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SUMMARY

NTARCTICA, the coldest, windiest, and most remote continent on our planet, plays a
A crucial role in the global climate system. Its ice mass loss is a major driver of rising
sea levels, with projections indicating a potential rise of several meters in the coming
centuries. However, there remains considerable uncertainty about the future trajectory
of Antarctic mass loss. A major area of uncertainty is the fate of ice shelves—floating
extensions of land ice that surround much of Antarctica and act as barriers, slowing the
flow of glaciers into the ocean. Ice shelves are affected by warm water from below, which
thins them and increases their vulnerability to cracking, as well as by warm air from
above, which melts the surface and forms ponds of meltwater.

This research focuses on surface melt, a phenomenon where meltwater forms and ei-
ther refreezes or accumulates on the ice shelf surface. When the water accumulates,
it can seep into cracks, causing them to deepen and widen, which can weaken the ice
shelves. In today’s era of abundant satellite imagery and advanced deep learning tech-
niques, we can efficiently process large volumes of data, enabling more comprehensive
research on surface melt dynamics. The aim of this dissertation is to enhance the map-
ping and understanding of surface meltwater on Antarctic ice shelves using remote sens-
ing and deep learning methods.

The introductory chapter provides an overview of the Antarctic Ice Sheet, emphasizing
the continent’s immense scale and importance. Written in an accessible style, it presents
key concepts about Antarctica and explores how ice shelves and surface melt influence
the continent. The chapter also describes the use of satellite data to map surface melt
and discusses advancements in computational resources and deep learning, which have
significantly improved our ability to analyze the expanding catalog of satellite data. It
concludes with an overview of the research questions addressed in the thesis.

In the second chapter, various remote sensing datasets are compared to illustrate how
and why satellite observations of surface melt differ. Using state-of-the-art melt detec-
tion algorithms, we analyze surface melt patterns and observe large differences, espe-
cially in icy areas, regions with subsurface melt, and during winter. These differences
arise from factors such as satellite overpass times, spatial resolution, signal penetration,
cloud cover, and detection methods. Despite these challenges, the variations create op-
portunities to combine data from multiple satellites, enhancing the overall accuracy of
surface melt detection across Antarctica.

The third chapter builds on the previous findings and addresses the challenge of bal-
ancing spatial and temporal resolution in satellite observations. Surface melt in Antarc-
tica is highly dynamic and varies regionally, making high-resolution mapping essential.
To tackle this, we develop UMelt, a surface melt dataset for all Antarctic ice shelves with
high spatial (500 m) and temporal (12 h) resolution, covering the period from 2016 to
2021. Our deep learning model integrates data from multiple satellites, allowing for de-
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SUMMARY

tailed detection of surface melt while maintaining high temporal resolution. UMelt of-
fers the potential for new insights into how ice shelves respond to changing atmospheric
conditions.

In the fourth chapter, we shift from mapping the presence of surface melt to estimat-
ing its volume. Since surface melt is mainly driven by local processes, high-resolution re-
gional climate models (RCMs) are necessary. However, current RCMs have a coarse reso-
lution (25-30 km) that is insufficient for capturing small-scale melt processes. To address
this, we introduce SUPREME, a deep learning method that downscales surface melt to
5.5 km resolution using a physically-informed super-resolution model. This model com-
bines remote sensing data on albedo and elevation with a 27 km resolution Regional At-
mospheric Climate Model (RACMO), accounting for the diverse drivers of surface melt
across Antarctica. SUPREME demonstrates the potential of super-resolution techniques
with physical constraints for high-resolution surface melt mapping, providing valuable
insights into localized melting patterns.

The fifth chapter examines the hydrology of surface meltwater lakes on Antarctica, in-
vestigating whether they refreeze or drain into fractures at the end of the melt season, po-
tentially destabilizing ice shelves. Monitoring these lakes with optical satellite imagery
is often limited by cloud cover, complicating the tracking of their changes over time. To
overcome this, we develop a spatiotemporal deep learning model using radar imagery
from Sentinel-1, which allows us to classify the evolution of meltwater lakes regardless
of cloud conditions. Our findings reveal no clear connections between lake evolution
and ice shelf parameters, highlighting the need for further research and model refine-
ment. The study is an initial step in using deep learning and Sentinel-1 data to monitor
the evolution of supraglacial lakes on Antarctic ice shelves.

The sixth and final chapter reflects on the research and outlines future directions. It
begins by summarizing the state of Antarctic surface melt research at the start of my
PhD. The chapter then highlights the key contributions of this thesis and concludes with
three proposed research ideas aimed at advancing our understanding of surface melt
processes in Antarctica.



SAMENVATTING

NTARCTICA, het koudste, winderigste en meest afgelegen continent op onze planeet,
Aspeelt een cruciale rol in het mondiale klimaatsysteem. Het massaverlies van An-
tarctica is een belangrijke oorzaak van de verwachte wereldwijde zeespiegelstijging. Er
is echter grote onzekerheid over hoe het massaverlies van Antarctica zich in de toekomst
zal ontwikkelen. Dit is vooral te wijten aan het moeilijk te voorspellen lot van de ijs-
platen, drijvende uitlopers van landijs die een groot deel van Antarctica omringen en
fungeren als barriéres die de stroom van gletsjers naar de oceaan vertragen. IJsplaten
worden zowel van onderaf beinvloed door warm water, waardoor ze dunner worden en
kwetsbaarder voor scheuren, als van bovenaf door warme lucht, die het oppervlak doet
smelten.

Dit proefschrift richt zich op oppervlaktesmelt, waarbij smeltwater wordt gevormd dat
ofwel opnieuw bevriest of zich verzamelt op het oppervlak van de ijsplaat. Wanneer het
water zich verzamelt, kan het in scheuren sijpelen, waardoor deze dieper en breder wor-
den, wat de ijsplaten kan verzwakken. Dankzij de beschikbaarheid van satellietbeelden
en geavanceerde deep learning-technieken kunnen we grote hoeveelheden data effici-
ént verwerken, wat uitgebreid onderzoek naar het smeltgedrag aan het ijsoppervlak mo-
gelijk maakt. Het doel van dit proefschrift is om smeltwater op het oppervlak van An-
tarctische ijsplaten beter in kaart te brengen en te analyseren.

Het inleidende hoofdstuk geeft een overzicht van de Antarctische ijskap en benadrukt
de immense schaal en het cruciale belang van dit continent. Het is geschreven in een
toegankelijke stijl en introduceert belangrijke concepten over het continent, de rol van
ijsplaten en het smelten van het ijsoppervlak. Daarnaast wordt beschreven hoe satelliet-
data worden gebruikt om oppervlaktesmelt in kaart te brengen en hoe deep learning de
analyse van deze data heeft verbeterd. Het hoofdstuk sluit af met een overzicht van de
onderzoeksvragen die in dit proefschrift worden behandeld.

In het tweede hoofdstuk worden data van verschillende satellieten vergeleken om te
illustreren hoe en waarom data van oppervlaktesmelt verschillen. Met behulp van ge-
avanceerde algoritmen voor smeltdetectie analyseren we smeltpatronen, en vinden we
grote verschillen in ijzige gebieden, regio’s met smelt onder het oppervlak, en tijdens
de winter. Deze verschillen zijn het gevolg van factoren zoals de overvliegtijden van de
satellieten, ruimtelijke resolutie, dieptebereik van het satellietsignaal, bewolking en de-
tectiemethoden. De verschillen in smeltdetectie bieden echter ook mogelijkheden om
data van meerdere satellieten te combineren, waardoor de algehele nauwkeurigheid van
de detectie van oppervlaktesmelt op Antarctica kan worden verbeterd.

Het derde hoofdstuk bouwt voort op de vorige bevindingen en gaat in op de uitdaging
om een evenwicht te vinden tussen de ruimtelijke en temporele resolutie van satelliet-
data. Oppervlaktesmelt in Antarctica is zeer dynamisch en varieert regionaal, waardoor
het belangrijk is het smelten met een hoge resolutie in kaart te brengen. In dit hoofdstuk
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ontwikkelen we UMelt, een dataset voor oppervlaktesmelt voor alle Antarctische ijspla-
ten met een hoge ruimtelijke (500 m) en temporele (12 uur) resolutie, voor de periode
van 2016 tot 2021. Ons deep learning-model integreert data van meerdere satellieten,
waardoor oppervlaktesmelt gedetailleerd kan worden gedetecteerd met behoud van een
hoge temporele resolutie. UMelt biedt nieuwe mogelijkheden om te begrijpen hoe ijs-
platen reageren op veranderingen in atmosferische omstandigheden.

In het vierde hoofdstuk gaan we over van het in kaart brengen van de aanwezigheid
van oppervlaktesmelt naar het bepalen van het smeltwatervolume. Oppervlaktesmelt
wordt voornamelijk beinvloed door lokale processen, waardoor regionale klimaatmo-
dellen (RCM’s) met een hoge resolutie nodig zijn. De huidige RCM’s hebben echter een
te lage ruimtelijke resolutie (25-30 km) om lokale smeltprocessen nauwkeurig in kaart
te brengen. Daarom introduceren we SUPREME, een deep learning-methode die op-
pervlaktesmelt afschaalt naar een resolutie van 5.5 km met behulp van een fysisch on-
derbouwd superresolutie model. Dit model combineert satellietgegevens van albedo en
hoogte met een regionaal atmosferisch klimaatmodel (RACMO) met een resolutie van 27
km, zodat de diverse factoren die de oppervlaktesmelt in Antarctica beinvloeden worden
meegenomen. SUPREME laat zien hoe superresolutie technieken met fysische rand-
voorwaarden kunnen worden toegepast om oppervlaktesmelt in hoge resolutie in kaart
te brengen, wat waardevolle inzichten oplevert in lokale smeltpatronen.

Het vijfde hoofdstuk onderzoekt de hydrologie van smeltwatermeren in Antarctica en
bekijkt of ze aan het einde van een smeltseizoen dichtvriezen of in scheuren in the ijs
wegsijpelen, waardoor ijsplaten mogelijk instabiel kunnen worden. Het monitoren van
deze meren met optische satellietbeelden is vaak beperkt door bewolking. Daarom ont-
wikkelen we een spatiotemporeel deep learning-model op basis van radarbeelden van
Sentinel-1, waarmee we de evolutie van smeltwatermeren kunnen classificeren, onge-
acht de bewolking. Onze resultaten tonen geen duidelijke verbanden tussen de evolutie
van de meren en de eigenschappen van de ijsplaten, wat de noodzaak voor verder onder-
zoek en verfijning van het model benadrukt. De studie is een eerste stap in het gebruik
van deep learning en Sentinel-1 data om de evolutie van smeltwatermeren op Antarcti-
sche ijsplaten te monitoren.

Het zesde en laatste hoofdstuk reflecteert op het verloop van het onderzoek en schetst
perspectieven. Het begint met een overzicht van de staat van onderzoek naar Antarcti-
sche oppervlaktesmelt bij de aanvang van mijn proefschrift. Het hoofdstuk belicht ver-
volgens de belangrijkste wetenschappelijke bijdragen van dit proefschrift en sluit af met
drie onderzoeksvoorstellen om ons begrip van de smeltprocessen in Antarctica te ver-
groten.
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PREFACE

Sometimes you just need to distance yourself to see things more clearly.

This idea resonates deeply in the context of my dissertation. While Antarctica remains
unexplored territory for me, and likely for you as well (given that only around one million
out of eight billion people on Earth have been there, roughly translating to 0.01% of the
global population), there’s no cause for concern. Even from the confines of our desks,
we have the opportunity to study Antarctica, perhaps even more effectively than if we
were in the field. Seated at our desks, we can zoom out, draw comparisons over time
and space, utilizing satellite data spanning the last 50 years, navigating across the pixels
constituting the vast 14,000,000 km2 known as the Antarctic Ice Sheet.

In this dissertation, I have delved into what I like best: translating satellite data into
meaningful insights, data that resonate with us as human beings. These data products
go beyond the confines of binary computer language. Allow me to present to you “From
Pixels to Puddles: Mapping Surface Melt on Antarctic Ice Shelves using Satellite Data and
Deep Learning”. From my desk to yours, I hope you enjoy it!

Sophie de Roda Husman
Delft, December 2024

Xiii






ACKNOWLEDGEMENTS

I'll admit: when it comes to most PhD theses, the acknowledgments are often the only
section I read. They offer a rare glimpse into the person behind the research—a reminder
that every publication, booklet, and review has a human story behind it. That’s why I'm
glad to share my story here, which is really a collection of heartfelt thank-yous and mes-
sages of gratitude to the people who supported me along the way. In many ways, it feels
absurd that my name alone is on the cover of this booklet. In truth, it should be filled
from front to back with the names of everyone who made these roughly 200 pages pos-
sible. Oh and just a heads-up: I'm all about emotional speeches, love letters, sweeping
drama, and everything sentimental. I realize not everyone shares that enthusiasm, so
consider this your gentle warning if my acknowledgments come across as a little over
the top!

It all began with an invitation to a job interview on 7 September 2020. My interview-
ers—and now PhD supervisors and copromotors—Bert and Stef, were inspiring from the
very start: enthusiastic, empathetic, open-minded, incredibly smart, and the list of their
qualities could go on. I want to thank them for the four-year rollercoaster that began on
1 January 2021, which was so much more than the 94 (and counting!) meetings. Stef,
thank you for your (sometimes quirky!) metaphors and (always inspirational!) quotes,
as well as the late-night deep discussions—whether at your BBQ, during EGU, or in No-
orderheijde—that truly shaped me. Your ability to inspire scientists to be more than just
their publications and to become well-rounded professionals was both motivating and
admirable (see proposition 8 as proofl). Bert, thank you for always keeping your door
open. Somehow, despite your overflowing agenda, you manage to make time for every-
one. Your thoughtfulness—remembering birthdays, giving meaningful Christmas gifts
like a beautiful book, or offering a reassuring wink during tough presentations—gave
me so much confidence and lifted my spirits. There were times when I doubted whether
a PhD was the right path for me, but both of you made sure I always knew I was exactly
where I belonged.

Thank you, Roland, my promotor, for all your faith in me. While we sometimes dis-
agreed, you always gave me the time to express my thoughts, share my opinions, and
explore different perspectives. I truly appreciate all your help, especially during the final
stages of my PhD. Knowing I could fully trust you and count on your unwavering support
made all the difference in crossing the finish line.

A deep thank you also goes to my committee. Thanks to Jonathan, Michiel, Tri, Ra-
mon, and Herman. As we work in the same country and/or field, I have had the pleasure
of meeting you over the past few years. Each of you has been such an inspiration, and I
consider it an incredible honor that you agreed to be part of my committee.

A very special thanks goes to the students I had the opportunity to work with. Thank
you, Gillis, Marijn, Wytse, Adriaan, Julius, Meike, and Fenia. It was such a joy to actively



ACKNOWLEDGEMENTS

collaborate with you in gaining a better understanding of Antarctica, and you may all
recognize parts of your work in this dissertation.

To the technical and support staff, our work would not be possible without you. Natasha,
Debbie, Cindy, Suzanne, Lidwien, Mariska, and Josien, thank you for always keeping
your door open. A special thank you to Natascha. On a particularly difficult day, I came
into your office feeling overwhelmed. You calmly guided me to a chair, closed the door,
and kept bringing me tea until I felt better. I'm so grateful for that, and for all the fun and
laughter we shared along the way. Niels, thank you for your support when I was strug-
gling with VRLab. You can't imagine how much your statement—*“You are not leaving
this office until we have fixed this issue”—meant to me.

My officemates were truly indispensable on this journey. Let me begin with two very
special officemates, Maaike and Wietske, my paranimfs. Now that Wietske is in China
and Maaike is splitting her time between Brussels and Antarctica, I realize more than
ever how valuable you are. You made my office days so much more enjoyable, and be-
yond the office, you've become such dear friends. I'm beyond grateful for all our ad-
ventures together, from Herkingen to the Grand Canyon, the Phoenixstraat to Labs, and
from Vienna to Newcastle. A warm thank you also goes to the Cozy Cocktail Complexes,
which, along with Maaike and Wietske, also included Valerie and Ann-Sofie. Our dinner
and cocktail evenings were always a blessing. Thanks to all my GRS colleagues, too. I've
had the pleasure of meeting so many fantastic people over the past four years. As we
move beyond the Covid years, our group has only grown closer, and it’s been truly won-
derful to be part of it. Also, a big thank you to the colleagues at the AI4EQ lab in Munich
for hosting me during my research stay in early 2024.

A big thank you to the HiRISE consortium, including Aimée, Ann-Sofie, Bert, Carleen,
Dewi, Erwin, Frank, Franka, Javier, Jeemijn, Maaike, Maurice, Michiel, Paul, Peter,
Sanne, Shashwat, Stef, and Willem Jan. I truly enjoyed working with all of you and feel-
ing like part of such an incredible team. Our getaway to Noorderheijde, a magical spot
in the Veluwe, was undoubtedly the highlight of my PhD.

Thanks to all the contributors to the publications I (co-)authored during my PhD. A
special shout-out to Zhongyang, Becky, Jordi, Marijn, Valeria, Peter, and Shashwat.
You were all such inspiring, supportive, and incredibly pleasant people to work with.

A heartfelt thank you to all the science friends I've met along the way. To my Karthaus
friends, thank you for an unforgettable time at the summer school in May 2023 and for all
the wonderful encounters that followed. A special shout-out to Meghan, a truly warm-
hearted and one-of-a-kind person. I'll never forget the half-marathon in Beaujolais with
Karthaus friends Maxence, Flo, Jan, Mikkel, Niklas, and Rebekka—stopping for wine
and cheese every few minutes, all while dressed as penguins. I probably laughed more
that day than I ever thought possible! A big thanks as well to the conference friends I
kept running into, including Alex, Raf, Kali, Ben, and Andrew. You were all fantastic
conference buddies, and I thoroughly enjoyed getting to know each of you.

And of course, a huge thank you to all my non-science friends. To Yordi, Sophie, Fox,
Mitchel, and Ayla—thank you for the endless board games, the crazy sports adventures,
and the unforgettable holidays from Limburg to Flachau. To Club Aubi—Moffel, Room,
Maart, Sos, Ei, Meyk, Aggie—thank you for so much more than just the aubi’s. Every
time I see you, I leave feeling energized and full of joy. A heartfelt thanks to Kasteel

XVI



Oosteinde, my Delft brothers and sisters, and to B122 and the Goudvisjes for all the
incredible adventures. To Anna, thank you for being such a wonderful friend, someone
with whom I can share absolutely anything. To my friends from way, way back, Nena,
you have a way of understanding me with just half a word; Iris, Kim, Merlijn, it means
the world to me that we're forever connected. Nina, we became friends more than twenty
years ago, and it means so much to me that you were willing to create the cover for this
booklet. Thank you, Maxim, for always being there. I feel completely myself when I'm
with you. Thank you for walking (99% of) the Pieterpad, for all our adventures from
Tiibingen to Croatia, for those cozy pyjama days with sushi and yoga, and for the random
calls. I am beyond grateful for our friendship.

Finally, a heartfelt word of thanks to my family. First, to my parents, who have al-
ways been there to offer support whenever I needed it. Thanks to Rob and Mariska for
bringing so much happiness into the life of my mom and dad. A thousand thanks to
Hannah, my little sister who is wiser than me in so many ways. Thank you for support-
ing me through both the big and small challenges life throws at us. Special shout-out
to your voice messages—always random, chaotic, and yet never failing to brighten my
day. Thank you to my mis abuelos. My opa passed away during my PhD, but I have so
many warm memories of him, from hugging trees to the fun rides in my little red car.
Thanks to my oma, the most knowledgeable person I know. You are simply fantastic! A
huge thank you to the van Dijkjes for welcoming me with open arms and including me
in your cherished traditions. The Sinterklaas poems and yearly Texel trips, which I once
thought might get repetitive, have turned into the highlights of my year. And last but not
least, thank you, thank you, thank you to Mathijs. Life is so much more fun with you! I
treasure all our big and small adventures, and the daily races down the stairs followed by
a hug when one of us comes home are proof that you are truly my “lievelings”.

XVII






INTRODUCTION

This chapter was written to introduce the topics of this dissertation to the general public. Therefore,
the language used in this chapter is different from the language used in Chapters 2-5, each
containing an academic introduction to their contents.



1. INTRODUCTION

1.1. DISTANT LAND WITH CLOSE-TO-HOME IMPACTS

NTARCTICA stands as a challenging concept to fathom—a place of extreme
Aremoteness and isolation on our densely populated planet. Spanning an
immense territory approximately 1.5 times the size of Europe, it ranks among the
most extraordinary places on Earth.

As someone who has never set foot on Antarctica but has spent hours studying
satellite images, let me attempt to describe what this remote continent looks like.
The continent’s foundation, contrary to popular belief that Antarctica consists of
solely ice, is a bedrock resembling a rugged mountain range (Figure 1.1a). Atop
the bedrock, an impressive layer of ice covers 98% of the surface, averaging 2160
meters thick (Figure 1.1b). Traveling across the Antarctic Ice Sheet—using Google
Earth in my case—your gaze will mostly be met by this layer of ice, interrupted only
occasionally by isolated rock outcrops. This immense mass of ice that covers the
continent’s bedrock is what we refer to as an ice sheet.
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Figure 1.1: Topography and motion of Antarctica. (a) Bed topography, (b) surface elevation,
and (c) flow lines illustrating ice sheet motion. Flow lines are color-coded by velocity,
with pink indicating faster flows and blue indicating slower flows. Data is from BEDMAP2,
visualizations are from NASA’s Goddard Space Flight Center Scientific Visualization Studio.



1.2. THE ROLE OF ICE SHELVES IN A WARMING CLIMATE

Antarctica is not just a static ice cube; much of its ice constantly flows towards
the ocean under its own weight (Figure 1.1c). Moving away from the ice sheet
towards the ocean, you encounter the result of this constant movement - floating
ice shelves (Figure 1.2). Ice shelves, some of them being the size of France, are
attached to the land-based ice and rest on the ocean’s waters. They are anchored
by lateral mountains and grounding points in the ocean and can therefore provide a
‘buttressing’ force, acting as barriers that hold back land-based ice. The ice shelves
fringe approximately 75% of Antarctica’s 17,968-kilometer coastline (Rignot et al,
2013), roughly the distance from the Netherlands to New Zealand.

Throughout history, Antarctica has been referred to as the ‘sleeping giant.
Compared to the only other significant ice sheet on Earth, the Greenland Ice Sheet,
Antarctica has shown less mass loss. Between 2002 and 2023, the Greenland Ice
Sheet experienced a noticeable decrease in mass, averaging 270 billion metric tons
of ice lost per year, contributing to a global sea level rise of 0.8 millimeters annually
(NASA, 2023). In contrast, Antarctica experienced only half of Greenland’s mass loss
during the same period.

Nevertheless, when focusing on the coming centuries, the sea level contribution
due to mass loss from the Antarctic Ice Sheet is extensive, holding the capacity to
significantly shape Earth’s climate. Antarctica has the remarkable potential to elevate
sea levels by an astounding 57 meters (Swithinbank, 1988). It is worth noting that
the complete disappearance of Antarctica is not a projection within the foreseeable
centuries, if ever. However, the latest Intergovernmental Panel on Climate Change
(IPCC) report estimates that the Antarctic Ice Sheet could contribute to a sea level
rise of more than a meter by 2100 and more than 15 meters by 2500, if emissions
continue without restraint (IPCC, 2023).

The potential sea level rise from Antarctica is particularly significant for countries
like the Netherlands. Not only does a third of the Netherlands lie below sea
level, making it vulnerable to rising seas, but also because Antarctica’s massive ice
sheet exerts a gravitational pull that currently holds water away from the northern
hemisphere. As Antarctica melts, its gravitational pull weakens, paradoxically causing
sea levels near Antarctica to decrease. As a result, waters far from Antarctica, such as
the North Sea, rise more than the global average. This underscores the far-reaching
consequences of Antarctica’s mass loss on countries like the Netherlands. Despite
being distant, Antarctica’s impact hits close to home.

1.2. THE ROLE OF ICE SHELVES IN A WARMING CLIMATE

The greatest uncertainty in forecasting global sea level rise comes from Antarctica’s
ice loss (IPCC, 2023). This uncertainty primarily stems from the unknown future of
Antarctica’s approximately 300 ice shelves (Figure 1.2). As previously explained, ice
shelves buttress the land-based ice; acting as a ‘band-aid), they prevent Antarctica
from ‘bleeding’ ice into the oceans.

Similar to land-based ice, ice shelves are constantly in motion. For an ice shelf
in equilibrium, growth occurs from the incoming ice flow from the ice sheet and
snowfall on its surface. Deterioration occurs as ice calves off at its edges, a cycle
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comparable to the continuous renewal and shedding of fingernails. This natural
cycle of replenishment and calving helps maintain their size relatively constant over
the long term. However, in recent decades, the warming ocean and atmosphere
have destabilized Antarctica’s ice shelves, resulting in thinner and weaker structures.
It was recently reported that more than 40% of Antarctica’s ice shelves have been
shrinking since 1997, with nearly half showing no signs of recovery (Davison et al.,
2023).
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Figure 1.2: Overview of main Antarctic ice shelves. For each ice shelf, the sea level
equivalent of the upstream basin is shown in centimeters. The bar charts display the
equilibrium mass balance (bar thickness) and the separation of mass sources (surface mass
balance and discharge) and mass sinks (basal mass balance and calving) from Davison et al.
(2023). Buttressing is shown along flow (Fiirst et al., 2016), and observation-based ocean
temperatures are shown at continental shelf depth (Jourdain et al. (2020), prepared by Clara
Burgard). Credit: Erwin Lambert.



1.3. IMPACT OF SURFACE MELT ON ICE SHELVES

In a warming climate, more ice shelves fall out of equilibrium, leading to increased
mass loss. Figure 1.3 illustrates several reasons for the increased mass loss of
Antarctica. One major factor is basal melting, where warmer ocean waters thin
the ice shelves from below (Paolo et al., 2015; Pritchard et al., 2012). The most
rapid thinning occurs in West Antarctica, where ocean temperatures are the highest
compared to the surrounding Antarctic Ice Sheet waters (Paolo et al., 2015; Rignot
et al, 2014), see also Figure 1.2. A second reason for Antarctic mass loss is calving
at the edges of ice shelves, where large chunks of ice break off. While this process
also occurs for ice shelves in equilibrium (recall the fingernail metaphor), calving is
projected to increase in a warming climate (Y. Liu et al, 2015). Due to reduced
thickness from basal melting, ice shelves have become weaker and more prone to
damage and fracture (Greene et al, 2022; Lhermitte et al., 2020), leading to this
increased calving. Currently, mass loss from Antarctica due to calving has been
approximately equal to the mass loss from ice shelf thinning caused by basal melting
(Greene et al., 2022). Lastly, surface melt can destabilize ice shelves through various
mechanisms, as elaborated upon in the following section.
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Figure 1.3: Conceptual overview of an ice shelf, highlighting destabilizing processes: basal
melting resulting in ice shelf thinning, surface melting leading to hydrofracturing, and
structural damage reducing overall ice shelf integrity. Credit: Alexander Bradley.

1.3. IMPACT OF SURFACE MELT ON ICE SHELVES

Surface melt occurs when the top layer of an ice shelf reaches temperatures
above freezing, causing the snow and ice to melt. In this dissertation, the term
‘surface melt’ encompasses all forms of liquid water, from wet snow to accumulated
meltwater in ponds and streams (Figure 1.4). While surface melt has always been
a part of Antarctica’s natural cycle, its intensity and extent are expected to increase
due to rising local temperatures (Gilbert & Kittel, 2021; Trusel et al., 2015).
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Figure 1.4: Overview of surface melt on the Antarctic Ice Sheet. The central map shows
the surface melt of Antarctica from 2000-2009, based on satellite observations (Quick
Scatterometer, QuikSCAT) by Trusel et al. (2013). Panels a—j display photos of various surface
melt formations, with their locations indicated on the central map. Credit: Bell et al. (2018).

Surface melting in Antarctica leads to the gradual formation of liquid water, which
can be understood as progressing through a series of stages, much like moving up
a ladder. At the first rung, when the icy or snowy surface begins to melt, it forms
‘wet snow’ (see Figure 1.5). Beneath this layer of fresh snow lies the firn layer—a
multi-year accumulation of snow with air-filled pores. The wet snow can seep into
these pores and refreeze. As new snow accumulates, it replenishes the firn layer,
creating additional pore spaces where the wet snow can refreeze (Kuipers Munneke
et al, 2014).

When the firn’s pore spaces become saturated, we ascend to the next rung on the
ladder: ‘slush’. Antarctic slush has a wet texture but maintains a semi-solid form,
similar to slush puppies enjoyed on a hot day. As the slush continues to melt, the
water starts to pool, moving us to the next stage.
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At this last stage, we reach

the ‘ponded meltwater. Dur- Wet snow
ing peak melt season, the ex- "
tent of ponded meltwater in  fm
Antarctica can be comparable
to the slush area, each cover-
ing roughly an area equivalent pjgure 1.5: Progression of meltwater stages: from wet
to the size of South Holland snow, to slush, to ponded meltwater.
in the Netherlands (Dell et al.,
2024). Ponded meltwater collects in low-lying areas, forming pools that can range
from bathtub-sized ponds to vast lakes, with the largest recorded at 71.5 km?. (Corr
et al. (2022); see also Figure 1.4e), comparable in size to The Hague. These pools
can quickly expand as more ice and snow melt, leading to the formation of streams
and rivers on the ice surface.

Surface melt primarily impacts ice shelves through ‘hydrofracturing, a process of
water-induced fracturing, as its name suggests. When ponded meltwater seeps into
fractures in the ice surface, it exerts pressure, causing them to grow unstoppably
(Nye, 1957; Weertman, 1973). This process can transform stable ice shelves into
structures that resemble Swiss cheese, filled with numerous holes. After a lake has
drained, that location on the ice shelf experiences a sudden release of pressure,
causing it to uplift, leading to more fractures around the areas where the lakes
used to be (Banwell et al., 2013, 2024; MacAyeal & Sergienko, 2013; Scambos
et al, 2009). If these fractures intersect with other nearby lakes, they can trigger
a chain reaction of further lake-drainage events, potentially leading to large-scale
ice shelf break-up (Banwell et al., 2013, 2024). The disintegration of the Larsen B
Ice Shelf on the Antarctic Peninsula in 2002 is a notable example of how surface
melt-induced weakening can cause rapid ice shelf collapse (Banwell et al, 2013;
Glasser & Scambos, 2008; Scambos et al., 2003). The ice shelf, comparable in size
to the province of Utrecht, rapidly disappeared after a series of lake drainage events
(Sergienko & Macayeal, 2005).

Additionally, there are two processes that enhance surface melt formation and
ponding, making hydrofracturing increasingly likely in the future (Gilbert & Kittel,
2021; Jourdain et al, 2024). Firstly, surface melt alters the reflectivity of the ice
surface. White snow and ice reflect sunlight, helping to maintain cooler surface
temperatures. However, as meltwater accumulates, it darkens the ice surface,
reducing its reflectivity and accelerating the melting process. This forms a feedback
loop: increased melt darkens the ice, leading to greater heat absorption, which in
turn causes further melting (Budyko, 1969; Sellers, 1969).

Secondly, surface melt can deplete the firn layer of the Antarctic Ice Sheet,
resulting in more surface melt ponding. Currently, around 94% of Antarctica is
covered by firn (Medley et al., 2022; van Wessem et al., 2018). However, if meltwater
repeatedly refreezes without sufficient replenishment from snowfall, the firn air
content decreases, reducing its capacity to absorb future meltwater. This process,
known as firn air depletion, leads to more ponded meltwater, increasing the risk of
hydrofracturing (Kuipers Munneke et al., 2014).
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1.4. SURFACE MELT MAPPING USING SATELLITE
OBSERVATIONS

Understanding the complex interplay between surface melt and ice shelf stability is
essential for accurate sea level predictions. Ongoing research aims to quantify the
effects of surface melt on ice shelves and improve climate models that simulate their
behavior in a changing climate. Early studies mapping surface melt and its hydrology
relied on direct measurements taken on the ice. In 1909, Ernest Shackleton and his
team were among the first to observe surface meltwater on Antarctica, on a small
ice shelf known as the Nansen Ice Shelf. They recorded the presence of meltwater in
their logbook, describing it as a ‘thaw-water stream could be heard roaring’ (David &
Priestley, 1909). Three years later, in 1912, Robert Falcon Scott’s team followed up on
Shackleton’s observations by producing the first detailed map of Antarctic meltwater,
including channels, streams, and melt ponds (Priestley, 1915).

To date, in-situ measurements and observations remain invaluable sources of
information. Over the last fifty years, in addition to visual observations, roughly 300
automatic weather stations have been deployed on the Antarctic Ice Sheet (Wang
et al, 2023), continuously measuring incoming energy to estimate surface melt,
along with many other relevant climate processes. Additionally, field campaigns have
been set up, for example, to track ice movement following lake drainage (Banwell
et al, 2024) and study the hydrology of meltwater flowing up and through ice
shelves (Lenaerts et al, 2017). While in-situ measurements are indispensable for
understanding Antarctic meltwater, mapping the entire Antarctic Ice Sheet this way
is too costly and time-consuming, resulting in sparse measurements both temporally
and spatially. Fortunately, over the last 50 years, the abundance of remote sensing
data has enabled us to study the Antarctic Ice Sheet in its entirety.

In this thesis, when discussing remote sensing data, I specifically refer to satellite
observations. However, officially remote sensing encompasses all measurements
taken from a distance, so including those from aircraft and drones, though these
are not utilized in this dissertation. Satellites are devices moving around Earth at
altitudes of hundreds of kilometers, capturing images and measurements of our
planet. Satellites are equipped with powerful sensors that detect different types of
light and energy. They orbit Earth in a carefully planned path and send their data
back to Earth. These data are used to learn about our planet’s changing climate,
how cities are growing, and how forests are shrinking. We use the data to predict
weather patterns, monitor pollution levels, and in my case, help us understand how
the ice on Antarctica is melting.

Surface melt on Antarctica can be mapped using a range of satellite data, and
like every data source, each satellite comes with its opportunities and limitations.
Some satellites take images of our Earth like the cameras on our phones, but with
these images we can only detect accumulated meltwater, such as melt ponds and
streams. Other satellites can measure all types of meltwater, including meltwater
below the surface and in snow, which is not visible to the human eye. However,
these satellites often cannot determine the exact amount of liquid water, resulting in
a binary melt/no-melt classification. To get a full overview of the different types of
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satellites used for monitoring surface melt, see Figure 1.6 and Figure 1.7.

Figure 1.6 illustrates a timeline of the various satellite types, the effective horizontal
resolution (essentially the smallest ground area that a satellite can distinguish and
measure), and the depth beneath the surface from which the satellites can gather
information. Figure 1.7 shows how different satellites “see” surface melt in various
ways. Active sensors, such as synthetic aperture radar (SAR) sensors, scatterometers,
and altimeters, send signals to the surface and analyze the returned signals to detect
binary surface melt presence (SAR sensors and scatterometers) or measure pond
depths (altimeter sensors). In contrast, passive sensors, such as radiometers and
optical sensors, do not emit signals; they instead measure natural emissions from
the Earth (radiometers) or sunlight reflections (optical sensors).
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Figure 1.6: Overview of satellites used to study Antarctic surface dynamics, including the
start dates of their use, their effective horizontal resolution, and their penetration depth. This
figure is adapted from Figure 5 of The Firn Symposium team (2024).

Figure 1.8 provides an overview of the George VI Ice Shelf, one of the wettest ice
shelves in Antarctica, during the first week of January (the peak of the Antarctic melt
season) for the years 2021 to 2024. Each satellite image represents a different year of
my PhD research. The figure includes images captured by four primary sensors used
in my dissertation: January 2021 by a radiometer, January 2022 by a scatterometer,
January 2023 by an optical sensor, and January 2024 by a SAR sensor.

Finally, a short remark on the term ‘surface melt. While this term is widely
accepted in scientific literature, and for this reason, also continuously used by
me, I would argue the term is not entirely used correctly by the remote sensing
community. As you know by now, surface melt from satellites is derived by looking
at how much light or energy the sensors measure, which implicitly means that we
can only study ‘properties’ using satellites, not ‘processes’. Since surface melt is an
energy conversion process in which snow and ice are transformed into water, we
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are actually not measuring the process itself but only its outcome—the presence of
liquid water.
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Figure 1.7: Visual summary of satellites used for surface melt observation in Antarctica.

1.5. DEEP LEARNING AND CLOUD COMPUTING IN THE BIG

DATA REALM

The abundance of satellite data opens many doors for studying surface melt on
Antarctica, as well as countless other processes. It is believed by some that “Data is
the new science. Big data holds the answers” (quote by Patrick P. Gelsinger, CEO of
Intel). While I don’t think data will solve all our problems, there is much to learn
and discover from big data. Big data refers to very large datasets that keep growing
rapidly. These datasets are so large that traditional data management systems can’t
store or analyze them effectively. Each day, satellites capture hundreds of terabytes
of data. In a quest to analyze these trillions of pixels, cloud computing and deep
learning serve as invaluable tools.

