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1. I N T R O D U C T I O N 

N a v i g a t i o n can be defined as "to direct the course o f 

a n aircraft". T h e guidance task comprises the c o n t r o l 

o f the aircraft to keep p o s i t i o n a n d velocity errors 

w i t h i n the constraints specified by the navigat ion 

performance requirements. T h e convent ional 

instrument for the guidance task is the flight 

director , presenting steering commands. 

A n alternative guidance display is the perspective 

flightpath display. A perspective f l ightpath display 

presents a n integrated v iew o f the desired trajectory 

specif ied i n the three spatial d imensions o n a 

two-dimensional display. D u e to their spatial nature, 

perspective f l ightpath displays present navigat ion a n d 

guidance data i n a way w h i c h is fundamentally 

different f r o m convent ional p lanar data formats used 

today, w h i c h i n t u r n is l i k e l y to influence p i l o t 

c o n t r o l stratégies. I n a study into 2 - D and 3 - D 

displays for av iat ion, H a s k e l l a n d W i c k e n s (1993) 
report that the w a y i n w h i c h a task was performed 

differed as a funct ion o f the displays employed. T h e 

importance o f the fact that different displays can 

resuit i n qualitat ive, strategie différences is stressed 

by p o i n t i n g out that "when m a k i n g e m p i r i c a l 

comparisons between different display types, 

researchers must evaluate measures other than 

performance o n only one type o f task; they must go 

beyond performance i n any case a n d examine task 

performance stratégies". 

A t Del f t U n i v e r s i t y o f Technology, research i n t o 

perspective f l ightpath displays for guidance and 

navigation is per formed i n the context o f the Del f t 

P r o g r a m for H y b r i d i z e d Instrumentat ion and 

N a v i g a t i o n Systems ( D E L P H I N S ) . F i g u r e 1 presents 

a n example o f the D E L P H I N S Tunnel- in-the-Sky 

display. 

lig. 1. DLLPIIINS lunncl-in-thc-Sk> Display 

T o investigate the different c o n t r o l stratégies and the 

influence o f several display augmentat ion concepts 

w h i c h are possible w i t h perspective flightpath 

displays, p i lo t - in- the- loop studies have been 

performed. T h i s paper discusses the results obtained 

f r o m two pi lot - in- the- loop studies i n the context o f 

the specific aspects o f the data présentation w h i c h 

a l l o w the different c o n t r o l stratégies to be appl ied . 
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2. G U I D A N C E D I S P L A Y S 

F l i g h t d irector commands are based o n a weighted 

c o m b i n a t i o n o f p o s i t i o n a n d angular errors, 

presented i n o n e d i m e n s i o n . A s a resuit o f the 

intégration o f m u l t i p l e parameters i n t o a single 

d i m e n s i o n , the p i l o t is unable to extract i n f o r m a t i o n 

about the specif ic errors f r o m the flight director 

display. F u r t h e r m o r e , since the error-gains o f the 

display are determined by the flight director 

a lgori thms, the possible b a n d w i d t h the p i l o t can 

apply for scanning a n d executing the flight director 

commands is very l imi ted . F i n a l l y , the data w h i c h is 

required to m a i n t a i n adéquate spatial a n d 

navigat ional awareness requires the scanning o f 

several other instruments, w h i l e the intégration o f 

this data has t o be performed by the p i l o t . T h i s 

process involves m e n t a l r o t a t i o n a n d scal ing 

opérations, w h i c h costs t i m e a n d may introduce 

errors. 

W i t h a perspective f l ightpath display, the spat ia l 

présentation o f the imaginary flightpath i n the 

three-dimensional environment can be used to 

c o m b i n e guidance data w i t h the data required for 

spat ia l a n d navigat ional awareness, thus al leviat ing 

the p i l o t f r o m scanning several instruments and 

p e r f o r m i n g the m e n t a l intégrations o f the separately 

displayed p o s i t i o n a n d o r i e n t a t i o n data i n t o a 

spatial ly cohérent picture. 

