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Abstract
Multi-label learning is an emerging extension of the
multi-class classification where an image contains
multiple labels. Not only acquiring a clean and
fully labeled dataset in multi-label learning is ex-
tremely expensive, but also many of the actual la-
bels are corrupted or missing due to the automated
or non-expert annotation techniques. Noisy label
data decrease the prediction performance drasti-
cally. In this paper, we propose a novel Gold Asym-
metric Loss Correction with Single-Label Regu-
lators (GALC-SLR) that operates robust against
noisy labels. GALC-SLR estimates the noise con-
fusion matrix using single-label samples, then con-
structs an asymmetric loss correction via estimated
confusion matrix to avoid overfitting to the noisy
labels. Empirical results show that our method
outperforms the state-of-the-art original asymmet-
ric loss multi-label classifier under all corruption
levels, showing mean average precision improve-
ment up to 28.67% on a real-world dataset of MS-
COCO, yielding a better generalization of the un-
seen data and increased prediction performance.

1 Introduction
Real-world images naturally contain multiple object classes.
Multi-label learning is an extension of the multi-class clas-
sification where the input image displays multiple labels. It
is extremely time-consuming and expensive to collect high-
quality labels for single-label images. Even long-standing
and highly curated datasets, e.g. CIFAR [17], contain wrong
labels [5]. Acquiring a clean fully labeled dataset for multi-
label classification is even more challenging. For example,
[32] shows that the Open Images dataset [16], which is widely
used for multi-label and multi-class image classification, con-
tains 26.6% false positives among the training label set.

In single-label classification, label noise has been widely
studied in the literature and its effects have been carefully
investigated. [1] suggests that although Deep Neural Net-
works (DNNs) are somewhat robust to label noise, ”their ten-
dency to overfit data makes them vulnerable to memorizing
even random noise”, resulting in poorer classification perfor-
mance. There are multiple techniques used for coping with
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Figure 1: Wrong label noise in multi-label classification

noisy labels in single-label images. However, multi-label
classification is a more complex problem. [28] suggests that
the simple extensions of existing noise resilient single-label
methods are not able to learn the proper correlations among
multiple labels.

Very little attention has been given to the study of multi-
label robust classifiers. We aim to fill this gap in noise-
resilient multi-label classifiers by proposing a novel Gold
Asymmetric Loss Correction with Single-Label Regulators
(GALC-SLR). GALC-SLR assumes that a small subset of
the training data can be trusted and uses this additional in-
formation to accurately estimate the noise corruption matrix.
Due to class imbalance and label correlations, learning the
noise in real-world multi-label datasets is more difficult than
in real-world single-label datasets. Hence, we introduce a
novel method that uses single-label regulators to rebalance
the predictions towards a targeted label. This leads to accu-
rate noise estimations used to correct the wrong labels during
training, making the model robust to label noise even in the
most challenging multi-label setting.

Our study specifically studies the effect of wrong labels.
As depicted in Fig. 1, each image comes with multi labels
including some wrong and some clean ones. This paper aims
to answer the following research questions:

• What is the impact of wrong labels on the performance
of a state-of-the-art multi-label classifier?

• How to accurately estimate the multi-label noise distri-
bution using extra information from trusted data?

• How to cope with the class imbalance and label correla-
tions, well-known issues in multi-label learning?

• How to train an accurate multi-label classifier with
wrong label information?
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Figure 2: Impact of increasing wrong label ratios

In comparison to the state-of-the-art Asymmetric Loss
(ASL) multi-label classifier [4] GALC-SLR is significantly
more accurate under label noise. ASL balances the proba-
bilities of different samples by treating positive and negative
samples differently, i.e. asymmetrically. In empirical evalua-
tion on the MS-COCO dataset [21] GALC-SLR outperforms
ASL under all tested noise ratios from 0% to 60%. GALC-
SLR improves the mean Average Precision (mAP) over ASL
on average by 13.81% and up to 28.67%.

1.1 Motivation example
In this section we show to detrimental effects of noisy labels
on the performance of a state-of-the-art multi-label classi-
fier, by conducting our own experiment with wrong labels.
We demonstrate this by using the ASL [4] method to train
a TResNet-M [25] network on the MS-COCO dataset [21].
ASL applied on TResNet ranks top on the leader board for
MLC on MS-COCO1. We inject symmetric label noise (de-
tails in Section 4.1) at various corruption levels, from 0%
to 60%, and report the mean average precision to assess the
impact of wrong labels. mAP is considered by many recent
works [19; 6] an important metric for performance evaluation
in multi-label classification since it takes into consideration
both false-negative and false-positive rates [4].