Over the past 15 years, numerous cloud-based platforms have emerged, including
commercial options like Microsoft Planetary Computer, Amazon Web Services
GeoSpatial Services, Microsoft Azure Maps, and Google Earth Engine, as well as free,
open-source platforms such as Open Data Cube and Pangeo. These cloud-based
platforms let you use computer resources like storage and processing power without
needing to rely on your own computer. Instead, you use external resources stored in
data centers that you can access over the internet.

One of the most popular cloud-based platforms for storing and analyzing remote
sensing data, and the one I used in my research, is Google Earth Engine. Google
Earth Engine enables users to conduct geospatial analyses in the cloud using Google’s
servers (Gorelick et al., 2017). By executing tasks in parallel across multiple servers,
large computational jobs can be completed quickly. Google Earth Engine hosts a
large catalog of ready-to-use, cloud-hosted geospatial data products, spanning over
thirty years of satellite data, making it an ideal solution for large-scale remote
sensing analysis of, for example, surface meltwater in Antarctica.
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Figure 1.8: Satellite images of the George VI Ice Shelf in Antarctica, taken during the first
week of January from 2021 to 2024, each marking a year of my PhD research. The images are
medium composites from various sensors: 2021 shows SSMIS 19 GHz horizontally polarized
data, with a color bar ranging from 195 K (white) to 235 K (green); 2022 shows ASCAT data,
vertically polarized, with a range from -20 dB (green) to 0 dB (white); 2023 shows Sentinel-2
imagery using red, green, and blue bands; and 2024 shows Sentinel-1 horizontally polarized
data, with a range from -20 dB (green) to 0 dB (white). These images illustrate the variation
in surface conditions over time and across different sensing methods.
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Cloud-based platforms can be compared to a well-stocked kitchen, providing us
with the necessary storage space and ingredients. However, just like in cooking, we
also need recipes to create excellent dishes. This is where I believe deep learning
comes in, providing us with the tools to creatively analyze and interpret the data.
Deep learning is a specialized type of artificial intelligence and, more specifically,
a subset of machine learning. Machine learning techniques learn from data to
improve performance over time. For several decades, techniques like support vector
machines and ensemble classifiers, such as random forests, have been popular in
the scientific community (Lary et al., 2016). In the past decade, the remote sensing
community has increasingly focused on deep learning (X. Zhu et al, 2017). Deep
learning is characterized by neural network architectures with multiple layers—hence
the term ‘deep. This approach is particularly advantageous for remote sensing
problems involving complex, nonlinear, poorly understood, or hard-to-generalize
physical models (X. Zhu et al., 2017).

For surface melt monitoring, the rise of cloud computing and deep learning
has led the community to shift from monitoring surface melt using a few satellite
images and statistically-based threshold approaches (e.g., Zwally & Fiegles, 1994)
to large-scale analyses employing non-linear deep learning methods (e.g., Q. Zhu
et al, 2024). While cloud computing and deep learning offer exciting possibilities,
they also introduce new challenges. We must be cautious to ensure that deep
learning models do not learn from noise or spurious relationships, as this can lead
to incorrect results and, in some cases, even disastrous consequences (such as the
Dutch childcare benefits scandal, known as the “toeslagenaffaire” in Dutch; Hadwick
& Lan, 2021). Ongoing research is crucial to navigate these challenges and optimize
the use of deep learning for addressing societal issues.

1.6. IDENTIFYING AND FILLING RESEARCH GAPS

Despite the availability of extensive satellite data, advanced computational resources
and deep learning techniques, the contribution of Antarctica to sea level rise
remains uncertain. To reduce this uncertainty, it is crucial to predict the future
behavior of Antarctic ice shelves by understanding their potential destabilization
processes. This understanding hinges on a thorough analysis of historical data and
past destabilization events. This dissertation delves into the dynamics of ice shelf
melt in Antarctica using satellite data, examining the timing, location, and hydrology
of surface meltwater. Four key research gaps are identified, and the objectives of this
dissertation are presented to address these gaps and enhance our understanding of
Antarctic surface melt.

Research gap 1: Surface melt mapping relies on one sensor

To determine where and when Antarctica is melting, satellite data have been
extensively used to map the extent of surface melt. Traditionally, surface melt
detection relied primarily on passive microwave data and a single threshold to

12
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identify melting events (H. Liu et al., 2006; Picard & Fily, 2006; Torinesi et al., 2003;
Zwally & Fiegles, 1994). More recently, surface melt extent maps have also been
developed using other sensors, such as active microwave data from SAR sensors
(Johnson et al., 2020; Liang et al., 2021; Luckman et al., 2014) and scatterometers
(Barrand et al., 2013; Bothale et al., 2015; Trusel et al., 2012).

However, when comparing surface melt extents derived from different satellites,
large differences arise. Trusel et al. (2012) demonstrated that, from 2000 to 2009,
the accumulated surface melt extent detected by passive microwave sensors was
approximately 50-75% less than that detected by scatterometers over the Antarctic
Peninsula. This raises important questions about whether different satellites are
detecting the same phenomena and why they might provide different numbers.
Understanding these differences is crucial for determining whether it is valid to rely
on a single satellite for assessing Antarctic surface melt extent and for identifying
the limitations of a specific satellite. This will ensure that the most accurate surface
melt products are used in climate models for sea level rise projections.

PhD objective 1 - Evaluating the strengths and weaknesses of remote sensing
techniques for surface melt detection on Antarctica

The first objective of my PhD is to evaluate the consistency of different satellites in
detecting surface melt. I compare the extent of surface melt across Antarctica using
a passive microwave sensor, two active microwave sensors (SAR and scatterometer),
and an optical sensor. Melt extents are determined by applying state-of-the-art melt
detection algorithms to the satellite data. This comparison aims to reveal differences
in timing, location, and reasons for inconsistencies among the satellites, providing
insights into the opportunities and challenges associated with each sensor.

Research gap 2: Surface melt maps - either infrequent or coarse resolution

When working with satellite data, one key consideration is the trade-off between
spatial resolution and temporal frequency. Satellites either provide frequent imagery
of the same location with coarse pixels or detailed imagery with less frequent
overpasses. Surface melt, being a dynamic process both spatially and temporally,
requires frequent and high-resolution mapping.

Passive microwave studies, such as those by Torinesi et al. (2003), H. Liu et al
(2006), and Picard and Fily (2006), provide Antarctic surface melt data with a pixel
resolution of 25 km and a temporal frequency of twice daily. In contrast, SAR
studies, including those by Luckman et al. (2014), Johnson et al. (2020), and Liang
et al. (2021), offer high spatial resolution maps with pixel sizes ranging from 10
m to 1000 m. However, these SAR images typically become available every other
day, which is about four times less frequent than the passive microwave studies
mentioned earlier. The limitations of remote sensing data, whether due to infrequent
coverage or coarse resolution, pose difficulties in accurately mapping the dynamic
surface melt in Antarctica.
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PhD objective 2 - Develop a high-resolution surface melt record for Antarctica
with both high spatial and temporal resolution

The second objective of my PhD is to address the spatial-temporal trade-offs
inherent in satellite observations and develop a high-resolution surface melt record
for Antarctica. This involves identifying locations where different types of satellites
pass over at the same time, ensuring they capture the same surface melt conditions.
These simultaneous observations will serve as training data for a deep learning
model. The goal is to enable the coarse but frequent satellite images to replicate
the detailed melt patterns observed in the high-resolution but infrequent data. By
incorporating additional input data, such as a detailed elevation map, along with
the coarse-resolution images, the deep learning model can learn these relationships.
This approach will allow me to generate an Antarctic-wide melt product that offers
both high temporal and high spatial resolution.

Research gap 3: Surface melt maps - from presence to volume

The previous research gaps and dissertation objectives focused on surface melt
presence, but to fully understand Antarctic surface melt, it is also crucial to assess
surface melt volume. While recent efforts have attempted to estimate surface melt
volume using remote sensing data in Greenland (Zheng et al., 2022) and Antarctica
(Banwell et al, 2023), surface melt volume is typically studied through models,
particularly regional climate models. Regional climate models use equations to
represent the processes and interactions driving regional climate. For Antarctica,
commonly used regional climate models include the Modele Atmosphérique Régional
(MAR) (Agosta et al., 2019) and the Regional Atmospheric Climate Model (RACMO)
(van Wessem et al., 2018). Although these models provide an Antarctic-wide overview
of surface melt volume, their horizontal resolution (approximately 25-30 km) is
insufficient for capturing the small-scale melt processes across Antarctica.

PhD objective 3 - Enhance the spatial resolution of Antarctic surface melt data
from a regional climate model

The third objective of my PhD is to enhance the spatial resolution of the regional
climate model RACMO, which is currently run at a relatively coarse resolution of 27
km (van Wessem et al., 2018). The goal is to develop a method for downscaling
RACMO'’s surface melt volumes using a deep learning architecture, leveraging ‘ground
truth’ data from a RACMO simulation at 5.5 km resolution available for the Antarctic
Peninsula (van Wessem et al., 2016). Previous research has shown that downscaling
using only the coarse-resolution data (i.e., RACMO at 27 km) produces inadequate
results, as Antarctic surface melt processes vary across the continent (Hu et al.,
2021). Therefore, the aim is to improve the downscaling deep learning algorithm
by incorporating additional data that are physically related to surface melt, such as
elevation and albedo obtained from remote sensing. This approach will provide
insights into the impacts of localized melting on ice shelf integrity, including
processes like hydrofracturing.
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Research gap 4: Unexplored dynamics of meltwater lakes

The final research gap addressed in this dissertation pertains to the hydrology
of Antarctic meltwater. There are still many unknowns on this topic, such as
whether meltwater from hydrofracturing can reach the bottom of the ice sheet, how
much meltwater refreezes in the firn layer versus how much remains liquid, and
the behavior of meltwater lakes—whether they drain or refreeze. This dissertation
specifically tackles this last question; what happens to meltwater lakes at the end of
a melt season. Although previous studies have monitored the presence and volume
of Antarctic meltwater lakes using optical imagery (Arthur et al, 2020; Moussavi
et al., 2020), tracking meltwater lakes throughout a melt season remains difficult due
to the persistent cloud cover in Antarctica.

Understanding the behavior of meltwater lakes is crucial because rapid drainage
(i.e., hydrofracturing), can destabilize ice shelves, as demonstrated by the Larsen B
ice shelf collapse in 2002. Without a comprehensive Antarctic-wide map of draining
and refreezing lakes, further investigation into the effects of lake dynamics on ice
shelf stability is challenging.

PhD objective 4 - Develop a methodology to map the evolution of supraglacial
lakes in Antarctica

The fourth objective of my PhD is to develop a method for assessing the evolution
of meltwater lakes in Antarctica, specifically to determine whether they drain or
refreeze. While similar analyses have been conducted in Greenland using optical
data (Langley et al., 2016; Leeson et al, 2013; McMillan et al, 2007), frequent
cloud cover in Antarctica often makes optical imagery unusable. Benedek and Willis
(2021) have shown that SAR data can effectively analyze lake evolution, as they
demonstrated for several lakes on Greenland. My goal is to determine if a deep
learning algorithm trained on SAR time series data from Greenland can be adapted
and applied to analyze meltwater lake dynamics on Antarctica.

1.7. STRUCTURE OF THIS DISSERTATION

Now that you have completed the introduction to this dissertation, let me provide
you an overview of the research. The goal of this dissertation is to improve our
understanding of surface melt on the Antarctic Ice Sheet by leveraging satellite data
and deep learning techniques. This overarching goal is divided into four specific
sub-goals, addressed in Chapters 2-5, each aimed at tackling one of the research
gaps outlined in Section 1.6.

Chapter 2 evaluates the opportunities and challenges of various remote sensing
techniques for detecting surface melt on Antarctica. Chapter 3 presents a product
that merges the different satellite data discussed in Chapter 2, using deep learning
to create a high-resolution surface meltwater record. Chapter 4 shifts the focus
from meltwater presence to meltwater volume, introducing a method for creating
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a high-resolution surface melt volume product by downscaling a regional climate
model with a physically-informed deep learning architecture. Chapter 5 delves
into the hydrology of meltwater, presenting a method for distinguishing between
refreezing and draining lakes using SAR observations and deep learning.

Like any dissertation, this study began with a few questions and has led to many
more questions and new research directions. In Chapter 6, I summarize the main
findings of my PhD work and propose three new research ideas to further advance
the field of mapping the dynamic surface meltwater on Antarctica.
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2. REMOTE SENSING OF SURFACE MELT ON ANTARCTICA

ABSTRACT

Surface melt is an important driver of ice shelf disintegration and its consequent
mass loss over the Antarctic Ice Sheet. Monitoring surface melt using satellite remote
sensing can enhance our understanding of ice shelf stability. However, the sensors
do not measure the actual physical process of surface melt, but rather observe the
presence of liquid water. Moreover, the sensor observations are influenced by the sensor
characteristics and surface properties. Therefore, large inconsistencies can exist in the
derived melt estimates from different sensors. In this study, we apply state-of-the-art
melt detection algorithms to four frequently used remote sensing instruments: two
active microwave instruments, ASCAT (Advanced Scatterometer) and Sentinel-1, a
passive microwave sensor SSMIS (Special Sensor Microwave Imager/Sounder), and
an optical sensor MODIS (Moderate Resolution Imaging Spectroradiometer). We
intercompare the melt detection results over the entire Antarctic Ice Sheet and four
selected study regions for the melt seasons 2015-2020. Our results show large
spatiotemporal differences in detected melt between the sensors, with particular
disagreement in blue ice areas, in aquifer regions, and during wintertime surface melt.
We discuss that discrepancies between sensors are mainly due to (1) cloud obstruction
and polar darkness, (2) frequency-dependent penetration of satellite signals, (3)
temporal resolution, and (4) spatial resolution, as well as (5) the applied melt
detection methods. Nevertheless, we argue that different sensors can complement each
other, enabling improved detection of surface melt over the Antarctic Ice Sheet.
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2.1. INTRODUCTION

ARGE uncertainty about the future viability of the Antarctic ice shelves leads to
Lan enormous spread in sea level rise projections (Bakker et al., 2017; Church
et al., 2013; Edwards et al., 2021; Portner et al., 2019, 2022). Estimates on the
contribution of the Antarctic Ice Sheet over the next century range from +0.03 to
+0.34 m of sea level equivalent under Representative Concentration Pathway (RCP)
8.5 according to the Sixth Assessment Report (Portner et al., 2022). By far the largest
direct contribution to the present-day Antarctic Ice Sheet mass loss is enhanced
basal melt and increased iceberg calving. In the mass balance of Antarctica, direct
mass loss by surface melt and subsequent runoff currently play a marginal role
(Donat-Magnin et al., 2021; Rignot et al, 2019). However, surface melt can lead
to enhanced mass loss indirectly, by destabilization of ice shelves (Bell et al., 2018;
Gilbert & Kittel, 2021; Kuipers Munneke et al., 2014; Scambos et al., 2009). When
melt ponds drain into crevasses in the ice shelf, the stress of the meltwater column
exerted on the crevasse tip can promote fracture, resulting in a weakened ice
shelf (Nye, 1957; Weertman, 1973). Moreover, the load of meltwater lakes causes
flexural stresses in the ice shelf, that generate fractures, further weakening the ice
shelf (Banwell et al., 2019; MacAyeal et al, 2015; van der Veen, 2007). Recent
climate models that incorporate the impact of meltwater on ice shelf instability (e.g.,
DeConto & Pollard, 2016) suggest that surface meltwater will result in widespread
melting and hydrofracturing during this century, leading to a significant increase in
the contribution of the Antarctic Ice Sheet to sea level rise. Regardless of the ice
shelf processes in these models, Antarctic surface melt is projected to double by
2050 due to atmospheric warming (Gilbert & Kittel, 2021; Trusel et al., 2015). In this
context, monitoring the presence of surface melt on the Antarctic ice shelves can
improve our understanding of the fundamental processes involved in the coupling
between meltwater production and future Antarctic mass loss, ultimately improving
our sea level rise projections and reducing their uncertainties.

At present, there are three methods to estimate surface melt, using automatic
weather stations (AWSs), physics-based (regional) climate models (RCMs), and
remote sensing. First, AWS observations can be used to compute the surface
energy balance and estimate the excess energy available for surface melt. For
instance, Vaughan (2006) studied observations from nine AWSs dating back to 1947,
solely using temperature data. Studies followed that used more sophisticated AWSs
equipped with radiation sensors (Kuipers Munneke et al., 2018; Kuipers Munneke
et al, 2014). While AWS observations are widely used and considered ‘ground
truth’ (Jakobs et al., 2020), the main drawback of AWS observations is that the data
are point-based on a limited number of locations, making them insufficient for
continent-wide melt studies. Moreover, AWS locations are heavily biased towards
homogeneous snow surface types, disregarding more challenging surface types like
blue ice, slush, and other wet surface types.

The second approach to estimate surface melt is using RCMs, such as Modele
Atmosphérique Régional (MAR) (e.g., Agosta et al,, 2019) or Regional Atmospheric
Climate Model (RACMO?2) (e.g., van Wessem ef al., 2018). RCMs can simulate surface
melt on a continental scale. Nevertheless, the accuracy of models relies on the
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resolution and accuracy of its forcing data, which are often unsatisfactory for the
Antarctic Ice Sheet (Zheng et al., 2019). Moreover, melt features over low albedo
regions are often more detailed than the model resolution and can therefore not
accurately be captured by RCMs (Hu et al, 2021; Kingslake et al, 2017; Lenaerts
et al.,, 2017).

Remote sensing is an alternative to derive long-term (back to 1970s) melt dynamics
at various spatiotemporal resolutions. Optical sensors have been used not only to
detect meltwater presence, such as supraglacial streams, lakes (Dirscherl et al., 2020;
Kingslake et al., 2017; Spergel et al, 2021), and slush (Dell et al, 2022), but also
to estimate meltwater extent (D. K. Hall et al., 2006; D. K. Hall et al., 2008, 2013;
Lenaerts et al., 2017) and volume (Arthur et al., 2022; Dell et al., 2020; Moussavi
et al., 2020). Microwave sensors have also been used for detecting the presence
of meltwater, for example the active microwave Ku-band (12-18 GHz) from Quick
Scatterometer (QuikSCAT) (Trusel et al, 2012), C-band (4-8 GHz) from Advanced
Scatterometer (ASCAT) (Bevan et al., 2018) and satellite mission Sentinel-1 (Datta
et al, 2019; Dirscherl et al., 2021; Dunmire et al., 2020; Li et al., 2021; D. Liang
et al., 2021), and passive microwave K-band (18-27 GHz) and K,-band (27-40 GHz)
from Scanning Multichannel Microwave Radiometer (SSMR) and Special Sensor
Microwave/Imagers (SSM/I) (Liu et al., 2006; Picard & Fily, 2006; Tedesco et al., 2007;
Tedesco & Monaghan, 2009; Torinesi et al., 2003), and L-band (1-2 GHz) sensors like
Soil Moisture Active Passive (SMAP) (Colliander et al., 2022; Mousavi et al., 2022) and
Soil Moisture and Ocean Salinity (SMOS) (Leduc-Leballeur et al., 2020). Attempts to
convert binary detected surface melt to continuous estimates of meltwater volume
have been carried out using QuikSCAT (Trusel et al, 2013) and Special Sensor
Microwave Imager/Sounder (SSMIS) (over Greenland, Zheng et al., 2022).

Remote sensing satellites provide information on the Antarctic surface in the visible
to the microwave part of the electromagnetic spectrum, i.e., surface reflectance,
backscatter intensity (0°), and brightness temperature (7). The value of surface
reflectance, ¢, and T, are altered under the presence of liquid water. These
parameters therefore are indicators for the presence of liquid water, rather than for
the actual physical process of surface melt, which is in fact an energy (conversion)
process. Except perhaps, in the case of thermal infrared-derived surface temperature,
which defines the occurrence of surface melt at the melting point. Yet, the term
‘surface melt’ is widely used in the remote sensing community (e.g., Banwell et al.,
2019; Gilbert & Kittel, 2021; Kuipers Munneke et al., 2018; Trusel et al., 2015), and we
will adopt it here, although we do acknowledge that sensors measure the presence
of liquid water. Apart from this, spaceborne observations of backscatter intensity,
brightness temperature, and surface reflectance depend on sensor characteristics
and surface properties. In this regard, large inconsistencies can exist in derived
surface melt estimates from different sensors (Zheng et al., 2019).

This study aims to identify the opportunities and challenges for melt detection
over the Antarctic Ice Sheet using remote sensing, focusing on currently operating
instruments that are capable of detecting wet surfaces (e.g., wet snow, slush,
melt ponds, and streams). We compare differences in melt detection among
a frequently used radiometer (SSMIS), scatterometer (ASCAT), Synthetic Aperture
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Radar (SAR) (Sentinel-1), and optical sensor (MODIS, Moderate Resolution Imaging
Spectroradiometer). In this study, we exclude satellites that are no longer operational
(such as QuikSCAT). Moreover, L-band sensors (such as SMOS and SMAP) are not
considered, as they are less sensitive to surface melt than K-band and K,-band
sensors (such as SSMIS) (Leduc-Leballeur et al.,, 2020). In Section 2.2, we introduce
the background of monitoring surface melt using different sensors and related
research. Next, we introduce the satellite and auxiliary data sets in Section 2.3. Then,
we summarize the state-of-the-art methods we applied for surface melt detection
in Section 2.4 separately for each sensor type. In Section 2.5, we apply the melt
detection methods to MODIS, Sentinel-1, ASCAT, and SSMIS over the entire Antarctic
Ice Sheet for melt seasons 2015-2020. We compare spatial and temporal patterns
of retrieved surface melt and assess the sensitivity of the methods. Based on this
intercomparison, we discuss the possibilities and challenges of the different sensors
and methods in Section 2.6. Finally, we summarize the main opportunities and
challenges for remote sensing of surface melt in Section 2.7.

2.2. BACKGROUND AND RELATED RESEARCH

Before applying melt detection algorithms to the sensor observations, we illustrate
what satellite sensors are detecting, and how this is linked to surface melt. Figure 2.1
shows the measuring principles of optical, active microwave, and passive microwave
sensors under different atmospheric and melting conditions. In this study, we
focus on active microwave instruments (i.e., ASCAT and Sentinel-1) that operate
at frequencies between 5.2 and 5.4 GHz (C-band; wavelength of 5.6 cm), and
passive microwave sensors at 19 GHz (K-band; wavelength: 1.6 cm) and at 37 GHz
(K4-band; wavelength of 0.8 cm). Figure 2.1a shows a dry snowpack, in which active
microwave sensors can penetrate to a depth of around 10 m (Ulaby et al.,, 1986),
passive microwave sensors to a smaller penetration depth of around 2.5 m for 19
GHz (and 0.5 m for 37 GHz, not shown in Figure 2.1a) (Ulaby et al, 1986), whereas
optical sensors only measure surface reflectance. Figure 2.1b shows a snowpack
under melting conditions under daylight and cloud-free conditions, and Figure 2.1c
shows the same melt situations but in a cloudy and/or night situation. Signals
from active and passive microwave sensors are (almost) unaffected by atmospheric
conditions, whereas optical sensors depend on reflected sunlight. Figure 2.1d
denotes near-surface melt presence, which can form due to near-surface melting
(Brandt & Warren, 1993; Colbeck, 1989), after a snowfall event or after meltwater
percolation from the surface (Lenaerts et al., 2017).

Optical sensors measure the surface reflectance when atmospheric and topograph-
ical effects are removed from the visible through the shortwave infrared spectral
bands. Since the total surface reflectance depends on the surface properties, the
reflectance of snow, ice, water, and bare rocks can be used to discriminate between
land surface types (D. K. Hall & Martinec, 1985; Hui et al., 2014; Tedesco, 2014). The
refractive indices of water and ice are similar and therefore do not directly change
the surface reflectance when snow melts. However, the presence of liquid water
changes the surface reflectance indirectly, because liquid water increases the snow
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Figure 2.1: Conceptual overview of working principles of optical, active, and passive
microwave sensors under different atmospheric and melting conditions. (a) no melt and
sunlight, (b) surface melt and sunlight, (c) surface melt and no sunlight due to cloudy and/or
nighttime conditions, (d) near-surface melt and sunlight. AM indicates active microwave
sensors and PM passive microwave sensors.

grain size (Dozier et al., 1981; Tedesco, 2014). Ponding water on the other hand
changes the spectral properties of the surface, causing a drop in near-infrared, red
and green reflectance (Choudhury & Chang, 1979; Luckman et al., 2014). This results
in a blue appearance of melt components in true-color imagery, such as slush, melt
ponds, and streams (Dell et al., 2022; Dirscherl et al., 2020).

Active microwave sensors detect the reflected portion of a radar signal emitted
by the satellite, known as the backscatter intensity. The backscatter intensity
depends on the snow dielectric properties and the surface roughness, and hence
is very sensitive to liquid water content within the snowpack (Ulaby et al., 1986).
Liquid water increases the absorption of the microwave radiation and also increases
forward scattering, both leading to a decreased backscatter intensity compared to
dry surfaces (Ashcraft & Long, 2006; Liu et al., 2006). Therefore, a drop in the
backscatter intensity is associated with melt presence. Nevertheless, melt detection
on surfaces with a very high or low roughness can be challenging. Surfaces may
become rougher under the presence of liquid water, for example by creating small
meltwater streams (D. Hall et al, 2000; Shi & Dozier, 1995). This process increases
the backscatter intensity, thereby confusing meltwater detection algorithms that look
for a drop in backscatter intensity under melting conditions. Over very flat surfaces
(e.g., blue ice), active microwave sensors might fail to detect surface melt, because
sensors receive (almost) no backscattered signal during non-melt periods (Nagler
et al., 2016; Ulaby et al., 1981). Hence, an increased liquid water content does not
further reduce the backscatter intensity.
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Passive microwave sensors detect the brightness temperature, which is a function
of the liquid water content, temperature, density, and grain size of the snowpack
(Mote & Anderson, 1995). From all these factors, the liquid water content is assumed
to have the largest influence on the brightness temperature (Hofer & Maitzler, 1980;
Tedesco et al, 2007). When snow melts, the liquid water content increases the
imaginary part of the electromagnetic permittivity, which results in an increased
brightness temperature (Hallikainen et al., 1987; Ulaby et al., 1986). However, other
factors such as larger grain size, may also increase the brightness temperature,
potentially leading to falsely detected melt.

Changes in remote sensing data form the basis for many melt detection algorithms.
Most optical algorithms rely on thresholds based on a modified normalized difference
water index adapted for ice (NDWIjc.) (Bell et al, 2017; Dell et al., 2020; Williamson
et al, 2018; Yang & Smith, 2012), occasionally also including some additional
thresholds (Moussavi et al., 2020). Recently, machine learning techniques have been
deployed for the detection of meltwater (Dirscherl et al., 2020; Halberstadt et al,
2020) and slush (Dell et al., 2022). However, it should be noted that besides the
slush detection of Dell et al. (2022), the listed methods focus on supraglacial lakes
and streams, instead of the broader focus of this research on all meltwater types.

Meltwater detection algorithms using microwave signals allow for studying
the seasonal variations of backscatter intensity and brightness temperature, as
observations are also retrieved during winter (Figure 2.1c). For C-band active
microwave sensors, Ashcraft and Long (2006) developed a method that assumed
melt when the backscatter intensity is lower than the annual winter mean minus 3
dB. The threshold of 3 dB aligns well with theoretical results and direct observations
(Stiles & Ulaby, 1980). While this approach is widely used for melt detection in
Antarctica (e.g., Banwell et al., 2019; Johnson et al.,, 2020; Zhou et al., 2019), also
other thresholds have been used, for example using multiple thresholds (Trusel ez al.,
2012) or adaptive thresholds (Bothale et al., 2015).

Most passive microwave-based melt detection methods make use of the 19 GHz
horizontally polarized channel, since this frequency and polarization show the lowest
Tp over dry firn, thereby maximizing the increase in 7}, by an increased liquid
water content (Liu et al, 2006). Already in the 1990s, Zwally and Fiegles (Zwally &
Fiegles, 1994) developed a method for melt detection over Antarctica using the 19
GHz horizontal channel. They assumed melt to occur when the measured brightness
temperature exceeds the annual winter mean by 30 K, similar to the method
proposed in Mote et al. (1993) for melt detection over the Greenland Ice Sheet. We
refer to this method as M+30. Torinesi et al. (2003) suggested a more advanced
method, referred to as M+3S, in which they used a dynamic threshold based on the
standard deviation of the T} signal. In 2002, Ramage and Isacks (2002) developed
the diurnal amplitude variations (DAV) method, which has been successfully applied
to study surface melt (Tedesco et al., 2009; Zheng et al., 2018, 2020). The high revisit
time of twice a day for many passive microwave sensors allows making use of the
difference between the morning and afternoon T}, signal, when melt and subsequent
refreezing occurs. Tedesco et al. (2009) found that the DAV algorithm reduces the
underestimation of surface melt that can exist for the M+30 and M+3S methods. The
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DAV algorithm works best for the 37 GHz vertically polarized channel, as it is less
noisier than the 19 GHz channel (Semmens et al., 2013). Besides the M+30, M+3S,
and DAV algorithms, other studies applied statistical K-means clustering (Johnson
et al., 2020) and the cross-polarization (horizontal and vertical) gradient ratio (XPGR)
of the 19 GHz and 37 GHz frequencies (Abdalati & Steffen, 1995) for surface melt
detection.

2.3. DATA

2.3.1. STUDY AREA

In this study, we assessed the spatiotemporal melt patterns on a continental scale,
but specifically focused on four regions over which meltwater has been detected in
previous studies: the Amery Ice Shelf, Roi Baudouin Ice Shelf, Shackleton Ice Shelf,
and the Antarctic Peninsula (among others Larsen B and C, George VI, and Wilkins
ice shelves) (see Figure 2.3).

2.3.2. SATELLITE IMAGERY

Data from four widely-used sensors and satellite missions (ASCAT, MODIS, Sentinel-1,
and SSMIS) were acquired and preprocessed using the Google Earth Engine (Gorelick
et al, 2017). Table 2.1 provides an overview of the properties of the four types of
satellite imagery.

The 4.45 km ASCAT enhanced resolution product with vertical polarization,
developed by the NASA Scatterometer Climate Record Pathfinder Project (D. G. Long
et al., 1993), was downloaded from Brigham Young University Microwave Earth
Remote Sensing Laboratory (D. Long, 2022). Over dry snowpacks in the interior of
the Antarctic Ice Sheet the backscatter intensity is very weak, due to deep penetration
of the microwave signals (Arigony-Neto et al, 2009). These low signal-to-noise
pixels were therefore masked. We followed Zheng and Zhou (2020) and assumed
a low signal-to-noise ratio when a pixel fulfilled one of the following conditions:
(1) the winter (June to August) mean was lower than —14 dB or (2) the minimum
winter backscatter intensity was less than 3 dB smaller than the minimum summer
(December to February) backscatter intensity.

For MODIS, the MOD09GA (MODIS/Terra Surface Reflectance Daily L2G Global 1
km and 500 m SIN Grid) and MYD09GA (MODIS/Aqua Surface Reflectance Daily
L2G Global 1 km and 500 m SIN Grid) products were acquired and combined into
daily composites based on the least cloudy observation. This data set provides a
daily visible and near-infrared reflectance over the Antarctic Ice Sheet, in which
cloud pixels were masked out according to the I km Reflectance Data State QA band.

This study used Sentinel-1 Level-1 Ground Range Detected (GRD) scenes available
in Google Earth Engine, where they were preprocessed using the Sentinel-1 Toolbox
to generate a calibrated, orthocorrected product (Gorelick et al, 2017). All available
horizontally polarized GRD scenes over the Antarctic Ice Sheet for the five melt
seasons were selected, giving a combination of Interferometric (IW) and Extra Wide
(EW) overpasses, for which the melt detection algorithm was applied per orbit.
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Similar to ASCAT, pixels with a low signal-to-noise ratio in the interior of the
Antarctic Ice Sheet were masked.

For SSMIS two melt detection algorithms were implemented, i.e., M+3S (abbreviated
to SSMISpm.3s) and DAV (abbreviated to SSMISpay), with each algorithm requiring
different input data. The SSMISy,3s results were computed using horizontally
polarized 19 GHz observations with a spatial resolution of 6.25 km, the finest
enhanced resolution product available for the 19 GHz frequency. Observations from
platform F17 were ingested, which has the highest orbit stability (Remote Sensing
Systems (RSS), 2022). The SSMISpay algorithm gives best results for vertically
polarized 37 GHz observations (Semmens et al., 2013). Observations with a spatial
resolution of 3.125 km were used, the finest spatial resolution for the 37 GHz
frequency. The vertically polarized 37 GHz data of platform F17 are corrupted from
April 2016 onward. Therefore, data from the F18 platform were used instead, which
have a lower orbit stability than data from the F17 platform, but nevertheless a
similar overpass time as platform F17 when averaged over the study period. All
SSMIS observations were obtained from the National Snow and Ice Data Center
(Meier et al., 2022).

2.3.3. WEATHER STATIONS

Three hourly 2 m air temperature observations from AWS14, located at the Larsen
C Ice Shelf, were used. The daily minimum and maximum values were selected
and compared to the satellite observations and derived melt predictions. We used
the temperature observations to interpret the disagreement between the sensors in
detected melt over AWS14. Even though surface temperatures below freezing point
can occasionally also lead to melt (Koh & Jordan, 1995), the positive air temperatures
from the weather station were used as first indication for melt presence, similar
to many studies (e.g., L. Liang et al., 2013; Steiner & Tedesco, 2014; Tedesco &
Monaghan, 2009; Trusel et al., 2012).

2.3.4. PRECIPITATION DATA

Precipitation data from RACMO version 2.3p2, which are dynamically downscaled
ERA-5 (van Wessem et al, 2018), were compared to the detected melt of the four
remote sensing satellites. Surface melt can turn into near-surface melt after a
snowfall event (Liston & Winther, 2005) and therefore remain unnoticed by MODIS.
For that reason, we examined whether precipitation events could explain some of
the disagreement in detected melt between MODIS and the other three satellites.

2.3.5. SEA ICE CONCENTRATION

The global 4 km sea ice concentration product PFV53 (AVHRR Pathfinder Sea Surface
Temperature Version 5.3), available in the Google Earth Engine (Kilpatrick et al.,
2001), was compared to SSMISy,3s observations. The large measurement response
function of SSMIS 19 GHz, with a footprint of ~72 km by ~44 km (Brodzik et al.,
2016), means that the reported 7; may be contaminated by the pixel surroundings.
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Table 2.1: Properties of the remote sensing sensors and satellite missions deployed in this
study.

ASCAT MODIS Sentinel-1 SSMIS
Feb 2000 (Terra) Apr 2014 (S-1A) Mar 2008 (F17)
Start date | October 2006y, 500> (Aqua)  Apr 2016 (S-1B)  Mar 2010 (F18)
Spatial 4.45 km 250-1000 m 5-40 m 3.125-6.25 km
resolution
Temporal . . .
. Twice a day Twice a day 1-7 days Twice a day
resolution
Overpass time 6:00, 18:00 10:30, 13:30 Orbit-dependent 6:00, 18:00

In the case of a near-coastal pixel surrounded by open water, the effect on the Tj
observation can be large, since open water has a very low T}, compared to (sea) ice.

The allocated sea ice concentration for a near-coastal SSMIS pixel was presumed
to be the average sea ice concentration of all ocean pixels in the buffering area with
a radius of 58 km around the pixel of interest, corresponding to the mean of the
measurement response function.

2.3.6. CONTOUR LINES

The grounding line, coastline, and outlines of the ice shelves were obtained from
the National Snow and Ice Data Center MEaSUREs campaign created between 2007
and 2009 (Mouginot et al, 2017). The outlines of the individual ice shelves were
clipped using the more up-to-date coastline product of the British Antarctic Survey
from 2021 (Gerrish et al., 2021). Finally, we used a digital elevation model (DEM) of
Antarctica based on CryoSat-2 observations between July 2010 and July 2016 (Slater
et al., 2018) to eliminate elevations over 1700 meters (similar to e.g., Banwell et al.,
2021), at which melt is not expected.

2.4. METHODS
2.4.1. MELT DETECTION METHODS

We computed the binary melt presence, m(t) (0: no melt, 1: melt), for the four
studied remote sensing instruments using state-of-the-art melt detection algorithms.
We focused on austral summers (December, January, February) for five melt seasons,
between (December) 2015 and (February) 2020.

Since both ASCAT and Sentinel-1 operate with C-band sensors, the same widely
used melt detection algorithm was applied, proposed by Ashcraft and Long (2006).
Melt presence is assumed when the backscatter intensity is smaller than the annual
winter mean minus a certain threshold, by using Eq. (2.1) with

winter

0 0 0
0, o (t)zawimer+A0

{1, o) <a? +Ag?
m(t) = 2.1
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where asvimer is the average backscatter intensity of the previous winter (June
to August) months and Ac® is the threshold which is set to -3 dB. Sentinel-1
observations were processed on a per relative orbit basis.