W i t h such a display, the p i l o t is required t o fly 

through a synthetic t u n n e l w h i c h is a représentation 

o f his desired three-dimensional f l ight-path. 

Perspective f l ightpath displays have been discussed 

since the early flfties, a n d various concepts for 

aircraft guidance have been evaluated i n Simulation 
( W i l c k e n s a n d Schattenmann, 1968; G r u n w a l d , 1984; 

W i c k e n s et a l . , 1989; Theunissen, 1993), some even 

i n actual flight (F i larsky a n d H o o v e r , 1983; 

Theunissen, 1995). 

3. T U N N E L - I N - T H E - S K Y D I S P L A Y S 

F i g u r e 2 presents a l ine-drawing o f the D E L P H I N S 

Tunnel- in- the-Sky display. In this display, the desired 

f l ightpath is indicated by the t u n n e l . In (Theunissen, 

1994) i t is i l lustrated h o w i n f o r m a t i o n about p o s i t i o n 

a n d o r i e n t a t i o n errors can be extracted f r o m the 

d i s t o r t i o n o f the symmetrical shape o f the t u n n e l . 

T h e m o v i n g h o r i z o n presents attitude, w h i l e heading 

i n f o r m a t i o n is presented o n the h o r i z o n l ine . 

A l t i t u d e , airspeed, a n d bank are displayed by means 

o f separate indicators. T o avoid distort ions befween 

the perspective présentation o f the 

three-dimensional flightpath a n d the attitude 

présentation, the visible p i tch attitude range 

Fig. 2. Line drawing of Tunnel-in-the-Sky display symbology 

corresponds to the géométrie ver t ica l field o f view. 

T o accommodate the f o u r t h d i m e n s i o n , référence 

speed is presented by means o f a bug o n the 

speed-tape. T h e display also provides the possibi l i ty 

to présent integrated speed i n f o r m a t i o n by means o f 

a m o v i n g w i n d o w i n the tunnel . 

A d d i t i o n a l i n f o r m a t i o n can b e presented to a i d the 

p i l o t w i t h the guidance task. T h i s i n f o r m a t i o n has 

been d iv ided i n t o three levels: U n p r o c e s s e d status 

i n f o r m a t i o n , processed status i n f o r m a t i o n , a n d 

c o m m a n d i n f o r m a t i o n . 

3.1. Unprocessed status information 

T o a id the p i l o t i n m a i n t a i n i n g the correct f l ightpath 

angle, a f l ightpath vector can be presented (Figure 

3). 

Fig. 3. Flightpath vector 

T h i s vector indicates the current d i r e c t i o n o f the 

velocity vector o f the aircraft relative to the aircraft 

att itude symbol . Because a f l ightpath vector présents 

raw data, i t is classified as unprocessed status 

i n f o r m a t i o n . 
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3.2. Processed status information 

A n a i rp lane is a higher order dynamic system, a n d 

the p i l o t has to détermine his c o n t r o l actions by 

predic t ing the future system state as a resuit o f his 

actions. T o a i d the p i lot , a predic tor symbol 

indicat ing the future p o s i t i o n a n d bank angle can be 

displayed. T o résolve the p o s i t i o n ambiguity o f the 

predic tor symbol , the cross-section o f the t u n n e l at 

the p o s i t i o n o f the predic tor is indicated by a 

transparent w i n d o w ( F i g u r e 4). A predictor is 

classifîed as processed status i n f o r m a t i o n . 

Fig. 4. Flightpath predictor 

T h e size o f the t u n n e l détermines the size o f the 

référence w i n d o w . T h u s , w i t h decreasing t u n n e l size, 

the r e s o l u t i o n o f the référence increases. T h e gain o f 

the p o s i t i o n e r r o r data, however, is not affected. 

B o t h the predic tor référence w i n d o w and the 

predic tor move. T h e task o f keeping the predictor i n 

the center o f the référence w i n d o w is a pursuit 

t rack ing task. 

