBI and DA, sDA, and UDI within the experimental settings, with all posited moderating variables notably impacting this linear correlation. Among these, the layout of rooms exerts the most substantial influence, and it also demonstrated much higher fit levels in south-facing rooms, conversely, this linear relationship cannot be used to predict DA, sDA, and UDI through the SBI in north-oriented scenarios. Moreover, a pronounced quadratic relationship exists between Sky Lumen and DA, sDA, and UDI in most instances, with experimentally hypothesized moderating variables, particularly the presence of shading and geometric features of room, significantly affecting this relationship. Overall, SBI emerges as a potent substitute for traditional CBDM metrics like DA and is reasonably effective for sDA, though it shows limited efficacy in replicating UDI's performance. Conversely, Sky Lumen consistently exhibits lower relevance across all comparisons, indicating its restricted reliability as an alternative to CBDM daylight metrics. The final application also incorporates SBI as an option for daylight simulation metrics.

4. What is the impact of varying LODs in 3D city models on computational accuracy and time, and how can the overall workflow be optimized for efficiency?

In this study, using LOD 1.3 and a radius of 200m provides sufficient accuracy and the shortest computation time for daylight simulation when using the Delft BK surroundings as the static urban context. Increasing the LOD and radius results in an obvious increase in computation time with minimal improvements in accuracy. However, this conclusion is specific to Delft, a low-density area with minimal urban canyon effects. In high-density areas like Amsterdam, different LODs may produce more varied results. For example, in New York, different radii may encompass varying intensities of urban canyon effects, leading to more diverse simulation outcomes. The choice of radius is influenced by the BIM scale; in this case study, the BK model represents a larger scale. If a smaller scale BIM model were used, the comparison radius should be adjusted accordingly, for instance, comparing 100m, 150m, 200m, 250m, etc. The optimization of this workflow is thoroughly discussed throughout the full thesis, particularly detailing the methodology for importing the BIM model on a room-by-room basis in Section 4.1.4, and exploring the acquisition of grid 3D coordinates in Section 4.1.3, and HB settings for efficiency.

To what extent can a web application conduct per-room daylight analysis on BIM models to effectively demonstrate the influence of dynamic changes within an urban context?

To encapsulate the key findings of this thesis, the primary research question can be addressed as follows: MapboxGL emerges as a promising GIS platform for integrating BIM models in room-based daylighting simulations, offering a user-friendly interactive system for the efficient manipulation of newly added buildings. The integration of Rhino Compute technology facilitates user interaction, transfer, and access to both geometric and numerical daylighting data seamlessly. Additionally, Rhino Inside technology effectively

bridges the gap between Rhino and Revit. In urban-scale studies, the Spatial Brightness Index (SBI) may serve as a suitable alternative to traditional CBDM metrics, potentially accelerating simulation times. The integration of Rhino Compute and MapboxGL, along with the front-end interface setup, establishes a highly user-friendly results interface. Furthermore, the potential utilization of the 3D BAG tiling technique within Mapbox could enhance the control over static built-up urban environments and provide a comprehensive demonstration of the impact of urban context changes on indoor daylighting.

6.2 REQUIREMENTS FOR BIM MODEL AS INPUT

The workflow discussed in the thesis is constrained by the limitations inherent in the Input, specifically the modeling quality of the BIM model and the characteristics of the building itself. Figure 67 illustrates the applicability of workflows to BIM models under various conditions for this workflow, as well as suggestions to enhance the workflow for potential scalability. Ideally, this workflow requires certain standards for modeling quality: all BIM elements must have accurate type classification, include room information, have floor category elements segmented by room, and differentiate between indoor and outdoor materials, which will enable unified selection with Dynamo. A unified logic will be applied to address the articulation of walls and rooms during modeling. For buildings with non-rectangular room geometries, it is necessary to extract the room boundary line using a bounding box-like operation, which requires modifications to the Dynamo script (Appendix 3).

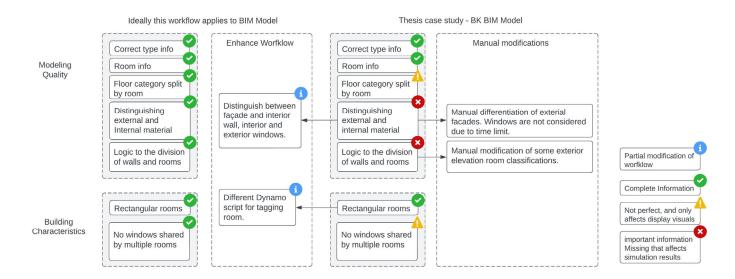


Figure 67: Applicability of workflows to BIM models under different conditions

The BK BIM model used in this case study has some limitations, such as the lack of differentiation between indoor and outdoor materials. Additionally, while the exterior walls are roughly constructed according to the rooms, the articulation between walls is irregular and random (Figure 68), complicating the use of a unified Dynamo script. The final accuracy of the tagging process can be assured to be over 95 percent after some manual adjustments. Furthermore, issues like shared floor geometry across multiple rooms and windows shared by two rooms negatively impacted the visual effect of the application. To ensure the visibility of the ABDM METRICS result grid at the window location, it is essential that all windows in the BIM model are oriented consistently (inside and outside).

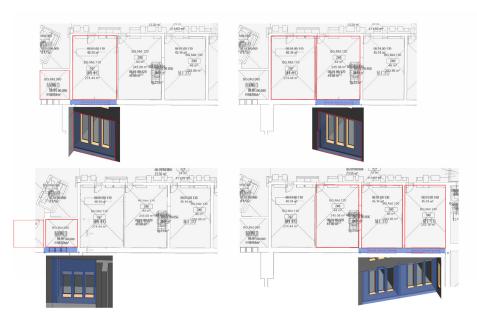


Figure 68: The random joint method of the exterior walls in case study, red box indicates the associated room

6.3 Workflow Limitations

On March 6, 2024, the release 2.6.0 of pg2b3dm introduced experimental support for Mapbox v3, along with the addition of the --format parameter (defaulting to Cesium) to accommodate Cesium/Mapbox configurations (Geodan, n.d.). At the beginning of the thesis, the conversion of the 3D BAG into 3D tiles and its integration into Mapbox was considered experimental. Concurrently, Company Parallel successfully incorporated the BAG dataset into Mapbox GL, enabling the rendering of 3D buildings across the Netherlands, which were distinctly color-coded based on the age of construction (Netherlands Building Ages, n.d.). Furthermore, FOSS4G has developed a method for handling 3D geo-data within the Mapbox-gl viewer using 3D tiles (Tilburg & Blankert, 2019). Ideally, this thesis would explore interactions with a larger expanse of surrounding buildings, including scalability and the potential to modify façade materials of existing buildings using 3D tile technique. However, due to time constraints, the scope was limited to the addition and modifications of new buildings, as implementing broader modifications involving 3D tile proved challenging.

This thesis only focus on developing features to facilitate the selection of building typology and façade materials, as well as the capabilities for rotation, scaling, dragging, and deletion of newly incorporated buildings.

Considering the cost implications of setting up a production environment with an actual server charged by McNeel company per core per hour, this research runs Rhino compute locally for development and testing, maintaining consistent workflow and principles as running in a real server. The statistical analysis of simulation duration in this study are therefore constrained by computer's RAM capacity and its overall performance. The purpose of comparing computing time is to assess relative timeframes and provide recommendations for optimizing the workflow.

Additionally, it is important to note that while MapboxGL strikes a good balance between user freedom and BIM integration, it may not perform as well as some specialized software in these areas. This limitation should be acknowledged upon completing the research on this workflow. The choice of MapboxGL in this thesis reflects a deliberate tradeoff, balancing various factors to achieve the desired comprehensive outcomes. Exploring alternative software will require adopting a different workflow from the one presented in this research. It is as Celeste et al. discussed in 2022, semantic level BIM/GIS conversion is limited to specific applications, lacking generalization. The most effective integration relies heavily on using multiple commercial software solutions, this is a limitation of this open topic.

For several workflow steps presented in this thesis, there exist numerous approaches, and no single method is universally accepted or considered official. Due to time constraints, this thesis does not enumerate all possible methods and practices. Instead, it highlights general practices that represent a balance between time investment and result accuracy. Examples include the construction of SBI and View Lumen scripts, tagging rooms in Dynamo, the use of surveyors, coordinate conversion, and the transfer of Mapbox data to GH. Occasionally, the methods employed effectively circumvent certain issues. For instance, importing the floor category in advance addresses the problem of relative coordinates in the BIM model. However, the comprehensive solution is also discussed in the thesis.

This thesis does not account for the effects of varies outdoor paving and vegetation on daylighting. Instead, it primarily focuses on the urban canyon effect, enabling users to investigate the impact of adding buildings with different façade materials and changes in urban typology on the indoor daylighting of an existing BIM model. These additional factors should also be considered if sufficient time and open-source databases are available.

6.4 FUTURE WORK

This thesis develops a workflow for importing a BIM model into the MAPBOXGL platform to conduct daylight simulations. Given the time and content limitations of this study, not all potential avenues have been fully explored. The following are some promising directions for future research.

- 1. Further study of moderating variables affecting the relationship between ABDM and CBDM metrics. This research does not quantitatively determine the effect of the degree of change in moderating variables on the relationship. To analyze the simulation results more effectively, uniformly varying input dataset needs to be created in GH parametrically.
- 2. **Implement prediction of traditional metrics with SBI (and sky-lumen).** Analyze the relationship between SBI, sky-lumen, and DA, sDA, and UDI in this case study, and use SBI and sky-lumen to predict data from traditional daylight metrics in the application.
- 3. **Implement sky lumen metrics in case study** (Figure 70). This may require solving the geometry cutting problem for complex 3D city models. Build view lumen script with the HB glare component might be considered (Figure 69). It is important to note that, with multiple windows, the mesh results are imported at the height of the room's windows.

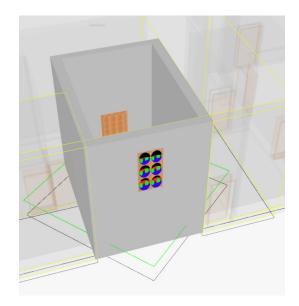


Figure 70: Implement sky lumen metrics in case study

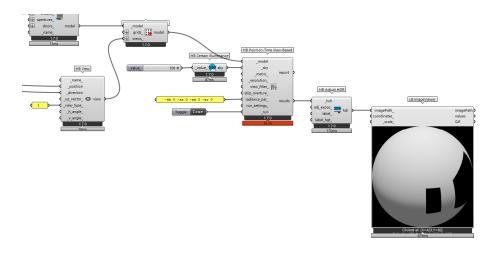


Figure 69: HB View component method of creating hemispherical fisheye

- 4. **Integration with other open-source databases to consider the impact of ground.** Current daylighting simulations do not typically account for the complexity of outdoor paving. However, the workflow remains largely unchanged, with the primary difference being the need to configure additional materials for the outdoor environment in advance.
- 5. **Integration with other open-source databases to consider the impact of plants and trees.** Daylight simulating for trees and plants is highly complex but significantly influences the overall insolation results. This aspect needs to be integrated with other workflows for a comprehensive analysis (Figure 71)..

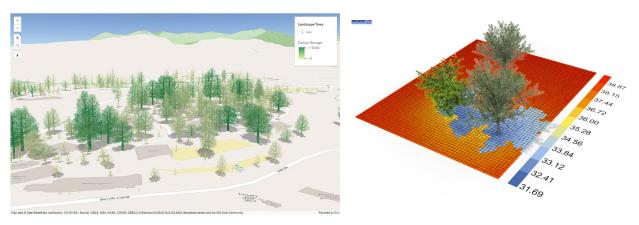
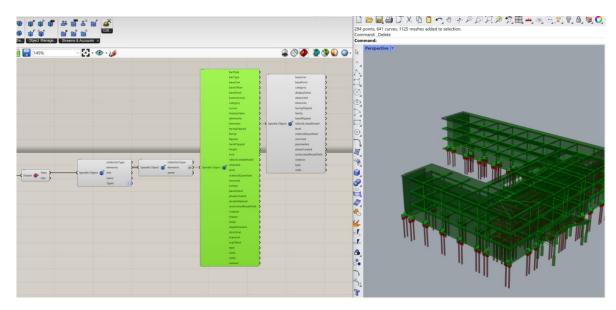



Figure 71: Open-source tree data (left) and Daylight simulation involving trees (right)

- 6. Control of static buildings in combination with 3D BAG 3D tile. 3D BAG Tile and Mapbox are currently in an experimental phase; however, some examples demonstrate the feasibility of utilizing such technique to effect changes (renovations) in the surrounding urban context.
- 7. **Optimize the way to get room tags in Dynamo.** In this case study, since the room planes are regular rectangles, the bounding box node is primarily used to extract room information from BIM elements. However, this approach is ineffective for irregular geometric planes.
- 8. Use Speckle to transfer BIM information to GH. Speckle, as an open-source plugin, can facilitate the conversion from Revit to Rhino as discussed in this thesis. However, it may be constrained by mesh surfaces, limiting the ability to freely edit geometry later in GH. Attention must be paid to the correspondence between attributes and elements (Figure 72).

104

Figure 72: Using Speckle to transfer BIM data to Rhino

9. **Explore other platforms (Autodesk forge / Unity / Unreal Engine).** For a user experience with a higher degree of freedom and better integration with 3DBAG tile, utilizing Unity or Unreal Engine (Rhino Compute C++ library need to be created, Figure 73) as a client for Rhino Compute may be more appropriate option. Additionally, Autodesk Forge offers better integration on the BIM side, but a completely different workflow will be employed.

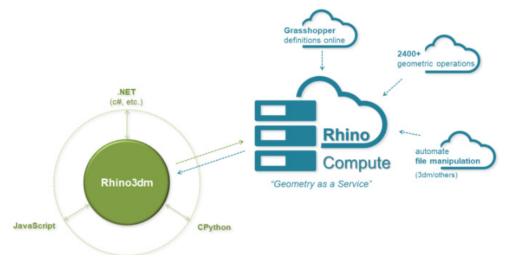


Figure 73: Rhino Compute libraries

- 10. Give users more freedom. Incorporate additional parameters to provide users with greater freedom and more options, while adhering to the same workflow. Or further optimize the workflow to enable users to construct a similar platform with minimal steps. For instance, provide the capability to directly upload a BIM model, select a site, and automatically generate a customized application.
- 11. **User experience research of the application**. Investigate user satisfaction and ease of use, and refine the user interface based on the feedback received.
- 12. **Integration with machine learning**. When the application is deployed, it will involve substantial data inputs and outputs. Incorporating machine learning components into the GH Script could assist in data collection, bypass the simulation process to predict data, enable faster responses, or supply data for further research.
- 13. **Perform different simulations at different degrees of BIM model.** This thesis focuses on daylight simulation at the room level within a BIM model to demonstrate the impact of incorporating new city models. Utilizing the Rhino Compute technique, with some adjustments such as modifying Dynamo scripts for the addition of room information, to manage BIM data effectively. This approach allows for running various simulations (structural, CFD simulations, etc.) with the final results presented in both text and mesh formats.