For MODIS, we used the NDWI;. to detect meltwater. Over Antarctica, different
thresholds are used for detecting (1) supraglacial lakes, e.g., greater than 0.25 (Arthur
et al., 2020; Banwell et al.,, 2019; Bell ef al., 2017; Yang & Smith, 2012); (2) slush, e.g.,
greater than 0.12 (Bell ef al., 2017; Dell et al., 2022); and (3) meltwater, e.g., greater
than 0.07 (Banwell et al., 2019). In this study, we lowered the NDWI;¢ threshold to
0.05 to include more potentially wet pixels, according to the spectral measurement
of wet snow from Hannula and Pulliainen (Hannula & Pulliainen, 2019). Melt is
assumed when a pixel agreed with the following equation,

(0 = {1, NDWI;ce() > 0.05 22)

0, NDWIj¢e(#) =0.05

where NDWI, is the normalized difference between the observed surface reflectance
in red and blue bands (NDWI;.. = (BLUE - RED)/(BLUE + RED)).

For SSMIS observations, we applied two melt detection algorithms, referred to as
SSMISp.3s and SSMISpay. The SSMISy,3s algorithm, developed by Torinesi et al
(2003), is comparable to the active microwave algorithm as it is also based on the
annual winter mean plus a certain threshold. Torinesi et al. (2003) proposed a
three-step approach to define a threshold. When the brightness temperature exceeds
the winter mean plus the derived threshold, melt is assumed, using

m() = {1» Ty (2) > Tp,winter + ATy 2.3)
0, Tp(0) = Tpwinter + ATy

where AT, is the threshold which is set to at least 30 K, but can be as large as
three times the standard deviation (Tedesco et al., 2007). The standard deviation is
obtained by computing the mean T} over all observations of a melt year (from 1
April to 31 March), then excluding all observations exceeding the mean by at least
30 K, and repeating this process in three iterations. In this way, the high brightness
temperatures are removed, and the standard deviation is computed using the filtered
data set.

The second algorithm applied to SSMIS observations, referred to as SSMISpay,
makes use of the difference between morning and afternoon Tj. The method was
first used by Ramage and Isacks (2002) over Alaska. Zheng et al. (2018) found that a
threshold of 9 K was optimal for detecting surface melt over the Antarctic Ice Sheet.
According to the SSMISpay algorithm, melt is assumed when a pixel agreed with the
following equation,

m(e) = {1, | Tb,morning(t) — Tp,afternoon (£) [> ADAV 2.4)
0, | Tb,morning(t) - Tb,afternoon(t) |= ADAV

where T morning @nd Tp,afternoon are the brightness temperature of the morning and
afternoon overpasses, and ADAV equals 9 K.
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2.4.2. SENSITIVITY STUDIES

Multiple sensitivity studies were applied to assess the differences in detected melt
for the four sensors. Our sensitivity analyses consisted of four parts, i.e., (1)
spatiotemporal sensitivity, (2) overpass time sensitivity, (3) sensitivity to liquid water,
and (4) melt detection algorithm sensitivity.

SPATIOTEMPORAL SENSITIVITY

Once the surface melt was detected in the satellite observations, we compared
the results in both spatial and temporal domains. To study the spatial patterns,
we calculated a summer melt occurrence (SMO; in percentage), a statistical
representation to intercompare the detected melt, using

# melt
SMO = ——«+—— x 100 [%] (2.5)
# observations

in which the number of melt observations (# melt) and the total number of
observations (# observations) were computed per pixel. To calculate the # melt we
summed all the observations for which melt was detected over the five studied melt
seasons, using the state-of-the-art melt detection algorithms as described in Section
2.4.1. We computed the # observations by summing all the available observations
over the studied melt seasons. An SMO of 0% means that there was no melt
observed over the studied period, whereas an SMO of 100% holds that over all the
observations melt was detected.

For ASCAT, Sentinel-1, and SSMIS, we used all the observations. For MODIS,
SMO is solely calculated based on cloud-free pixels. While the role of clouds on
melt is still under debate, clouds alter shortwave/longwave energy budget which
could lead to (additional) melting (Bintanja & Van den Broeke, 1996; Hofer &
Mitzler, 1980; Izeboud et al., 2020; Van den Broeke et al., 2006; Van Tricht et al.,
2016). Therefore, MODIS likely underestimates melt in cloudy regions, preventing an
unbiased comparison between MODIS and the other sensors.

For the temporal analysis, time series were created to analyze the satellite signals
over seven locations. These locations were selected based on their large difference in
SMO between the sensors. For all the points, we compared both the input signals in
the used melt detection algorithms (i.e., 00, NDWIc, and Tj) as the derived melt.
Again note that, especially for optical imagery, this can lead to biased results, as
surface melt is possibly correlated to cloudiness.

OVERPASS TIME SENSITIVITY

To assess the sensitivity of the melt detection algorithms to overpass time, we
analyzed the SMO for both ASCAT and SSMISy,3s for morning and afternoon
observations separately. This analysis was performed over the four study areas
described in Section 2.3.1, where for the Antarctic Peninsula only the ice shelf pixels
were analyzed.

The overpass time sensitivity analysis was not applied to Sentinel-1 and MODIS
due to the lack of balanced morning and afternoon datasets. In case of Sentinel-1,
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the data availability depends on the acquisition strategy, resulting in unbalanced
global coverage. For example, over the Larsen C Ice Shelf, 58% of the observations
were captured in the early morning (3 AM - 6 AM), compared to 42% in the evening
(6 PM - 9 PM). Similarly, MODIS lacks an equal number of cloud-free observations
for the morning (10:30 AM) and afternoon (1:30 PM). Frequent cloud cover over
the Antarctic Ice Sheet leads to seasonal differences in the number of Aqua and
Terra observations (King et al., 2005). Finally, the melt results from SSMISpay were
excluded from the overpass time sensitivity analysis, as the algorithm combines
morning and afternoon observations into a single daily melt product.

SENSITIVITY TO LIQUID WATER

The Snow Microwave Radiative Transfer (SMRT) (Picard et al., 2018) model was used
to study the sensitivity of microwave sensors to the presence of liquid water. SMRT
is a one-dimensional model that simulates the interaction of microwave signals
with a stack of horizontal layers, each with its specific properties (such as density,
temperature, liquid water) (Picard et al, 2018, 2022). Similar to Picard et al. (2022),
the exponential representation was selected to model the microstructure of the
snowpack. This representation assumes an exponential function for the correlation
function, therefore information about the grain size did not have to be provided,
and only the correlation length of each layer was required. The implemented model
framework was similar to other SMRT studies (Picard et al, 2018, 2022; Vargel et al.,
2020). The improved Born approximation (IBA) theory (Mitzler, 1998) was selected
to compute the scattering and absorption coefficients per layer, and the radiative
transfer equation for the whole snowpack was solved according to the discrete
ordinate and eigenvalue (DORT) method (Picard et al., 2018).

The SMRT model was used to simulate the backscatter intensity of ASCAT and
Sentinel-1, and brightness temperature of SSMIS, for a snowpack with varying liquid
water contents. The sensitivity of the sensors and satellites to liquid water was
assessed with the following settings: ASCAT (frequency: 5.4 GHz; polarization: VV;
incidence angle: 40°), Sentinel-1 (frequency: 5.2 GHz; polarization: HH; incidence
angle: 40°), SSMIS for SSMISy,3s algorithm (frequency: 19 GHz; polarization: H;
incidence angle: 55°), and SSMIS for SSMISpay algorithm (frequency: 37 GHz;
polarization: V; incidence angle: 55°). The default snowpack parameters for the
upper layer (i.e., snow), middle layer (i.e., firn), and bottom layer (i.e., ice) are
summarized in Table 2.2. The sensitivity of these parameters (i.e., thickness, density,
correlation length, and temperature) was assessed by adjusting them one by one.

MELT DETECTION ALGORITHM SENSITIVITY

Since the assessed melt detection algorithms rely on thresholds to derive a binary
no melt / melt estimate, we evaluated the sensitivity of the selected thresholds by
comparing the SMO for different thresholds. This is important because smaller
thresholds result in more melt, as smaller deviations are classified as melt, whereas
larger thresholds result in less melt. To assess the threshold sensitivity we varied the
thresholds applied in Eq. (2.1), (2.2), and (2.3). For ASCAT and Sentinel-1, we varied
Ac?® from -5 dB to —1 dB with steps of 0.1 dB. For MODIS, we varied the threshold
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Table 2.2: Default snowpack parameters for SMRT simulations.

Upper layer Middle layer Bottom layer

Snow Firn Ice

Thickness [m] 0.1 10 100
Density [kg/m®] 200 600 900
Correlation length [m] le-4 5e-4 6e-4
Temperature [K] 270 250 240

of NDWIjee for melt detection from 0 to 0.1 with steps of 0.01. For SSMISy,35, we
varied ATj, from 20 K to 40 K with steps of 1 K. The ADAV threshold applied in the
SSMISpay algorithm was varied from 5 K to 13 K with steps of 0.1 K.

Then, for each sensor/satellite we selected the thresholds that resulted in 10%
more summed melt pixels compared to the default thresholds, which we defined as
SMOj,,- The same method was repeated to obtain the thresholds that resulted in
10% less melt, which we defined as SMO7,, . Finally, the threshold sensitivity (TS)

i 10%"
was computed using

TS = SMOy, — SMO7, (2.6)

in which TS is a value between 0 and 100%. When TS equaled 0%, the melt
occurrence for a pixel was insensitive for the threshold, and the same SMO was
obtained for the small and large threshold. For larger TS values, more melt was
computed using the small threshold than for the large threshold.

2.5. RESULTS

2.5.1. DATA AVAILABILITY

Figure 2.2 shows the data availability of the four sensors and satellites over the
examined melt seasons, covering the austral summers (December, January, February)
from 2015 to 2020. The results indicate large differences in the number of
observations for each sensor/satellite.

ASCAT has almost complete coverage over the entire Antarctic Ice Sheet, with
accurate parameter retrieval to ~88 degrees south. However, there are some data
gaps in the ASCAT data set, i.e., 22 days in the melt season of 2017-2018 and 30
days in melt season 2018-2019, are missing. Most of the data is missing over West
Antarctica and Dronning Maud Land, resulting in ~450 overpasses in melt seasons
2015-2020, whereas over Victoria Land and Wilkes Land in East Antarctica ~600
observations can be studied. Besides periods of data gaps, ASCAT overpasses twice a
day (~6 AM, ~6 PM local time) on alternating days.

MODIS has frequent coverage over the interior of Antarctica with approximately
400 acquisitions during the study period. However, over the ice shelves, MODIS is
severely impacted by cloud cover. The Antarctic Peninsula is especially affected by
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the persistent clouds. Over Larsen C ~85% of the observations are unusable as they
are covered by clouds, translating to only 66 observations for the five melt seasons,

(a) ASCAT (b) MODIS

(c) Sentinel-1 (d) SSMIS

Number of Observations

0 150 300 450 600 1060 1080

Figure 2.2: Large difference in the number of overpasses during the melt seasons (December,
January, February) from 2015 to 2020 for (a) Advanced Scatterometer (ASCAT), (b) Moderate
Resolution Imaging Spectroradiometer (MODIS), (c) Sentinel-1, and (d) Special Sensor
Microwave Imager/Sounder (SSMIS). The number of overpasses for SSMIS shown in (d) is
based on the observations of the F17 platform for the horizontally polarized 19 GHz channel
(used for SSMISyi,35). SSMIS observations from the vertically polarized 37 GHz channel
from the F18 platform (used for SSMISpay) have a comparable number of overpasses (1082,
without data gaps).
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equivalent to an observation once every week.

Similar to MODIS, the number of observations for Sentinel-1 varies strongly
between the interior of the Antarctic Ice Sheet and ice shelves. Sentinel-1 retrieves
more observations over the ice shelves than over the interior of the ice sheet,
as Sentinel-1 is a right-viewing satellite. Over the Antarctic Peninsula, there are
~450 overpasses, translating to more or less one overpass per day. The Sentinel-1
mission plan prescribes storing fewer observations over ice shelves in East Antarctica
compared to West Antarctica, with ~200 overpasses over Amery, Roi Baudouin, and
Shackleton Ice Shelves, translating to ~1 overpass every 2-3 days.

SSMIS has the highest overpass frequency, with ~1060 overpasses in total in East
Antarctica and ~1080 in West Antarctica, for the 19 GHz horizontally polarized
observations (used for the SSMISy,3s algorithm). The difference in overpass
frequency is a result of some rare failures mostly influencing East Antarctica. For
the SSMISpay algorithm, for which 37 GHz vertically polarized observations were
used, there is an overpass frequency of 1082 over the entire Antarctic Ice Sheet. It
should be noted that the SSMISpay algorithm combines a morning and an afternoon
overpass for one melt observation, hence the total number of melt observations
equals 541 for the study period.

2.5.2. SPATIOTEMPORAL SENSITIVITY

Figure 2.3 shows the spatial pattern of SMO for melt seasons from 2015 to 2020 over
the Antarctic Ice Sheet and the four selected study regions. To further demonstrate
the differences in melt detection between the sensors, we present the discrepancies
in Figure 2.4.

When comparing the ASCAT SMO to the SMO of the other sensors, we find large
variation over blue ice regions. The blue ice region located south-east on the Roi
Baudouin Ice Shelf is the most clear example. At the location indicated with point
a in Figure 2.4, ASCAT detects an SMO of 11%, whereas an SMO of 84%, 25%, and
43% are found for MODIS, SSMISy,3s, and SSMISpay, respectively. Similar to ASCAT,
also Sentinel-1 detects a low SMO of 12% over point a.

Large discrepancies between MODIS and the other sensors occur both over the
center of the ice shelves and along the grounding lines. Over the center of the
ice shelves, most of the MODIS observations are cloud-covered (see Figure 2.2),
therefore the SMO was computed on a limited number of observations. MODIS
detects an SMO of around 25% over the ice shelves, whereas the other sensors detect
an SMO of at least 50% over the studied ice shelves.

On the contrary, MODIS results show an SMO exceeding 75% over the grounding
lines of the Amery Ice Shelf, Roi Baudouin Ice Shelf, and Shackleton Ice Shelf,
whereas the other sensors detect a lower SMO around 50%. These areas coincide
with the blue ice areas as found by Winther et al. (2001). Over the location indicated
with point b in Figure 2.4, MODIS detects an average SMO of 74%, whereas the
SMO equals to 20% for MODIS, 7% for Sentinel-1, 0% for SSMISy.3s, and 9%
for SSMISpay. Due to the optical nature of MODIS, there are differences in SMO
between MODIS and the other sensors over regions with near-surface melt, such as
over a firn aquifer (point c in Figure 2.4) and surface melt covered by snowfall (point
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Antarctica Amery Peninsula Roi Baudouin Shackleton

ASCAT

MODIS

Sentinel-1

SSMIS wi3s
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- Low Signal-to-Noise Ratio ~  seeeeeee 1700 m Contour Line

Figure 2.3: Melt occurrence for melt seasons 2015-2020 for Advanced Scatterometer (ASCAT),
Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-1, and Special Sensor
Microwave Imager/Sounder (SSMIS) over the Antarctic Ice Sheet and four selected ice shelves.
For the latter, two melt detection methods were applied, i.e., SSMISy1,35 and SSMISpay. The
light gray areas have no overpasses over the study period. The dark gray areas in ASCAT and
Sentinel-1 highlight the low signal-to-noise ratio areas in which the algorithm is unreliable.
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ASCAT - ASCAT - Sentinel-1 - ASCAT - Sentinel-1 - SSMIS w35 — SSMIS pay —
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Figure 2.4: Difference in melt occurrence for melt seasons 2015-2020 between Advanced
Scatterometer (ASCAT), Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-1
and Special Sensor Microwave Imager/Sounder (SSMIS) over the four selected ice shelves.
For the latter, two melt detection methods were applied, i.e., SSMISy1,35 and SSMISpay. The
results of SSMISy1,35 are compared to the other three sensors, and the last column compares
SSMISp435 and SSMISpay. Seven locations are selected for further analysis, i.e., (a) blue
ice, (b) outlet glacier, (c) firn aquifer, (d) snowfall, (e) winter melt, (f) near-shore, and (g)
persistent melt. The location indicated with a black star is discussed in the text.

d in Figure 2.4). Also winter melt events are missed by MODIS (point e in Figure
2.4).

Sentinel-1—with the finest spatial resolution of the four studied instru-
ments—captures more detailed melt features than the other sensors. This is clearly
visible for the most northern ice rise at the Shackleton Ice Shelf (indicated with a
black star in Figure 2.4) that has an average elevation of 300 m. ASCAT and SSMIS
(both SSMISy,3s and SSMISpay), with a coarser spatial resolution, detect a similar
SMO over the ice rise as over the surrounding pixels, with values between 30% and
35% melt. A much lower SMO for Sentinel-1 is found over the ice rise, corresponding
to an average SMO of 4%. Such a low SMO value would be expected at higher (and
thus colder) elevations.

SSMISy,3s differs from the other sensors over some near-coast regions. For
example, at the pixels near the coast at the western part of Shackleton (the pixels
surrounding point f in Figure 2.4), SSMISy3s does not detect any melt. Over
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this location SSMISy,35 has an SMO of 0%, whereas a higher SMO is found for
ASCAT, MODIS, Sentinel-1, and SSMISpay with values of 62%, 14%, 70%, and 69%,
respectively.

SSMISpay shows a low SMO over areas with persistent melt. An example is the
George VI Ice Shelf on the Antarctic Peninsula, with an average SMO of 55% over
point g in Figure 2.4, whereas values of 80%, 77%, and 72% are detected by ASCAT,
Sentinel-1, and SSMISy,3s, respectively. Again, also MODIS results in a lower SMO
(i.e., 41%) over the often clouded George VI Ice Shelf.

To better understand the discrepancies and similarities between the sensors, the
time series of seven locations were compared. The locations of points a-g can be
found on the maps of Figure 2.4. The satellite signals and detected melt over these
locations are presented in Figure 2.5.

Figure 2.5a and 2.5b show that there are large discrepancies in melt detection over
bare ice regions, such as a blue ice area and an outlet glacier. MODIS detects more
melt over the blue ice location (Figure 2.5a) (95%) than ASCAT (32%), Sentinel-1
(31%), SSMISp1.35 (18%) and SSMISpay (66%) in melt season 2019-2020. Also over the
outlet glacier (Figure 2.5b) more melt is detected by MODIS (100%) than by ASCAT
(30%), Sentinel-1 (33%), SSMISpm.3s (6%), and SSMISpay (19%), here computed for
melt season 2016-2017. MODIS detects a persistently high NDWI;.. over the bare
ice regions (0.10 for Figure 2.5a; 0.16 for Figure 2.5b), resulting in detected melt
for (almost) all observations. On the other hand, almost no drop in backscatter
intensity of ASCAT and Sentinel-1 is visible during the melt seasons relative to winter
period values, and no clear peak presents in the brightness temperature of SSMIS,
explaining the less frequent melt detection by the microwave sensors.

Figure 2.5c illustrates the sensor signals over a firn aquifer (subsurface meltwater
stored in pore spaces in the firn layer) at the Wilkins Ice Shelf. Montgomery et al.
(2020) detected a firn aquifer here, starting at 13.4 m depth with a total thickness of
16.2 m in December 2018, which indicates that the climatic conditions are in general
favorable for liquid water storage below the surface. ASCAT and Sentinel-1 detect
melt for the longest period (up to April 2019) over this location, which may hint at
the detection of near-surface melt instead of surface melt, as ASCAT and Sentinel-1
have relatively large penetration depths. Both SSMISys,3s and SSMISpay detect melt
for a shorter period than ASCAT and Sentinel-1, until mid-February. MODIS only
detects melt during the end of December and January, thereafter no melt is detected.

We also see differences in melt detection after snowfall events (Figure 2.5d),
potentially also due to confusion between surface and near-surface melt. Again,
MODIS only measures surface melt, therefore it fails to detect melt covered by snow
after precipitation events (11 January, 15 February), whereas other sensors do detect
(near-surface) melt.

Since MODIS depends on reflected sunlight, no melt observations can be
performed during the winter season. However, there are locations in Antarctica
where up to 20 to 25% of the melt occurs during the winter season, driven by foehn
winds (Kuipers Munneke et al, 2018). Figure 2.5e shows an example of such a winter
melt event (reported in Datta et al., 2019). Both SSMISy,35 and SSMISpay detect
melt during the three periods of elevated temperature, at the beginning of March,
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Figure 2.5: Time series of backscatter intensity (o), normalized difference water index
adapted for ice (NDWIj..), brightness temperature (7}), and diurnal amplitude variation
(DAV) for the four studied sensors/satellites. The comparison shows the measured o
of Advanced Scatterometer (ASCAT) (in purple), 0® of Sentinel-1 (in green), NDWIj, of
Moderate Resolution Imaging Spectroradiometer (MODIS) (in blue), T}, of Special Sensor
Microwave Imager/Sounder (SSMIS) SSMISy .35 (in red), and DAV for SSMISpay (in orange).
When melt is detected, the signals are overlaid with a darker scatter. The flags on top of
each subfigure facilitate intercomparison of the melt results, indicating no data (light color),
no melt (medium color), and melt (dark color), see the legend in the left upper corner for
the specific colors used per melt detection method. The locations of (a)-(g) are shown in

Figure 2.4.

mid-May, and end-May. ASCAT detects melt once, on May 10 at 6 PM. Sentinel-1
does not detect melt, however there are also no overpasses at times where SSMIS

detects melt (i.e., 1, 3 March, 9-11, and 25-27 May).

SSMISy.3s detects no melt during the melt seasons for near-coastal pixels at
locations where sea ice strongly decreases during summer. Figure 2.5f shows that
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Figure 2.6: Melt occurrence for morning and afternoon observations for Advanced
Scatterometer (ASCAT) (a—d) and Special Sensor Microwave Imager/Sounder (SSMIS)
SSMISp1,435 (e-h).

changes in sea ice concentration and SSMIS brightness temperature correspond.
When the sea ice concentration decreases (e.g., in the beginning of January 2017),
the SSMIS brightness temperature follows. This is because the large footprint of
SSMISy,3s results in mixed pixels, where open water masks the increased brightness
temperature during melt. For SSMISpay this problem is minimized, because (1) the
37 GHz has a smaller footprint than the 19 GHz channel, and (2) the SSMISpay
algorithm compensates for the low T} signal by subtracting morning from afternoon
overpasses.

Extensive areas of ponded surface water have been observed over the northern
part of the George VI Ice Shelf since the early 1940s (Banwell et al, 2021; Reynolds,
1981; Wager, 1972). Where ASCAT, Sentinel-1, and SSMISy.3s detect melt of 99%,
97%, and 85% averaged over melt season 2017-2018, this is lower for SSMISpay
(i.e., 72%) in Figure 2.5g. The applied SSMISpay algorithm detects melt when the
difference between morning and afternoon observation exceeds 9 K, however, for
areas with persistent melt throughout the summer the difference between morning
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and afternoon observations is too small to pass this threshold.

2.5.3. OVERPASS TIME SENSITIVITY

When we compare the SMO for morning and afternoon overpasses for ASCAT and
SSMISwm.3s in Figure 2.6, afternoon observations show higher SMO than morning
observations with differences of 16% (4%) over Amery Ice Shelf, 15% (3%) over the
Antarctic Peninsula, 14% (4%) over Roi Baudouin Ice Shelf, and 23% (6%) over
Shackleton Ice Shelf for SSMISy,35 (for ASCAT between brackets). This shows that
the overpass time can have a large influence on the detected melt.

The differences between ASCAT and SSMISy,3s are small for morning observations.
However, SSMISy1,35 detects more melt than ASCAT during afternoon observations.
The Antarctic Peninsula forms an exception here, where meltwater is abundant also
during nighttime (for example shown by the small diurnal variation in detected melt
over the Antarctic Peninsula in Picard & Fily, 2006), thereby explaining the high SMO
during both morning and afternoon observations for both sensors.

While we did not assess the influence of overpass time for MODIS and Sentinel-1
due to a lack of variations of overpass times, Figure 2.5e shows how mismatching
overpass timing and a lower temporal resolution result in potential missed melt
events for Sentinel-1.

2.5.4. SENSITIVITY TO LIQUID WATER

The backscatter intensity and brightness temperature sensitivity to liquid water for
different thicknesses of the upper layer are assessed in Figure 2.7, the sensitivity
to the other three parameters (i.e., density, correlation length, and temperature)
are evaluated in Supplementary Figure 2.1. Results from our radiative transfer
model SMRT suggest that SSMIS (19 GHz and 37 GHz) is highly sensitive to small
liquid water contents. The brightness temperature increases with 80/95 K for 19/37
GHz, respectively, for a total liquid water content of 0.10 kg/m? compared to a
dry snowpack, with a snow layer thickness of 0.10 m. After reaching a maximum
brightness temperature (approximately at a total liquid water content of 0.10 kg/m?),
the brightness temperature slowly decreases because the surface becomes more
reflective. The backscatter intensities of ASCAT and Sentinel-1, which slightly differ
due to small differences in polarization and frequency, require approximately a
tenfold larger liquid water content (approximately 1.0 kg/m?) than SSMIS to become
fully saturated.

As illustrated in Figure 2.7, the increase in brightness temperature for SSMIS 19
GHz is largest for thicker snow layers (i.e., 75/86 K for 0.05/0.25 m, respectively, when
comparing a dry snowpack to a snowpack with a total liquid water content of 0.10
kg/m?). For SSMIS 37 GHz, the brightness temperatures are (almost) identical for
different snow layer thicknesses. For ASCAT and Sentinel-1, the drop in backscatter
intensity is small, especially for shallow snow layers (i.e., —2.5 dB/—7.1 dB for 0.05
m/0.25 m, respectively, when comparing a dry snowpack to a snowpack with a total
liquid water content of 1.0 kg/m?) making ASCAT and Sentinel-1 less sensitive to
liquid water in shallow snow layers, but also to snow layers with lower densities,
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larger correlation lengths, and higher temperatures (see Supplementary Figure 2.1).
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Figure 2.7: Modeled backscatter intensity (¢°) from Advanced Scatterometer (ASCAT)
vertically polarized (in purple), and Sentinel-1 horizontally polarized (in green), and
brightness temperature (T3) from Special Sensor Microwave Imager/Sounder (SSMIS) 19 GHz
horizontally polarized (in red) and 37 GHz vertically polarized (in orange) as a function of
the total liquid water content in the top 0.05 m (dashed lines), 0.10 m (solid lines), or 0.25
m (dotted lines) of the snowpack.

The high sensitivity of SSMIS to small liquid water contents might explain the
previously observed difference in afternoon SMO between ASCAT and SSMISy.3s
(Figure 2.6). Especially over the Amery Ice Shelf and Roi Baudouin Ice Shelf, the
afternoon observations of SSMISy.35 show a higher SMO than ASCAT. According to
Figure 2.6, over Amery Ice Shelf the difference in SMO is 14% (ASCAT afternoon
mean: 12%, SSMIS afternoon mean: 26%) and over Roi Baudouin 11% (ASCAT
afternoon mean: 27%, SSMISy.3s afternoon mean: 38%). This difference can be
linked to the small mean surface melt flux over these ice shelves (around 100 mm
w.e. year !), whereas the fluxes are larger over the Antarctic Peninsula and the
Shackleton Ice Shelf (between 200-400 mm w.e. year !, and around 200 mm w.e.
year‘l, respectively) according to satellite-based estimates (Trusel et al.,, 2013) and
RACMO?2 simulations (van Wessem et al., 2018).

The higher sensitivity of SSMIS might also explain the discrepancies in Figure 2.5e.
Both SSMISy,35 and SSMISpay detect more melt than ASCAT and Sentinel-1 during
the melt events in the winter of 2016. However, this might also be linked to the lower
overpass frequency of ASCAT and Sentinel-1 as stated in the previous Section 2.5.3.
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Table 2.3: Summary of the perturbed thresholds for threshold sensitivity analysis.

Sensor/mission | Threshold for SMO?

Jo% Threshold for SMO7,

10%

ASCAT —3.9 [dB] —2.3 [dB]
MODIS 0.045 [-] 0.055 [-]
Sentinel-1 —4.0 [dB] —2.4 [dB]
SSMISp.,3s 26 [K] 34 [K]
SSMISpay 8.0 [K] 10.4 [K]

2.5.5. MELT DETECTION ALGORITHM SENSITIVITY

Figure 2.8 shows the threshold sensitivity for ASCAT, MODIS, Sentinel-1, SSMISp,3s,
and SSMISpay. The used thresholds for SMO{O% and SMO, are summarized in
Table 2.3. The highest threshold sensitivity for ASCAT, Sentinel-1, SSMISy,3s, and
SSMISpay arise along the grounding lines. Especially for SSMISy,3s and SSMISpay,
more melt is detected inward from the grounding line, where we find that on average
SMOI’O% results in ~10-15% more melt than SMOI_O% . For MODIS, ~15-20% more
melt is detected over the center of ice shelves when using the SMO . threshold.

The original threshold of NDWIj., shows a low SMO compared to thelg?her Sensors
over these regions (Figure 2.3), hence a lower threshold of NDWIj.. might result in
more comparable melt results as the other sensors. Nevertheless, areas that showed
a relatively high SMO compared to the microwave sensors (Figure 2.3) (i.e., blue ice
regions) are less sensitive to the selected threshold, and would also overestimate

melt presence with a SMOj,, threshold compared to the other sensors.

2.6. DISCUSSION

2.6.1. OPPORTUNITIES AND CHALLENGES: PERSPECTIVES OF SENSOR
CHARACTERISTICS

Based on the comparison of the detected melt for the four sensors, we identify
four opportunities and challenges in relation to the sensor characteristics, including:
cloud obstruction and polar darkness, surface penetration, temporal resolution and
overpass time, and spatial resolution.

CLOUD OBSTRUCTION AND POLAR DARKNESS

Our results showed that cloud obstruction and polar darkness are fundamental
limitations for optical data. MODIS does not detect winter melt events (Figure
2.5e), whereas especially over the Antarctic Peninsula several melt events have been
reported during winter (Datta et al, 2019; Kuipers Munneke et al., 2018; Turton
et al., 2020). Moreover, MODIS is unable to capture melt events during cloudy days.
This is probably one of the main reasons for the underestimation of melt over the
ice shelves, where clouds are abundant.
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Figure 2.8: Melt sensitivity for melt seasons 2015-2020 for Advanced Scatterometer (ASCAT),
Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel-1, and Special Sensor
Microwave Imager/Sounder (SSMIS) using algorithm SSMISy,35 and SSMISpay over the four
selected ice shelves. The difference in melt occurrence is computed by comparing a small
and large threshold, compared to the default thresholds used in the state-of-the-art melt
detection algorithms.
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SURFACE PENETRATION

Our analysis showed that large differences in SMO between sensors can result from
differences in penetration depth. The active and passive microwave sensors receive
signals from dry snowpacks to depths of ~10 m, ~2.5 m, and ~0.5 m for C-band
active microwave, K-band passive microwave, and K,-band passive microwave,
respectively. Therefore, microwave sensors are not only detecting surface melt, but
also liquid water in deeper layers. At locations where we expect near-surface melt
to be present (Figure 2.5¢ and 2.5d), ASCAT and Sentinel-1 detected more melt than
SSMIS. In contrast, MODIS does not penetrate the surface and therefore gives the
opportunity to purely focus on surface melt. Moreover, the different frequencies
of active and microwave sensors provide the opportunity to derive the depth of
the meltwater. A recent study attempted to discriminate between surface and
near-surface melt over the Greenland Ice Sheet using multiple frequencies of passive
microwave sensors (Colliander et al., 2022). When combining optical, active, and
passive microwave signals, an even more detailed profile of meltwater depths might
be acquired.

TEMPORAL RESOLUTION AND OVERPASS TIME

Our results showed that melt over Antarctica can occur for very short periods.
Sentinel-1, which has a lower temporal resolution than ASCAT and SSMIS, missed
such short melt events (e.g., in Figure 2.5e). We indicated that afternoon overpasses
resulted in a higher SMO than morning overpasses (Figure 2.6). Picard and Fily (2006)
found that when comparing passive microwave sensors, the differences in overpass
time have the most significant effect on SMO, more than other characteristics such
as frequency, incidence angle, and spatial resolution. Bevan et al. (2018) compared
QuikSCAT and ASCAT melt observations, and showed that QuikSCAT detected more
melt than ASCAT over the Larsen C Ice Shelf, among others due to the preferable
overpass time of QuikSCAT (~4 PM local time) over ASCAT (~6 PM local time).
These findings highlight the importance of available sensor observations during
noon, when melt over Antarctica is most likely.

2.6.2. OPPORTUNITIES AND CHALLENGES: PERSPECTIVES OF APPLIED
METHODS

Apart from sensor-characteristic-related opportunities and challenges, we also

identify opportunities and challenges considering the applied methods. We discuss

opportunities and challenges related to (1) the sensitivity to the applied thresholds

in the melt detection algorithms, (2) the two melt detection algorithms applied to

SSMIS, and (3) discuss implications due to the absence of ground truth data.

SPATIAL RESOLUTION

We demonstrated that coarse spatial resolution observations—such as the 4.45 km
observations of ASCAT, the 6.25 km observations of SSMISy,3s, and the 3.125
km observations of SSMISpay—Tfailed to detect smaller-scale melt features. ASCAT,
SSMISm.3s, and SSMISpay detected melt over the small ice rises at Shackleton Ice
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Table 2.4: Summary of the identified advantages and disadvantages in detecting surface melt
over Antarctica using different remote sensing sensors and methods.

Sensor Advantages ‘ Disadvantages
ASCAT e Overpasses twice a day (on | ¢ Coarse spatial resolution of 4.45
alternate days) km
e Continental coverage e Low signal-to-noise ratio over
~75% of the Antarctic Ice Sheet
e Fails to detect melt over blue ice
e Can confuse surface melt and
near-surface melt
MODIS e Fine spatial resolution of 500 m * No observations during winter

e Daily overpasses over the interior | ¢ Between 15-75% of the observa-
of the Antarctic Ice Sheet (almost | tions over ice shelves are cloud-
always cloud-free) covered during melt season

e (Almost) daily overpasses over | ¢ High threshold sensitivity over the
grounding line (less clouds than over | center of ice shelves

ice shelves)

e Captures melt over blue ice regions

Sentinel-1 | e Fine spatial resolution of 10-40 m | ¢ No coverage over the interior of
* (Almost) daily overpasses over the | the Antarctic Ice Sheet

West Antarctic ice shelves e One overpass every two/three days
over East Antarctica

e Overpass time varies per orbit

e Low signal-to-noise ratio over
~75% of the Antarctic Ice Sheet

e Fails to detect melt over blue ice

e Can confuse surface melt and
near-surface melt

SSMIS e Overpasses twice a day e Coarse spatial resolution of 3.125
e Continental coverage km (Kg-band) or 6.25 km (K-band)
e High sensitivity to low liquid water | ¢ Can confuse surface melt and
contents near-surface melt

Shelf (Figure 2.4), opposed to MODIS and Sentinel-1. Besides, in heterogeneous
pixels, their coarse spatial resolution leads to mixing up the surface melt signals with
signals from sea ice or open water (Figure 2.5f). As a consequence, coarse spatial
resolution sensors might fail threshold-based surface melt detection methods.

MELTWATER DETECTION THRESHOLDS

ASCAT, Sentinel-1, SSMISy,3s and SSMISpay show the highest threshold sensitivity
along the grounding lines, where MODIS has the highest threshold sensitivity over
the center of ice shelves. Over locations with a high threshold sensitivity, thorough
research is desired to select optimal thresholds. An example is a study by Trusel
et al. (2012), in which they proposed to use a decision tree method to determine the
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appropriate Ac®. Since they used QuikSCAT data, future research is required to show
the applicability of the proposed thresholds to ASCAT and Sentinel-1 data.

We also found areas where MODIS detected an SMO exceeding ~75% (e.g., over
blue ice regions), but had a low sensitivity to the selected threshold. Due to the
bluish appearance over blue ice regions, the NDWIj-based detection method is
likely to overestimate surface melt over these regions. Moreover, misclassification
of aged snow can result in an overestimation of SMO along the grounding lines
detected by MODIS. Based on spectral measurements and simulations (Hannula
et al., 2020; Libois et al, 2013), the NDWIj¢. of either wet snow or aged snow range
from 0.05 to 0.1. Therefore, there is a trade-off between the detection of wet snow
and overestimation of melt over aged snow areas. The MODIS melt detection could
potentially be refined by including additional constraints (for example based on
snow grain size or blue ice presence) to the melt detection algorithm. Nevertheless,
it should be noted that surface melt can occur in these low albedo areas (Hu
et al., 2021, 2022), and optical sensors are able to detect surface melt over these
areas (albeit an overestimation), whereas blue ice regions are often underestimated
or neglected by regional climate models (van Wessem et al., 2018) and the melt
detection algorithms applied to microwave sensors.