Fig. 2 gives a visual representation of the results. As ex-
pected, the results show a dramatic decrease in prediction per-
formance, with each additional 10% noise leading to a 5%-
8% reduction in mAP score. Hence, it seems that even an
accurate state-of-the-art classifier such as ASL suffers from a
dramatic decrease in performance when trained on noisy la-
bels. Since it is hard and costly to avoid label noise [38], it
is vital to develop robust classifiers that can avoid overfitting
the label noise in the training data.

2 Related Work
Recent literature has shown increased interest towards robust-
ness against noisy labels in training, much more in single-
label classification than in multi-label learning. We first in-

1https://paperswithcode.com/sota/
multi-label-classification-on-ms-coco visited June 24, 2021.

vestigate the robust learning solutions in single-label classifi-
cation, followed by an analysis of the multi-label context.

Single-label Classification Many researchers have been
tackling the problem of noisy labels in single-label classifica-
tion. [28] provides a comprehensive evaluation of 57 state-
of-the-art robust DNNs. The paper distinguishes between
five categories of robust DNNs. Some classifiers such as C-
model [10], Contrastive-Additive Noise Network [36], and
Robust Generative Classifier (RoG) [20] have been shaped
to have a Robust Architecture by “adding a noise adaptation
layer at the top of the softmax layer”. Another solution is
to use regularization techniques such as data augmentation
[26], weight decay [18], dropout [29], and batch normaliza-
tion [14]. These methods perform well on low to moder-
ate noise but fail on datasets with higher noise [31]. Other
solutions use Sample Selection and have shown impressive
results, most of them being robust even to heavy noise. A
few popular examples are MentorNet [15] in which a stu-
dent network relies on a pre-trained mentor network that in-
dicates which labels are likely to be correct, Co-teaching [11]
and Co-teaching+ [37] that also use two collaborative DNNs,
the latter one introducing decoupling [22], and other hybrid
approaches such as SELFIE [27] that combines the sample
selection strategy with a loss correction approach. The last
category consists of classifiers with Loss Adjustment. These
methods are actively modeling the noise distribution by esti-
mating the label corruption matrix and use this information to
correct the noisy labels during training. A few popular meth-
ods are Forward [23], Masking [12], and Gold Loss Correc-
tion (GLC) [13]. Out of the three, GLC uses additional infor-
mation from trusted data in order to estimate the label noise
distribution more accurately.

Multi-label Classification In multi-label learning, little at-
tention has been given to the consequences of label noise [28].
Few papers treat noisy labels in the multi-label context. For
example, [30] uses a low-rank and sparse decomposition
technique to obtain ground-truth and irrelevant label matri-
ces. [7] introduces label confidence to restore the clean labels.
[34] uses a unified regulators-based framework to recover the
ground-truth labels and to also identify the corrupted ones.
Another proposed method leverages context to identify noisy
labels [38]. With the problem of noisy labels becoming more
and more popular, other papers such as [3] acknowledge the
importance of this issue by explicitly conducting experiments
with noisy labels. Even though robustness was not the main
goal of the authors, they still manage to design a classifier
that outperforms other state-of-the-art classifiers even when
trained on noisy labels.

In contrast to the methods described above, GALC-SLR
aims to leverage single-label regulators together with a small
fraction of trusted data to avoid overfitting to noisy labels in
multi-label classification.

3 Methodology: GALC-SLR
3.1 Notation
Consider the multi-label dataset D = {(xi, ỹi)}Ni=1 where
xi ⊂ Rd denotes the ith sample out of N with d features.
ỹi ⊂ [0, 1]K denotes the corresponding label vector over K

https://paperswithcode.com/sota/multi-label-classification-on-ms-coco
https://paperswithcode.com/sota/multi-label-classification-on-ms-coco
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Figure 3: Overview of GALC-SLR

classes. The label vector is affected by noise, hence ỹ can be
clean (y) or noisy (ŷ). Similar to GLC [13], we assume that a
subset of the data, i.e. gold dataset G ⊂ D, can be trusted. |G|
contains samples (x,y) with no corrupted labels. We refer to
the rest of the samples (x, ŷ) with potentially corrupted labels
as silver dataset S = D − G. We define the trusted fraction
as the ratio |G|

|G|+|S| . Furthermore, we assume that a small
dataset of clean single-label images GS is available. We use
these sets to train a silver f(.; θ) and a gold g(.;φ) classifier
and estimate the noise given by a K × K noise corruption
matrix C. The elements Cij are the probability of label i to
be flipped into label j, formally:

