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Abstract 

People of all generations are making m ore and  more use of d igital imaging systems 
in their daily lives. The image content rendered  by these d igital imaging systems 
largely d iffers in perceived quality depending on the system and  its applications. 
To be able to optimize the experience of viewer s of this content understand ing and  
modeling perceived  image quality is essential. Research on modeling image quality 
in a full-reference framework --- where the original content can be used  as a 
reference --- is well established  in literature. In many current  app lications, however, 
the perceived  image quality needs to be modeled  in a no-reference framework at 
real-time. As a consequence, the model needs to quantitatively pred ict perceived  
quality of a degraded  image without being able to compare it to its orig inal version, 
and  has to achieve this with limited  computational complexity in order to enable 
real-time application. Although human beings effortless jud ge image quality in a 
real-time no-reference framework, developing a model to simulate this perception  
is still an academic challenge partly due to our limited  understand ing of the human 
visual system.  

This thesis presents some achievements in designing no-reference objective 
quality metrics, which have the aim to automatically and  quantitatively pred ict 
perceived  image quality. Two d ifferent approaches are used . In one approach the 
perception of some specific image degradations is modeled . This approach is 
applied  to the perception of blockiness and  ringing, two degradations typ ically 
occurring as a consequence of signal compression. The resulting metrics are based  
on a two-steps framework: a first step, in which the artifacts are located  and  a 
second  step, in which the local visibility of the artifact is estimated . Both 
components include aspects of human  vision with which the reliability of the 
metrics in pred icting perceived  artifact annoyance is improved , while keeping the 
computational effort limited . In a second  approach the overall perceived  quality of 
images is pred icted . An accurate and  computationally efficient way to do so exists 
of combining a simplified  feature extraction strategy  --- resulting in features based  
on aspects of the artifact specific metrics --- with an adaptive neural network. After 
having trained  the overall quality estimation system  off-line, the metric can be very 
easily implemented  in real-time devices.  

Whether the artifacts in an image attract the viewer’s attention also affect the 
viewer’s quality estimation. Hence, in a final study the improvement in quality 
pred iction performance of various metrics by includ ing visual attention is 
evaluated . In these metrics local quality information is weighted  with the attention 
given locally by the averaged  viewer . Results show that when using ground -truth 
attention obtained  from eye-tracking record ings the degree to which the quality 
estimation is improved , depends on the type of metric and  kind  of image content.  
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Samenvatting 

Mensen van alle generaties gebruiken steeds meer d igitale beeldsystemen in hun 
dagelijks leven. De waargenomen kw aliteit van de beelden, d ie door deze d igitale 
systemen weergegeven worden, verschilt sterk afhankelijk van het systeem en de 
toepassingen. Om de kijkervaring te optimaliseren voor de gebruiker van deze 
beelden is het nod ig om waargenomen beeldkwaliteit te  begrijpen en modeleren. 
Onderzoek naar beeldkwaliteit in een situatie waarbij de originele beelden als een 
referentie aanwezig zijn is overvloed ig aanwezig in de literatuur. Maar in vele 
toepassingen moet de waargenomen beeldkwaliteit geschat worden zonde r de 
aanwezigheid  van de originele beelden, en dat in realtime. Dus moet het 
bijbehorende model de beeldkwaliteit voorspellen zonder het beeld  te kunnen 
vergelijken met zijn originele versie, en dat met een beperkte rekencapaciteit zodat 
realtime gebruik mogelijk is. Voor mensen is d it een vanzelfsprekende taak, maar 
deze vanzelfsprekend heid  inbouwen in een systeem is nog steed s een academische 
uitdaging omwille van onze beperkte kennis van het menselijk visuele systeem.  

Deze thesis beschrijft een aantal resultaten in het ontwerp van referentievrije 
objectieve kwaliteitsmaten, d ie de waargenomen beeldkwaliteit au tomatisch en 
kwantitatief moeten voorspellen. Daarbij zijn twee benaderingen gebru ikt. In de 
ene benadering word t de waarneming van specifieke artefacten in het beeld  
gemodelleerd . Deze benadering word t toegepast bij het modeleren van 
blokkerigheid  en rimpeligheid , twee artefacten d ie voorkomen als een gevolg van 
beeldcompressie. De bijbehorende objectieve maten zijn gebaseerd  op een 
raamwerk bestaande uit twee stappen: in een eerste stap word t de locatie van de 
artefacten bepaald , en in een tweede stap word t op d ie locatie de zichtbaarheid  van 
het artefact geschat. In beide stappen worden aspecten van het menselijke visuele 
systeem meegenomen, waardoor de betrouwbaarheid  van de resulterende maten 
toeneemt, terwijl de rekencomplexiteit beperkt blijft. In de tweede benadering 
word t de totale beeldkwaliteit voorspeld . Een manier om d it te d oen, d ie 
tegelijkertijd  nauwkeurig is, maar toch beperkt in reken complexiteit, bestaat u it het 
combineren van een eenvoudig proces voor het berekenen van kenmerken van de 
artefacten, gebaseerd  op aspecten van de bestaand e objectieve maten, met een 
adap tief neuraal netwerk. Zodra het netwerk vold oende getraind  is om tota le 
beeldkwaliteit te kunnen voorspellen, kan het eenvoudig in realtime systemen 
ingebouwd worden. 

Het al dan niet trekken van aandacht van de artefacten in een beeld , zal het 
oordeel over de beeldkwaliteit beïnvloeden. Om deze gedachte ook toe te passen in  
objectieve kwaliteitsmaten is een aparte stud ie uitgevoerd . Daarbij worden de 
lokale zichtbaarheid  van de artefacten gewogen met de aandacht d ie een 
gemiddelde gebruiker dat deel van het beeld  geeft. De gevonden resultaten laten 
zien dat wanneer actuele d ata van oogbewegingen gebruikt worden als maat voor 
de visuele attentie, de mate waarin de voorspelbaarheid  van de objectieve maten 
toeneemt afhankelijk is van de specifieke maat en de beeld inhoud . 
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Chapter 1 

Introduction 

During the past decades we have witnessed  a revolutionary growth in the use of 
d igital imaging systems in our daily lives. These systems are now part of a broad  
range of applications, covering communication, entertainment, medical information 
representation, and  security. The signals add ressing these imaging systems 
originate from a d iversity of sources. Image content can be either computer 
generated , or can be recorded  with a simple image camera or with a more 
sophisticated  video capturing device. The resu lting content is either stored  on a 
memory device or is transmitted  over a (broadcasting) channel. In the d igital image 
system the signal is usually processed  (e.g. to scale the incoming content to an 
appropriate spatial and  temporal resolution) before being rendered  on a d isp lay (or 
a print). Each of these phases in the d igital imaging chain is prone to signal 
d istortions [1]-[4]. For example, acquisition of the content is limited  in spatial and  
temporal resolution and  its luminance and  color information is written in a format 
with a limited  number of bits. For storing or transmitting the content limited  
band wid th is available, and  as a consequence, the signal is often compressed  
resulting in a loss of information. In the final step  of the chain, the content is 
rendered  on a d isplay or a print w ith a quality determined  by the characteristics of 
the rendering device. In summary, the quality of the final content is rarely perfect. 
As a consequence, being able to maintain, control, or even enhance the quality of 
images has emerged  as one of the crucial aspects in the design of current imaging 
systems [5]. 

Since human beings are the ultimate receivers of most visual information, image 
quality has been trad itionally evaluated  by human observers. When cond ucted  
properly, subjective experiments th at require the participation of a number of 
human observers are considered  so far as the most reliable means of assessing 
image quality. However, performing subjective experiments is time-consuming, 
and  therefore, very expensive, and  too slow to be useful in real-time applications. 
To make image quality assessment more applicable, in the last decades, a large 
amount of research effort has been devoted  to the d evelopment of computational 
models/ algorithms that can automatically and  consistently pred ict perce ived  image 
quality (see e.g. [5]-[7]). The essential goal is to emulate or at least come close to 
human perception of image quality, using today’s computational technologies. 
These image quality assessment models/ algorithms are generally referred  to as 
objective metrics. 

Objective metrics, nowad ays, are taking an increasingly important role in a wide 
variety of applications [5]. Firstly, they can be used  in a conventional quality control 
system to monitor and  ad just the image quality in real-time of e.g. a 
videoconferencing system. A network provider can use a quality metric to examine 
the video quality transmitted  over the network, and  to dynamically allocate 
streaming resources accord ingly. Secondly, they can be employed  off-line to 
evaluate image and  video processing algorithms. New successfu l objective metrics 
are replacing the mean squared  error (MSE) or peak signal-to-noise ratio (PSNR) for 
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comparing the quality performance of competing image and  video processing 
algorithms [8]. In add ition, these more sophisticated  metrics can be used  to 
optimize the settings of image enhancement algorithms towards the best perceived  
quality. Third ly, objective metrics can be embedded  in real-time d igital imaging 
systems to optimize their performance from the human perception point of view. If 
sufficiently in agreement with human quality judgment at a complexity that allows 
implementation in a real-time imaging chain, the objective metrics are used  to 
optimize the ou tput of the chain. More particularly, they can be adopt ed  to ad just 
the parameter settings of all video processing algorithms in the chain, taking into 
account characteristics of the incoming signal. In conclusion, the tremend ous 
demand for image and  video technologies has boosted  the requirement for a 
reliable assessment of their quality perceived  by users, and  has given the field  of 
objective metric development a lot of attention in the past years.  

In literature [5]-[7], objective metrics are generally classified  into full-reference 
(FR), reduced -reference (RR) and  no-reference (NR) metrics, depend ing on to what 
extent they use the original, d istortion -free image as a reference. FR metrics assume 
that the reference is fu lly accessible, and  they are based  on measuring the similarity 
or fidelity between the d istorted  image and  its original version. RR metrics are 
mainly used  in scenarios where the reference is not fully available, e.g. in complex 
communication networks. They make use of certain features extracted  from the 
reference, which are then employed  as sid e information to evaluate the quality of a 
d istorted  image. In many real-time applications, however, there is no access to the 
reference at all. Hence, it is desirable to have NR metrics that can assess perceived  
quality based  on the d istorted  image only. Designing NR metrics has great potential 
in practice, but is still an academic challenge partly due to our limited  
understand ing of the human visual system (HVS). 

1.1 Subjective Image Quality Assessment 

Subjective image quality is of fundamental importance  to the design and  validation 
of objective metrics [7], [9]. It provides a better und erstand ing of how quality is 
assessed  by the HVS, and  this understand ing greatly helps for mapping objective 
quality pred iction to subjective quality experience. In add ition, quality scores 
resulting from subjective experiments are widely accepted  as the benchmark for 
evaluating the performance of an objective metric, and  for comparing alternative 
metrics proposed  in the literature. To obtain useful and  reliable results fro m 
subjective experiments, it is necessary to design an experimental protocol that best 
fits the goal of the image quality assessment problem at hand  [9], [10]. In this 
protocol aspects related  to viewing conditions, test material and  test methods have 
to be d iscussed  and  selected . Typical issues regard ing subjective tests are 
documented  in [7] and  [9]. In recent years, the d ramatic increase in research on 
objective quality metrics has pushed  the need  for public, freely available, d atabases 
of images/ videos and  their corresponding subjective quality scores to the forefront. 
Having these databases largely facilitates the development of new objective metrics 
and  their performance evaluation in a comparative setting with existing metrics. A 
d irect comparison on the same content and  quality scores allows an analysis of the 
strengths and  weaknesses of all metrics available. Some of the databases are 
summarized  in [11]. 
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1.2 Objective Metrics: from MSE/PSNR to State-of-the-art 

The most well-known and  widely used  objective metric is MSE/ PSNR. It is a FR 
metric that simply sums all p ixel-by-pixel d ifferences between a d istorted  image 
and  its original version. The metric is parameter free, and  very inexpensive to 
implement, but it is w idely criticized  by the image qualit y community for its poor 
correlation with human perceived  image quality [8]. MSE/ PSNR, ironically, 
remains the most used  quality metric in current signal and  image processing 
systems, mainly because it is a convention. 

Researchers have taken d ifferent approaches to develop FR metrics with a better 
performance than MSE/ PSNR; mainly by includ ing aspects of the HVS. In order to 
be able to do so, functional aspects of the HVS needed  to be modeled . Advances in 
human vision research increased  our understand ing of the structural and  functional 
mechanisms of the HVS, and  allowed  expressing these psychophysical find ings into 
mathematical models [12]-[15]. Although these models still remain limited  in their 
sophistication, and  thus also in their reliability, they are already of great interest to 
explore their added  value in image quality research. One way to integrate HVS 
aspects in the design of an objective quality metric is defined  rather ‘‘bottom-up ’’ 
and  simulates well-known functionalities of the early HVS [12]. Th ese metrics, of 
which numerous d ifferent implementations are d iscussed  in literature, are based  on 
a so-called  error-visibility framework [5]. This framework decomposes the image 
signal into channels of various frequencies and  orientations in order to reflect 
human vision at the neural cell level. Classical HVS models, such as the contrast 
sensitivity function (CSF) per channel, and  interactions between these channels to 
simulate masking, are then implemented . Pioneering work on this approach is 
described  in [16], and  more representative models that are consistent with the error -
visibility framework are summarized  in [5]. Although well stud ied , there still are 
some limitations to these metrics. First, our knowledge of the HVS is far from 
complete, and  simulating precisely all related  components of the HVS is impossible. 
This intrinsically limits the accuracy of these metrics. Second , the HVS is a rather 
complex system that contains many nonlinear operations. But, most existing vision 
models are linear (or quasi-linear) and  are developed  using restricted  and  simplistic 
stimuli. Applying these vision models in objective metric design actually implies 
the acceptance of a number of strong assumptions. 

There are two recent and  very successfu l alternatives to achiev e a reliable FR 
metric. They both are based  on a higher level ‘‘top-down’’ approach of the overall 
functionality of the HVS. It concerns the ‘‘structural similarity’’ (SSIM) [17] and  the 
‘‘visual information fidelity’’ (VIF) [18] metrics. The principal idea behind  SSIM is 
the observation that the HVS is highly adapted  to extract structural information 
from visual scenes. Therefore, the metric intend s to quantify image quality by 
measuring the structural similarity (or d istortion) between a d istorted  image and  its  
original version. SSIM defines nonstructural d istortions as those that d o not modify 
the structure of objects in the visual scene, whereas all other d istortions are defined  
as structural. The metric measures the similarity in three elements, i.e. luminance, 
contrast, and  structure, within a local area of image content. The design of VIF is 
based  on an information communication and  sharing point of view. It attempts to 
relate image quality to the amount of information that is shared  between the 
d istorted  im age and  its original version. In other words, VIF exploits the 
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relationship  between statistical image information and  image quality. It has been 
shown that both SSIM and  VIF are much more consistent than MSE/ PSNR in 
pred icting perceived  image quality. A comprehensive evaluation of the 
performance of SSIM, VIF as well as other recent FR metrics is detailed  in [19].  

Compared  to the research on FR metrics, that on NR metrics is still in a very 
preliminary stage. Nonetheless, research on NR metrics has recently received  a lot 
of attention, because of their great practical potential in real-time applications. 
Assessing quality based  on the d istorted  image only seems an easy task for human 
observers, yet it is the most d ifficult problem in objective image quality  metric 
design [5]. Fortunately, in many practical applications, the processes involved  in 
generating the d istortions are known and  fixed , and  so, the design of a NR metric 
that handles a specific d istortion type turns out to be much more realistic. Based  on 
this idea, NR metrics can be categorized  into general metrics and  ded icated  metrics. 
General NR metrics are intended  to assess the overall perceived  quality of an image 
degraded  by a known d istortion process, which possibly contains various artifact 
types, e.g. a wavelet-based  compressed  image often exhibits blur and  ringing 
artifacts simultaneously [20]. Dedicated  NR metrics instead  are based  on d irectly 
measuring a specific artifact type created  by a specific image d istortion process, 
such as blur caused  by image acquisition or blocking artifacts resulting from block -
based  DCT coding [20]. 

In the design of a general NR metric, the overall quality of specifically degraded  
images is often targeted  using hypothesized  assumptions about natural scenes or 
the HVS. The NR approach proposed  in [21] relies on the assumption that images of 
natural scenes exhibit strong statistical regularities, and  therefore, reside in a tiny 
area of the space containing all possible images. As a consequence, it quantifies the 
overall quality of images compressed  by JPEG2000 based  on detected  variations in 
the statistics of image features calculated  in the wavelet domain. The performance 
of this approach, however, largely depends on sophisticated  modeling of natural 
scene statistics. As an alternative, NR image quality assessment is formulated  as a 
machine learning problem in some research (such as e.g. in [22]-[24]). It avoids the 
explicit modeling of the HVS, but rather treats it as a black box, whose input -output 
relationship between image characteristics and  a quality rating is to be learned  by 
computational intelligent tools, such as neural networks. This type of NR metrics is 
generally defined  as a regression or function approximation, and  therefore, usually 
requires extensive training on a large d ata set obtained  from subjective quality 
rating experiments. The two types of general NR metrics mentioned  so far have 
been proved  to be effective for the overall quality pred iction of a specific 
combination of d istortions, but they are unlikely to be able to handle other 
combinations of d istortions. For example, a NR metric based  on a neural network 
that is trained  to assess the quality of JPEG compressed  images is not necessarily 
useful to pred ict the perceived  quality of JPEG2000 com pressed  images. 

In the literature, a large number of NR metrics are designed  to assess the quality 
degradation of a specific type of artifact, such as blockiness, ringing, or noise. These 
ded icated  NR metrics are highly beneficial for image/ video compression and  
transmission systems. First, they usually provide a spatially varying quality 
degradation profile of a d istorted  image, ind icating at each location in the image the 
visibility of the targeted  type of artifact. Second , these metrics can each ind ivid u ally 
determine the quality degradation caused  by a specific type of artifact, e.g. the 
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annoyance of blockiness and  ringing can be quantified  simultaneously and  
separately for each JPEG compressed  image. Both aspects contribute to the 
optimization of signal enhancement at either local or global level in an imaging 
chain. For example, in the video chain of current television sets, the artifact 
reduction scheme uses these metrics to quantify the occurrence of ind ivid ual 
artifacts in the incoming video, and  automatically ad justs the algorithms and  their 
parameter settings accord ingly [25]-[28]. Finally, the overall image quality, when 
needed , can be pred icted  by combining ind ividual artifact specific metrics; e.g. a 
ringing metric and  a blur metric are often com bined  to assess the overall perceived  
quality of wavelet-based  compressed  images [29]. So, both app lication scenarios 
illustrate the added  value of reliably modeling specific types of artifacts.  

In some specific application environments, especially in mult imedia 
communication, RR metrics are used  as a compromise between FR and  NR metrics 
[5], [30]. In the context of communication, identification of the quality loss in the 
video data transmitted  over complex networks is highly needed . In such a scenario, 
FR metrics cannot be applied  since there is no access to the original video data at 
the receiving side. On the other hand , NR metrics have limited  reliability since the 
type of d istortions occurring in complex communication networks can be 
insufficiently pred icted . A RR approach provides a practical solution; it only sends 
partial information about the reference as add itional data from the transmitter to 
the receiver. Obviously, the bandwid th needed  for send ing the add itional 
information becomes a crucial aspect in the metric design. 

So far, advances in image quality assessment have shown the need  and  practical 
attainability of integrating relevant aspects of the HVS in objective metric design. In 
the literature, lower level aspects of the HVS, such as contrast  sensitivity, luminance 
masking and  texture masking, are successfu lly modeled  and  integrated  in various 
metrics. Stud ies evaluating whether also higher level aspects of the HVS, such as 
visual attention, are beneficial for objective quality p red iction, and  if so, how to 
apply them in metric design are still limited , but recently have emerged  as an active 
research area [30]-[34]. Adding visual attention in an objective metric is not a trivial 
task due to the fact that the mechanisms of attention for image qu ality judgment are 
not fully understood  yet. Until recently, very little, if any, meaningful progress has 
been made in this scientific d irection.  

1.3 Aim 

As d iscussed  above, designing NR metrics that reliably pred ict what humans 
perceive is still challenging, and  only limited  progress has been made in this 
research area. Nonetheless, the research area is highly important because of its 
practical use in improving the quality performance of d igital imaging systems. The 
aim of this thesis is to contribute new  developments in the design of NR image 
quality metrics that quantify the perceived  annoyance of specific visual d istortions . 
More specifically, the research described  in this thesis provides add itional evidence 
to the research questions: 

- what is the add ed  value of add ing HVS characteristics to the design of 
specific NR metrics? 
- what is the added  value of add ing visual attention to the design of objective 
metrics? 
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1.4 Outline of the Thesis 

One of the d ifficulties in the design of specific NR metrics is that most types of 
artifacts are image content and / or app lication dependent. As such, the task of 
precisely locating these artifacts is d ifficult, especially in a NR context. Another 
challenge is that the visibility of these artifacts to the human eye is o ften affected  by 
local image characteristics. Measuring visibility largely relies on modeling the HVS, 
which involves understand ing the way human beings perceive a specific artifact 
type, and  modeling that perception in a computationally efficient way, the  latter 
becoming extremely important for real-time implementation. In chap ter 2, 3 and  4 
we focus our research to the development of a NR metric for blocking and  ringing 
artifacts, which typically occur in current image/ video compression and  
transmission. To model the perception of these artifacts, we propose an approach 
which intrinsically exists of two steps: first detecting regions in an image where 
artifacts might occur, and  second  quantifying the artifact annoyance in these 
regions. In both steps, the specific physical structure of the targeted  artifact and  
properties of the HVS are efficiently combined  to characterize the visibility of 
artifacts to the human eye.  

Most existing blockiness metrics are implemented  as pred ictor of overall image 
quality degrad ation due to DCT coding; they do not consider local visibility of 
blocking artifacts. This implies that these metrics do not give precise information on 
how annoying blocking artifacts at a local level are. To overcome this issue we 
explicitly introduce in chapter 2 two essential components in the metric design: (1) 
the detection of the exact location of blocking artifacts independent of e.g. 
deviations due to spatial scaling of the image, and  (2) the estimation of the local 
visibility of blocking artifacts, based  on modeling spatial masking properties of the 
HVS. These extensions with respect to existing metrics serve two purposes. First, 
our approach intrinsically yields a spatially varying degradation profile, which is 
beneficial for applications, where image content can be processed  locally ad aptive. 
Second , the overall perceived  blockiness is more reliably pred icted  by only 
summing the local contribu tions in the image, where blockiness is perceived . 

Unlike the blocking artifact, perceived  ringing is rather d ifficult to be pred icted  
and  modeled  computationally due to its strong image content dependency. To the 
best of our knowledge, only a very limited  amount of research has been devoted  to 
the development of a ringing metric. To better understand  how human beings 
perceive ringing in compressed  images, we conducted  two perception experiments: 
the so-called  ringing region visibility experiment (reported  in chapter 3) and  
ringing annoyance experiment (reported  in chapter 4). For the ringing region 
visibility experiment, participants were requested  to mark any region in the image 
where ringing was perceived , independent of its annoyance. For the ringing 
annoyance experiment, participants scored  the annoyance of the ringing artifacts. 
The resulting subjective data are used  in the design of a ringing metric that follows 
a similar two-step approach as used  for our blockiness metric. First, perceptually 
relevant ringing artifacts are detected , using a percep tual ed ge detector combined  
with an efficient model of spatial masking in the HVS (as detailed  in chapter 3). 
Then, the supra-threshold  visibility of ringing artifacts within the detected  regions 
is estimated , and  the overall ringing annoyance in an image is pred icted  (as detailed  
in chapter 4). 
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Reliably assessing overall quality of images, in which various types of artifacts 
are coexisting, is still challenging in a NR context. Combining ded icated  NR metrics 
to an overall perceived  quality pred iction is promising, and  consequently, a more 
complex system for overall quality pred iction constructed  by several (relevant) 
artifact specific metrics (includ ing, for example, the blockiness metric and  ringing 
metric developed  in this thesis) is highly expected . This approach, however, is so 
far limited  by the inadequate progress in the design of all artifact-specific metrics 
needed , and  by our insufficient understand ing of how humans combine various 
perceived  artifacts to an overall quality judgment. To have a more practical solution, 
an alternative NR approach for the overall image quality assessment is proposed  in 
chapter 5. The basic idea is to efficiently select and  calculate the most relevant 
feature(s) representative for the overall image quality, and  to apply an adaptive 
neural network to empirically learn the high ly nonlinear relationship between the 
relevant feature(s) and  the overall image quality assessment. We have shown that 
skillfu lly combining the simplified  feature computation with the neural network 
processing yield s indeed  a promising NR metric for assessing the overall quality of 
JPEG/ JPEG2000 compressed  images. The features selected  as input to the neural 
network are based  on local blockiness for JPEG and  local blur for JPEG2000, 
respectively. In a neural network approach these features seem to be sufficiently 
representative for overall image quality. We could  also have chosen a combination 
of features, e.g. based  on local blockiness and  ringing for JPEG, or local blur and  
ringing for JPEG2000, but we decided  to limit the input space of the neural network  
to a single type of features, since these are the simplest to be calculated . As such, the 
proposed  approach is simple, computationally inexpensive, and  can be easily 
implemented  in real-time applications.  