SSMIS MELT DETECTION ALGORITHMS

Besides the frequently used M+3S algorithm (i.e., SSMISy1435), also the DAV algorithm
(i.e., SSMISpay) was applied to the SSMIS data in this research. It was possible
to also study the daily brightness temperature variations using the DAV algorithm,
because SSMIS observes the Antarctic Ice Sheet twice a day with constant local
overpass times. Similar to Tedesco et al. (2009), it was found that SSMISy,3s tends
to underestimate melt compared to the other sensors for most of the Antarctic Ice
Sheet. Therefore, SSMISpay is preferred over the SSMISy,35 algorithm, however, over
persistent melt regions (such as Figure 2.5g) the SSMISpay algorithm underestimates
melt compared to the other sensors. Here the difference between morning and
afternoon observation is often smaller than 9 K, whereas the individual brightness
temperature of morning and afternoon overpasses are high (i.e., exceeding the
previous winter mean plus 30 K). Therefore, it is recommended to extent the
SSMISpay algorithm, and not only detect melt when DAV exceeds 9 K, but also when
the morning and afternoon overpasses both exceed a certain threshold. (Tedesco
et al., 2007) used such a dual-condition approach to detect melt over the Greenland
Ice Sheet, however, these thresholds highly underestimate melt over the Antarctic Ice
Sheet, so an additional study over Antarctica would be desired.

LIMITED GROUND TRUTH DATA

Last but not least, validating the SMO results per sensor was hampered by the
absence of ground truth data. Therefore the results could be compared (between
sensors and to auxiliary data), but it remained difficult to explain the discrepancies
among the results. AWSs provide a way to validate the absolute value at pixel size.
However, given the spatial resolution of sensors, the representativeness over a pixel
with heterogeneous melt patterns is still difficult to verify, as well as the spatial
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patterns of surface melt. Moreover, over areas with the largest SMO differences
between sensors, such as blue ice regions, there are no AWSs in place yet.

2.7. CONCLUSIONS

In this study, we presented an overview of opportunities and challenges in detecting
surface melt over Antarctica. We applied a range of methods to four frequently used
sensors: ASCAT, MODIS, Sentinel-1, and SSMIS. The comparison showed large SMO
differences, especially over blue ice regions, in the case of near-surface melt, and
during winter melt. In this study, we identified five opportunities and challenges
when detecting surface melt over Antarctica, which include: (1) cloud obstruction
and darkness, (2) surface penetration, (3) temporal resolution, (4) spatial resolution,
and (5) the applied melt detection methods. We also summarize the identified
opportunities and challenges in Table 2.4.

Table 2.4 shows that an opportunity for one sensor is often a challenge for another.
We foresee a promising future for combining sensors, in particular by applying
machine learning methods. However, there is a need for machine learning methods
that can handle the differences in time and space between the satellites. Standard
machine learning techniques will not be sufficient to merge the diverse satellite
observations.

There are multiple scenarios in which synergizing satellite data can improve the
mapping of surface melt over the Antarctic Ice Sheet. There are four opportunities
for which we foresee that combining satellite data could be beneficial. First, melt
detection over blue ice could be improved by combining MODIS and microwave
data. Second, MODIS could help separating surface and near-surface melt, due to
its inability to penetrate the surface. When one would be interested in near-surface
melt, different microwave frequencies could be compared to assess the depth of
meltwater. Third, temporal and spatial resolution could be enhanced when sensors
with different resolutions are combined into one high-resolution melt presence
product. Finally, machine learning provides the opportunity to combine multiple
input features, including multiple satellite observations or auxiliary data sets, which
might lead to an improved melt detection product.

In this study, we performed an intercomparison of surface melt detected by four
satellites. A more varied collection of ground truth data from automatic weather
stations, including sensors for observing liquid water presence in the snowpack,
would be required for a thorough validation study.
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2.8. SUPPLEMENTARY MATERIALS

ASCAT Sentinel-1 SSMISy,3s SSMISpay
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Supplementary Figure 2.1: Modeled backscatter intensity (¢°) from Advanced Scatterometer
(ASCAT) vertically polarized (in purple), and Sentinel-1 horizontally polarized (in green), and
brightness temperature (T3,) from Special Sensor Microwave Imager/Sounder (SSMIS) 19 GHz
horizontally polarized (in red) and 37 GHz vertically polarized (in orange) as a function
of the total liquid water content for a varying (a) density, (b) correlation length, and (c)
temperature of the snowpack.
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ABSTRACT

While the influence of surface melt on Antarctic ice shelf stability can be large, the
duration and affected area of melt events are often small. Therefore, melt events are
difficult to capture with remote sensing, as satellite sensors always face the trade-off
between spatial and temporal resolution. To overcome this limitation, we developed
UMelt: a surface melt record for all Antarctic ice shelves with a high spatial (500
m) and high temporal (12 h) resolution for the period 2016-2021. Our approach is
based on a deep learning model, specifically a U-Net, which was developed in Google
Earth Engine. The U-Net combines microwave remote sensing observations from three
sources: Sentinel-1, Special Sensor Microwave Imager/Sounder (SSMIS), and Advanced
Scatterometer (ASCAT). The U-Net was trained on the Shackleton Ice Shelf for melt
seasons 2017-2021, using the fine-scale melt patterns of Sentinel-1 as reference data
and SSMIS, ASCAT, a digital elevation model, and multi-year Sentinel-1 melt fraction
as predictors. The trained U-Net performed well on the Shackleton Ice Shelf for test
melt season 2016-2017 (accuracy: 91.3%; F1-score: 86.9%), and the Larsen C Ice Shelf,
which was not considered during training (accuracy: 91.0%; Fl-score: 89.3%). Using
the trained U-Net model, we have successfully developed the UMelt record. UMelt
allows Antarctic-wide surface melt to be detected at a small scale while preserving a
high temporal resolution, which could lead to new insights into the response of ice
shelves to a changing atmospheric forcing.
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3.1. INTRODUCTION

NTARCTICA’S ice shelves, the floating extensions of the grounded ice sheet, are
Acrucial in regulating sea level rise (Dupont & Alley, 2005). However, these
ice shelves are increasingly vulnerable to disintegration due to a mix of factors,
including atmospheric-driven surface melt (J. Lenaerts et al., 2017; Van den Broeke,
2005), ocean-driven basal melt (Pritchard et al., 2012), and loss of structural integrity
from ocean forcing (Massom et al.,, 2018; Wilmes et al., 2017) and surface velocity
differences (Lhermitte et al, 2020). While surface melt has played a marginal role
in the past (Rignot et al., 2019), it is becoming more important to the Antarctic Ice
Sheet’s fate as temperatures continue to rise (Gilbert & Kittel, 2021; L. Trusel et al.,
2015; van Wessem et al., 2023). Therefore, it is essential to closely monitor surface
melt on Antarctic ice shelves to better comprehend and anticipate climate change
impacts.

Satellite remote sensing enables long-term and frequent mapping of the extent
and dynamics of surface meltwater over the Antarctic ice shelves. Microwave remote
sensing is particularly suited for this purpose because microwave signals are very
sensitive to liquid water, and observations can be acquired even during cloudy
conditions or at night (de Roda Husman et al, 2022). Microwave remote sensing
techniques can be separated into two classes: active microwave sensors, which
measure backscatter intensity, i.e., the normalized radar cross-section (%), and
passive microwave sensors, which observe the brightness temperature (73) (Ulaby
& Long, 2014). When melting starts, the emissivity and absorptivity of snow and
ice increase significantly because of the abrupt increase of the dielectric constant,
leading to a sudden decrease in backscatter intensity and an increase in brightness
temperature (Ashcraft & Long, 2006; Liu et al., 2006).

Many recent studies have developed methods to detect surface meltwater over the
Antarctic ice shelves using active or passive microwave satellite data (e.g., Johnson
et al, 2020; Mousavi et al., 2022; L. Trusel et al, 2012). Even though these methods
have shown widespread surface melt over the Antarctic ice shelves, detecting melt
using data from a single satellite has limitations (see Figure 3.1). Microwave
sensors such as Special Sensor Microwave Imager/Sounder (SSMIS) and Advanced
Scatterometer (ASCAT) cover the entire Antarctic Ice Sheet at a high, twice-daily
temporal resolution. Nevertheless, their coarse, kilometer-scale spatial resolutions
are insufficient to observe small-scale melt features, such as complex surface melt
patterns induced by topography at the grounding line (J. T. Lenaerts et al., 2018).
Data from synthetic aperture radar (SAR) sensors, such as aboard Sentinel-1, can
be obtained with a much finer, meter-scale spatial resolution but often miss melt
events that occur only during short periods of time due to the low revisit time of the
satellite (i.e., a few times per week).

Deep learning techniques provide a promising solution to tackle the trade-off
between temporal and spatial resolution in satellite imagery. U-Nets (Ronneberger
et al., 2015), in particular, have gained widespread recognition in various fields,
including cryospheric research (e.g., Baumhoer et al., 2019; Mohajerani et al., 2019;
Niu et al, 2023; Radhakrishnan et al, 2021; van der Meer et al, 2023). The
aforementioned studies have showcased the ability of U-Nets to identify and capture
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Figure 3.1: Illustration of the temporal-spatial resolution trade-off for surface melt detection.
A small part of the Larsen C Ice Shelf is selected as the area of interest, shown in (a). Spatial
plots of detected surface melt by Sentinel-1 (green), ASCAT (purple), and SSMIS (orange) are
presented for 27 January 2019 in (b) and 2 February 2019 in (c). Panel (d) displays a time
series illustrating the percentage of pixels within the study region where melt was detected.
Melt is determined using threshold-based melt detection algorithms, developed by (Ashcraft
& Long, 2006) for Sentinel-1 and ASCAT, and by (Zwally & Fiegles, 1994) for SSMIS.

spatial patterns, positioning them as a promising tool for effectively capturing the
complex spatial melt patterns observed on Antarctica. Additionally, by processing
data at frequent time intervals, U-Nets enable valuable insights into the duration,
frequency, and evolution of melt events.

In this study, we present a U-Net to combine data from multiple microwave
satellites into a high-resolution surface melt record, referred to as UMelt. In this
way, we overcome specific sensor limitations, related to the trade-off between spatial
and temporal resolution, which allows us to establish a record of surface melt
over the Antarctic ice shelves at a high spatial (500 m) and high temporal (12 h)
resolution for the period 2016-2021. The record is based on a combination of three
microwave satellites with varying spatiotemporal resolutions, namely Sentinel-1,
ASCAT, and SSMIS. Combining these data, the U-Net learned to recognize the
fine-scale Sentinel-1 melt patterns, enabling the production of detailed melt maps
from the coarse spatial resolution ASCAT and SSMIS observations, a digital elevation
model (DEM), and multi-year Sentinel-1 melt fractions. In Section 3.2, the satellite
and auxiliary data sets are introduced, and the training and validation of the U-Net
are discussed. In Section 3.3, the performance of the model over training and
testing ice shelves is presented, along with its application to all Antarctic ice shelves.
The strengths and limitations of the developed U-Net are discussed in Section 3.4.
The conclusion demonstrates how the high-resolution melt record can enhance our
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understanding of the impact of surface melt on Antarctic ice shelf stability in Section
3.5.

3.2. MATERIALS AND METHODS
3.2.1. STUDY AREA

We developed a U-Net to create UMelt, a high-resolution surface melt record
for all Antarctic ice shelves. Like most deep learning algorithms, U-Nets require
both training and testing data to effectively learn and make accurate predictions
(Ronneberger et al., 2015). During the training phase, a U-Net is fed with a large
data set consisting of input features (see Section 3.2.4) and their corresponding
reference data (see Section 3.2.4), see Figure 3.3. By exposing the U-Net to diverse
training data, it becomes more capable of recognizing and generalizing spatial
patterns in the data, allowing it to make informed predictions. After training, the
U-Net’s performance is evaluated using a separate set of testing data that it has
never encountered before. This helps assess its ability to accurately segment unseen
images.

Our U-Net model was trained on the Shackleton Ice Shelf, and subsequently
tested on both the Shackleton and Larsen C ice shelves. The Shackleton Ice
Shelf, a large ice shelf fronting the coast of East Antarctica, was selected as a
training region based on three main factors. First, the Shackleton Ice Shelf has
the most “matching overpasses” (Figure 3.2a), where Sentinel-1, ASCAT, and SSMIS
overpasses were acquired with less than two hours difference. These matching
overpasses ensure comparable melt patterns between Sentinel-1, ASCAT, and SSMIS
(see Section 3.2.5 for an elaborate description). Secondly, (Saunderson et al., 2022)
identified nine different melt patterns on the Shackleton Ice Shelf, which exhibited
significant variability in the timing and spread of surface melt. This large variability
in melt patterns on the Shackleton Ice Shelf provides a diverse and representative
training data set for the U-Net model. Finally, the Shackleton Ice Shelf experiences
substantial surface melting, averaging between 100-200 mm w.e. per year (L. Trusel
et al, 2013). Among Antarctic ice shelves, it ranks as one of the most susceptible to
surface melting, except for those located on the Antarctic Peninsula (Gilbert & Kittel,
2021; L. Trusel et al, 2013). Consequently, the peak melting months (December to
February) closely mirror the melt patterns and corresponding remote sensing signals
seen on the ice shelves with relatively high surface melt. Conversely, the months
marking the beginning and end of the melting season (i.e., November and March)
align with ice shelves that experience less frequent surface melting.

We tested the U-Net on the Larsen C Ice Shelf, which yielded valuable insights
into the performance of the trained U-Net for three primary reasons. First, the
geographic location of the two ice shelves on opposite sides of the Antarctic Ice
Sheet meant that different melt patterns were expected, allowing for a robust
assessment of the U-Net’s transferability (i.e., the ability to apply knowledge gained
from the training region to other regions without significant loss in performance).
Secondly, the topography of the two ice shelves is markedly different. Large parts of
the Shackleton Ice Shelf are surrounded by the ocean and buttressed by several ice
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Figure 3.2: The number of matching overpasses in (a), indicating instances where the time
difference between Sentinel-1, ASCAT, and SSMIS overpasses is less than two hours. The
elevations of the training and testing regions, namely the Shackleton and Larsen C ice
shelves, are depicted in panels (b) and (c). The Shackleton Ice Shelf has a small data gap, as
indicated by the label “REMA data missing”. Other labels on the map indicate various place
names on the ice shelves.

rises, while the Larsen C Ice Shelf is mostly confined by land ice and has a more
homogeneous elevation over its center but a notably steep grounding line (Figure
3.2b and 3.2c). Finally, a more practical consideration was that, with around 50
matching overpasses over the Larsen C Ice Shelf, a sufficiently large testing data set
was available to evaluate the U-Net’s performance.

After training and testing, the U-Net model was applied on all Antarctic ice shelves
between 2016 and 2021 to generate an Antarctic-wide high-resolution surface melt
record: UMelt. Because there are (almost) no matching overpasses for most of
the Antarctic ice shelves (Figure 3.2a), the accuracy of our UMelt record was only
determined for the Shackleton and Larsen C ice shelves.

3.2.2. MELT MASKS
UMELT MASK

Our UMelt record is available on a large part of the Antarctic Ice Sheet, but we have
excluded some areas. The considered area of interest, referred to as the “UMelt
mask’, is provided in Supplementary Figure 3.1a. First, extensive parts of the interior
of the Antarctic Ice Sheet where high accumulation rates result in a low backscatter
intensity (around —15 dB) were omitted, following the approach of (Zheng & Zhou,
2020). Under such conditions, surface melt detection algorithms may classify pixels
erroneously as surface melting, whereas no surface melt has been observed on the
interior of the ice sheet (e.g., van Wessem et al, 2018). Moreover, pixels with an
elevation over 1700 meters were ignored, as surface melt is unlikely to occur there
(Banwell et al., 2021; de Roda Husman et al., 2022). Finally, areas with no Sentinel-1
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overpasses were removed (refer to Figure 2.2 in Chapter 2), because we were unable
to generate the multi-year Sentinel-1 melt fraction input feature. After implementing
these exclusions, the study area was reduced to 1.8 million km?, which accounts for
12.7% of the total area of the Antarctic Ice Sheet.

U-NET DEVELOPMENT MASK

To test and train the U-Net model, we excluded additional regions beyond those
covered by the UMelt mask (described in Section 3.2.2). Specifically, we omitted
damaged regions, which are known to confuse melt detection algorithms on the
reference product, Sentinel-1 (Dirscherl et al., 2021; Zhou et al., 2019). Damaged
regions, i.e., regions containing fractures, rifts, or crevasses on the ice surface, lead to
distortions in SAR images. These distortions result in high backscatter intensities for
slopes facing toward the sensor (known as radar foreshortening) and low backscatter
intensities for slopes facing away from the sensor (known as radar shadows). These
radar shadows can be mistakenly identified as surface melt. Therefore, we created
a “damage mask” using the damage detection method developed by (Izeboud &
Lhermitte, 2023). This method detects the presence of a fracture feature within
a group of pixels based on a line detection algorithm. Noise is removed using
a sensor- and processing-resolution specific threshold, for which we used 7 =0.1
(damage detection applied to Sentinel-1 EW images, processed on 100 m resolution
with 10x10 pixel groups). Furthermore, a buffer with a radius of 5 km was applied
to mask neighboring pixels.

In comparison to the UMelt mask (Section 3.2.2), removing the damage pixels
for the Shackleton Ice Shelf resulted in an 8% reduction, transforming the UMelt
mask from 52x10° km? to a UMelt development mask of approximately 48x103 km?.
Similarly, for the Larsen C Ice Shelf, about 9% of pixels were removed from the
UMelt mask to derive the UMelt development mask, decreasing from 84 x 103 km? to
77x10% km?.

3.2.3. U-NET ARCHITECTURE

We used an Attention U-Net architecture for our image segmentation task, which is
an extension of the traditional U-Net (Ronneberger et al, 2015) that incorporates
attention gates to selectively highlight relevant features (Oktay et al, 2018; Trebing
et al, 2021). Our network consisted of two main parts: the contracting path for
encoding and the expansive path for decoding (see Figure 3.3).

In the contracting path, the input features were progressively downsampled by
convolutional layers and max-pooling operations, allowing the network to extract
high-level features (Girshick et al, 2014). These high-level features capture
information about the rough outlines of surface melt events, disregarding small-scale
melt details. These features are analogous to the large-scale melt patterns observed
by (Saunderson et al, 2022), who studied surface melt using satellite data with
a 25 km spatial resolution on the Shackleton Ice Shelf. In the expansive path,
the features coming from the encoder are upsampled by transposed convolutions.
Furthermore, they are concatenated with features from the contracting path through
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skip connections, which connect corresponding encoder and decoder layers. This
preserves low-level features, such as the spatial arrangements of melt pixels on a
small scale. The attention gates were added to these skip connections to allow
the network to selectively focus on important features while filtering out irrelevant
information (Oktay et al., 2018).

We conducted hyperparameter tuning on the validation data set (See Section 3.2.5)
to optimize the performance of our Attention U-Net model. We did a grid search
over all possible combinations of hyperparameters (Bengio, 2012), which included
the learning rate (0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001), batch size (16, 32, 64, 128),
the number of filters for the first layer, which was doubled in each subsequent layer
(16, 32, 64, 128), and the dropout rate (constant rate of 0.5 applied to the different
convolution layers). For each combination of hyperparameters, we trained the model
on the training data set and evaluated its performance (i.e., segmentation accuracy)
on the validation data set to identify the optimal configuration. The optimal
hyperparameters maximized the segmentation accuracy (learning rate: 0.001; batch
size: 32; number of channels: 32; dropout rate of 0.5: applied to the fourth and
fifth convolution layers). In cases where the difference in validation accuracy was
less than 1% for different hyperparameters, we selected the most computationally
efficient ones.

We employed commonly used and standard algorithms for activation, loss, and
optimization, which are (almost) similar to those employed in previous works such
as (Dahle et al., 2022), (Mastrofini et al., 2023), and (Zhao et al., 2022). Specifically,
the Rectified Linear Unit (ReLU) activation function was utilized for the hidden
layers, effectively eliminating negative values within the neural network and allowing
only positive values to propagate. Additionally, the sigmoid activation function,
commonly employed in binary classification tasks, was employed in the final layer
to compress the output within the range of 0 to 1, representing the probability.
To address the class imbalance issue in the training data, where non-melt pixels
outnumbered melt pixels by a factor of four, we incorporated class weighting based
on the melt and non-melt pixels ratio into the binary cross-entropy loss function.
This ensured that missing a surface melt event incurred a higher penalty compared
to missing a non-melt event. The Adam optimization algorithm was used, which
allowed efficient training and parameter optimization.

The model was trained for a maximum of 30 epochs, with each epoch taking
approximately 10 minutes. Early stopping was implemented to stop training when
the validation loss did not improve for three consecutive epochs. The default early
stopping settings were used, considering any improvement, regardless of magnitude,
as progress. As a result, the U-Net model used for generating the UMelt record
was trained for 10 epochs. However, for other models used to evaluate spatial and
temporal performance, the number of epochs varied between 5 and 12.

To perform the training, we utilized Google Colab, a cloud-based platform that
offers GPU access for deep learning tasks. TensorFlow, the deep learning framework
used to code our model, is integrated into Google Colab, simplifying the process of
building and training the model.

66



3.2. MATERIALS AND METHODS

3.2.4. PREPROCESSING

REFERENCE DATA

Sentinel-1 observations were used to create the reference data (sometimes referred
to as target or ground truth data) for the U-Net. We used Sentinel-1 Level-1
Ground Range Detected (GRD) scenes in the linear scale that were preprocessed
in the Google Earth Engine (Gorelick et al., 2017). This preprocessing included
orthorectification, radiometric calibration, thermal noise removal, and border noise
removal. It is worth noting that border noise removal was applied to scenes from
January 2018 onwards in the preprocessed images available in the Google Earth
Engine. This occasionally leads to noisy pixels at the edges of scenes prior to January
2018.

We selected all available horizontally polarized GRD scenes over the Antarctic Ice
Sheet for melt seasons 2016-2021, allowing a combination of Interferometric (IW)
and Extra Wide (EW) overpasses. The scenes were resampled to a 500 m resolution
using bilinear interpolation and reprojected to WGS 84 Antarctic Polar Stereographic
projection (EPSG:3031). The utilization of a 500 m spatial resolution enabled the
detection of surface melt features at a small scale, while concurrently ensuring the
data could be processed efficiently.

Then, we derived the binary melt presence (i.e., melt/non-melt) for the Sentinel-1
observations using the widely used melt detection algorithm proposed by Ashcraft
and Long (2006). Melt presence was assumed when the backscatter intensity was
smaller than the annual winter mean minus a certain threshold by using the
following equation:
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where U\(/)vinter is the average backscatter intensity of the previous winter months, and

Ac? is the threshold which was set to —3 dB (similar to Ashcraft and Long, 2006). To
address the substantial disparities in backscatter intensity across different orbits, we
implemented Equation (3.1) on a per Sentinel-1 orbit basis. This approach accounts
for the variations in backscatter intensities stemming from differences in incidence
angles.

INPUT FEATURES

The U-Net input received four input features: ASCAT, SSMIS, elevation, and the
multi-year Sentinel-1 melt fraction (see Figure 3.3), offering diverse information
related to surface melt patterns and characteristics. ASCAT, similar to Sentinel-1,
is an active microwave satellite. ~However, it exhibits lower spatial resolution
(kilometer-scale instead of meters) and a higher revisit time (twice a day instead of
a few times per week) when compared to Sentinel-1. Consequently, we expect that
ASCAT will provide valuable information on the dynamic changes in melt patterns
over time, although it may primarily capture coarse-scale patterns. Similar to ASCAT,
SSMIS also provides information on liquid water presence on a coarse spatial scale
but with a high temporal resolution. However, it is important to consider that
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SSMIS measures the brightness temperature instead of the backscatter intensity. This
distinction means that SSMIS is influenced by various parameters beyond just liquid
water content, which can result in significant differences in large-scale patterns
compared to Sentinel-1 and ASCAT (Hofer & Matzler, 1980; Mote & Anderson, 1995).
Nevertheless, SSMIS is highly sensitive to detecting even small amounts of liquid
water, enabling valuable insights into less intense melt events (Picard et al., 2022).
The role of elevation data is also crucial in this study, given its high spatial resolution
and well-established inverse correlation with melt patterns (L. Trusel et al, 2013).
In addition to the aforementioned input features, multi-year melt fractions from
Sentinel-1 are also utilized to provide insights into spatial details. Although these
details may not be critical for capturing day-to-day variations, which are significant
in Antarctica, they offer valuable information about the most common fine-scale
melt patterns. The subsequent paragraphs will sequentially elaborate on the details
of the four input features.

For the ASCAT input feature, we utilized vertically polarized observations with
a 4.45 km resolution, consistent with prior studies (e.g., S. L. Bevan et al, 2018;
de Roda Husman et al, 2022; L. Trusel et al, 2012), obtained from the Brigham
Young University Microwave Earth Remote Sensing Laboratory (Long, 2022). ASCAT
captures observations of the Antarctic Ice Sheet every other day at 6 AM (morning)
and 6 PM (evening). We calculated averages to address days without observations
by combining the morning before and after a missing morning observation (and
similarly for missing afternoon observations). This process allowed the creation of
a twice-daily ASCAT time series. Then, instead of generating binary melt presence
from ASCAT observations by applying a threshold (i.e., Ac® in Eq. (3.1)), we
only subtracted Ugvimer from the ASCAT observations. Continuous data carry more
information than binary data, allowing the U-Net to learn the most appropriate
threshold depending on the situation rather than relying on a specific threshold
value. Finally, we normalized these values between the low (5th percentile) and high
(95th percentile) values of ASCAT minus the winter mean over the Shackleton Ice
Shelf for the melt seasons from 2016-2021, without capping values below zero or
larger than one.

We utilized horizontally polarized 19 GHz SSMIS observations from the NASA
MEaSUREs project (Brodzik et al., 2016) as the second input feature, with a spatial
resolution of 6.25 km (similar to, e.g., X. Wang et al, 2022; Wei et al, 2022).
Observations from the F17 sensor were selected, which consistently passed over
at approximately 6 AM and 6 PM during our study period. We applied a similar
approach as for ASCAT and created continuous and normalized melt observations by
subtracting the average brightness temperature of the previous winter months and
scaling the values between the 5th and 95th percentiles.

As for the third input, we utilized the Reference Elevation Model of Antarctica
(REMA) mosaic to inform the model on the elevation of the Antarctic Ice Sheet
(Howat et al., 2019). The REMA mosaic has a high resolution of two or eight
meters, depending on the location. For this study, the resampled version with a
resolution of 200 meters was used, which was sufficient for our purposes. While
the REMA mosaic provides extensive coverage of the continent, there are some gaps

68



3.2. MATERIALS AND METHODS

in coverage, including a small area of the Shackleton Ice Shelf (as shown in Figure
3.2b). We disregarded the data gaps, predominantly located along the edges of ice
shelves with minimal surface melt.

The fourth input feature consisted of the multi-year melt fractions of Sentinel-1
data, derived from the reference data discussed in Section 3.2.4. The multi-year
Sentinel-1 melt fractions were computed by summing the monthly melt pixels
obtained using Equation (3.1) and then dividing the sum by the total number of
observations in that specific month. We are aware that using Sentinel-1 as reference
and input data may raise concerns about information leakage. To address this,
we ensured the exclusion of the month of interest from the calculation, aiming to
eliminate any potential correlation between the input features and reference data.
For instance, when calculating the multi-year melt fraction for November 2016,
the melt fraction was derived from the November months of 2017 until 2021. To
validate that the U-Net model was not simply replicating the monthly melt fractions
of Sentinel-1, we conducted an assessment of the importance of each feature, as
described in Section 3.2.7.

Finally, the four input features were resampled to match the scale and projection
of the preprocessed Sentinel-1 scenes, which were in the WGS 84 Antarctic Polar
Stereographic projection with a resolution of 500 meters.

COMPARISON UMELT TO SENTINEL-1, ASCAT, AND SSMIS

To facilitate a comparison between the UMelt record and surface melt observations
from Sentinel-1, ASCAT, and SSMIS, binary melt products were also derived from
ASCAT and SSMIS observations. The approach used for Sentinel-1 was explained in
Section 3.2.4, while continuous values were utilized as input for ASCAT and SSMIS
(as described in Section 3.2.4). A further step was required to compare these data
with the UMelt record: converting the continuous ASCAT and SSMIS data to binary
melt estimates using thresholding algorithms. We applied the same melt detection
algorithm used for Sentinel-1 (Eq. (3.1)) to ASCAT to achieve this. For SSMIS, a melt
detection algorithm suggested by (Torinesi et al., 2003) was implemented, which
has been used in several previous studies (e.g., Banwell et al., 2021; Johnson et al.,
2020; Wille et al., 2019). The algorithm defines surface melt based on the observed
brightness temperature surpassing an empirical threshold, typically between 30 K
and 40 K. This dynamic threshold is determined using the mean and variability of
the brightness temperatures recorded during the preceding winter.

In addition to comparing UMelt with single observations from Sentinel-1, ASCAT,
and SSMIS, we calculated the “summer melt occurrence” following the methodology
of (de Roda Husman et al, 2022). The summer melt occurrence, computed for each
melt season spanning November through March, represents the ratio of the number
of melt observations to the total number of observations per pixel. The metric is
expressed as a percentage and was computed using binary products obtained from
UMelt, Sentinel-1, ASCAT, and SSMIS.
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Figure 3.3: Conceptual overview of the method employed in this study, which is divided into
three key steps: preprocessing, training, and assessing & applying. The details of this method
are discussed in Sections 3.2.4-3.2.7.
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3.2.5. TRAINING, VALIDATION, AND TESTING DATA

The training, validation, and testing data were selected according to the criterion
that the temporal difference in Sentinel-1, ASCAT, and SSMIS overpass times was less
than two hours. This criterion was important as surface melt can occur for a very
short duration, and larger differences in overpass time may lead to disparities in the
detected surface melt among the satellite observations. The matching overpasses
of Sentinel-1, ASCAT, and SSMIS were then combined with the elevation and
Sentinel-1 multi-year melt fraction data sets, creating a 5-band (i.e., channels) image
comprising reference labels (i.e., Sentinel-1 binary melt) and four input features (i.e.,
ASCAT, SSMIS, elevation, and multi-year Sentinel-1 melt fraction).

We employed stratified sampling to achieve a balanced data set for effective
learning and recognition of melt patterns by the U-Net model. This process
involved randomly selecting points on the Shackleton Ice Shelf, all within the U-Net
development mask (Supplementary Figure 3.1b). For each matching overpass, a total
of 10 points were selected, comprising an equal number of melt pixels (5) and
non-melt pixels (5), determined by the Sentinel-1 labels. It is worth noting that
only non-melt pixels were selected if a Sentinel-1 scene did not contain any melt
pixels. Subsequently, we generated patches of input features and labels by selecting
neighboring pixels around the sampled points. As the stratified sampling points
were randomly distributed, patches could overlap. Each patch was sized at 64 x 64
pixels, equivalent to 32 x 32 kilometers, ensuring they captured sufficient detail to
represent the melt patterns accurately and guaranteeing an appropriate distribution
of melt locations. Finally, all patches from one matching overpass were assigned to
either the training data set (80%), the validation data set (10%), or the testing data
set (10%). Each set’s approximate number of pixels was 15 million for training, 2
million for validation, and 2 million for testing.

3.2.6. POST-PROCESSING

After training the U-Net, the model was applied to create the UMelt record. We
stacked the input features (i.e., ASCAT, SSMIS, elevation, and multi-year Sentinel-1
melt fraction) and tiled the data into patches of 64 x 64 pixels (similar to in Section
3.2.5), using an 8-pixel overlap on all sides. In overlap regions, prediction results
were calculated as the mean of the prediction probabilities.

Next, we converted the prediction probabilities into a binary product using a
threshold of 0.7. We determined that this specific threshold value yielded the
best performance on the validation set (see Supplementary Figure 3.3). Pixels with
probability values exceeding the 0.7 threshold were identified as melt pixels, whereas
those below the threshold were labeled as non-melt.

3.2.7. ACCURACY ASSESSMENT

To assess the performance of our U-Net model, we utilized the test data set,
which was not used during the training and validation phases. Several performance
metrics, including precision, recall, F1-score, and accuracy, were calculated. Precision
measures the fraction of true positive predictions among the total predicted positive
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instances, while recall measures the fraction of true positive predictions among the
total actual positive instances. The F1-score is the harmonic mean of precision and
recall, providing a single value that combines both measures. Accuracy measures the
overall proportion of correct predictions over all instances.

Cross-validation is essential for training the U-Net model as it enables reliable
performance evaluation, prevents overfitting, and improves our understanding of its
effectiveness (Bolibar et al., 2020; Roberts et al,, 2017). Specifically, to assess the
temporal performance of the U-Net, we performed a ‘leave-one-melt-season-out’
(LOMSO) analysis. We evaluated the model’s performance when applied to the melt
season that was excluded from training. In Section 3.3, we discuss the accuracies
over a very wet season (2019-2020), a very dry season (2020-2021), and an average
melt season (2016-2017). High accuracies over unseen melt seasons hint at a good
performance of the U-Net over other ice shelves with more or less extreme melt
intensities than at the Shackleton Ice Shelf.

In order to evaluate the model’s spatial performance, we partitioned the Shackleton
Ice Shelf into four distinct parts with similar areas (see Supplementary Figure 3.1d).
Then, we implemented a ‘leave-one-region-out’ (LORO) approach to assess the
model’s accuracy when applied to an unseen region. The melt patterns are very
diverse over the ice shelf. Therefore, a high accuracy over an unseen region means
the model is probably well-capable over other Antarctic ice shelves.

We assessed the transferability of the U-Net by applying the model to the Larsen
C Ice Shelf for melt season 2016-2017. We applied the trained model for which
melt season 2016-2017 was excluded, so that we could assess the performance for
both an unseen spatial and temporal domain. Please be aware that our model’s
transferability was exclusively evaluated over the Larsen C Ice Shelf. This is due to
a lack of matching overpasses on other ice shelves (see Figure 3.2a). Consequently,
accuracy computations for ice shelves other than Shackleton and Larsen C were
hindered.

In the final stage of the accuracy assessment, the significance of the four input
features was evaluated by training four separate models, with each model excluding
one feature at a time. The training was conducted over melt seasons 2017-2021, and
the performance was assessed on the unseen melt season 2016-2017. By comparing
the accuracies and spatial patterns of these models, we could determine the
importance of each input feature. If a model exhibited notably lower performance
compared to the model utilizing all four features, it indicated the excluded input
feature’s significance.

3.3. RESULTS

We evaluated the performance of the U-Net model using varying spatial and
temporal domains of the training, validation, and testing data sets. We present
the results over the Shackleton Ice Shelf, Larsen C Ice Shelf, and Antarctic-wide in
Sections 3.3.1, 3.3.2, and 3.3.3, respectively. Supplementary Table 3.1 contains the
accuracy assessment results for all experiments.
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3.3.1. SURFACE MELT OVER SHACKLETON ICE SHELF
TEMPORAL PERFORMANCE

We first evaluated the performance of the U-Net model on the Shackleton Ice Shelf
in terms of temporal performance. Specifically, we examined the model’s ability to
predict melt events during unseen seasons, which we refer to as UMelt; omso. Figure
3.4 shows that UMelt;omso performed well on three distinct days at the beginning,
middle, and end of the 2016-2017 melt season, despite not being trained on data
from the 2016-2017 season (see Supplementary Video in the published manuscript
for melt observations for all days with matching overpasses). The model accurately
identifies the complex melt patterns over the Shackleton Ice Shelf, resulting in an
F1-score of 86.9% and an accuracy of 91.3% when compared to Sentinel-1. Notably,
ASCAT and SSMIS (Figure 3.4, column 4 and 5, respectively) detect mostly larger
melt patterns, with the exception of the western part of the Shackleton Ice Shelf.
Here, SSMIS tends to underestimate melt due to the presence of a frequently
occurring polynya that results in lower brightness temperatures, as noted by (Nihashi
& Ohshima, 2015). However, both sensors often miss the detailed melt patterns
captured by the reference product Sentinel-1. Our UMelt product is well able to
detect these small-scale patterns, especially along the grounding line and on Masson
Island (location indicated in Figure 3.2).

The accuracy of UMelt, ASCAT, and SSMIS melt observations compared to the
reference product Sentinel-1 is displayed in Figure 3.4d. UMelt achieved an average
accuracy of 91.3% for the 2016-2017 melt season, which is higher than the average
accuracies of ASCAT and SSMIS, with 90.0% and 82.3%, respectively.

UMelt is particularly effective in detecting small-scale patterns, such as those
found on the grounding line and on Masson and Mill islands (Figure 3.5). In
contrast, ASCAT and SSMIS incorrectly detect melt at Masson Island (Figure 3.5f),
where the elevation is over 1000 meters and Sentinel-1 does not indicate any surface
melt. In addition, Sentinel-1 shows a wide range of melt patterns over the grounding
line (Figure 3.5e and i), which UMelt;omso accurately simulates. The detected melt
on the Bunger Hills (Figure 3.5h) demonstrates the most notable difference, with
Sentinel-1 revealing complex melt patterns, while ASCAT and UMelt show minimal
detection of melt. In contrast, SSMIS detects melt throughout the entire Bunger
Hills region but lacks the expected level of detail considering the diverse terrain and
varying elevations.