Cij = p(ŷj = 1 ∧ ŷi = 0|yj = 0 ∧ yi = 1)

3.2 Overview of GALC-SLR
We propose a novel Gold Asymmetric Loss Correction with
Single-Label Regulators training approach. GALC-SLR
combines an asymmetric loss approach with a gold loss cor-
rection approach to counter noisy labels. The asymmetric
loss treats relevant and irrelevant labels differently and has
been shown to obtain impressive results on several MLC

datasets [4]. The gold loss correction (GLC) assumes that
a small subset of trusted samples is available to accurately es-
timate the true corruption matrix. It is a powerful method
that achieves impressive results under both symmetric and
asymmetric noise in the single-label setting [13]. The orig-
inal GLC assumes conditional independence of y given x.
This assumption holds when y is deterministic in x. This
does not hold for multi-label classification, because an image
can have multiple labels. Furthermore, in multi-label classi-
fication there can be label correlations that the original for-
mula does not take into account, making it impossible to tar-
get a specific label. To derive an accurate multi-label, rather
than single-label, noise corruption matrix GALC-SLR uses
single-label regulators and sigmoid classification which gives
a more reliable representation of the noise in the multi-label
context.

Figure 3 presents an overview of the GALC-SLR method.
It includes three steps. Step 1: we train a classifier f(.; θ)
using ASL loss on the noisy samples in S. Step 2 is the heart
of GALC-SLR. We use f with the trusted samples in G to
estimate the noise corruption matrix and correct it via single-
label regulators derived via the samples in GS . Step 3: we
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Figure 4: Comparison between multi-label corruption matrices with 40% noise



Algorithm 1 GALC-SLR Ĉ estimation

1: Input: Untrusted data S, silver classifier f
2: Input: Trusted single-label data GS
3: Output: Estimated Ĉ
4: /* Calculate single-label Regulators */
5: Fill Reg ∈ RK×K with zeros
6: /* For each label, calculate its Regulator row by taking

the mean silver softmax predictions over the single-label
images */

7: for k = 1, ...,K do
8: num examples = 0
9: for (xi,yi) ∈ GS such that yik = 1 do

10: num examples += 1
11: /* Add silver softmax prediction to kth row */
12: Regk• += fsoft(xi)
13: end for
14: Regk• /= num examples
15: end for
16: /* Estimate multi-label corruption matrix */
17: Fill Ĉ ∈ RK×K with zeros
18: /* For each label, calculate its corruption row by taking

the mean of re-balanced silver sigmoid predictions over
the untrusted samples */

19: for k = 1, ...,K do
20: num examples = 0
21: for (xi,yi) ∈ S such that yik = 1 do
22: num examples += 1
23: num other labels = 0
24: /* Sum up the other labels’ regulators */
25: Fill regulators ∈ RK with zeros
26: for p = 1, ...,K such that p 6= k & yip = 1 do
27: num other labels += 1
28: regulators += Regp•
29: end for
30: /* Correct sigmoid prediction via regulators */
31: Ĉk• += fsig(xi)− regulators
32: /* Rebalance towards target label k */
33: Ĉk• += Regk• ∗ num other labels
34: end for
35: Ĉk• /= num examples
36: end for
37: /* Final scaling */
38: Ĉ = sig(Ĉ)

train the final classifier g(.;φ) using ASL loss on samples
from G and corrected samples from S.

3.3 Noise Corruption Matrix Estimation
First, we train a silver classifier f(x; θ) = p̂(ŷ|x) on S, using
the asymmetric loss from [4]:

LASL =

{
L+ = (1− p)γ+ log(p)
L− = (pm)γ− log(1− pm)

where L+ and L− are the positive and negative loss parts
used for relevant and irrelevant labels, respectively. p is the
network output probability and γ+, γ− are the focusing pa-
rameters. Finally, pm = max(p −m, 0) denotes the shifted

probability by a margin hyperparameter m. Given the labels
in S are potentially corrupted, f is not a reliable classifier for
our final predictions. However, we can use f to estimate our
multi-label corruption matrix Ĉ.