/ References

Α

Azel, N., Pachuca, B., & Wilson, L. (2022). Closing the Gap-Leveraging Rhino Compute and Cloud Computing to Distribute Custom Computational Tools. *Proceedings of the Annual Conference of the Association for Computer-Aided Design in Architecture (ACADIA)*. https://papers.cumincad.org/data/works/att/acadia22 128.pdf

B

- Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. *Computers, Environment and Urban Systems*, 59, 25–37. https://doi.org/10.1016/j.compenvurbsys.2016.04.005
- Boersma, F. (2024, February 18). LoD 2 punt 2 Hoezee. *GEOBIMEXPERTS*. https://www.geobimexperts.nl/blog/lod-2-2-hoezee
- Boundary elements and stirrup constraints. (n.d.). The Building Coder. https://thebuildingcoder.typepad.com/blog/2021/03/boundary-elements-and-stirrup-constraints.html#3
- Bournas, I. (2020). Daylight compliance of residential spaces: Comparison of different performance criteria and association with room geometry and urban density. *Building and Environment*, 185, 107276. https://doi.org/10.1016/j.buildenv.2020.107276

C

- Celeste, G., Lazoi, M., Mangia, M., & Mangialardi, G. (2022). Innovating the Construction Life Cycle through BIM/GIS Integration: A Review. *Sustainability*, 14(2), 766. https://doi.org/10.3390/su14020766
- Cityjson. (n.d.). GitHub cityjson/RhinoCityJSON: Rhino/Grasshopper plugin allowing the CityJSON format to be directly used in Rhino 3D and grasshopper. GitHub. https://github.com/cityjson/RhinoCityJSON
- Coordinate systems. (n.d.). https://dirsig.cis.rit.edu/docs/new/coordinates.html
- Computational Modelling Group: Publication JOBE-91-109507-. (n.d.). https://como.ceb.cam.ac.uk/publications/JoBE-91-109507-/
- Council, U. G. (2013). LEED reference guide for building design and construction. US Green Building Council.

D

DiStem Bundle for Autodesk Revit - productivity Revit Plugins by DiRoots. (2024, May 8). DiRoots. https://diroots.com/revit-plugins/distem-bundle-for-autodesk-revit/

F

- Fernandez-Antolin, M., Del-Río, J., Del Ama Gonzalo, F., & Gonzalez-Lezcano, R. (2020). The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education. *Energies*, *13*(5), 1134. https://doi.org/10.3390/en13051134
- Fernandez-Antolin, M., Del Río, J. M., & González-Lezcano, R. A. (2022). Building Performance Simulations and Architects against Climate Change and Energy Resource Scarcity. *Earth*, 3(1), 31–44. https://doi.org/10.3390/earth3010003

G

- Geodan. (n.d.). *GitHub Geodan/pg2b3dm: Tool for creating 3D Tiles from PostGIS geometries*. GitHub. https://github.com/Geodan/pg2b3dm
- Get the walls, ceiling and floor of a room? (2022, October 5). Autodesk Community. https://forums.autodesk.com/t5/revit-api-forum/get-the-walls-ceiling-and-floor-of-a-room/m-p/9930160#M51824
- Grasshopper. (n.d.). Algorithmic Modeling for Rhino. https://www.grasshopper3d.com/

н

Helenkwok. (n.d.). *GitHub - helenkwok/bim-gis-viewer: a submission to IFC.js hackathon*. GitHub. https://github.com/helenkwok/bim-gis-viewer

Ī

- Inanici, M. (2009). Applications Of Image Based Rendering in Lighting Simulation: Development And Evaluation Of Image Based Sky Models. https://www.semanticscholar.org/paper/APPLICATIONS-OF-IMAGE-BASED-RENDERING-IN-LIGHTING-Inanici/48f1f521a95aaf70658db1e9b6e224409c9d0baf
- *InForm Arup.* (n.d.). https://www.arup.com/services/tools/inform
- Ingrassia, M. (2021, May 17). MaCAD Students running their Grasshopper Definitions on the cloud, within the BIM and Smart Construction Module! IAAC. IAAC. https://iaac.net/macad_cloudbased_data_management/
- Interface, K. U. (2022, January 22). Bridging Data Science and Architectural Practice KPF Urban Interface Medium. https://medium.com/@kpfui/bridging-data-science-and-architectural-practice-aceb3f23fd95

Introduction | ELEFront. (n.d.). https://docs.elefront.io/

j

Jscastro. (n.d.). *GitHub - jscastro76/threebox: A Three.js plugin for Mapbox GL JS, with support for animations and advanced 3D rendering.* GitHub. https://github.com/jscastro76/threebox/tree/master?tab=readme-ov-file

Jhorikawa. (n.d.). *GitHub - jhorikawa/GrasshopperPlayerWithRhinoInsideUnityTemplate*. GitHub. https://github.com/jhorikawa/GrasshopperPlayerWithRhinoInsideUnityTemplate

K

Koster, D. (2023). Integrating urban context in daylighting simulation: The design consequences in Dutch urban areas, regarding visual & amp; non-visual levels of daylight. https://repository.tudelft.nl/islandora/object/uuid:ec15c377-36d0-412b-8ace-736db2492a5a?collection=education

L

Ladybug Tools | Home page. (n.d.). https://www.ladybug.tools/

M

- Mardaljevic, J., & Brembilla, E. (2021). Aperture-based daylight modelling: Evaluating the airmass refinement for the sunlight beam index. *Building Simulation Conference Proceedings*. https://doi.org/10.26868/25222708.2021.30604
- Mardaljevic, J., & Roy, N. (2016). The sunlight beam index. *Lighting Research and Technology*, 48(1), 55–69. https://doi.org/10.1177/1477153515621486
- Mardaljevic, J. (2021). The implementation of natural lighting for human health from a planning perspective. *Lighting Research and Technology*, 53(5), 489–513. https://doi.org/10.1177/14771535211022145
- Mardaljevic, J., & Roy, N. (2017, January 1). Envelope first / Inside later: Aperture sunlight and skylight indices. Figshare.

 https://repository.lboro.ac.uk/articles/conference_contribution/Envelope_first_Inside_later_A

 perture_sunlight_and_skylight_indices/9430067
- Mardaljevic, J. (2019, January 1). *Aperture-based daylight modelling: Introducing the 'View Lumen.'*Figshare. https://repository.lboro.ac.uk/articles/conference_contribution/Aperture-based_daylight_modelling_Introducing_the_View_Lumen_/9458474
- *MapBox* | *Maps*, *navigation*, *search*, *and data*. (n.d.). https://www.mapbox.com/
- Mcneel. (n.d.). GitHub mcneel/compute.rhino3d.appserver: A node.js server for solving Grasshopper definitions on Rhino Compute. GitHub. https://github.com/mcneel/compute.rhino3d.appserver
- Mm-Wang. (n.d.). *GitHub mm-wang/WebApplicationWorkshop: Web application workshop, built* for AEC Tech 2019: Seattle. GitHub. https://github.com/mm-wang/WebApplicationWorkshop
- Mesh geometry in LBT 1.0. (2020, October 25). Ladybug Tools | Forum. https://discourse.ladybug.tools/t/mesh-geometry-in-lbt-1-0/11597

N

- Nasrollahi, N., & Shokri, E. (2016). Daylight illuminance in urban environments for visual comfort and energy performance. *Renewable & Sustainable Energy Reviews*, 66, 861–874. https://doi.org/10.1016/j.rser.2016.08.052
- Nabil, A., & Mardaljevic, J. (2005). Useful daylight illuminance: a new paradigm for assessing daylight in buildings. *Lighting Research and Technology*, 37(1), 41–57. https://doi.org/10.1191/1365782805li128oa

Netherlands building ages. (n.d.). https://parallel.co.uk/netherlands/#13.3/51.93519/4.43523/0/40

Netherlands topographic map, elevation, terrain. (n.d.). Topographic Maps. https://engb.topographic-map.com/map-wpfnh/Netherlands/?center=47.46338%2C-6.45996&zoom=4
NYC Park Study. (n.d.). https://nyc.emptybox.io/

P

- Pantazatou, K., Kanters, J., Olsson, P., Nyborg, J. L., & Harrie, L. (2023). Input data requirements for daylight simulations in urban densifications. *Urban Informatics*, 2(1). https://doi.org/10.1007/s44212-023-00024-6
- Proving Ground. (2023, March 30). Simple Rhino to revit workflow | Conveyor Plugin. Proving Ground Apps. https://apps.provingground.io/conveyor/

Q

- Quek, H. Y., Sielker, F., Akroyd, J., Bhave, A. N., Von Richthofen, A., Herthogs, P., Van Der Laag Yamu, C., Wan, L., Nochta, T., Burgess, G., Lim, M. Q., Mosbach, S., & Kraft, M. (2023). The conundrum in smart city governance: Interoperability and compatibility in an evergrowing ecosystem of digital twins. *Data & Policy*, 5. https://doi.org/10.1017/dap.2023.1
- Question about Radiance Glass Modifer Properties. (2023, July 10). Ladybug Tools | Forum. https://discourse.ladybug.tools/t/question-about-radiance-glass-modifer-properties/22208

R

- Radiance. (n.d.). Energy.gov. https://www.energy.gov/eere/buildings/articles/radiance
- Rajus, V. S., Risopatron, N. A., O'Brien, W., Wainer, G., & Fai, S. (2022). Mitigating the negative impact of new buildings on existing buildings' user comfort—a case study analysis. Simulation, 99(11), 1095–1115. https://doi.org/10.1177/00375497221101062
- REVIT for Architecture & Building Design | AutoDesk. (n.d.). https://www.autodesk.eu/products/revit/architecture
- Rhino User Webinar: Daylight Compliance Prediction Web Tool using Rhino.Compute. (n.d.). https://blog.rhino3d.com/2024/02/rhino-user-webinar-daylight-compliance.html
- Robert McNeel & Associates. (n.d.). Rhinoceros 3D. www.rhino3d.com. https://www.rhino3d.com/
- Ronald, D. (2021, December 14). Killer product A Rhino3D product Analysis Spatiomatics medium. Medium. https://medium.com/spatiomatics/killer-product-a-rhino3d-product-analysis-2f90ebfd9465

Robert McNeel & Associates. (n.d.-a). *Compute guides*. www.rhino3d.com. https://developer.rhino3d.com/guides/compute/

S

Shoshev, M. (2022). From Building Information Models to Building Performance Simulation: Parametric Workflow for High Performance Building Envelope Design for Daylight and Glare Analysis. [Master's thesis, Politecnico di Torino]. Politecnico di Torino Repository https://webthesis.biblio.polito.it/secure/25167/1/tesi.pdf

Scout. (n.d.). https://scout.build/

Spectral Materials Database: Home. (n.d.). https://spectraldb.com/

Speckle - the platform for 3D data. (2024, May 7). Speckle - the Platform for 3D Data. https://speckle.systems/

Shkundalov, D., & Vilutienė, T. (2020, May 11). *BUILDING MANAGEMENT SYSTEM IN WEBBIM ENVIRONMENT*. http://enviro.vgtu.lt/index.php/enviro/2020/paper/view/725

ShapeDiver <-> Rhino Compute. (n.d.). https://help.shapediver.com/doc/shapediver-rhino-compute

Ť

Tilburg, Tom van; Blankert, Anne; Vaughan, Rubio: 3D tiles in Mapbox-gl. FOSS4G Bucharest 2019, FOSS4G et al., 2019. https://doi.org/10.5446/43497

Translucent modifier | HB-Radiance Primer. (n.d.). https://docs.ladybug.tools/hb-radiance-primer/components/1 modifiers/translucent modifier

three.js docs. (n.d.). https://threejs.org/docs/#api/en/core/Object3D

Three.js – JavaScript 3D library. (n.d.). https://threejs.org/

V

Visual Studio Code - Code editing. Redefined. (2021, November 3). https://code.visualstudio.com/
Van Esch, M., Looman, R., & De Bruin-Hordijk, G. (2012). The effects of urban and building design parameters on solar access to the urban canyon and the potential for direct passive solar heating strategies. Energy and Buildings, 47, 189–200. https://doi.org/10.1016/j.enbuild.2011.11.042

W

Wikipedia contributors. (2023, September 5). *Air mass (solar energy)*. Wikipedia. https://en.wikipedia.org/wiki/Air mass (solar energy)

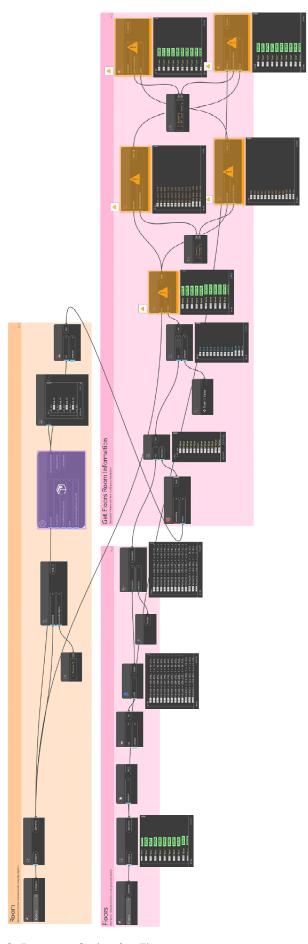
Larson, G. W., & Shakespeare, R. A. (1998). Rendering with Radiance: The art and science of lighting visualization. Morgan Kaufmann Publishers.

Wallabyway. (n.d.). *GitHub - wallabyway/mapboxRevit: View Revit models inside Mapbox*. GitHub. https://github.com/wallabyway/mapboxRevit?tab=readme-ov-file

- Wikipedia contributors. (2010, February 18). File:ECEF ENU Longitude Latitude Relationships.svg

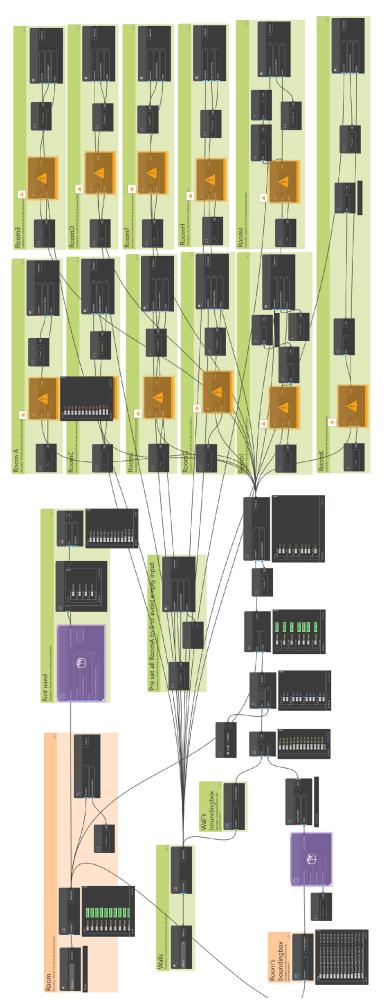
 Wikipedia.