Novel research on image quality assessment tends to include visual attention in 
objective metrics to further enhance their performance in pred icting perceived  
quality. To this end , a variety of computational models of visual attention is 
implemented  in d ifferent metrics by weighting local d istortions wit h local saliency, 
a process referred  to as ‘‘visual importance pooling’’. The attention models used  in 
these stud ies, however, are either specifically designed  or chosen for a specific 
domain, and  their accuracy in pred icting human attention in general terms  is not 
always fully proved  yet. To circumvent this issue, we use ‘‘ground  tru th ’’ visual 
attention data instead  of a computational model, thus making the evaluation of 
add ing visual attention in objective metrics independent of the reliability of an 
attention model. These ‘‘ground  truth’’ visual attention data were obtained  from 
eye-tracking experiments detailed  in chapter 6. We performed two eye-tracking 
experiments: one in which the participants looked  freely to undistorted  images, and  
a second  one, in which d ifferent participants were asked  to score the quality of a 
JPEG compressed  version of the images. We intend  to answer two questions. First, 
what is the d ifference in human attention between free-looking and  image quality 
assessment? And second , what type of visual attention --- if any --- should  be included  
in objective metrics? Based  on our eye-tracking data, we further evaluate their 
influence on the performance of several objective metrics well-known in literature.  

Finally, in chapter 7 we d iscuss the find ings in this thesis in more general terms 
and  give some conclusions on the added  value of includ ing HVS characteristics and 
visual attention in the design of objective metrics. In add ition, we give some 
suggestions for future research in this area. It might be relevant to realize that 
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chapters 2, 3, 4, 5 and  6 are based  on selected  publications of the author. Therefore, 
overlapping information in the introductory section between chapters may be 
found . However, to maintain consistency in each ind ividual chap ter, the original 
introd uction is given. 
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Chapter 2 

A Perceptually Relevant No-Reference Blockiness 
Metric Based on Local Image Characteristics 

 
 
Abstract : A novel no-reference blockiness metric that provides a quantitative 
measure of blocking annoyance in block-based DCT coding is presented. The 
metric incorporates properties of the human visual system (HVS) to improve its 
reliability, while the additional cost introduced by the HVS is minimized to 
ensure its use for real-time processing. This is mainly achieved by calculating the 
local pixel-based distortion of the artifact itself, combined with its local visibility 
by means of a simplified model of visual masking. The overall computation 
efficiency and metric accuracy is further improved by including a grid detector to 
identify the exact location of blocking artifacts in a given image. The metric 
calculated only at the detected blocking artifacts is averaged over all blocking 
artifacts in the image to yield an overall blockiness score. The performance of 
this metric is compared to existing alternatives in literature and shows to be 
highly consistent with subjective data at a reduced computational load. As such, 
the proposed blockiness metric is promising in terms of both computational 
efficiency and practical reliability for real-life applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Copyright © 2009 H. Liu and  I. Heynderickx. This is an open access article d istributed  und er 
the Creative Commons Attribution License, which permits unrestricted  use, distribution, and  
reproduction in any medium, provided  the original work is properly cited . 
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No-Reference Blockiness Metric Based  on Local Image Characteristics’’ by H. Liu  
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2.1 Introduction 

Objective metrics, which serve as computational alternatives for expensive image 
quality assessment by human subjects, are aimed  at pred icting perceived  image 
quality aspects automatically and  quantitatively. They are of fund amental 
importance to a broad  range of image and  video processing applications, such as 
for the op timization of video cod ing or for real-time quality monitoring and  control 
in d isp lays [1], [2]. For example in the video chain of current TV-sets, various 
objective metrics, which determine the quality of the incoming signal in terms of 
blockiness, ringing, blur, etc. and  ad apt the parameters in the video enhancement 
algorithms accord ingly, are implemented  to enable an improved  overall perceived  
quality for the viewer. 

In the last decades, a considerable amount of research has been carried  ou t on 
developing objective image qu ality metrics, which can be generally classified  into 
two categories: full-reference (FR) metrics and  no-reference (NR) metrics [1]. The FR 
metrics are based  on measuring the similarity or fidelity between the d istorted  
image and  its original version, which is considered  as a d istortion-free reference. 
However, in real-world  applications the reference is not always fully available; for 
example, the receiving end  of a d igital video chain usually has no access to the 
original image. Hence, objective metrics u sed  in these types of app lications are 
constrained  to a no-reference approach, which means that the quality assessment 
relies on the reconstructed  image only. Although, human observers can easily judge 
image quality without any reference, designing NR metr ics is still an academic 
challenge mainly due to the limited  understand ing of the human visual system [1]. 
Nevertheless, since the structure information of various image d istortions is well 
known, NR metrics designed  for specific quality aspects rather tha n for overall 
image quality are simpler, and  therefore, more realistic [2].  

Since the human visual system (HVS) is the ultimate assessor of most visual 
information, taking into account the way human beings perceive quality aspects, 
while removing perceptu al redundancies, can be greatly beneficial for matching 
objective quality pred iction to human perceived  quality  [5]. This statement is 
adequately supported  by the observed  shortcoming of the purely pixel-based  
metrics, such as the mean square error (MSE) and  peak signal-to-noise ratio (PSNR). 
They insufficiently reflect d istortion annoyance to the human eye, and  thus often 
exhibit a poor correlation with subjective test resu lts (e.g. in [1]). The performance 
of these metrics has been enhanced  by incorporating certain properties of the HVS 
(e.g. in [13]-[16]). But since the HVS is extremely complex, an objective metric based  
on a model of the HVS often is computationally very intensive. Hence, to ensure 
that an HVS based  objective metric is applicable to real-time processing, 
investigations should  be carried  out to reduce the complexity of the HVS model as 
well as of the metric itself without significantly compromising the overall 
performance. 

One of the image quality d istortions for which several objective metrics have 
been developed  is blockiness. A blocking artifact manifests itself as an artificial 
d iscontinuity in the image content, and  is known to be the most annoying d istortion 
at low bit-rate DCT coding [24]. Most objective quality metrics either require a 
reference image or video (e.g. in [14]-[16]), which restricts their use in real-life 
applications, or lack an exp licit human vision model (e.g. in [25], [26]), which limits 
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their reliability. Apart from these metrics, no-reference blockiness metrics, 
includ ing certain properties of the HVS are developed . Recently, a promising 
approach, which we refer to as feature extraction method , is proposed  in [6] and  [7], 
where the basic idea is to extract certain image features related  to the blocking 
artifact and  to combine them in a quality pred iction model with the parameters 
estimated  from subjective test data. The stability of this method , however, is 
uncertain since the model is trained  with a limited  set of images only, and  its 
reliability to other images is not proved  yet. 

A no-reference blockiness metric can be formulated  either in the spatial domain 
or in the transform d omain. The metrics described  e.g. in [8] and  [9] are 
implemented  in the transform domain. In [8], a 1-D absolute d ifference signal is 
combined  with luminance and  texture masking, and  from that blockiness is 
estimated  as the peaks in the power spectrum using FFT. In this case, the FFT has to 
be calculated  many times for each image, which is therefore very expensive. The 
algorithm in [9] computes the blockiness as a resu lt of a 2-D step function weighted  
with a measure of local spatial masking. This metric requires the access to the DCT 
encoding parameters, which are, however, not always available in practical 
applications. 

In this paper, we rely on the spatial domain approach. The generalized  block-
edge impairment metric (GBIM) [3] is the most well-known metric in this domain. 
GBIM expresses blockiness as the inter-pixel d ifference across block bound aries 
scaled  with a weighting function, which  simply measures the perceptual 
significance of the d ifference due to local spatial masking of the HVS. The total 
amount of blockiness is then normalized  by the same measure calculated  for all 
other pixels in an image. The main drawbacks for GBIM are: (1) the inter-pixel 
d ifference characterizes the block d iscontinuity not to the extent that local 
blockiness is sufficiently reliably pred icated ; (2) the HVS model includes both 
luminance masking and  texture masking in a single weighting function, and  
efficient integration of d ifferent masking effects is not considered , hence, applying 
this model in a blockiness metric may fail in assessing demanding images; and  (3) 
the metric is designed  such that the human vision model needs to be calculated  for 
every pixel in an image, which is computationally very expensive. A second  metric 
using the spatial domain is based  on a locally ad aptive algorithm [4], and  is 
hereafter referred  to as LABM. It calculates a blockiness metric for each ind ivid ual 
cod ing block in an image, and  simultaneously estimates whether the blockiness is 
strong enough to be visible to the human eye by means of a just -noticeable-
d istortion (JND) profile. Subsequently, the local metric is averaged  over all visible 
blocks to yield  a blockiness score. Th is metric is promising and  potentially more 
accurate than GBIM. However, it exhibits several d rawbacks: (1) the severity of 
blockiness for ind ividual artifacts might be under - or over-estimated  by provid ing 
an averaged  blockiness value for all artifacts within this block; (2) calculating an 
accurate JND profile which provides a visibility threshold  of a d istortion due to 
masking is complex, and  it cannot pred ict perceived  annoyance above threshold ; 
and  (3) the metric needs to estimate the JND for every pixel in an image, which 
largely increases the computational cost.  

Calcu lating the blockiness metric only at the expected  block edges, and  not at all 
p ixels in an image strongly reduces the computational power, especially when a 
complex HVS is involved . To ensure that the metric is calculated  at the exact 
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position of the block boundaries a grid  detector is needed  since in practice 
deviations in the blocking grid  might occur in the incoming signal, e.g. as a 
consequence of spatial scaling [10], [11], [25]. With out this detection phase, no-
reference metrics might turn out to be useless, as blockiness is calcu lated  at wrong 
pixel positions. 

In this paper, a novel algorithm is proposed  to quantify blocking annoyance 
based  on its local image characteristics. It combines existing ideas in literature with 
some new contributions: (1) a refined  pixel-based  d istortion measure for each 
ind ividual blocking artifact in relation to its d irect vicinity; (2) a simplified  and  
more efficient visual masking model to address the local visibility of blocking 
artifacts to the human eye; and  (3) the calculation of the local pixel-based  d istortion 
and  its visibility on the most relevant stimuli only, which significantly reduces the 
computational cost. The resulting metric yields a stron g correlation with subjective 
data. The rest of the paper is organized  as follows: Section II details the proposed  
algorithm, Section III provides and  d iscusses the experimental results, and  the 
conclusions are d rawn in Section IV. 

2.2 Description of the Algorithm 

 

 
 

Fig. 1.  Schematic overview of the proposed  approach. 
 

The schematic overview of the proposed  approach is illustrated  in Figure 1 (the first 
outline of the algorithm was already described  in [27]). Initially, a grid  detector is 
adopted  in order to identify the exact position of the blocking artifacts. After 
locating the artifacts, local processing is carried  out to ind ividually examine each 
detected  blocking artifact by analyzing its surroundin g content to a limited  extent. 
This local calculation consists of two parallel steps: (1) measuring the degree of local 
pixel-based  blockiness (LPB); and  (2) estimating the local visibility of the artifact to 
the human eye and  outpu tting a visibility coefficient (VC). The resulting LPB and  
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VC are integrated  into a local blockiness metric (LBM). Finally, the LBM is averaged  
over the blocking grid  of the image to produce an overall score of blockiness 
assessment (i.e. NPBM). The whole process is calculated  on  the luminance channel 
only in order to further reduce the computational load . The algorithm is performed 
for the blockiness once in horizontal d irection (i.e. NPBM h), and  once in vertical 
d irection NPBMv. From both values the average is calculated  assumin g that the 
human sensitivity to horizontal and  vertical blocking artifacts is equal.  

2.2.1 Blocking Grid Detection 

Since the arbitrary grid  problem has emerged  as a crucial issue especially for no -
reference blockiness metrics, where no prior knowledge on g rid  variation is 
available, a grid  detector is requ ired  in order to ensure a reliable metric [11], [25]. 
Most, if not all, of the existing blockiness metrics make the strong assumption that 
the grid  exists of blocks of 8x8 pixels, starting exactly at the t op-left corner of an 
image. However, this is not necessarily the case in real-life applications. Every part 
of a video chain, from acquisition to d isplay, may induce deviations in the signal, 
and  the decoded  images are often scaled  before being d isplayed . As a result, grids 
are shifted , and  the block size is changed .  

Methods, as e.g. in [8] and  [10], employ a frequency-based  analysis of the image 
to detect the location of blocking artifacts. These approaches, due to the add itional 
signal transform involved , are often computationally inefficient. Alternatives in the 
spatial domain can be found  in [11] and  [25]. They both map an image into a one -
d imensional signal profile. In [11] the block size is estimated  using a rather complex 
maximum-likelihood  method , and  the grid  offset is not considered . In [25] the block 
size and  the grid  offset are d irectly extracted  from the peaks in the 1-D signal by 
calculating the normalized  grad ient for every pixel in an image. However, spurious 
peaks in the 1-D signal as a resu lt of edges from objects may occur, and  
consequently yield  possible detection errors. In this paper, we further rely on the 
basic ideas of both [11] and  [25], but implement them by means of a simplified  
calculation of the 1-D signal and  by extracting the block size and  the grid  offset 
using DFT of the 1-D signal. The entire procedure is performed once in horizontal 
and  once in vertical d irection to address a possible asymmetry in the blocking grid .  

1-D Signal Extraction 

Since blocking artifacts regularly manifest themselves as spatial d iscontinuities in 
an image, their behavior can be effectively revealed  through a 1-D signal profile, 
which is simply formed calculating the grad ient along one d irection (e.g. horizontal 
d irection), and  then summing up  the resu lts along the other d irection (e.g. vertical 
d irection). We denote the luminance channel of an image signal of MxN (height x 
wid th) pixels as ),( jiI  for ],1[],,1[ NjMi ,1[1[ , and  calculate the grad ient map hG  

along the horizontal d irection  

 ]1,1[,),()1,(),( ]1,1[)1 NjjiIjiIjiGh  (1) 
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The resultant grad ient map  is reduced  to a 1-D signal profile hS  by summing hG  

along the vertical d irection  

 
M

i
hh jiGjS

1

),()(  (2) 

Block Size Extraction 

Based  on the fact that the amount of energy present in the grad ient at the borders of 
cod ing blocks is greater than that in the intermediate positions, blocking artifacts, if 
existing, are present as a period ic impulse train of signal peaks. These signal peaks 
can be further enhanced  using some form of spatial filtering, which makes the 
peaks stand  out from their vicinity. In this paper, a median filter is used . Then a 
promoted  1-D signal profile hPS  is obtained  simply subtracting from hS  its 

median-filtered  version hMS  

 )()()( jMSjSjPS hhh MS  (3) 

 })(),...,(),...,({)( kjSjSkjSMedianjMS hhhh kkM  (4) 

where, the size of the med ian filter (2k+1) depends on N . In our experiments, N  is 
e.g. 384, and  then k is 4. The resulting 1-D signal p rofile hPS  intrinsically reveals the 

blocking grid  as an impulse train with a period icity determined  by the block size. 
However, in demand ing conditions, such as for images with many object edges, the 
period icity in the regular impulses might be masked  by noise as a resu lt of image 
content. This potentially makes locating the required  peaks and  estimating their 
period icity more d ifficult. The period icity of the impulse train, correspond ing to the 
block size, is more easily extracted  from the 1-D signal hPS  in the frequency 

domain using the Discrete Fourier Transform (DFT).  

Grid Offset Extraction 

After the block size (i.e. p) is determined , the offset of the blocking grid  can be 
d irectly retrieved  from the signal hPS , in which the peaks are located  at multiples of 

the block size. Thus, a simple approach based  on calculating the accumulative value 
of grid  peaks with a possible offset xx  (e.g. )1(:0 )10 px  with the period ic feature 

in mind), is proposed . For each possible offset value xx , the accumulator is defined  
as 

 ]1,0[),()(
1]/[

1

]10[)
]/ 11

11

pxipxPSxA
pN

i
h  (5) 

The offset is determined  as 
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Based  on the results of the block size and  grid  offset, the  exact position of 
blocking artifacts can be explicitly extracted . 

An Example 

A simple example is given in Figure 2, where the input image ‘‘bikes’’ of 128x192 
pixels is JPEG-compressed  using a stand ard  block size of 8x8 pixels. The d isplayed  
image is synthetically up-scaled  with a scaling factor 2x2, and  shifted  by 8 pixels 
both from left to right and  from top to bottom. As a result, the d isplayed  image size 
is 256x384 pixels, the block size 16x16 pixels, and  the grid  starts at p ixel position (8, 
8) instead  of at the origin (0, 0), as shown in Figure 2 (a). The proposed  algorithm 
towards a 1-D signal profile is illustrated  in Figure 2 (b). Figure 2 (c) shows the 
magnitude profile of the DFT applied  to the signal PS. It allows extraction of the 
period  p (i.e. p=1/ 0.0625=16 pixels), which is maintained  over the whole frequency 
range. Based  on the detected  block size 161p , the grid  offset is calcu lated  as 88x

.Then the blocking grid  can be determined , as shown in Figure 2 (d ). 
 

 
 

(a) Input image (left) and  d isplayed  image (right)  
 

 
 

(b) 1-D signal formation: S, MS and  PS are calculated  accord ing to Equation (2), (3) and  (4) for 
the d isplayed  image in (a) along the horizontal d irection  

Grid Origin: (8, 8)

Block Size: 16x16

Grid Origin: (0, 0)

Block Size: 8x8



- 21 - 
 

 

 
 

(c) DFT magnitudes of PS in (b) 
 

 
 

(d ) Blocking grid  detected  from the d isplayed  image in (a) along the horizontal d irection  
 

Fig. 2.  Blocking grid  detection: an example. 
 

2.2.2 Local Pixel-based Blockiness Measure 

Since blocking artifacts intrinsically are a local phenomenon, their behavior can be 
reasonably described  at a local level, ind icating the visual strength of a d istortion 
within a local area of image content. Based  on the physical structure of blocking 
artifacts as a spatial d iscontinuity, this can be simply accomplished  relating th e 
energy present in the grad ient at the artifact with the energy present in the grad ient 
within its vicinity. This local d istortion measure (LDM) purely based  on pixel 
information can be formulated  as 

 nk
jif
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where ][ ][f  ind icates the pooling function, e.g. , ,mean  or L2-norm, kk  ind icates 

the grad ient energy calculated  for each ind ividual artifact and  )(kV (V  ind icates the 
grad ient energy calculated  at the pixels in the d irect vicinity of this artifact, and  n  is 
the total number of blocking artifacts in an image. Since the visual strength of a 
block d iscontinuity is primarily affected  by its local surroundings of limited  extent, 
this approach is potentially more accurate than a global measure of blockiness (e.g. 
[3] and  [25]), where the overall blockiness is assessed  by the ratio of the averaged  
d iscontinuities on the blocking grid  and  the averaged  d iscontinu ities in pixels 
which are not on the blocking grid . Furthermore, the local visibility of a d istortion 
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due to masking can now be easily incorporated , with the result that it is only 
calculated  at the location of the blocking artifacts. This means that modeling the 
HVS on non-relevant pixels is eliminated  as compared  to the global approach (e.g. 
[3]). 

In this paper, we rely on the inter -block d ifference defined  in [4], and  extend  the 
idea by reducing the d imension of the blockiness measure from a signal block to an 
ind ividual blocking artifact. As such, the local d istortion measure (LDM) is 
implemented  on the grad ient map , resulting in local pixel-based  blockiness (LPB). 
The LPB quantifies the blocking artifact at p ixel location ),( ji  as: 
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where hBG  and  hNBG  are 
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Fig. 3.  Local pixel-based  blockiness (LPM). 
 
The definition of the LPB is further explained  as follows: 
(1) The template addressing the d irect vicinity is defined  as a 1-D element 

includ ing n ad jacent pixels to the left and  to the right of an artifact. The size of the 
template (2n+1) is designed  to be proportional to the detected  block size p  (e.g. 
n=p/ 2), taking into account possible scaling of the decoded  images. An example of 
the template is shown in Figure 3, where two ad jacent 8x8 blocks (i.e. A and  B) are 
extracted  from a real JPEG image. 

(2) hBG  denotes the local energy present in the grad ient at the blocking  artifact, 

and  hNBG  denotes the averaged  grad ient energy over its d irect vicinity. If 

Image Domain I

A B Location of Blocking Artifacts

Gradient Domain Gh
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00hNBG , only the value of hBG  determines the local pixel-based  blockiness. In 

this case, 00hLPB  (i.e. 00hBG ) means there is no block d iscontinuity appearing, 

and  the blocking artifact is spurious. hh BGLPB B  (i.e. 00hBG ) means the 

artifact exhibits a severe extent of blockiness, and   ( 11  in our experiments) is 
used  to ad just the amount of grad ient energy. If 00hNBG , the local pixel-based  

blockiness is simply calculated  as the ratio of hBG  over hNBG . 

(3) The local pixel-based  blockiness hLPB  is specified  in equations (8) to (10) for a 

block d iscontinuity along the horizontal d irection. The measure of vLPB  for vertical 

blockiness can be easily defined  in a similar way. The calculation is  then performed 
within a vertical 1-D template. 

2.2.3 Local Visibility Estimation 

 

LPF VCl

HPF VTFt VCt

VTFl

Luminance Masking

Texture Masking

VCIntegration
Strategy

 
 

Fig. 4.  Schematic overview of the proposed  human vision model. 
 
To pred ict perceived  quality, objective metrics based  on models of the human 
visual system are potentially more reliable [5], [19]. However, from a practical point 
of view, it is highly desirable to reduce the complexity of the HVS model without 
compromising its abilities. In this paper, a simplified  human vision model based  on 
the spatial masking properties of the HVS is proposed . It adopts two fundamental 
characteristics of the HVS, which affect the visibility of an artifact in the spatial 
domain: (1) the averaged  background  luminance surrounding the artifact; and  (2) 
the spatial non-uniformity in the background  luminance [18], [19]. They are known 
as luminance masking and  texture masking, respectively, and  both are highly 
relevant to the perception of blocking artifacts. 

Various models of visual masking to quantify the visibility o f blocking artifacts 
in images have been proposed  in literature [3], [6], [12], [16], [18]. Among these 
models, there are two wid ely used  ones: the model used  in GBIM [3] and  the just -
noticeable-d istortion (JND) profile model used  in [18]. Their d isadvantages have 
alread y been pointed  ou t in Section I. Our proposed  model is illustrated  in Figure 4. 
Both texture and  luminance masking are implemented  by analyzing the local signal 
properties within a wind ow, representing the local surrounding of a blocking 
artifact. A visibility coefficient as a consequence of masking (i.e. VC t and  VCl, 
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respectively) is calcu lated  using spatial filtering followed  by a weighting function. 
Then, both coefficients are efficiently combined  into a single visibility coefficient 
(VC), which reflects the perceptual significance of the artifact quantitatively. 