Algorithm 1 depicts our novel multi-label corruption ma-
trix estimation. First, we calculate the single-label regulators
by taking the average of our silver softmax predictions for
each label (lines 5-15):

Regk• =

∑N
i=1 fsoft(xi)

N
, ∀k ∈ K

where Reg ⊂ RK×K and Regk• denotes the kth matrix row.
This is the main step in our method. It not only allows to
target a specific label k for its noise corruption estimation but
also to regulate the label correlations from the multi-label im-
ages. The next step is to explicitly estimate the noise corrup-
tion matrix. For each label k, we sum the rows in Reg for the
labels which are present in the image except k (lines 26-29).
Next, for each row of the noise corruption matrix, we regu-
late the sigmoid predictions of f by subtracting the summed
regulators (line 31). Finally, we rebalance each row using
the number of other labels in the image (line 33) and take
the average over the number of samples (line 35) scaled via a
sigmoid (line 38). Fig. 4 compares the multi-label corruption
matrix estimated by GALC-SLR for 40% symmetric label
noise against the injected –ground truth– one, and the GLC
estimated one. We observe that GALC-SLR’s estimation is
more resistant to imbalanced data with respect to GLC’s esti-
mation. This can be seen from the darker, closer to the truth,
diagonal values and the more pronounced difference with re-
spect to the off-diagonal values. Note that to highlight this
effect we avoid the last sigmoid scaling for better contrast in
the figures.

With the estimated noise corruption matrix Ĉ, we finally
train the robust gold classifier g(.;φ). We correct labels of
the samples in S via Ĉ while leveraging samples in G as is.
The loss function follows as:

` = LASL(ĈT gsig(x), ŷ), ∀x ∈ S
` = LASL(g(x),y) ∀x ∈ G.

4 Evaluation
4.1 Experiment setup
Datasets. We evaluate GALC-SLR using MS-COCO [21]
dataset.

Table 1: Evaluation results of GALC-SLR and ASL on
MS-COCO with symmetric label noise

ASL GALC-SLRNoise mAP CF1 OF1 mAP CF1 OF1
0% 74.91 71.38 75.55 75.08 70.82 75.09
10% 69.55 68.01 73.07 74.54 70.55 74.85
20% 64.71 64.03 69.96 73.77 69.66 74.25
30% 58.89 58.52 65.30 71.85 68.27 73.41
40% 52.18 52.24 59.58 69.94 66.45 72.28
50% 45.24 45.42 52.78 68.31 64.68 71.33
60% 36.81 37.44 43.29 65.48 61.73 69.42
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Figure 5: Evaluation of GALC-SLR and ASL on MS-COCO with symmetric label noise

MS-COCO [21] is a popular real-world dataset widely
used for multi-label classification evaluation. The training
dataset contains 82,081 images, while the validation dataset
consists of 40,137 images, at an input resolution of 224. Each
image is tagged on average with 2.9 labels belonging to 80
classes. To explicitly test GALC-SLR in the more challeng-
ing multi-label setting, we remove all the images with less
than 2 labels from both the training and validation dataset,
leading finally to 65,268 and 31,739 images respectively.
This does not only elicit a more reliable evaluation, but it also
allows for the collection of single-label samples to construct
GS . The number of images per class label varies from 1, for
unpopular classes, to 1,234 for the most popular class with an
average of 210.2 images per class. More single-label samples
allow to estimate more accurate regulators which in turn leads
to a more robust classifier. Finally, we split the training data
into gold (G) and silver (S) datasets. As base we use 10% as
gold data, leading to 6,526 clean samples and 58,742 samples
injected with noisy labels.

Label Noise. Label noise in multi-label data is more com-
plex than in a single-label context since each sample has an
arbitrary number of labels. We follow previous works [15;
23] and inject symmetric noise, but with an extra step. Specif-
ically, we select a fraction η, i.e. the noise ratio, of labels and
flip them to another class with uniform probability. This cor-
responds to a noise corruption matrix having elements Cij as
follows:

Cij =

{
1− η if i = j
η

K − 1
if i 6= j

In order to ensure wrong label injection, we test whether or
not the new label is already associated with the image. If
it does, we repeatedly elect a new label until we select one
which is not yet present. To evaluate how robust GALC-
SLR is to noise, we test our method against multiple noise
ratios –from 0% to 60%.

