
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Research Issues in the Automated Testing
of Ajax Applications

Arie van Deursen and Ali Mesbah

Report TUD-SERG-2009-032

SERG

TUD-SERG-2009-032

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: This paper is a pre-print of:
Arie van Deursen and Ali Mesbah. Research Issues in the Automated Testing of Ajax Applications. In
Proceedings 36th International Conference on Current Trend in Theory and Practice of Computer Science
(SOFSEM), pp. 16-28. Lecture Notes in Computer Science 5901, Springer-Verlag, 2010.

c© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Research Issues in the Automated Testing

of Ajax Applications

Arie van Deursen and Ali Mesbah

Delft University of Technology
{arie.vandeursen,a.mesbah}@tudelft.nl

Abstract. There is a growing trend to move desktop applications to-
wards the web. This move is made possible through advances in web
technologies collectively known as Asynchronous JavaScript and XML
(Ajax). With Ajax, the classical model of browsing a series of pages is
replaced by a JavaScript engine (running in the browser) taking con-
trol of user interaction, exchanging information updates with the web
server instead of requesting the complete next page. The benefits of this
move include no installation costs, automated upgrading for all users,
increased interactivity, reduced user-perceived latency, and universal ac-
cess, to name a few. Ajax, however, comes at a price: the asynchronous,
stateful nature and the use of JavaScript make Ajax applications par-
ticularly error-prone, causing serious dependability threats. In this pa-
per, we evaluate to what extent automated testing can be used to address
these Ajax dependability problems. Based on an analysis of the current
challenges in testing Ajax, we formulate directions for future research.

1 Introduction

There is a growing trend to move applications towards the Web. Well-known
examples include Google’s mail and office applications including spreadsheet,
word processing, and calendar applications. The reasons for this move to the
web are manifold and include:

– No installation effort for end-users.
– Automatic use of the most recent software version by all users, thus reducing

maintenance and support costs.
– Universal access from any browser on any machine with Internet access;
– Possibility to share data and enrich user interaction with information avail-

able at the server.
– In-depth insight for software developers in which features are actually used.
– Customization per user, based on, e.g., earlier experience with the applica-

tion
– Fast innovation cycles, since releasing and deploying a new version is instan-

taneous.

In an interesting recent blog post [23], McKenzie also argues that the conver-
sion rate for web applications is better, i.e., the percentage of site visitors that

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 1

2

actually purchase a software product is higher for license-based web applications
than for applications they have to download and install. McKenzie furthermore
argues that web applications solve the problem of software piracy, simply by the
fact that there is no software anymore that is to be downloaded and (illegally)
distributed.

One of the implications of this move to the web, is that dependability [3]
of web applications is becoming increasingly important [11, 29]. Dependability is
affected by many factors, including the level of testing, the skills of the developers
involved, and the actual software technology used.

For today’s web applications, one of the key technologies used is Ajax, an
acronym for “Asynchronous JavaScript and XML” [15]. With Ajax, web-
browsers not just offer the possibility to navigate through a sequence of HTML
pages, but enable rich user interaction via graphical user interface components.

While the use of Ajax technology positively affects user-friendliness and
interactiveness of web applications [26], it comes at a price: Ajax applications
are notoriously error-prone due to, e.g., the stateful and asynchronous nature as
well as the use of (untyped) JavaScript (see Section 3).

In this paper, we will explore how testing can be used to improve the depend-
ability of Ajax applications. In particular, we first provide an abstract view on
what exactly is comprised by Ajax. We do this in Section 2, by means of an
architectural style capturing the essential elements of Ajax applications. Next,
in Section 3, we offer a survey of our work on the automated testing of Ajax
applications. In particular, we discuss a plugin-based tool infrastructure called
Atusa, which can be used to detect a range of faults typically occurring in Ajax
applications. We conclude the paper with an analysis of open issues and research
problems in the area of automated testing of Ajax applications.