3.3. Command information 

Instead o f presenting status i n f o r m a t i o n to a i d the 

p i l o t c o n t r o l l i n g the aircraft, c o m m a n d i n f o r m a t i o n 

can be presented, e.g. by means o f a flight-director. 

4. C O N T R O L S T R A T E G I E S 

A m p l e research has been performed o n h u m a n 

c o n t r o l behaviour i n compensatory tracking tasks 

( M c R u e r et a l . , 1965). Perspective f l ightpath displays 

however, present the p i l o t w i t h integrated trajectory 

preview c o m b i n e d w i t h a n indicat ion o f the a l lowed 

déviations, a n d research into p i l o t c o n t r o l behaviour 

w h e n presented w i t h this k i n d o f i n f o r m a t i o n is 

relatively scarce. In ( M u l d e r , 1994) an extensive 

l i terature review about the m o d e l l i n g o f p i l o t c o n t r o l 

behaviour w i t h spatial displays is presented. 

W i t h car d r i v i n g the s i tuat ion is différent. V a r i o u s 

models have been proposed to describe driver 

c o n t r o l behaviour i n r e l a t i o n w i t h the v isual 

environment . S ince the nature o f the c o n t r o l task 

(boundary contro l ) a n d the v i s u a l eues are quite 

s imi lar for the guidance task w i t h a perspective 

flightpath display and car dr iv ing , i t is expected that 

there also is a s imi lar i ty i n c o n t r o l stratégies. 

C o n c e r n i n g car dr iv ing , M c R u e r et a l . (1977) présent 

a n approach i n w h i c h they dist inguish between 

compensatory, pursuit a n d d u a l m o d e c o n t r o l 

behaviour. W i t h compensatory c o n t r o l , the driver 

uses latéral p o s i t i o n a n d heading errors. W i t h 

pursuit c o n t r o l the dr iver takes advantage o f the 

trajectory preview to ini t iate a n o p e n - l o o p c o n t r o l 

ac t ion to f o l l o w the desired p a t h , i.e. the driver 

applies feedforward c o n t r o l . W i t h d u a l mode 

behaviour, the dr iver initiâtes a n o p e n - l o o p c o n t r o l 

ac t ion w h i c h is succeeded by closed-loop 

compensatory c o n t r o l . 

G o r d o n (1966) states that "The behaviour involved 

i n steering a n a u t o m o b i l e has usually been 

misunderstood. It is less a matter o f a l igning the car 

w i t h the road than i t is a matter o f keeping the focus 

o f expansion i n the d i r e c t i o n o n e must go". T h e 

velocity f ie ld provides i n f o r m a t i o n o n the speed and 

d irec t ion o f the vehicle's forward m o t i o n . T h e driver 

may become aware o f the misa l ignment o f the car by 

s lewing shifts i n d i r e c t i o n , a n d by s ide-sl ipping 

sidewise movements w h i c h exceed the h u m a n v isual 

p o s i t i o n a n d movement thresholds. T h e driver's 

perceptual response is based u p o n a n intégration o f 

thèse a n d other sources o f i n f o r m a t i o n . 

O n the basis o f h u m a n percept ion theory, i t is 

diff lcult to détermine w h i c h o f the combinat ions o f 

slew, s idesl ip, rate, and a m p l i t u d e the driver 

perceives. T h e dr iver responds to a to ta l s i tuat ion, 

not to isolated o r ranked eues. T h i s indicates the 

necessity o f determining a single parameter to 

describe and predict dr iver responses. G o d t h e l p 

(1984) introduced the so-called T i m e - t o - L i n e 

Cross ing concept, w h i c h is based o n the assumption 

that there is a re la t ion between the r e m a i n i n g t ime 

the vehicle under c o n t r o l is w i t h i n a certain 

boundary, and the m o m e n t a c o n t r o l act ion is 

ini t iated. 