Additionally, our findings indicate that UMelt outperformed ASCAT and SSMIS
for the 2019-2020 and 2020-2021 melt seasons (Supplementary Figure 3.2). In the
2019-2020 melt season, UMelt obtained an average accuracy of 90.9%, while in the
2020-2021 melt season, it achieved a higher accuracy of 95.7%. However, it is
important to note that the Fl-score for the 2020-2021 melt season was significantly
lower (33.5%) than that of the 2016-2017 (86.9%) and 2019-2020 (82.7%) melt
seasons. The 2020-2021 melt season experienced minimal melting, which is clearly
reflected in the cumulative yearly melt maps by (Picard, 2022) (more details on the
melt maps in Picard & Fily, 2006). Out of the small amount of melt that did occur,
only 55.3% of the identified melt pixels were accurately classified.
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Figure 3.4: The maps in (a), (b), and (c) present a comparison of reference data Sentinel-1
(first column) and our UMeltjgpmso product, visualized in both continuous format without
threshold (third column) and binary format with a 0.7 threshold (second column), ASCAT
(fourth column), and SSMIS (fifth column), at the beginning (30 November 2016, 6 PM), peak
(17 January 2017, 6 PM), and end (16 February 2017, 6 PM) of the melt season of 2016-2017.
The time series in (d) present the melt accuracy of UMelt (black), ASCAT (orange), and
SSMIS (pink) compared to Sentinel-1 for melt season 2016-2017 on the Shackleton Ice Shelf.

SPATIAL PERFORMANCE

The model also showed a solid performance when regions of the ice shelf were not
included during training, as shown in Figure 3.6. In particular, we found that for
the two regions located at the center of the ice shelf (Region 1 and Region 3), the
accuracies of UMelt trained on all regions and UMelt; oro were comparable, with an
average difference in accuracies of 0.3% and 0.4%, respectively. However, Region
3 resulted in the lowest accuracy of the four regions, both for UMelt (i.e., 87.6%)
and UMeltiopo (i.e., 87.2%), whereas all the other regions resulted in accuracies
exceeding 90%.

In the case of Regions 2 and 4, which are situated at the grounding line, we
observed similar discrepancies in accuracy between UMelt and UMeltjoro as for
Regions 1 and 3, ranging from 0.2-0.4%. However, when examining specific pixels
along the grounding line, UMelt;oro exhibited over- or underestimation of surface
melt occurrence by —25% to +25% compared to UMelt. In general, UMelt predicts a
melt presence further inland, whereas the melt presence predicted by UMelt; oro for
Regions 2 and 4 ends closer to the grounding line. However, it comes as no surprise
that the most significant discrepancy is evident along the grounding line. This region
showcases exceptionally intricate melt patterns that ASCAT and SSMIS struggle to
resolve adequately because of their limited spatial resolution. Despite this, the
comparable performance of UMelt and UMelt;oro is promising for the application of

74



3.3. RESULTS

Melt occurence ("16/"17)

100% +50%
melt Sentinel-1:
T melt

Sentinel-1

50% g% ,
i~ Equal to
melt Sentinel-1

-50%
Sentinel-1:
8 melt

0%
L1 melt

Figure 3.5: The summer melt occurrence on Shackleton Ice Shelf for testing melt season
2016-2017 for Sentinel-1 (a), UMelt (b), ASCAT (c), and SSMIS (d). Details of five locations
are shown in (e-i). The disagreements between Sentinel-1 and UMelt, Sentinel-1 and ASCAT,
and Sentinel-1 and SSMIS are shown in (j-1).

UMelt on an Antarctic-wide scale, showcasing that the U-Net demonstrates favorable
performance even on untrained regions.

FEATURE IMPORTANCE

Convolutional neural networks are black-box algorithms, and their lack of
transparency regarding feature importance remains a challenge (Olden & Jackson,
2002). However, we can get an estimate of the importance of features by iteratively
removing them during the training of the model and evaluating its performance
(Zhang et al., 2018).

Figure 3.7 demonstrates the importance of the four input features used for the
development of UMelt: ASCAT, SSMIS, elevation, and multi-year Sentinel-1 melt
fraction. The results show that ASCAT is the most important feature, as evidenced by
the drop in accuracy from 91.3% to 80.2% when ASCAT is removed from the training
phase (Supplementary Table 3.1). The exclusion of ASCAT reduces surface melt
across the entire study area, emphasizing its significance as an input feature. This is
not surprising as both ASCAT and the reference data Sentinel-1 are C-band active
microwave sensors, and therefore result in melt patterns that are comparable on a
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Figure 3.6: Summer melt occurence of UMelt (1) and UMeltjorg (2) for melt season
2016-2017 on the Shackleton Ice Shelf for the four leave-one-region-out (LORO) regions
(a—d). UMelt (1) was trained on the entire ice shelf using data from melt seasons 2017-2021.
UMelt; oro (2) was trained on the same period, but one region was excluded at a time. Then,
the trained model was tested on the excluded region to evaluate the spatial transferability of
the model. The disagreement between UMelt and UMelt; oro is shown in (3).

larger scale (although smaller details may differ due to spatial resolution differences).

In contrast, SSMIS, elevation, and multi-year Sentinel-1 melt fraction are less
important, and their exclusion results in comparable disagreement with Sentinel-1
as the model trained on all input features (Supplementary Table 3.1). However,
including these features results in the identification of detailed melt patterns similar
to those in Sentinel-1. Additionally, multi-year Sentinel-1 melt fraction is important
for melt detection on the eastern part of the Shackleton Ice Shelf (Figure 3.7e), where
small surface lakes are present annually (Arthur et al., 2020), but are not detected by
ASCAT and SSMIS due to their low spatial resolution.

3.3.2. SURFACE MELT OVER LARSEN C ICE SHELF

In order to ensure that the U-Net model is applicable on an Antarctic-wide scale,
we assessed its performance on the Larsen C Ice Shelf during the 2016-2017 melt
season. We applied the UMelt;omso, which was trained on the Shackleton Ice
Shelf for the melt seasons between 2017-2021. This provides a fully out-of-sample
performance estimate of our model since the trained model has neither seen the
spatial region nor the temporal period of the target data set.
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Figure 3.7: Surface melt occurrence and performance compared to Sentinel-1 over the
Shackleton Ice Shelf for the melt season 2016-2017 for different input features. Column 1
(a—e) displays the UMelt summer melt occurrence trained on different input features, where
UMelt trained on all input features is presented in (a), and panels (b)-(e) correspond to
UMelt with one of the input features excluded (ASCAT, SSMIS, elevation, and multi-year
Sentinel-1 melt fraction, respectively). Column 2 (a)-(e) demonstrates the comparison of
UMelt and Sentinel-1 performance, where the disagreements between Sentinel-1 and UMelt
models trained with different input features are presented.

The general melt patterns from UMelt on Larsen C overlap well with the Sentinel-1
patterns, showing most melt in the western part of the ice shelf. However, in Figures
3.8d and 3.8g, UMelt tends to overestimate surface melt landward of the grounding
line where the elevation rapidly increases. There are two plausible explanations for
this overestimation. First, the multi-year Sentinel-1 melt fraction, which is one of
the input features, was derived from melt seasons spanning 2017 to 2021. During
this period, surface melt was present landward of the grounding line. Hence, certain
sections of the grounding line experienced an overestimation of surface melt during
the 2016-2017 melt season, due to the comparatively wetter melt seasons observed
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between 2017 and 2021 (S. Bevan et al., 2020). Secondly, the Shackleton Ice Shelf, on
which UMelt was trained, experiences surface melt at elevations up to around 300
meters. The regions along Larsen C’s grounding line where UMelt overestimated the
surface melt are situated at elevations of 100-300 meters, within the range where
the UMelt model was trained to detect melting. Nevertheless, UMelt demonstrated
a strong overall performance during the 2016-2017 melt season with an average
Fl1-score of 89.3% with many UMelt patterns that matched with Sentinel-1. This is
a better performance compared to Sentinel-1 than ASCAT and SSMIS, which have
F1-scores of 85.9% and 80.0%, respectively.

Summer melt occurence ('16/'17)
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Figure 3.8: The summer melt occurrence on Larsen C Ice Shelf for testing melt season
2016-2017 for Sentinel-1 (a), UMelt (b), and the disagreements between Sentinel-1 and UMelt
(c). Details of four locations are shown in (d-g).

3.3.3. ANTARCTIC-WIDE SURFACE MELT

The U-Net was trained on the Shackleton Ice Shelf using data from all five melt
seasons (i.e., 2016-2021) and subsequently applied to the entire Antarctic region,
with the exception of the masked areas (see Section 3.2.2 and Supplementary Figure
3.1a), resulting in an observation area of 1.8 million km2. The UMelt product
for melt season 2016-2017 is presented in Figure 3.9, while the summer melt
occurrence derived from the melt observations of seasons 2017-2021 are shown in
Supplementary Figure 3.4.

In the aggregated summer melt occurrence maps (Figure 3.9), it becomes more
difficult to identify the small-scale melt features captured by UMelt that were visible
in earlier figures (Figures 3.4, 3.5, and 3.6). However, almost all large-scale spatial
melt patterns are consistent across UMelt, Sentinel-1, ASCAT, and SSMIS. Notably,
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Figure 3.9: The UMelt record, showing Antarctic-wide summer melt occurrence for melt
season 2016-2017 (a), with details of Dronning Maud Land (b), the Antarctic Peninsula (c),
Mary Byrd Land (d), and Amery Ice Shelf (e). The time series show a comparison in melt
extent for the four regions between UMelt (black), Sentinel-1 (green), ASCAT (purple), and
SSMIS (orange).

the presence of melt in blue ice regions in the southeastern part of the Roi Baudouin
Ice Shelf (Figure 3.9b) and the western part of the Amery Ice Shelf (Figure 3.9e)
are only captured by the passive microwave satellite SSMIS. This discrepancy in
detecting melt over blue ice areas is a recognized limitation of active microwave
sensors (de Roda Husman et al, 2022; Zheng & Zhou, 2020; Zhou et al., 2019),
including UMelt, which utilizes Sentinel-1 as the reference data. In the case of the
Amery Ice Shelf (Figure 3.9e), the Sentinel-1 summer melt occurrence map shows a
clear boundary between areas with and without melt along the northern part of the
grounding line. This distinction arises from the absence of Sentinel-1 observations
in the northernmost region of the ice shelf during the 2016-2017 melt season. In
the northern part of the Abbot Ice Shelf in Mary Byrd Land (Figure 3.9d), UMelt
successfully captures small-scale melt details that ASCAT and SSMIS are unable to
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capture. However, it is worth noting that UMelt tends to underestimate surface
melt when compared to Sentinel-1, ASCAT, and SSMIS. Unfortunately, there are no
matching overpasses over Mary Byrd Land, including Abbot Ice Shelf, which prevents
further evaluation of UMelt to Sentinel-1 in this region.

The time series plots in Figure 3.9b-e illustrate the melt extent over the four
regions throughout the 2016-2017 melt season. To account for the limited coverage
of Sentinel-1, we created weekly aggregates representing the maximum melt extent.
The time series analysis of Dronning Maud Land (Figure 3.9b), Antarctic Peninsula
(Figure 3.9c), and Amery Region (Figure 3.9e) reveals a close resemblance in total
melt extent throughout the melt season among UMelt, Sentinel-1, ASCAT, and SSMIS.
However, as we approach the conclusion of the melt season in Dronning Maud
Land (Figure 3.9b) and throughout the entire melt season in Mary Byrd Land (Figure
3.9d), the time series indicate that UMelt tends to underestimate the extent of melt
compared to the other sensors, especially compared to Sentinel-1 and SSMIS. It is
crucial to take into account the restricted number of Sentinel-1 observations over
Dronning Maud Land and Mary Byrd Land (de Roda Husman et al, 2022). This
means that the weekly averages are based on a limited data set, which may impact
their reliability. The discrepancies with SSMIS could be attributed to the substantial
difference in penetration depth between SSMIS and ASCAT/Sentinel-1 (Ulaby et al.,
1986).

Figure 3.9 demonstrates that UMelt serves as a viable alternative to existing
satellite observations. In the context of high spatial resolution images of surface
melt, Sentinel-1 observations have been commonly used (e.g., Liang et al, 2021).
However, UMelt offers a significant advantage in terms of high temporal resolution.
UMelt presents a notable advantage over Sentinel-1 by offering complete coverage
without missing locations due to limited overpasses, a limitation observed in certain
areas of the Amery Ice Shelf. Additionally, UMelt’s twice-daily observation frequency
eliminates the gaps in time that exist in Sentinel-1’s time series.

Traditionally, sensors like ASCAT or SSMIS have been relied upon for high temporal
resolution images (e.g., S. L. Bevan ef al, 2018; Liu et al, 2006). However, their
drawback lies in their low spatial resolution. In contrast, UMelt not only provides
high temporal resolution but also captures spatial details that ASCAT and SSMIS fail
to capture. Notably, UMelt reveals intricate features along the grounding lines of
Larsen C and George VI ice shelves (Figure 3.9c), as well as the western part of the
grounding line on the Amery Ice Shelf (Figure 3.9e). Therefore, UMelt proves to be
a valuable tool in obtaining both detailed temporal and spatial information in melt
observations, surpassing the limitations of Sentinel-1, ASCAT, and SSMIS.

3.4. DISCUSSION

3.4.1. OPPORTUNITIES OF UMELT

The UMelt record demonstrates great potential as a new data product for surface
melt monitoring, offering a viable alternative to existing remote sensing data sets
such as Sentinel-1, ASCAT, and SSMIS. UMelt offers a significant advantage over
ASCAT and SSMIS by effectively overcoming the limitations related to coarse spatial
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resolution while maintaining a high temporal resolution. By providing surface
melt information at a higher spatial resolution of 500 meters, UMelt allows for
more precise and accurate detection of melt events. Additionally, UMelt captures
short-lived melt events that may be missed by Sentinel-1 due to its low revisit time.
This enhanced capability makes UMelt a valuable tool for studying and monitoring
surface melt dynamics.

The UMelt record has the potential to provide valuable insights into specific melt
dynamics that may be challenging to capture using Sentinel-1, ASCAT, or SSMIS.
One notable application is the improved understanding of diurnal melt cycles,
which provide valuable insights into the drivers and impacts of melt processes
(Van den Broeke et al., 2006). While ASCAT and SSMIS also provide temporal
information, their coarse spatial resolution limits the ability to establish precise
connections between surface melt patterns and local drivers. In contrast, UMelt
enables us to examine highly localized melt triggers and track the evolving melt
patterns throughout the day.

Another compelling research direction that utilizes the UMelt record involves
monitoring surface melt on highly heterogeneous terrains, such as the Larsen C Ice
Shelf. The Larsen C Ice Shelf is the largest remaining ice shelf on the Antarctic
Peninsula and is vulnerable to potential collapse in a warming climate (S. Wang
et al., 2022). Notably, past disintegrations of Larsen A and Larsen B were preceded
by elevated air temperatures and intense surface melt, underscoring the importance
of understanding melt dynamics for assessing ice shelf stability (Banwell et al., 2013;
Scambos et al., 2000, 2003). However, the spatial resolutions of ASCAT and SSMIS
might be inadequate for accurately mapping surface melt along the grounding line of
the Larsen C Ice Shelf. Depending solely on infrequent Sentinel-1 images that pass
over the region a few times a week may restrict our comprehensive understanding
of the intricate melt dynamics (see Figure 3.1). Therefore, the UMelt record offers a
promising addition to the currently existing remote sensing data for studying surface
melt on highly heterogeneous ice shelves such as Larsen C.

3.4.2. LIMITATIONS OF UMELT

Despite its promising capabilities, the UMelt product has inherent limitations due to
the complex nature of its deep learning approach. The intricate workings of the
model make it challenging to precisely identify the factors that contribute to the
estimation of surface melt. While we have conducted assessments of the temporal
performance (Figure 3.5 and Supplementary Figure 3.2), spatial performance (Figure
3.6), feature importance (Figure 3.7), and transferability (Figure 3.8) of the model, a
complete understanding of its inner workings remains elusive. This is particularly
evident in cases like Mary Byrd Land, where underestimation of surface melt is
observed in melt season 2016-2017 (Figure 3.9d). This highlights the need for further
research and investigation to unravel the underlying mechanisms and improve the
accuracy and performance of the UMelt product and/or the machine learning
methods to develop such products.

Another limitation of deep learning networks is their tendency to mimic the
patterns and characteristics they have been trained on. While UMelt incorporates

81



3. A HIGH-RESOLUTION ANTARCTIC MELTING RECORD

inputs such as ASCAT and SSMIS, which provide real-time information about
liquid water presence, it also considers elevation and multi-year Sentinel-1 melt
fraction as input features. Given the current availability of Sentinel-1 data, the
multi-year Sentinel-1 melt fraction input feature encompasses observations from both
Sentinel-1A and -B, covering the period from 2016 (when Sentinel-1B was launched)
to 2021 (when Sentinel-1B ceased operation). The model applies downscaling
patterns based on past observations where ASCAT, SSMIS, elevation, and multi-year
Sentinel-1 melt fraction collectively resulted in specific melt patterns. This means
that when faced with unprecedented and dissimilar events that significantly deviate
from its training data, the model may generate inaccurate results. This aligns with
the insights presented in the study by (Picard et al., 2007), which demonstrates that
in regions with frequent melting, the number of melting days exhibits an almost
continuous distribution, varying from year to year. Conversely, in areas where
melting is infrequent, the distribution adopts an exponential pattern. In these cases,
only a few years encounter a high number of melting days.

Finally, we utilized a basic Attention U-Net framework, which is renowned
for its effectiveness in capturing spatial patterns in data (Oktay et al, 2018).
A prospective advancement could involve integrating temporal information into
the deep learning model, offering significant value for tasks that require the
consideration of both spatial and temporal contexts to achieve accurate predictions.
This holds true for surface melt prediction, as certain melt trends and patterns
exhibit temporal dependencies throughout a melt season (Saunderson et al., 2022).
A common approach for incorporating temporal information into U-Nets is through
the utilization of 3D convolutional operations (Cicek ef al., 2016). While the 2D
convolutions employed in our study operate on spatial dimensions (i.e., width and
height), 3D convolutions additionally incorporate the temporal dimension (i.e., time
or sequence). By leveraging these 3D convolutions, U-Nets can effectively capture
spatiotemporal patterns, enabling the analysis and processing of data with combined
spatial and temporal variations.

3.4.3. IMPLICATIONS OF SELECTED TRAINING REGION

The Shackleton Ice Shelf was selected as the training region, as it provided us with
sufficient training data. While training a U-Net model on each individual ice shelf
would be preferable, there are insufficient (or no) matching overpasses available on
most ice shelves to accomplish this (Figure 3.2). Another advantage is that the
Shackleton Ice Shelf exhibits a wide range of fine-scale melt patterns, especially
along the grounding line and ice rises. The U-Net captured and represented these
patterns well, and the results can be extrapolated to other ice shelves, as shown in
Figures 3.8 and 3.9.

One of the encountered limitations of selecting the Shackleton Ice Shelf as the
training region is the presence of surface melt at relatively high elevations (up to
300 meters), due to strong katabatic winds. This aligns with earlier research that
identified that low-elevation regions near the grounding line in East Antarctica are
frequently exposed to persistent katabatic winds (Arthur et al., 2020; J. Lenaerts et al.,
2017; Stokes et al., 2019). As a consequence, UMelt could potentially overestimate
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surface melt in regions with less pronounced or absent katabatic winds. A study by
(Laffin er al, 2023) demonstrates that along the grounding line of the Shackleton Ice
Shelf, roughly 50% of the melt is linked to downslope winds. Conversely, for the
Larsen C Ice Shelf and the Abbot Ice Shelf, this proportion drops to less than 20%. A
potential solution to address this issue is adjusting the current binary melt threshold,
which is consistently set to 0.7, by implementing a region-specific threshold. Since
the model is able to capture fine-scale melt patterns accurately, this approach may
be effective.

3.4.4. IMPLICATIONS OF SELECTED REFERENCE DATA

UMelt was developed using Sentinel-1 as the reference data. We filled the
observational gaps of Sentinel-1 and created a simulated Antarctic-wide product with
a much higher temporal resolution (12h) than the original Sentinel-1 data (1-7 days).
However, while Sentinel-1 is a reliable source for melt detection, it has limitations.

First, Sentinel-1 fails to accurately detect the presence of liquid water in icy
regions without snow cover (de Roda Husman et al., 2022; Zheng & Zhou, 2020;
Zhou et al, 2019), such as on the southeast part of Shackleton or southeast part of
Roi Baudouin ice shelves. Over these regions, Sentinel-1 is unable to differentiate
between a dry and melting ice surface, as for both cases the backscatter intensity
is very low (de Roda Husman et al., 2022). Consequently, in our UMelt product,
we also encounter limitations in detecting melt over these regions, as demonstrated
in Figure 3.9b and 3.9e of our study. Using Sentinel-1 as the reference data has a
further limitation regarding damaged ice. Damaged ice has heterogeneous surface
orientations and thus different local incidence angles than the surrounding ice,
leading to potential over- or underestimation of surface melt. We addressed this
issue by excluding damaged areas from the U-Net development mask. A potential
path for future improvement could be to use a different reference product for blue
ice regions (e.g., using the blue ice maps of Hu et al., 2022; Jawak et al., 2023)
and damaged areas (e.g., using the damage map of Izeboud & Lhermitte, 2023).
Multispectral imagers, such as Landsat, MODIS, or Sentinel-2, may be suitable for
this purpose. If such a merged, optimized reference product were available, the
U-Net could be retrained to improve its performance.

Using Sentinel-1 as reference data presents another limitation, as it, like all
microwave sensors, detects the presence of liquid water rather than directly observing
the underlying energy conversion process of surface melt. It is important to highlight
that both ASCAT and Sentinel-1 have a significant penetration depth, theoretically
reaching up to 10 meters (Ulaby et al., 1986). These large penetration depths enable
them to potentially detect more residual water in the snowpack compared to SSMIS,
which is limited to a theoretical penetration depth of 2.5 meters (Ulaby et al,
1986). This could potentially explain the surface melt overestimation for ASCAT
and Sentinel-1 (along with UMelt) compared to SSMIS over the Wilkins Ice Shelf,
particularly at the end of the melt season (Figure 3.9¢). This is especially plausible
given the known tendency of the Wilkins Ice Shelf to retain meltwater in the
subsurface (Montgomery et al, 2020). A potential avenue for improving the UMelt
record could involve assigning greater weight to SSMIS for locations with higher
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levels of retained melt. One possible approach to identifying these locations could
involve examining the ASCAT and SSMIS time series and assessing the disparity
between morning and afternoon observations. In areas with no active surface melt
and only retained meltwater, it is more likely that the difference between morning
and afternoon observations would be minimal towards the end of a melt season.

3.4.5. DOWNSCALING OTHER SURFACE MELT PRODUCTS

The findings of this study demonstrate the value of deep learning as a tool for
monitoring surface melt with a high spatial and temporal resolution, offering insights
into both historical and current ice shelf conditions. Additionally, other surface
melt products, such as regional climate model data, can be utilized for downscaling
surface melt.

Regional climate models typically operate at a resolution of tens of kilometers (e.g.,
Agosta et al., 2019; van Wessem et al., 2018), which often fails to capture small-scale
surface melt events occurring in Antarctica (Barrand et al.,, 2013). By incorporating
deep learning models, it becomes possible to explore the relationship between
large-scale melt patterns derived from regional climate models and fine-scale
variations found in additional data sets, such as elevation data or multi-year
Sentinel-1 melt fractions employed in this study. Hence, deep learning provides
the capability to downscale coarse surface melt data derived from regional climate
models.

The application of a U-Net proves to be a promising method for this purpose. By
downscaling regional climate model data using deep learning techniques, we can
gain a more comprehensive understanding of high-resolution surface melt. This not
only encompasses the analysis of historical surface melt patterns but also enables
the exploration of future projections.

3.5. CONCLUSION

This study presents a novel workflow to create a record of high-resolution surface
melt on the Antarctic ice shelves, UMelt. The core of our approach is a modified
U-Net that learns the patterns from high temporal (i.e., ASCAT and SSMIS) and high
spatial (i.e., elevation and multi-year Sentinel-1 melt fraction) data. The trained
model mimics the detailed Sentinel-1 melt observations but on a much higher
temporal resolution, resulting in melt maps with a high spatial (500 m) and temporal
(12 h) resolution.

We demonstrated the spatial and temporal transferability of the U-Net on the
Shackleton Ice Shelf, achieving accuracies ranging from 87.2% to 95.5% for spatial
transferability and 90.9% to 95.7% for temporal transferability. The U-Net also
performed well in terms of spatiotemporal transferability, with good performance
over the Larsen C Ice Shelf (91.0%). This spatiotemporal transferability allows for the
assessment of surface melt on the entire Antarctic continent. The U-Net can provide
maps of surface melt with a high resolution for all previous years with available
input data, meaning we could study surface melt in high detail from 2006 (when
ASCAT was launched) until present day. However, for both past and future scenarios,
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it is important to acknowledge that the model may necessitate re-training, especially
when confronted with surface melt patterns that significantly differ from the training
data used for the U-Net model.

High-resolution observations are crucial to monitor surface melt on the Antarctic
ice shelves because of the short duration and fine melt patterns. Therefore, the
high-resolution surface melt record on the Antarctic ice shelves UMelt provides
a valuable product to be used in further studies, uncovering melt dynamics and
potential consequent ice shelf instability that remains hidden in low-resolution
satellite imagery.
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3.6. SUPPLEMENTARY MATERIALS

Supplementary Figure 3.1: Overview of used masks. The UMelt product is available over
the highlighted, red area, seen in (a). The U-Net development mask, used for training and
testing, is presented in (b) and (c) for the Shackleton and Larsen C ice shelves, respectively.
The four regions used for leave-one-region-out (LORO) cross-validation are shown in (d).

Melt occurence (*19/20) Melt occurence ('20/21)

Supplementary Figure 3.2: The summer melt occurrence on Shackleton Ice Shelf for
Sentinel-1 (a, c), UMelt (b, d), and the disagreements between Sentinel-1 and UMelt (e, f)
for a relatively wet (2019-2020) and a relatively dry (2020-2021) melt season.
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Supplementary Figure 3.3: To convert the UMelt probabilities into binary values, a range of
thresholds was tested on the validation data set over the Shackleton Ice Shelf. A threshold of
0.7 (dashed black line) resulted in the highest F1-score (blue) and accuracy (orange).

Supplementary Table 3.1: An overview of the performance metrics, including F1-score,
accuracy, precision, and recall, evaluated during the development of UMelt. The
cross-validation tests were conducted for the average melt season of 2016-2017, with
additional temporal performance assessments conducted for the melt seasons of 2019-2020
and 2020-2021.

Test data set ‘Fl-score Accuracy Precision Recall

Temporal performance - UMelt; omso

Melt season 2016-2017 86.9% 91.3% 82.8% 91.6%
Melt season 2019-2020 82.7% 90.9% 741% 93.6%
Melt season 2020-2021 33.5% 95.7% 24.0% 55.3%
Spatial performance (assessment for 2016-2017) - UMelt,oro

Region 1 94.8% 95.5% 92.8% 97.0%
Region 2 85.7% 93.3% 78.6% 94.3%
Region 3 83.8% 87.2% 78.1% 90.4%
Region 4 83.4% 90.6% 784%  89.2%
Feature importance (assessment for 2016-2017)

No ASCAT 61.8% 80.2% 453% 97.1%
No SSMIS 88.1% 91.5% 89.1% 87.1%
No Elevation 87.4% 91.3% 85.1% 89.8%
No multi-year Sentinel-1 melt fraction 86.3% 90.6% 84.2% 88.5%
Transferability ( 1ent for 2016-2017) |

Larsen C ‘ 89.3% 91.0% 90.5% 88.0%
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Supplementary Figure 3.4: The UMelt record, showing Antarctic-wide summer melt
occurrence for melt season 2017-2021 (a), with details of the Antarctic Peninsula (b),
Dronning Maud Land (c), Mary Byrd Land (d), and Amery Ice Shelf (e). The UMelt summer
melt occurrence for melt season 2016-2017 can be found in Figure 3.9.
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4. DOWNSCALING OF ANTARCTIC SURFACE MELT VOLUMES

ABSTRACT

Because Antarctic surface melt is mostly driven by local processes, its simulation
necessitates high-resolution regional climate models (RCMs). However, the current
horizontal resolution of RCMs (=25-30 km) is inadequate for capturing small-scale
melt processes. To address this limitation, we present SUPREME (SUPer-REsolution-
based Melt Estimation over Antarctica), a deep learning method to downscale surface
melt to 5.5 km resolution using a physically-informed super-resolution model. The
physical information integrated into the model originates from observations tied to
surface melt, specifically remote sensing-derived albedo and elevation. These remote
sensing data, in addition to a Regional Atmospheric Climate Model (RACMO) run at
27 km resolution, account for the diverse drivers of surface melt across Antarctica,
facilitating effective generalization beyond the training region of the Antarctic
Peninsula. A comparison of SUPREME with a dynamically downscaled RACMO run
at 5.5 km over the Antarctic Peninsula shows high accuracy, with average yearly
RMSE and bias of 5.5 mm w.e. yr’' and 4.5 mm w.e. yr ', respectively. Validation
at five automatic weather stations reveals SUPREME’s marked improvement with
substantially lower average RMSE (81 mm w.e.) compared to RACMO 27 km (129 mm
w.e.). Beyond the training region, SUPREME aligns more closely with remote sensing
products associated with surface melt than super-resolution models lacking physical
constraints. While further validation of SUPREME is needed, our study highlights the
potential of super-resolution techniques with physical constraints for high-resolution
surface melt monitoring in Antarctica, providing insights into the impacts of localized
melting on processes dffecting ice shelf integrity such as hydrofracturing.
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4.1. INTRODUCTION

Eductions in both thickness (Gudmundsson et al., 2019) and extent (Greene
R et al.,, 2022) of floating ice shelves have contributed to an increasing mass loss
of the Antarctic Ice Sheet (IMBIE, 2018; Shepherd et al., 2012). A recent study by
Davison et al. (2023) revealed that over 40% of Antarctic ice shelves have lost mass
between 1997 and 2021. While around two-thirds of this volume loss was attributed
to basal melting (Davison et al., 2023), surface melt is anticipated to play a more
significant role in ice shelf shrinkage and weakening in the coming decades under
continued atmospheric warming in all future climate scenarios (Gilbert & Kittel,
2021; Trusel et al., 2015). The presence of surface meltwater reduces albedo (Lenaerts
et al, 2017) and firn air content (Kuipers Munneke et al., 2014), creating positive
feedback loops that generate additional surface melt and consequently increase
meltwater ponding. This ponding poses a threat to ice shelf stability through surface
meltwater-induced flexure and hydrofracturing (Banwell & Macayeal, 2015; Banwell
et al., 2019; Scambos et al., 2009).

Nonetheless, accurately quantifying meltwater volumes on the Antarctic Ice Sheet
is posing a significant challenge. Direct assessment of melt from ice core stratigraphy
(e.g., Abram et al, 2013; Das & Alley, 2008) and in-situ surface energy balance
observations (e.g., Jakobs et al, 2020; Kuipers Munneke, Van den Broeke, et al,
2012) provide robust quantitative melt records, but these records are sparse. Remote
sensing observations, while capable of offering measurements continent-wide,
usually provide only binary data indicating whether melting has occurred or not,
without quantifying the meltwater volume (de Roda Husman, Lhermitte, et al., 2024;
de Roda Husman et al, 2022). Trusel et al. (2013) made a notable exception
by employing the Quick Scatterometer (QuikSCAT) to measure annual meltwater
volumes. Unfortunately, QuikSCAT ceased operation in 2009. Recently, also Banwell
et al. (2023) made an effort to derive meltwater volumes from passive and active
microwave sensors, but only by applying a physics-based snow model to the binary
melt observations derived from remote sensing data, meltwater volumes could be
estimated. Hence, besides in-situ observations and a few remote sensing methods,
our understanding of past, present, and future surface melt volumes relies heavily
on regional climate models (RCMs) such as the Regional Atmospheric Climate
Model (RACMO) (van Wessem et al., 2018) and Modéle Atmosphérique Régional
(MAR) (Agosta et al., 2019). Nevertheless, with a spatial resolution of typically
25-30 kilometers, RCMs face limitations in capturing the intricate interplay between
melting and albedo, and have difficulty representing small-scale, high-melt features
like blue ice, rocks, and ponds (Arthur et al.,, 2022; Kingslake et al., 2017; Lenaerts
et al., 2017).

Hence, there is a necessity for downscaling techniques that reproduce the critical
details of surface melt that are currently lacking in RCMs. A frequently employed
technique is statistical downscaling, a method that enhances the resolution of RCM
variables, typically by leveraging their linear correlation with elevation. Recently,
statistical downscaling has been employed to generate high-resolution surface mass
balance (SMB) variables for Antarctica (Gallée et al, 2011), including snowfall
(Ghilain et al., 2022) and surface melt (Noél et al., 2023). Similarly, over Greenland,
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SMB components have been subject to statistical downscaling in studies by Hanna
et al. (2005, 2008, 2011), Franco et al. (2012), Noél et al. (2016), and Tedesco et al.
(2023). However, in areas where the correlation of an SMB component with elevation
is weak, statistical downscaling may not provide additional benefits (Van de Berg
et al., 2020). Another commonly used method, dynamical downscaling, entails
running a model in a nested domain with higher spatial resolution and represents a
prevalent design approach for many RCMs (Box & Rinke, 2003; Fettweis et al., 2017;
Noél et al., 2016). Dynamical downscaling requires that physical parameterizations
are adjusted in a finer grid (Hourdin et al., 2017; Schmidt et al., 2017). It relies
on physical formulations rather than empirical relationships and correlations, but
it comes with a significant computational cost (Fyke et al., 2018). Hence, both
statistical and dynamical downscaling methods have their limitations, prompting us
to explore an alternative approach for downscaling surface melt from an RCM: deep
learning.

In this study, we introduce SUPREME (SUPer-REsolution-based Melt Estimation
over Antarctica), a method to refine RACMO from a 27 km horizontal resolution to
a more detailed 5.5 km resolution, employing a physically-informed deep learning
super-resolution technique. Super-resolution techniques have been successfully used
to refine image details (Dong et al., 2016; Goodfellow et al., 2014; Shi et al, 2016).
Their potential for geophysical application has been demonstrated in Antarctic
studies, including the downscaling of global climate models (van der Meer et al.,
2023), bedrock topography (Leong & Horgan, 2020), and sea ice motion (Petrou
et al., 2018). Super-resolution methods distinguish themselves by their adeptness at
preserving intricate details without being constrained by potentially limiting linear
statistical assumptions or high computational costs for predictions. Despite such
advantages, super-resolution models may not generalize well beyond their training
region (Jiang et al., 2022). This could be particularly problematic for its application
to surface melt, given the notable variations in melt triggers and patterns observed
across Antarctica (de Roda Husman et al,, 2022; Hu et al., 2022). To enhance spatial
transferability, alongside RACMO 27 km, we include observations that are physically
associated with surface melt-specifically, albedo and elevation from remote sensing
data—into our super-resolution model. Albedo is linked to surface reflectivity, while
elevation accounts for altitude-related temperature variations — both critical factors
in determining the extent and intensity of surface melt (Giesen & Oerlemans,
2012). The incorporation of remote sensing data into the super-resolution model
involves transitioning from a single-image super-resolution model, which depends
solely on the low-resolution counterpart of the desired high-resolution output (Yang
et al.,, 2014), to a multi-image super-resolution model that integrates multiple input
features (Kawulok et al., 2019).

4.2, DATA

4.2.1. RACMO 27 KM AND 5.5 KM

We employ surface melt volume data from two RACMO datasets, both belonging
to version 2.3p2, with horizontal resolutions of approximately 27 km (van Wessem
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et al., 2018) and 5.5 km (van Wessem et al., 2016). The RACMO 27 km dataset serves
as one of the input features for the super-resolution model, while the RACMO 5.5
km dataset, covering the Antarctic Peninsula exclusively, serves as the reference data
(or “ground truth”) for training the super-resolution model.

RACMO 27 km combines the atmospheric dynamics from the High-Resolution
Limited Area Model (HIRLAM) (Undén et al., 2002) with the physical parameterizations
of the European Centre for Medium-Range Weather Forecasts (ECMWF) global model
(ECMWF, 2009). It is coupled bidirectionally with a multi-layer snow model that
accounts for processes like melting, percolation, and refreezing in the snow (Ettema
et al., 2010). Additionally, the model incorporates a snow albedo scheme based
on the evolution of snow grain size (Kuipers Munneke et al, 2011) and a drifting
snow scheme that simulates the redistribution and sublimation of suspended snow
particles (Lenaerts et al., 2012). For more detailed technical information about
RACMO 27 km, we direct the reader to van Wessem, Reijmer, Morlighem, et al.
(2014) and van Wessem, Reijmer, Lenaerts, et al. (2014). In 2018, RACMO 5.5 km
was introduced as a designated run at 5.5 km over the Antarctic Peninsula. For this
high-resolution run, RACMO was forced by ERA-Interim, using an updated surface
topography for the Antarctic Peninsula (van Wessem et al., 2016).