2 Defining Ajax

Ajax potentially brings an end to the classical click-and-wait style of web nav-
igation, providing the responsiveness and interactivity level end users usually
expect from desktop applications. In a classical web application, the user has to
wait for the entire page to reload to see the response of the server. With Ajax,
however, small delta messages are requested from the server, behind the scenes,
by the Ajax engine and updated on the current page through modifications to
the corresponding DOM-tree. This in sharp contrast to the classical multi-page
style, in which after each state change a completely new DOM-tree is created
from a full page reload.

Ajax gives us a vehicle to build web applications with a single-page web
interface, in which all interactions take place on one page. Single-page web in-
terfaces can improve complex, non-linear user work-flows [39] by decreasing the
number of click trails and the time needed [38] to perform a certain task, when
compared to classical multi-page variants.

Another important aspect of Ajax is that of enriching the web user interface
with interactive components and widgets. Examples of widgets, which can all co-

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

2 TUD-SERG-2009-032

3

Server App.Client Browser

update

HTTP

Encoder

Decoder

Service
Provider

update
 C

 S

 update invoke update event

DOM
Ajax

Engine
Engine

UI

UI Comp.
event

update

Fig. 1. Processing View of a Spiar-based architecture.

exist on the single-page web interface, include auto-completion for input fields,
in-line editing, slider-based filtering, drag and drop, rich tables with within-
page sorting, shiny photo albums and calendars, to name a few. These are all
web user interface components that are made possible through extensive DOM
programming by means of JavaScript and delta client/server communication.

In most classical web applications, a great deal of identical content is present
in page sequences. For each request, the response contains all the redundant
content and layout, even for very marginal updates. Using Ajax to update
only the relevant parts of the page results, as expected, in a decrease in the
bandwidth usage. Experimental results have shown a performance increase of 55
to 73% [35, 24, 38] for data transferred over the network, when Ajax is used to
conduct partial updates.

In our earlier work we have proposed Spiar, an architectural style [14, 31]
for Ajax [26]. Spiar results from a study of different major Ajax frameworks,
investigating their salient architectural properties, key elements, and constraints
on those elements required to achieve the desired properties. Such a style cap-
tures the essence of Ajax frameworks and can be seen as an abstract model of
different architectural implementations.

In Spiar three types of architectural elements can be identified: processing
(e.g., browser, Ajax engine, server application, service provider, user interface
components), connectors (e.g., events, delta update, push channels), and data
(e.g., representation, representational model, delta messages).

Given the processing, data, and connecting elements, we can use different
architectural views to describe how the elements work together to form an ar-
chitecture. Figure 1 depicts the processing view of an Spiar-based architecture
based on run-time components rendering as in, e.g., Echo21. The view shows the
interaction of the different components some time after the initial page request
(the engine is running on the client). User activity on the user interface fires off
an event to indicate some kind of component-defined action which is delegated
to the Ajax engine. If a listener on a server-side component has registered itself
with the event, the engine will make a delta-client message of the current state
1

http://echo.nextapp.com/site/echo2

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 3

4

changes with the corresponding events and send it to the server. On the server,
the decoder will convert the message, and identify and notify the relevant com-
ponents in the component tree. The changed components will ultimately invoke
the event listeners of the service provider. The service provider, after handling
the actions, will update the corresponding components with the new state which
will be rendered by the encoder. The rendered delta-server message is then sent
back to the engine which will be used to update the representational model and
eventually the interface. The engine has also the ability to update the represen-
tational model directly after an event, if no round-trip to the server is required.

Table 1. Constraints and induced properties in Ajax applications.