Local Visibility due to Texture Masking 

 

 
 

Fig. 5.  An example of texture masking on blocking artifacts. 
 

Figure 5 shows an example of texture masking on blocking  artifacts, where ‘‘a’’ and  
‘‘b’’ are patterns includ ing 4 ad jacent blocks of 8x8 pixels extracted  from a JPEG-
coded  image. As can be seen from the right-hand  sid e of Figure 5 pattern ‘‘a’’ and  
pattern ‘‘b’’ both intrinsically exhibit block d iscontinu ities. However, as shown on 
the left-hand  side of Figure 5, the block d iscontinuities in pattern ‘‘b’’ are 
perceptually masked  by its non-uniform background , while the block 
d iscontinuities in pattern ‘‘a’’ are much more visible as it is in a flat background . 
Therefore, texture masking can be estimated  from the local background  activity 
[19]. In this paper, texture masking is modeled  calculating a visibility coefficient 
(VCt), ind icating the degree of texture masking. The higher the value of this 
coefficient, the smaller the masking effect, and  hence, the stronger the visibility of 
the artifact is. The procedure of modeling texture masking comprises three steps: 

 Texture Detection: calculate the local background  activity (non -uniformity). 
 Threshold ing: a classification scheme to capture the active background  

regions. 
 Visibility Transform Function (VTF): obtain a visibility coefficient (VC t) 

based  on the HVS characteristics for texture masking. 
 

1 2 0 -2 -1   1 4 6 4 1 

4 8 0 -8 -4   2 8 12 8 2 

6 12 0 -12 -6   0 0 0 0 0 

4 8 0 -8 -4   -2 -8 -12 -8 -2 

1 2 0 -2 -1   -1 -4 -6 -4 -1 

  T1       T2   

 
(a) The high-pass filters for texture detection  
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(b) Visibility transform function (VTF) used  
 

Fig. 6.  Implementation of the texture masking. 
 

Texture detection can be performed convolving the signal with some form of 
high-pass filter. One of the Laws’ texture energy filters [20] is employed  here in a 
slightly modified  form. As shown in Figure 6, 1T  and  2T  are used  to measure the 
background  activity in horizontal and  vertical d irection, respectively. A pre -defined  
threshold  Thr  ( 15.00Thr  in our experiments) is applied  to classify the background  
into ‘‘flat’’ or ‘‘texture’’, resulting in an activity value ),( jiI t  , which is given by 
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where ),( jiI  denotes the pixel intensity at location ),( ji , and  T  is chosen as 1T  for 

texture calculation in horizontal d irection, and  2T  in vertical d irection. It should  be 
noted  that splitting up the calculation in horizontal and  vertical d irection, and  using 
a modified  version of the texture energy filter, in which some t emplate coefficients 
are removed , can be done having the app lication of a blockiness metric in mind . 
The texture filters need  to be adopted  in case of extend ing these ideas to other 
objective metrics. 

A visibility transform function (VTF) is proposed  in accord ance to human 
perceptual properties, which means that the visibility coefficient ),( jiVCt  is 

inversely proportional (nonlinear) to the activity value ),( jiI t . Figure 6 shows an 

example of such a transform function, which can  be defined  as 
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where 1),( 1jiVCt  , when the stimulus is in a ‘‘flat’’ background , and  11  ( 55

in our experiments) is used  to ad just the nonlinearity. This shape of the VTF is an 
approximation, considered  to be good  enough. 

Local Visibility due to Luminance Masking 

10)()( 21 1aIaI

10)()( 21 1bIbI

0)( 1 0aI

a

a1 a2

b

b1 b1

10)( 2 1aI

76)( 1 7bI 86)( 2 8bI
 

 
Fig. 7.  An example of luminance masking on blocking artifacts. 

 
In many psychovisual experiments it was found  that the human visual system’s  

sensitivity to variations in luminance depends on (is a nonlinear function of) the 
local mean luminance [16], [18], [19], [23]. Figure 7 shows an example of luminance 
masking on blocking artifacts, where ‘‘a’’ and  ‘‘b’’ are synthetic patterns, each of 
which includes 2 ad jacent blocks with d ifferent gray scale levels. Although the 
intensity d ifference between the two blocks is the same in both patterns, the block 
d iscontinuity of pattern ‘‘b’’ is much more visible than that in pattern ‘‘a’’ due to the 
d ifference in background  luminance. In this paper, luminance masking is modeled 
based  on two empirically d riven properties of the HVS: (1) a d istortion in a dark 
surrounding tends to be less visible than one in a bright surrounding [16], [18], and  
(2) a d istortion is m ost visible for a surrounding with an averaged  luminance value 
between 70 and  90 (centered  approximately at 81) in 8bits gray-scale images [23]. 
The procedure of modeling luminance masking consists of two steps: 

 Local Luminance Detection: calculate the local averaged  background  
luminance. 

 Visibility Transform Function (VTF): obtain a visibility coefficient (VC l) 
based  on the HVS characteristics for luminance masking. 
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(a) The low -pass filters for local luminance detection  
 

 
 

(b) Visibility transform function (VTF) used  
 

Fig. 8.  Implementation of the luminance masking. 
 

The local luminance of a certain stimulus is calcu lated  u sing a weighted  low -pass 
filter as shown in Figure 8, in which some template coefficients are set to ‘‘0’’. The 
local luminance ),( jiI l  is given by  
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where L  is chosen as 1L  for calculating the background  luminance in horizontal 
d irection, and  2L  in vertical d irection. Again, splitting up the calculation in 
horizontal and  vertical d irection, and  using a modified  low -pass filter, in which 
some template coefficients are set to 0, is done with the application of a blockiness 
metric in mind . 

For simplicity, the relationship between the visibility coefficient ),( jiVCl  and  the 

local luminance ),( jiIl  is modeled  by a nonlinear function (e.g. power law) for low 

background  luminance (i.e. below 81), and  is approximated  by a linear function at 
higher background  luminance (i.e. above 81). This functional behavior is shown in 
Figure 8, and  mathematically described  as 
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where ),( jiVCl  achieves the highest value of 1 when 81),( 8jiI l , and  10 1  (

7.00  in our experiments) is used  to ad just the slope of the linear part of this 

function. 

Integration Strategy 

The visibility of an artifact depends on various masking effects co -existing in the 
HVS. How to efficiently integrate them is an important issue in obtaining an 
accurate perceptual model [17]. Since masking intrinsically is a local phenomenon, 
the locality in the visibility of a d istortion due to masking is maintained  in the 
integration strategy of both masking effects. The resulting approach is 
schematically given in Figure 9. Based  on the local image content surrounding a 
blocking artifact first the texture masking is calcu lated . In case the local activity in 
the area is larger than a given threshold  (see equation (11)), a visibility coefficient 
VCt is applied , followed  by the application of a luminance masking coefficient VC l. 
In case the local activity in the area is low, only VCl is applied . The app lication of 
VCl, where appropriately combined  with VCt, results in an output value VC. 

 

 
 

Fig. 9.  Integration strategy of the texture and  luminance masking effect. 
 

2.2.4 The Perceptual Blockiness Metric 

The local pixel-based  blockiness (LPB) defined  in section II.B is purely signal based , 
and  so does not necessarily yield  perceptually consistent results. The human vision 
model proposed  in section II.C aims at removing the perceptually insignificant 
components due to visual masking. Integration of these two elements can be simply 
performed at a local level using the output of the human vision model (VC) as a 
weighting coefficient to scale the local pixel-based  blockiness (LPB), resulting in a 
local perceptual blockiness metric (LPBM). Since the horizontal and  vertical 
blocking artifacts are calcu lated  separately, the LPBM for the block d iscontinuity 
along the horizontal d irection is described  as  

Local Content

N

Y

Texture
Dominant ? lVC

lVCtVC

VC
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which is then averaged  over all detected  blocking artifacts in the entire image to 
determine an overall blockiness metric, i.e. a no-reference perceptual blockiness 
metric (NPBM) 
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where n is the total number of pixels on the blocking g rid  of an image. 
A metric vNPBM  can be similarly defined  for the blockiness along the vertical 

d irection, and  is simply combined  with hNPBM  to give the resultant blockiness 

score for an image. More complex combination laws may be appropriate but need  
to be further investigated . 
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In our case, the human vision model is only calculated  at the location of blocking 
artifact, and  not for all p ixels in an image. This significantly reduces the 
computational cost in the formulation of an overall metric. 

2.3 Evaluation of the Overall Metric Performance 

Subjective ratings resulting from psychovisual experiments are widely accepted  as 
the benchmark for evaluating objective quality metrics. They reveal how well the 
objective metrics pred ict the human visual experience, and  how to further improve 
the objective metrics for a more accurate mapping to the subjective d ata. The LIVE 
quality assessment database (JPEG) [22] is used  to compare the performance of our 
proposed  metric to various alternative blockiness metrics. The LIVE d atabase 
consists of a set of source images that reflects adequate d iversity in image content. 
Twenty-nine high resolution and  high quality color images are compressed  using 
JPEG at a bit rate ranging from 0.15bpp to 3.34bpp, resulting in a database of 233 
images. A psychovisual experiment was conducted  to assign to each image a mean 
opinion quality score (MOS) measured  on a continuous linear scale that was 
d ivided  into five intervals marked  w ith the ad jectives ‘‘Bad ’’, ‘‘Poor’’, ‘‘Fair’’, 
‘‘Good ’’ and  ‘‘Excellent’’.  

The performance of an objective metric can be quantitatively evaluated  with 
respect to its ability to p red ict subjective quality ratings, based  on pred iction 
accuracy, pred iction monotonicity, and  pred iction consistency [21]. Accord ingly, 
the Pearson linear correlation coefficient, the Spearman rank order correlation 
coefficient, and  the outlier ratio are calcu lated . As suggested  in [21], the metric’s 
performance can also be evaluated  with n onlinear correlations using a non-linear 
mapping function for the objective pred ictions before computing the correlation. 
For example, a logistic function may be app lied  to the objective metric results to 
account for a possible satu ration effect. This way of working usually yields higher 
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correlation coefficients. Nonlinear correlations, however, have the d isadvantage of 
minimizing performance d ifferences between metrics [12]. Hence, to make a more 
critical comparison, only linear correlations are calculated  in this paper. 

 

 
 

Fig. 10.  Scatter plots of MOS vs. blockiness metrics. 
 

Metric 
Pearson Linear 

Correlation 
Spearman Rank 

Order Correlation 
Outlier Ratio 

GBIM 0.790 0.912 0.099 
LABM 0.834 0.832 0.009 
NPBM 0.918 0.924 0 

 
Table. 1.  Performance comparison of three blockiness metrics. 

 
The proposed  overall blockiness metric, NPBM, is compared  to state-of-the-art 

no-reference blockiness metrics based  on a HVS model, namely GBIM [3] and  
LABM [4]. All three metrics are applied  to the LIVE database of 233 JPEG images, 
and  their performance is characterized  by the linear correlation coefficients between 
the subjective MOS scores and  the objective metric results. Figure 10 shows the 
scatter plots of the MOS versus GBIM, LABM and  NPBM, respectively. The 
corresponding correlation results are listed  in Table 1. It should  be emphasized  
again that the correlation coefficients would  be higher when allowing for a 
nonlinear mapping of the results of the metric to the subjective MOS. To illustrate 
the effect, the correlation coefficients were recalcu lated  after applying the non -
linear mapping function recommended  by VQEG [21]. In this case, GBIM, LABM, 
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and  NPBM yield  a Pearson correlation coefficient of 0.928, 0.933 and  0.946, 
respectively. 

GBIM manifests the lowest pred iction accuracy among these metrics. This is 
mainly due to its human vision model used , which has d ifficulties in handling 
images under demanding circumstances, e.g. the highly textured  images in the 
LIVE database. LABM ad opts a more flexible HVS model, i.e. the JND profile with a 
more efficient integration of luminance and  texture masking. As a consequence, the 
estimation of artifact visibility is more accurate for LABM than for GBIM. 
Additionally, LABM is based  on a local estimation of blockiness, in which the 
d istortion and  its visibility due to masking are measured  for each ind ividual cod ing 
block of an image. This locally ad aptive algorithm is potentially more accurate in 
the production of an overall blockiness score. In comparison with GBIM and  
LABM, our metric NPBM shows the highest pred iction ability. This is primarily 
achieved  by the combination of a refined  local metric and  a more efficient model of 
visual masking, both considering the specific structure of the artifact itself.  

2.4 Evaluation of Specific Metric Components 

The blocking annoyance metric, proposed  in this paper, is primarily based  on three 
aspects: (1) a grid  detector to ensure the subsequent local processing; (2) a local 
d istortion measure; and  (3) a HVS model for local visibility. To valid ate the add ed  
value of these aspects, add itional experiments were conducted  and  a 
comprehensive comparison to alternatives is reported . This includes a comparison 
of: 

 metrics with and  without a grid  detector  
 the local versus global approach  
 metrics with and  without a HVS model 
 different HVS models 

2.4.1 Metrics with and without a Grid Detector 

 

 
 
Fig. 11.  Illustration of how to evaluate the effect of a grid  detector on a blockiness metric: an 
image patch showing visible blocking artifacts was up -scaled  with a scaling factor 4/ 3 x 7/ 3, 
and  the metrics NPBM, GBIM and  LABM were applied  to assess the blocking annoyance of 
the scaled  image. 
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Our metric includes a grid  detection algorithm to determine the exact location of 
the blocking artifacts, and  thus to ensure the calculation of the metric at the 
appropriate pixel positions. It avoid s the risk of estimating blockiness at wrong 
pixel positions, e.g. in scaled  images. To illustrate the problem of blockiness 
estimation in scaled  images a small experiment was conducted . As illustrated  in 
Figure 11, an image patch of 64x64 pixels was extracted  from a low bit rate 
(0.34bpp) JPEG image of the LIVE database. This image patch had  a grid  of blocks 
of 8x8 p ixels starting at its top -left corner, and  it clearly exhibited  visible blocking 
artifacts. It was scaled  up with a factor 4/ 3 x 7/ 3, resulting in an image with an 
effective block size of 11x19 pixels. Blocking annoyance in this scaled  image was 
estimated  with three metrics, i.e. NPBM, GBIM and  LABM. Due to the presence of a 
grid  detector, the NPBM yielded  a reasonable score of 2.2 (NPBM scores range from 
0 (no blockiness) to 10 for the highest blocking annoyance). However, in the absence 
of a grid  detector, both GBIM and  LABM didn’t detect any substantial blockiness: 
they had  a score of GBIM=0.44 and  LABM=0.67, which corresponds to ‘‘no 
blockiness’’ accord ing to their scoring scale (see [3] and  [4]). Thus, GBIM and  LABM 
fail in pred icting blocking annoyance of scaled  images, mainly due to the absence of 
a grid  detector. Clearly these metrics could  benefit in a similar way as our own 
metric from includ ing the location of the grid .  

Various alternative grid  detectors are available in literature. They all rely on the 
grad ient image to detect the blocking grid . To do so , they either calculate the FFT 
for each single row and  column of an image [8], or they calculate the normalized  
grad ient for every pixel in its two d imensions [25]. Especially, for large images (e.g. 
in the case of HD-TV), these operations are computation ally expensive. The main 
advantage of our proposed  grid  detector lies in its simplicity, compared  to existing 
alternatives in literature. Such as in the approach reported  in [11], we first project 
the grad ient image into a 1-D signal, and  then enhance the signal maxima using 
once a med ian filter. In add ition, the size and  offset of the grid  are extracted  from 
the resulting 1-D signal using a DFT. The latter is less computationally expensive 
than the approach chosen in [11], being a complex maximum -likelihood  method .  

Apart from affecting the blocking grid  position, scaling may also affect the 
blocking artifact visibility [25]. This aspect, however, is not yet taken into account in 
our proposed  metric. 

2.4.2 Local versus Global Approach 

The d ifference in local versus global approach can be best understood  by 
comparing their basic formulation. A local metric, as proposed  in this paper, is 
based  on a general formulation of the form MF1: 
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where k denotes the pixel location of blocking artifacts, and  LPB and  M  denote the 
local pixel-based  blockiness (see equation (8)) and  the HVS model embedded , 
respectively. Both of them are calculated  locally within a region of the image 
centered  on ind ividual blocking artifacts. 
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A global metric, as e.g. used  in GBIM [3] is based  on a general formulation of the 
form MF2: 
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where G denotes the inter-pixel d ifference (see equation (1)), M  denotes the HVS 
model embedded , and  | |  . | |  is the L2-norm. The numerator is calculated  at the 
location of blocking artifacts, while the denominator is calculated  for pixels which 
are not on the blocking grid . 

An obvious advantage of the local approach over the global approach is already 
revealed  by their formulation: MF1 only calculates the HVS model for pixels on the 
blocking grid , while MF2 needs to calculate the HVS model for all p ixels in the 
image. Since the major cost of a HVS-based  blockiness metric is usually introduced  
by the human vision model, reducing the number of times the HVS mode l is 
calculated  in the whole process is highly beneficial for the computational load . The 
computational cost related  to the number of times the HVS model has to be 
calculated  in a metric can be quantified  by means of a model utilization ratio (MUR) , 
which is simply defined  as the total number of times TM that the HVS model is 
computed , d ivided  over the total number of pixels MxN  in the image 
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Evidently, the lower this ratio, the simpler the metric is. 
 

 
 

Fig. 12.  Comparison of the computational cost of three metrics, using model utilization ratio 
(MUR). 

 
Figure 12 shows the MUR for GBIM, LABM, and  NPBM, respectively. Both 

GBIM and  LABM calculate the human vision model for every pixel in an image, 
which yields a MUR of 1. For GBIM the MUR is increased  by a factor of 2, since 
masking is estimated  for the horizontal and  vertical blockiness d irection separately. 
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For our metric the MUR is only 0.25 in case of a block size of 8x8 pixels, which is a 
d irect result of calcu lating the HVS model only at detected  blocking artifacts. This 
implies that when neglecting the d ifference in computational cost between the 
various HVS models for a moment, the computational load  of NPBM is reduced  by 
approximately 7/8 with respect to GBIM, and  by 3/4 w ith respect to LABM. 

Of course, in this respect also the complexity of the HVS model used  needs to be 
taken into account. This is further d iscussed  in Section IV.D, taking into account 
various HVS models. Additionally, there also is a performance d ifferen ce between 
the local and  global approach. But, since the performance gain depends on the 
specific choice of HVS used , this point is also d iscussed  in Section IV.D. 

2.4.3 Metrics with and without a HVS model 

To valid ate the added  value of includ ing a HVS model in a blockiness metric, we 
compared  our proposed  HVS-based  metric NPBM to the state-of-the-art non-HVS-
based  metric of [25], which is referred  to as NBAM. NBAM is also a global metric 
formulated  accord ing to equation (20), but instead  of using a HVS model, it replaces 
the inter-pixel d ifference by the relative grad ient in order to determine the visual 
strength of a block d iscontinuity. It was achieved  a promising performance over the 
entire LIVE d atabase as ind icated  by the Pearson correlation coefficie nt (after 
nonlinear regression) of 0.92, which is comparable to our metric w ith a Pearson 
correlation coefficient of 0.94. However, because of the absence of a HVS model, the 
robustness of NBAM against image content might be an issue. It may be doubted  to 
what extent the objective metric is able to pred ict blockiness in more demanding 
images, e.g., for a set of highly textured  images, compressed  at very low bit -rates, 
for which visual masking is important.  
 

 
 

Fig. 13.  Illustration of the ad ded  value of includ ing a HVS model in a blockiness metric: a 
database of 50 highly textured  JPEG images was extracted  from the LIVE database, and 
blockiness annoyance was estimated  with the metrics NBAM (without HVS) and  NPBM 
(with HVS). The pred iction performance is given in terms of the Pearson correlation 
coefficient. 
 

To evaluate this, a subset of six highly-textured  images, as shown in Figure 13, 
was selected  from the twenty-nice source images of the LIVE d atabase. Includ ing 
d ifferent compression levels, this resulted  in a test d atabase of 50 JPEG images with 
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their corresponding MOS score extracted  from the LIVE database. For these images, 
texture masking was dominant, i.e., most blocking artifacts were largely masked  by 
background  non-uniformity.  

The blockiness metrics, NPBM and  NBAM, were applied  to this test d atabase. 
Their pred iction performance is quantified  by the Pearson correlation coefficient 
(without nonlinear regression) as illustrated  in Figure 13. As expected , the simple 
metric NBAM fails in accurately p red icting the subjective ratings of this subset of 
demanding images, mainly due to the lack of a HVS model. NPBM show s a robust 
pred iction ability, resu lting in a high correlation with the subjective MOS.  

2.4.4 Comparison of Different HVS Models  

To compare the added  value of our proposed  HVS model to existing alternatives, 
various HVS models M  have been embedded  in the general formulation of our local 
metric (see MF1 in equation (19)). For M  we used  four alternatives: 

 VC model (i.e. our proposed  HVS model); 
 JND model (i.e. the JND profile model based  on [18]); 
 WF model (i.e. the HVS model used  in GBIM [3]); 
 M=1 model (i.e. no HVS model embedded). 

Doing so, resulted  in four blockiness metrics, which we refer to as LM VC (i.e. 
NPBM), LMJND, LMWF and  LMNO, respectively. These four metrics were applied  to the 
LIVE database of 233 JPEG images. The metric performance was quantified  by the 
Pearson correlation coefficient (without nonlinear regression) as illustrated  in 
Figure 14. In such a scenario, the performance d ifference between any two metrics 
can be attributed  to the HVS model embedded . LM NO (i.e. MF1 without any HVS 
model) is used  as the benchmark, and  the HVS model gain is determined  by 
calculating the d ifference in Pearson correlation coefficient between t he metric LMNO 
and  any of the other three metrics. 
 

 
 

Fig. 14.  Illustration of the comparison of various HVS models: a blockiness metric (i.e. MF1) 
having four optional HVS models embedded  is tested  with the LIVE database, and  the 
performance for each resulting metric is quantified  by the Pearson correlation coefficient. 
 

Figure 14 clearly illustrates that our HVS model yields the biggest gain compared  
to the other three alternatives. For the local approach defined  as MF1 in equation 
(19), there is no add ed  value of using the JND or WF model in the metric, since their 
performance is comparable to that of the metric without HVS model. This may, of 
course, be due to the fact that the JND and  WF model were not designed  to be 
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combined  with our proposed  local m etric. Our VC model, on the other hand , is 
designed  together w ith the definition of MF1, and  as a result a high correlation 
coefficient is found  for the NPBM metric. 

To investigate whether our HVS model is also valuable for trad itionally used  
global metrics (see MF2 in equation (20)), the same experiment was repeated  by 
substituting in MF2 the four op tions for M . This yielded  another set of four 
blockiness metrics, which are referred  to as GM VC, GMJND, GMWF (i.e. GBIM), and  
GMNO, respectively. Their perform ance when applied  to the LIVE database is 
illustrated  in Figure 15. 

 

 
 

Fig. 15.  Illustration of the comparison of various HVS models: a blockiness metric (i.e. MF2) 
having four optional HVS models embedded  is tested  with the LIVE database, and  the 
performance for each resulting metric is quantified  by the Pearson correlation coefficient.  
 

It illustrates that also for a global metric our HVS model has the largest added  
value. In this case, however, also the WF and  JND mod el have some added  value. It 
should  be noted , however, that in our evaluations the WF and  JND model were 
implemented  as described  in the original publications (i.e. [3] and  [18]). Some 
parameters in the implementations may be ad justed  specifically to the LIVE 
database to provide a better correlation.  

To summarize, the contribution of our proposed  HVS model to a blockiness 
metric is consistently shown, independent of the specific design of the blockiness 
metric. In add ition, a number of significant simplifications used  in our HVS model 
are already d iscussed  in Section II.C. The complexity of our VC model is 
comparable to that of the WF model, both of them use a simple weighting function 
for local visibility. However, the JND model is a rather complex HVS model, mainly 
due to the d ifficulties in estimating the visibility thresholds for various masking 
effects, and  in combing d ifferent JND thresholds. The simplicity of the VC mod el 
itself, coupled  with its specific design for a local approach to avoid  calculating it on 
irrelevant pixels, consequently make this HVS model especially promising in terms 
of real time applications. 