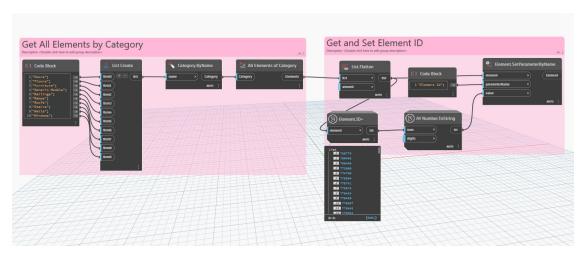
 https://en.wikipedia.org/wiki/File:ECEF_ENU_Longitude_Latitude_relationships.svg#filehis
 tory
- Wedia. (n.d.). Amsterdam unveils plans to build 20.000 new homes in existing neighbourhoods. IamExpat. https://www.iamexpat.nl/housing/real-estate-news/amsterdam-unveils-plans-build-20000-new-homes-existing-neighbourhoods

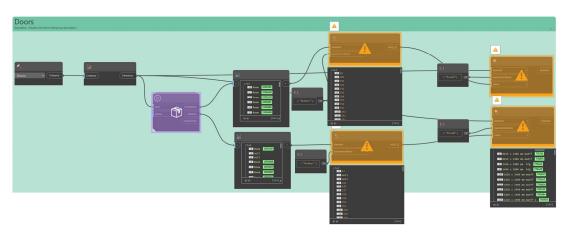

Z

- Zheng, Y., Merchant, A., Laninga, J., Xiang, Z. X., Alshaebi, K., Arellano, N., Romaniuk, H., Fai, S., & Sun, D. H. (2023). COMPARISON OF CHARACTERISTICS OF BIM VISUALIZATION AND INTERACTIVE APPLICATION BASED ON WEBGL AND GAME ENGINE. the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences/International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-M-2–2023, 1671–1677. https://doi.org/10.5194/isprs-archives-xlviii-m-2-2023-1671-2023
- 3DBAG Viewer. (n.d.). https://3dbag.nl/en/viewer
- 2D Rotation about a point | Academo.org Free, interactive, education. (n.d.). https://academo.org/demos/rotation-about-point/

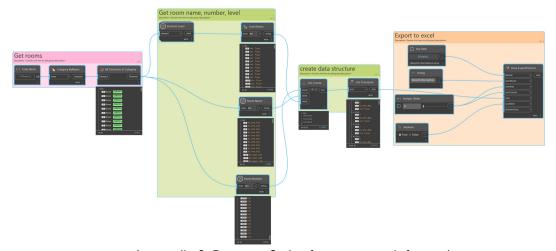
/ Appendix


```
//now rotate the model depending the axis
this.draggedObject.stRotation(rotation);
if (map.th.emableHelpIcolitips) this.draggedObject.addHelp("rot: " + rotation.z + "8#176;");
//this.draggedObject.stOtationObject.ator()
```

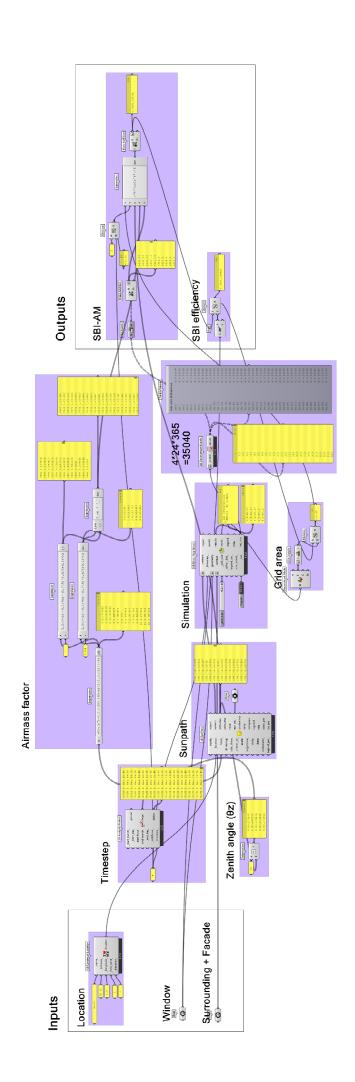

Appendix 1: change in Threebox source code for settings

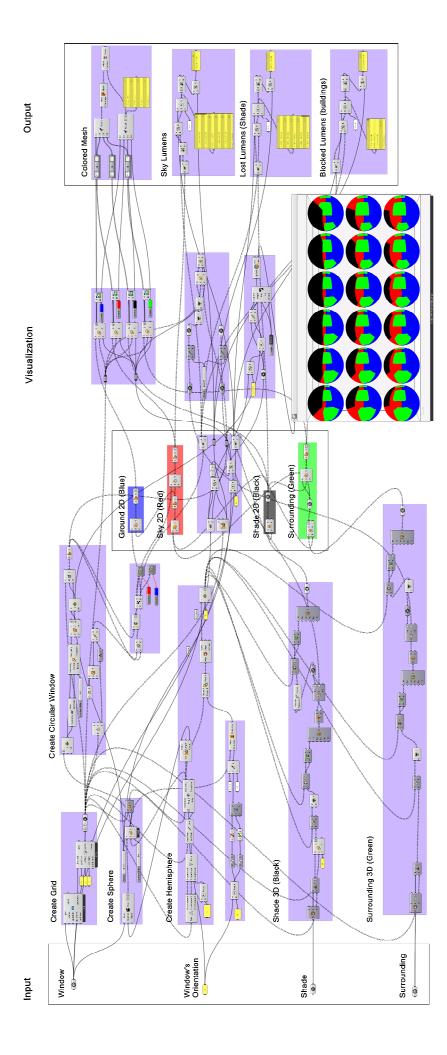

Appendix 2: Dynamo Script for Floor category

Appendix 3: Dynamo Script for tagging Wall category

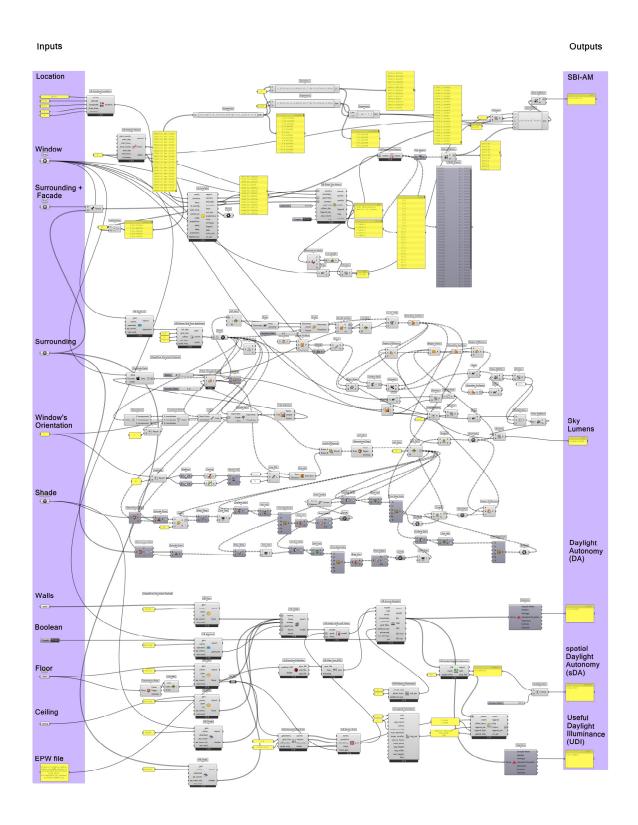


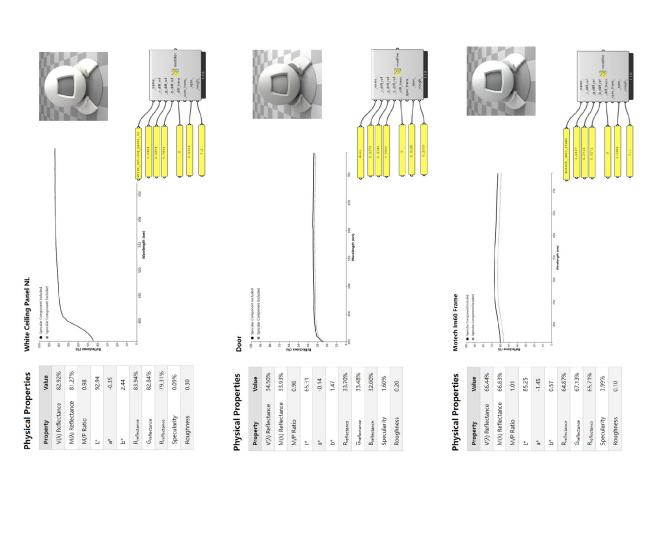
Appendix 4: Dynamo Script for get BIM elements' ID

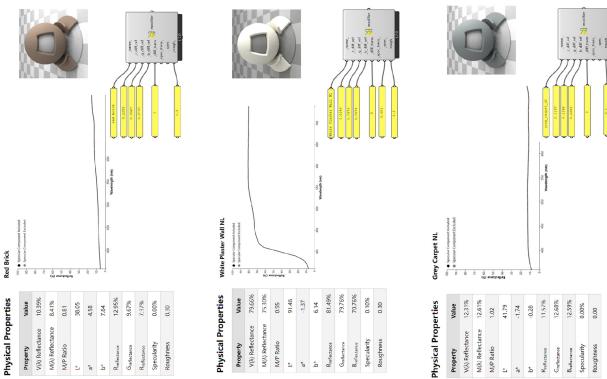

Appendix 5: Dynamo Script for get Tagging Door category


Appendix 6: Dynamo Script for get room information

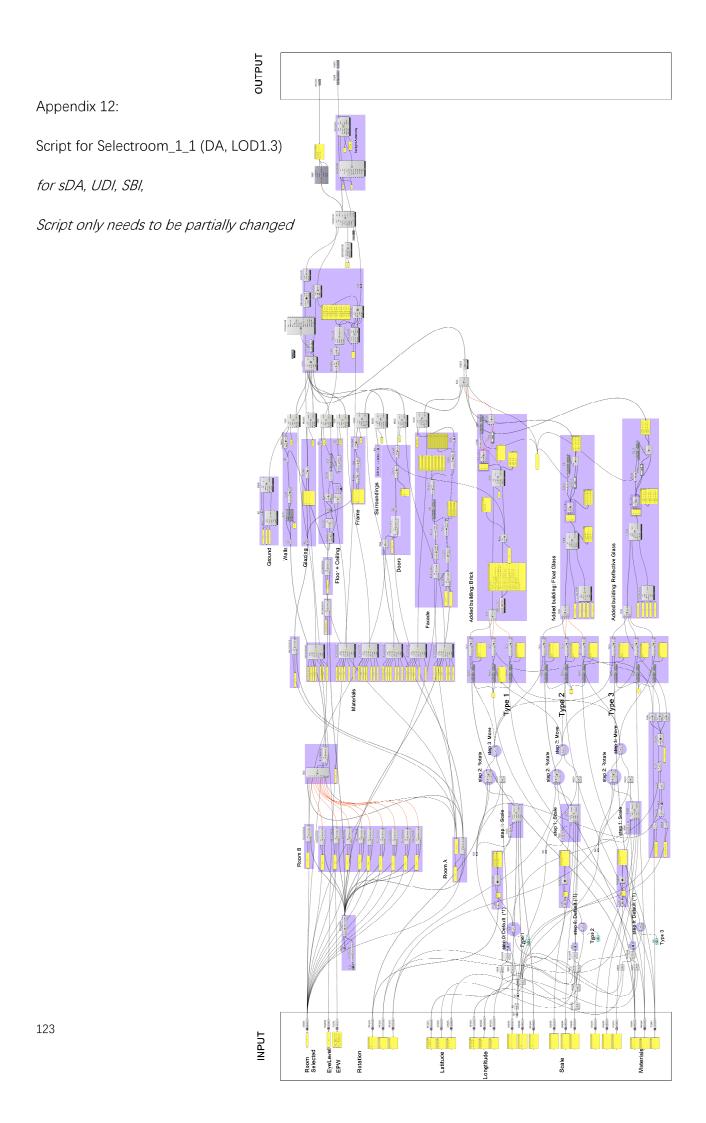
Appendix 7:


GH Script for SBI-AM


Appendix 8:
GH Script for Sky Lumens



Appendix 9: GH Script for correlation experiments



Nicol	Nome	SBI-AM	✓ view-lumens	✓ DA [%]	Y cD A [0/]	Ŭ UDI [%]
Nun 1	Name L	3862.701137	2417.982001	29.704583	20 SDA [%]	67.97175
2	A2	3800.177882	2478.422144	27.789833	14.1667	66.028
3	A3	3862.385756	2529.02294	55.169821	60.7143	77.32
4	A5	6278.4478	3232.661164	60.934286	85.7143	77.07375
5	B1	3669.370491	2554.904343	27.64425	15	63.646083
6	B2 B3	3625.663492	2506.023293	25.01	7.5	61.574
7 8	B5	3667.2939 5553.990673	2554.43865 3258.860182	49.381429 53.3	42.8571 53.5714	74.557321 75.223393
9	C1	2744.509117	2514.914103	17.339417	10.8333	56.53
10	C2	2704.062641	2460.438493	13.717167	0	53.722083
11	C3	2744.738745	2515.816073	33.912143	28.5714	73.672321
12	C5	4036.134627	3221.581564	37.818393	26.7857	75.0425
13	D1	1700.11771	2509.912592	8.272167	6.667	50.39725
14 15	D2 D3	1681.599193	2471.387855	3.871167 21.080179	17.0571	46.306833
16	D5	1705.306527 2530.753	2511.442021 3218.953007	24.035	17.8571 16.0714	71.568571 74.030179
17	E1	1382.316212	2429.802876	5.928833	6.667	45.270667
18	E2	1369.217142	2397.154131	0.763833	0	42.69825
19	E3	1387.450782	2432.95982	16.372143	16.0714	69.801964
20	E5	1821.56293	3139.188572	17.593036	12.5	72.457143
21	F1	1838.909329	2457.881975	8.744083	6.667	50.328333
22	F2	1812.84529	2422.715219	3.839833	0	47.75825
23	F3	1838.755359	2461.508648	21.630893	19.6429	71.517321
24 25	F5 G1	2546.020057 2761.591635	3165.535454 2493.001576	24.18125 17.682167	19.6429 10.8333	73.973393 58.814333
25 26	G2	2761.591635	2453.52048	13.186083	0	55.951083
27	G3	2759.022954	2493.324961	35.4575	28.5714	74.936607
28	G5	4063.876103	3193.13077	39.258036	28.5714	76.301786
29	H1	3730.851668	2542.138246	26.516833	15.8333	66.081917
30	H2	3673.702141	2498.138623	23.722833	8.333	63.79075
31	H3	3729.916304	2542.804427	49.671429	46.4286	76.768929
32	H5	5569.257722	3242.018486	54.803929	58.9286	77.410893
33 34	11 12	5978.529412	3833.108071 3791.917852	44.270417 43.5525	31.667 35.833	72.819167 72.41625
34 35	13	6004.580236 5979.600559	3833.614732	67.225179	96.4286	77.120536
36	14	5968.502222	3826.581689	46.605	44.1667	74.319917
37	15	6278.4478	3848.401559	65.158214	92.8571	77.160893
38	16	6278.4478	3853.324743	45.422333	40	74.466333
39	J1	5293.188484	3857.479978	39.551167	25.833	69.448417
40	J2	5314.535747	3817.355973	37.49125	23.333	68.8795
41	J3	5279.487203	3858.091344	60.285179	76.7857	75.843393
42	J4	5287.216538	3850.619785	42.264167	32.5	70.867
43	J5	5553.990673	3874.064052	57.360714	69.6429	75.613929
44	J6	5553.990674	3873.412472	39.453583	23.3333	69.921333
45 46	K1 K2	3852.819915 3864.195082	3818.914163 3780.204211	25.85525 22.859333	14.1667 5.8333	65.42725 64.393417
46 47	K2 K3	3850.595921	3819.838596	46.305179	39.2857	77.900714
48	K4	3846.746056	3811.603852	27.2525	15.8333	66.534667
49	K5	4036.134627	3836.650102	42.503036	32.1429	76.414464
50	K6	4036.134628	3835.608447	22.97475	6.667	64.46375
51	L1	2334.276721	3812.721995	14.11287	12.037	61.995
52	L2	2337.889301	3771.208429	10.366	0.8333	59.587417
53	L3	2332.906842	3812.820429	33.893929	32.1429	78.734643
54	L4	2318.332224	3806.551229	14.666	13.3333	62.293833
55	L5	2530.753008	3827.043698	29.263393	23.2143	76.389107
56 57	L6	1690.753008	3826.751557	9.176917	3.3333	58.9695
57 58	M1 M2	1689.250663 1697.960887	3734.473078 3697.568948	10.346917 5.663583	11.6667 0.8333	58.058583 57.118167
59	M3	1692.462298	3736.215134	27.71125	30.3571	78.091071
60	M4	1691.934442	3683.44371	10.920083	13.3333	59.475083
61	M5	1821.56293	3753.509914	22.5775	21.4286	75.038214
62	M6	1821.56293	3751.551323	4.539917	3.3333	56.308833
63	N1	2474.283752	3762.5541	14.423917	13.333	61.905083
64	N2	2482.104174	3722.890736	10.681917	2.5	60.346417
65	N3	2474.410343	3764.577417	34.677321	33.9286	78.735357
66	N4	2468.228178	3756.13742	15.187833	15	62.597917
67	N5	2546.020057	3779.694158	30.002143	26.7857	76.465536
68	N6	2546.020056	3778.145807	9.429667	3.3333	60.192417
69 70	01	3867.107446	3794.843756	26.34775	17.5	67.4765
70 71	O2 O3	3889.120015 3867.076599	3752.498472 3794.890416	22.97725 48.579464	10 46.4286	66.187083 78.943929
72	03	3865.113	3788.788227	28.070667	18.3333	69.111917
73	05	4063.876103	3808.175579	44.582143	41.0714	77.708036
74	06	4063.876102	3807.889861	23.41425	6.6667	67.407667
75	P1	5353.661041	3846.350433	38.794667	25.8333	71.603
76	P2	5374.321441	3799.932038	37.097417	23.3333	70.973083
77	P3	5352.745379	3856.477585	62.018929	71.4286	77.774464
78	P4	5339.51915	3842.057819	41.292167	34.1667	73.1755
79	P5	5569.257722	3857.746813	59.452857	76.7857	77.831429
80	P6	5569.257722	3856.597647	38.9155	24.1667	72.7765