U
se

r
In

te
ra

c
ti

v
it
y

U
se

r-
p
e
rc

e
iv

e
d

L
a
te

n
c
y

N
e
tw

o
rk

P
e
rf

o
rm

a
n
c
e

S
im

p
li
c
it
y

S
c
a
la

b
il
it
y

P
o
rt

a
b
il
it
y

V
is

ib
il
it
y

D
a
ta

C
o
h
e
re

n
c
e

R
e
li
a
b
il
it
y

A
d
a
p
ta

b
il
it
y

Single-page Interface +
Asynchronous Interaction + +
Delta Communication + + + – – +
Client-side processing + + +
UI Component-based + + + +
Web standards-based + + +
Stateful + + + – –
Push-based Publish/Subscribe + + – – + +

Architectural constraints can be used as restrictions on the roles of the ar-
chitectural elements to induce the architectural properties desired of a system.
Table 1 presents an overview of the constraints and induced properties. A “+”
marks a direct positive effect, whereas a “–” indicates a direct negative effect.
Spiar rests upon these constraints, which are chosen to retain the properties
such as user interactivity, data coherence, and scalability.

3 State of the Art in Ajax Testing

For traditional software, analysis and testing is still largely ad hoc [5] and already
a notoriously time-consuming and expensive process [4]. Classical web applica-
tions present even more challenges [10, 2] due to their distributed, heterogeneous
nature. In addition, web applications have the ability to generate different user
interfaces in response to user inputs and server state.

Ajax-based web applications are not only fundamentally different from clas-
sical web applications, but also more error-prone and harder to test. The reasons
for this include the stateful as well as asynchronous nature of Ajax program-
ming, the client-side manipulation of the Document Object Model, the use of

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

4 TUD-SERG-2009-032

5

delta-communication, and the limited possibilities for static (type) checking of
JavaScript. In spite of the great success of Ajax, building dependable Ajax
applications is a daunting task. Below we will discuss the current state of Ajax
testing approaches.

3.1 Current Testing Approaches

The server-side of Ajax applications can be tested with any conventional testing
technique. On the client, testing can be performed at different levels. Unit testing
tools such as JsUnit2 can be used to test JavaScript on a functional level.
The most popular Ajax testing tools are currently capture/replay tools such
as Selenium,3 which allow DOM-based testing by capturing events fired by user
(tester) interaction. Such tools have access to the DOM, and can assert expected
UI behavior defined by the tester and replay the events. Capture/replay tools
demand, however, a substantial amount of manual effort on the part of the tester.

Marchetto et al. [21] discuss a case study in which they demonstrate the
effectiveness of applying traditional web testing techniques (e.g., code coverage
testing [33], model-based testing [2], session based testing [12, 36]) to Ajax.
Their analysis suggests that such traditional techniques have serious limitations
in testing modern Ajax-based web applications. They propose [22] an approach
for state-based testing of Ajax applications based on traces of the application to
construct a finite state machine. Sequences of semantically interacting events in
the model are used to generate test cases once the model is refined by the tester.
In our recent approach [27], the focus is on automating the testing process by
inferring an abstract model of the Ajax application and generating test cases
automatically.

3.2 Automatic Testing of Ajax

In order to detect a fault automatically, a testing method should meet the fol-
lowing conditions [28, 34]: reach the fault-execution, which causes the fault to be
executed, trigger the error-creation, which causes the fault execution to gener-
ate an incorrect intermediate state, and propagate the error, which enables the
incorrect intermediate state to propagate to the output and cause a detectable
output error. In addition, automating the process of assessing the correctness of
test case output is a challenging task, known as the oracle problem.

Meeting these reach/trigger/propagate/oracle conditions is more challenging
for Ajax applications compared to the classical ones.

One way to reach the fault-execution automatically for web applications is
by adopting a web crawler to crawl through different UI states and infer a model
of the navigational paths and states.

2
http://jsunit.net

3
http://selenium.openqa.org

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 5

6

3.3 Crawling Ajax

A general approach in testing the client-side of web applications has been to
request a response from the server and analyze the resulting HTML page. This
testing approach based on the page-sequence paradigm has serious limitations
when applied to Ajax-based applications. Ajax has a number of properties
making it difficult, for e.g., search engines, to crawl. We will briefly outline these
challenges below.