An additional interesting find ing from the comparison of Figures 14 and  15 is 
that there is indeed  a gain in performance applying the MF1 formulation (local  
approach) instead  of the MF2 formulation (global approach), independent of the 
HVS model used . In the absence of any HVS model, the gain of MF1 over MF2 (i.e. 
from LMNO to GMNO) corresponds to an increase in the Pearson correlation 
coefficient from 0.78 to 0.87. For the other HVS models, the correspond ing numbers 
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are summarized  in Figure 16. It confirms that a promising performance is achieved  
when applying the local approach in a blockiness metric.  

 

 
 

Fig. 16.  Comparison of the local and  global approaches to a blockiness metric, and  of metrics 
with d ifferent HVS models embedded . 
 

2.5  Conclusions 

In this paper, a novel blockiness metric to assess blocking annoyance in block-based  
DCT coding is proposed .  It is based  on the following features: 
- a simple grid  detector to ensure the effectiveness of the blockiness metric, and  to 
account for deviations in the blocking grid  of the incoming signal or as a 
consequence of spatial scaling. 
- a local pixel-based  blockiness value that measures the strength of the d istortion 
within a region of the image centered  around  each ind ividual blocking artifact.   
- a simplified  and  more efficient model of visual masking, exhibiting an improved  
robustness in terms of content independency, and  allowing supra -threshold  
estimation of perceived  annoyance.  

An advantage of the proposed  approach, especially in case of real-time 
application, is that the ad d itional computational cost introduced  by the HVS is 
largely reduced  by eliminating calculations of the human vision model for non -
relevant pixels. This is primarily accomplished  taking advantage of the locality of 
both the pixel-based  blockiness value and  the visibility model. Nonetheless, the 
metric is mainly used  to assess overall blockiness annoyance, which is simply done 
by summing the local contributions over the whole image. 

Experimental results show that our proposed  blockiness metric results in a 
strong correlation with subjective data, and  ou tperforms state-of-the-art metrics in 
terms of pred iction accuracy. Combined  with its practical reliability and  
computational efficiency, our metric is a good  alternative for real-time 
implementation.  
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Chapter 3 

A Perceptually Relevant Approach to Ringing 
Region Detection 

 
 
Abstract : An efficient approach towards a no-reference ringing metric 
intrinsically exists of two steps: first detecting regions in an image where ringing 
might occur, and second quantifying the ringing annoyance in these regions. 
This paper presents a novel approach towards the first step: the automatic 
detection of regions visually impaired by ringing artifacts in compressed images. 
It is a no-reference approach, taking into account the specific physical structure 
of ringing artifacts combined with properties of the human visual system (HVS). 
To maintain low complexity for real-time applications, the proposed approach 
adopts a perceptually relevant edge detector to capture regions in the image 
susceptible to ringing, and a simple yet efficient model of visual masking to 
determine ringing visibility. The approach is validated with the results of a 
psychovisual experiment, and its performance is compared to existing 
alternatives in literature for ringing region detection. Experimental results show 
that our method is promising in terms of both reliability and computational 
efficiency. 
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3.1 Introduction 

In current visual communication systems, the most essential task is to fit a large 
amount of visual information into the narrow bandwid th of transmission channels 
or into a limited  storage space, while maintaining the best possible perceived  
quality for the viewer [1]. A variety of compression algorithms, such as e.g. JPEG 
and  MPEG/ H.26x, have been widely adopted  in image and  video coding trying to 
achieve high compression efficiency at high quality [2], [3]. These lossy compression 
techniques, however, inevitably result in various cod ing artifacts, which by now are 
known and  classified  as blockiness, ringing, blur, etc. [4]. The occurrence of the 
compression induced  artifacts depends on the d ata source, target bit -rate, and  
underlying compression scheme, and  their visibility can range from imperceptible 
to very annoying, thus affecting perceived  quality [5], [6], [7]. During the last 
decades a lot of research effort is devoted  to reduce cod ing artifacts, so to improve 
the overall perceived  quality of artifact imp aired  image material [8], [9], [10]. In the 
video chain of a current TV-set e.g., various video enhancement algorithms, such as 
de-blocking, de-ringing and  de-blur, are typically employed  to reduce compression 
artifacts prior to d isplay. In such a scenario, objective metrics, which determine the 
quality degradation caused  by each ind ividual artifact, and  ad apt the processing 
chain for artifact reduction accord ingly, are highly needed . In add ition, the 
receiving end  of a d igital video chain usually has no access to the original image, 
and  in most cases there is even only limited  access to the encod ing parameters of 
the bit-stream. Hence, objective metrics used  in these types of app lications are 
constrained  to a no-reference approach, which means that the impairment 
assessment relies on the compressed  image only. 

 

 
 

Fig. 1.  Illustration of ringing artifacts in an image patch compressed  with JPEG (MATLAB’s 
imwrite function with Q=30): (a) 2D image and  (b) its spatial intensity d istribution (in 8-bits 
d riving values). Ringing can be perceived  as intensity fluctuations near the edges, while the 
image content there should be uniform. 
 

In the last decades, a considerable amount of research has been devoted  to the 
development of a blockiness metric (see e.g. [11] an d  [12]), which has been already 
implemented  for the op timization of image quality (see e.g. [13], [14], [15]). Another 
common d istortion type, namely ringing [4], intrinsically results from loss in the 
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high frequency component of the video signal due to coarse quantization. In the 
spatial d omain, ringing, which is fundamentally associated  with Gibb’s 
phenomenon, manifests itself in the form of ripples or oscillations around  high 
contrast edges. The occurrence of ringing artifacts spreads out to a finite ext ent 
surrounding edges, depending on the underlying properties of the compression 
scheme. For example, in block-based  DCT cod ing ringing appears as a ripp le 
outwards from the ed ge up to the encompassing block’s bound ary [4]. As an 
example, Figure 1 illustrates ringing artifacts induced  by JPEG compression.  

 

 
 

Fig. 2.  Illustration of luminance ((a) and  (b)) and  texture ((c) and  (d)) masking on ringing 
visibility for two image patches compressed with JPEG (MATLAB’s imwrite function with 
Q=30). Graphs (a) and  (c) show the compressed image patches, whereas graphs (b) and  (d) 
represent the intensity profile (in 8-bits d riving values) along the row in the image indicated  
with the arrow in graphs (a) and  (c), respectively. The dashed  line ‘‘e’’ in graphs (b) and  (d ) 
refers to the position of the edge. Note that although both sides of the edge at ‘‘e’’ exhibit 
ringing artifacts, the visibility of ringing d iffers. 
 

Research on the design of a blockiness metric has shown that an efficient no -
reference approach intrinsically exists of two steps: (1) the detection of regions in an 
image where blockiness might occur, and  (2) the determination of the blocking 
annoyance in these regions. We use a similar two-step  approach for the design of a 
no-reference ringing metric. This p aper only d iscusses the first step: the detection of 
regions in the image, in which visible ringing occurs. A successive paper that 
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discusses the quantification of the perceived  annoyance of ringing in these regions 
is published  in [16] and  [17].  

Unlike blocking, whose spatial location is very regular and  thus easily 
pred ictable, the location of ringing is ed ge dependent, and  as such also image 
content dependent. This makes the task of detecting ringing regions much more 
d ifficult, especially in a no-reference application. In general, ringing can be 
considered  as a form of signal dependent noise, which only occurs near sharp 
transitions in image intensity when not visually masked  by local image 
characteristics. As such, the occurrence of ringing can be d irectly associated  with 
strong edges in an image. Additionally, the visibility of ringing is reduced  in the 
case of very low and  very high background  intensity (i.e. luminance masking [18]), 
and  ringing is more visible in homogenous areas than in textured  or detailed  areas 
(i.e. texture masking [19]). The effect of luminance and  texture masking on ringing 
visibility is illustrated  in Figure 2. Hence, to accurately detect regions with 
perceived  ringing, two essential aspects need  to be explicitly addressed : (1) an 
(strong) edge detector; and  (2) a masking model of the HVS. 

3.1.1 Review of Related Work 

Until recently, only a limited  amount of research was devoted  to perceived  ringing. 
The methods in [20] and  [21] both simply assume that ringing occurs 
unconditionally in regions surrounding strong ed ges in an image. This, however, 
does not always reflect human visual perception of ringing, because of the absence 
of spatial masking as typ ically present in the HVS. This issue is taken into account 
by incorporating properties of the HVS into the detection method , such as e.g. in [22] 
and  [23]. The approach in [22] is based  on the global edge map of an image, where 
binary morphological operators are used  to generate a mask to expose regions that 
are likely to be contaminated  with visible ringing artifacts. This procedure involves 
the identification of regions around  all detected  edges, and  a further evaluation of 
these regions based  on visual masking. In [23], a d ifferent way of includ ing HVS 
masking properties is employed . This method  classifies the potential smooth 
regions (i.e. regions in an image other than edges and  their surroundings) into 
d ifferent objects based  on their color similarity and  texture features. The resulting 
objects are assigned  as background  around  potential ringing regions. Texture 
masking is implemented  by evaluating the contrast in activity between the potential 
ringing region and  its assigned  background  (e.g. the higher the contrast in activity, 
the more visible ringing is assumed to be). Additionally, also luminance masking is 
implemented  to further determine ringing visibility. 

There are two main concerns with the method s existing in literature. First of all, 
the edge detection method s employed  in [20], [21], [22], [23] cap ture strong edges 
using an ord inary edge detector, such as a Sobel operator, where a certain threshold  
is applied  to the grad ient magnitudes to remove noise and  insignificant edges. 
Depending on the choice of the threshold , these methods run the risk of omitting 
obvious ringing regions near non-detected  edges (in case of a high threshold) or of 
increasing the computational power by modeling the HVS near irrelevant edges (in 
case of a low threshold). Figure 3 illustrates the effect of the threshold  value of a 
Sobel operator. The edge map in Figure 3(c), resulting from a high threshold  value, 
largely removes noisy ed ges while eliminating a number of important edges, at 
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which ringing obviously exists (see Figure 3(b)). This may heavily degrade the 
accuracy of the pred iction of perceived  ringing. By lowering the threshold  (as in 
Figure 3(d)), all strong ed ges are maintained  in the edge map, but it also contains 
more texture edges, which are non-relevant to ringing detection, and  consequently, 
result in a large number of unnecessary computations for ringing visibility. The 
second  concern with the existing methods is related  to the models of the HVS used  
e.g. in [22] and  [23], which are computationally very expensive. The HVS model in 
[22] involves a parameter estimation mechanism, which  requires a number of 
calculations to achieve an optimal selection. The major cost of the HVS model in [23] 
is introduced  by its clustering scheme embedded , which contains color clustering 
and  texture clustering.  

 

 
 

Fig. 3.  An ord inary edge detector (i.e. Sobel operator) applied  for ringing region detection: (a) 
original image, (b) JPEG compressed image (MATLAB’s imwrite function with Q= 30), (c) 
Sobel edge map of (b) using a high threshold  (i.e. 23% of Imax), and  (d) Sobel edge map of (b) 
using a low threshold  (i.e. 10% of Imax). 
 

Obviously, the optimal performance in terms of reducing the number of required  
computations, while maintaining the reliable detection of perceived  ringing, can be 
achieved  by op timizing two aspects: (1) the detection accuracy of relevant edges; 
and  (2) the reduction in complexity of the HVS model itself. Hence, what is needed  
is an edge detector that only extracts edges most closely related  to the occurrence of 
ringing, and  a HVS model that is simpler (and  thus more applicable for real-time 
implementation) than the approaches existing in literature. In this paper, both 
aspects needed  to efficiently detect regions with visible ringing are d iscussed .  

(a) (b)

Perceived Ringing

(d)(c)
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3.2 Proposed Algorithm 

The schematic overview of the proposed  algorithm is illust rated  in Figure 4. It 
mainly consists of two parts: (1) extraction of edges relevant for ringing, and  (2) 
detection of visibility of ringing in the edge regions. In the first part, an advanced  
edge detector is adopted , attempting to select the edges most r elevant for ringing 
(i.e. contours of objects) in combination with the avoidance of the irrelevant edges 
(i.e. in textured  areas). This results in a perceptual edge map (PEM), existing of a set 
of so-called  line segments (LS). In the second  part, each LS of the PEM is examined  
ind ividually on the occurrence of visible ringing in its d irect neighborhood , taking 
into account masking by the HVS. All regions with visible ringing are accumulated  
in a single binary map, which we refer to as the computational ring ing region (CRR) 
map. Remind  that the CRR map is used  as input to the second  step of the objective 
metric, in which the ringing annoyance is quantified, as published  in [16] and  [17]. 
Each part of the ringing region detection algorithm is further detailed  in the 
following sections. The parameters used  in the algorithm are specified  and  
d iscussed  in Section IV.B. Note that the entire metric is only based  on the luminance 
channel of the images in order to further reduce the computational load .  
 

 
 

Fig. 4.  Schematic overview of the proposed  algorithm, with at the top the part to detect 
edges relevant for ringing, and  at the bottom the part to measure visibility of ringing around  
these edges. 
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3.2.1 Perceptual Edge Extraction 

As explained  above, the detection of visible ringing heavily relies on the accurate 
and  efficient detection of object edges. To achieve this, we propose the application 
of a Canny edge detector [24] to an image, which first is non -linearly smoothened . 
After some additional post-processing, this resu lts in the PEM. 

Edge Preserving Smoothing and Canny Edge Detection 

When interpreting the surrounding world , humans tend  to respond  to d ifferences 
between homogeneous regions rather than to structure within these homogeneous 
regions [25]. Hence, find ing perceptually strong edges mainly implies that texture 
existing in homogenous regions can be neglected  as if viewed  from a long d istance. 
This can be implemented  by smoothing the image progressively until textual details 
are significantly reduced , and  then applying an edge detector. 

Trad itional low -pass linear filtering (e.g. Gaussian filtering) smoothens ou t noise 
and  texture, but also blurs edges, and  consequently, changes their spatial location. 
Since ringing detection intrinsically requires accurate spatial localization of the 
edges, edge-preserving smoothing is needed . Bilateral filtering was introduced  in 
[26] as a simple and  fast scheme for edge-preserving smoothing. It is a nonlinear 
operation that combines nearby image values based  on both their  geometric 
closeness and  their photometric similarity, and  prefers near values to d istant values 
in both spatial domain and  intensity range. In the Gaussian case, it can be expressed  
as: 
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I and  F denote the input and  output images, χ  and  ξ  are space variables, and  the 
standard  deviations σ d and  σ r characterize the domain and  range filtering, 
respectively. The advantage of using bilateral filtering instead  of Gaussian filtering 
for the localization specific detection of perceptually strong edges is illustrated  in 
Figure 5.  

Subsequently, a Canny ed ge detector is app lied  to the bilaterally filtered  image to 
obtain the perceptually more meaningfu l edges. Since the input image is already 
filtered , the subsequent Canny algorithm is implemented  without its inherent 
smoothing step, while keeping the other processing steps unchanged . The Canny 
edge detector uses two thresholds to detect strong and  weak edges, and  includes 
the weak edges in the ou tput only if they are connected  to strong edges. Their 
values is automatically set, depending on the image content.  
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Fig. 5.  Bilateral filtering and  Gaussian filtering for the detection of perceptually strong edges: 
(a) original image, (b) Gaussian filtered  image (σ d=15), (c) edge map of (b), (d ) superposition 
of (c) on (a), (e) bilateral filtered  image (σ d =3, σ r =100), (f) edge map of (e), and  (g) 
superposition of (f) on (a).  
 

Perceptual Edge Map Formation 

 

 
 

Fig. 6.  Construction of the perceptual edge map (PEM): (a) Canny edge map and  (b) related  
PEM with labeled  line segments. 
 
Since the HVS does not perceive luminance variations at pixel level, the detected  
edge pixels are necessarily combined  into perceptually salient elements, facilitating 
further analysis and  processing [25]. These perceptual elements, which we refer to 
as line segments (LS), are constructed  over the Canny edge map and  will be used  as 
the basis for ringing region detection. The following processing steps are 
implemented  to define the LS in the PEM. 

1) Skeletonizing: To guarantee that an edge is only one-pixel thick, a kernel of 4x4 
pixels is slid  over all p ixels, and  those pixel configurations that have a structure of 
[1 1; 0 1] or [1 0; 1 1] are rep laced  by [1 0; 0 1], and  those with a st ructure of [1 1; 1 0] 
or [0 1; 1 1] are replaced  by [0 1; 1 0]. 

2) Edge Linking: The algorithm links all the edge pixels into a set of elements; 
each element either contains two end -points or is a closed  loop. If an edge junction 
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is encountered , the tracing procedure breaks, and  a separate element is generated  
for each of the branches. 

3) Noise Removal: The elements with the number of connected  edge pixels below 
a certain threshold  are d iscarded . This is done with the ringing detection accuracy 
and  speed  in mind . 

4) Line Segment Labeling: the resulting elements of connected  edge pixels are 
referred  to as line segments (LS), and  labeled . 

Once this process is complete, we have the PEM. Figure 6 illustrates the labeling 
of the LS in the PEM. 

3.2.2 Ringing Region Detection 

Each LS of the PEM is examined  ind ividually on the occurrence of visible ringing 
artifacts in their d irect neighborhood , taking into account luminance and  texture 
masking. The regions with visible ringing are then combined  in a computational 
ringing region (CRR) map. 

Local Region Classification 

In order to characterize the visibility of ringing around  a LS, its surround ing is 
classified  into three d ifferent zones (see Figure 7(a) for an example of a single step 
edge): (1) Edge Region (EdReg): the original edge includ ing the compression 
induced  blur; (2) Detection Region (DeReg): the d irect neighborhood  of the Ed Reg, 
which potentially contains ringing artifacts; and  (3) Feature Extraction Region 
(FeXReg): a region representative for the original local background , which is located  
outwards from the corresponding DeReg. These regions are defined  by thickening 
the LS with a d ifferent size for the structuring element of a d ilation operation. 
Figure 7(b) gives an example, in which for one LS (i.e. LS3 of Figure 6(b)) the Ed Reg, 
DeReg, and  FeXReg obtained  with a square structuring element of 2, 9 and  17 pixels 
wid th, respectively, is shown.  
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EdReg

EdReg

Original

Compressed



- 49 - 
 

 
 

(b) 
 

Fig. 7.  Illustration of local region classification: (a) illustration of the three zones for a 
schematic step  edge, and  (b) illustration of how the zones are defined  around  an actual line 
segment as part of a natural image. In (b) the black line ind icates the EdReg, the gray area 
defines the DeReg, and the white area refers to the FeXReg. 
 

The Human Vision Model 

Whether ringing is actually visible in the DeReg strongly depends (because of 
masking in the HVS) on the content of the original background , here represented  by 
the FeXReg. Hence, the visibility of ringing is evaluated  for each LS by applying a  
model for texture and  luminance masking, using the texture and  luminance 
characteristics of the FeXReg. As a result, DeReg regions, in which ringing is 
visually masked  are eliminated , and  only the perceptually prominent DeReg 
ringing regions remain. 

1) Texture Masking 

The visibility of ringing is significantly affected  by the spatial activity in its local 
background , i.e. ringing is visually masked  when located  in a textured  region, while 
it is perceptually prominent against a smooth background  [22], [23], [27] as 
illustrated  in Figure 2. In this paper, texture masking is modeled  classifying the 
FeXReg of each LS into ‘‘smooth’’ and  ‘‘textured ’’ objects, depend ing on the local 
background  characteristics. The DeReg is segmented  accord ingly, and  those DeReg 
regions of which the corresponding FeXReg is clustered  as ‘‘textured ’’ are removed . 
This approach intrinsically avoids explicit modeling of the HVS, and  formulates 
texture masking as a simple yet efficient local pixel clustering procedure. The 
proposed  scheme to implement this is illustrated  in Figure 8(b). It generally 
involves the following steps: 

(1) Calculating the local activity of the image content covered  by the FeXReg by 
applying a global threshold  to the grad ient in pixel intensity to create a local binar y 
map (LBM) of the FeXReg. This yield s a profile of local pixel activities, and  is 
formulated  as 

LS3

EdReg

DeReg

FeXReg
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where the local activity LA (i, j) at location (i, j) is approximated  by the grad ient of 
the image intensity using a grad ient operator (e.g. a Sobel operator). The 3x3 
pseudo-convolution template used  to calcu late the grad ient magnitude of a pixel at 
location (i, j) is shown in Figure 8(a) (I(i, j) corresponds to the pixel intensity at 
location (i, j)). The threshold  Thr_txt is related  to the magnitude histogram of the 
grad ient image, and  thus, image content dependent. 

 

 
 

(a) 
 

 
 

(b) 
 

Fig. 8.  Implementation of texture masking: (a) Pseudo-convolution template used  to 
calculate approximate grad ient magnitude and  (b) illustration of the algorithm. 
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(2) Dilating the LBM using a morphological operator, and  labeling (e.g. by 8-
connectivity) them into a set of connected  components, which are referred  to as 
texture components. This step intrinsically transfers pixel activities to a higher level 
structure of region activities, motivated  by the fact that the human eye is not 
sensitive to variations at pixel level. 

(3) Classifying all FeXReg covered  by texture components into ‘‘texture objects’’, 
and  the remaining FeXReg into ‘‘smooth objects’’. 

(4) Removing the regions of DeReg that belong to the ‘‘texture objects’’ of FeXReg, 
since in these regions ringing is supposed  to be masked  by texture, and  d iscard ing 
the resulting regions of DeReg with their size under a certain threshold . The 
maintained  regions of DeReg are considered  as perceived  ringing regions.  

2) Luminance Masking 

The visibility of variations in luminance depends on the local mean luminance [18], 
[19], [27], [28], [29]. As a result, the visibility of ringing is la rgely reduced  in 
extremely dark or bright surroundings, as illustrated  in Figure 2. The 
implementation of luminance masking is the same as for texture masking, but to 
guarantee efficiency, it is only applied  to those regions of the DeReg remaining after 
the app lication of texture masking. The procedure for luminance masking is 
similarly formulated  as a local pixel clustering model, and  it mainly contains the 
following steps: 

(1) Calculating the local averaged  luminance, over a 3x3 template, centered  on 
each pixel that is part of a ‘‘smooth object’’ of the FeXReg 
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where I(i, j) denotes the pixel intensity at location (i, j), and  LML(i, j) denotes the 
local mean luminance. The visibility of ringing d ue to luminance masking is 
determined  accord ing to the functional behavior shown in Figure 9 [12], and  a local 
binary map (LBM) is generated  by applying a pre-defined  threshold  to the visibility 
coefficient (VC) 
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where LBM (i, j)=0 ind icates a visible pixel location , and  LBM (i, j)=1 ind icates a non-
visible pixel location. This generates a profile of local visibility due to luminance 
masking. 

(2) Dilating the LBM to obtain a set of connected  components, which are referred  
to as invisible components. 

(3) Classifying the ‘‘smooth objects’’ of FeXReg further into ‘‘visible objects’’ and  
‘‘invisible objects’’ depending on the invisible components. This step combined  with 
the one mentioned  above intrinsically yields the structures of region visibility.  
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(4) Removing the DeReg that correspond  to ‘‘invisible objects’’, i.e. where ringing 
is not supposed  to be visible against a very low or very high intensity background .  
Ultimately, only the regions of DeReg that yield  visible ringing remain. These 
regions are combined  in the CRR map, of which an example is given in Figure 10. 
 

 
 

Fig. 9.  Implementation of luminance masking via the relation between the local mean 
luminance (LML) and  the artifact visibility coefficient (VC); Thr_lum refers to the threshold  
used  in the implementation. 
 

 
 

Fig. 10.  Example of a computational ringing region (CRR) map (a) corresponding to a JPEG 
compressed  image (b). 
 