Appendix 11: Material Selection

Appendix 13:

Coordinates for rooms

oom Number	Longitude	Latitude	Room Number	Longitude	Latitude	Room Number		Latitude	Room Number	Longitude	Latitud
0	4. 369957323 4. 370713702	52. 00546781 52. 0058256	118 119	4. 369517725 4. 369435129	52. 00525762 52. 00529638	258 259	4. 370228408 4. 370164326	52. 00545022 52. 0052498	396 398	4. 370421473 4. 370374617	52. 0053 52. 0053
3	4. 370367705	52. 00554424	120	4. 369502381	52. 00529038	260	4. 370104320	52. 00550668	400	4. 370277058	52. 0053
4	4. 370782154	52. 00579139	121	4. 36948481	52. 00514452	261	4. 369839553	52. 00564456	401	4. 370277245	52. 0052
5	4. 37060646	52. 00565147	122	4. 369391032	52. 00527175	262	4. 36978473	52.00560362	402	4. 370209129	52.0054
6	4. 370514107	52. 00569868	123	4. 369420547	52. 00518591	263	4. 369742023	52. 00548023	403	4. 370233136	52.0054
7	4. 370414539	52. 00551942	124	4. 369335718	52. 00522895	264	4. 369840342	52. 00543982	404	4. 37021563	52. 0053
9 12	4. 370571443 4. 371402443	52. 00574852 52. 00567519	126 127	4. 370266185 4. 370333624	52. 0048722 52. 00492235	265 266	4. 369797657 4. 369768677	52. 00540815 52. 00538672	405 407	4. 370121556 4. 370185311	52. 0052 52. 0054
13	4. 371278509	52. 00571861	128	4. 370490799	52. 00503887	267	4. 369562366	52. 00533969	408	4. 370133311	52. 0054
14	4. 371166558	52. 00577928	129	4. 370520537	52. 00521322	268	4. 369428154	52. 00521116	409	4. 370063158	52. 0055
15	4. 371124099	52.00583204	130	4. 370286203	52. 00533337	269	4. 370308015	52. 00489535	410	4. 370011842	52.0055
16	4.371081739	52.00582126	131	4. 370267901	52. 00540843	270	4. 370340544	52. 00533245	411	4. 369954518	52.0055
17	4. 371034545	52. 00584539	132	4. 370186062	52. 00543137	271	4. 370282436	52. 00538141	412	4. 369928758	52. 0056
18	4. 371050578	52. 0058697	133	4. 369986979	52. 00548591	272	4. 370281388	52. 00494675	413	4. 369829708	52. 0056
19 20	4. 371375409 4. 370902917	52. 00594588 52. 005932	134 135	4. 369770796 4. 369532953	52. 00546704 52. 00531304	273 274	4. 37031811 4. 370258486	52. 005384 52. 00544566	414 415	4. 369694968 4. 369845487	52. 0054 52. 0054
21	4. 370902917	52. 00594499	138	4. 370279742	52. 00531304	275	4. 369888596	52. 00544566	415	4. 369721484	52. 0054
22	4. 3708487	52, 00591216	140	4. 370315137	52, 00538604	291	4. 370556721	52, 00567688	417	4. 369772652	52, 0053
23	4. 37075671	52. 00598901	143	4. 370000242	52. 00526132	292	4. 370740944	52. 00584616	418	4. 369649984	52. 0054
24	4. 370642301	52.00604741	144	4. 370254932	52. 00544641	293	4. 370659349	52. 00578565	420	4. 369592784	52.005
25	4. 370530491	52. 00612116	145	4. 370232785	52. 00542923	294	4. 370556064	52. 00574299	421	4. 369673591	52. 005
26	4. 370614142	52. 00616852	147	4. 369890611	52. 00547991	295	4. 370524937	52. 00564442	425	4. 36947067	52. 005
27	4. 37066089	52. 0061862	150	4. 370786653	52. 00588944	296	4. 370454319	52. 00566552	426	4. 36954976	52. 0052
28 29	4. 370761954 4. 370872448	52. 00626103 52. 00634248	151 152	4. 370730652 4. 370649387	52. 00584805 52. 00578843	297 298	4. 37042964 4. 370375627	52. 0056156 52. 00557548	429 431	4. 369408864 4. 370264106	52, 0052 52, 0049
30	4. 370984001	52. 00634248	153	4. 370622243	52, 00576624	299	4. 370320744	52. 00557348	432	4. 370255392	52. 004
31	4. 371095164	52. 0065073	155	4. 370532499	52. 00568795	300	4. 37026743	52. 00549532	433	4. 370494376	52. 0050
32	4. 371137282	52.00641278	157	4. 370571753	52. 00574854	303	4. 370505217	52. 0057046	434	4. 370519719	52.005
33	4. 371189697	52. 00645214	159	4. 370551807	52. 00561044	306	4. 370571413	52. 00574871	435	4. 370285274	52, 0053
34	4. 37130823	52. 00662598	160	4. 371033096	52.00584367	308	4. 371413693	52.00569912	437	4. 370180621	52.005
35	4. 371468342	52. 00674469	161	4. 371225669	52. 00630005	309	4. 37110353	52. 00587967	438	4. 369540891	52. 005
36	4. 371254631	52. 00632359	162	4. 371116377	52. 00640164	310	4. 371370696	52. 00565148	439	4. 37009871	52, 005
37 38	4. 371154779	52. 0063818 52. 00632719	163 164	4. 371127927	52. 00638771 52. 00637452	311 312	4. 371306431 4. 371371745	52. 00568988 52. 00574163	440 442	4. 370031828 4. 369872927	52, 005 52, 005
39	4. 371089912 4. 37122452	52, 00632719	166	4. 371158417 4. 370830901	52. 00637452	312	4. 371268737	52. 00574163	442	4. 369872927	52. 005
40	4. 37137903	52. 00622328	169	4. 371315578	52. 00621654	314	4. 371329441	52. 00576345	446	4. 369483911	52. 005
41	4. 370872424	52. 00609499	173	4. 370303386	52. 00470826	315	4. 371233022	52. 00573081	447	4. 369510719	52. 005
42	4. 371229263	52.00581376	174	4. 370262329	52. 00472909	316	4. 371184131	52. 0057558	449	4. 370421704	52.005
43	4. 371248142	52.00585084	175	4. 370223308	52. 0047489	317	4. 371102958	52.00581243	450	4. 370299088	52.005
44	4. 371014418	52. 00589717	176	4. 370164208	52. 00477924	318	4. 371080921	52. 0058215	451	4. 369999673	52. 005
47	4. 371087952	52. 00637467	177	4. 370184796	52. 00480738	319	4. 371034036	52. 00584565	452	4. 370256491	52. 005
48	4. 371183301	52. 00648204	178	4. 370194227	52. 0048789 52. 0048924	320	4. 371047753	52. 00587078	454	4. 369897028	52. 005
49 50	4. 370831181 4. 371208498	52. 00608207 52. 00631297	179 180	4. 370188367 4. 370221526	52. 0048924	321 322	4. 371218621 4. 371281085	52. 00586582 52. 00583395	459 460	4. 370682845 4. 370804899	52, 005 52, 005
51	4. 371641548	52. 00646017	181	4. 37030902	52. 00482801	323	4. 371345801	52. 00589951	461	4. 370872761	52. 005
52	4, 371677484	52. 00652999	182	4. 370237167	52. 00491692	324	4. 371434097	52. 00598906	462	4. 370916676	52, 005
53	4. 371277606	52. 00600796	183	4. 370363174	52. 00486824	326	4. 370899753	52. 00593326	463	4. 370957177	52. 0056
54	4.370977976	52.00589549	184	4. 370380287	52. 00495954	327	4. 370843305	52. 00594664	464	4. 371019329	52.005
55	4. 370868529	52.00590122	185	4. 370558437	52. 00499789	328	4. 370844887	52. 00591356	465	4. 371063383	52.005
56	4. 371052399	52. 00634833	186	4. 370431974	52. 00499856	329	4. 370755522	52. 00598961	466	4. 371065429	52.005
57	4. 371258282	52. 00624333	187	4. 370483999	52. 00503741	330	4. 370641822	52. 00604748	467	4. 371109343	52. 005
58 66	4. 371251388 4. 371600232	52. 00646714 52. 00653358	188 189	4. 370611192 4. 370536165	52. 00503707 52. 00507637	331 332	4. 370530012 4. 370656635	52. 00612123 52. 00618344	468 469	4. 370626803 4. 371201274	52. 005 52. 005
67	4. 371600232	52. 00654038	190	4. 370656017	52. 00507657	333	4. 370758118	52. 00618344	470	4. 3711808	52. 005
68	4. 370207656	52. 00477806	191	4. 370417951	52. 00533685	334	4. 37087082	52, 0063419	471	4. 371264413	52. 005
69	4. 370263897	52.00473005	192	4. 370373641	52. 00535951	335	4. 370983522	52. 00642521	472	4. 371324302	52.005
70	4. 370225555	52. 00474951	193	4. 370203184	52.00544373	336	4. 371067663	52. 0064874	474	4. 371364088	52.005
71	4. 370191055	52.00476737	194	4. 37019809	52. 00527459	337	4. 371122126	52. 00652765	475	4. 371408401	52.005
73	4. 370113522	52. 00480671	195	4. 369832026	52. 00558085	338	4. 371156162	52. 00642688	476	4. 371190799	52. 005
74	4. 370029987	52. 00486945	196	4. 369846683	52. 00544221	339	4. 371189167	52. 00645153	477	4. 37105417	52. 005
75 76	4. 370197666 4. 370184767	52. 00485891 52. 00487247	197 198	4. 369812669 4. 369777396	52. 00541702 52. 00539089	340 341	4. 371267366 4. 371278427	52. 00645886 52. 00661181	478 479	4. 370915522 4. 370976814	52. 005 52. 005
77	4. 370207564	52. 00487247	199	4. 369649247	52. 00535542	342	4. 371444168	52. 00672749	480	4. 37103064	52. 005
78	4. 370228542	52. 00490516	200	4. 369544407	52. 00527776	343	4. 371423972	52. 00676773	481	4. 370973296	52. 005
79	4. 37024952	52. 00492083	201	4. 370276911	52. 00478765	344	4. 371172578	52. 00632892	482	4. 371074426	52.005
80	4. 370312734	52.00482823	202	4. 370197751	52. 00486536	345	4. 371401933	52. 00621166	483	4. 37130411	52.005
81	4. 370368146	52. 0048694	204	4. 370431354	52. 0049466	346	4. 371069971	52. 006234	484	4. 371155494	52. 005
82	4. 37045995	52. 00493753	206	4. 370164917	52. 00481764	347	4. 371262736	52. 00581046	485	4. 370977435	52. 005
83 84	4. 370551085 4. 370602691	52, 00500495 52, 00504349	213 215	4. 369738932	52. 00540813 52. 00581595	349 350	4. 371260883	52. 00594313 52. 0058956	486 493	4. 371090849	52, 005 52, 005
84 85	4. 370658692	52, 00504349 52, 00508488	215 216	4. 370734111 4. 3706488	52. 00581595 52. 00570032	350 354	4. 370978116 4. 370925603	52. 0058956 52. 00611449	493 497	4. 370942374 4. 369846736	52, 005 52, 005
86	4. 370783524	52. 00512959	217	4. 370553813	52. 0057494	356	4. 371325359	52. 00611445	502	4. 371426135	52. 005
87	4. 370695266	52. 00519156	218	4. 370538238	52.00568521	357	4. 371154665	52. 00606999	503	4. 371349893	52.005
88	4. 370605768	52. 00523751	223	4. 371259074	52. 00574899	359	4. 370863508	52.00606812	504	4. 371419549	52.005
89	4. 370516609	52. 00528328	224	4. 371032988	52. 00584635	360	4. 371640615	52. 00653203	505	4. 371307589	52.005
90	4. 370468736	52. 00530774	225	4. 371048751	52. 0058694	361	4. 37169099	52. 00652752	506	4. 371379849	52. 005
91	4. 370422231	52. 00533345	226	4. 371248371	52. 00585037	363	4. 371278056	52. 00600808	507	4. 371269757	52. 005
92 93	4. 370378494 4. 370375745	52. 00532249 52. 00535704	227 228	4. 37132638 4. 370736743	52. 00590884 52. 0060158	365 367	4. 370866752 4. 371112859	52. 00590159 52. 00635922	508 509	4. 371336527 4. 371229599	52. 005 52. 005
93	4. 370336387	52, 00535704 52, 00534105	228 229	4. 370736743	52. 0050158 52. 00591786	367 368	4. 371112859 4. 371234083	52. 00635922 52. 00647592	509 510	4. 371229599 4. 371074994	52. 005 52. 005
95	4. 370277474	52. 00529131	230	4. 370850105	52. 00591780	370	4. 370994789	52. 00615147	511	4. 371046472	52.003
96	4. 370201619	52. 00533191	231	4. 370481485	52. 00611393	373	4. 371652745	52. 00645449	512	4. 371045578	52. 005
97	4.370201914	52.0054149	232	4. 370534939	52.00615364	374	4. 371598687	52. 00649753	513	4. 371015495	52.005
98	4. 370116016	52. 00521415	233	4. 370779566	52. 00624928	375	4. 371599159	52. 00654044	514	4. 371223711	52, 005
99	4. 370234374	52. 00545702	234	4. 370992552	52. 00640642	376	4. 371625135	52. 00653814	515	4. 371194806	52.006
100	4. 370121669	52. 00548457	235	4. 371223245	52. 00657017	377	4. 370232148	52. 00545727 52. 00472925	516	4. 371175739 4. 37090924	52. 006
101 102	4. 370064634 4. 370010794	52, 00551368 52, 00554136	236 237	4. 371151398 4. 371181886	52. 00642439 52. 00644716	378 379	4. 370303852 4. 370124515	52. 00472925 52. 00482131	517 518	4. 37090924 4. 371278434	52, 006 52, 00
102	4. 369954578	52. 00557023	238	4. 3711414487	52. 00672645	380	4. 370124515	52. 00482131	519	4. 371103809	52.005
103	4. 369841813	52. 00561114	239	4. 371257297	52. 00628558	381	4. 370312645	52. 00487878	521	4. 370872704	52. 006
105	4. 369779264	52. 00553273	243	4. 370870125	52. 005899	382	4. 370201467	52. 00489452	530	4. 370409606	52. 005
106	4. 369844627	52. 00544238	244	4. 371223374	52. 00648048	383	4. 370367188	52. 00486953	531	4. 370448354	52.005
107	4. 369720466	52. 00548924	245	4. 370167278	52. 00479855	384	4. 370433399	52. 00491855	532	4. 370374838	52.005
108	4. 369807536	52. 00541489	246	4. 37022341	52. 00481515	386	4. 370498351	52. 00496663	533	4. 369926429	52.005
109	4.369649674	52. 00545553	247	4.370190327	52. 00483194	387	4. 370550686	52. 0050055	534	4. 36984104	52, 005
110	4. 369781773	52. 00539586	248	4.370155008	52. 00485003	388	4. 37063298	52. 00506653	535	4.369809785	52.005
111	4. 369762443	52. 00538164	249	4. 37011955	52. 00486803	389	4. 370782985	52. 00513004	536	4. 369771804	52.005
112	4. 369655011	52. 00535951	251	4. 370465364	52. 00496583	390	4. 3709209	52. 00510408	537	4. 369633632	52.005
113	4. 369593733	52. 00541376	252	4. 370279734	52. 00487445	391	4. 370867726	52. 00506458	538	4. 369887513	52, 005
114	4. 369584604 4. 369536892	52. 00530736 52. 00537173	253 254	4. 370242543	52. 00491051 52. 00521233	392 393	4. 370692691 4. 370606616	52. 00519305 52. 00523708	539 540	4. 369780682 4. 369781352	52. 005 52. 005
115		04.00001110	204	4. 370619076		292			340	4. 000101002	J4. UUD
115 116	4. 369545975	52. 00527872	256	4. 370415448	52. 00535285	394	4. 370518504	52. 00528214	546	4. 370965912	52. 0056