(a) RACMO 27 km (b) RACMO 5.5 km (c) SUPREME 5.5 km
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Figure 4.1: Surface melt volume comparison for the 2017-2018 melt season: (a) RACMO 27
km, (b) RACMO 5.5 km (van Wessem et al, 2016), and (c) SUPREME (this study). Upper
panels display Antarctic-wide scale, while lower panels provide close-ups of the Antarctic
Peninsula. Since RACMO 5.5 km data are solely available for the Antarctic Peninsula, the
white region indicates no data.

Both RACMO 27 km and 5.5 km data are available for the period spanning from
1979 to the present day. In our study, we focus on daily surface melt outputs
between 2001 and 2019, measured in millimeters water equivalent (mm w.e.). While
RACMO 27 km provides coverage across the entire Antarctic region (see Figure 4.1a),
RACMO 5.5 km is limited to the Antarctic Peninsula (Figure 4.1b). In addition to
differences in spatial coverage and horizontal resolutions, RACMO 5.5 km simulates
lower surface melt values compared to RACMO 27 km. For the Antarctic Peninsula
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over the period from 1979 to 2014, the annual surface melt volume showed a notable
disparity, with RACMO 5.5 km recording 34 Gt yr~! compared to RACMO 27 km’s
57 Gt yr‘1 (Kuipers Munneke, Picard, et al., 2012; van Wessem et al., 2016). Also
throughout our study period from 2001 to 2019, RACMO 5.5 km reports melt values
that are lower compared to RACMO 27 km (see Supplementary Figure 4.1), which
is likely attributed to a cloud cover underestimation (van Wessem et al., 2016). As
our SUPREME model is calibrated on the RACMO 5.5 km reference dataset, this
underestimation compared to RACMO 27 km is anticipated to persist. In follow-up
studies, there is potential for retraining our developed super-resolution architecture
using high-resolution surface melt reference data other than RACMO 5.5 km, such
as from upcoming versions of RACMO or other RCMs like MAR.

4.2.2. PHYSICAL CONSTRAINTS
ALBEDO

In addition to RACMO 27 km, albedo and elevation are additional variables input
into the super-resolution model. We use daily white-sky albedo, obtained from
the MCD43A3 product on a spatial resolution of 500 meters, based on data from
the Moderate Resolution Imaging Spectroradiometer (MODIS) (Schaaf et al., 2002).
This MCD43A3 product matches those in previous Antarctic studies (e.g., Lenaerts
et al., 2017; Tollenaar et al., 2022). The dataset is stored in Google Earth Engine
(GEE; Gorelick et al., 2017) and consists of daily observations, which are generated
as 16-day running means. To align with the resolution of the RACMO 5.5 km
product, we employ bicubic interpolation to reproject the data to the Antarctic Polar
Stereographic projection, and average the data to upsample it to a 5.5 km resolution.
If albedo values are unavailable due to cloud cover, we substitute the pixel with the
monthly median albedo value of that specific pixel.

However, since cloud cover can reach up to 90% on the Antarctic ice shelves
(Lachlan-Cope, 2010), the use of the daily albedo input feature is limited. Therefore,
the albedo Q5 input feature acts as an additional data source, highlighting the most
extreme melt patterns on an annual basis. We compute the 5th percentile (Q5)
albedo for each pixel during every melt season, defined as spanning from July 1 to
June 30 of the following year.

ELEVATION

The final input feature for the super-resolution model is a static elevation map
sourced from the TanDEM-X PolarDEM. This map provides gap-free elevation data
for 20132014 over Antarctica at a spatial resolution of 90 meters (Wessel et al., 2021).
Similar to the MODIS albedo data, we employ bicubic interpolation to reproject
the dataset onto the Antarctic Polar Stereographic projection, and apply averaging
to upsample the data to a resolution of 5.5 km. We neglect elevation changes
and assume constant topography since the elevation changes over the studied time
period are relatively small and are not expected to significantly impact atmospheric
dynamics.
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4.2.3. VALIDATION DATA
AUTOMATIC WEATHER STATIONS

SUPREME is assessed against five automatic weather stations (AWS): AWS14, AWS15,
AWS17, AWS18, and Neumayer (refer to Figure 4.2 for their locations). The five
selected AWS have multiyear data records without any gaps and have experienced
surface melt during our study period. AWS14 and AWS15 are located at the center
of the Larsen C Ice Shelf, AWS17 on the remnant of the Larsen B Ice Shelf, AWS18
at the grounding line of the Larsen C Ice Shelf, and Neumayer at the Ekstrém Ice
Shelf. Meteorological observations from the five AWS are forced into a surface energy
balance (SEB) model, enabling the calculation of surface melt. The SEB model
and configuration are the same as used by Jakobs et al. (2020). In addition, the
measured longwave radiation is corrected for window heating as described in Smeets
et al. (2018), and measured shortwave radiation is corrected for the zero offset as
described in Foken (2021).

RACMO 2 kM

The SUPREME melt product is compared with another downscaled RACMO product
besides RACMO 5.5 km, referred to as RACMO 2 km, as developed by Noél et al
(2023). RACMO 2 km was obtained through a statistical-downscaling approach
applied to RACMO 27 km, resulting in a spatial resolution of 2 km. RACMO 2 km
data are available on a daily resolution, but in this study, we only use annual melt
values (from July 1 to June 30 for the years spanning from 2001 to 2019).

QUIKSCAT

We compare SUPREME’s annual melt volumes with QuikSCAT data for eight melt
seasons, spanning from 2001-2002 to 2008-2009. QuikSCAT observations for
Antarctica are available from 1999-2009 at a 4.45 km resolution (Trusel et al., 2013).
The product relies on the annual sum of backscatter intensity reduction, calibrated
with AWS observations.

PASSIVE MICROWAVE REMOTE SENSING

We also compare SUPREME to data from PMW sensors, also known as radiometers.
PMWs provide binary melt data (i.e., melt or no-melt) that allow for the calculation
of cumulative melt days within a melt season. We use cumulative melt days
using a dataset from Picard and Fily (2006), which contains daily observations
that distinguish between melt and no-melt on a 25 by 25 km? spatial resolution.
This binary melt product was generated by applying a melt detection algorithm
(Picard & Fily, 2006; Torinesi et al., 2003) to data from the scanning Multichannel
Microwave Radiometer (SMMR) and three Special Sensor Microwave Imager (SSM/I)
instruments (Picard & Fily, 2006).

OPTICAL REMOTE SENSING

Finally, we compare SUPREME with a melt-slush product derived from optical
remote sensing (Dell ef al., 2022, 2024). This product is particularly effective in
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detecting melt presence in regions with low firn air content, where the meltwater
is clearly visible in optical imagery, in contrast to microwave sensors. Dell et al.
(2022, 2024) developed a product for surface melt and slush based on the visible
and near-infrared (NIR) bands of Landsat 8 observations covering the Antarctic ice
shelves. The slush and melt dataset (Dell et al., 2024) offers monthly data spanning
from 2013 to 2021, resulting in six overlapping melt seasons with SUPREME (from
2013-2014 to 2018-2019). To streamline the comparison, we aggregate the monthly
data to create a single optical remote sensing product for each melt season,
indicating the number of months with either melt or slush per pixel. The melt and
slush dataset, with a 30 meter spatial resolution, is too detailed for a straightforward
visual comparison with SUPREME’s 5.5 km resolution. To address this, we apply
maximum interpolation to downscale the optical remote sensing product to a 5.5
km resolution. This process involves assigning the value representing the highest
number of months within each 5.5 km pixel area.

SRResNet SUPREME
architecture physical constraint
Residual Multilayer Physical
Encoder 4 blocks Decoder Ll perceptron activation
RACMO 27 km SUPREME
SUPREME

physical constraint

Encoder
SUPREME

physical constraint

Spotlighter,
| > —
Elevation

Albedo Q5
Albedo

Figure 4.2: Overview of super-resolution model architecture. The model incorporates the
SRResNet architecture along with three additional physical constraints. The processed data
were color-coded: orange for daily RACMO 27 km, blue for daily albedo, yellow for annual
5th percentile albedo, and green for elevation.

4.3. METHODS

4.3.1. PREPROCESSING

The super-resolution model is trained on the Antarctic Peninsula, which is divided
into thirteen training patches as shown in Supplementary Figure 4.3. These patches,
created for memory efficiency, are sized at 297 km by 297 km, which is the lowest
common multiple of 5.5 km (for RACMO 5.5 km, albedo, and elevation) and 27 km
(for RACMO 27 km): i.e., 5.5 km multiplied by 54, and 27 km by 11 both equal 297
km. We gather input features including daily RACMO 27 km, daily albedo, annual
Q5 albedo, and a static elevation map for each of the training patches, along with
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the daily RACMO 5.5 km reference data. To ensure that edge information receives
equal consideration as central data, we apply padding. For RACMO 5.5 km, this
entails adding ten pixels (equivalent to a 55 km border), while for RACMO 27 km,
two pixels are added (equivalent to a 54 km border). After the training phase,
the patches are clipped to maintain their central dimensions of 297 km by 297
km. After the padding, the preprocessed data are split into three sets: training
(2001-2006), validation (2007-2010), and testing (2011-2019). The validation set is
used during training to tune hyperparameters, while the testing set is reserved for
evaluating the final performance of the trained model on unseen data. The split
was primarily driven by the availability of AWS records, predominantly spanning
from 2011 onwards. The distribution of the training, validation, and testing datasets
are statistically similar, as confirmed by an Anderson-Darling test. This statistical
assessment is designed to determine similarity in distribution (Scholz & Stephens,
1987). The Anderson-Darling test revealed that the datasets surpass a p-value of
0.05, indicating consistent distributions among the datasets.

4.3.2. SUPREME MODEL ARCHITECTURE

SRRESNET ARCHITECTURE

Our customized neural network architecture (Figure 4.2) builds upon the SRResNet,
a neural network architecture specifically designed for image super-resolution tasks
(Ledig et al., 2017). In the first step of the SRResNet, the RACMO 27 data undergoes
encoding through a single convolution operation. Specifically, a 3x3 filter is applied
to the RACMO 27 km data to compute weighted sums, resulting in dimensionality
reduction. The outcome of this encoding step produces feature maps that emphasize
the large-scale spatial melt patterns, effectively translating the data from spatial melt
values into abstract features.

The next step of the SRResNet involves the implementation of sixteen residual
blocks applied to the encoded RACMO 27 km (He et al., 2016). These blocks are
constructed to allow the combination of the output layer of one layer with that of
another layer situated deeper within the block. This design facilitates learning by
enabling the model to concentrate on recognizing specific residual details, which
pertain to the differences between the current prediction and the desired output
(i.e., RACMO 5.5 km). Within the sixteen residual blocks, three operations are carried
out. First, a convolutional layer with 3x3 kernels and 64 feature maps extracts spatial
patterns from the input. Subsequently, batch normalization is applied to stabilize
and accelerate training. Finally, an element-wise summation operation combined
the output of a layer with the input of a deeper layer through a skip connection,
allowing data to bypass multiple layers and address the vanishing gradients problem.
This phenomenon occurs when gradients become extremely small during training,
hindering the ability of deep neural networks to effectively learn from data (He et al.,
2016).

After the encoding steps and residual block processing, we merge the RACMO 27
km data with the encoded albedo and elevation data (Section 4.3.2). Subsequently,
the data undergoes decoding, a process that transforms compressed or abstract
features back into a more understandable format, effectively upsampling the data.
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Once again, we follow a strategy similar to SRResNet, employing six deconvolution
layers with 3x3 kernels, complemented by Parametric Rectified Linear Unit (PReLU)
as the activation function. The decoded data are combined with the spotlighted
data from SUPREME (Section 4.3.2). Following this, we implement the final step
in the standard SRResNet architecture: the multilayer perceptron, which involves
connecting every neuron in one layer to every neuron in the next layer through a
single convolution operation with a 1x1 kernel. Although this step forms the final
stage in the conventional SRResNet, as well as in many other neural networks, we
introduce an additional step involving a physical activation function, as detailed in
Section 4.3.2.

PHYSICAL CONSTRAINTS

The SRResNet is enriched using three physical constraints, each performing
distinct tasks: the “encoder” adds daily albedo, annual Q5 albedo, and elevation
data for feature extraction and dimensionality reduction, the “spotlighter” uses
3D-convolutions to analyze albedo and elevation patterns in latitude, longitude, and
time, and the “physical activation” scales melt values based on elevation, leveraging
the knowledge that lower elevations are associated with higher melt values (see
Figure 4.2).

For the first physical constraint, the encoder, we apply a similar procedure to the
encoding of RACMO 27 km data, as outlined in the SRResNet architecture, applying a
convolution operation and PReLU activation function to extract meaningful patterns
from the albedo and elevation data. Subsequently, we downscale the data to match
the spatial resolution of the encoded RACMO 27 km data. This is accomplished
through 2x2 average pooling, wherein the input data are divided into 2x2 regions,
and the average of the values within each region is calculated. These encoded albedo
and elevation data are combined with the encoded RACMO 27 km to undergo a
decoding step explained in the SRResNet architecture section.

The spotlighter constrains the super-resolution model by the same data used
in the encoder, which undergoes a 3D convolution for analysis across longitude,
latitude, and time. The 3D convolution functions as a specialized filter, emphasizing
important aspects of the data in both spatial and temporal domains. The resulting
output is subsequently merged with the decoded RACMO 27 km, albedo, and
elevation data. This step aids in capturing meaningful spatiotemporal features which
are passed to the multilayer perceptron.

Recognizing the negative correlation between elevation and surface melt (Trusel
et al, 2012), and the positive feedback between albedo and surface melt (Jakobs
et al, 2019), we apply two correction functions that adjust pixels based on elevation
and albedo, referred to as “physical activation”. The physical activation function for
elevation increases surface melt values for pixels with low elevation, and reduces
surface melt values for pixels at higher elevations. In the re-scaling process, each
high-resolution surface melt pixel generated as the final output of the SRResNet
architecture is multiplied by a custom sigmoid-like function. These sigmoid functions
are created by analyzing the albedo Q5 and elevation data for annual surface
melt values from RACMO 5.5 km, RACMO 27 km, and QuikSCAT. Based on this
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comparison, the sigmoid functions are plotted using visual inspection and serve as
initial guides (see Supplementary Figure 4.6). During training, the weights of the
model are updated based on learned weighting functions. The custom sigmoid-like
functions have the following shape:

A

Outh @) =Ind,§) x =G5

(4.1)

where In(A,¢) is the final output of the SRResNet architecture, and A and ¢
represent the longitude and latitude, respectively. The parameter A is set to 1.36, B
is set to 0.005, and C is set to 1.0.

After adjusting the elevation values, we apply the albedo physical activation
function, once more using a custom sigmoid-like function (Equation (4.1)). In this
context, the parameter In(A, ¢) denotes the output of the elevation physical activation
function, while X(A,¢) represents annual albedo Q5 data, varying both spatially and
on a yearly basis. The values assigned to the albedo Q5 physical-activation functions
are as follows: A is set to 1.0, B is set to 0.05, and C is set to 37.0.

4.3.3. TRAINING

During training, the RMSprop optimizer (Reddy et al, 2018) is employed, starting
with a learning rate of 1073. An exponential learning rate decay is implemented to
dynamically adjust the learning rate in later training epochs. The models are trained
with a batch size of 16 over a span of 30 epochs. Early stopping is implemented
to mitigate potential model overfitting, whereby it monitors training mean squared
error (MSE) loss. If the MSE loss did not improve by at least the specified minimum
threshold of 5x10™* (mm we. yr !)? for five consecutive epochs, the training
process concludes prematurely. We experimented with alternative hyperparameters,
such as learning rate, loss function, and optimizer, using the validation dataset, but
found that the presented parameters produced the best results.

To evaluate the importance of physical constraints, we train different models:
one incorporating all three physical constraints (referred to as SUPREME), another
without any physical constraint (referred to as SRResNet), and additional models
with exclusive use of each individual physical constraint—SUPREMEqp1y encoder
SUPREMEonly spotlighter» and SUPREI\/IEonly physical activation- Additionally, we train
two models to evaluate the importance of the remote sensing input features on
the downscaled surface melt product, which we denote as SUPREME,, aipedo and
SUPREME, elevation- In SUPREME,; albedo, We omit the albedo input features,
retaining only RACMO 27 km and elevation as inputs. In SUPREME, elevation, W€
exclude elevation, keeping only RACMO 27 km and albedo. In SRResNet, we exclude
all remote sensing features, using only RACMO 27 km as an input feature.

4.3.4. POST-PROCESSING

Using the trained models from Section 4.3.3, we produce the SUPREME results
and the results for which one or more input features or physical constraints were
excluded. The output from the super-resolution models includes patches with
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padding, which are subsequently clipped to form patches with dimensions of 54
x 54 pixels. Despite the applied padding on patch edges, some patches exhibit
pronounced transitions, resulting in a ‘checkerboard’ effect. To address this, we
reposition all patches 27 km left and right relative to their original positions and
recalculate the results. Subsequently, we average the outcomes from the three runs
to obtain the final SUPREME results. Finally, we sum all the individual days to
create aggregated products per melt season, measured in mm w.e. per year. Due to
memory constraints, we evaluate only the melt products per melt season rather than
at a higher temporal resolution.

4.3.5. EVALUATION

Evaluating SUPREME poses a considerable challenge. There is no observational
dataset providing Antarctic-wide surface melt data at such a high spatial resolution
for the past two decades. Consequently, we have to rely on various available products
to assess the performance of SUPREME. We compare SUPREME with in-situ data
(AWS), another downscaled RACMO product (RACMO 2 km), and various remote
sensing products (QuikSCAT, PMW remote sensing, and a melt-slush product from
optical remote sensing), as was described in Section 4.2.3.

Moreover, we also conduct a comparative analysis of SUPREME against RACMO
5.5 km, focusing exclusively on the Antarctic Peninsula, where RACMO 5.5 km data
are available. We compare SUPREME and RACMO 5.5 km for the testing period
from 2010 to 2019 and employ four key metrics: coefficient of determination (R?),
Root Mean Square Error (RMSE), bias, and Pearson Correlation Coefficient (PCC).
Firstly, R? is a statistical measure indicating the proportion of the variance in
the reference data that can be explained by the prediction data in a regression
model. Secondly, the RMSE gives us an understanding of the average size of the
differences between predicted and observed values, effectively quantifying the overall
performance of the model by taking into account both the bias and variance of the
errors. A lower RMSE signifies a better fit of the model to the data. Thirdly, bias
refers to the systematic deviation of the super-resolution model predictions from
the observed values. The bias provides insight into any consistent overestimation
or underestimation tendencies present in the model’s predictions compared to the
reference data. Finally, the PCC evaluates the linear relationship between predicted
and observed values, with a scale ranging from —1 to 1. A PCC of 1 indicates a
perfect positive linear relationship, signifying that the model accurately captures the
temporal variability of the data. These four metrics collectively offer a comprehensive
evaluation of our model’s performance. While R?> measures how well a regression
model fits the observed data, RMSE provides the overall accuracy, bias evaluates the
systematic errors or deviations in predictions compared to the true value, and PCC
assesses the linear relationship.

4.4, RESULTS

In the results section, we begin by analyzing the performance of SUPREME on
the testing dataset. At the end of Section 4.4.1, we demonstrate that the testing
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metrics closely align with the training metrics, indicating that the model generalizes
effectively. Subsequently, in the remaining results (Sections 4.4.2 — 4.4.5), we
incorporate the training region and period for further analysis, while consistently
indicating instances where data were included in the training of the super-resolution
model.

Median surface melt of testing period (2010-2019)
(a) ian RACMO 5.5 km (b) i (¢) Annual comparison
; 500

Number of pixels [-]

Performance metrics
(d) RMSE

(g)PCC

Figure 4.3: Comparison of RACMO 5.5 km and SUPREME over the Antarctic Peninsula for
the testing period (2010-2019), with median melt values for RACMO 5.5 km in (a), median
melt values for SUPREME in (b), and a scatter plot with annual RACMO 5.5 km and
SUPREME melt values and regression line in (c). The performance metrics with the root
mean square error (RMSE), bias, coefficient of determination (R2), and Pearson correlation
coefficient (PCC) are shown in (d), (e), (f), and (g), respectively, where the upper panels
show spatial maps and the bottom panels show the distribution of the data in kernel density
estimate (KDE) plots, displaying the data per melt regime based on the median RACMO 5.5
km melt values. Pixels with surface melt rates below 10 mm w.e. yr~! and pixels elevated
more than 1700 meters above sea level are excluded from the analyses, as their inclusion
could artificially enhance the performance metrics.

4.4.1. PERFORMANCE ON TESTING DATASET

SUPREME demonstrates strong performance during the testing melt seasons from
2010 to 2019 when compared to the reference data from RACMO 5.5 km, as
illustrated by the performance metrics displayed in Figure 4.3. Notably, SUPREME
exhibits slightly higher melt values in specific regions, including the northern part
of the Larsen C Ice Shelf, the collapsed A-68 iceberg in 2017 (Braakmann-Folgmann
et al., 2022), George VI, and Wilkins ice shelves (see Figure 4.3a and 4.3b) For the
locations of iceberg A-68, Wilkins, and George VI ice shelves see Figure 4.1. These
areas align with locations exhibiting higher RMSE (Figure 4.3d) and bias (Figure
4.3e) values. RMSE and bias values vary noticeably among different melt regimes
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(i.e., 10-100, 100-200, 200-300, 300-400, and over 400 mm w.e. yr ). The highest
RMSE and bias are found for the high melt regime (exceeding 400 mm w.e. yr~}),
with median values of 103 and 325 mm w.e. yr~!, respectively. This indicates that
SUPREME’s performance could be improved, particularly for high melt rates. The
lowest R? values (Figure 4.3f) are observed for both low and high melt regimes,
specifically at the center of the Larsen C Ice Shelf, and the center and south of
George VI Ice Shelves, with values around —1, indicating that SUPREME does not
adequately capture the variability in surface melt observed in RACMO 5.5 km.

The PCC (Figure 4.3g) is less dependent on the melt regimes and has a median
value of 0.86, indicating a high level of correlation between the annual melt values
predicted by RACMO 5.5 km and SUPREME for most of the Antarctic Peninsula. At
the grounding zone of the Larsen C Ice Shelf and the George VI Ice Shelf, the PCC
surpasses 0.90, underlining a particularly strong correlation in these regions.

To assess the performance of SUPREME and RACMO 5.5 km during the training
(2001-2002 to 2006-2007) and non-training (2007-2008 to 2018-2019) periods, we
conducted a paired t-test. We compared the yearly mean RMSE values between
RACMO 5.5 km and SUPREME for the six melt seasons of the training period
against two segments of the non-training period: the first segment (2007-2008 to
2012-2013) and the second segment (2013-2014 to 2018-2019). The results indicate
no significant difference in RMSE between RACMO 5.5 km and SUPREME for both
the training and non-training periods. Supplementary Table 4.1 presents the yearly
average performance metrics of surface melt for the Antarctic Peninsula and Larsen
C during the training (2001-2002 to 2006-2007) and non-training (2007-2008 to
2018-2019) periods.

4.4.2. COMPARISON OF SUPREME AND RACMO 27 KM
TEMPORAL ANALYSIS

Figure 4.4 shows consistent year-to-year area-integrated variability among RACMO
27 km and SUPREME (with a PCC > 0.95 for all study regions), despite notable
quantitative differences in the modeled values. Between 2001-2002 and 2018-2019,
the RACMO 27 km model projects an annual surface melt over the entire Antarctic
Ice Sheet of 98.5 and a standard deviation of the inter-annual variability of + 22.0
Gt, whereas the SUPREME model reports lower numbers at 79.5 + 14.9 Gt yr !
(Figure 4.4a). For the Antarctic Peninsula (Figure 4.4b) and Larsen C (Figure 4.4c),
RACMO 27 km yields higher annual melt values (37.3 + 10.7 Gt and 13.6 + 4.6 Gt,
respectively) than SUPREME (34.6 + 9.1 Gt and 12.4 + 4.1 Gt, respectively). When
comparing RACMO 27 km and SUPREME in the remainder of the ice sheet, we
observe similar annual surface melt values for most ice shelves. However, a notable
exception is Shackleton (Figure 4.4f), where RACMO 27 km reports approximately 2
Gt more surface melt (6.0 + 2.2 Gt) compared to SUPREME (4.3 + 1.4 Gt).

SPATIAL ANALYSIS

To get a better understanding of when and where RACMO 27 km tends to result in
higher surface melt values than SUPREME, we can examine the spatial patterns of
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Figure 4.4: Temporal evolution of surface melt for the melt seasons from 2001 to 2019,
represented by RACMO 27 km (in orange), SUPREME (in green), and RACMO 5.5 km (in
purple), with dashed lines representing the 2001-2019 mean. RACMO 5.5 km data are
exclusively available for the Antarctic Peninsula (b) and Larsen C (c). For the Antarctic-wide
time series (a), and specific locations including Roi Baudouin (d), Amery (e), Shackleton (f),
and Abbot (g), only RACMO 27 km and SUPREME data are depicted. Caution is advised
when interpreting the datasets marked with an asterisk (a—c), as a part of these data were
used in training SUPREME. The extent of the selected regions can be found in Supplementary
Figure 4.4. Relevant statistics used to compare RACMO 27 km and SUPREME, including root
mean square error (RMSE), bias, coefficient of determination (R2), and Pearson correlation
coefficient (PCC), are listed.

Larsen C (Figure 4.5a), Roi Baudouin (Figure 4.5b), Amery (Figure 4.5c), Shackleton
(Figure 4.5d), and Abbot (Figure 4.5e) ice shelves. These five ice shelves are selected
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for closer examination due to their relatively high surface melt rates.

The lower surface melt values in SUPREME compared to RACMO 27 km presented
in Figure 4.4 are not uniform; rather, surface melt exhibits localized patterns of
both lower and higher melt values. Lower surface melt values for SUPREME are
observed over the Larsen C Ice Shelf, especially during the melt season of 2011-2012,
as well as across all melt seasons over the Shackleton Ice Shelf. One exception is
the northern part of the Shackleton Ice Shelf, where SUPREME shows a peak in
surface melt with an average annual value of approximately 600 mm w.e., while
RACMO 27 km has an average of around 160 mm w.e. annually. These high melt
values for SUPREME can likely be attributed to the extremely low albedo values in
the vicinity of this area (see Supplementary Figure 4.5), connected to a persistent
polynya adjacent to the Shackleton Ice Shelf (Nihashi & Ohshima, 2015).With median
albedo values of this open water of around 0.1, SUPREME most likely misidentifies
this phenomenon as intense surface melt. For specific areas within the grounding
zone, SUPREME consistently demonstrates higher melt values than RACMO 27 km.
This is especially evident during the high melt season of 2012-2013 for the center
part of the grounding zone of Roi Baudouin, the eastern part of Amery, and the
northern part of Abbot ice shelves.

DATA SPREAD ANALYSIS

Figure 4.6 quantifies the surface melt values of RACMO 27 km and SUPREME,
distinguishing between values on the floating ice shelf and in the grounding zone
(see Supplementary Figure 4.4 for precise locations). The surface melt range in
RACMO 27 km and SUPREME is assessed using the 5th (Q5) and 95th (Q95)
percentiles. Notably, there is a consistently wider range of surface melt in SUPREME
compared to RACMO 27 km, observed in both the ice shelf and grounding zone. In
contrast, the mean and median values for both ice shelves and grounding zones are
generally higher in RACMO 27 km compared to SUPREME (except for the Amery Ice
Shelf), reaffirming the lower melt volumes in SUPREME in comparison to RACMO
27 km.

Examining the floating ice shelves, the most substantial discrepancy between
RACMO 27 km and SUPREME is observed on the Shackleton Ice Shelf. RACMO 27
km shows a Q5-Q95 range of 73 to 159 mm w.e. yr~!, while SUPREME exhibits a
wider range spanning from 2 to 659 mm w.e. yr~! (Figure 4.6d). The elevated melt
values (Q95) in SUPREME for the Shackleton Ice Shelf are also visually evident in
Figure 5, particularly in the northern sector of the shelf. Also, on the grounding
zone, SUPREME consistently displays a larger Q5-Q95 range compared to RACMO
27 km. The most pronounced differences are seen in the cases of Amery (Figure
4.6c) and Abbot (Figure 4.6e). RACMO 27 km shows a Q95 value of 195 mm w.e.
yr ! for Amery, while SUPREME vyields a higher value of 385 mm w.e. yr . The
contrast is even more pronounced for Abbot, with RACMO 27 km at 165 mm w.e.
yr~! and SUPREME at 711 mm w.e. yr~!.
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Figure 4.5: Surface melt for (a) the average of melt seasons of 2001-2019, (b) low melt
season 2011-2012, and high melt season 2012-2013 for RACMO 27 km, SUPREME, and the
difference between RACMO 27 km and SUPREME. Caution is advised when interpreting the
datasets marked with an asterisk (i.e., Larsen C, panel a), as a part of these data were used
in training SUPREME.

4.4.3. COMPARISON OF SUPREME AND AWS

Figure 4.7 presents a comparison between RACMO 5.5 km, RACMO 27 km, and
SUPREME with five AWS. Notably, SUPREME exhibits a lower RMSE than RACMO
27 km for all five AWS, and a lower absolute bias for AWS14, AWS15, and AWS18.
The largest difference between SUPREME and RACMO 27 km is observed for AWS18
(Figure 4.7d). For this AWS, SUPREME vyields an RMSE of 87 mm w.e. yr‘1 and a
bias of 23 mm w.e. yr~!, compared to the 244 mm w.e. yr~! RMSE and -216 mm
w.e. yr~! bias for RACMO 27 km. Due to its coarse resolution, RACMO 27 km fails
to resolve the surface melt in areas with highly variable topography, such as around
AWS18. This AWS is situated near the grounding line of the Larsen C ice shelf,
east of the Antarctic Peninsula mountain range, and is prone to fohn events that
contribute to surface melt (Kuipers Munneke et al., 2018; Wiesenekker et al., 2018).
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Figure 4.6: The range of surface melt values for the ice shelves and grounding zones,
showing the mean (crosses), median (vertical lines), 5th (Q5), and 95th (Q95) percentile
values, for the melt seasons spanning from 2001 to 2019. The data are presented for both
RACMO 27 km (in orange) and SUPREME (in green) at the ice shelf and grounding zone of
(a) Larsen C, (b) Roi Baudouin, (c) Amery, (d) Shackleton, and (e) Abbot. Caution is advised
when interpreting the datasets marked with an asterisk (i.e., Larsen C in panel a), as a part
of these data were used in training SUPREME.

4.4.4. COMPARISON OF SUPREME AND OTHER SURFACE MELT
PRODUCTS

Given that RACMO 5.5 km data are limited to the Antarctic Peninsula, a
comprehensive Antarctic-wide assessment between SUPREME and RACMO 5.5 km
dataset is not feasible. Here, we proceeded to compare SUPREME with other melt
products, i.e., RACMO 2 km, QuikSCAT, PMW remote sensing, and an optical remote
sensing product that provides information on both melt and slush. Both RACMO
2 km and QuikSCAT offer quantitative data on surface melt in mm w.e., whereas
PMW and optical remote sensing techniques provide binary outputs without specific
quantification of melt volume.

Each of the validation datasets has distinct underlying methodologies (as was
explained in Section 4.2.3), resulting in large disparities in local surface melt patterns,
as illustrated in Figure 4.8. In addition, Figure 4.9 illustrates the comparison
between SUPREME and the validation products using both a scatter plot and several
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Figure 4.7: Surface melt per melt season by RACMO 27 km (in orange), SUPREME (in
green), RACMO 5.5 km (in purple), and automatic weather stations (AWS) (in black). Data
are collected from five automatic weather stations: AWS14 (a), AWS15 (b), AWS17 (c), AWS18
(d), and Neumayer (e). The Root Mean Squared Error (RMSE), bias, and coefficient of
determination (R?) are represented by the color of the respective model in comparison to
AWS measurements. Supplementary Figure 4.2 displays the locations of the AWS.

performance metrics. In the period from 2001 to 2009 (Figure 4.8a and Figure 4.9a),
the Larsen C Ice Shelf should be considered with caution, as this dataset was used
during training of SUPREME. For the Roi Baudouin Ice Shelf, both QuikSCAT and
PMW data reveal higher surface melt levels in the eastern region (150 mm w.e. yr—!
and 35 melt days yr~!, respectively) compared to the western area (75 mm w.e.
yr ! and 20 melt days yr~!, respectively). This gradient, however, is not as clearly
discernible in the RACMO 27 km, RACMO 2 km, or SUPREME datasets. Also, the
R? values are low when comparing SUPREME to QuikSCAT (-2.18), and slightly
higher but still very low for RACMO 27 km (-1.77) and RACMO 2 km (-0.98), as
illustrated in Figure 4.9a. For the Amery Ice Shelf, both SUPREME and RACMO 2
km display some high surface melt values (250 mm w.e. yr!), particularly on the
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Figure 4.8: Spatial comparison of SUPREME to validation datasets across two distinct
periods: (a) 2001-2009 and (b) 2013-2019, encompassing Larsen C, Roi Baudouin, Shackleton
ice shelves, and Mary Byrd Land. For the 2001-2009 period, SUPREME is compared to
RACMO 27 km, RACMO 2 km, QuikSCAT, and passive microwave (PMW) remote sensing
(note that the latter employs a different unit than the other methods). In the 2013-2019
period, SUPREME is compared to RACMO 27 km, RACMO 2 km, a surface melt and slush
product from optical remote sensing, and PMW remote sensing (both optical and PMW
measurements employ different units than the other methods). Caution is advised when
interpreting the dataset marked with an asterisk (i.e., SUPREME, Larsen C, 2001-2009), as a
part of these data were used during the training of SUPREME.

southern part of the ice shelf. Likewise, QuikSCAT and PMW also show increased
melt in the southern region (150 mm w.e. yr~' and 40 melt days yr~!, respectively),
but the precise locations with the highest melt differ. QuikSCAT shows the highest
melt values toward the southeast, whereas PMW tends toward the center-south,
gradients that are not present in SUPREME. It is worth noting that RACMO 27 km
and QuikSCAT and RACMO 27 km report surface melt below 200 mm w.e. yr—! for
Amery, while SUPREME and RACMO 2 km register values exceeding 500 mm w.e.
yr 1. The smoother representation of surface melt by RACMO 27 km and QuikSCAT,
attenuating peak values, is likely a result of their coarser spatial resolutions (i.e., 27
km for RACMO 27 km, and 25 km as a native spatial resolution for QuikSCAT).
Likewise, the Shackleton Ice Shelf displays elevated melt values in SUPREME and
RACMO 2 km, exceeding 400 mm w.e. at the southern grounding line. Moreover,
in the northern region, SUPREME shows melting rates exceeding 500 mm w.e. yr—'.
The high surface melt values at the southern grounding line of the Shackleton
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Figure 4.9: Comparison of SUPREME to validation datasets across two distinct periods: (a)
2001-2009 and (b) 2013-2019, encompassing Larsen C, Roi Baudouin, Shackleton ice shelves,
and Mary Byrd Land, complementing Figure 4.8. The scatter plots compare SUPREME
with validation products (i.e., RACMO 27 km, RACMO 2 km, QuikSCAT, passive microwave
(PMW) remote sensing, and surface melt and slush product), with each line representing the
least-square fit. The Root Mean Squared Error (RMSE), bias, and coefficient of determination
(R%) are represented by the color of the respective validation data in comparison to
SUPREME, for PMW and the melt and slush product only the R? is included. Caution is
advised when interpreting the datasets marked with an asterisk (i.e., Larsen C, panel a), as
a part of these data were used in training SUPREME. Supplementary Figure 4.4 shows the
spatial extents analyzed.
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Ice Shelf are also observed in other validation products, exceeding 250 mm w.e.
yr~! in QuikSCAT, and 40 melt days yr~! in PMW. For the Abbot Ice Shelf, the
most substantial melt values are concentrated in the southern region bordering the
Amundsen Sea. Here, SUPREME depicts surface melt values exceeding 400 mm w.e.
yr‘l, whereas RACMO 27 km, RACMO 2 km, and QuikSCAT melt values remain
under 200 mm w.e. yr L.