3.2.3 Spurious Ringing Region Suppression 

The ringing region detection method  described  so far only exposes regions in an 
image which are likely to be impaired  by visible ringing artifacts. The resulting 
CRR map, however, still includes obvious spurious ringing regions, containing 
either ‘‘unimpaired ’’ or ‘‘noisy’’ p ixels misinterpreted  as ringing pixels. 

‘‘Unimpaired  pixels’’ ind icate pixels in the d etected  regions of the CRR map, 
which are actually not impaired  by ringing. An obvious example of the occurrence 
of ‘‘unimpaired ’’ p ixels is in an uncompressed  image. The ringing region detection 

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

LML

VC

Thr_lum

(a) (b)



- 53 - 
 

algorithm described  so far will find  the regions that might be  impaired  with visible 
ringing, independent of the compression level. But in an uncompressed  image, 
these regions d o not contain visible ringing, and  hence, should  be removed  from the 
CRR map. Note that without removal of these regions the overall objectiv e ringing 
metric includ ing the step of quantification of ringing annoyance (see [16] and  [17]) 
would  not be less accurate, but less efficient. 

‘‘Noisy pixels’’ are p ixels in the detected  regions of the CRR map, that actually 
belong to an edge or texture. They are accidentally misclassified  to a ringing region 
as a consequence of the d ilation operation used  in the human vision model.  

To remove the spurious ringing regions, each detected  ringing region (RR) is 
further examined  by calcu lating its amount of visible ringing pixels. Those RRs with 
their number of visible ringing pixels below a certain threshold  are considered  as 
spurious, and  consequently removed  from the CRR map. Whether a pixel in a RR is 
a visible ringing pixel is determined  via the local varian ce (LV) in intensity in its 3x3 
neighborhood . The spurious ringing p ixels are suppressed  by applying two 
thresholds to the LV , a low threshold  (Thr_v_low) and  a high threshold  (Thr_v_high). 
Since unimpaired  pixels exhibit no or very small intensity variance in their 
neighborhood , a p ixel w ith its LV  value below or equal to Thr_v_low is considered  
as an unimpaired  pixel. In the same way, a pixel with its LV  value above or equal to 
Thr_v_high is considered  as a ‘‘noisy pixel’’. This can be formulated  as: 
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where VCn(i, j) ind icates the visibility of a ringing pixel at the n th ringing region (i.e. 
RRn) w ith its associated  line segment (i.e. LSn) , and  LV (i, j) ind icates the local 
variance computed  over a 3x3 template, centered  at a p ixel intensity I(i, j). The value 
of Thr_v_low is chosen to be zero, and  the value of Thr_v_high is chosen to scale with 
the strength of corresponding edge (see [23]). Thus, the ringing region RRn is 
removed  if 
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where SUM(VCn) ind icates the number of visible ringing pixels, SIZE(RRn) ind icates 
the size of the given RR, and  R ind icates the pre-defined  ratio of visible ringing 
pixels over the detected  ringing region.  
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3.3 The Psychovisual Experiment 

To validate our algorithm for ringing region detection, a psychovisual experiment, 
in which participants were requested  to ind icate regions of visible ringing in 
compressed  natural images, was carried  out. 1 The results were transformed into a 
subjective ringing region (SRR) map, ind icating where in an image on average 
people see ringing. 

3.3.1 Subjective Experiment Procedure 

A set of eight source images, reflecting adequate d iversity in image content, were 
taken from the Kodak Lossless True Color Image Suite [30]. Figure 11 shows these 
source images. They were high resolution and  high quality color images of size 
768x512 (wid th × height) pixels. These images were JPEG compressed  using 
MATLAB’s imwrite function at two d ifferent comp ression levels (i.e. Q=25 and  50). 
This yielded  a test database of sixteen stimuli. These stimuli were d isplayed  on a 
17-inch LCD monitor w ith a screen resolution of 1024x768 pixels. The experiment 
was cond ucted  in a stand ard  office environment [31] and  th e viewing d istance was 
approximately 40cm. 
 

 
Fig. 11. Source images. 
 

Twelve students of the Delft University of Technology, being eight males and  
four females, were recruited  for the experiment. Before they started  the actual 
assessment, each of them was shown three examples of synthetic ringing, synthetic 
blocking and  synthetic blur artifacts, followed  by three real-life images in which 
ringing, blocking and  blur were the most annoying artifacts, respectively. When the 
participant reported  to be able to d istinguish ringing from other types of 
compression artifacts, a set of images with the same level of ringing as used  in the 
rest of the experiment was presented . The participant was requested  to mark any 
region in the image where he/ she perceived  ringing, independent of its annoyance. 
The images used  during this training were d ifferent from those used  in the actual 
experiment. After training, all 16 stimuli were shown in a random order to each 
subject in a separate session.  

                                                           
1 The data collected from this experiment are available to the image quality assessment 
community on the web-site http://mmi.tudelft.nl/~ingrid/ringing.html 
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3.3.2 Subjective Data Processing 

The recorded  edges per image and  subject were transformed into a binary image, in 
which a white pixel ind icated  perceived  ringing and  a black pixel referred to 
absence of visible ringing. This resulted  in an ind ivid ual ringing region (IRR) map  
per stimulus and  subject. These IRR were then averaged  over all subjects to a mean 
ringing region (MRR) map. From the MRR map, the subjective ringing region (SRR) 
map was derived  by simply applying a threshold  (i.e. Thr_srr) of 0.5, keeping only 
those edges near which ringing was perceived  by half of the subjects. This threshold  
was introduced  to avoid  that subjective outliers would  strongly affect the 
performance comparison between various algorithms. Its actual value is further 
d iscussed  in Section V. 

3.4 Performance Evaluation 

Our proposed  ringing region detection method  is valid ated  with respect to the 
results of the psychovisual experiment, and  its performance is compared  to existing 
alternatives in literature. For this performance comparison, we implemented  thre e 
ringing region detection algorithms recently proposed : (1) region clustering based  
ringing artifact measure (referred  to as RCRM) [23], (2) morphological filtering 
based  ringing artifact measure (referred  to as MFRM) [22], and  (3) no-reference 
ringing artifact measure (referred  to as NRRM) [21]. In literature, all three methods 
are proved  to be promising in terms of ringing region detection.  

3.4.1 Evaluation Criteria 

To evaluate the performance of various ringing region detection algorithms we 
compared  the CRR map as calculated  for each of the ringing region detection 
algorithms to the SRR map derived  from the psychovisual experiment. These two 
binary images (i.e. the CRR and  SRR map) were compared  visually and  via a 
quantitative correlation. 

For the visual assessment we produced  a comparison map (M C), which is an RGB 
color image generated  by 
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The G (green) channel is assigned  to the logical operator AND of the two binary 
maps, and  so, represents the correlated  ringing regions. The R (red) and  B (blue) 
channels are assigned  to edges occurring only in the CRR map and  the SRR map, 
respectively, and  so, represent the uncorrelated  ringing regions between both maps. 
Black regions represent the absence of visible ringing on both maps.  

The objective comparison of the CRR map to the SRR map is quantitatively 
measured  by two correlation coefficients, namely ρ 1 and  ρ 2, defined  as follows: 
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The numerator of ρ 1 ind icates the total number of correlated  pixels between the 
CRR map and  SRR map, while the denominator ind icates the size of the ringing 
regions in the SRR map. Thus, ρ 1 quantifies to what extent the subjective ringing 
regions are detected  by the computational models. However, this coefficient by 
itself is obviously not enough to reflect the detection accuracy of a computational 
model. A model might be capable of capturing all subjective ringing regions, just by 
capturing all edges, also those that do not contain visible ringing. These falsely 
detected  ringing regions consequently degrade particularly the efficiency of a 
subsequent ringing annoyance measurement. The d egree of false detections is 
quantified  by ρ 2. Its numerator ind icates the size of regions falsely detected  by the 
computational models, and  its denominator ind icates the size of regions in the SRR 
map not detected  by the human subjects. Evidently, a higher value of ρ 1 combined  
with a lower value of ρ 2 implies a good  detection model. 

3.4.2 Model Calibration 

Our proposed  ringing region detection algorithm uses a number of parameters that 
need  to be tuned  to optimal, but at the same time robust performance over d ifferent 
image content. For this tuning, we used  five new images (not part of the 
psychovisual experiment). These images were also JPEG compressed  with the 
MATLAB’s imwrite function at Q=25 and  50. A few experts in the area of 
compression artifacts (mainly the authors) ind icated  the regions in the image with 
visible ringing. The resulting d ata were used  for optimizin g the performance of our 
ringing region detection algorithm. Robustness over content was evaluated  by 
applying these optimized  parameters to the new image content of the psychovisual 
experiment.  

Parameters for the Edge Extraction 

This set of parameters includes the stand ard  deviations (i.e. σ d and  σ r) for the 
bilateral filter to control the extent of the smoothing effect, and  the hysteresis 
threshold ing (i.e. Thr_high and  Thr_low) of the Canny edge detector to trace strong 
edges while preventing breaking of continuous edges. For the bilateral filter the 
selection of σ d and  σ r has been intensively d iscussed  for natural images in [26], 
and  they were set accord ingly to σ d=3 and  σ r=100 in our experiment (see [32] and  
[32]). For the edge detector Canny sets the Thr_high such that a certain percentage 
(i.e. p) of the total amount of pixels is cumulated  in the magnitude histogram of the 
grad ient image, and  the Thr_low as a fixed  fraction (i.e. 0.4) of the Thr_high [24]. In 
our implementation, we used  a relatively low value of Thr_high (i.e. p=85%) in order 
to prevent loosing relevant edges. This may resu lt in irrelevant LSs in the PEM, but 
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these LSs are later d iscarded  by applying the HVS model. In other word s, the choice 
for the thresholds of the Canny edge detector affect the efficiency of the model 
rather than its accuracy. Finally, the threshold  for the noise removal in the PEM 
formation was set to 20 pixels. Again, this parameter affects the efficiency rather 
than the accuracy of the model. 

Parameters for Region Definition 

This set of parameters determines the wid th of the EdReg, DeReg, and  FeXReg 
regions. The EdReg representing edge blur is chosen to be equal to the one-pixel 
thick LS. In case this value is too small, blur pixels can easily be detected  as 
spurious pixels in a ringing region (as described  in Section II.C). The wid th of the 
DeReg is set as a single-sided  support d imension of four pixels, which 
approximates the maximal extent of ringing that spreads out to a region 
surrounding an ed ge in JPEG compression [4]. The actual wid th of the DeReg may 
vary depending on the underlying properties of the cod ing technique, but can be 
ad justed  accord ing to [34]. The wid th of the FeXReg is empirically selected  to be the 
same as for the DeReg. We experienced  that the FeXReg may cross an object 
bound ary or reach another edge, which consequently results in spurious pixels in a 
detected  ringing region. The suppression of these p ixels has been d iscussed  in 
Section II.C. 

Parameters for the HVS 

This set of parameters includes two essential thresholds, i.e. Thr_txt for texture 
masking and  Thr_lum for luminance masking. The performance of our algorithm is 
fairly insensitive to variations of these thresholds within the range of [0.6, 0.95] and  
[0, 0.8] for Thr_txt and  Thr_lum, respectively. Varying these thresholds within their 
respective range results in a variation of ρ 1 and  ρ 2 over [85%, 95%] and  [1%, 3%], 
respectively. For the final performance evaluation of our model, we set Thr_txt=0.9 
and  Thr_lum=0.75. 

Parameters for Spurious Ringing Pixel Detection 

This set of parameters contains three threshold  values (i.e. Thr_v_low, Thr_v_high 
(determined  by α  as shown in equation (9)) and  R) to further eliminate undesired  
regions in the CRR map. It should  be ad mitted  that this processing step  is a fine-
tuned  op timization to largely remove e.g. the ‘‘unimpaired  regions’’ in the CRR 
map of an uncompressed  (or high bit-rate compressed) image, thus making the 
subsequent calculation of ringing annoyance [16], [17] more efficient. The 
parameters are determined  as Thr_v_low=0, α =0.5 and  R=0.3. Thr_v_low and  α  are 
set accord ing to experiments and  observations reported  in [23], while R is 
empirically chosen. R is mainly used  to speed  up the algorithm rather than to 
improve its accuracy. The inclusion of the detection of spurious ringing p ixels 
hard ly affects the overall performance of our model: includ ing or omitting the 
detection of spurious ringing pixels corresponds to a deviation in ρ 1 and  ρ 2 over a 
range of [-0.5%, +0.5%]. It should , however, be noted  that the concept of r emoving 
spurious ringing pixels is mainly important for the ringing annoyance estimation, 
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and  hence, these parameters might need  to be calibrated  again for the subjective 
data of ringing annoyance [16], [17]. 

Selected Parameters for Methods from Literature 

As mentioned  above, we will compare the performance of our algorithm to three 
alternatives published  in literature. These methods were implemented  following 
the description in the original publications. However, some important parameters 
were ad justed  to ensure a fair comparison. The parameters to control the 
threshold ing of the edge detector were tuned  for each algorithm to yield  the highest 
performance possible for the five test images used  during calibration. The 
parameter for determining the extent of ringing artifacts was equal for all 
algorithms (i.e. a single-sid ed  ringing region support d imension of 4 p ixels). 

3.4.3 Evaluation of Overall Model Performance 

The comparison maps for the visual assessment between the SRR map and  the 
(optimized) CRR maps of the various algorithms are given in Figure 12. The first 
column shows the test images, the second  column presents the SRR maps, and  the 
remaining four columns give the comparison maps of our proposed  algorithm, 
RCRM, MFRM, and  NRRM, respectively. In general, most of the ringing regions 
that were perceived  in the psychovisual experiment were also detected  by each of 
the four algorithms. However, our proposed  method  detects the perceived  ringing 
regions while introducing far less noise (i.e. regions that a re not observed  
subjectively) compared  to the other three methods. The correlation coefficients ρ 1 
and  ρ 2 between the SRR and  each of the CRR maps is given in Figure 13. These 
data are summarized  into an overall performance, shown in Table I. In terms of 
detecting perceived  ringing regions (i.e. ρ 1), our proposed  method  outperforms the 
other three methods by 15% on average. Also in terms of avoid ing false detection 
(i.e. ρ 2) our method  is twice as good  as the next best one, namely the RCRM. The 
latter algorithm, however, is lowest in performance based  on ρ 1. 
 

Model Proposed RCRM MFRM NRRM 

ρ 1   92% 72% 79% 76% 

σ (ρ 1)  0.04 0.17 0.20 0.12 

ρ 2   2.2% 4.9% 9.6% 18% 

σ (ρ 2)  0.02 0.02 0.04 0.02 

 
Table I.  Performance comparison of the four ringing region detection methods (Thr_srr=1/ 2 
for the SRR maps): mean and  standard  deviation of the correlation coefficients ρ 1 and  ρ 2. 
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Fig. 12. Experimental results of visual assessment: (a) Images 1-8: Caps (Q25), Caps (Q50), 
Beach (Q25), Beach (Q50), Plane (Q25), Plane (Q50), Lighthouse (Q25), Lighthouse (Q50), and  
(b) Images 9-16: Stream (Q25), Stream (Q50), Sailing (Q25), Sailing (Q50), Parrots (Q25), 
Parrots (Q50), Door (Q25), Door (Q50). The second column gives the subjective ringing 
region (SRR) map, and  columns 3-6 give the computational ringing region (CRR) map 
calculated  for our proposed approach, the RCRM [23], the MFRM [22], and  the NRRM [21], 
respectively. 
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(b) 
 

Fig. 13. Quantitative comparison results: (a) correlation coefficient ρ 1 and (b) correlation 
coefficient ρ 2. 

3.5 Discussion  

In this paper we present a novel approach to the detection of regions in an image 
impaired  with visible ringing artifacts. The output of the proposed  algorithm serves 
as input for the second  step in the objective ringing metric, existing of the 
quantification of the actual ringing annoyance in each of the detected  regions (as 
published  in [16] and  [17]). In this respect it is relevant to realize that a good  
performance of the ringing region detection algorithm mainly contributes to the 
efficiency of the second  step in the objective m etric, rather than to the final accuracy 
of the pred iction in ringing annoyance. 

So far, our algorithm is only tested  for JPEG compressed  image material. More 
research is needed  to also evaluate its performance for d ifferent compression 
techniques. The algorithm is evaluated  for two compression levels, and  the 
corresponding CRR maps are highly comparable. Since in this paper we only 
measure ringing regions, and  not ringing annoyance, this is not surprising. Even for 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Proposed

RCRM

MFRM

NRRM

Images

11

0.000

0.050

0.100

0.150

0.200

0.250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Proposed

RCRM

MFRM

NRRM

Images

22



- 62 - 
 

uncompressed  images the CRR map will be comparable at first instance, i.e. before 
removal of spurious ringing regions as d iscussed  in section II.C. 

Our proposed  ringing region detection algorithm exists of two essential 
contributions: an edge detector that only preserves perceptually relevant edg es and  
a simple, yet efficient HVS. The use of an ord inary edge detector (as in RCRM, 
MFRM and  NRRM) makes ringing region detection very sensitive to the threshold  
used ; for a high threshold  some visually salient edges may not be detected , such 
that the obvious ringing regions are consequently missed , while for a low threshold  
many irrelevant edges may be retained , which resu lts in a lot of false ringing 
regions. Especially for content that is rather insensitive to masking by the HVS (the 
image ‘‘Door’’ (see Figure 12) is such an example), the number of detected  ringing 
regions strongly depends on the threshold  used  for the edge detection. The value of 
our approach is mainly generated  by the bilateral filtering (preserving the 
perceptually relevant ed ges) rather than by the ed ge detection itself. The Canny 
edge detector could  have been replaced  by a d ifferent edge detector, without 
expected  change in performance. 

Table I illustrates the advantage of using texture and  luminance masking in  
ringing region detection (as in our proposed  method , and  in RCRM and  MFRM). It 
obviously reduces the number of detected  false ringing regions (lower ρ 2 value). 
The NRRM, not includ ing HVS properties, clearly has the highest ρ 2 value. From a 
practical point of view, this may significantly degrad e the efficiency, and  to some 
extent the accuracy of pred icting ringing annoyance. Includ ing HVS modeling is 
especially crucial for highly textured  images, such as the image ‘‘Stream ’’ (see 
Figure 12). This type of content usually masks ringing to a considerable extent, 
which should  be addressed  by a robust HVS model. That our HVS model is 
sufficiently robust against this demanding content is shown by its highest ρ 1 value 
and  its lowest ρ 2 value compared  to the other two algorithms includ ing HVS 
properties (i.e. RCRM and  MFRM, see Figure 13). Additionally, It should  be noted 
that the number of requ ired  computations for modeling the HVS is significantly 
lower for our model than for to the methods RCRM and  MFRM. The reduction in 
complexity is achieved  by calculating the HVS only near the perceptually relevant 
edges and  also by simplifying the model of visual masking itself.  

The third  contribution to our ringing region detection algorithm is a rather ad  hoc 
one: the removal of spurious ringing regions. Due to this spurious ringing region 
removal, our proposed  method  cap tures slightly more visible rin ging regions for 
compression level Q=25 than for compression level Q=50, which is in agreement 
with the corresponding SRR maps. The impact of compression ratio is less obvious 
for the other alternative methods. However, this d ifference in performance is no t of 
major concern, since it can be corrected for in the quantification of actual ringing 
annoyance, as long as all relevant edges are captured  in the ringing region detection.  
The performance of the ringing region detection algorithms is evaluated  against  the 
results of a psychovisual experiment, represented  by SRR maps. From the visual 
assessment in Figure 12, it is clear that all algorithms detect ringing regions that do 
not occur in the SRR maps. This is not surprising, since the SRR maps are derived 
such that they only maintain ringing regions detected  by most of the participants. 
Hence, it is possible that some perceptible, but not annoying ringing regions are 
omitted  by applying a threshold  to the MRR maps (see Section III.B). To evaluate 
how the selection of this threshold  affects the performance of all algorithms, the 
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correlation coefficients ρ 1 and  ρ 2 are recalculated  for a lower threshold  of the SRR 
map (i.e. Thr_srr=1/ 3). The results, summarized  in Table II, ind icate that the actual 
values of ρ 1 and  ρ 2 change for all algorithms, but that the general tendencies are 
maintained .  
 

Model Proposed RCRM MFRM NRRM 

ρ 1   86% 74% 65% 83% 

σ (ρ 1)  0.09 0.16 0.12 0.12 

ρ 2   4.5% 20% 11% 31% 

σ (ρ 2)  0.03 0.08 0.03 0.04 

 
Table II.  Performance comparison of the four ringing region detection methods for 
Thr_srr=1/ 3 of the SRR maps: mean and  standard  deviation of the correlation coefficients ρ 1 
and  ρ 2. 

3.6 Conclusions 

In this paper, a novel approach towards the detection of perceived  ringing regions 
in compressed  images is p resented . The algorithm relies on the compressed  image 
only, which is promising for its app licability in a real-time video chain, e.g. to 
enhance the quality of artifact impaired  video. It adopts a perceptually more 
meaningful edge detection method  for the purpose of ringing region location. This 
intrinsically avoid s the d rawback of applying an ord inary edge detector, which has 
the risk of omitting obvious ringing artifacts near non-detected  edges or of 
increasing the computational cost by measuring ringing visibility near irrelevant 
edges. The objective detection in agreement with human visual perception of 
ringing artifacts is ensured  by taking into account typ ical prop erties of the human 
visual system, such as texture masking and  luminance masking. The human vision 
model is implemented , based  on the local image characteristics around  detected  
edges, to expose only the perceptually prominent ringing regions in an image. The 
proposed  detection method  is validated  with respect to ringing regions resulting 
from a psychovisual experiment, and  shows to be highly consistent w ith subjective 
data. The performance of our approach is compared  to existing alternatives in 
literature, and  has been proved  to be promising in terms of both reliability and  
computational efficiency. The proposed  ringing region detection method  is 
meanwhile extended  with a ringing annoyance metric that can quantify perceived  
ringing annoyance of compressed  images [16], [17].  
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Chapter 4 

A No-Reference Metric for Perceived Ringing 
Artifacts in Images 

 
 
Abstract : A novel no-reference metric that can automatically quantify ringing 
annoyance in compressed images is presented. In the first step a recently 
proposed ringing region detection method extracts the regions which are likely to 
be impaired by ringing artifacts. To quantify ringing annoyance in these detected 
regions, the visibility of ringing artifacts is estimated, and is compared to the 
activity of the corresponding local background. The local annoyance score 
calculated for each individual ringing region is averaged over all ringing regions 
to yield a ringing annoyance score for the whole image. A psychovisual 
experiment is carried out to measure ringing annoyance subjectively and to 
validate the proposed metric. The performance of our metric is compared to 
existing alternatives in literature and shows to be highly consistent with 
subjective data. 
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4.1 Introduction 

Objective metrics have the aim to automatically provide a quantitative measure for 
image quality aspects, and  to eventually serve as computational alternative for 
expensive image quality assessments by human observers. They are of fund amental 
importance to a broad  range of applications, such as the op timization of d igital 
imaging systems, benchmarking of image and  video coding, and  quality 
monitoring and  control in d isp lays [1]. They are generally classified  into full-
reference (FR) metrics and  no-reference (NR) metrics, depending on the use of the 
original image or video. FR metrics are based  on measuring the similarity or fidelity 
between the d istorted  image and  its original version, which is considered  as a 
d istortion-free reference. The most w idely used  FR metrics are mean squared  error 
(MSE) and  peak signal-to-noise ratio (PSNR). These metrics, however, have long 
been criticized  for their poor correlation with perceived  image quality [1]. A lot of 
research effort is devoted  to the development of FR metrics that can reflect the way 
human beings perceive image quality [2]. Improved  alternatives of FR metrics 
include e.g. the Structural Similarity (SSIM) Index [3] and  the Visual Information 
Fidelity (VIF) Index [4]. Since FR metrics require the access to the original, which is 
however not always available in real-world  app lications, they are usually employed  
as tools for in-lab testing of image and  video processing algorithms. NR metrics 
instead  are more practical because the quality pred iction is based  on the d istorted  
image only. However, designing NR metrics is still an academic challenge mainly 
due to the limited  understand ing of the human visual system (HVS). 