Element	ld RoomA	RoomB	RoomC	RoomD	RoomE	RoomF RoomG RoomH Room	ni RoomJ RoomK	Category	1	Element	k RoomA	RoomB	RoomC	RoomD	RoomE RoomF	RoomG RoomH Ro	omi RoomJ RoomK	Category
325651 325726 325984	381 383							Walls Walls Walls		394757 394761 394765	326 326 326 326 326 326 326 327 327 327 328 327 329 329 329 330 331	350 350 327 327 327 351 327 350 328 351 365 329	351 328					Walls
326468 326530	386 207							Walls Walls		394769 394773	326	327	351					Walls
326601 329007	388	388	433					Walls Walls		394782 394791	326	351	221					Walls
329053 329057	386	387	433					Walls Walls		394970 395218	326	350						Walls
329067 329446	388	387 433 433 389	434 434					Walls Walls		395446 395547	327	351						Walls
376892 376897	378 378	303	434					Walls Walls		395557 395561	327	329 330	351 351					Walls
376906 376910	378 279	379						Walls Walls			329	330	301					Walls
376915 376919	379	3/9						Walls Walls		395569 395580 395594	330	351						Walls
	391										331	331						Walls
376995 376999 377064	389	391	433					Walls Walls Walls		395672 395688 205606	331 331	334	352					Walls Walls
377054 377059	384	386 386 384 384	432	433						395696 395704	333 334	334	352					Walls Walls
377063 377068	383	384		433				Walls Walls		395708 395712	333		332					Walls Walls
377072 377077	379	430 381	432 430					Walls Walls		395716 395720	333 332	352 333	352					Walls Walls
377081 378091	378	383 379	381					Walls Walls		395724 395728	332 332 331 331	351	352					Walls Walls
378538 378546	392 392	434 380	430					Walls Walls		395732 395736 396083	331	332 332						Walls Walls
378797 379331	382	380	430					Walls Walls		398941	291 330 335 335 334	331	332	351				Walls
379336 379350	380	382	430					Walls Walls		399157 399161	335	352 336 335	353 353					Walls
379988 379993 379997	390							Walls Walls		399165 399169	334 335		352					Walls
380001	389 389	390 390	391					Walls Walls		399175 399179 399187	335 336 336 337 337 337 341 341 341 342 342 342	337 337	353					Walls Walls
380026 380030 380410	389 389	392						Walls Walls Walls		399187 399214 399218	336 337	341	353					Walls Walls
380410 380977 380982	389 392	393	434					Walls Walls Walls		399218 399222 399994	337 337	341	353					Walls Walls
380987	393 393	434						Walls		400002	341 341							Walls Walls
381411 381416	394 393	394	434					Walls Walls		400010 400023	341 342	342						Walls Walls Walls Walls Walls Walls Walls
381421 381432	394 394	434 395						Walls Walls		400043 400047	342 342							Walls Walls
381443 381448	395 395	434	449					Walls Walls		400058 400062	343 343 342 342 340 368 340 339							Walls Walls
381453 381686	395 396	396						Walls Walls		400066 400070	342 342	343 343						Walls
381694	396 396	449 449						Walls Walls		401138	340 368							Walls
381709 381714	396 396	435 398						Walls Walls		401153	340 339							Walls
381723 381727	398 398	399	435					Walls Walls		401229 401233	338 338	339 339	353	355				Walls
381732 381873	398 400	435 435	450					Walls Walls		401243 401247	338 338 338 338	339 339 355 344	355					Walls Walls
381878 381882	3813 3814 3815 3816 3816 3816 3816 3816 3816 3816 3816	436 435	450 436	450				Walls Walls		401255 401260	338 338							Walls Walls
381887 381914	400	436	450					Walls Walls		401264 401268	338							Walls
381918 381937	401	435						Walls Walls		401273 401340	338 338 339 339 344 345 345 345	355	356					Walls
	401	404 406	405					Walls Walls			345	333	550					Walls
381953 381966 381070	406 406	451								403983 404198 404202	318	319 319						Walls
381970 381975 381980	406							Walls Walls		404202 404219	309 319	313						Walls
381984	405	404	435					Walls Walls		404227 404235 404259	319 319	318	247					Walls Walls
381993 381997 383655	404	435	451					Walls Walls		404264	317 309 318 318	318	347 347					Walls
383822 383837	403	407	452 436	452				Walls Walls Walls		404281 404289	318	319						Walls
383841	402	403	407					Walls		404293	318 318							Walls
383924 383932 383936	377	435 439 407 403 403 403 407 407 407 407 407 407 407 408 440 409 409 409 408 410 410	407	452				Walls Walls		404297 404301 404305	318 317 318	318						Walls
383988	377	407 407						Walls Walls Walls		404305 404310 404331	317 317	318 318 319						Walls
383992 383996 384008	403 403	407 407						Walls Walls Walls		404331 404335 404344	317 309 309 319		320					Walls Walls
	402 407	407 408						Walls Walls Walls		405629	319 318	320						Walls Walls
384267 384271	408 408	440 409						Walls		405633 405637	318 318 318 317 316							Walls Walls Walls Walls Walls
384279 384287	408 408	409 409						Walls Walls		406025 406030	317 316	347 317						Walls Walls
384291 384299	409 409	408 410						Walls Walls		406107 406116	315 316 316 313	316						Walls
384307 384316	409 409	410 410						Walls Walls		406120 406200	316 313	317 315	347	518				Walls Walls
384324 384332	409 409	410 410						Walls Walls		406205 406383	315	347 313						Walls
384336 384340	410 410	411						Walls Walls		406388 406392	308 313	311	313	347				Walls Walls
384376 384390	411 411	412						Walls Walls		406418 406432	308 311	311						Walls Walls
384395 384399	412 412	413	453					Walls Walls		407639 407648	308							Walls Walls
384403 384407	412 413	413 442	453					Walls Walls		407856 407860	312 308 312 314	312	314	347				Walls
384415 384419	413 413							Walls Walls		407864 407970	312 314	314	347					Walls Walls
384426 384430	414 414	440 442	442 443	443				Walls Walls		407974 407978	314 314	347 347						Walls Walls
384438 385704	414 413	414						Walls Walls		408078 408090 408094	314 314 322 322 322 322							Walls Walls
387305 387309 387313	443 414	445 416 418	443					Walls Walls Walls		408094 408255 408643	322 321	347 322	347					Walls Walls Walls
387313 387428 387432	416 415		540					Walls Walls Walls		408643 408655 408761	321 323 321 324	323	348	349	514			Walls Walls Walls
	415 415	443 443	454					Walls		408765	324 324							Walls
387454 387459	420 420	445 445						Walls Walls		408770 409158	324 323 324	324	325	349	363			Walls Walls
387469 387480	420 420	445 445	458					Walls Walls		409444 409824	324 462	325						Walls Walls
387485 387489	420 420	445						Walls Walls Walls		409828 409832	461 461	462 462						Walls Walls Walls
387500 387505	423 423	425 425	447					Walls Walls		409836 409848	461 461							Walls Walls
387510 387514	423 425							Walls Walls		409905 409913	463 463 463 463	465 464	465					Walls
387518 387522	427 425	427	447					Walls Walls		409917	463 463	465 464						Walls
387527 387532	427 427	429 447	447					Walls Walls		409925 409933	464 466 464 464 467 467 467	467						Walls
387537 387550	425 424	447 447						Walls Walls		409937 409941	464 464	466 466	467					Walls
387555 387560	424 426	447						Walls Walls		409945 409991	464 467	466						Walls Walls
387565 387570	426 426	428	429	447				Walls Walls		409999 410003	467 464	465	467					Walls Walls
387575 387605 387609	429 429							Walls Walls Walls		410130 410134 410138		463 463 462						Walls Walls Walls
387609 387622 387657	429 429							Walls Walls Walls		410138 410265 410269	462 461 468 468	462	463					Walls Walls Walls
387657 387664 387668	429 438							Walls Walls Walls		410269 410273 410277	468 468							Walls Walls Walls
387668 387672 387676	438 429	438						Walls Walls Walls		410277 410305 410309	468 468 470 469							Walls Walls Walls
387676 387682 387690	438 446	446						Walls Walls Walls		410309 410313 410317	469 482	470 470	471	483				Walls Walls Walls
387694	429 446	446						Walls Walls Walls		410335	470 471							Walls Walls Walls
387700 387710	421 421	443 445	445					Walls		410343 410352	482 470 471 471 472 472 472 472 472 474	483 474	483					Walls
387715 387719	421 421	445						Walls Walls		410356 410360	472 472	483						Walls
387730 387740	418 418	445 420	445					Walls Walls		410364 410676	472 474	483						Walls
387745	416 417	418 443	444					Walls Walls		410688	473 473 473 475 475	474 483	483					Walls Walls Walls Walls Walls
387759 387763 387767	417 417	419 443	443 445	445				Walls Walls Walls		410793 410905 410909	473 475	483						Walls Walls
387777	417 419	443 443 421	445					Walls Walls Walls		410909 410917 410921	475 473	474	475	483				Walls Walls Walls
387781 387785 392249	419 419		445					Walls		410921 411205 411321	473 475 475 469	483 483						Walls Walls Walls
393329	407 300	408 304 300	377	407	408	452		Walls Walls Walls		411321 411330 411472	469 469 469	483						Walls Walls Walls
393333 393341 393346	299 299	300 300						Walls		411670	469 469 476	479 475	480 483	482				Walls Walls Walls
393358	299 298							Walls Walls Walls		413357 413409 413413	476 484 476							Walls Walls Walls
393362 393366	297 297	298						Walls		413413 413417	476 484	484						Walls Walls
	296 408	297	302							413417 413425 413429	484 476 476	484 484						Walls Walls Walls
393605 394480 394515	296 293							Walls Walls Walls		413429 413501 413649	476 476 477	484 484 484						Walls Walls Walls
	292 292	293 293	301 301	302	498					413649 413653 413658	477 469 477	484 477	485					Walls Walls Walls
394529 394538 394543	4200 4231 4232 4233 4233 4233 425 427 427 427 427 427 427 427 427 427 427	292						Walls Walls Walls		413658 413662 414426	477 477 477	485						Walls Walls Walls
394543 394552 394556 394560	291 291	292	327	328	350	365		Walls Walls Walls Walls		414426 415268 416369 417518	477 469 469 469	477 477						Walls Walls Walls Walls
394560 417846	291 480	301 301 482						Walls Walls		417518 493606	469 444	477 477						Walls Walls