Evaluation Metrics. For a comprehensive and reliable
evaluation, we follow conventional settings and report the fol-
lowing metrics: mean average precision (mAP), average per-
class F1 (CF1), and average overall F1 (OF1). These metrics
have been widely used in literature to evaluate multi-label
classification [4; 28; 33]. and have been shown to dramati-
cally decrease with label noise [38]. Note that only the train-
ing set is affected by noise, whereas the evaluation metrics

are computed on the clean testing set.
DNN Architecture. As base architecture for the DNN we

use TResNet [25]. TResNet network is a high-performance
GPU-dedicated architecture based on ResNet50 designed to
increase the model prediction performance, without increas-
ing training or inference time. In particular, we use the
TResNet-M version. Furthermore, the TResNet network has
been pre-trained on the ImageNet-21K dataset. This method
of transfer learning has been shown to provide better general-
izability and significantly increase prediction accuracy [24].

Baseline. As baseline, we compare against ASL [4] us-
ing the code provided by the authors. GALC-SLR assumes
access to a small subset of clean samples.

For a fair comparison, we test ASL and GALC-SLR on
the same datasets with the same label noise. The only addi-
tional knowledge of our method is which labels are trusted,
i.e. belonging to the small golden dataset G, and which are
potentially corrupted.

Implementation Details. We use PyTorch v1.9.0 for both
GALC-SLR and ASL, and the default parameters provided
in [4] except that we always take the last trained model due
to the memorization effect. The number of training epochs
is an important parameter for a reliable evaluation, especially
in a noisy setting. DNNs are shown to present the so-called
memorization effect [35; 9; 8] benefiting in general from this
factor to achieve a better prediction performance in atypical
samples. However, [2] suggests that with noisy data, DNNs
prioritize learning simple patterns first. From preliminary ex-
periments we see that 80 epochs are enough for the learning
to stabilize.

4.2 Results
In this subsection, we empirically compare the performance
of GALC-SLR to the performance of ASL under 0% to 60%
symmetric noise. We aim to show the effectiveness of our
GALC-SLR in robustly learning from noisy data.

Table 1 shows the comparison results. The performance
of both systems decreases under increasing noise levels, but
GALC-SLR is significantly more robust. In terms of mAP
GALC-SLR consistently outperforms ASL for all noise ra-
tios (see Fig. 5(a)). ASL’s performance drops an average of
5.34% points with each 10% noise, while GALC-SLR’s per-
formance decreases with only 1.07% points. Under severe
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Figure 6: Memorization effect and Ablation study of GALC-SLR on MS-COCO with symmetric label noise

noise, i.e. 60%, the gap between GALC-SLR and ASL is
more than 28% points and only 9.6% points worse than with-
out noise. In comparison ASL drops by 38.1% points from
0% to 60% noise. This shows that GALC-SLR is robust even
to high noise levels. Similar results apply for both CF1 and
OF1, see Fig. 5(b) and Fig. 5(c), respectively. Even if ASL is
slightly better in the no-noise case, the performance quickly
degrades with additional noise. At 60% GALC-SLR is better
by 24.3% and 26.1% points for CF1 and OF1, respectively.

To reliably assess the correctness of GALC-SLR, we also
investigate the observed memorization effect for GALC-
SLR (depicted in Fig. 6(a)). Both GALC-SLR and ASL
follow the same trend. First, they learn the easy patterns,
achieving a high accuracy after just a few epochs. However
afterward, the performance slowly degrades over training ef-
fort and finally stabilizes after 60 epochs. The figure clearly
shows the advantage of GALC-SLR over ASL in the dif-
ferent levels at which they plateau. Moreover, one can ob-
serve that GALC-SLR has a slight delay in learning at the
beginning of the training, i.e. GALC-SLR peaks at epoch
10, while ASL at epoch 6. This observation indicates that
GALC-SLR does not help in terms of learning speed nor in
reaching a higher performance during training, but by pre-
venting overfit to the noisy labels. This makes the DNN more
resistant to wrong label information. This suggests that our
method can also be applied to other existing classifiers and
domains.

4.3 Ablation Study
To better understand the performance of GALC-SLR, we
perform extra ablation studies to investigate the effects of: i)
errors in the noise corruption matrix estimation; ii) impact of
the gold dataset size (both studied in experiment I); and iii)
impact of the number of single-label images (studied in ex-
periment II). The base setup of the experiments is the same as
in Section 4.1 with the only changes specifically mentioned.

Experiment I: Fig. 4 shows visually the difference be-
tween the true and our estimated noise corruption matrix. To
assess also quantitatively how well our estimation method
works, we train classifier g with the true corruption matrix.
Fig. 6(b) compares the achieved mAP results under 40%
noise. g trained with the true corruption matrix represents
the upper performance bound achievable by noise corruption

matrix estimators. Fig. 6(b) shows the results across the bars
of different colors.