Client-side Execution. Any search engine willing to approach such an ap-
plication must have support for the execution of the scripting language. Equip-
ping a general search crawler with the necessary environment complicates its
design and implementation considerably.

Navigation. Ultimately, an Ajax application could consist of a single page
with a single URL. This characteristic makes it very difficult for a search engine
to index and point to a specific state on an Ajax application. For crawlers,
navigating through traditional multi-page web applications has been as easy as
extracting and following the hypertext links (or the src attribute of, e.g., image
tags) on each page.

Dynamic Document Object Model (DOM). The state changes in
Ajax applications are dynamically represented through the run-time changes on
the DOM. This means that the source code in HTML does not represent the state
anymore. Any search engine aimed at crawling and indexing such applications,
will need to have access to this run-time dynamic document object model of the
application.

Delta-communication. Retrieving and indexing the delta state changes
from the server, for instance through a proxy between the client and the server,
could have the side-effect of losing the context and actual meaning of the changes.
Most of such delta updates become meaningful after they have been processed
by the JavaScript engine on the client and injected into the DOM.

Events and Clickables. In Ajax, hypertext links can be replaced by
elements with event-listeners, which are handled by the client engine; it is not
possible any longer to navigate the application by simply extracting and retriev-
ing the internal hypertext links. DOM Events (e.g., onClick, onMouseOver)
can be attached to DOM elements at run-time, and as such, even a div-element
typically used for styling or structuring can have an onclick event attached to
it so that it becomes a clickable element capable of changing the internal DOM
state of the application when clicked. The necessary event handlers can also
be programmatically registered in Ajax. Finding these clickables at run-time is
another non-trivial task for a crawler.

Despite these challenges, we have proposed [25] a new type of web crawler,
called Crawljax, capable of exercising client-side code, detecting and execut-
ing doorways (clickables) to various dynamic states of Ajax-based applications
within browser’s dynamically built DOM. While crawling, Crawljax infers a
state-flow graph capturing the states of the user interface, and the possible event-
based transitions between them, by analyzing the DOM before and after firing an

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

6 TUD-SERG-2009-032

7

event. Crawljax is open source4 and based on an embedded browser interface
(with different implementations: IE, Firefox) capable of executing JavaScript
and the supporting technologies required by Ajax.

3.4 Invariant-based Testing

Once we are able to derive different dynamic states of an Ajax application,
possible faults can be triggered by generating UI events and identifying entry
points.

In our recent work [27], we have presented an approach for automatic testing
of Ajax user interfaces, called Atusa. Atusa is based on the crawling capabil-
ities of Crawljax and provides data-entry point detection and (pre-, in-, and
post-crawling) plugin hooks for testing Ajax applications.

To tackle the oracle problem, we have proposed to use generic and application-
specific structural invariants that serve as oracle to detect faults in and between
different DOM states. Such oracles can be defined in various forms such as XPath
expressions, Regular expressions, or JavaScript conditions.

3.5 Test-case Generation

While running Atusa to derive the state machine can be considered as a first full
test pass, the state machine itself can be further used for testing purposes. For
example, it can be used to execute different paths to cover the state machine
in different ways. To that end, we derive a test suite (implemented in JUnit)
automatically from the state machine, which can be used for regression testing
of Ajax applications. Figure 2 depicts the processing view of Atusa, show-
ing a pre-crawling DOM Validator and a post-crawling Test Case Generator as
examples of possible plugin implementations.

3.6 Security Testing

Ajax applications can be composed from independent user interface compo-
nents, often called web widgets. As any program code, widgets can be used for
malicious purposes. Example scenarios include when a malicious widget changes
the content of another widget to trick the user into releasing sensitive informa-
tion, or even worse, listens to the account details a user enters in another widget
(e.g., PayPal or Email widgets) and sends the data to a malicious site.