Element Id	RoomA	RoomB	RoomC	RoomD	RoomE	RoomF	RoomG	RoomH Rooml Roo	n) RoomK Category Walls	Element	RoomA	RoomB	RoomC	RoomD	RoomE 440	RoomF R
417850 418057 418061	460 479 480	480 480 481	481 481	482 493					Walls Walls	494611 495936 495940	402 304 398	403 436 450	435 450 532	436	440	
418085 418103	480 460 479 478	481 493 479	494	495	496				Walls Walls	495949 495953	398 435 398 398	450 437 399	450	532 450		
418137 418141 418145	478 478	479	496						Walls Walls Walls	495957 496112 496120	434 404	399 435 405	435 439	450		
418166 418170	493 494 495								Walls Walls	496124 496128	437 437 439	439				
418174 418178 418186	496	494							Walls Walls Walls	496132 496136 496145	405	439 451				
418202 418232	494 460	495 482	487						Walls Walls	496149	439	451 453	534	538		
418998 422766	495 124	496							Walls Walls	497924 499023	440	442 451				
422770 422774 422779	124 123 122	124 124	135 135						Walls Walls Walls	499027 499031 499203	451 451 451 435 434					
422892 422912	495 124 124 123 122 123 120 121 121	121	123						Walls Walls	499203 500169 500295	435 434					
423058 423062 423066	121 121 120	121							Walls Walls Walls	501102 501630 501635	389 433	434 433				
423518 423527	120 122 119 122	122	135						Walls Walls	501639 501644 501668	432 432 432 432	400				
423531 423606	122 117 117	135 119	135						Walls Walls	501668 501677 501681	432 430 430	432	432			
423610 423618 423722	117	135							Walls Walls Walls	501690 501695	380 430	431 430 431	432			
423726 423730	115 113	117 115	135 135						Walls Walls	501710 501945	431 382	430				
423734 423975 423987	115 119	135							Walls Walls Walls	502167 502287 502710	430 432	431				
423996 424012	119 120 120	123	135						Walls Walls	503317 503406	382 431 304	431 432 460				
424130 424142	120 107 107	134	440	404	105				Walls Walls	503426 503430	304 302 302 302	459 304	460			
424148 424152 424156	107 107 109	109 109 113	113	134	135				Walls Walls Walls	503438 503442 503446		459 459 459	460 460 460			
424160 426605 426862	109 109 107 113	134							Walls Walls	503454 503459 503467	302 301 301	460 350				
426862 426874 427088	113 113 105	135							Walls Walls	503467 503471 503479	301 301 294 294 294	302 302	303			
427090 427096	104	105 107	134 134	195					Walls Walls Walls	503483 503487	303	303				
427100 427828	103 104 104	104	105	133	134	146	195		Walls Walls	503495 505014	302 296 296	302				
427850 427859 427876	104 104 102	103							Walls Walls Walls	506447 506546 507519	296 296 302	302 303 304	303 460			
427881	103	103							Walls Walls	507692 509501	302	459 302	460 460			
427921 427960	101	102 101							Walls Walls	510216 510229	326	350 365	365			
427964 427972	100 100	101 132	193	102					Walls Walls	511469 514829	350 418	351 443	445	537		
429022 429444 429458	99 96 95 95	132 96	144	193					Walls Walls Walls	514833 514837 514841	537 445 445	537 537				
429554 429841	95 98	50							Walls Walls	514845 514849	445 445 537 537	537				
429849 429854	98 98 98 143 143								Walls Walls	515180 515517	537 497					
429859 429863 429889	143 143 143								Walls Walls Walls	515521 515525 515529	497 443 443 443	497 497 497	535 539	539		
430723 430737	143 90 89 89	90							Walls Walls	515529 515533 515541 515545	443 536 536 443					
430782 430792 430866	89 88 87	89							Walls Walls	515545 515803 515965	443 443 443	536 445 445	539 536 536	539 539		
430964 431417	87 88	88							Walls Walls Walls	516622 516630	535 443	535	536	539		
431956 431960	86 86	87	129						Walls Walls	516634 516760	443 443	535 535	539	000		
431965 431969	86 86 85 86	86	128	129	139				Walls Walls	516853 517815	443 411	535 533	539 538			
432307 435154 435158	86 73 74 74 74 73	74	125						Walls Walls Walls	517819 517823 517827	533 413 413	533 533	538			
435162 435166	74 74								Walls Walls	517831 517835	411	413 440	453 453	534 534	538	
435234 436197	73	100							Walls Walls	517839 517843	413	414 534 538	440	443	534	540
436201 436232 437731	3 6 20	21	99	100	131	132	144	193	Walls Walls Walls	518237 518241 518577	411 413 413 395	538				
437736 437745	20 20 20 22 21	22 44	55 55						Walls Walls	518811 518815	395 530	434 531	449	530	531	
437754 437764		55 22	22	45	450				Walls Walls	518823 519312	530 434 531	435	449	530		
437796 438125 438130	23 23 23 23	21 24	23 45	45	150				Walls Walls Walls	519316 519324 519332	435 531 395	530 531	531	532		
438134 438144	23 24	24 45							Walls Walls	519556 519883	395 435 298 297	532 299	499			
438149 438176	24 24 24 25	25	27	45	46				Walls Walls	520099 520103	297 297 292	298 298 293	499 307	499		
438180 438184 438735	25 25	26	27						Walls Walls Walls	520766 520988 521125	292	301 293	498			
439102 439111	25 25 27 26	28 27	45	46					Walls Walls	522083 522087	460 460	546 546				
439115 439124 439144	26 26 27 27	27 28							Walls Walls Walls	522091 522095 522172	460 460	546 546 547				
439148 439618	27								Walls Walls	522176 522180	460 460 460	547 547				
439622 439626	29 28 28	29 29	30	46					Walls Walls	522184 522574	460 516	547				
439630 439785 439936	28 28 27	46							Walls Walls	522578 522582 522017	353 353 515	368 516	516			
440168 440172 440180	30 29	30							Walls Walls	522922 522926 522930	352 352	353				
440581	30 31	30 46 46 31	48						Walls Walls	522935	352 352 352					
440585 440589 440690	30 31 34	31	46						Walls Walls Walls	522939 523185 523496	352 352 354 354	353 359	355	516		
440698 440702	34 34								Walls Walls	523504 523508	354 354 359	359				
440710 440714 440718	34								Walls Walls Walls	523517 523521 523525	359 359 359					
440940 441813	342 342								Walls Walls	523531 523553	0					
442046 442054	34 35								Walls Walls	524019 524027	346 346	517 517	528 521			
442058 443724 443728	35 33 58								Walls Walls Walls	524031 524081	346 346	517 517	521 521	528 528		
443737 444346	32 32	33	48						Walls Walls Walls	524093 524097 524101	346 346 346	370 370 517	517 517	020		
445059 445276	37 36	164 161							Walls Walls	526070 526074	350	364 512	513 513	722		
445371 445381 447163	40 40 17	161 724 18	724	44	160				Walls Walls Walls	526082 526090 526094	513 513 511	722				
	16 16	17	42 160	44	100				Walls Walls	526098 526102			722			
447188 447192 447196 447205	15 14	42 16 15 16	16 42						Walls Walls	526106 526118 526122	511 511 350 511	512 512 364 519	511			
447205 447209 447214	15 14	16 15 16	42 42						Walls Walls Walls	526122 526140 526148	511 350 510	519 519 513	700			
447747 447755	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42 14							Walls Walls	526152 526156	317 510	347	722 510	518	722	
447764 447768	13 13	42							Walls Walls	526160 526164	317 510	347	510	518	722	
447772 449142	13 13	14 13	42						Walls Walls	526168 526182	510 317	347	518	722		
449303 449308 449312	12 12								Walls Walls Walls	526198 527816 527824	518 323 514	722 514				
449316 450204	12 19	53 53							Walls Walls	527828 528422	322 316	347 509	514	518		
450208 450227 450238	19 19	53							Walls Walls Walls	528426 528430 528434	347 315 507	509 316 509	518			
450243 450247	19 19 19 19 98								Walls Walls	528438 528442	313	507 507	518			
450680 479839	19 98	53							Walls Walls	528446 528599	505 503	507	0.10			
489601 491455	423 424 445 445	445 445	447						Walls Walls	528604 528608	505	505	518			
491740 491921 492138	445 445	447							Walls Walls Walls	528612 528616 528688	502 347 507	503 505	518 518			
492193 492197	445 443 443 415	445 445 443							Walls Walls	529082 529102	507 502 502 502	503				
493598 529177 529181	415 502 502	443 504 504	444 518 518						Walls Walls Walls	529106 529110 529173	502 504					
529185 529205	502 502 504 506	506	518						Walls Walls	665397 665401	185 128	188 184	204 186	187	189	204
529213	347	506	518						Walls	665406	185	204				

611	RoomA	
	402 304 398	RoomB 403
5936	304	436
5940 5949	398 435	450 437
5953		399
5957	398 434	399
5112 5120 5124	434	435 405
5120 5124	404 437	405
	437 439	439
	439	439
3145	405 439	459
5136 5145 5149 7795 7924	439	451 451
7795	411	453
7924	440 439	442 451
9023	451	431
9031	451	
0169 0295	435 434	
1102 1630	389 433	434
1630	433	
1635 1639	432 432	433
1644	432	
1644 1668	432 432	
1677 1681	430 430	432 431
1690	380	430
1695	380 430	431
1710 1945	431	430
2167	382 430	431
2287	432 382	
2710	382	431
3317	431 304	432 460
3426	302	459
3430	302 302	459 304
3438	302	459
2287 2710 3317 3406 3426 3430 3438 3442 3446 3454 3459	302 302	459 459
3454	301	460 350
3459	301	350
3467 3471	301 294	302 302
3479 3483	294 294	
3483	294	303
3487 3495	303 302	
5014	296	302
6447	296 296	302 302
5546	296 302	303 304
7602	302	3U4 450
5014 5447 5546 7519 7692 9501	302 301	459 302
0216 0229	326 350	350 365
J229 J460	350 350	365 351
1829	418	351 443
1469 1829 1833 1837 1841	537 445	
1837	445	537
1841	445	537 537
1845 1849	445 537	301
5180 5517	537 497	
5517	497	107
5521 5525	443 443	497 497
5529 5533	443 536	497
5533	536	
5541 5545	536 443	536
5803		445
803 965	443 535	445
6622 8620	535	535
6630 6634 6760 6853 7815 7819 7823 7827 7831 7835 7839 7843 3237 3241	443 443	
3760	443 443	535 535
853	443	535
7R19	411 533	533
7823	413 413	533
7827	413	533
7831 7835	411 411	413 440
7839	413	
7843	413	534 538
3237	411	538 538
	413 413	538
3811 3815	395 530	434
3815	530	531
3823 9312	434 531	435
9316 9324	435 531	530
3324	531	
9332 9556	395 435	531 532
3556 3883	435 208	200
0099	298 297	299 298
0103	297	298 293
1766	292 292	
1125	292	
2083	460	293
2087	460	293 546
2095		293 546 546
2172		546 546
	460 460 460	546 546 546 547
2176	460 460 460	546 546 546 547
2176	460 460 460 460 460	546 546 546 547
2176 2180 2184 2574	460 460 460 460 460 460 516	546 546 546 547 547 547 547
9883 9099 9103 9766 9968 1125 2083 2087 2091 2095 2172 2176 2184 2574 2578	460 460 460 460 460 460 516 353	546 546 546 547 547 547 547
2176 2180 2184 2574 2578 2582	460 460 460 460 460 460 516 353 353	546 546 546 547 547 547 547
2176 2180 2184 2574 2578 2582 2917	460 460 460 460 460 460 516 353 353 515	546 546 546 547 547 547 547 547 368 516
2176 2180 2184 2574 2578 2582 2917 2922	460 460 460 460 460 516 353 353 515 352 352	546 546 546 547 547 547 547
2176 2180 2184 2574 2578 2582 2917 2922 2926	460 460 460 460 460 516 353 353 515 352 352 352	546 546 546 547 547 547 547 547 368 516
2176 2180 2184 2574 2578 2582 2917 2922 2926 2930 2935	460 460 460 460 516 353 353 515 352 352 352 352 352	546 546 547 547 547 547 547 547 368 516
2582 2917 2922 2926 2930 2935 2939 2185	460 460 460 460 460 516 353 353 515 352 352 352 352 352 352 352	546 546 546 547 547 547 547 547 547 368 516 353
2582 2917 2922 2926 2930 2935 2939 2185	460 460 460 460 460 516 353 353 515 352 352 352 352 352 352 352	546 546 546 547 547 547 547 547 547 368 516 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 2504	460 460 460 460 460 460 460 516 353 353 352 352 352 352 352 352 352 354 354	546 546 547 547 547 547 547 547 368 516
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508	460 460 460 460 460 516 353 351 352 352 352 352 352 352 352 352 354 354 354 354 359	546 546 546 547 547 547 547 547 547 368 516 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508	460 460 460 460 460 460 516 353 353 515 352 352 352 352 352 352 354 354 359 359 359	546 546 546 547 547 547 547 547 547 368 516 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 460 460 516 516 353 353 353 352 352 352 352 352	546 546 546 547 547 547 547 547 547 368 516 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 516 516 353 353 352 352 352 352 352 352 352 352	546 546 546 547 547 547 547 368 516 353 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 460 516 353 353 353 352 352 352 352 352 352 352	546 546 546 547 547 547 547 368 516 353 353
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 460 516 353 353 352 352 352 352 352 352	546 546 546 547 547 547 547 547 368 516 353 359 359
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 460 516 353 352 352 352 352 352 352 352 352 352	546 546 546 547 547 547 547 368 516 353 353 353 359 359 359
2582 2917 2922 2926 2930 2935 2939 3185 3496 3504 3508 3517 3521	460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 368 516 353 353 353 359 359 359
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 368 516 353 353 359 359 359 317 517 517 517 517 517 517 517 517 517 5
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 368 516 353 353 359 359 359 317 517 517 517 517 517 517 517 517 517 5
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 516 515 515 352 352 352 352 352 354 354 359 359 30 0 346 346 346 346 350 346 346 350 511 511	546 546 546 547 547 547 368 516 353 353 359 359 359 317 517 517 517 517 517 517 517 517 517 5
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 516 515 515 352 352 352 352 352 354 354 359 359 30 0 346 346 346 346 350 346 351 511	546 546 546 547 547 547 547 368 516 353 353 353 359 359 359
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 368 353 353 353 353 353 353 353 359 359 359
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 516 353 353 353 359 359 359 359 359 377 317 317 317 317 317 317 317 317 317
2582 2917 2922 2922 2926 2930 2935 2939 38185 38496 3504 3508 3511 3525 3521 3525 3521 3525 3631 3631 3631 3631 3631 3631 3631 363	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 2917 2922 2930 2935 2935 2935 2939 2935 2939 2939 2935 2939	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 2917 2922 2926 2930 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2935	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 2917 2922 2926 2930 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2939 2935 2935	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 29917 29926 29930 29935 29939 29185 291	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 29917 29922 29926 29939 2	460 4400 4400 4400 4400 4400 4400 4400	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 29917 29922 29926 29939 2	460 4400 4400 4400 4400 4400 4400 4400	546 546 546 547 547 547 547 547 547 547 547 547 547
2582 29917 29922 29926 29939 2	460 440 440 440 440 440 440 440 440 440	546 546 546 547 547 368 516 517 517 517 517 517 517 517 517 517 517
2582 29917 29922 29926 29939 2	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 368 516 353 353 353 359 517 517 517 517 517 517 517 517 517 517
2582 29917 29922 29926 29939 2	460 460 460 460 460 460 460 460 460 460	546 546 547 547 547 547 548 551 547 368 516 517 517 517 517 517 517 517 517 517 517
2582 29917 29922 29926 29939 2	4600 4400 4400 4400 4400 4400 4400 4400	546 546 546 547 547 368 516 353 353 353 359 517 517 517 517 517 517 517 517 517 517
2582 9917 9926 9939 9939 9185 92939 9185 950 9939 9185 950 9939 9185 950 950 950 950 950 950 950 950 950 95	460 460 460 460 460 460 460 460 460 460	546 546 546 547 547 547 547 366 518 518 517 517 517 517 517 517 517 517 517 517
2582 9917 9926 9939 9939 9185 92939 9185 950 9939 9185 950 9939 9185 950 950 950 950 950 950 950 950 950 95	460 460 460 460 460 460 460 460 460 460	546 546 547 547 547 547 547 547 547 547 547 547
2582 9917 9926 9939 9939 9185 92939 9185 950 9939 9185 950 9939 9185 950 950 950 950 950 950 950 950 950 95	460 460 460 460 460 460 460 460 460 460	546 546 547 547 547 547 547 547 547 547 547 547
2582 9917 9926 9939 9939 9185 92939 9185 950 9939 9185 950 9939 9185 950 950 950 950 950 950 950 950 950 95	460 460 460 460 460 460 460 460 460 460	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 9917 7 9922 6 9930 6 99	460 0 460 460 460 460 460 460 460 460 46	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 9917 7 9922 6 9930 6 99	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 9917 7 9922 6 9930 6 99	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 547 546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4600 4600 4600 4600 4600 4600 4600 4600	546 546 547 547 547 547 547 547 547 547 547 547
2582 2 19917 2 1992 2 19917 2 1992 2 1992 2 1992 2 1992 2 1993 2	4600 4600 4600 4600 516 516 516 516 516 516 516 516 516 516	546 547 546 547 547 547 547 547 547 547 547 547 547
2582 2 19917 2 1992 2 19917 2 1992 2 1992 2 1992 2 1992 2 1993 2	4600 4600 4600 4600 516 516 516 516 516 516 516 516 516 516	546 547 546 547 547 547 547 547 547 547 547 547 547
2582 2 19917 2 1992 2 19917 2 1992 2 1992 2 1992 2 1992 2 1993 2	4600 4600 4600 4600 4600 518 518 518 518 518 518 518 518 518 518	546 547 547 547 547 547 547 547 547 547 547
2582 2 19917 2 1992 2 19917 2 1992 2 1992 2 1992 2 1992 2 1993 2	4660 4460 460 516 335 35 35 35 35 35 35 35 35 35 35 35 35	546 547 547 547 547 547 547 547 547 547 547
2582 2 1592 2 15	4604 4604 4604 4604 4604 4604 4604 4604	546 547 546 547 547 547 547 547 547 547 547 547 547