M o s t o f the available vehic le c o n t r o l models are 

based o n the fondamental assumpt ion that drivers 

c o n t r o l their vehicle w i t h permanent v i sua l feedback. 

H o w e v e r , as i t is c o m m o n l y accepted, v i sua l feedback 

is sometimes interrupted. G o d t h e l p (1984) 

investigated the potent ia l rôle o f v isual ly open- loop 

stratégies and error-neglect ion i n vehic le c o n t r o l . H e 

assumed that the t i m e available for a driver to 
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c o n t r o l his vehic le i n a n o p e n - l o o p mode largely 

dépends o n the accuracy o f the o p e n - l o o p generated 

steering-wheel ac t ion and the t ime available for 

error-neglect ion. 

T h e c o n t r o l activity indicates the amount o f effort 

invested i n the c o n t r o l task. F o r cont inuous 

c losed- loop c o n t r o l tasks, frequency d o m a i n 

techniques are very useful for describing c o n t r o l 

behaviour. H o w e v e r , for non-cont inuous c o n t r o l 

behaviour encountered d u r i n g error-neglect ion a n d 

o p e n - l o o p c o n t r o l , t i m e d o m a i n techniques may be 

m o r e appropriate . 

5. S I M U L A T O R E V A L U A T I O N 

A s indicated i n the previous sect ion, i t is expected 

that a s imi lar i ty i n c o n t r o l stratégies between car 

dr iv ing a n d flying a tunnel-in-the-sky display exists. 

T o evalúate p i l o t performance and c o n t r o l behaviour 

and o b t a i n suitable values for the design parameters 

o f the perspective flightpath display, several 

experiments have been conducted i n the moving-base 

flight s i m u l a t o r at D e l f t U n i v e r s i t y o f Technology. In 

a n experiment performed i n 1993, c losed-loop 

compensatory c o n t r o l was investigated. In 1994, 

error-neglect ing c o n t r o l stratégies were examined. 

T h e s imulated aircraft was a twin-engine business jet, 

w h i c h is also used for the in-f l ight experiments. 

5.1. Experiment I 

In 1993 p i l o t performance and c o n t r o l behaviour 

w h e n flying a Tunnel- in- the-Sky w i t h the a d d i t i o n o f 

a flightpath vector ( F P V ) a n d w i t h a flightpath 

p o s i t i o n predic tor ( F P P ) for different error gains was 

investigated (Theunissen, 1993). 

5.1.1. Experimental setup 
F i v e pi lots , o f w h o m two student pi lots a n d one 

none-pi lot , part ic ipated i n the experiment. T h e study 

consisted o f a 3x2 w i t h i n subject design. P i l o t s flew 

three different tunnels (22.5, 45, a n d 90 m width) , i n 

two different configurations ( F P V , F P P ) . E a c h 

c o n d i t i o n was repl icated five t imes, result ing i n a 

tota l o f 30 flights for each p i lo t . T h e order i n w h i c h 

the tunnels were presented i n a certain conf igurat ion 

was balanced to be able to compénsate for possible 

learning effects. 

P i l o t s started their flight at a n al t i tude o f 1200 ft 

about 4 miles away f r o m the runway threshold. T h e 

task o f the p i l o t was to fly the curved approach as 

accurate as possible using the Tunnel- in-the-Sky 

display, a n d l a n d the aircraft. P i l o t s were required to 

m a i n t a i n an airspeed of 120 knots. T h e airspeed was 

indicated by a green bug o n the speed-tape. N o 

addi t iona l speed cues were presented i n the display. 

A t the beg inning o f the flight, the aircraft was 

already i n the l a n d i n g conf igurat ion, so n o aircraft 

conf igurat ion changes had to be made by the p i lo t . 

Before the experiment started, pi lots were br iefed o n 

the display a n d the approach. A f t e r the br ief ing, the 

t r a i n i n g sessions started. T o reduce the learning 

effect, pi lots per formed eight flights i n each display 

conf igurat ion. T h e standard déviation o f their 

h o r i z o n t a l a n d vert ica l p a t h e r r o r was calculated for 

these flights a n d used as a measure o f performance. 