Testing modern web applications for security vulnerabilities is far from triv-
ial. Traditional detection-based approaches are generally static analysis-based,
which has limitations in revealing faults and violations in the dynamic dis-
tributed runtime behavior of modern rich web applications.

In our latest work [6], we propose to extend and use Atusa for automatically
spotting two types of security problems in widget interactions, namely, the case
in which (1) a malicious widget changes the content (DOM) of another widget,

4
http://spci.st.ewi.tudelft.nl/crawljax/

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 7

8

Crawljax Controller Ajax
Engineupdate

 DOM

update

UI

event

Embedded
Browser

event

Analyze
Dom

State
Machine

Test-case
Generator

event

Legend

Control flow

 Data component

Processing component

Access

Event invocation

Test
Cases

Static file

DOM
Analyzer

update

inCrawling
plugins

postCrawling
plugins

DB

Robot

Test
Executor

Test
Report

Coverage
Report

report

DOM
Validator

Implementation

Transform
DOM to HTML

Validate HTML Validation
Report

report

generate event

Fig. 2. Processing view of Atusa.

and (2) a widget steals data from another widget and sends it to the server via
an HTTP request.

In order to find DOM change violations (1), we first need to automatically
detect each widget’s boundary in the DOM tree. Once the boundaries are defined,
we can analyze the elements receiving events and the actual changes taking place
on the DOM tree to decide whether a state change is a violation.

For HTTP request violations (2), the main challenge is in coupling each
outgoing request with the corresponding DOM element, from which it originated.
Once we know which element is causing the request, we can analyze the behavior
and decide whether a violation has occurred.

Our approach, implemented in a number of open source Atusa plugins, called
DIVA, requires no modification of application code, and has few false positives.

4 Open Research Questions

The potential of automatic testing of Ajax applications is high, but there are
a number of problems and challenges that need to be addressed, related to the
scalability and usability of the proposed approach. In this section, we sketch the
main areas of future research we anticipate.

4.1 Invariants in Practice

Testing in Atusa is based on the notion of invariants. This is a fairly weak form
of an oracle, which can be used to conduct basic sanity checks on the DOM-
tree or transitions in the derived GUI state machine. While initial experiments
using DOM-based invariants were successful [27] a number of research questions
remain.

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

8 TUD-SERG-2009-032

9

1. While in academia the notion of design invariants is well-understood indus-
trial practice has been reluctant to pick up the idea [8]. The premise of
Atusa is that essential design decisions can be captured into invariants. To
what extent is this indeed the case? Are developers capable and willing to
document these decisions by means of invariants? What is the best nota-
tion to express invariants? Are invariants sufficiently stable across different
versions of an Ajax application?

2. Another premise in Atusa is that invariants are effective in finding faults.
We anticipate that the more application-specific an invariant is, the likelier
it will be that it can reveal a programming fault. Is this indeed the case?
How common are violations of generic invariants (concerning, e.g., HTML
validity)? What sort of application-specific invariants are likely to reveal
faults?

3. Ernst et al. have used dynamic analysis to infer “likely invariants” from
execution traces [13]. An interesting question is to what extent this would
be possible in our setting as well. Can we analyze the DOM in every state,
and discover properties on the DOM that must always hold? Can we use
the corresponding invariants for testing in subsequent versions of the Ajax
application? Can we infer client-side JavaScript invariants automatically
through dynamic analysis?

Note that many of these questions are empirical in nature. Therefore, in order
to answer them it is necessary to to have access to several Ajax development
projects, so that rigorous case studies [40] can be conducted.

4.2 Combinatorial Testing

The combinatorial explosion of the test space is one of the key problems in
software testing. A system with N features each having M possibilities, leads to
MN test cases, which rapidly becomes intractable.

To deal with this problem various approaches have been proposed. A well-
known method is Category-Partition, in which independently testable features
and parameter characteristics are identified [30]. In this approach, constraints
are used to limit the number of combinations that must be checked.