Since GALC-SLR uses trusted data to estimate the noise
corruption matrix and train the robust classifier g, we expect
the size of G to have an impact on the estimation accuracy
and consequently on model performance. We investigate this
effect by repeating the previous experiments with halving the
fraction of trusted data, i.e. 5%. This corresponds to 3,263
clean samples and 62,005 samples injected with noisy labels.
Fig. 6(b) shows these results via the two different bar plot
groups.

With the estimated noise corruption matrix we reach
68.73% and 69.94% mAP and 69.11% and 70.30% using the
true noise correction matrix under 5% and 10% of trusted
data, respectively. The difference between GALC-SLR and
the upper bound (True-Correction) is below 0.5% points in
both cases. This shows that our noise estimation is able
to capture almost perfectly the impact of the noise corrup-
tion matrix and that it works even with a reduced amount of
trusted data.

Experiment II: To assess the impact of trusted single-label
images on the estimation of the corruption matrix, we conduct
two extra experiments with varying images per class. In ad-
dition to the previous case using all single-label images, we
limit the number of single-label images per class to 50 and
10, referred to as GALC-SLR-L50 and GALC-SLR-L10,
respectively. This results in a total of 2,824 for GALC-SLR-
L50 and 721 for GALC-SLR-L10 single-label images used.

Fig. 6(c) shows the impact on the mAP over training
epochs. One can observe that limiting the number of single-
label images has only a minor impact on the performance of
GALC-SLR. Hence our proposed method is not only robust
to wrong labels in multi-label learning but it also can estimate
an accurate noise corruption matrix by using only a small pro-
portion of trusted single-label data. In other words, GALC-
SLR has a limited dependency on the amount of clean single-
label data.

5 Responsible Research
In this section, we aim to address any ethical aspects this pa-
per might imply. Due to the lack of human-computer interac-
tion or personal data collection, there are no privacy concerns



to be addressed. Therefore, this section concentrates on the
reproducibility concerns of the experiments.

Our method is thoroughly described in Section 3, together
with the architecture diagram depicted in Fig. 3. All the used
notations have been defined and all the formulas have been
clearly explained. Furthermore, the pseudo-code algorithm is
provided in Algorithm 1 with clear step-by-step instructions
and comments. As an additional reference, Fig. 4 gives a
visual representation of the expected noise estimation for our
experiment setup.

Section 4 carefully describes all the settings used for the
experiments. The dataset is publicly available and all the
dataset splits are detailed in Section 4.1. Furthermore, our
noise injection method is clearly explained, accompanied by
the formula for the corruption matrix calculation. To ensure
the reliability of our results, the same random seed has been
set along with the experiments, making sure the same dataset
splits, as well as the label noise injection, are being used in
both our method and the baseline. While the exact numbers
might vary in a different experiment, given the added ran-
domness from the symmetric noise injection, all the results
should be comparable with the ones reported in this paper.

For further reference, the original code repositories for
ASL2 and GLC3 are publicly available and our implemen-
tation highly relies on the original implementations. We fol-
low conventional settings for the given datasets, all the hyper-
parameters and training details being either explicitly men-
tioned in this paper or available in the original works. The ad-
ditional experiments from the ablation study are also clearly
explained in Section 4.3. Moreover, The TResNet-M model
that is used throughout all the experiments can be obtained
from the ASL ModelZoo4 archive.

6 Conclusion

In this paper, we show the impact of wrong label infor-
mation on multi-label classification. Motivated by this, we
propose the Gold Asymmetric Loss Correction with Single-
Label Regulators, a multi-label method that is robust against
label noise. This method assumes access to a small set of
clean multi-label examples as well as to a small set of clean
single-label samples. GALC-SLR uses this additional infor-
mation in order to accurately model the label noise distribu-
tion in a multi-label setting. Through a novel regularization
technique that rebalances predictions towards a targeted la-
bel, GALC-SLR estimates a noise corruption matrix close
to the true matrix. We evaluate GALC-SLR on a real-world
dataset under label noise, at multiple corruption levels from
low to heavy noise. Results show that GALC-SLR is a pow-
erful method that significantly improves robustness against
label noise in multi-label classification.

2https://github.com/Alibaba-MIIL/ASL visited June 24, 2021.
3https://github.com/mmazeika/glc visited June 24, 2021.
4https://github.com/Alibaba-MIIL/ASL/blob/main/

MODEL ZOO.md visited June 24, 2021.
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