In the last decades, consid erable progress on the development of NR metrics is 
made, and  some successfu l method s are reported  in the literature [5]-[19]. In [5], 
natural scene statistics are used  to blind ly measure the quality of images 
compressed  by JPEG2000. The approach in [5] relies on the assumption that typical 
natural images exhibit strong statistical regu larities, and  therefore, reside in a tiny 
area of the space containing all possible images. Based  on this assumption it 
quantifies image quality by detecting variations in statistical image features in the 
wavelet domain. In [6] and  [7], NR image quality assessment is formulated  as a 
machine learning problem, in which the HVS is treated  as a black box whose input -
output relationship, such as the one between image characteristics and  the quality 
rating, is to be learned . After appropriate training with subjective data, these 
models proved  to be able to consistently pred ict the perceived  quality of JPEG 
compressed  or otherwise d istorted  images. 

A large number of NR metrics, proposed  e.g. in [8]-[19], are based  on d irectly 
measuring a specific type of artifact created  by a specific image d istortion process, 
such as blur caused  by acquisition systems, sensor noise, and  compression artifacts. 
In such a scenario, the d esign of the NR metric can make use of the specific 
characteristics of the artifact, and  therefore, generally obtains a higher reliability 
with perceived  quality degradation [1]. Fortunately, in many practical applications, 
the d istortion processes involved  are known, and  thus, the design of specific NR 
metrics turns out to be much more realistic and  useful. They can, for example, be 
combined  to pred ict the overall perceived  quality. Various examples of this 
approach are given in literature. A blockin ess metric (see e.g. [8]-[11]) can be 
combined  with a flatness metric (see e.g. [12] and  [13]) to evaluate the quality of 
images or video after block-based  compression. A ringing metric and  a blur metric 
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are often combined  to assess the image quality of wavelet-based  compression (see 
e.g. [14]-[16]). In [17] and  [18], multip le artifact metrics are adopted  to pred ict the 
overall quality of still images or video. In add ition to assessing the overall image 
quality, these specific artifact metrics individually are beneficial for optimizing real-
time d igital imaging systems ([20]-[22]). In the video chain of current TV-sets, 
various NR metrics, which quantify the quality of the incoming video based  on the 
occurrence of ind ividual artifacts, are used  to ad apt the parameter settings of the 
video enhancement algorithms accord ingly (see e.g. [23] and  [24]). To op timize the 
performance of both app lications mentioned  above, reliably modeling specific types 
of artifacts has clear added  value.  

Since the widespread  use of compression, research on NR metrics is mainly 
ded icated  to compression artifacts and  transmission errors [25]. Especially, the 
blocking artifact, which is one of the most annoying artifacts introd uced  by block -
based  compression algorithms [26], such as JPEG or MPEG/ H.263, got a lot of 
attention. Another compression artifact, especially visible at relatively high bit rates 
of block-based  compression ([21], [26]), but also in wavelet compression [27], is 
ringing. Unlike the blocking artifact, whose spatial location is very regu lar and  thus 
easily pred ictable, the location of ringing is edge dependent, and  as such also image 
content dependent. This makes the task of quantifying ringing annoyance much 
more d ifficult. In this paper, we present our recent efforts  to develop a NR ringing 
metric, valid ate its performance using a subjective study of ringing annoyance in 
JPEG compressed  images, and  compare its performance against existing ringing 
metrics. Before d iscussing our approach (chapter III) and  its performance (chapter 
IV and  V), a more extended  explanation of the occurrence and  visibility of ringing, 
and  an overview of existing ringing metrics are given in chapter II.  

4.2 Background 

4.2.1 Perceived Ringing Artifacts 

Physical Structure 

Current image and  video coding techniques are based  on lossy data compression, 
which contains an inherent irreversible information loss. This loss is d ue to coarse 
quantization of the image’s representation in the frequency domain. The loss within 
a certain spectral band  of the signal in the transform domain reveals itself most 
prominently at those spatial locations where the contribution from this spectral 
band  to the overall signal power is significant (see [26], [27] and  [38]). Since the high 
frequency components play a significant role in the representation of an edge, 
coarse quantization in this frequency range (i.e. truncation of the high frequency 
transform coefficients) consequently results in apparent irregularities around  edges 
in the spatial domain, which are usually referred  to as ringing artifacts. More 
specifically, ringing artifacts manifest themselves in the form of ripples or 
oscillations around  high contrast edges in compressed  images. They can range from 
imperceptible to very annoying, depending on the data source, target bit-rate, or 
underlying compression scheme [38]. As an example, Figure 1 illustrates ringing 
artifacts induced  by JPEG compression on a natural image. 
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The occurrence of ringing spreads out to a finite region surrounding the edges, 
depending on the specific implementation of the cod ing technique. For example, in 
DCT coding ringing appears ou twards from the edge up to the encompassing 
block’s bound ary [26]. An example of how to calculate the extent of the ringing 
region in a particu lar cod ecs is given in [38]. In add ition to the edge location 
dependency, the behavior of ringing also depend s on the strength of the edges. It is 
found  in [14], [29] and  [38] that, over a wide range of compression ratios, the 
variance of the ringing artifacts is proportional to the contrast of the associated  ed ge. 
These important find ings have great potential in the design of a reliable ringing 
metric, and  therefore, are explicitly ad opted  in our algorithm. 

 

 
 

Fig. 1.  Illustration of ringing artifacts: (a) a natural image compressed  with JPEG (MATLAB’s 
imwrite function with ‘‘quality’’ of 30); and  (b) the gray-scale intensity profile along one row 
of the compressed  image (indicated  by the solid  double arrowhead  line in (a)). The dashed  
lines ‘‘e1’’, ‘‘e2’’ and  ‘‘e3’’ ind icate the position of the sharp intensity transitions (i.e. edges) 
along that arrow. Ringing can be perceived as fluctuations in the gray -scale values around 
the edges at ‘‘e1’’, ‘‘e2’’ and  ‘‘e3’’, while the image content here should  be uniform. 
 

Masking of the HVS 

Taking into account the way the HVS perceives artifacts, while removing 
perceptual redund ancies, can be greatly beneficial for matching objective artifact 
measurement to the human perception of artifacts [39]. Masking designates the 
reduction in the visibility of one stimulus due to the simultaneous presence of 
another, and  it is strongest when both stimuli have the same or similar frequency, 
orientation, and  location [41]. It is basically due to the limitations in sensitivity of a 
certain cell or neuron at the retina in relation to the activity of its surrounding cells 
and  neurons. There are two fund amental visual masking effects highly relevant to 
the perception of ringing artifacts ([28]-[31]). The first one is luminance masking, 
which refers to the effect that the visibility of a d istortion (such as ringing) is 
maximum for medium background  intensity, and  it is reduced  when the d istortion 
occurs against a very low or very high intensity background  [40]. This masking 
phenomenon happens because of the brightness sensitivity of the HVS, where the 
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average brightness of the surround ing background  alters the visibility threshold  of 
a d istortion [42]. The second  masking effect is texture masking, which refers to the 
observation that a d istortion (such as ringing) is m ore visible in homogenous areas 
than in textured  or detailed  areas [40]. In textured  image regions, small variations in 
the texture are masked  by the macro properties of genuine high frequency details, 
and  therefore, are not perceived  by the HVS [38]. The effect of luminance and  
texture masking on ringing artifacts is illustrated  in Figure 2 and  Figure 3, 
respectively. 
 

 
 

Fig. 2.  An example of luminance masking on ringing artifacts: (a) an image patch 
compressed  with JPEG (MATLAB’s imwrite function with ‘‘quality’’ of 30); and  (b) the pixel 
intensity profile along one row of the compressed  image patch (ind icated  by the solid  double 
arrowhead  line in (a)). The original image includes two ad jacent parts with d ifferent gray -
scale levels (i.e. 5 for ‘‘a1’’ and  127 for’’a2’’). Note that although both sides of a step edge 
exhibit ringing artifacts, the visibility of ringing d iffers. 
 

 
 

Fig. 3.  An example of texture masking on ringing artifacts: (a) an image patch extracted  from 
a JPEG compressed  image of bit rate 0.59 bits per pixel (bpp); and  (b) the pixel intensity 
profile along one row of the compressed  image patch (ind icated  by the solid  double 
arrowhead  line in (a))., the dashed  line ‘‘e’’ ind icates the object boundary edge. Note that 
although both sides of the edge at ‘‘e’’ exhibit ringing artifacts, the visibility of ringing d iffers. 
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4.2.2 Existing Ringing Metrics 

Until recently, only a limited  amount of research effort was devoted  to the 
development of a ringing metric. Some of these metrics are FR, others NR. A FR 
approach presented  in [14] starts from find ing important edges in the original 
image (noise and  insignificant edges are removed  by applying a threshold  to the 
Sobel grad ient image), and  then measures ringing around  each edge by calcu lating 
the d ifference between the processed  image and  the reference. Since this metric 
needs the original image, it has its limitations e.g. for the application in a TV chain. 
The NR ringing metric, proposed  in [17], performs a anisotrop ic d iffusion on the 
image and  measures the noise spectrum filtered  out by the anisotropic d iffusion 
process. The basic idea behind  this metric is that due to the effectiveness of 
anisotropic d iffusion on d eringing, the artifacts would  be mostly assimilated  into 
the spectrum of the filtered  noise. The NR ringing metric described  in [16] 
indentifies the ringing regions around  strong edges in the compressed  image, and  
defines ringing as the ratio of the activity in middle low over middle high 
frequencies in these ringing regions. An obvious shortcoming of the metrics defined  
in [14], [16], and  [17] is the absence of masking, typ ically occurring in the HVS, with 
the consequence that these metrics do not always reflect perceived ringing. Typical 
masking characteristics, such as luminance and  texture masking, are explicitly 
considered  in the metrics defined  in [28] and  [29], in which ringing regions are no 
longer simply assumed to surround  all strong edges in an image, but are 
determined  by a model of the HVS. Includ ing a HVS model in an objective metric 
might improve its accuracy, but often is computationally intensive for real-time 
applications. For example, the HVS model used  in the metric presented  in [28] 
largely depend s on a parameter estimation procedure, which requires a number of 
calculations to achieve an optimal selection. The model described  in [29] is based  on 
a computationally heavy clustering scheme, includ ing both color clustering and  
texture clustering. From a practical point of view, it is highly desirable to reduce the 
complexity of the H VS based  metric without compromising its overall performance. 

The essential idea behind  most of the existing metrics mentioned  so far (see e.g. 
in [14], [16] and  [28]) is that they consist of a two-step approach. The first step 
identifies the spatial location, where perceived  ringing occurs, and  the second  step  
quantifies the visibility or annoyance of ringing in the detected  regions. This 
approach intrinsically avoids the estimation of ringing in irrelevant regions in an 
image, thus making the quantification of ringing annoyance more reliable, and  the 
calculation more efficient. Additionally, a local determination of the artifact metric 
provides a spatially varying quality degradation profile within an image, which is 
useful in e.g. video chain optimization  as mentioned  in chapter I. Since ringing 
occurs near sharp edges, where it is not visually masked  by local texture or 
luminance, the detection of ringing regions largely relies on an edge detection 
method  followed  by a HVS model. Existing methods (such as e.g. [14], [16], [28] and  
[29]) usually employ an ord inary edge detector, where a threshold  is applied  to the 
grad ient image to capture strong edges. Depending on the choice of the threshold , 
this runs the risk of omitting obvious ringing  regions near non-detected  edges (e.g. 
in case of a high threshold) or of increasing the computational cost by modeling the 
rather complex HVS near irrelevant edges (e.g. in case of a low threshold). This 
implies that to ensure a reliable detection of perceived  ringing while maintaining 
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low complexity for real-time applications, an efficient approach for both detecting 
relevant edges and  modeling the HVS is needed . Quantification of the annoyance of 
ringing in the detected  areas can be easily achieved  by ca lcu lating the signal 
d ifference between the ringing regions and  their correspond ing reference, as used  
in the FR approach described  in [14]. However, for a NR ringing metric, the 
quantification of ringing becomes more challenging mainly due to the lack of a 
reference. Metrics in literature (such as in [16] and  [28]) estimate the visibility of 
ringing artifacts from the local variance in intensity around  each pixel w ithin the 
detected  ringing regions, and  average these local variances over all ringing region s 
to obtain an overall annoyance score. This approach, however, has limited  
reliability, since it d oes not include background  texture in the ringing regions, 
which might affect ringing visibility. 

To valid ate the performance of a ringing metric, its pred icted  quality degrad ation 
should  be evaluated  against subjectively perceived  image quality. To prove 
whether a ringing metric is robust against d ifferent compression levels and  
d ifferent image content, the correlation between its objective pred ictions and  
subjective ringing ratings must be calculated . Unfortunately, only the performance 
of the metric reported  in [14] is evaluated  against subjective data of perceived  
ringing. For all other metrics (such as the ones in [15], [16], [17] and  [28]) nothing 
can be concluded  with respect to their performance in pred icting perceived  ringing. 
Since we had  no access to the data used  in [14] for our metric evaluation, we 
performed our own subjective experiment.2 

In this paper, we propose a NR ringing metric based  on the same two-step  
approach mentioned  above. For the first step, we rely on our ringing region 
detection method  (see [30] and  [31]), the performance of which in terms of 
extracting regions with perceived  ringing has been shown to be promising [31]. 
Therefore, we consider this part of the metric read ily applicable for the second  step, 
in which the ringing annoyance is quantified . To quantify ringing annoyance, we 
consider each detected  ringing region as a perceptual element, in which the local 
visibility of ringing artifacts is estimated . The contrast in activity between each 
ringing region and  its corresponding background  is calculated  as the local 
annoyance score, which is then averaged  over all ringing regions to yield  an overall 
ringing annoyance score. It should  be noted  that the p roposed  metric is built upon 
the luminance component of images only in order to reduce the computational load . 
The performance of the NR metric is evaluated  against subjective ringing 
annoyance in JPEG compression. 

4.3 Proposed NR Ringing Metric 

4.3.1 Perceived Ringing Region Detection 

For the design of our ringing region detection method  (see [30] and  [31]), we 
explicitly exploited  the specific physical structure of ringing artifacts and  some 
properties of the HVS. The overall proposed  algorithm is schematically shown in 

                                                           
2 The data collected from this experiment are available to the image quality assessment 
community on the web-site http://mmi.tudelft.nl/~ingrid/ringing.html 
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Figure 4, which mainly consists of two processing steps: (1) extraction of edges 
relevant for ringing, which results in a perceptual edge map (PEM), and  (2) 
detection of perceived  ringing regions, which yields a compu tational ringing region 
(CRR) map. This method  is already described  in more detail in [30] and  [31], and  is 
only briefly repeated  here. 
 

 
 

Fig. 4.  Schematic overview of the proposed  ringing region detection method . In the 
perceptual edge map (PEM), each perceptually relevant line segment (LS) is labeled  in a 
d ifferent color. In the computational ringing region (CRR) map, the white areas ind icate the 
detected  perceived  ringing regions, and the spatial location of these regions is illustrated  in a 
separate image by green areas. 
 

To extract the most relevant edges for the purpose of ringing detection, an 
advanced  edge detector is used . It adopts a bilateral filter [32] to largely smooth 
‘‘irrelevant edges’’ (i.e. in textured  areas), while the position of the ‘‘relevant edges’’ 
(e.g. contours of objects) is retained . Subsequently, a Canny edge detector [33] is 
applied  on the filtered  image to obtain the ‘‘relevant edges’’. The detected  edges are 
combined  into line segments (hereafter referred  to as LS), which are defined  as 
elements of connected  edge pixels. These LSs are constructed  over the Canny ed ge 
map by a simple grouping process, includ ing skeletonizing, edge linking, noise 
removal and  LS labeling. Figure 4 shows the extracted  PEM, which is formed by a 
set of these LSs. It clearly illustrates the selection of the edges more relevant for 
ringing (i.e. the contours of the leopard) in combination with the avoid ance of the 
irrelevant edges (i.e. the texture in the skin of the leopard).  

To select the edges around  which ringing is actually perceived  each LS of the 
PEM is examined  ind ividually on the occurrence of perceived  ringing. To this end , 
the region around  a LS is d ivided  into three zones: the edge region (i.e. EdReg), the 
detection region (i.e. DeReg) and  the feature extraction region (i.e. FeXReg). First, 
the level of texture or detail is estimated  from the FeXReg, and  those parts of the 
DeReg, in which the visibility of ringing is masked  by texture, are d iscard ed . 
Subsequently, the average luminance in each remaining part of the DeReg is 
calculated  and  those parts with a value above or below a certain threshold  are 
d iscarded . In this way, only those regions around  each LS, in which ringing is 
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visible, are extracted , and  then accumulated  in the CRR map as illust rated  in Figure 
4. 

4.3.2 Ringing Annoyance Estimation 

The CRR map ind icates the spatial location of perceived  ringing, but it does not 
give any information yet on how annoying the ringing artifacts in the detected  
region are. To quantify ringing annoyance, we first split up the detected  region in 
the CRR map into so-called  ringing objects (ROs). Figure 5 illustrates the definition 
of a RO. It starts from the LSs of the PEM, shown in Figure 4. Each LS is considered  
to be split up in a set of connected  compon ents (i.e. objects) depending on the local 
level of texture and  averaged  luminance in its DeReg (as defined  in [30] and  [31]). 
Then, by using the model of the HVS, the visibility of ringing in each object is 
determined . By removing the objects, in which ringing is invisible due to masking, 
the remaining objects are d efined  as ROs. As an example, illustrated  in Figure 5(b) 
the LS1 of the PEM in Figure 4 is split up in two ROs, while the LS2 remains as one 
RO. Some of the LSs, e.g. LS5, LS6, LS8 and  LS9, do not result in a RO, since no 
visible ringing is detected  around  this LS based  on the HVS. So, each RO 
intrinsically is a single cluster resulting from the application of the human vision 
model to the LSs of the PEM. Hence, the definition of a RO fully relie s on the local 
image content, and  as such, is independent of scaling or cropping the image. Once 
the ROs are defined  (as illustrated  in Figure 5(c)), a ringing annoyance score (RAS) 
is calculated  for each of them, and  the overall annoyance score for the im age is 
simply the mean of the RAS over all ROs. 

The approach taken to quantify perceived  ringing is inspired  by the basic idea 
used  in the FR metric [14], and  is accomplished  by the following two steps: (1) 
calculating the activity of each RO; and  (2) comp aring that activity to the activity in 
the neighboring background  to which the RO belongs. 

 

 
 

Fig. 5.  Illustration of the definition of a ringing object (RO): (a) original JPEG image and  tw o 
(out of ten) of its detected  line segments (LSs) (i.e. LS1 and LS2 of the PEM in Figure 4), (b) 
implementation of the human vision model to LS1 and LS2, resulting in two separate ROs for 
LS1 and  one RO for LS2, and  (c) all detected  ROs as a resu lt of applying the human vision 
model to the whole PEM (i.e. ten LSs); they are ind icated  with d ifferent colors. 
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Fig. 6.  Illustration of region assignment: (a) a ringing object (RO) (see ‘‘RO3’’ in Figure 5(b)) 
with its corresponding line segment (LS) and feature extraction region (FeXReg), (b) the 
corresponding edge of LS covered  by the d ilated  RO is assigned  as the Sub-LS, (c) the 
corresponding region of FeXReg covered  by the d ilated  RO is assigned as the Sub-FeXReg, 
and  (d) the results of region assignment. 
 
To implement the two steps mentioned  above, we first assign two relevant 
components to each RO in the CRR map: (1) the edge corresponding to each LS (i.e. 
referred  to as Sub-LS), which is used  to determine whether a pixel in the RO is a 
visible ringing pixel, and  (2) the corresponding FeXReg region (i.e . referred  to as 
Sub-FeXReg), which is employed  as the reference for the RO. The FeXReg is located  
far away from the LS, and  thus unlikely to be impaired  by ringing artifacts. This 
region assignment is implemented  by thickening a RO with a d ilation operation. 
The corresponding LS and  FeXReg which are covered  by the RO during the d ilation 
process are referred  to as the Sub-LS and  Sub-FeXReg, respectively. Figure 6 
illustrates this procedure. A specific RO (i.e. ‘‘RO3’’ in the CRR map of Figure 5) 
with its correspond ing LS and  FeXReg are shown in Figure 6(a). When d ilating the 
RO with a square structuring element of 5 pixels wid th (e.g. for an image of 256x384 
(height x wid th) pixels), the region of LS which is covered  by the expanded  RO is 
assigned  as the Sub-LS (i.e. the yellow region in Figure 6(b)). The Sub-FeXReg (i.e. 
the purple region in Figure 6(c)) is assigned  in the same way by d ilating the RO 
with a square structuring element of 9 pixels wid th. The resulting Sub -LS and  Sub-
FeXReg are shown in Figure 6(d). It is noted  that the size of the structuring element 
should  be linearly scaled  with the image size. The region assignment mentioned 
above is performed for each RO in the CRR map to eventually obtain a list of 
coord inates, which ind icates the spatial location of each ind ividual RO and  its 
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corresponding Sub-LS and  Sub-FeXReg. Figure 7 ind icates the format of such a 
resulting list of coord inates. This way of working intrinsically facilitates the 
subsequent local analysis and  processing of image characteris tics. 
 

 
 

Fig. 7.  Illustration of the list of coord inates as the result of region assignment (the total 
number of ringing objects (RO) in the CRR map is n). 
 

Local Visibility of Ringing Pixels 

Since ringing manifests itself in the form of artificial oscillations in the spatial 
domain, its local behavior can be reasonably described  as the intensity variance of 
pixels in the neighborhood  [28], [29]. In this paper, determining whether a pixel in a 
RO is a visible ringing p ixel is based  on calculating the loca l variance (LV) in 
intensity in its 3x3 neighborhood , which is formulated  as  
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where LV (i, j) denotes the local variance computed  over a 3x3 template, centered  at 
pixel (i, j) having an intensity I(i, j) within the nth ringing object (i.e. ROn). 

The LV only yields an accurate result in case the RO is originally smooth around  
the edge; indeed , otherwise the LV can be high due to the activity of a textured  or 
edge pixel. One would  expect that the issue of considering texture as ringing is 
efficiently avoided  by the application of a texture masking model in the ringing 
region detection phase (see [30] and  [31]). However, we experienced  that the 
d ilation operation used  in the human vision model may misclassify certain edge or 
texture components into a RO. In add ition, there might be pixels in the RO 
exhibiting no or a very small intensity variance in their neighborhoods, which 
means they are not impaired  by ringing artifacts (e.g. in higher bit -rate 
compression). This implies that a RO still possibly contains spurious ringing pixels, 
which manifest themselves either as ‘‘noisy pixels’’ (i.e. misclassified  edge or texture 
pixels) or as ‘‘unimpaired  pixels’’ (i.e. p ixels with a very low variance in intensity in 
the neighborhood). Figure 8 gives an example of the image content underneath a 
detected  RO (i.e. ‘‘RO2’’ as illustrated  in Figure 5), where noisy pixels and  
unimpaired  pixels coexist with real ringing pixels. Calculating the LV over these 
spurious ringing p ixels may degrade the accuracy of measuring the actual ringing 
activity. The effect of the spurious ringing pixels on the RAS is avoided  by applying 
two thresholds, a high threshold  (Thr_vc_high) and  a low threshold  (Thr_vc_low). A 
pixel with its LV value above or equal to Thr_vc_high is considered  as a ‘‘noisy 
pixel’’, and  its visibility is set to ‘‘0’’. A pixel with its LV value below or equal to 
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Thr_vc_low is considered  as an ‘‘unimpaired  pixel’’, and  its visibility is also set to 
‘‘0’’. Hence, 

 
otherwise

highvcThrjiLVlowvcThrjiLV
jiVC

0
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where VC(i, j) ind icates the visibility coefficient at location (i, j) w ithin the ROn. 
After parameter op timization the value of Thr_vc_low is chosen to be zero, and  the 
value of Thr_vc_high is chosen to scale with the strength of the corresponding ed ge, 
since we found  that the actual LV range corresponding to a visible ringing pixel 
depends on the strength of its correspond ing Sub-LS. Thus, Thr_vc_high is defined  
as 

 }_{),(,)],([__ nLSSubCoordjijiLVMAXhighvcThr CMM  (3) 

where LV is calculated  over the Sub-LS (i.e. Sub_LSn) assigned  to the ROn, and  α  
(specified  in Section V) is used  to ad just the value of the high threshold . 