If performance s t i l l appfcared to i m p r o v e after the 

first eight t ra ining flights, m o r e t ra in ing flights were 

issued. 

5.1.2. Results 
Resul ts showed that b o t h i n the F P V a n d the F P P 

conf igurat ion, t racking accuracy increased l inearly 

w i t h decreasing t u n n e l size (F igure 5). 

Fig. 5. Tracking performance and control activity 

W i t h the F P V , c o n t r o l activity was l inear ly related to 

error gain, whereas w i t h the F P P n o significant 

différence i n c o n t r o l behav iour was f o u n d for the 

different t u n n e l d imensions . F i g u r e 6 shows the 

average XTE for the five consécutive segments o f the 

approach. 

Flight Path Vector 
Predictor 

Segment 

Fig. 6. Distribution of X T E 
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T h e second a n d f o u r t h bar présent the results for the 

curved sections, a n d show a decrease i n tracking 

accuracy. T h i s can part ly be contr ibuted to the 

increasing diff lculty o f the c o n t r o l task, and the fact 

that i t is imposs ib le to perfectly t ransi t ion f r o m a 

straight segment to a c i rcular one. S ince i n a curve a 

F P V présents n o adéquate latéral guidance eues, this 

w i l l also decrease tracking accuracy. 

T o i l lustrate the différence between c o n t r o l activity 

w i t h the F P V a n d w i t h the F P P , F i g u r e 7 présents a 

cumulat ive d i s t r i b u t i o n o f the a i l e r o n deflections. 

-1 0 1 
dieron deflection 

- " - Righf Pofh Vector —•— Predictor 

Fig. 7. Aileron control activity 

A s can be seen f r o m this F i g u r e , approximately 2 0 % 

o f the deflections made i n the F P V conf igurat ion 

exceeds the m a x i m u m deflections made i n the F P P 

conf igurat ion. T h e fact that i n the F P P conf igurat ion 

c o n t r o l activity does not significantly increase w i t h 

a n increase i n p o s i t i o n e r r o r gain, suggests that i n 

the présence o f a n adequate prédiction o f the future 

p o s i t i o n and attitude, the p i l o t does not use the 

e r r o r i n f o r m a t i o n presented by the tunnel , but only 

the e r r o r presented by the predictor for the c o n t r o l 

task. T h u s , w h e n the p i l o t is t o l d to fly as accurate 

as possible, he is l i k e l y to use the i n f o r m a t i o n w i t h 

the highest error gain he can process to p e r f o r m this 

task. In case o f a n addi t iona l flight director o r 

predictor , the p i l o t w i l l m a i n l y concéntrate o n the 

data presented by this indicator , a n d c o n t r o l 

behaviour w i l l be d o m i n a t e d by closed-loop 

compensatory a n d pursuit c o n t r o l respectively. T h e 

perspective présentation o f the f l ightpath provides 

the i n f o r m a t i o n w h i c h al lows the p i l o t to anticípate 

changes i n the trajectory. W h e n the task relaxes to 

m a i n t a i n i n g the p o s i t i o n error b e l o w the thresholds 

indicated by the wal ls o f the tunnel , a shift towards 

m o r e o p e n - l o o p c o n t r o l stratégies is possible. 

5.2. Experiment II 

In a f o l l o w - o n study, error-neglect ing c o n t r o l 

strategies were investigated (Theunissen a n d M u l d e r , 

1994). T h e goal o f this study was t o determine what 

causes the p i l o t to ini t iate error-correct ive actions. It 

was hypothesized that the m o m e n t a n error-

corrective ac t ion is i n i t i a t e d is strongly related to the 

t i m e r e m a i n i n g before the aircraft crosses o n e o f the 

boundaries indicated by the t u n n e l walls , a n d that 

the p i l o t uses t e m p o r a l range i n f o r m a t i o n f r o m the 

display for his decisión to intervene. 