Element Id 529219	RoomA	RoomB 506	RoomC 508	RoomD 518	RoomE	RoomF	RoomG	RoomH	Rooml	RoomJ	RoomK	Categor
529223 529227	347 508 347	508	518									Walls Walls
529231 530517	347 350	506	508	518	200							Walls Walls
530707 530777	322 518	347 519	514 518	518	519							Walls Walls
530781 530785 530789	317 322 347	347 347 518	518	722								Walls Walls
530802 530866	347 322 502	347 518	518									Walls Walls Walls
535132 535136	518 317	347	518									Walls Walls Walls
535145 535153	321 348	347 349	348									Walls Walls Walls
535170 536032 537060	321 349	348 363										Walls Walls
538614 538618	348 309 350	319	320	350	364							Walls Walls
541644 541648 541652	350 352 352 352 352	355 355 355										Walls Walls Walls Walls
541652 541656 544148	352 352 368	355 353	355									Walls Walls Walls
544148 544459 544698	339 341	368 368										Walls Walls
544984 546354	339 344	368 355	356									Walls Walls
546414 546810	355 40 127	356 345	357	724								Walls Walls
602392 602397	127 82 128	128 83	138 84	85	128							Walls
602402 602407 602778	128	129 131	140									Walls Walls Walls
602790 602794	7 130 95	132 96	130									Walls
602799 602902	91 129	92 130	93	94	130	131	191	192				Walls
602907 602912 603742	129 87 129 132	88 130	89	90	91	129	191					Walls Walls
604370 604409	132	132	144									Walls Walls Walls
604413 604536	132 100	145 132	133	193								Walls
605861 606413	100 132	101 133	102	103	133							Walls Walls
606885 607195 607296	133 133	134										Walls Walls
607396 608420 608551 608555	133 112 120 123	147 114 123 135	116 135	118	120	134	135	199	200			Walls Walls Walls Walls
608806	123	44										Walls Walls Walls
608815 608836	4 4 7 43	460 460										Walls Walls Walls
610287 610291 610299	19 43	43										Walls
610308 611010	19 43 42 42 42 42 44 44 44	43										Walls
611560 611691	42 42	44	05-									Walls Walls Walls
611745 611800 611859	44	45 45	357									Walls Walls Walls
614067 617258	46 25	47	56									Walls Walls
618119 618529	424 112	426 114	428 135									Walls Walls
618608 618775	114 116	116 118	135 135									Walls Walls
618824 619325 619339	118 199 135	120	135	149								Walls Walls Walls
619344	200 120	135	149	200								Walls
619836 621892	120	114	116	118								Walls
634908 634912 634917	110 110	111 111	134									Walls Walls
634921 634926	111 110 111	134 134										Walls Walls Walls
635191 635196	108	110 110	134									Walls Walls Walls
635283 635291	106 106	108	134	147	196							Walls Walls
635296 635434	106 197	108 198 198										Walls Walls
635444 635449 635471	197 198 196	197										Walls Walls Walls
635471 635475 635492 635497	196 197 197 196											Walls Walls Walls Walls
635497 635502 635507	196 196 147	197 196										Walls Walls Walls
641547 642072	134 112	135 134	135									Walls Walls
646764 646768	104 104	195 195										Walls
648058 648067	193 144	145	193									Walls
648077 648082 648494	145 193 193	193										Walls Walls Walls
648498 648811	99 97	144 132	193 145									Walls
648815 648819	97 97 7	132 130	131	132								Walls Walls
649050 649986 649990	7 194 98	97	131	132	144	145	193					Walls Walls Walls
649994 649998	194 194	TeT	142	194								Walls Walls
650044 650429	95 98											Walls Walls
650557 651039	98 98											Walls Walls
651131 655894 655919	98 90	191 192										Walls Walls
655944 656371 656375	191 192 91 91	92 92	93									Walls Walls Walls Walls
656375 656379 656383	91 92 91	92 93 93										Walls Walls Walls
656642 658387	90 128	93 91 187	189	204								Walls Walls
658392 658404	128 187	186	187	204								Walls
658514 658519	128 189	189										Walls
658713 658718 658722	190 188 128	190 129	204 189	190								Walls Walls
658727	86 188	129	139	190								Walls
658926 659217	185 185	188	204									Walls
659649 661083 661087	128 186	184	186	204								Walls Walls Walls
661092 662361	128 184 183		100	204								Walls
662371 662391	181 181	183										Walls Walls
662680 662690	173 173	179	174									Walls Walls
662695 662705 662710	125 174 125	173 174	174 175									Walls Walls Walls
662720 662725 662742	125 175 125	175	176									Walls Walls Walls Walls
662748	176 73	176	206									Walls
662753 662758 663274	125 73 73	176 176 125	177 177 176	206 206								Walls Walls Walls
663274 663374 663447	73 125 73	125 176 125	176 177 176	206 206 206								Walls Walls Walls
663590 663703	78 180	79 182	182									Walls
663713 663839	180 179	202 180	182	170								Walls Walls Walls
663844 663854 663859	76 125 178	77 178 202	178 202	179								Walls
663864	178 178	179 179	180	202								Walls
665389 665393	188 188	204 204										Walls
891698 951843 951903	46 406 406	48 451										Walls Walls Walls
982777 989213	406 108 91 93	93 94	191 131	192								Walls Walls Walls Walls
989220 989224	93 93	94 94	131									Walls Walls
4 1												

5410 5415	RoomA 204 183	203	RoomC 204		RoomE				Wal
5420 5424	184 181	203 203 203	2.04						Wal Wal
5434	180	182 182	203						Wal
5455 5463	138								Wal
5468 5473	125 125	176 173	201 174	206 175	176	177	201	206	Wal
5478 5021	201 138								Wal
5782 5988	125 125	202 201	202	203					Wal
7621	125	181	202 201	203					Wal
7679 7684	85 84	85							Wal
7703 7708	84 83	84							Wal
7725 7729	82 83	83							Wal
7877	82								Wal
8237 8246 8250	81 80	82 81							Wal
8337	81 80 72								Wal
8491 8495	72	73 72	125						Wal
B505 B577	71 72	71							Wal
8589	70 71	70							Wal
8593 8605	69 69	70							Wal
8609 8613	68 68	69							Wal
8621 9268	68 68	69	70	71	72	125			Wal
9572 9579	125	0.0	10	**	12	14.0			Wal
9661	125 80	125							Wal
9889 9893	81 80	82 81	127 126						Wal
9902 9907	127 75	138 76	77	78	79	126			Wal
0043	125	126		10		110			Wal
0200 0552	75 76	76 77	125						Wal
0561 0580	75 75	76 76							Wal
0831 1234	74 79	125 138							Wal
1309 1313	77 78	78 79							Wal
2158	138 153	159							Wal
3101 3106	4	159 153 159	154	155	159				Wal Wal
	153 159	128							Wal
4732 4981	159 7	11 7	159						Wal
5012 5780	6		155	159					Wal
5111 5116	6	155 155	723 723						Wal
6120	6	155	123						Wal
5124 5129	6	155 6	155						Wal
1037 1532	6	10 723							Wal
2526	723								Wal
4103 4291	459 5	6 460	7	460					Wal
5307	3	6		460					Wal
5662 5197	3 6	6 723	7						Wal
6541 6545	6 151	151 152	152	154	155				Wal
	6 152	152	723						Wal
6554 6559 6563	150	151 151	154						Wal
6572	150 8	150	154						Wal
6582 7783	150 4	44	154						Wal
7788 7814	8	21 154	22 155	23	55	150			Wal
9073 8582	1	4 4	5	153 55	154	155			Wal
8605	1			33					Wal
9649 9787	1 151	6	10						Wal
1549 1558	16 44	160 54	160						Wal
2025	17 17	18 18	44						Wal
2034	17 17	18	54						Wal
2038 2047 4630	16 161	44 17 169	54						Wal
4643	161 57 57	161							Wal
4648 6151	57 40	161 50	57						Wal
0377	45 45	46 346	56 351	346 352	351 357	352	355		Wal
1442	161	164	221	332	337				Wal
1452 1457	161 161	164 163	164						Wal
1462 1467	161 161								Wal
1478 1588	161	161	162						Wal
1593 1598	32 32	162 161	162	163					Wal
1706	32 32	161	162	163					Wal
1716 1721	161 32	163 161	163						Wal
1726 1731	32 32	161 161	163 162	163					Wal
2262	161 161	169 169	724						Wal
2277		169	100						Wal
2282 2323	57 56	161 161	169						Wal
2328 2391	32 161	56 163	161						Wal
3006 3010	32	37 37	47						Wal
3524 3842	47 37	50 47	56 50						Wal
5073 5090	47 38	50 50	50						Wal
5193	38 36 36	37	50						Wal
5224 5229	36 36 36	40 40							Wal
5234 5244	36	40 40	50						Wal
5708 5718	39 39	57							Wal
5898 5176	39	50 57	57						Wal
3304 3353	36 36	50 50							Wal Wal
3353 3370 2689	36 36 33	40	50						Wal
5068	32	48 46	47						Wal
0390 1964	38 483	50							Wal
5279 5283	485 478	479	485						Wal
3287	485								Wal
5292 5586	469 0	479	485						Wal
5933 5972	0								Wal
	352	353							Wal
5275 3579 9038	344	353 355 356	356						Wal
9038 9333 9736	344 344 355	355	356 515						Wal Wal
9736 1527 7349	351	356 352	515						Wal
7349 L483	308 460	347 546							Wal
1943	460	540							Wal
2305 2758	481 460								Wal
2857 2887	460 0								Wal
3161 3427	460	482	487						Wal
3796	0 483								Wal
7890 5010	483 443 414	540							Wal
6143 0856	414 443	416 444	455	540					Wal
6624	443 440 34	444 443 35							Wal Wal Wal
1151	34 31	35 34	48						Wal
0151	31								
0151 1283 95536 90701 90903 91387	268 260 260 134	263 262 198	264 263 199	275					Wal Wal

Element Id	RoomA	RoomB	RoomC	RoomD	RoomE	RoomF	RoomG	RoomH	Rooml	RoomJ	RoomK	Category
989228 989238	93 94	94 131										Walls Walls
997767 997772	310 308 310	310										Walls Walls
997871 1072818 1073107	321	322	323	514								Walls Walls
	321 308	323 310	348 311									Walls Walls
1074875 1075044	308 321	312 322	347	362								Walls Walls
1075940 1077101	293 302	294	302	306	498							Walls Walls
1077373	302 297	459 298	460 299	300	302	304	499					Walls Walls
1077742	302 368	304										Walls
1079550 1082701	341 345	353 356	368									Walls Walls
1083078	515 344	516										Walls Walls
1083217 1088905	315	316	347	509	518							Walls
1096225 1096297	477 469	477										Walls Walls
1096803 1096912	477 469	477										Walls Walls
1096947 1097207	469 477	477										Walls Walls
1098110 1099383	471 475	483 483										Walls Walls
1099551 1100724	475 402	483										Walls
1104724 1104060 1104771	402 419 440	407	440									Walls Walls Walls
1104771 1104969 1105217	440 443 454	454 454										Walls Walls Walls
1105217 1106383	454 409	410	411	440	442	453	534					Walls Walls
1106383 1106815 1108094	409 442 413	453 414	442									Walls Walls Walls
1109324 1110850	532 404	435	437									Walls Walls
1111512	433	434	401									Walls Walls
1112809 1118768	379 38	56										Walls
1119825 1131901	1 99	8 132	21	22	55							Walls Walls
1132543 1135539 1135656	96 126	127										Walls Walls
1135656 1144077	138	6										
1144077 1150774 1153717	3 20 34	6 21 48	45									Walls Walls
1153876 1154830	34 34 50	48										Walls Walls Walls
1155949	40 45	57 724										Walls
1157303 1174717 1176508	4 4 41	46 153	460									Walls Walls
1176508 1176512 1176516	41 41 41	49 346	346	517								Walls Walls Walls
1176516	41	63 166	346 517									Walls Walls
1176569 1176563 1176567	41 41 41	166										
1176567 1181289	41 309	347	348									Walls Walls
1181905 1182220	350 309	357										Walls Walls
1184562 1184566	373 361											Walls Walls
1184570 1184574	360 360	361 374	372 375	373	374	376						Walls Walls
1184578 1184582	374 373											Walls Walls Walls
	361 360	372 361	373 372	373								Walls Walls
1184590 1184594	372 361	001	012	010								
1184598 1184602	360	361	372	373	376							Walls Walls
1184606 1184610	360 376	361	373	376								Walls Walls
1184614 1184623	360 375	375	376									Walls Walls
1184627 1184631	360 375	374	375	376								Walls Walls
1184635 1184713	360 373											Walls Walls
1185239 1185243	51 51											Walls Walls
1185247 1185251		52	65	66	67							
1185255	51 66	52	65	00	6/							Walls Walls
1185259 1185263	66 67											Walls Walls
1185267 1185271	52 52											Walls Walls
1185280	51 51	52 65	65 66	66 67	67							Walls
1185288 1187969	51 373	65	66	67								Walls Walls
1188109 1188113	373 373											Walls Walls
1188117	373 140											Walls
1197956 1198347	132 147	144	145									Walls Walls
1198423 1206970												Walls Walls
1209792 1210180	460 460											Walls Walls
1210458	238											Walls
1228338	238 235	238										Walls Walls
1228346 1228373	238 235	200										Walls Walls
1228378 1228382	235 235	244										Walls Walls
1228386		244 244										Walls
1228390 1228516	235 234	235	239									Walls Walls
1228626 1228654	235 244	236	237	239								Walls Walls
1228659 1229062	244 244	237										Walls Walls
1230906	268 268											Walls Walls
1230918	267 268	268										Walls
1230936 1230940	268 268											Walls Walls
1233800 1233804	251 251											Walls Walls
1233808	272	254										Walls
1233812 1233816	251 251	254										Walls Walls
1233861 1234312	251 259	272										Walls Walls
1234316 1234321	257 259	259										Walls Walls
1234325	259 257											Walls
1234624 1234639	257 257	271										Walls Walls
1234643 1234648	254 254	257 257	270									Walls Walls
1234653 1234830	254 254 263	267										Walls Walls
1234841	267	201										Walls
1234845 1234855	263 263	264	265	266								Walls Walls
1234876 1234880	264 266	275										Walls Walls
1234884 1234888	264 265	265 266										Walls Walls
1234892	265 265	266 266										Walls Walls
1234995 1234910	266 265	200										Walls Walls
1234910 1234921 1284440	265 264 260	075										Walls Walls Walls
1284444	260 275 262	275										Walls Walls Walls
1284569 1284574	261											Walls
1284579 1284583	260 260	261 261	262									Walls Walls
1284587 1284591	260 261	262										Walls Walls
1284608 1284612	260 260											Walls Walls
1284666 1284706	260 258	260										Walls Walls
1284706 1284711 1284715	258 258 260	260 260 271	271									Walls Walls
1284720	260	271 271 271										Walls
1284724 1284913	260 258 267	271 260										Walls Walls
1285524	267											Walls