An alternative is pairwise combination testing. In this approach, not all pos-
sible combinations, but just all possible value pairs between two features are
tested (or, more generally, k-tuples for k < N) [9]. In this approach, the state
space grows logarithmically rather than exponentially. Furthermore, empirical
evidence suggests that, in practice, faults are mostly due to two or sometimes
three way interactions, making pairwise testing an effective approach [20].

The approach currently used in Atusa investigates all possibilities, and hence
suffers from the combinatorial explosion problem. In order to apply techniques
such as category-partition or pairwise combination testing, we need to identify
independent parts of the DOM-tree. Are annotations provided by developers an
effective means to identify such independent parts? To what extent can inde-
pendent DOM-fragments be found automatically? Are DOM-fragments a good

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 9

10

starting point for applying combinatorial testing? To what reductions does this
lead in practice?

4.3 State Space Reduction

Related to scalability is the state space explosion problem (see, e.g., [32]). In
particular, in the area of model checking, a significant body of research has been
devoted to reducing state spaces [18].

When deriving state machines from executions, which is what we do in
Crawljax, an abstraction function is used for mapping concrete program states
to abstract GUI states in our state-flow graph. Can we strengthen our abstrac-
tion function, and merge more states together? Can we reuse techniques from the
area of model checking to manage our state space? Can we involve the software
engineering in suggesting states to merge, for example through annotations?
Can we reduce the state machine memory footprint by adopting techniques such
as hashcode computation, state compression, recursive indexing [17], delta up-
date, or Sweep Line [7]? Is the total running time reducible by using concurrent
computation?

4.4 Regression Testing

Regression testing encompasses the selective re-testing of a system to verify that
modifications have not caused unintended effects and that the system still com-
plies with its specified requirements [19]. Regression testing of web applications
[37] in general and Ajax-based applications in particular is far from trivial due
to the high degree of dynamism in such applications. This dynamism is usually
caused by various factors such as input data from different users, server-side
state, order of event sequences, etc.

In Atusa for instance, when the generated test suite is run for regression
testing, states as seen in the browser are compared with the states in the oracle
(the baseline). Imagine a page that displays a date-time that changes after each
retrieval. A simple string comparison would result in many false test failures.
Even changing the order of followed events can result in a different state than
expected according to the baseline. How can we cope with this high level of
dynamism in Ajax applications when conducting regression testing? Can we
implement or better yet generate intelligent oracle comparators that ignore such
state differences so that we can only report real failures?

4.5 Path Seeding

Instead of starting from a single root to explore possible clicks in an Ajax
application, a given sequence of clicks can be used as a starting point. From
such a click trail, side paths can be explored automatically, for example within
a given distance of the original sequence.

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

10 TUD-SERG-2009-032

11

This opens various opportunities to refine the way test cases are generated.
These initial sequences can be obtained from a first round of manual (accep-
tance) testing, for example through the use capture-and-playback tools (such
as the aforementioned Selenium) or defining pre-conditions on the (e.g., DOM
or JavaScript variables) states. Alternatively, the initial trails may be picked
to correspond to an operational profile, and thus reflect typical usage scenar-
ios. Subsequently, Atusa’s automated capabilities can be used to expand these
initial sequences to a series of closely related sequences.

A particularly intriguing route is to use failure-inducing paths as seeds, and
then attempt to do automated fault diagnosis [1, 16]. Such failing runs can cor-
respond to click trails generated by Atusa that lead to an invariant violation.
To spot the cause of the failure, Atusa can then collect trails that are, in one
way or another, similar, which do not lead to an invariant violation. Traditional
spectrum-based analysis can then be used to identify the differences between
these trails in terms of the underlying functionality that gets executed (by in-
strumenting, e.g., the underlying JavaScript code), which then can be used
to localize the root cause of the fault. This amounts to combining click trail
similarity with fault diagnosis: a promising direction which, however, requires
further research to investigate the feasibility and benefits.