5.2.1. Experimental setup 
F i v e subjeets, a l l a i r l i n e pi lots , were instructed to fly 

a n approach to landing. A f t e r several t ra in ing 

sessions, each p i l o t per formed thirty approaches. T o 

prevent the pi lots from becoming aecustomed to a 

part icular approach, six different approaches were 

presented i n a r a n d o m order. T o prevent t h e m f r o m 

apply ing a d o m i n a n t l y c losed- loop compensatory 

c o n t r o l strategy, they were expl ic i t ly instructed that 

the goal was not to fly as aecurate as possible, but to 

r e m a i n inside the t u n n e l us ing m i n i m a l c o n t r o l 

effort. A relatively l o w e r r o r gain was used by 

presenting tunnels w i t h a w i d t h o f 135m. 

5.2.2. Data anafysis 
D a t a analysis was performed for data relevant to 

aircraft control i n the la tera l -hor izonta l plañe, b o t h 

for a first a n d a second order TWC m o d e l . T h e 

assumption for the first order m o d e l is that the p i l o t 

does not use a yaw c o m p o n e n t i n his estímate, and 

consequently assumes a straight trajectory. T h i s is 

comparable to the T i m e - T o - C o n t a c t (Lee , 1976) and 

Time-To-Passage ( K a i s e r a n d M o w a f y , 1993) models. 

E q u a t i o n 1 presents the second o r d e r m o d e l : 

c o s _ 1 ( c o s ( Z 4 £ ) -

ri^L-XTE) 

1WC=- TAE 
(1) 

In E q u a t i o n 1 width represents the t u n n e l w i d t h [m], 

XTE the cross-track e r r o r [m], TAE the track-angle 

error , V the velocity [m/s] a n d r the yaw rate 

[rad/sec]. 

F o r b o t h models , the consisteney between the 

direct ion o f the c o n t r o l actions a n d the prédiction of 

the t u n n e l intersect ion (left o r r ight) was analyzed. 

W h e n the m o d e l prediets a n intersect ion o f the left 

t u n n e l w a l l , and the p i l o t initiâtes a n error corrective 

act ion to the left, the outeome o f the m o d e l is 

regarded as inconsistent w i t h p i l o t c o n t r o l behaviour. 

A t the t ime a c o n t r o l a c t i o n was ident i f ied as an 
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eriOT-corrective c o n t r o l act ion, a l l variables of 

interest (XTE, TAE a n d TWC) were recorded. 

5.2.3. Results and discussion 
F i g u r e 8 and 9 present a d i s t r i b u t i o n o f the XTE a n d 

TAE variables respectively, at the m o m e n t a n 

error-corrective c o n t r o l act ion was ini t iated. 

D i s t r i b u t i o n o f C r o s s T r a c k E r r o r ( X T E ) 

- p o s i t i v e a i I e r on 
- n e g a t f ve a i I epon 

I I I I 
'i i t I 

-20 0 20 
XTE [m] 

Uk 

Fig. 8. Distribution of XTE 

D i s t r i b u t i o n of T r a c t A n g l e E r r o r (TAE) 

- p o s i t i v e a i l e l r j o n 
• n e g a t ) ve a l l elrjort 

Ü Q 
TAE [deg] 

Fig. 9. Distribution of TAE 

These figures indicate that there exists a large 

v a r i a t i o n between the magnitudes o f these variables 

a n d the number of in i t ia ted c o n t r o l actions. 

F u r t h e r m o r e , since n o m i n i m u m threshold c a n be 

established i n these distr ibutions, it can be conc luded 

that n o i n d i v i d u a l guidance variable is solely 

responsible for switching f r o m error-neglect ing to 

error-correct ing c o n t r o l , w h i c h strengthens the 

hypothesis o f an integrated parameter. 