1313961	272 253	RoomB	RoomC	RoomD	RoomE	RoomF	RoomG	RoomH	RoomI	RoomJ	RoomK	Category Walls
1313985 1313990	253 250 245											Walls Walls
1313995 1313999	245 251 250	247 253 251	248 269 252	249 272 253	250	251						Walls Walls Walls
1314078 1314083 1314089	250 250 251	251 251 252	252 252 253									Walls Walls Walls
.314089 .314117 .314123	251 251 251		253	269								Walls Walls Walls
314128	251	269 252 252	269									Walls
1314134 1314139	251 251	252										Walls Walls
1314419 1314430	245 245	246	247	251								Walls Walls
314438 314448	245 245	249 248	249									Walls Walls
314452 314457	245 245	248 248	249									Walls Walls
314461 314465	245 245	247 247	248 248									Walls Walls
314509 314513	245 245											Walls Walls
314517	245											Walls
1314805 1314810	245	246 246	247									Walls Walls
1314831 1315627	245 245	246	247									Walls Walls
1316005 1316318	251 245	251										Walls Walls
1331483 1331488	254 254											Walls Walls
1331493 1331497	254 254											Walls Walls Walls
1331501		255										Walls
1331532 1331536 1331543	254 254 254	255 255 256	256 270									Walls Walls
331861	254 256	256 270 271	270 271									Walls Walls Walls
331869	270 271 256	270										Walls Walls
338003	227	227										Walls
338011	226 227	227										Walls Walls
338015 382282	227 219 219											Walls Walls
.382286 .382369	260	258	260									Walls Walls
382555 382559	258 258	260 260 271	271 271 274	274								Walls Walls Walls
.382563 .382567		260	274 274									Walls Walls
382571	258 258 219											Walls Walls Walls
382843 383404	219 219 219	260 258	271 260	271	274							Walls Walls Walls
383404 383408 383413	219 218 218	219										Walls Walls Walls
383413 383419 383423	218	218	723									Walls Walls Walls
1383427	217 217	218										Walls
1383431 1383435 1383439	215 217	216 218	217	218								Walls Walls Walls
1383443	216 216 216	218										Walls
1383455 1383744	216 215 215											Walls Walls Walls
1383749 1383754	215 215 223	241										Walls Walls Walls
1383809 1383814	223											Walls
1383818	223											Walls Walls
1383827 1383831	223 223 223	224	240									Walls Walls
1383858	224 224	225	241									Walls Walls
1383867	224 224	225 225	240									Walls Walls
1383877	224 225	240	241									Walls Walls
1383886	224 240	225	241									Walls
1383897 1383902	240 240 241	241										Walls Walls Walls
1383906 1383910	241 241 228											Walls
1383914 1383938	228	229	241	243								Walls Walls
383942 383976	228 228	229 229 229										Walls Walls
383980 383984	228 228		230 243	243								Walls Walls
1384010 1384016	228 228 226	230										Walls Walls
1384026 1384123	226 226 228											Walls Walls
384372 384535	215	228 228	230	241	243							Walls Walls
385322	54 233	241	200	2-12	L-10							Walls Walls
385689	228 228											Walls Walls
385697	231	001	232									Walls
1385702 1385707	228 228 232	231 232 233	232									Walls Walls
1385712 1385716	232 231 231	232										Walls Walls
1385720 1385724		232 232										Walls Walls
1385835 1385840	231 232											Walls Walls
1385961 1386245	228 233	232	233									Walls Walls
1386302 1386306	233	234										Walls Walls
1386341 1386346	239 234											Walls Walls
1386350 1386430	234 239	235	236	239								Walls Walls
1386435 1386440	239 236											Walls Walls
1386445 1386457	237 235	236	239									Walls Walls
1386467 1389603	235 256	236 255	237									Walls Walls
1389743	271	235										
1391116	223 313											Walls Walls
1403346 1487729	262 106	147										Walls Walls
1501705 1501714	363 363											Walls Walls
1501723 1502295	363 53											Walls Walls
1502299 1502394	53 53											Walls Walls
1506327 1507908	340 58	368										Walls Walls
1507914 1508311	58 33	48	58									
	482	356										Walls Walls Walls
1532125	345 345	356										Walle
1532458 1535501	345 345	356 346	352	355	356	357						Walls Walls
1537637 1537641	294 294	306 306										Walls Walls
1538454 1538464	344 344	355 355										Walls Walls
1538630 1539005	344 295	355 302										Walls Walls
1539009 1539013	295 295	302 302										Walls Walls
1539017	295	302										Walls
1541124 1542188 1543095	302 352	303 355										Walls Walls
1544150	403 36	407 50										Walls Walls
1545070 1545074	6	9										Walls Walls
1545078 1545082	6	9										Walls Walls
1545728 1547229	294 41	306 166	517									Walls Walls
1548418	6	152	155	167								Walls
1548841 1548846	6	9 157	155	157								Walls Walls
1548851 1548856	6	9 155	155 157	157								Walls Walls
	6	155 152	723									Walls Walls
1549844	6											
1549844 1575271	6 293 38	305 39	498 40	46	56	57	161	169	346	357	724	Walls Walls
1549185 1549844 1575271 1614994	293	305	498 40	46	56	57	161	169	346	357	724	Walls

REFLECTION

Relation with Master's program

Building technology track always encourages us to create smart buildings that are sustainable, comfortable and environmentally intelligent, this research is focusing on automating workflows, enabling cloud capabilities, enhancing integration with urban information, and creating user-friendly interactive daylight simulation tools. It helps lowering the barrier of simulating indoor daylight performance and get the result in a faster way, and can provide designers an option to directly see how the change on urban context influence indoor daylight performance at the early stage of designing and planning. How to integrate and manage built environment information and data is also one of the main goals from Design informatics studio, this research tries to communicate between several software and pass data from one to the other, with primary focus of integrating BIM into the GIS platform for room-level control and computation, and together makes the final program user-friendly.

Research Influences

This research primarily focuses on the relevance of ABDM and CBDM, as well as on the choices within the workflow that may impact its efficiency. The former is addressed in Section 4.2 of the thesis, while the latter is discussed throughout the thesis. The experiments revealed a strong linear relationship between SBI and DA, sDA, and UDI, establishing SBI as a viable daylight metrics option on the application. Regarding workflow efficiency, the application adopts time-saving and accurate practices validated by the author, such as retaining the city model within a 350-meter radius, maintaining LOD 2.2, importing the BIM model on a room-by-room basis, and importing the floor first to obtain latitude and longitude coordinates. These optimized practices are integrated into the overall workflow.

Work assessment

Firstly, based on the requirements for user interaction interface design, various functionalities were added: adding new buildings, drag-and-drop, rotate, scale, delete, select and preview materials, change the LOD of the surrounding static city model, link to the EPW Map for weather data selection, adjust the height for sunlight analysis, query rooms by name, click on rooms to change transparency for preview, and select daylight metrics. In the final dashboard, users can view the mean value and compare results from different sunlight analyses, visualizing the differences for the same room. After conceptualizing the user operations, each function and button was implemented. Consideration was given to both the front-end user interface and the backend processes, such as transferring data formats, tracking data information, and synchronizing with the GH script. This ensured data structure integrity and avoided empty inputs until Rhino Compute returned the simulation results, which were then presented in Mapbox (geometrical) and the interface (numerical). During the preprocessing of the Revit model, different elements were labeled as rooms according to their 130

category. The GLTF data was rewritten with the Element ID to serve as a bridge for obtaining room coordinate information. When importing the BIM model, the time, accuracy, and interactivity of multiple importing methods were compared. For daylighting simulation, the impact of the BIM model on its own façade was considered, along with the automatic selection and reconstruction of individual daylighting components (glazing, doors, window frames, floors, roofs).

This thesis details the development of GH scripts for SBI and sky lumen based on their physical definitions. It sets up experiments to quantitatively analyze the relationships between two new metrics (SBI and sky lumen) and traditional metrics (DA, sDA, UDI). Key factors considered include window sill height, room spatial configuration, aperture typology (portrait and landscape), individual and combined aperture distributions, aperture orientation and shading conditions. These factors were treated as moderating variables, and a preliminary qualitative analysis was performed through sequential comparison. The R^2 value for these six relationships across scenarios were compared using boxplots to evaluate the accuracy and stability of the predictive models. If time permits, further experimentation with more detailed quantitative analyses of these moderating variables needs to be carried out. This would require the parameterization of setup variables in GH and the use of larger data sets.

Furthermore, multiple rooms at LOD 1.3 were selected to compare the radius of the surrounding urban model for insolation considerations. Simulation time and accuracy were assessed for radii of 200m, 250m, 300m, and 350m. Subsequently, the daylight simulation time and accuracy for multiple rooms at LOD 1.3 and LOD 2.2 were compared, with the radius fixed at 350m. These steps were taken to optimize the urban model input for daylight simulation.

Mentoring and feedback

I received a significant amount of direct and instructive feedback from my meetings with both advisors, which was crucial to the development of my thesis. This was particularly important in the early stages, when the scope was still very broad and my understanding of the geomatics field was limited. My first advisor and I met weekly to discuss my progress, breaking down tasks into smaller problems until I found my rhythm. Given the inherent limitations of tools and platforms in application development, my advisor encouraged me to first aim for the optimal solution A. If that proved unfeasible within limited time, I was to attempt an alternative solution B. I would strive to achieve the optimal solution, and if it was not immediately possible, I would present evidence, seek remedies, or adopt new approaches to resolve the issues. This process allowed both my advisor and me to stay informed about the dissertation's progress and direction, and to understand its limitations, which was vital for advancing the thesis. My second advisor provided detailed guidance on daylight aspects, which enhanced the rigor of my research. Additionally, the group meetings inspired me to focus more on the experimental and scientific part within my thesis. This comprehensive feedback was instrumental in shaping the final work.

Academic, Societal and Ethical Aspects

This thesis presents a comprehensive and detailed workflow that integrates GH simulation, BIM, WebGL GIS environment, and Rhino Compute to achieve room-level control and interaction with the BIM model. This approach addresses the fragmentation of the workflow and the inaccuracies that previously existed at the BIM-GIS integration. The research also offers a variety of options for solving encountered challenges. More importantly, this workflow is not confined to daylight simulation or room-level BIM models. Instead, it establishes a cloud-based framework applicable to any simulation (structural, acoustic, thermal comfort, energy, CFD, etc.) at any level of BIM model (per room, per floor, or any specific category or a single component) and facilitates integration with urban models.

This thesis also conducted a feasibility study on the new ABDM insolation metrics as an alternative to traditional CBDM insolation metrics, addressing a gap in academia. For the first time, it develops the SBI and View Lumen scripts based on physical definitions using GH and draws preliminary conclusions to validate the relationship between SBI, DA, sDA, and UDI. Several moderating variables affecting the relationship between these metrics are also proposed, paving the way for further research on daylight metrics. Furthermore, the thesis offers the option of ABDM calculation in the application, demonstrating the potential of ABDM to reduce simulation time. This offers conceptual frameworks and practical evidence for future daylighting studies at the urban scale, particularly in contexts where there is limited information about the interior layout of the rooms.

Indoor comfort, especially daylight comfort is very close to our daily life, our health, efficiency and mental state. However, due to the incompatibility between BIM and Rhino modeling software, as well as city modeling and GIS platform, the processes of data preparation, integration, result sharing, and iterative design acceleration became complex. Architecture modeling software operate independently, following distinct modeling principles. Furthermore, they are primarily designed for the architectural scale, which introduces challenges when integrating them with city and environmental models. Complex GH scripts and extensive simulations can pose challenges when it comes to seamlessly sharing workflows among teams. This complexity necessitated that designers and decision-makers learn various software programs and repeatedly input and adjust data manually in the early stage of designing. This workflow simplifies these steps by providing a user-friendly all-in-one application, and further hinders collaboration between architects and urban designers, as well as communication with governments and policymakers. The envisioned solution involves a user-friendly interface, operating on a room-by-room basis with a simple point-and-click system. This approach empowers users to swiftly make adjustments to building elements and surroundings. And could be supported by a server capable of efficiently computing and displaying simulation results. Reduce barriers for designers, making it possible to quickly visualize the impact of changes in outdoor factors on indoor lighting in completed buildings, so that quick measures can be taken to improve it, and the impact on existing buildings can be avoided during outdoor planning. This will contribute to maintaining and improving daylighting in public spaces.

Project Transferability

Although this research uses only the BK building as a BIM case study, the proposed workflow is designed for general application to various BIM models and urban environments. As previously mentioned, the workflow is not confined to daylight simulations but can be applied to different types of simulations and of BIM models of varying LODs. The requirements for the BIM model are discussed in Section 6.2. With several manual modifications, users can develop similar applications tailored to specific areas, BIM models, and a variety of simulations.

Personal growth

I have always been deeply interested in computational design, and I believe my thesis topic presented a challenging yet invaluable opportunity for me to engage in digital tool development and synthesize my acquired knowledge. The learning curve during my thesis was steep. My undergraduate background and experience in building technology enabled me to familiarize myself with the GH workflow and Python, and I had some experience with 2D interactive map. However, I had no prior experience with Rhino Compute technology, 3D GIS platforms, Three.js, or front-end design. Consequently, choosing a topic intersecting with geomatics presented a significant challenge for me. I am very exciting and satisfying that in the end I successfully implemented a lot of interactive functions using JavaScript, and that the workflow effectively engaged with various data processing formats. I believe that the integration of BIM, GIS, and simulation holds significant potential and will greatly benefit engineers and designers. Additionally, I faced some health challenges throughout the thesis, but I am grateful for overcoming these difficulties and for the extensive learning experience I gained.