Moving to the second comparison period (2013-2019) in Figure 4.8b and Figure
4.9b, we compare SUPREME to RACMO 27 km, RACMO 2 km, a melt and slush
product derived from optical imagery, and PMW. As noted in Section 4.2.3, since
optical imagery detects meltwater solely when slushy or ponded water is present,
they do not represent wet snow that may later refreeze within the firn layer.
Therefore, SUPREME is expected to show similar melt patterns to the optical melt
and slush product only in locations characterized by a low firn air content, where
meltwater accumulates at the surface. Figure 4.8b shows that the melt and slush
product predominantly reveals high values around the grounding line, indeed often
corresponding to locations with supraglacial melt lake presence (e.g., Stokes et al.,
2019). Some of these locations align with high melt values detected in SUPREME,
such as the central part of the grounding line of the Roi Baudouin Ice Shelf and
the southern part of the grounding line of the Amery Ice Shelf, where surface melt
values range between 250 and 500 mm w.e. yr~'. For the Roi Baudouin Ice Shelf,
the RMSE values are relatively low compared to the other ice shelves, standing at
33 mm w.e. yr~! for RACMO 27 km and 38 mm w.e. yr! for RACMO 2 km, as
illustrated in Figure 4.9b. However, there are also instances where there is not a
clear overlap between surface melt in the melt and slush product and SUPREME, as
observed over the western part of the Amery Ice Shelf. Here, in the optical remote
sensing product, melt or slush is detected on average for at least three months
per year, while RACMO 27 km, SUPREME, RACMO 2 km, and the PMW product
show low melt values around 50-100 mm w.e. yr~! or 5 melt days yr~!. Similar
to the 2001-2009 period, there are also variations in melt patterns between PMW
and SUPREME for 2013-2019, with PMW displaying a smoother surface melt pattern
with fewer high-resolution details compared to SUPREME. For both the Shackleton
and Abbot ice shelves, we observe relatively large RMSE values, ranging from 51 to
114 mm w.e. yr 1.

4.4.5. IMPORTANCE OF PHYSICAL CONSTRAINTS

In Sections 4.4.2, 4.4.3, and 4.4.4, we exclusively presented SUPREME, which uses
the SRResNet model architecture along with three physical constraints to incorporate
remote sensing data. To assess the importance of these individual physical
constraints, Figure 4.10a presents models trained exclusively with each physical con-
straint (SUPREMEply encoderr SUPREMEqniy spotlighters SUPREMEqn1y physical activation)-
Additionally, models with all physical constraints but only one of the remote sensing
input features are depicted (SUPREME, albedo» SUPREME,; elevation)- Figure 4.10b
showcases SUPREME with all three physical constraints alongside SRResNet without
any physical constraints. Additionally, Supplementary Figure 4.7 shows the mean,
median, and spread of the datasets presented in Figure 4.10, and Supplementary

116



4.4. RESULTS

Table 4.2 shows the performance metrics of the different super-resolution models
compared to RACMO 27 km.

(a) Evaluation physical constraints (b) Comparison
Larsen C* Roi Baudouin Amery Larsen C* Roi Baudouin Shackleton
) 50 050k 3 > =

SUPREME
only enconder
RACMO 27 km

SUPREME
only spotlighter

w
=
w
[4
[
2
7]

c
S|
wsgid
=5
ws
3
5%
ng
>
s
5

0 100 200 300 400 500
Surface melt [mm w.e. per year]

SUPREME
no albedo

SUPREME
no elevation

Figure 4.10: Evaluating the performance of surface melt for the average of melt seasons
of 2001-2019 across different model architectures. (a) SUPREME with individual physical
constraints (only encoder, only spotlighter, only physical activation), and SUPREME with the
exclusion of albedo and elevation input features from the model architectures, respectively.
(b) Comparative data featuring RACMO 27 km, SUPREME with all physical constraints and
input features, and SRResNet without any physical constraint and with both albedo and
elevation excluded from the model architecture. Caution is advised when interpreting the
datasets marked with an asterisk (i.e., Larsen C in panels a and b), as a part of these data
were used in training SUPREME.

The physical constraints responsible for integrating encoded albedo and elevation
data into the model architecture (SUPREMEqnyy encoder), incorporating spotlighted
albedo and elevation data (SUPREMEqnyy spotighter), and applying the physical
activation function (SUPREMEqn1y physical activation) demonstrate a similar melt pattern
as SUPREME and RACMO 27 km over the Larsen C Ice Shelf, exhibiting a
south-north melt trend ranging from roughly 100 to 400 mm w.e. yr~!. However,
beyond the Antarctic Peninsula, SUPREMEqn1y encoderr SUPREMEqn1y spotlighter, and
SUPREME 1y physical activation compare less favorably to SUPREME and RACMO 27
km. The median annual melt values over the Roi Baudouin, Amery, Shackleton,
and Abbot ice shelves are higher for SUPREME (averaging 61 mm w.e. yr ') and
RACMO 27 km (averaging 88 mm w.e. yr~'), compared to SUPREMEgn1y encoder
(averaging 37 mm w.e. yr‘l), SUPREMEqn1y spotlighter (averaging 50 mm w.e. yr‘l),
and SUPREMEqnly physical activation (averaging 44 mm w.e. yr‘l) (see Supplementary
Figure 4.7). In comparison to RACMO 27 km on an Antarctic-wide scale, SUPREME
exhibits an RMSE of 32 mm we. yr!, while SUPREMEnly encoder Shows a
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slightly higher value at 33 mm we. yr'. However, SUPREMEqnyy spotiighter and

SUPREME iy physical activation €xhibit notably higher RMSE values of 55 mm w.e. yr*
and 53 mm w.e. yr~! respectively (see Supplementary Table 4.2).

Similar observations apply to models that lack either albedo (SUPREME,,, abedo) OF
elevation (SUPREME ¢levation), as they do not generalize well beyond the Antarctic
Peninsula. These models also tend to underestimate surface melt compared to
SUPREME and RACMO 27 km, as shown by their median annual melt values over
the Roi Baudouin, Amery, Shackleton, and Abbot ice shelves for SUPREME,, aibedo
(averaging 49 mm w.e. yr ') and SUPREME, clevation (averaging 23 mm w.e. yr— ')
(see Supplementary Figure 4.7). When compared to RACMO 27 km across Antarctica,
SUPREME shows an RMSE of 32 mm w.e. yr~!, akin to SUPREME apedo. However,
SUPREME,g elevation displays a notably higher RMSE of 60 mm w.e. yr‘1 (see
Supplementary Table 4.2).

Besides the finding that models lacking physical constraints or input features
display less melt on the ice shelves compared to RACMO 27 km and SUPREME,
there are also discrepancies in spatial patterns. The SUPREME model, incorporating
all input features, shows heightened melt values in the grounding zones, aligning
with observations from the validation datasets (Figure 4.8). However, models
without albedo data (i.e., SUPREME, apedo and SRResNET) indicate surface melt
extending up to 50 km inland. This pattern persists with SUPREMEqniy encoder and
SUPREME gy spotlighter- This is most clearly visible in the case of the Shackleton Ice
Shelf, where values range between 50 and 150 mm w.e. yr‘l, whereas RACMO 27
km, SUPREME, and the validation datasets in Figure 4.8 demonstrate values close
to zero mm w.e. yr '. Therefore, incorporating both albedo and elevation data is
crucial for accurately representing melt patterns outside the training region.

4.5. DISCUSSION

Our study illustrated that SUPREME, which incorporates physical constraints
derived from albedo and elevation observations, outperforms models that lack
such constraints. Notably, the single-image super-resolution model, SRResNet,
which was trained solely on RACMO 27 km, and the models lacking at least one
physical constraint, exhibited poor performance outside of the Antarctic Peninsula.
The melt patterns observed in these models differed notably from those seen in
RACMO 27 km, RACMO 2 km, or QuikSCAT, with most showing less surface melt
(Supplementary Figure 4.7). On the other hand, in some cases, models lacking
albedo (i.e., SUPREME, abedo) Or albedo and elevation (i.e., SRResNet) led to
increased melting further inland, which was not present in other melt products.
This poor performance underscored the need to integrate both albedo and elevation
data in an efficient manner into the super-resolution model in order to produce an
accurate downscaled surface melt product. The incorporation of additional input
features, such as climate variables like wind speed and direction, could potentially
enhance the super-resolution product even further.

Integrating remote sensing data through deep learning into the downscaling
of RCMs presents considerable promise for multiple research purposes. Our
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approach could serve as a proof-of-concept and be extended to other studies.
Firstly, besides RACMO 27 km, our developed super-resolution algorithm could be
extended to other RCMs like MAR (Agosta et al, 2019). Secondly, the potential
application of super-resolution techniques extends across diverse datasets, including
observations, model simulations, and emulated data (Vandal et al., 2017). Lastly,
the super-resolution architecture is not limited to surface melt; it can enhance
various other RCM variables. A critical advancement for Antarctica could involve
applying such a super-resolution technique not only to surface melt but also to
basal melt (e.g., Burgard et al, 2023), bed topography (e.g., Cai et al., 2023), or
sea ice motion (e.g., Petrou et al., 2018). In this study, albedo and elevation are
identified as relevant remote sensing data for downscaling surface melt, given their
correlation with surface melt. However, downscaling other variables from RCMs may
require the incorporation of completely different remote sensing data, depending on
the physical processes that influence those variables. For example, in the case of
downscaling surface temperature, Li et al. (2019) demonstrated the value of including
elevation, reflectance from optical remote sensing, vegetation indices, and elevation
in the downscaling process.

When assessing the downscaled surface melt product developed with the SUPREME
architecture, we observe favorable comparisons against RACMO 5.5 km, AWS, and
various remote sensing products associated with surface melt. Over the Antarctic
Peninsula, SUPREME performed well, exhibiting a bias of -22 mm w.e. yr~!' for
melt pixels when compared to RACMO 5.5 km. Additionally, in comparison to AWS,
SUPREME exhibited an average RMSE of 81 mm w.e. yr™!, outperforming RACMO
27 km, which had an average RMSE of 129 mm w.e. yr~!. However, evaluating
SUPREME’s performance beyond the Antarctic Peninsula presented challenges. We
conducted comparisons with RACMO 2 km, QuikSCAT, PMW remote sensing, and an
optical remote sensing-derived melt and slush product. The substantial discrepancies
between these datasets made direct assessments challenging. Although some melt
patterns, such as elevated surface melt along the grounding zones of the studied ice
shelves, were consistent with most of the other products, others, like the heightened
melt values north of the Shackleton Ice Shelf, were distinctive to SUPREME and
appeared to be an artifact due to low albedo values from the nearby ocean.
Conducting follow-up studies to further compare SUPREME against validation data,
such as with RACMO data downscaled using different techniques, e.g., a more
detailed comparison with the statistically-downscaled RACMO product by Noél et al.
(2023), other RCMs like MAR (Agosta et al., 2019), or quantitative meltwater products
from PMW (currently available for Greenland from Zheng et al., 2022), may provide
additional insights into meltwater volumes on Antarctica. Additionally, while this
study focused on annual surface melt volumes due to memory constraints, future
research is planned to study the intra-annual surface melt dynamics of SUPREME
and compare them across various validation datasets.

Opting for deep learning over traditional statistical or dynamical downscaling
methods to enhance the resolution of RCMs, SUPREME uses the capabilities of
deep learning to capture complex patterns and non-linear dependencies in the
data. While statistical and dynamical downscaling methods have played instrumental
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roles in climate research (e.g., Ahmed et al, 2013; Noél et al, 2016, 2023;
Themell et al., 2012), deep learning offers an alternative downscaling approach by
incorporating diverse datasets without the need for statistical linear relationships
and integrating good generalization capabilities for efficient climate parameter
downscaling. However, significant steps still need to be taken, as the inherent “black
box” nature of deep learning poses challenges in interpreting deep learning models.
Anticipated efforts in enhancing the interpretability of the model are expected to
refine its overall effectiveness and integration into climate research methodologies
(Guidotti et al., 2018; La Rocca & Perna, 2022; Savage, 2022).

4.6. CONCLUSION

The relatively coarse spatial resolution in RCMs is insufficient for accurately capturing
small-scale variations in surface melt across the Antarctic Ice Sheet. In response, we
adapted the super-resolution architecture of SRResNet with physical constraints to
create SUPREME, a physically-constrained super-resolution model that incorporates
remote sensing data—specifically albedo and elevation—into the architecture. Using
the SUPREME architecture, the surface melt component from RACMO at 27 km
was downscaled to 5.5 km resolution. SUPREME achieved excellent out-of-sample
performance within the training region, encompassing the Antarctic Peninsula, as
validated by comparisons with AWS and RACMO 5.5 km. Outside the training region,
SUPREME exhibited year-to-year variations that closely mirrored those of RACMO 27
km for individual ice shelves and on an Antarctic-wide scale, while also providing
additional spatial details absent in RACMO 27 km. Moreover, comparing SUPREME
with other melt products, like RACMO 2 km, QuikSCAT, PMW remote sensing, and
optical remote sensing, showed similar melt patterns. This study underscores the
potential of multi-image super-resolution in downscaling climate variables. Beyond
the input features and model architecture examined in this research, numerous other
combinations deserve exploration to further enhance the resolution of RCMs.
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Supplementary Figure 4.1: Relation between RACMO 27 km and RACMO 5.5 km surface
melt. The red line indicates the regression line, while the black dashed line shows the
1:1 line, highlighting RACMO 5.5 km’s tendency to underestimate surface melt compared to
RACMO 27 km. RMSE and bias are in mm w.e. yrL.
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Supplementary Figure 4.2: Locations of the five AWS used in this study. For additional

details on the AWS, see Jakobs et al. (2020). Elevation in the background map is from the
Reference Elevation Model of Antarctica (REMA) (Howat et al, 2019).
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Supplementary Figure 4.3: Location of the thirteen patches used in training the
super-resolution models, all positioned on the Antarctic Peninsula. The red box in the upper
right corner highlights the specific location of the Antarctic Peninsula, with a background
image of the Cryosat-2 elevation map (Helm et al., 2014).

al . Ice shelf
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Supplementary Figure 4.4: Overview of the five highlighted regions in this study, featuring
an Antarctic-wide perspective (a) along with specific views of Larsen C (b), Abbot (c), Roi
Baudouin (d), Amery (e), and Shackleton (f) ice shelves. The pixels in this figure have a 27
km resolution matching the RACMO 27 km resolution, and for data with 5.5 km resolution
(albedo, elevation, RACMO 5.5 km), all data within these pixels were considered. Region-wide
assessments involved selecting all pixels, ice shelf-wide assessments only considered the red
pixels, and grounding zone assessments focused solely on the green ones.
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Supplementary Figure 4.5: The mean surface melt for SUPREME (a), along with the median
(b) and standard deviation (c) of albedo for 2001-2019. Caution is advised when interpreting
the datasets marked with an asterisk (i.e., Larsen C), as a part of these data were used in
training SUPREME.
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Supplementary Figure 4.6: The two physical activation functions (albedo Q5 and elevation)
implemented in the SUPREME architecture are depicted by black dashed lines. The weighted
scatter plot represents normalized surface melt data for (a) RACMO 5.5 km between
2001-2019 on the Antarctic Peninsula, (b) RACMO 27 km between 2001—2019 Antarctic-wide,
and (c) QuikSCAT between 2001 and 2009 Antarctic-wide.
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Supplementary Figure 4.7: Boxplots of yearly average surface melt for the melt seasons of
2001-2019 at every pixel across different model architectures, with median (in blue) and
mean (in orange) values in mm w.e. yr~!. Corresponding spatial maps are provided in Figure
4.10, and the spatial extents analyzed are shown in Supplementary Figure 4.4. Caution is
advised when interpreting the datasets marked with an asterisk (i.e., Larsen C in panel a), as
a part of these data were used in training SUPREME.
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Table 4.1: Analysis of the yearly average RMSE and bias of SUPREME compared to RACMO
5.5 km and RACMO 27 km within the training period (2001-2006) and the subsequent period
(2007-2019). RMSE and bias are in mm w.e. yr~!. The spatial extents analyzed are shown in
Supplementary Figure 4.4.

(a) Data used during training (2001-2006)

Comparison | RMSE  Bias R®

SUPREME vs RACMO 5.5 km (Antarctic Peninsula) 4.8 -1.4 096
SUPREME vs RACMO 27 km (Antarctic Peninsula) 4.4 -3.4 099
SUPREME vs RACMO 5.5 km (Larsen C) 2.6 -0.7 0.89
SUPREME vs RACMO 27 km (Larsen C) 1.6 -1.2 097

(b) Data not used during training (2007-2019)
Comparison | RMSE Bias R®

SUPREME vs RACMO 5.5 km (Antarctic Peninsula) 5.5 45 0.84
SUPREME vs RACMO 27 km (Antarctic Peninsula) 2.8 -2.1 096
SUPREME vs RACMO 5.5 km (Larsen C) 2.5 1.8 0.73
SUPREME vs RACMO 27 km (Larsen C) 1.5 -1.1 0.93

Table 4.2: Antarctic-wide performance metrics of deep learning model architectures compared
to RACMO 27 km. RMSE and bias are in mm w.e. yr 1.

Model architecture RMSE Bias R?

SUPREME 32.1 6.7 0.77
SRResNet 33.0 9.1 0.79
SUPREME ply encoder 325 81 0.80
SUPREMEqply spotlighter 545 —1.6 051
SUPREMEonly physical activation 53.3 2.06 0.59
SUPREME,; albedo 321 84 0.80

SUPREME g elevation 604 84 041
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5. SEASONAL EVOLUTION OF ANTARCTIC MELTWATER LAKES

ABSTRACT

Antarctic ice shelves are increasingly at risk due to ocean warming and atmospheric
warming, with the latter leading to surface melting and the formation of meltwater
lakes. While some lakes refreeze, others drain into fractures, potentially destabilizing
ice shelves and raising sea levels. Traditional monitoring using optical satellite
imagery is limited by cloud cover, hindering the tracking of lake changes. This study
introduces ConvLSTM, a spatiotemporal deep learning model designed to analyze lake
evolution throughout a melt season. Initially trained on Greenland data from earlier
studies that identified refreezing and draining lakes, the model was then applied to
Antarctica. Using optical imagery to identify lake locations, the trained ConvLSTM
model used Sentinel-1 time series data to predict lake evolution and detect refreezing
and draining lakes during both the strong (2019-2020) and weak (2020-2021) melt
seasons. During the 2019-2020 season, 1346 lakes were identified (65% refreezing, 35%
draining), and in the 2020-2021 season, 1599 lakes were detected (99% refreezing, 1%
draining). No clear links were found between lake behaviors and ice shelf parameters,
indicating the need for further research and model refinement. This study marks an
initial step in leveraging deep learning and Sentinel-1 data to monitor supraglacial
lake evolution on Antarctic ice shelves.
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5.1. INTRODUCTION

UPRAGLACIAL lakes form when meltwater collects in surface depressions on
S glaciers and ice sheets. These lakes have been widespread on the floating ice
shelves surrounding the Antarctic continent for decades (Bell et al, 2018; Glasser
& Scambos, 2008; Kingslake et al, 2017). In Antarctica, supraglacial lakes typically
refreeze at the end of the melt season (Arthur er al., 2020). However, there are
instances where lakes slowly or rapidly drain (Arthur et al., 2020; Leeson et al., 2020;
Trusel et al., 2022).

Refreezing often starts with the formation of ice lids that grow outward from the
lake centers, eventually leading to complete refreezing (Arthur et al., 2020; Langley
et al., 2016); however, in some cases, lakes may maintain a liquid water core
(Dunmire et al., 2020; Koenig et al, 2015; Law et al, 2020; Miles et al., 2017).
When meltwater refreezes in situ, there is no mass change at the surface. On the
other hand, the drainage of lakes can significantly impact ice flow rates and ice shelf
stability.

Drainage can occur slowly over the ice surface through supraglacial channels or
rapidly through the ice via crevasses driven by the weight of the water, a process
known as hydrofracture (Nye, 1957). In Greenland, draining lakes route water to the
base of the ice sheet, increasing hydraulic pressure and temporarily lifting the ice
off the bed, enhancing basal sliding and ice flow rates (Christoffersen et al., 2018;
Maier et al., 2023; Tedesco et al, 2013; Tuckett et al, 2019; Zwally et al., 2002).
Although there is no direct evidence of hydrofracturing beneath lakes on grounded
Antarctic ice (Bell et al., 2018), draining lakes can still pose a hazard to ice-shelf
stability by acting as concentrated loads that flex and weaken the floating ice
(Banwell et al., 2013; MacAyeal & Sergienko, 2013; Scambos et al., 2009). Numerical
models, laboratory simulations, and in-situ observations suggest that the loading
and unloading associated with lake filling and draining lead to ice shelf flexing and
fracture formation both within and outside lake basins (Banwell et al., 2013, 2024;
Beltaos, 2002). A modeling study by Banwell et al. (2013) suggested that if these
fractures intersect other nearby lake basins, a chain reaction of further lake-drainage
events may be initiated, potentially contributing to large-scale ice shelf break-up. Ice
shelves that have undergone significant thinning due to surface and ocean-driven
ablation at the ice-shelf base (Gudmundsson et al., 2019; Pritchard et al., 2012;
Reese et al., 2018) may be particularly vulnerable to break-up due to hydrofracturing
(Banwell et al., 2013; Pattyn et al., 2018; Scambos et al., 2000). Therefore, monitoring
lake dynamics in Antarctica throughout the melt season is increasingly important,
including refreezing and draining events.

Most studies on the dynamics of supraglacial lakes are based on the analysis of
optical satellite imagery (Langley et al., 2016; Leeson et al, 2013; McMillan et al.,
2007; Williamson et al, 2018). However, optical sensors have limitations as they
cannot capture images through clouds or in darkness, restricting the number of
useful scenes available for analysis. Radar imagery can overcome some of these
limitations. Several studies on the Greenland Ice Sheet have demonstrated that
Synthetic Aperture Radar (SAR) data from Sentinel-1 can be effectively used to
identify lake drainages (Benedek & Willis, 2021; Miles et al., 2017; D. Zhu et al., 2023).
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Supraglacial lakes in SAR imagery appear as low backscatter because liquid water
increases the absorption of radar signals and also contributes to surface forward
scattering. As the lake surface starts to freeze, the scattering caused by bubbles
trapped in the ice increases, resulting in higher backscatter intensity. Similarly, lake
drainage events have been observed to follow a pattern of low to high backscatter,
however, the increase in backscatter is more abrupt and intense than refreezing lakes
due to the rough, debris-laden lake bottom after drainage (Benedek & Willis, 2021;
Johansson & Brown, 2012; Miles et al., 2017). While Benedek and Willis (2021) used a
statistical method based on Z-score, and Miles et al. (2017) used a method based on
Sentinel-1 thresholds, these approaches have shown efficacy only for a few individual
lakes. Implementing these methods on a continent-wide scale is challenging due
to several factors that affect radar backscatter, including speckle noise and varying
viewing angles, which contribute to the heterogeneity of the Sentinel-1 time series
(White et al., 2015).

Deep learning is effective at capturing non-linear patterns (LeCun et al., 2015),
making it valuable in fields such as weather nowcasting (Shi et al., 2015), traffic
flow prediction (Lv et al, 2014), medical imaging (Litjens et al., 2017), and stock
prediction (Ding et al., 2015), where handling complex, non-linear data is essential.
In this research, a ConvLSTM (Convolutional Long Short-Term Memory) model
shows promise for learning both spatial and temporal information from Sentinel-1
time series. ConvLSTM combines two deep learning techniques: Convolutional
Neural Networks (CNNs), which are good at identifying patterns in images, and
LSTM networks, which are good at understanding sequences over time. By merging
these two methods, ConvLSTM can track how features change in space and time
simultaneously. This architecture is commonly used for tasks like object detection
in videos (e.g., Song et al, 2018), and similarly, it could be applied to analyze the
evolution of meltwater lakes in Antarctica from Sentinel-1 time series, treating the
data as a sequence of spatiotemporal frames.

Here, we develop a deep learning algorithm to classify the evolution of supraglacial
lakes over a melt season (i.e., refreezing or draining) using Sentinel-1 data, guided
by optical imagery to pinpoint lake locations. For this, we use a ConvLSTM model,
which is able to learn both the spatial and temporal information from the Sentinel-1
time series. We train, validate, and test the algorithm on data from Greenland
and subsequently apply it on an Antarctic-wide scale across two melt seasons: the
relatively strong 2019-2020 melt season (e.g., Banwell ef al, 2021; Moussavi et al.,
2020) and the relatively weak 2020-2021 melt season (e.g., de Roda Husman et al.,
2024). Additionally, we assess various ice properties, such as lake area, lake volume,
velocity, and thickness, to determine if there are discernible differences between
refreezing and draining lakes.

5.2. DATA AND METHODS

5.2.1. IDENTIFYING LOCATIONS OF LAKES

We employ Sentinel-1 SAR data for our ConvLSTM deep learning model and, to
reduce data download and processing, first identify all lake centroids. To train,
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test, and validate the model, we use Sentinel-1 time series data from lakes on the
Greenland Ice Sheet, leveraging its established role in prior research on supraglacial
lake dynamics. The lake locations in Greenland are identified based on previously
published studies. Once developed, the model is applied to Antarctica using
Sentinel-1 data to predict lake behavior, with lake locations identified using optical
imagery.

LAKES ON THE GREENLAND ICE SHEET

To collect the training and validation lake centroids, we use lake shapefiles provided
by Zheng et al. (2023), which combine optical and SAR data to detect supraglacial
lakes on a Greenland-wide scale. We use lakes from the 2021 melt season, identified
as an average season within the analyzed melt seasons from 2017-2022 by Zheng
et al. (2023). Employing Sentinel-2 (Level-1C) and Landsat 8 (Collection 2 Tier 2 TOA
reflectance) imagery via Google Earth Engine (GEE), we filter for optical imagery
for the lakes with clear visibility (at least 90% non-clouded). From the extensive
inventory of supraglacial lakes identified by Zheng et al. (2023) (i.e., 5032 lakes in
the 2021 melt season), we manually curate a subset showing distinct refreezing or
draining patterns throughout the melt season. Due to limited resources, only 10% of
Zheng’s identified lakes are analyzed, and not all could be classified, as many were
either obscured by clouds or difficult to categorize as draining or refreezing. The
selection process, led by Sophie de Roda Husman and validated by co-authors Stef
Lhermitte and Bert Wouters, results in a dataset comprising 64 refreezing and 49
draining lakes. This dataset, which includes lake centroids of draining and refreezing
lakes, is split into training and validation sets in an 80:20 ratio.

For the testing data, we use an independent dataset from Glen et al. (2024), which
was derived from Landsat-8 and Sentinel-2 imagery over the Greenland Ice Sheet,
specifically focusing on the Russell/Leverett glacier catchment. Besides the outline
of the lakes, this dataset includes drainages and refreezing labels. The lakes are from
both the relatively weak 2018 and the relatively strong 2019 melt seasons, providing
a robust evaluation framework for our model. We use all lakes identified by Glen
et al. (2024), which equals to 250 refreezing lakes and 1760 draining lakes. Figure
5.1 provides an overview of the refreezing and draining lakes used for training,
validation, and testing the model.

LAKES ON THE ANTARCTIC ICE SHEET

We use Sentinel-2 (Level-1C) data from GEE to identify the lakes on the Antarctic
Ice Sheet for which we apply the trained ConvLSTM model. This approach allows
us to run the model only on identified lake locations rather than across the entire
Antarctic Ice Sheet. We filter all Sentinel-2 images during the Antarctic melt seasons
from November to March of 2019-2020 and 2020-2021 by a maximum cloud coverage
of 30% and a minimum sun elevation of 20° (Tuckett et al., 2021). The Sentinel-2
data is organized into time windows of 10 days, resulting in spatial-time windows
comprising a mosaic of up to seven images, clipped to a tile.

For each Sentinel-2 image, we assess the maximum extent and depth of lakes,
using a band-threshold-based method developed by Moussavi et al. (2020) and
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® Training | Refreezing lakes (n =51, N =102)
A Training | Draining lakes (n =39, N = 94)

@ Validation | Refreezing lakes (n =13, N = 25)
ovainingake A Validation | Draining lakes (n =10, N = 23)

from Figure 2 ’ © Testing | Refreezing lakes (n =250, N= 506)
A Testing | Draining lakes (n=1760, N = 3350)

Figure 5.1: Overview of the training, validation, and testing lakes used for developing the
ConvLSTM model, with refreezing lakes indicated by circles and draining lakes by triangles.
Training and validation data were manually selected based on a Greenland-wide study on
supraglacial lakes by Zheng et al. (2023), while testing data were classified in a study by
Glen et al. (2024) for the Russell/Leverett glacier catchment, as highlighted in the inset. The
variable ‘n’ in the legend indicates the total number of lakes, while ‘N’ represents the total
number of Sentinel-1 time series, which can exceed 1’ if a lake appears in multiple orbits.

further refined and automated by Tuckett et al. (2021). This method involves
combining different bands of the satellite images to create new bands, applying
thresholds to obtain masks for meltwater, rocks, and clouds, and finally estimating
the depth by considering the albedo and reflectance of water in a physically-based
model. The lake masks from individual spatial-time windows are combined to create
a maximum lake extent and lake depth for each observed melt season.

We only select larger lakes for our analysis because the dynamics of smaller
lakes are difficult to capture with Sentinel-1’s 10-meter spatial resolution. Moreover,
Krawczynski et al. (2009) found that only larger lakes, approximately 250-800 m
across and 2-5 m deep, contain a sufficient volume of water to drive a water-filled
crack to the base of an idealized 1 km-thick ice sheet. Therefore, we filter for lakes
with an extent larger than 500,000 m? and a volume of 100,000 m®.
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(a) Example of refreezing lake

(b) Example of draining lake
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Figure 5.2: Overview of a (a) refreezing and (b) draining lake, displaying Sentinel-1 (SAR)
and Sentinel-2/Landsat-8 (optical) time series selected from the training dataset. The optical
images are aligned with the closest SAR image in time. In cases where optical images were
unavailable due to cloud cover, a “No data” label was assigned in the optical time series.
The location of the refreezing and draining lakes are marked in Figure 5.1.
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5.2.2. SENTINEL-1 TIME SERIES

Now that the lake locations are known, we download Sentinel-1 images with a
pixel spacing of 10 by 10 meters, acquired in Interferometric Wide (IW) mode.
For Antarctica, these images are exclusively available in HH (horizontal-horizontal)
polarization. Although HV (horizontal-vertical) polarization could offer advantages
for distinguishing between draining and refreezing lakes (Benedek & Willis, 2021;
Miles et al, 2017), it is primarily available in Extra Wide (EW) mode for most
locations, which has a coarser pixel spacing of 25 by 25 meters or 40 by 40
meters. This coarser resolution limits the detectability of small lakes across most of
Antarctica.

Therefore, we retrieve HH-polarized Sentinel-1 time series based on the centroids
of the selected training, validation, and testing lakes and the application lakes
(Section 5.2.1). Utilizing 1000 by 1000 meter bounding boxes around these centroids,
we access Sentinel-1 data from GEE. We split the Sentinel-1 data by orbit, accounting
for varying backscatter intensities attributable to differing viewing geometries. Some
lakes fall within multiple orbits, resulting in more time series than individual lakes.

For the training, validation, and testing lakes in Greenland, our dataset comprises
102 refreezing and 94 draining lake time series for training, 25 refreezing and 23
draining lake time series for validation, and 506 refreezing and 3350 draining lake
time series for testing. An example of Sentinel-2 and Landsat-8 imagery, along with
Sentinel-1 time series for a draining lake and a refreezing lake can be found in
Figure 5.2.

For the Sentinel-1 time series of the training, validation, and testing lakes our time
interval is set between 1 May and 1 August, though the exact start and end dates
are orbit-dependent. Given that the revisit time of Sentinel-1, when combining data
from Sentinel-1A and Sentinel-1B, is six days, this results in a minimum of 16 scenes,
which corresponds to the length of the Sentinel-1 time series we used. If 17 scenes
were available for a specific orbit, we did not use the last image, as ConvLSTM
architectures require consistent dimensions. Hence, the shape of the Sentinel-1
time series is 16 (length), by 100 (width, corresponding to 1000 m), by 100 (height,
corresponding to 1000 m), and has one label (draining or refreezing), as shown in
Figure 5.3. To standardize the Sentinel-1 time series inputs for the ConvLSTM model,
we normalized each time series by scaling values between the respective 2.5th and
97.5th percentiles within the time series. This normalization procedure mitigates the
influence of varying viewing angles across orbits, ensuring consistent input for the
model.

Similar to the training, validation, and testing data, we create time series of 16
scenes for the identified lakes on Antarctica. For Antarctica, these scenes are selected
between December 15 and March 15, although the exact start and end dates vary
depending on the orbit. We obtain data for 1346 lakes for the 2019-2020 melt season
and 1599 lakes for the 2020-2021 melt season.

5.2.3. DEVELOPING CONVLSTM MODEL ON GREENLAND ICE SHEET

Our deep learning model, designed to classify draining and refreezing lakes in one
melt season, is based on a ConvLSTM architecture (Shi et al., 2015). The ConvLSTM
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model leverages both convolutional and LSTM layers to capture spatial and temporal
features from Sentinel-1 SAR data. This dual capability is crucial for analyzing
time series data with complex spatial and temporal features, such as the dynamic
evolution of supraglacial lakes.

The ConvLSTM model is constructed using several key layers, inspired by the
model defined in Shi et al. (2015). The architecture starts with a ConvLSTM2D layer,
which employs 64 filters with a kernel size of 3x3 and a rectified linear unit (ReLU)
activation function to capture spatiotemporal features. This is followed by a batch
normalization layer to standardize the output and improve training stability, and a
dropout layer with a rate of 0.2 to prevent overfitting. A max pooling layer is then
used to reduce the spatial dimensions by a factor of two. The data are then flattened,
converting the 2D matrix to a 1D vector. Finally, the model includes a dense hidden
layer with 128 neurons and a ReLU activation, followed by an output layer with a
single neuron and a sigmoid activation for binary classification. The output is a
value between 0 and 1, where 0 indicates refreezing and 1 indicates draining. We
use a threshold of 0.5 to classify the predictions into refreezing and draining classes.

The model is compiled using the Adam optimizer and binary cross-entropy loss
function (Goodfellow, 2016). To improve convergence, an exponential decay learning
rate scheduler is employed to adjust the learning rate over the training epochs,
starting at 0.001 with decay steps of 1000 and a decay rate of 0.9. The model is
trained over 50 epochs, with the learning rate scheduler ensuring optimal learning
rates throughout the training process. Early stopping is based on the validation loss
to prevent overfitting. We employed a grid search on the validation data to identify
the optimal hyperparameters (optimizer, loss function, learning rate, filters, kernel
size) based on the highest validation accuracy achieved, and the values presented
here proved to be the best.

We evaluate the performance of the model on the testing data using a confusion
matrix and a variety of metrics, including accuracy, precision, recall, and F1-score.
The detailed performance analysis ensures the robustness and reliability of our
classification algorithm.

/ Draining

Refreezing

Input ConvLSTM Dropout Flatten Output
(16x100x100x1) (16x100x100x64) Batch (0200  Max ™)

Norm Pooling

Figure 5.3: Conceptual overview of the ConvLSTM model: it takes as input a time series
comprising sixteen Sentinel-1 scenes and outputs a label indicating either refreezing or
draining.
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5.2.4. ASSESSING SENSITIVITY OF CONVLSTM MODEL

To assess whether the ConvLSTM model effectively learns both spatial and temporal
patterns, we perturb the test dataset, which includes lakes classified by Glen
et al. (2024), and evaluate the model’s performance. For the spatial perturbations,
we adjust the backscatter intensities of the Sentinel-1 time series by decreasing
and increasing each input time series to 75% and 125% of their original values,
respectively. For temporal perturbations, we randomly shuffle each time series.

After perturbing the test data, we apply the trained ConvLSTM model, as described
in Section 5.2.3, to make predictions. By comparing the accuracies of the original
and perturbed classifications, we assess whether the ConvLSTM model has learned
from the spatial and temporal dynamics present in the refreezing and draining lakes
of the training dataset.

5.2.5. APPLYING CONVLSTM MODEL ON ANTARCTIC ICE SHEET

After training, validating, and testing the ConvLSTM model, we apply it on an
Antarctic-wide scale for the relatively strong 2019-2020 and the relatively weak
2020-2021 melt seasons (Banwell et al., 2021; de Roda Husman et al., 2024; Moussavi
et al., 2020). We apply the trained ConvLSTM model to all identified lakes in
Antarctica and classify the lakes as refreezing or draining using a threshold of 0.5.

5.2.6. SUPRAGLACIAL LAKE AND ICE SHELF PARAMETERS

To understand which types of lakes refreeze and which drain, we compare the
predicted lake locations with two lake parameters (i.e., maximum lake area and
maximum lake volume) and three ice shelf parameters (i.e., ice flow speed, ice
thickness, and firn air content). Paired t-tests are employed to assess whether
statistically significant differences exist between refreezing and draining lakes
concerning these lake and ice shelf parameters.

Firstly, determining maximum lake area and volume, using the method developed
by Moussavi et al. (2020) (see Section 5.2.1), will indicate whether smaller or larger
lakes on Antarctica more frequently drain or refreeze. Secondly, ice flow speed
data from MEaSUREs InSAR-based Antarctica ice velocity map (Mouginot et al,
2012; Rignot et al., 2011) may indicate whether lakes on ice undergoing significant
stresses are more likely to drain or refreeze. Thirdly, ice thickness information from
Bedmap?2 (Fretwell et al., 2013) helps understand the behavior of lakes on thinner or
thicker ice. Finally, firn air content, derived from the IMAU Firn Densification Model
(IMAU-FDM) for the average of 1979-2020 (Veldhuijsen et al., 2023), plays a critical
role in influencing water infiltration and retention processes, providing insights into
the behavior of lakes on firn with varying firn air content.