In the curved segments the first order m o d e l 

produced completely inconsistent prédictions, 

whereas the second order m o d e l was highly 

compat ib le w i t h the d i r e c t i o n o f the c o n t r o l actions 

per formed by the p i lo t . O n the straight sections, 

b o t h the first and the second order m o d e l predicted 

compat ib le c o n t r o l d irect ions. T h e results showed 

that the TWC estimâtes o f the second order m o d e l 

y ie lded a significantly smal ler standard déviation as 

compared to the first o r d e r m o d e l . T h e first order 

m o d e l often ( > 5 0 % ) p r o d u c e d TWC estimâtes w h i c h 

exceeded 20 seconds, a n d i t was conc luded that the 

p i l o t does take yaw i n t o account o n the straight 

segments. 

W h e n e x a m i n i n g the d i s t r i b u t i o n o f the TWC 
(F igure 10), i t can b e seen that n o c o n t r o l actions 

were made for TWC values smaller than 

approximately 4 to 5 seconds. 
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Fig. 10. Distribution of TWC 

T h i s strengthens the hypothesis that p i lots m a i n t a i n 

a certa in t e m p o r a l spacing f r o m the boundaries 

represented b y the t u n n e l wal ls , w h i c h they directly 

perceive from the display. 

A Statistical analysis (non-parametr ic K o l m o g o r o v -

S m i r n o v ) , showed that n o n e o f the distr ibut ions were 

f r o m a n o r m a l p o p u l a t i o n . F u r t h e r m o r e , n o 

statistically significant différences were found 

between the distr ibut ions o f c o n t r o l actions related 

to preventing crossing the r ight o r left t u n n e l walls , 

a l l o w i n g b o t h dis tr ibut ions to be combined. A s can 

be seen f r o m F i g u r e 11, showing box-plots o f the 

c o m b i n e d dis tr ibut ions , the error-correct ive c o n t r o l 

actions are in i t ia ted for a wide range o f i n d i v i d u a l 

guidance variables. 

F o r the TWC var iable , however, the rat io between 

the standard déviation a n d the mean remains rather 

s m a l l , s u p p o r t i n g the hypothesis that pi lots m a i n t a i n 

a certa in t e m p o r a l spacing f r o m the boundaries 

represented by the t u n n e l wal ls , w h i c h they directly 

perceive f r o m the display. T h e t e m p o r a l spacing 

varies between pi lots , a n d is bel ieved to be 

determined by a self-chosen safety m a r g i n w h i c h , i n 

t u r n , is largely determined by the famil iar i ty the p i l o t 

has w i t h the a irplane a n d its h a n d l i n g qualit ies. 
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6. C O N C L U S I O N 

T h e first study i l lustrates that the size o f the 

perspective flightpath can be used to help the p i l o t 

o b t a i n a certa in required performance. Introduct ion 

o f the f l ightpath predictor can be used to increase 

the p i l o t s ' performance, w h i l e reducing c o n t r o l 

activity. S u c h a display combines the best properties 

o f two concepts. It presents integrated trajectory, 

p o s i t i o n a n d att i tude i n f o r m a t i o n w h i c h contributes 

to the pi lots spat ia l a n d navigational awareness a n d 

increases his level o f confidence, a n d i t presents 

processed status i n f o r m a t i o n w h i c h allows h i m to 

spend less effort to c o n t r o l the system. 

T h e second study i l lustrates that o n e o f the 

advantages o f the perspective f l ightpath display is 

that, due to its integrated presentat ion, pi lots d o not 

have to mental ly integrate the values o f p o s i t i o n and 

angular errors a n d e r r o r rates a n d verify whether the 

o u t c o m e exceeds a certain threshold, w h i c h w o u l d be 

required for error-neglecting c o n t r o l w i t h 

non-integrated displays. Instead, the ego-referenced 

spatial presentat ion o f guidance data allows pi lots to 

extract t e m p o r a l range i n f o r m a t i o n w h i c h enables 

t h e m to apply a n error-neglecting c o n t r o l strategy. 
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