5 Concluding Remarks

As more and more applications are moved to the web, Ajax technology plays an
increasingly important role in our society. Unfortunately, the state-based, asyn-
chronous nature of Ajax in combination with the limited possibilities for static
analysis of rich Internet applications, pose an increasing threat to dependability.

One way to deal with this threat is the use of automated testing. This requires
the use of a crawler that can detect and follow clickable elements introduced by
client-side logic. Furthermore, it requires the capability of distinguishing correct
from incorrect executions, for which we propose to rely on invariants expressed
over the browser’s Document Object Model.

While this approach has proven successful in various case studies, a number
of questions remain, related in particular to the scaleability of the approach. In
order to address these concerns, in this paper we have surveyed a number of
research directions and areas of future research, in which techniques from tradi-
tional testing are made to work with the specific constraints and opportunities
imposed by Ajax applications.

References

1. R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On the accuracy of spectrum-
based fault localization. In TAICPART-MUTATION ’07: Proceedings of the Test-
ing: Academic and Industrial Conference Practice and Research Techniques - MU-
TATION, pages 89–98, Washington, DC, USA, 2007. IEEE Computer Society.

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 11

12

2. A. Andrews, J. Offutt, and R. Alexander. Testing web applications by modeling
with FSMs. Software and Systems Modeling, 4(3):326–345, July 2005.

3. A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. on Dependable and
Secure Computing, 1(1):11–33, 2004.

4. B. Beizer. Software Testing Techniques (2nd ed.). Van Nostrand Reinhold Co.,
1990.

5. A. Bertolino. Software testing research: Achievements, challenges, dreams. In
ICSE Future of Software Engineering (FOSE’07), pages 85–103. IEEE Computer
Society, 2007.

6. C.-P. Bezemer, A. Mesbah, and A. van Deursen. Automated security testing of
web widget interactions. In Proceedings of the 7th joint meeting of the Euro-
pean Eoftware Engineering Conference and the ACM SIGSOFT symposium on the
Foundations of Software Engineering (ESEC-FSE’09), pages 81–91. ACM, 2009.

7. S. Christensen, L. M. Kristensen, and T. Mailund. A sweep-line method for state
space exploration. In Proceedings of the 7th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’01), pages
450–464. Springer-Verlag, 2001.

8. L. A. Clarke and D. S. Rosenblum. A historical perspective on runtime assertion
checking in software development. ACM SIGSOFT Software Engineering Notes,
31(3):25–37, 2006.

9. D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton. The AETG system:
An approach to testing based on combinatiorial design. IEEE Trans. Software
Eng., 23(7):437–444, 1997.

10. G. A. Di Lucca and A. R. Fasolino. Testing web-based applications: The state of
the art and future trends. Inf. Softw. Technol., 48(12):1172–1186, 2006.

11. S. Elbaum, K.-R. Chilakamarri, B. Gopal, and G. Rothermel. Helping end-users
‘engineer’ dependable web applications. In Proceedings of the 16th IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE’05), pages 31–40.
IEEE Computer Society, 2005.

12. S. Elbaum, S. Karre, and G. Rothermel. Improving web application testing with
user session data. In Proc. 25th Int Conf. on Software Engineering (ICSE’03),
pages 49–59. IEEE Computer Society, 2003.

13. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.,
27(2):99–123, 2001.

14. R. Fielding. Architectural styles and the design of network-based software architec-
tures. PhD thesis, UC, Irvine, Information and Computer Science, 2000.

15. J. Garrett. Ajax: A new approach to web applications. Adaptive path, February
2005. http://www.adaptivepath.com/publications/essays/archives/000385.

php.
16. M.-J. Harrold, G. Rothermel, R. Wu, and L. Yi. An empirical investigation of pro-

gram spectra. In PASTE ’98: Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages 83–90,
New York, NY, USA, 1998. ACM.

17. G. Holzmann. State compression in SPIN: Recursive indexing and compression
training runs. In In Proceedings of Third International SPIN Workshop, 1997.

18. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, 1997.

19. IEEE. IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering
Terminology. IEEE, 1990.

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

12 TUD-SERG-2009-032

13

20. D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software fault interactions and
implications for software testing. IEEE Trans. Software Eng., 30(6):418–421, 2004.

21. A. Marchetto, F. Ricca, and P. Tonella. A case study-based comparison of web
testing techniques applied to Ajax web applications. Int. Journal on Software Tools
for Technology Transfer, 10(6):477–492, 2008.

22. A. Marchetto, P. Tonella, and F. Ricca. State-based testing of Ajax web applica-
tions. In Proc. 1st IEEE Int. Conference on Sw. Testing Verification and Validation
(ICST’08), pages 121–130. IEEE Computer Society, 2008.

23. P. McKenzie. Why I’m done making desktop applications. Blog post on http:

//www.kalzumeus.com/2009/09/05/desktop-aps-versus-web-apps/. Date con-
sulted: 15 September 2009.

24. C. L. Merrill. Using Ajax to improve the bandwidth performance of
web applications, 2006. http://www.webperformanceinc.com/library/reports/

AjaxBandwidth/.
25. A. Mesbah, E. Bozdag, and A. van Deursen. Crawling Ajax by inferring user

interface state changes. In Proceedings of the 8th International Conference on Web
Engineering (ICWE’08), pages 122–134. IEEE Computer Society, 2008.

26. A. Mesbah and A. van Deursen. A component- and push-based architectural style
for Ajax applications. Journal of Systems and Software, 81(12):2194–2209, 2008.

27. A. Mesbah and A. van Deursen. Invariant-based automatic testing of Ajax user
interfaces. In Proceedings of the 31st International Conference on Software En-
gineering (ICSE’09), Research Papers, pages 210–220. IEEE Computer Society,
2009.

28. L. Morell. Theoretical insights into fault-based testing. In Proc. 2nd Workshop on
Software Testing, Verification, and Analysis, pages 45–62, 1988.

29. J. Offutt. Quality attributes of web software applications. IEEE Softw., 19(2):25–
32, 2002.

30. T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and
generating functional tests. Commun. ACM, 31(6):676–686, 1988.

31. D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

32. M. Pezzè and M. Young. Software Testing and Analysis. Wiley, 2008.
33. F. Ricca and P. Tonella. Analysis and testing of web applications. In ICSE’01:

23rd Int. Conf. on Sw. Eng., pages 25–34. IEEE Computer Society, 2001.
34. D. Richardson and M. Thompson. The RELAY model of error detection and

its application. In Proc. 2nd Workshop on Software Testing, Verification, and
Analysis, pages 223–230, 1988.

35. C. W. Smullen III and S. A. Smullen. An experimental study of ajax application
performance. Journal of Software, 3(3):30–37, March 2008.

36. S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Automated replay and failure
detection for web applications. In ASE’05: Proc. 20th IEEE/ACM Int. Conf. on
Automated Sw. Eng., pages 253–262. ACM, 2005.

37. A. Tarhini, Z. Ismail, and N. Mansour. Regression testing web applications. In
International Conference on Advanced Computer Theory and Engineering, pages
902–906. IEEE Computer Society, 2008.

38. A. White. Measuring the benefits of Ajax, 2006. http://www.developer.com/

java/other/article.php/3554271.
39. J. Willemsen. Improving user workflows with single-page user interfaces, November

2006. http://www.uxmatters.com/MT/archives/000149.php.
40. R. K. Yin. Case Study Research: Design and Methods. SAGE Publications Inc, 3d

edition, 2003.

SERG Van Deursen & Mesbah – Research Issues in Testing Ajax

TUD-SERG-2009-032 13

Van Deursen & Mesbah – Research Issues in Testing Ajax SERG

14 TUD-SERG-2009-032

TUD-SERG-2009-032
ISSN 1872-5392 SERG