5.3. RESULTS

5.3.1. TESTING THE DEVELOPED CONVLSTM

The developed ConvLSTM model is tested using refreezing and draining lakes
identified in the study by Glen et al. (2024); refer to Figure 5.1 for their geographical
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distribution. The testing dataset consists of draining and refreezing lakes observed
during both weak (2018) and strong (2019) melt seasons on the Russell/Leverett
glacier catchment of the Greenland Ice Sheet. Performance metrics in Table 5.1
and confusion matrices in Figure 5.4 illustrate robust results across both seasons.
Notably, the weak melt season shows slightly better performance with an accuracy
of 84.2% compared to 79.7% for the strong melt season. However, a McNemar test,
which is used to determine if there are significant differences between two binary
classifications (McNemar, 1947), shows that there is no significant difference (p >
0.05) between the two melt seasons.

Table 5.1: Performance metrics (accuracy, precision, recall, F1-score) of the trained ConvLSTM
model on an unseen testing dataset for the weak (2018) and strong (2019) melt seasons,
using lakes classified in a study by Glen et al. (2024). The dataset includes 250 refreezing
lakes and 1760 draining lakes in Greenland.

Weak melt season (2018) Strong melt season (2019)

Accuracy 84.2% 79.7%
Precision 94.7% 97.4%

Recall 84.3% 79.5%
F1-score 89.2% 87.5%

To evaluate the model’s sensitivity, we perform analyses in both the spatial and
temporal domains, as outlined in Table 5.2. In the spatial domain, we adjust the
backscatter intensity of the Sentinel-1 time series by increasing and decreasing it.
We anticipate that these changes will have minimal impact on accuracy, since the
model should focus on the evolution of the lake rather than the specific intensity
values. This expectation is supported by the fact that the model encountered the
same lake multiple times during training, with varying backscatter intensities due to
different orbits. Indeed, these spatial perturbations do not decrease accuracy and
even result in a slight improvement compared to the original dataset. This indicates
that the ConvLSTM model is robust to spatial variations.

Weak melt season (2018)

Strong melt season (2019)

100%

Actual
refreezing lake

Actual
refreezing lake

Actual _
draining lake

Actual _
draining lake

Predicted Predicted Predicted Predicted
refreezing lake draining lake refreezing lake draining lake

Figure 5.4: Confusion matrices of the testing dataset for weak (2018) and strong (2019) melt
seasons, using classified lakes from a study by Glen er al. (2024), with 250 refreezing lakes
and 1760 draining lakes on Greenland.
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In the temporal domain, we perform perturbations by randomly shuffling the
Sentinel-1 time series. This is expected to reduce accuracy, as the ConvLSTM model
relies on the temporal order of the data. Indeed, random shuffling lowers the
accuracy to 71.0% from 84.2% for the 2018 melt season, and to 67.0% from 79.7%
for the 2019 melt season. This drop in accuracy suggests that the model is sensitive
to the sequence of the time series, indicating its capability to effectively capture
temporal patterns.

Table 5.2: Accuracy of the trained ConvLSTM model on the perturbed testing dataset for the
weak (2018) and strong (2019) melt seasons, using lakes classified in a study by Glen et al.
(2024). The perturbations are categorized into (a) spatial and (b) temporal.

(a) Spatial pertubations

\ Weak melt season (2018) Strong melt season (2019)

Increased backscatter intensity 90.8% 86.6%
Decreased backscatter intensity 84.8% 94.4%

(b) Temporal pertubations

\ Weak melt season (2018) Strong melt season (2019)

Randomly shuffled time series ‘ 71.0% 67.2%

5.3.2. PREDICTED REFREEZING AND DRAINING LAKES ON ANTARCTICA

Figure 5.5 shows the predicted refreezing and draining lakes for the two studied
Antarctic melt seasons. Most lakes are classified as refreezing, yet predictions vary
notably between the two seasons. For the relatively strong 2019-2020 melt season,
1346 lakes are identified, with 65% refreezing and 35% draining. In contrast, for the
relatively weak 2020-2021 melt season, 1599 lakes are identified, with almost all lakes
refreezing (99%) and only 1% draining. During the 2019-2020 melt season, draining
lakes are identified all over Antarctica, with the majority located in the Antarctic
Peninsula, Amery, and Shackleton ice shelves. In the 2020-2021 melt season, the
lakes are confined to the Amery Ice Shelf and Victoria Land. The locations of the
identified supraglacial lakes overlap with other studies, such as the study by Arthur
et al. (2020), which is expected, as they also used the method from Moussavi et al.
(2020) to identify lakes.

Comparing our predictions with existing data on refreezing and draining lakes is
challenging, as such data are not yet available for Antarctica. However, we can
compare our findings with Jourdain et al. (2024), who identified surface conditions
necessary for hydrofracturing using regional climate model simulations. They
assessed whether local runoff over a 10-year period exceeded a certain threshold,
indicating potential for ice shelf hydrofracturing. While this is not a perfect
comparison—particularly since our model does not differentiate between slow and
rapid (i.e., hydrofracturing) drainages—it provides a preliminary assessment. Jourdain
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et al. (2024) identified several ice shelves on the Antarctic Peninsula, such as Larsen
A, B, C, George VI, and Wilkins, as being likely to experience hydrofracturing before
2015. For other ice shelves, where we identified drainages in 2019-2020, Jourdain
et al. (2024) also predict vulnerability to hydrofracturing before 2050 under the
SSP2-4.5 scenario. These include the Roi Baudouin, Amery, and Shackleton ice
shelves. However, on other ice shelves such as Cosgrove and Riiser-Larsen, where we
have identified drainages, Jourdain et al. (2024) project them to become vulnerable
to hydrofracturing only after 2100.

(a) Melt season 2019-2020 (b) Melt season 2020-2021

0 draining 12 draining
4 refreezing 62 refreezing

111 draining

16 draining v
v 555 refreezing

2 refreezing

3 draining
202 refreezing

11 draining
0 refreezing

Figure 5.5: The classified draining (orange circles) and refreezing (blue crosses) lakes using
the ConvLSTM model, with panels (i) presenting an overview of the Antarctic Ice Sheet, and
panels (ii) presenting the Antarctic Peninsula, panels (iii) Dronning Maud Land, (iv) Marie
Byrd Land, (v) Amery Ice Shelf, (vi) Victoria Land, and (vii) Shackleton Ice Shelf. The labels
in each panel show the number of identified draining and refreezing lakes for the respective
melt season. In panels (a)-(i), the names of the ice shelves mentioned are those referred to
throughout the manuscript.
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Figure 5.6: Violin plots showing identified draining lakes (in orange) and refreezing lakes (in
blue) in Antarctica for the (a) 2019-2020 and (b) 2020-2021 melt seasons, depicting maximum
lake area, maximum lake volume, ice shelf thickness, ice flow speed, and firn air content.

5.3.3. RELATION OF REFREEZING AND DRAINING LAKES TO LAKE AND
ICE SHELF PARAMETERS

Figure 5.6 compares the identified draining and refreezing lakes to parameters of lake
characteristics (maximum area and volume) and ice shelf characteristics (thickness,
ice flow speed, and firn air content). The lake area and volume were significantly (p
< 0.05) larger during the relatively strong 2019-2020 melt season compared to the
relatively weak 2020-2021 melt season, with median areas of 100x103 m? and 89x103
m?, and median volumes of 620x103 m® and 492x103 m3, respectively. However,
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when comparing the lake areas and volumes between drainages and refreezing lakes,
there is no significant (p > 0.05) difference.

In terms of ice shelf thickness, ice flow speed, and firn air content, notable
differences between the two melt seasons reveal contrasting patterns. During
the 2019-2020 melt season, draining occurred on thinner ice shelves (median of
295 m) compared to refreezing lakes (median of 634 m), showing a significant
difference (p<0.05). Conversely, in 2020-2021, there were minimal drainages, but
when present, they occurred on thicker ice shelves (median of 752 m) compared to
refreezing lakes (median of 223 m). However, with only 15 draining lakes identified
in 2020-2021, representing less than 1% of the studied lakes in that melt season,
drawing conclusions from this relatively weak melt season is challenging.

Regarding ice flow speed, drainages in 2019-2020 occurred on slower-flowing ice
shelves (median of 61 m/year) compared to refreezing lakes (median of 74 m/year),
which is a statistically significant difference (p < 0.05). In contrast, for 2020-2021,
drainages were observed on faster-flowing ice (median of 177 m/year) compared to
refreezing (median of 76 m/year), although this difference is not significant (p >
0.05).

Similarly, for firn air content, during 2019-2020 drainages were associated with
higher firn air content (median of 9 m) compared to refreezing lakes (median of 4
m), with a significant difference (p < 0.05). In 2020-2021, the pattern reversed, with
drainages occurring on ice shelves with more depleted firn layers (median of 2 m)
compared to refreezing lakes (median of 8 m), also showing a significant difference
(p < 0.05).

5.4. DISCUSSION

5.4.1. FROM PROOF OF CONCEPT TO OPERATIONAL PRODUCT

The Antarctic-wide maps in Figure 5.5 reveal significant differences in lake evolution
between the 2019-2020 and 2020-2021 melt seasons. Although the ConvLSTM model
demonstrated good performance on the unseen testing dataset, achieving accuracies
of 84.2% in 2018 and 79.7% in 2019 for the Greenland Ice Sheet (Table 5.1),
confidently relying on the Antarctic-wide maps remains challenging. For instance,
Sentinel-2 observations show that the 2020-2021 melt season had more lakes (1599)
compared to the much stronger 2019-2020 season (1346). However, the lakes from
the weaker 2020-2021 season were smaller in both area and volume (see Figure
5.6). Additionally, the ConvLSTM model based on Sentinel-1 data revealed a large
difference in the ratio of refreezing to draining lakes: 475 draining lakes in 2019-2020
compared to only 15 in 2020-2021. Validating these results is challenging due to
frequent cloud cover in Antarctica, which limits the availability of optical imagery.

A major limitation of the current ConvLSTM model is the small size of the training
dataset, which included only 51 refreezing lakes and 39 draining lakes. By prioritizing
the high quality of the training data and hand-picking the draining and refreezing
lakes, we severely limited the overall dataset size. Therefore, to transition from a
proof of concept to an operational product, we recommend using a larger training
dataset from both Greenland and Antarctica. This could be achieved by manually
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collecting more data or by employing a semi-supervised learning method (X. J. Zhu,
2005).

Due to the limitations of optical data in Antarctica, we believe SAR data, such as
Sentinel-1, is a promising additional dataset for identifying draining and refreezing
lakes in Antarctica. Beyond studying time series of radar backscatter, Li et al. (2021)
demonstrated in a case study on the Amery and Roi Baudouin ice shelves that
Interferometric SAR (InSAR) patterns, which involve studying the phase difference
between two SAR images, can be used to identify refreezing and draining lakes.
Hence, InSAR could provide valuable additional information in future studies for
identifying refreezing and draining lakes.

However, it is important to note that we did not rely solely on SAR data; we also
used optical data to identify lake locations in this study. While SAR-based methods
can identify supraglacial lakes in Antarctica (e.g., Dirscherl et al., 2021), they cannot
yet, if ever, reliably determine lake volumes due to the rapid saturation of the SAR
signal. This saturation complicates the differentiation between small and significant
amounts of liquid water. Consequently, optical data remains indispensable for
accurate lake volume measurement.

5.4.2. GREENLAND AS TRAINING DOMAIN FOR PREDICTING LAKE
EVOLUTION ON ANTARCTICA

Given the distinct characteristics of lakes between the Greenland and Antarctic
ice sheets, one might question whether Greenland can serve as a suitable region
for training, validating, and testing the ConvLSTM model before its application to
Antarctica. Although the sensitivity study in Section 5.3.1 demonstrated that the
model is robust to spatial variations in Greenland—indicating that fluctuations in
backscatter values do not impact performance—and that it successfully learns from
the temporal sequence of the time series, differences in lake evolution between
Antarctica and Greenland may still pose challenges.

Banwell ef al. (2014) conducted a comparative study of lakes at Paakitsoq (West
Greenland) and on the Larsen B Ice Shelf (Antarctic Peninsula), revealing significant
diversity in lake types despite the study’s relatively small scale. While the total
number and average area of lakes were comparable in both regions, lakes on Larsen
B were shallower and more uniform in size compared to those at Paakitsoq. The
higher standard deviations of lake area and volume in the Paakitsoq region indicate
greater variability in lake depths and areas compared to Larsen B. This variability is
likely attributed to the substantial elevation gradient in the Paakitsoq region, ranging
from approximately 400 m at the ice margin to 1500 m inland, in contrast to the
minimal elevation gradient on the Larsen B Ice Shelf (Banwell et al., 2014).

In addition to differences in lake shape, area, and volume, there are also variations
in the timing of lake formation and the onset of refreezing or draining. Dirscherl
et al. (2021) demonstrated that lakes in Antarctica typically form at the end of
December or early January and disappear by early February, resulting in a lifetime of
approximately one to 1.5 months. In Greenland, most lakes have longer lifetimes,
typically spanning from June to August, totaling around three months, as shown by
McMillan et al. (2007).
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For training, validating, and testing the ConvLSTM model, the diversity of lakes in
Greenland is advantageous as it captures a broader range of lake types. However, the
differences in the timing of lake onset and offset between Greenland and Antarctica
pose challenges for the ConvLSTM model, which learns refreezing and draining
patterns based on the Greenlandic time series. Ideally, the model should also be
trained with Antarctic refreezing and draining lakes to ensure robust performance,
underscoring the need for more studies on Antarctic lakes.

5.4.3. INHERENT LIMITATIONS OF OUR MODEL

Besides the need to augment the ConvLSTM model training with additional samples
(see Section 5.4.1) and integrate Antarctic data (see Section 5.4.2), there are also
inherent limitations to what this type of deep learning model, trained on Sentinel-1
time series, can address. We discuss two main limitations in Sections 5.4.3 and 5.4.3.

SLOW OR RAPID DRAINAGES?

In this study, we split the Sentinel-1 time series per orbit, resulting in a temporal
interval of six days for each training, validation, testing, and application sample.
At this resolution, distinguishing between the two types of drainage identified by
Selmes et al. (2011) is challenging: (i) slow drainage over more than two days, likely
through existing channels to moulins; and (ii) rapid drainage in less than two days,
typically via hydrofracturing and the formation of new moulins. Selmes et al. (2011,
2013) used optical remote sensing data to show that from 2005 to 2009, refreezing
was the most common mode in Greenland (46%), followed by slow drainage (34%),
rapid drainage (13%), and lakes that remained unidentified due to cloud cover (7%).
Applying this distinction between fast and slow drainage to Antarctica would be
valuable. To achieve this, Sentinel-1 images need correction for look angle and
incidence angle to utilize the full Sentinel-1 time series without the need to split
per orbit. Depending on the location in Antarctica, this could result in multiple
images per week, since many lakes are present across multiple orbits (see Figure
3.2 in Chapter 3 for a map of Sentinel-1 temporal resolution). Additionally, future
SAR satellites, such as Sentinel-1C and -1D (Torres et al., 2017) and NASA-ISRO SAR
Mission (NISAR; NISAR, 2018), could enhance temporal resolution once they are
launched. Combining all these SAR images from different orbits and satellites might
result in a time series with higher temporal resolution, allowing us to distinguish
between the durations of draining.

DRAINAGE TO THE BED?

Our current approach does not provide insights into the hydrology of drained
meltwater. Both slow and rapid drainage events create pathways to the bed (i.e.,
moulins), which can remain open throughout the melt season, allowing diurnally
varying meltwater inflows to reach the bed (Banwell et al, 2013). Unlike rapid
drainage, slow-draining lakes do not facilitate rapid water delivery to the ice sheet
bed. The subglacial hydrologic system’s capacity to adapt to consistent inputs
suggests that slow drainage events may induce less basal sliding than pulsed inputs
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from rapid drainage events (Bartholomaus et al, 2008; Bartholomew et al., 2012;
Schoof, 2010), highlighting the importance of distinguishing between these drainage
modes.

In Greenland, rapid surface water delivery to the bed has been observed to
reduce basal friction and temporarily increase ice flow velocities by up to tenfold
(Tedesco et al., 2013). Similar processes have been hypothesized for East Antarctica
(Langley et al, 2016), with recent studies documenting speed-up events on the
Antarctic Peninsula (Tuckett et al, 2019), suggesting that surface meltwater may
influence the subglacial hydrological system. Projected warming is expected to
increase hydrofracturing events on ice shelves (Gilbert & Kittel, 2021; Jourdain et al.,
2024), emphasizing the critical need to monitor the distribution and evolution of
supraglacial lake dynamics and hydrology.

5.5. CONCLUSION

In this study, we developed a spatiotemporal deep learning model, specifically
ConvLSTM, to identify refreezing and draining lakes across Antarctica during both
a relatively strong (2019-2020) and a relatively weak (2020-2021) melt season.
Supraglacial lake locations were identified using optical images, and Sentinel-1 time
series data were utilized to train and apply the ConvLSTM model. Initially developed
using data from the Greenland Ice Sheet, the model was subsequently applied to the
Antarctic Ice Sheet.

During the relatively strong 2019-2020 melt season, 1346 lakes were identified,
with 65% refreezing and 35% draining. In contrast, the weaker 2020-2021 melt
season saw the identification of 1599 lakes, predominantly refreezing (99%) with
only 1% draining. We observed no clear relationships between lake characteristics
and ice shelf parameters for refreezing and draining lakes, indicating that further
research is needed to uncover the distinct patterns. Further model refinement
is crucial to draw definitive conclusions, necessitating expansion of the training
dataset. This study marks an initial step in monitoring the evolution of supraglacial
lakes during Antarctic melt seasons, leveraging Sentinel-1 data and a spatiotemporal
deep learning model as valuable tools.
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6. OUTLOOK

HE research presented in this thesis is centered around a single goal: improving
Tthe mapping of surface melt on Antarctica. I examined where and when the
melting occurs (Chapters 2 and 3), assessed the volume of melt (Chapter 4), and
traced the pathways of meltwater lakes (Chapter 5).

Antarctic surface melt research has evolved significantly from the laborious process
of spending hours processing a few satellite images for a limited region in the
nineties, to the current capability of analyzing surface melt across Antarctica
at a continent-wide scale within seconds. This progress is attributed to the
increasing availability of remote sensing data, more powerful computer hardware,
and application of deep learning techniques. However, in this “big data era”, the
large volume of data presents a challenge, as having more data does not necessarily
make it easier to untangle a problem.

In this chapter, I briefly describe the initial state and available tools for Antarctic
surface melt research at the onset of this research (Section 6.1) and outline my
contributions and the current state of the field (Section 6.2). Finally, the focus shifts
to the future, with three proposed research directions that could further advance our
understanding and application of surface melt mapping on Antarctica (Section 6.3).

6.1. FROM WHERE WE WERE...

Although the first meltwater detection algorithm for Antarctica is more than 30 years
old (Zwally & Fiegles, 1994), meltwater detection remained a relatively low priority
in the cryosphere community during the following two decades, partly due to the
prevailing view that meltwater was largely confined to specific regions (Doake &
Vaughan, 1991; Scambos et al., 2000; Vaughan & Doake, 1996). The realization that
Antarctic meltwater is widespread along the margins (Bell ez al., 2018; Kingslake
et al., 2017; Kuipers Munneke et al., 2012) sparked a surge in research on Antarctic
surface meltwater. Alongside the growing recognition of the extensive melt extent
in Antarctica, there has also been an increasing realization of its potential impacts
on ice shelf stability (Lai et al., 2020), which has led to a notable rise in interest
in Antarctic surface melt. According to the Web of Science, the number of annual
papers on ‘Antarctica’ and ‘surface melt’ surged from fewer than 20 between 1990
and 2006 to 55 between 2007 and 2017, and then to over 100 from 2018 to 2023.

The increase in Antarctic surface melt research has been supported by a rapid rise
in satellite data availability. More than half a century after the launch of the first
satellite, a large number of satellites have been developed and launched, providing
a vast volume of data for various applications. The number of satellites and the
quality of the data they collect are continually improving. The introduction of
cloud-based platforms, such as Google Earth Engine, has enabled faster and more
extensive analysis of satellite data than ever before. As a clear indication of this
progress, Google Earth Engine was used in more research papers between 2020 and
2022 than in the entire previous decade (Pérez-Cutillas et al., 2023).

Alongside the large increase in interest in Antarctic surface melt, the availability of
remote sensing data, and the emergence of cloud-based platforms for easy access
to remote sensing data, deep learning has emerged as a powerful tool to improve
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surface melt mapping in Antarctica. Deep neural networks enable the effective
processing of large-scale remote sensing data, extraction of meaningful patterns, and
accurate predictions (X. Zhu et al., 2017). Especially for a complex phenomenon like
surface melt, which is nonlinear and not fully understood, deep learning can offer
valuable insights where conventional physical models or statistical thresholds may
fall short.

6.2. ... TO WHERE WE ARE NOW

Throughout this research, I leveraged the abundance of remote sensing data, cloud
computing capabilities, and deep learning techniques to enhance our understanding
of surface melt in Antarctica. In Section 6.2.1, my specific contributions to the
scientific community are outlined per dissertation chapter. In Section 6.2.2, I
provide a broader overview of the current scientific landscape of surface meltwater
in Antarctica.

6.2.1. SUMMARY OF THIS RESEARCH

Chapter 2 described a comparative analysis of four sensors and satellite missions
(MODIS, Sentinel-1, ASCAT, and SSMIS) commonly utilized for melt detection in
Antarctica. This study was the first Antarctic-wide assessment of these satellite
datasets. This assessment revealed large discrepancies in melt detection among
the sensors, sometimes leading to conflicting results. The primary contribution
highlights the inadequacy of relying on a single satellite mission for accurate surface
melt mapping. I pinpointed specific areas and instances where sensor discrepancies
were most pronounced. Another contribution to the scientific community is an
overview of four potential approaches for sensor fusion, aimed at enhancing melt
detection and moving away from reliance on a single sensor for detection.

Chapter 3 introduced UMelt, a high-resolution surface melting record with multiple
applications for the scientific community. The UMelt record can be used to better
understand the processes leading to ice shelf instability. Additionally, since UMelt
provides detailed information on surface melt occurrences at specific locations and
times, it can aid in the interpretation of in-situ data such as ice cores. Finally yet
importantly, UMelt can be employed to refine regional climate models by comparing
modeled surface melt with UMelt data.

Chapter 4 introduced a method for downscaling surface melt from a regional
climate model. The study emphasized the advantages of integrating remote sensing
data into the super-resolution model, thereby enhancing the model’s accuracy. Apart
from downscaling surface melt, this physics-informed super-resolution approach
shows potential for downscaling various other cryospheric processes, such as firn air
content or basal melt. While further validation of the downscaled surface volume
dataset is needed, the study highlights the potential of super-resolution techniques
with physical constraints for high-resolution surface melt mapping in Antarctica,
providing insights into the impacts of localized melting on processes affecting ice
shelf integrity such as hydrofracturing.
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In Chapter 5, a method for monitoring the development of surface lakes in
Antarctica was presented, offering a first data product that enables the analysis of
lake drainage on an Antarctic-wide scale. Previously, such analyses were limited
to idealized scenarios or specific lakes. However, with the dataset developed
in this chapter, comprehensive stability modeling studies can now be conducted
on an Antarctic-wide scale. Additionally, this method helps in gaining a better
understanding of where drainages occur. Although I have investigated common ice
shelf properties related to lake drainages, such as thickness and stress fields, there is
an opportunity to expand this analysis to encompass additional factors like firn air
content, fracture density, or tidal movement.

6.2.2. WHERE THE FIELD STANDS TODAY

Over the last decades, there has been substantial progress in observing surface
melt in Antarctica. In recent years, advancements in deep learning have enabled
the creation of numerous new maps that track surface melt presence across the
continent, allowing us to assess the diurnal cycle of meltwater at sub-kilometer
resolution on an Antarctic-wide scale (de Roda Husman, Lhermitte, et al., 2024;
Niu et al, 2023; Q. Zhu et al, 2023, 2024). In addition to tracking meltwater
presence, initial efforts have been made to quantify Antarctic meltwater volume at
higher resolutions. These efforts include using downscaling regional climate models
(de Roda Husman, Hu, et al, 2024; Noél et al, 2023), running regional climate
models at finer resolutions (van Dalum et al., 2024), and integrating remote sensing
data with models of snow microstructure and snowpack layering (Banwell et al.,
2023). The field is clearly advancing rapidly in enhancing our mapping capabilities.

Despite these advances, a key challenge remains: assessing the exact influence of
surface melt on ice shelves. To address this, we must trace the path of meltwater
and establish whether it moves laterally across the ice shelf, refreezes at a certain
depth within the snow, firn, or ice layers, drains to the bed, or follows a combination
of these routes. Over the past few years, smaller aspects of Antarctic hydrology
have been disentangled, such as understanding whether meltwater remains as slushy
snow or forms meltwater lakes (Dell et al., 2024), whether these lakes move laterally
across the ice shelves (Dell et al.,, 2020), or whether the water is displaced to the
subsurface as a buried lake (Dunmire et al., 2020) or aquifer (Di Biase et al., 2024).
Additionally, a preliminary attempt has been made to assess whether meltwater lakes
refreeze or drain (Chapter 5). However, achieving a comprehensive understanding of
meltwater hydrology and its impact on Antarctic ice shelves requires an integrated
effort, combining field measurements, modeling, and remote sensing observations
from scientists across various disciplines.

6.3. ... AND WHERE TO GO FROM HERE

In this section, I propose three future research directions that could advance the
scientific community’s understanding of surface melt and its impact on Antarctic ice
shelves. Section 6.3.1 presents an approach to estimate surface melt volume using
only remote sensing data. Section 6.3.2 presents a method for assessing the current
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impact of meltwater lake drainage on ice shelf stability, based on observed meltwater
lakes from remote sensing imagery. Finally, Section 6.3.3 explores how past ice shelf
and iceberg calving could be studied using (downscaled) remote sensing imagery to
better understand the sensitivity of ice shelves.

6.3.1. FROM SURFACE MELT EXTENT TO SURFACE MELT VOLUME

Remote sensing of Antarctic surface melt has traditionally been assessed more in
terms of its extent rather than volume. This is due to limitations in satellite data,
such as the quick saturation of signals in the presence of liquid water, making
accurate quantification challenging. While binary melt products like UMelt offer
valuable insights, they cannot differentiate between small and large melt quantities,
which are crucial for validating regional climate models and ultimately improving
our sea level rise projections. Another challenge in deriving meltwater volumes from
satellite data lies in distinguishing between newly formed melt and existing liquid
water. Despite appearing similar in satellite signals, it is crucial not to misinterpret
existing liquid water as surface melt, as this would result in an overestimation of the
total amount of meltwater produced.

Due to the limitations of assessing surface melt volumes using remote sensing,
current assessments of Antarctic melt volume rely on regional climate models such
as Modele Atmospherique Régional (MAR; Agosta et al., 2019), Regional Atmospheric
Climate Model (RACMO; van Wessem et al.,, 2018), or downscaled alternatives like
SUPREME (de Roda Husman, Hu, et al., 2024) and RACMO 2 km (Noél et al.,
2023). While these melt products are validated using data from automatic weather
stations, this validation is limited to specific points. An Antarctic-wide validation is
only feasible when comparing regional climate models to independent data. Beyond
the historical QuikSCAT melt product (Trusel et al., 2013) and remote sensing
products that combine remote sensing data with SNOWPACK (Banwell et al., 2023),
it would be valuable to develop an independent, purely remote sensing-based melt
product. Such a product not only provides a valuable validation benchmark for
regional climate models but also serves as a standalone resource for monitoring and
understanding Antarctic melt dynamics.
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Figure 6.1: Proposed methodology for analysing melt volumes using satellite data, including:
(1) analysing both morning and afternoon satellite observations, and (2) analysing multiple
satellite frequencies.
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In this dissertation, the detection of melt presence was based on a single frequency
and time period from remote sensing data (Chapters 2 and 3). To create a remote
sensing-based melt volume product, I propose a novel approach that leverages
multiple remote sensing products and frequencies. Firstly, diurnal observations
(from sensors such as ASCAT and SSMIS) offer insights into differentiating newly
formed and pre-existing meltwater. If meltwater is pre-existing, morning and
afternoon observations should be similar. Conversely, newly formed meltwater
typically appears in the afternoon, allowing us to compute only the newly produced
meltwater based on diurnal differences. Secondly, by comparing multiple frequencies
from passive microwave data (e.g., 5, 19, 33, 37, and 85 GHz in the case of SSMIS),
it might be possible to estimate meltwater volumes. The lower the frequency, the
longer the wavelength, and the deeper the penetration depth. Hence, one would
expect high brightness temperatures for all frequencies in the case of large meltwater
accumulation and lower brightness temperatures at the low frequencies for shallower
meltwater. The use of multiple frequencies to determine meltwater volumes was
demonstrated by Zheng et al. (2022) for Greenland, utilizing a deep learning model
with 19 GHz and 37 GHz passive microwave measurements. A visual representation
of this proposed methodology, which uses the diurnal cycle and multiple frequencies
of remote sensing data, is provided in Figure 6.1, serving as a guide for future
research in this field.

6.3.2. IMPACT OF DETECTED LAKE DRAINAGES ON ICE SHELF STABILITY

Drainage events from meltwater lakes can induce flexure in the ice shelf, leading
to the formation of fractures both within and beyond the lake basin. This process
may trigger further drainage events and contribute to large-scale ice shelf breakup
(Banwell et al., 2013; Beltaos, 2002). While theoretical models (Banwell & Macayeal,
2015; Banwell et al., 2013; MacAyeal & Sergienko, 2013; MacAyeal et al., 2015)
and field observations in Greenland (Stevens et al., 2024; Tedesco et al.,, 2013) and
Antarctica (Banwell et al., 2019, 2024) have simulated and observed these effects,
no study has yet examined the Antarctic-wide impact of draining lakes. Improved
understanding of when and where lake drainage events occur in Antarctica is crucial
for enhancing predictions of future ice shelf dynamics.

To address this gap, we propose studying the effect of lake drainages using actual,
observed drainage events, for example, with the method demonstrated in Chapter 5.
The impact of these drainages on ice shelves can be analyzed using a Finite Element
Model (FEM). In this FEM model, the Antarctic Ice Sheet should be represented
using realistic thickness data (e.g., Bedmachine; Morlighem, 2022) and strain values
derived from velocity data (e.g., ITS_LIVE; Gardner et al., 2019). A viscoelastic
model of ice shelf flexure (MacAyeal et al., 2015), assuming that total deformation
is the sum of elastic and viscous components, could be used, along with thin-plate
approximation formulas. To simulate the load of the lake, parameters such as area,
volume, and duration of loading should be obtained (Chapter 5), along with other
ice property parameters set based on laboratory experiments (e.g., Jellinek & Brill,
1956). Von Mises stresses will then be computed at the location of the lake drainage,
which can be derived from Chapter 5. Values exceeding a critical threshold of 70
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kPa (Albrecht & Levermann, 2012) could indicate potential fracture damage to the
ice shelf.

Figure 6.2 presents a case study using parameters from MacAyeal et al. (2015) and
data from a specific lake at the Shackleton Ice Shelf that drained in January 2020
(data from a study by Sommer et al., 2024), analyzed using Ansys finite element
analysis software (Madenci & Guven, 2015). An Antarctic-wide adaptation of such
a FEM modeling study will provide valuable insights into the potential impacts of
draining lakes on ice shelf stability. For instance, it could assess under which lake
volumes and distributions the Von Mises stresses exceed the critical threshold of 70
kPa, potentially leading to ice shelf destabilization.
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Figure 6.2: Simplistic 2-D representation of supraglacial lake loading and draining in FEM
software (Ansys). (a) Simplified model of the Shackleton Ice Shelf featuring a supraglacial
lake. (b) Loading diagram illustrating the filling and draining of a supraglacial lake, identified
by Sommer et al. (2024) as the largest draining lake on the Shackleton Ice Shelf during the
2019-2020 melt season. (c) Von Mises stress and (exaggerated) deformation plots created
using Ansys.

6.3.3. SENSITIVITY OF ICE SHELVES TO A CHANGING CLIMATE

To obtain the most realistic projections for sea level rise, an “ice shelf collapse
forecaster” would be ideal. However, I believe creating such a forecaster is infeasible
due to the complex interactions of processes. While we can now attribute the
collapse of ice shelves such as Larsen B and Wilkins to a chain reaction of
hydrofracturing lakes (Banwell et al., 2013; Scambos et al., 2009), sea ice loss, and
ocean swell (Massom et al., 2018), forecasting the next ice shelf collapse remains
beyond our capability. Hindsight bias often makes past events seem easier to
predict than future ones, leading to an overestimation of our forecasting capabilities.
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Instead, a more realistic approach would be to assess the sensitivity of each ice
shelf to potential causes of weakening. In recent years, we have identified several
precursors and triggers of ice shelf collapse, including low firn air content (Kuipers
Munneke et al., 2014), hydrofracturing (Banwell et al, 2013), ocean swell and
reduced sea ice (Massom et al, 2018), ice shelf damage (Lhermitte et al, 2020)
and basal melting (Pritchard et al., 2012). However, we likely do not yet have a
comprehensive understanding of all contributing factors.

I propose a detailed study of past iceberg calving events to gain the most
comprehensive understanding possible of the factors contributing to ice shelf
weakening. Although icebergs are smaller components of ice shelves, they provide a
valuable source of information due to the abundance of available data. To illustrate
the difference between ice shelf collapses and iceberg calving events: while there
have been only a few significant ice shelf collapses in recent decades (e.g., Wordie
Ice Shelf in 1989, Larsen Inlet in 1989, Prince Gustav Ice Shelf in 1995, Larsen A Ice
Shelf in 1995, Larsen B Ice Shelf in 2002, Jones Ice Shelf in 2003, Wilkins Ice Shelf
in 2008, and Conger Ice Shelf in 2022), the U.S. National Ice Center recorded 2688
iceberg calving events in just one year (January to December 2023). Icebergs drift
northwards away from Antarctica after they calve, moving into warmer climates. The
reasons for the further disintegration of icebergs can also serve as indicators of the
stability of ice shelves in a warming climate. Therefore, understanding when and
why these icebergs calve may help identify additional factors contributing to ice
shelf instability that have yet to be recognized.

To better identify the precursors and triggers of iceberg calving and disintegration,
a detailed analysis of historical satellite imagery is essential. By leveraging deep
learning techniques to downscale coarse satellite images, as demonstrated in Chapter
3, we can obtain more detailed insights. Super-resolution techniques can enhance
the resolution of satellite data on critical parameters such as sea ice presence, basal
melt, surface melt, structural damage, and oceanic and wave conditions. Although
this approach may not directly predict the next ice shelf collapse, it has the potential
to uncover new triggers for ice shelf weakening. This, in turn, could improve their
representation in climate models and lead to more accurate projections of sea level
rise.
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CODE AND DATA AVAILABILITY

UMELT RESOURCES
SCRIPTS
The scripts used to develop UMelt are available on GitHub.

DAILY DATA RECORD

The UMelt daily data record includes morning (6 AM) and afternoon (6 PM) observations
at a 500 m spatial resolution for melt seasons from 2016-2021.

* GeoTIFF files: Available via 4TU.ResearchData.

* Google Earth Engine assets: Use the following link format: https://code.earthengine.
google.com/7asset=projects/phd-detectionsurfacemelt/assets/UMelt
_Antarctica/MeltSeasonXXXX/UMelt_AllData_MeltSeasonXXXX

Replace XXXX with the desired melt season (e.g., 1617 for 2016-2017). Example
scripts are available on GitHub.

YEARLY DATA RECORD
Yearly melt occurrence data for individual seasons are also accessible:

¢ GeoTIFF files: Available via 4TU.ResearchData.

* Google Earth Engine assets: Use the following link format: https://code.earthengine.
google.com/?asset=projects/phd-detectionsurfacemelt/assets/UMelt
_Antarctica/MeltSeasonXXXX/UMelt_MeltFraction_MeltSeasonXXXX

Replace XXXX with the desired melt season (e.g., 1617 for 2016-2017). Example
scripts are available on GitHub.

INTERACTIVE TOOL

An interactive tool to explore the presence of surface melt anywhere in Antarctica on a
specific day or during a melt season is available as a Google Earth Engine application.
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CODE AND DATA AVAILABILITY

SUPREME RESOURCES

SCRIPTS
The scripts used to develop SUPREME are available on GitHub.

YEARLY DATA RECORD

A record of surface melt (in millimeters water equivalent per year) on an Antarctic-wide
scale. It offers surface melt data at a spatial resolution of 5.5 kilometers for each melt
year (1 July - 30 June), covering the period from 2001 to 2019.

¢ GeoTIFF files: Available via 4TU.ResearchData.

S1LAKENET RESOURCES
SCRIPTS

The scripts used to develop the data products in Chapter 5 are available on GitHub.
The product is still under development, so as of the end of 2024, the data has not yet
been stored at 4TU.ResearchData or any other repository.
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