All visible ringing pixels are extracted  from each ind ivid ual RO, and  their 
visibility is ind icated  by a visibility coefficient (VC) accord ing to (2). Figure 9 
illustrates the extraction of visible ringing pixels in an image, in which their 
visibility is ind icated  by a d ifferent color in a color bar. 

 

 
 

Fig. 8.  Illustration of three types of pixels within a ringing object (RO): (a) original JPEG 
image and  a detected  RO (see ‘‘RO2’’ in Figure 5(b)), and  (b) illustration of the image content 
underneath the corresponding RO, in which noisy pixels and  unimpaired  pixels coexist with 
real ringing pixels. 
 

Noisy Pixel

Ringing Pixel

Unimpaired Pixel

RO2

(a) (b)



- 78 - 
 

 
 

Fig. 9.  Illustration of visible ringing pixel extraction: (a) origina l JPEG image, and (b) 
extracted  visible ringing pixels with their visibility indicated  with a color ranging from black 
(no visibility) to yellow for the highest visibility. 

Ringing Annoyance Estimation 

The visibility coefficient for each ringing p ixel in itself is yet insufficient to reflect 
the way human beings perceive ringing. It is the contrast between the visibility of a 
ringing artifact and  its corresponding background  that causes the perception of 
ringing annoyance [29], [38]. More strongly visible r inging pixels against a 
smoother background  are most annoying. Since the Sub-FeXReg is already assigned  
to each RO to represent its local background , the activity of the Sub -FeXReg is 
read ily calcu lated  as the mean local variance (MLV) 
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where Ns ind icates the total number of pixels within the nth Sub-FeXReg (i.e. Sub-
FeXRegn), and  LV (i, j) ind icates the local variance calculated  at pixel location (i, j) 
within the Sub-FeXRegn. For the corresponding RO (i.e. ROn), its activity is d efined  
as: 
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where Nr ind icates the total number of visible ringing pixels within the ROn, and  
VC(i, j) ind icates the visibility coefficient (see (2)) calculated  at pixel location (i, j) 
within the ROn. 

Once the activity of a RO and  of its corresponding Sub-FeXReg is calcu lated , the 
d ifference between them is used  to quantify the ringing annoyance for this RO. 
Hence, the ringing annoyance score (RAS) is defined  as: 
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where No ind icates the total number of pixels w ithin the ROn.  
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Based  on the annoyance score per RO the overall ringing annoyance score for an 
image is calculated  accord ing to the procedure schematically shown in Figure 10. It 
contains removal of ROs, for which the amount of visible ringing pixe ls is below a 
threshold  R. In our algorithm, R is set as a pre-defined  percentage (specified  in 
Section V) of the total number of pixels in the RO. This is d one with the estimation 
accuracy and  speed  in mind , since these ROs contain a too small number of visible 
ringing pixels to contribute to the overall perception of ringing annoyance. 
Eventually, the proposed  ringing metric is defined  as the mean of the ringing 
annoyance scores (MRAS) over all remaining ROs, which is formulated  as: 
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where N  ind icates the total number of ROs, exclud ing the d iscarded  ones, and  T 
ind icates the total number of pixels w ithin these N ROs. 
 

 
 

Fig. 10.  Schematic overview of the proposed ringing metric (i.e. MRAS). 

4.4 Psychovisual Experiment 

To validate our proposed  ringing metric, a subjective experiment was carried  out, in 
which participants scored  the annoyance of ringing artifacts in compressed  images.  

4.4.1 Experimental Procedure 

Image Database and Test Environment 

A set of eleven source images, reflecting adequate d iversity in image content, was 
taken from the ‘‘Kodak Lossless True Color Image Suite’’ [35]. Figure 11 shows 
these source images. They were high resolution and  high quality color images of 
size 768x512 (wid th x height) p ixels. Some images have high activity, while others 
are mostly smooth. These images were JPEG compressed  at four d ifferent 
compression levels (i.e. quality Q=25, 40, 55, 70) using MATLAB’s imwrite function. 
This yielded  a test d atabase of fifty-five stimuli (includ ing the originals). The 
compression level was varied  over such a range of quality levels that images with a 
broad  range of ringing annoyance, from imperceptible to high levels of impairment, 
were generated . The stimuli were d isplayed  on a Philips Cineos 37’’ LCD screen 
with a native resolution of 1920x1080 pixels and  a screen refresh rate of 60 Hz. The 
experiment was conducted  in a stand ard  office environment [34] and  the viewing 
d istance was approximately 60cm. 
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Fig. 11.  Source images used in the subjective quality study. 

Test Methodology 

A single-stimulus (SS) method  was used  in our experiment, which means that 
subjects had  to score the ringing annoyance for each stimulus in the absence of a 
reference. The scoring scale ranged  from 0 to 100, wh ere ‘‘0’’ means no ringing 
annoyance and  ‘‘100’’ means highest ringing annoyance. The quality scale includ ed  
additional semantic labels (i.e. ‘‘low ’’, ‘‘average’’, and  ‘‘high’’ ringing annoyance) at 
intermediate points for reference as illustrated  in Figure 12. 

The participants of the study were recruited  from the MSc program of the 
Department of Mediamatics at the Delft University of Technology. The twenty 
students, being fourteen males and  six females, were inexperienced  with image 
quality assessment and  coding artifacts. Before the start of the experiment, an 
instruction about the goal and  procedure (e.g. the type of assessment, the scoring 
scale and  the timing) of the experiment was given to each ind ividual subject. A 
training session was conducted  showing three examples of synthetic ringing, 
synthetic blocking and  synthetic blur, followed  by three real-life images in which 
ringing, blocking and  blur were the most annoying artifacts, respectively. When the 
subject reported  to understand  ringing and  to be able to d istinguish it from other 
types of compression artifacts, a set of ten images covering the same range of 
ringing annoyance as used  in the actual stud y was presented  to the subject in order 
to familiarize him or her with how to use the range of the scoring scale. Then, three 
stimuli were shown one by one and  the participant exercised  how to ind icate 
ringing annoyance on the scoring scale. The images used  in the training session 
were d ifferent from those used  in the actual experiment. After training, the test 
images were shown in a random order to each subject in a separate session.  

 

 
 

Fig. 12.  Quality scale used  in the ringing annoyance assessment. 
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4.4.2 Processing of the Raw Data 

Outlier Detection and Subject Rejection 

Before the actual d ata analysis, a sim ple outlier detection and  subject rejection 
model was implemented  on the raw annoyance scores. An ind ividual score for an 
image was considered  to be an outlier if it was outsid e an interval of two stand ard  
deviations around  the mean score for that image. All annoyance scores of a subject 
were rejected  if more than five of his/ her scores were outliers. Overall, one subject 
out of twenty was rejected , and  about 3% of the scores were rejected  as outliers.  

MOS Scores 

After outlier removal and  subject rejection, the scores of the remaining subjects 
were calibrated  using z-scores [36]: 
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where rij and  zij ind icate the raw score and  z-score for the i-th subject and  j-th image, 
respectively. μi is the mean of the raw scores over all images scored  by subject i, and 
σ i is the corresponding standard  deviation. The z-scores were then averaged  across 
subjects to yield  a mean opinion score (MOS) for the j-th image 
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where S is the total number of subjects (after subject r ejection). 

4.5 Performance Evaluation 

Our proposed  ringing metric is valid ated  with respect to the data resulting from the 
psychovisual experiment, and  its performance is compared  to three alternatives 
recently published  in literature: one FR ringing metric, which is referred  to as 
FRRM [14]; and  two NR ringing metrics, which are referred  to as NRRM [16] and  
VRM [28], respectively. In literature, these metrics are all proved  to be promising in 
measuring ringing artifacts in compressed  images. It should  be n oted  that we 
implemented  these three metrics ourselves based  on the information available in 
the papers and  tuned  their parameters to yield  the highest performance possible for 
the set of test images used  in our experiments. This is done to ensure a fair 
comparison between the results from d ifferent metrics. The parameters used  for our 
proposed  metric are specified  as follows: (1) for the ringing region detection: σ d=3 
and  σ r=100 for the bilateral filter, threshold_high=0.85 and  threshold_low=0.4 for the 
Canny edge detector, Thr_txt=0.9 and  Thr_lum=0.75 for the human vision mod el, 
and  the EdReg, DeReg and  FeXReg are determined  with a square structuring element 
whose wid th is 3, 9 and  17, respectively (see [30] and  [31]); and  (2) for the ringing 
annoyance estimation: Thr_vc_low=0, α =0.5 and  R=0.75. It should  be noted  that 
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these parameter settings are empirically determined . The first set of parameters for 
the ringing region detection was defined  based  on subjective data for ringing region 
visibility (see [30] and  [31]), and  is p roved  in this paper to be robust for a new set of 
images. The remaining parameters used  for the ringing annoyance estimation are 
determined  in pilot experiments on both synthetic patterns and  natural images. The 
performance of the metric is fairly insensit ive to variations in the range of [0 0.1] 
and  [0.4, 0.6] for the values of Thr_vc_low and  α , respectively. The parameter R is 
mainly used  to speed  up the algorithm, and  thus, hard ly affects the pred iction 
accuracy of the metric. 

4.5.1 Evaluation Criteria 

As prescribed  by the VQEG [25] the performance of an objective metric can be 
quantitatively evaluated  with respect to its ability to pred ict subjective quality 
ratings (the MOS), based  on the Pearson linear correlation coefficient to ind icate 
pred iction accuracy, the Spearman rank order correlation coefficient to ind icate 
pred iction monotonicity, and  the outlier ratio to ind icate pred iction consistency. As 
suggested  in [39], the metric’s performance can also be evaluated  with non -linear 
correlations using a non-linear mapping function for the objective pred ictions 
before computing the correlation. For example, a logistic function may be applied  to 
the objective metric resu lts to account for a possible saturation effect. A non -linear 
fitting usually yield s higher correlation coefficients in absolute terms, while 
generally keeping the relative d ifferences between the metrics [39]. On the other 
hand , without a sophisticated  non-linear fitting (often includ ing various parameters) 
the correlation coefficients cannot mask a bad  performance of the metric itself. To 
better visualize d ifferences in performance we propose to avoid  any non-linear 
fitting and  to d irectly use linear correlation between the metric’s pred ictions and  
the subjective data. However, to demonstrate the effect of a non -linear mapping, 
both the linear and  non-linear correlations are given in this paper. 

4.5.2 Experimental Results  

Our proposed  ringing metric and  the three alternative metrics (i.e. FRRM, NRRM 
and  VRM) are app lied  to our database of 55 stimuli. Figure 13 shows the scatter 
plots of the MOS versus our proposed  metric, FRRM, NRRM and  VRM, 
respectively. Table I lists the correlation coefficients. To also show the non -linear 
correlation, a four-parameter logistic function suggested  in [25] was used  to fit the 
metric’s pred ictions to the MOS. The resulting cu rve fits are included  in Figure 13, 
and  the correlation coefficients are listed  in Table II. 
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Fig. 13.  Scatter plots of MOS vs. the ringing metrics FRRM [14], VRM [28], NRRM [16] and  
our proposed  metric. The full-line curves show the linear fit between the MOS and metric 
results, while the dashed -line curves show the non-linear logistic fit. 
 

Metric 
Pearson Linear 

Correlation 
Spearman Rank 

Order Correlation 
Outlier Ratio 

Proposed 0.851 0.850 0 
FRRM 0.793 0.744 0 
VRM 0.519 0.498 0.291 

NRRM 0.561 0.649 0.218 
 
Table. I.  Performance comparison of four ringing metrics (our proposed  metric, FRRM [14], 
VRM [28], and  NRRM [16]) without non-linear fitting; the threshold  to determine the outlier 
ratio is set to 1.5 stand ard  deviations of the MOS [25]. 
 

Metric 
Pearson Linear 

Correlation 
Spearman Rank 

Order Correlation 
Outlier Ratio 

Proposed 0.868 0.850 0 
FRRM 0.824 0.744 0.127 
VRM 0.521 0.498 0.218 

NRRM 0.667 0.649 0.146 
 
Table. II.  Performance comparison of four ringing metrics (our proposed  metric, FRRM [14], 
VRM [28], and  NRRM [16]) after a logistic fit of the metrics’ predictions to the MOS; the 
threshold to determine the outlier ratio is set to 1.5 standard  deviations of the MOS scores 
[25]. 
 

Figure 13 and  Table I d emonstrate that our proposed  NR ringing metric 
outperforms the existing metrics in the pred iction of ringing annoyance. In 
comparison to the FR ringing metric FRRM our metric shows a higher correlation to 
the subjective data, i.e. the gain in the Pearson correlation coefficient is P=5%, and  
in the Spearman correlation coefficient is S=11%. The lower correlation for the 
FRRM compared  to our metric most probably is due to the absence of a HVS mod el 
in the FRRM. It simply assumes that ringing occurs unconditionally in regions 
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surrounding strong edges in an image, neglecting possible luminance and  texture 
masking effects. As a consequence, measuring ringing annoyance in the regions 
where ringing is invisible to the human eye potentially degrades the pred iction 
performance of this metric. Our metric d oes contain a model for visual masking, 
and  so, intrinsically avoid s the estimation of ringing in irrelevant regions (e.g. 
texture areas) in an image, thus making the quantificat ion of ringing annoyance 
more accurate. 

Compared  to the alternative NR ringing metrics, our metric manifests a much 
higher pred iction performance relative to VRM and  NRRM. The measured  gain of 
our metric compared  to VRM is P=33% and  S=35%, and  compared  to NRRM is 

P=29% and  S=20%. A possible reason for the lower performance of the NRRM is 
that it does not take into account spatial masking by the HVS, thus inevitably 
measuring ringing in some textured  regions. Actually the metric may misclassify 
texture components into ringing artifacts, which may heavily degrade the 
pred iction accuracy of a ringing metric. Comparing the performance of NRRM to 
that of FRRM (both without a masking model), it is clear that a NR metric is more 
sensitive to misclassified  textu red  regions than a FR metric. A FR approach can 
account for the texture by comparing the region to the same unimpaired , but 
textured  region in the reference. As a result, the error of misclassifying texture as 
ringing is expected  (and  confirmed) to be smaller. 

It should  be noted  that exactly the same conclusions can be drawn from Table II 
as d iscussed  above for Table I. This confirms the statement already reported  in [39] 
that non-linear mapping of the metric’s pred ictions to the MOS affects the absolu te 
values, but not the relative d ifferences between metrics. 

4.6 Discussion 

The experimental results tend  to valid ate our approach in the design a no -reference 
ringing metric, existing of: (1) a reliable ringing region detection model and  (2) a 
refined  ringing annoyance estimation method . The importance of a reliable ringing 
region detection method  can be seen by comparing the metric VRM to the one 
reported  in [37] (which is a previous version of the one reported  here, not inclu d ing 
yet the comparison of the variance with the background  and  the detection of 
spurious ringing pixels). In both metrics, the annoyance score is simply defined  as 
the intensity variance in the detected  ringing regions. The only d ifference between 
them lies in the HVS mod el included  in the metric of [37] for detecting perceived 
ringing regions. Therefore, the performance gain of the metric of [37] (with a 
Pearson correlation coefficient of 0.8) over VRM (with a Pearson correlation 
coefficient of 0.519) is attributed  to the HVS included  in the ringing region detection 
model. The added  value of the refined  ringing annoyance quantification (includ ing 
the comparison of the variance with the background  and  the detection of spurious 
ringing pixels) can be validated  by comparing the performance of the metric 
reported  in this paper to its previous version reported  in [37]. The gain in 
performance of the metric reported  here over the one reported  in [37] corresponds 
to an increase in the Pearson correlation coefficient from 0.80 to 0.851. This implies 
that quantifying ringing annoyance as the absolute intensity variance is effective, 
but is still too sensitive to remaining texture present in detected  ringing regions. 
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The perceived  annoyance level is better addressed  by comparing the local variance 
to the activity of its corresponding local surrounding.  

It should  be noted  that the metric proposed  in this paper is only valid ated  for 
ringing perceived  in JPEG compressed  images, while ringing is also obviously 
present in JPEG2000 compressed  images. There are, however, a couple of reasons, 
based  on which one can expect a similar performance of our metric on JPEG2000 or 
H.264 compressed  images. First of all, most ringing metrics, and  also ours, measure 
ringing in the spatial domain of the decoded  image. As such, these metrics only rely 
on the characteristics of ringing artifacts (e.g. spatial edge information) rather than 
on the cod ing parameters (e.g. DCT coefficients or wavelet coefficients). As a 
consequence, one would  not expect that these metrics need  to be intrinsically 
changed  for any of the existing image or video cod ing stand ards, but rather can be 
immed iately used  or at most need  to be slightly modified  for measuring ringing 
artifacts in any type of compressed  image. This is confirmed  by the claim already 
made for the metric VRM, namely that it is independent of the particular cod ing 
method  employed  [28], [38]. Additionally, it can be shown that the metric FRRM 
has a comparable performance for pred icting perceived  rin ging in both JPEG2000 
and  JPEG compressed  images. Indeed , its performance was characterized  with a 
Pearson correlation coefficient of 85% for JPEG2000 compressed  images in [14], 
while we found  a Pearson correlation coefficient of 80% for JPEG compressed  
images in this paper. To illustrate the implementation of our proposed  NR ringing 
metric on a JPEG2000 compressed  image, an example is given in Figure 14. It can be 
seen that the metric successfully identifies and  quantifies ringing artifacts in the 
image. However, to fu lly evaluate the metric’s performance subjective ringing 
ratings (not the overall quality scores) of JPEG2000 compressed  images are needed , 
which we currently don’t have to our availability. 

 

 
 

Fig. 14.  Illustration of how the proposed  NR ringing metric works on JPEG2000 compression: 
(a) a JPEG2000 coded  image (bit rate 0.099 bpp) from LIVE database [43]; and  (b) extracted  
visible ringing pixels with their visibility ind icated  with a color ranging from black (no 
visibility) to yellow for the highest visibility. 
 

Last, bu t not least, it should  be noted  that our performance evaluation with a 
subjective experiment is limited  with respect to the amount of test stimuli, the 
number of human subjects and  the d isplay d evices used . Adding more 
experimental d ata to the performance evaluation would  be highly beneficial, but 
also is very time-consuming. To facilitate further benchmarking of ringing metrics, 
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apart from developing computational models, future work should  also focus on 
collecting and  d istributing more reliable subjective d ata. 

4.7 Conclusions 

In this paper, a novel no-reference metric for perceived  ringing artifacts in 
compressed  images is presented . This metric relies on the existing perceived  ringing 
region detection method  [30], [31], and  includes ringing annoyance estimation in 
the perceptually relevant regions in an image. For each ind ividual ringing region, a 
ringing annoyance score is calcu lated  by first estimating the local visibility of 
ringing artifacts, and  then by comparing it to the local background  activity. An 
overall ringing annoyance score is obtained  by averaging the local annoyance 
scores over all ringing regions. A psychovisual experiment is cond ucted  to measure 
ringing annoyance subjectively and  to valid ate our p roposed  ringing metric. The 
performance of our metric is compared  to existing alternatives in literature. It 
demonstrates that our metric outperforms state-of-the-art metrics in pred icting 
perceived  ringing annoyance. Combined  with its reliability and  computational 
efficiency, our metric can be a good  alternative for real-time implementation. 
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Chapter 5 

An Efficient Neural Network based No-Reference 
Approach to an Overall Quality Metric for JPEG 
and JPEG2000 Compressed Images 

 
Abstract : Reliably assessing overall quality of JPEG/JPEG2000 coded images 
without having the original image as a reference is still challenging, mainly due 
to our limited understanding of how humans combine the various perceived 
artifacts to an overall quality judgment. A know n approach to avoid the explicit 
simulation of human assessment of overall quality is the use of a neural network. 
Neural network approaches usually start by selecting active features from a set of 
generic image characteristics, a process that is to some extent rather ad hoc and 
computationally extensive. This paper shows that the complexity of the feature 
selection procedure can be considerably reduced by using dedicated features that 
describe a given artifact. The adaptive neural network is then used to l earn the 
highly nonlinear relationship between the features describing an artifact and the 
overall quality rating. Experimental results show that the simplified feature 
selection procedure in combination with  the neural network indeed are able to 
accurately predict perceived image quality of JPEG/JPEG2000 coded images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This chapter is based  on the research article submitted  as ‘‘An Efficient Neural 
Network based  No-Reference Approach to an Overall Quality Metric for JPEG and  
JPEG2000 Compressed  Images’’ by H. Liu, J. Redi, H. Alers, R. Zunino and  I. 
Heynderickx to Journal of Electronic Imaging.  
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5.1 Introduction 

Understand ing and  evaluating image quality has become increasingly important for 
a broad  range of applications, such as the optimization of d igital imaging systems, 
the benchmarking of image and  video coding algorithms, and  the quality 
monitoring and  control in d isp lays [1]. Trad itionally, image quality has been 
evaluated  by human subjects, and  a mean opinion score (MOS) represents  the 
image quality perceived  by the average viewer. When conducted  properly, 
subjective experiments are considered  as the most reliable means of assessing image 
quality. However, performing subjective experiments is very time-consuming, very 
expensive, and  often too slow to be useful in real-world  applications. Therefore, 
during the last decades, a lot of research effort has been devoted  to the 
development of objective metrics that can automatically and  quantitatively pred ict 
perceived  image quality. 

Objective metrics reported  in literature range from dedicated  metrics that 
measure a specific image d istortion to general metrics that assess the perceived  
overall quality. The various approaches can be classified  into fu ll-reference (FR), 
reduced-reference (RR) and  no-reference (NR). FR metrics measure the similarity or 
fidelity between the d istorted  image and  its original version, where the latter is 
considered  as a d istortion-free reference. The most w idely used  FR metrics are the 
mean squared  error (MSE) and  the peak signal-to-noise ratio (PSNR), both aiming 
at an overall quality assessment [2]. Improved  alternatives for these two basic 
metrics include e.g. the structural similarity (SSIM) index [3] and  the visual 
information fidelity (VIF) index [4]. Since FR metrics require the access to the 
original, which is mostly not available at the receiver end  of an imaging chain, their 
applicability is limited  to in -lab (off-line) testing of image and  video processing 
algorithms. RR metrics are mainly used  in scenarios where the reference is not fully 
available, e.g. in complex communication networks. They make use of certain 
features extracted  from the reference, which are then employed  as side information 
to evaluate the quality of a d istorted  image (see, e.g., [5]-[7]). Instead  in imaging 
systems with broadcasted  content, NR metrics, in which the quality pred iction is 
based  on the d istorted  image only, i.e. without any reference, are more practical. 
Designing NR metrics, however, is still challenging partly due to th e limited 
understand ing of how humans assess image quality. 

Recently, considerable progress has been made in the development of NR metrics. 
Most NR metrics (see, e.g., [8]-[13]) are ded icated  metrics measuring a specific type 
of artifact created  by a specific image d istortion process. Examples are a metric 
measuring sensor noise, a metric measuring ringing or blockiness as a consequence 
of signal compression, or a metric measuring blur generated  during acquisition. In 
such a scenario, the design of the NR m etric can make use of the specific 
characteristics of the artifact, and  therefore, generally obtains a higher reliability 
with respect to the related  perceived  quality degradation. Specific NR metrics are, 
for example, used  to tune the setting of various p arameters in the algorithms of a 
video chain in current TVs (see, e.g., [14]-[16]). In add ition, they can be combined  to 
pred ict the perceived  overall image quality. Various examples of this approach are 
given in the literature (see, e.g., [17]-[19]); a ringing metric and  a blur metric are 
often combined  to assess the overall image quality of wavelet -based  compression 
[18]. This approach, however, largely depends on the reliability of each of the 
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artifact specific models, and  on the efficiency of their combination in a perceptually 
meaningful way. 

An alternative approach for combining ind ividual, ded icated  metrics to an 
estimate for overall image quality is given in [20], in which natural scene statistics 
are used  to blind ly determine the overall quality of images compressed  by 
JPEG2000. The approach relies on the assumption that natural images usually 
exhibit strong statistical regularities, and  therefore, reside in a tiny area of the space 
containing all possible images. Based  on this assumption, it quantifies overall image 
quality by detecting variations in the statistics of image features in the wavelet 
domain. The approach is promising, but heavily relies on the sophisticated  and  
computationally expensive modeling of natural scene statistics.  

Instead  of p recisely modeling specific artifacts or natural scene statistics, NR 
image quality assessment has also been formulated  as a machine learning problem. 
This approach has been proved  to be effective for the overall quality pred iction of a 
specific d istortion type, e.g. JPEG and  MPEG-2 compression [21]-[24]. It treats the 
human visual system (HVS) as a black box, whose input -outpu t relationship 
between image characteristics and  a quality rating is to be learned  by computational 
intelligent tools, such as a neural network (NN). The problem is generally 
formulated  as a regression or function approximation, and  the data needed  for 
training are obtained  from subjective experiments. During training the error 
between the desired  output (i.e. the subjective quality rat ing) and  the model 
pred iction is minimized . At run time, the properly trained  machine implements the 
resulting model without requiring further computational effort. The critical step in 
this approach, however, is the selection of the active features, effectively describing 
the perceived  quality. In general, a considerable number of image features is 
extracted  as input to the NN. These so-called  common features may be pixel-based  
as in [21]-[23], or HVS-based  as in [24]. In both cases, however, the feature selection 
requires considerable effort towards optimization, and  it is hard  to guarantee 
minimization of the model’s complexity at sufficiently high pred iction accuracy.  

In this paper, we propose to combine the advantages of the two approaches 
mentioned  so far, i.e. the use of (aspects of) artifact-specific metrics as features, and  
the use of a NN to assess the overall perceived  quality. In practice, the approach has 
two components: first, we calculate the feature(s) describing the most relevant 
artifact in JPEG/ JPEG2000 compressed  images, and  second , we use an adap tive NN 
to learn the highly nonlinear relationship between the feature(s) and  the overall 
quality rating. The use of features ded icated  to a single artifact is motivated  from 
results in literature reporting a high correlation between a specific artifact type and  
the overall quality of JPEG/ JPEG2000 compressed  images [25]-[27]. Our novel 
approach is highly efficient for two reasons. First, it calculates features based  on 
artifact characteristics, and  so, this avoids a lengthy and  ted ious feature selection 
procedure. In add ition, the usefulness of the selected  features for pred icting image 
quality is already known from literature. Second , it leaves the simulation of the 
HVS for the perceived  overall im age quality to the NN, and  as such this part of the 
model is reduced  after training to the implementation of a simple algorithm at run -
time. It should  be noted  that the whole process only uses the luminance component 
of the images, as such further reducing the computational load .  

Section II of this paper d iscusses the feature-extraction process, and  derives the 
numerical descriptors for the NN that are based  on simple yet efficient metrics for 
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both blockiness and  blur artifacts. Section III describes the actual quality pred iction 
tool, which relies on empirical training of a neural network. Section IV presents the 
overall performance of the proposed  NR JPEG and  JPEG2000 metrics and  a 
comparison with metrics existing in literature. Section V is devoted  to a d iscussion 
of the specific added  value of the proposed  approach.  

5.2 Feature Extraction and Description 

The literature shows that the overall quality of JPEG compressed  images is highly 
correlated  with the occurrence of blocking artifacts [25], while the overall quality of 
JPEG2000 compressed  images is highly correlated  with the occurrence of blur [18]. 
A blocking artifact manifests itself as an artificial d iscontinuity in the image conten t, 
which is a d irect consequence of the fact that the quantization in JPEG is block -
based  and  that the blocks are quantized  independently. A blur artifact occurs in 
JPEG2000 compressed  images mainly due to the loss of high frequency transform 
coefficients in the wavelet-based  cod ing, as a resu lt of which the image signal is 
smoothened . Figure 1 illustrates the occurrence of blocking artifacts in a JPEG 
compressed  image, and  of blur artifacts in a JPEG2000 compressed  image, 
respectively. 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 1.  Illustration of the occurrence of compression artifacts: (a) blocking artifacts in an 
image JPEG compressed  with a bit rate of 0.21 bits per pixel (bpp), and  (b) blur artifacts in an 
image JPEG2000 compressed  with a bit rate of 0.099 bpp. 
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Quality degrad ation as a consequence of compression should  then easily be 
pred ictable from the extraction of blockiness/ blur related  image features, provid ed  
that an adaptive NN is used  to empirically learn the highly nonlinear relationship  
between these artifact-oriented  features and  the overall quality rating. To efficiently 
characterize the local behavior of artifacts and  thus to feed  the neural network with 
relevant features for image quality pred iction, a grad ient -based  feature extraction 
scheme is proposed . It contains three basic components: (1) the localization of the 
artifacts, (2) the local feature extraction using local grad ients in relation to their 
neighborhood , and  (3) the assembling of a global statistical descrip tor as inpu t to 
the neural network. The implementation of each of these steps is detailed  below. 

5.2.1 Local Feature Extraction: JPEG 

Due to the underlying cod ing algorithm for JPEG compression, the spatial location 
of blocking artifacts is very regular. In principle, they occur on a grid  of blo cks of 
8×8 pixels, starting at the top -left corner of an image. In common applications, 
however, grid  sizes may d iffer and  starting positions may shift, either due to 
perturbations in the incoming signal or as a consequence of spatial scaling. In such 
a scenario, a (naïve) NR metric might run the risk of calculating blockiness at wrong 
pixel positions, and  therefore might incur in a d ramatic degradation in accuracy 
[13]. To ensure that the metric is calculated  exactly at block bound aries, a grid  
detector can be adopted . The research presented  in this paper implements the 
blocking grid  detection method  proposed  in [13]. It is, however, worth stressing 
that the feature-extraction approach is independent of the particular choice of grid  
detector, hence any alternative approach (e.g. the one described  in [16]) can be 
applied . The blocking grid  detector first maps an image onto a 1-D signal profile, in 
which the period ic property of blocking artifacts is maintained . Then the exact 
block size as well as the grid  offset is easily extracted  from the d iscrete Fourier 
transform (DFT) of this 1-D signal profile. 

When the blocking artifacts are (exactly) located , the related  feature can be 
extracted . In this paper, the feature for the JPEG compressed  images is based  on th e 
visual strength of a blocking artifact within a local area of the image content [13]. 
Since a blocking artifact is a local edge that stands out from its spatial vicinity, it can 
be simply defined  relating the energy present in the grad ient at the artifact to the 
energy present in the grad ient in its neighboring pixels. When the luminance 
channel of an image of M×N (height × wid th) pixels is denoted  as I(i, j) for iϵ[1, M], 
jϵ[1, N], the local blockiness Lblockiness-h along the horizontal d irection at location (i, j) is 
quantified  as 

 Lblockiness-h(i, j)= 
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where Gh(i, j) ind icates the grad ient map along the horizontal d irection, and  is 
computed  as 

 Gh(i, j)= ]1,1[),()1,( ]11[)1 NjjiIjiI  (2) 
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where n determines the size of the template used  to d escribe the local content. The 
size is determined  as a balance between sufficient information of the local content, 
while avoid ing noise from content too far away. In our experiments we used  n=3, 
being equal to half the amount of pixels between two blocking edges.  
 

 
 

Fig. 2.  Illustration of the template for calculating the local blockiness: (a) two ad jacent 8×8 
blocks (i.e. A and  B) extracted  from a real JPEG image, and  (b) the grad ient profile of the 
image patch of (a). 
 

An example of the template for calculating Lblockiness-h is shown in Figure 2, where 
two ad jacent blocks of 8×8 pixels (i.e. A and  B) are extracted  from a rea l JPEG image. 
The local blockiness along the vertical d irection Lblockiness-v can be calcu lated  similarly. 
The higher the values of Lblockiness-h and  Lblockiness-v are, the larger the d istortion of the 
blocking artifact is. It should , however, be noted  tha t this d oes not necessarily mean 
that the blocking artifact is also more visible. The local visibility of a blocking 
artifact may be affected  by texture and  luminance masking, which typ ically occur in 
the HVS. It has been shown in literature that taking in to account these masking 
effects can be greatly beneficial for the pred iction performance of a ded icated  NR 
blockiness metric [13]. However, modeling the HVS introduces more computational 
power. So, in this paper we avoid  the calculation of masking, and  re ly on the NN to 
learn the unknown functional relationship between the extracted  grad ient -based  
features and  the rating of overall image quality. 

5.2.2 Local Feature Extraction: JPEG2000 

In JPEG2000 compression, blur artifacts are perceptually prominent along edges or 
in textured  areas. Hence, in this paper, the local feature extracted  for the JPEG2000 
compressed  images calculates the degree of blur at an edge within a local area of 
image content.  Literature offers a wide variety of techniques to detect str ong edges, 
and  consequently to identify the spatial location of blur artifacts (e.g. [28] and  its 
references). The implemented  approach uses a straightforward  Sobel edge detector 
resulting in a grad ient image.  The location of strong edges is then extracted  by 
applying a threshold  to this grad ient image (as such removing noise and  
insignificant edges). The threshold  value is au tomatically set depend ing on the 
image content (e.g. using the mean of the grad ient magnitude squared  image).  

Image Domain I

A B Location of Blocking Artifacts

Gradient Domain Gh

(b)(a)
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We then use a novel, simple, yet efficient measure for the blur of all detected  
edges. Instead  of calculating the d istance between the start and  end  position of an 
edge (as proposed  in [8]), edge blur is locally defined  in the grad ient d omain as the 
sharpness of the edge related  to its surrounding content within a limited  extent. 
When describing blur simply as the relative grad ient energy of an ed ge compared  
to its d irect vicinity, it can be quantified  in the same manner as used  in (1), i.e.: 

 Lblur-h(i, j)= 
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where Lblur-h ind icates the local blur along the horizontal d irection and  n, 
representing the size of the template, has the same value as in equation (1). Lblur-v, i.e. 
the local blur in the vertical d irection, can be calculated  similarly. The lower the 
value of Lblur-h and  Lblur-v, the larger the d istortion of the blur artifact is. Figure 3 
explains the reasoning behind  the proposed  approach of using grad ient energy to 
detect blur. Figures 3(a) and  (c) show a detected  edge (i.e. at location (113, 259)) in 
the JPEG2000 compressed  image of Figure 1(b), and  its intensity profile over the 
pixels in its d irect vicinity, respectively. Figure 3(b) and  (d) show the correspond ing 
edge in the original uncompressed  image of Figu re 1(b), and  its intensity profile 
over the pixels in its d irect vicinity. The d ifference in sharpness between the two 
edges is clearly revealed  in the grad ient domain (see Figures 3(e) and  (f)). In 
correspondence, the values of Lblur-h ind icate that the edge of Figure 3(a) is more 
blurred  than the edge of Figure 3(b). 

5.2.3 Global Descriptor of the Image Features 

Once the local features related  to blocking/ blur artifacts are explicitly extracted  and  
calculated  for each JPEG/ JPEG2000 compressed  image, the r esults can be visualized  
in a spatially varying feature map. An example is given in Figure 4 for a JPEG and  
JPEG2000 compressed  image, respectively. Figures 4(b) and  (d) illustrate the 
location of the artifacts in the horizontal d irection, and  the intensit y at each pixel 
ind icates the local degree of d istortion; i.e. the higher the intensity, the larger the 
d istortion is. The location and  intensity of the artifacts in vertical d irection can be 
obtained  in a similar way. 
 



- 97 - 
 

 
Fig. 3.  Illustration of the calcu lation of local blur: (a) image patch extracted  from the 
JPEG2000 compressed  image of Figure 1(b) [the red  dot indicates the location of the detected  
edge at (113, 259) in Figure 1(b), and  the template ind icates the area in which the local blur is 
calculated  for this edge], (b) the image patch of the original uncompressed  image 
corresponding to (a), (c) the intensity profile over the pixels within the template of (a), (d ) the 
intensity profile over the pixels within the template of (b), (e) the grad ient pro file of (c), and 
(f) the grad ient profile of (d ). 
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Fig. 4.  Visualization of the extracted  features: (a) the JPEG compressed  image of Figure 1(a), 
(b) the feature map of (a) showing the location and  the degree of distortion of the blocking 
artifacts in the horizontal d irection, (c) the JPEG2000 compressed  image of Figure 1(b), and  (d) 
the feature map of (c) showing the location and  the degree of d istortion of the blur artifacts in 
the horizontal d irection. In (b) and  (d), the higher the intensity, the la rger the distortion is. 
 

Direct app lication of all extracted  feature values as input to a NN is problematic, 
since the d imension of the space of these values is often too large, and  as such 
inappropriate for the network in terms of training. Existing appro aches to reduce 
the number of feature values (see, e.g. [21]-[24]) usually calculate a statistical 
descriptor that characterizes the whole image. This descriptor is a single vector, 
which needs to be associated  with the single quality score generated  by hu man 
subjects. In this paper, the statistical description of an image feature as proposed  in 
[21]-[23] is ad opted . It unifies the local feature values of an image to a single vector 
using percentiles. Having computed  the feature values fi (i=1, ..., N F) per image (i.e. 
Lblockiness calculated  in both the horizontal and  vertical d irection on the blocking grid  
or Lblur calculated  in both the horizontal and  vertical d irection on the detected  
edges), these values are sorted  in ascending order of magnitude. The en velope of 
the obtained  d istribution is then expressed  in a global descriptor f by taking 11 of 
its percentiles φ : 

 f=
2

1

100
}};100,90,80,70,60,50,40,30,20,10,0{;{{ ; FN

 (4) 

Figure 5 illustrates the formation of the global descriptor of an image feature. 
Compared  to simply taking the average of the feature values, this spatial pooling 

(a) (b)

(c) (d)
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strategy allows feed ing the nonlinear regression with a more complete overview of 
the amount and  behavior of the considered  d istortion in the image. 
 

 
 

Fig. 5.  Illustration of the formation of the global descriptor of an image feature: (a) the 
feature values (i.e. the blocking artifacts along the horizontal and  vertical d irection) extracted  
from the JPEG compressed image in Figure 1(a) and  sorted  in ascending order of magnitude, 
and  (b) the global descrip tor of the image feature, taking 11 percentiles of the d istribution of 
(a). 
 

5.3 NR Image Quality Estimator Based on A Neural Network 

As reported  in literature already (see, e.g. [21], [22], [23], [24], [29]) we implement a 
NN to approximate the functional relationship between the image features and  the 
related  quality score. The main d ifference with earlier contributions to literature is 
that in our case the input feature vector to the NN contains descrip tors of the 
actually occurring artifacts (see Section II). The NN aims to mimic the mechanism of 
quality perception and  avoids an explicit model of the HVS, thus reducing the 
number of assumptions typically required  to model perceived  quality analytically. 
In this paper, a feed -forward  NN is employed  to operate on the feature vector 
extracted  from JPEG/ JPEG2000 images. The implementation of this NN is already 
described  in more detail in [21]-[23], and  is only briefly repeated  here. 

A feed -forward  NN aims at implementing a stimulus-response behavior by 
arranging several elementary units (‘‘neurons’’) into a layered  structure, which d oes 
not allow any feedback between layers. Each neuron involves a simple, nonlinear 
transformation of weighted  inputs, and  the nonlinearity is often performed by a 
sigmoid al function. The multilayer Perceptron (MLP) parad igm [30] belongs to this 
type of networks, and  it has been proved  to be able to perform effectively in 
scenarios where the target mapping function can be determined  by a few 
computing units with global scope. It intrinsically implements a series expansion of 
nh basis functions ah (i.e. sigmoid s), which can be generally expressed  as: 
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where x ind icates the stimulus vector with its output value y(x), and  the coefficients 
of w  are called  the network ‘‘weights’’ and  need  to be ad justed  during the training 
phase. The basic scheme of (5) is usually enhanced  by applying a sigmoidal 
nonlinearity to the output value. 

The circular back-propagation (CBP) network [31] improves the conventional 
MLP parad igm by adding one more input value, which is the sum of the squared  
values of all the network inputs. For an input stimulus vector x={x1, …, xni}, the 
input layer connects the ni values to each neuron of the ‘‘hidden’’ layer. The j-th 
‘‘hidden’’ neuron performs a nonlinear transformation of a weighted  combination 
of the input values with coefficients (‘‘weights’’) w j,i ( j=1, …, nh, and  i=1, …, ni): 
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where sigm(z)=(1+e-z)-1, w j,0 is a bias term, and  aj is the neuron activation (i.e. the 
output of the basis function). The outpu t layer provid es the final network response, 
yk, (k = 1 in the case of image quality assessment): 
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where w k,j and  w k,0 represent the ou tput coefficients and  the output bias, 
respectively. 

The resulting CBP network can map both linear and  circular separation 
bound aries [31]. The add itional input value enhances the overall representation 
ability of the network, while not affecting the properties of the MLP structure (e.g. 
w j,ni+1=0 reduces a CBP network to a classical MLP). Since the actual coefficients of 
w j,ni+1 are determined  by the empirical training process, the selection between a 
conventional MLP and  a CBP model is entirely data-driven and  does not require 
any a priori assu mption. Such an adaptive behavior makes CBP networks 
appropriate for perception related  problems, whose underlying structure is often 
obscure. 

The degrees of freedom of the NN that need  to be fitted  are the depth nh of the 
series expansion and  the weightin g coefficients within each neuron. To determine 
the former quantity, literature provides both theoretical [32] and  practical [33] 
criteria to ensure pred iction accuracy, while minimizing the risk of over -fitting 
training data. In this paper, we follow an empirical approach [33] mainly due to its 
simplicity and  proved  effectiveness. Once the number of network neurons (i.e. nh) is 
decided , a fitting process tunes the set of weights in such a way that the network 
optimizes the desired  input-outpu t mapping, minimizing a cost function which 
implements the mean square error between the pred ictions and  the subjective 
quality scores. 
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5.4 Evaluation of the Overall Metric Performance 

5.4.1 Test Environment 

Figure 6 illustrates the schematic overview of the proposed  NR metric for the 
perceived  overall quality assessment of JPEG/ JPEG2000 compressed  images. It 
should  be mentioned  that the approach d iscussed  in this paper still treats the JPEG 
and  JPEG2000 images separately, since a NR metric is feasible only when the prio r 
knowledge about the image d istortion process is available [1]. But, we envision that 
by includ ing a classification algorithm of JPEG and  JPEG2000 (see e.g. in [42]) the 
system can automatically select the appropriate metric to use on any compressed 
image. This is, however, outside the scope of this paper. In our experiments, for 
each image, a vector containing eleven percentiles of the d istribution of the local 
blockiness/ blur features was calculated  as the input to the NN. The CBP network 
was equipped  with three hidden neurons and  trained  with the back-propagation 
[34] algorithm. 
 

 
 

(a) 
 

 
 

(b) 
 

Fig. 6.  Schematic overview of the proposed  NR metric for the perceived  overall quality 
assessment of JPEG/ JPEG2000 compressed  images: (a) the NR JPEG metric, an d (b) the NR 
JPEG2000 metric. 
 

To evaluate the performance of the proposed  approach, the LIVE image quality 
assessment database [35] was used . It consists of a set of twenty nine high -
resolution and  high-quality color source images that reflect adequate d iversity in 
image content. These images were compressed  using JPEG at a bit rate ranging 
from 0.15 bits per pixel (bpp) to 3.34 bpp, resulting in a database of 233 JPEG 
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compressed  stimuli (includ ing the originals). The same source images were also 
compressed  using JPEG2000 at a bit rate ranging from 0.028 bpp to 3.15 bpp, 
yield ing a d atabase of 227 JPEG2000 compressed  stimuli (includ ing the originals). 
An extensive psychovisual experiment was conducted  to assign a d ifference mean 
opinion score (DMOS) to each  stimulus. The DMOS was measured  on a continuous 
linear scale that was d ivid ed  into five intervals marked  with the ad jectives ‘‘Bad ’’, 
‘‘Poor’’, ‘‘Fair’’, ‘‘Good ’’ and  ‘‘Excellent’’. 

So far, empirically measuring the error on the test d ata (e.g. by cross -validation 
[36]-[38]) was proved  to be the most reliable method  to achieve an accurate 
approximation of the performance of a NN system. In our performance evaluation, 
a K-fold  cross-validation method  [38] was ad opted  (see also our previous 
experimental setup reported  in [41]). It randomized  the statistical design problem 
by repeated ly splitting the available data in a training set and  a test set. Figure 7 
illustrates the experimental setup, in which the source images were d ivided  into six 
groups. The entire procedure included  six d ifferent trials, and  for each trial 
(hereafter referred  to as ‘‘run’’) five groups of source images were used  for training 
and  the remaining one group of source images was used  for testing. It is 
noteworthy that none of the stimuli used  for testing ever entered  any step of the 
training process. This way of working served  to assess the generalization of the 
system performance empirically. It resulted  in (an average of) 194 stimuli for 
training and  (an average of) 39 stimuli for testing in the JPEG database for 
evaluating our JPEG metric. Additionally, we had  (an average of) 189 stimuli for 
training and  (an average of) 38 stimuli for testing in the JPEG2000 d atabase for 
evaluating our JPEG2000 metric. 

 

 
 

(a) 
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(b) 
 

Fig. 7.  Experimental setup for the K-fold  cross-validation: (a) source images of the LIVE 
database [35] assigned  over six groups, and  (b) d istribution of the source images assigned  
over the training and  test set for each of the six runs. 
 

5.4.2 Overall Metric Performance 

As prescribed  by the video quality experts group (VQEG) [39], the performance of 
our approach was evaluated  with respect to its ability to pred ict subjective quality 
ratings (the DMOS). Two statistical tools usually employed  in literature were 
adopted  to characterize the pred iction ability: i.e. the Pearson linear correlation 
coefficient, and  the root mean square error (RMSE). The corresponding correlation 
coefficients and  RMSE are listed  in Table 1 and  2 for the JPEG and  JPEG2000 
compressed  images, respectively. In both cases, our proposed  metric consistently 
resulted  in a high pred iction performance over all (six) runs. The NR JPEG metric 
yielded  an averaged  Pearson correlation coefficient of 0.9623 (with a highest value 
of 0.975 and  a lowest value of 0.953), and  an averaged  RMSE of 0.109 on a 
normalized  scale [0, 1] (with a highest value of 0.127 and  a lowest value of 0.084). 
The NR JPEG2000 metric provided  an averaged  Pearson correlation coefficient of 
0.930 (with a highest value of 0.942 and  a lowest value of 0.923), and  an averaged  
RMSE of 0.139 on a normalized  scale [0, 1] (with a highest value of 0.155 and  a 
lowest value of 0.115). 
 
Table 1.  Performance of the proposed  NR JPEG metric per run and  averaged  over all runs in 
terms of Pearson correlation coefficient and  RSME. 
 

NR JPEG Metric 
Pearson Correlation 

Coefficient 

Root Mean Square Error 
(RMSE) (normalized 

score scale [0, 1]) 

Run 1 0.963 0.119 
Run 2 0.956 0.127 
Run 3 0.962 0.115 
Run 4 0.953 0.116 
Run 5 0.975 0.084 
Run 6 0.965 0.096 

MEAN 0.962 0.109 
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Table 2.  Performance of the proposed  NR JPEG2000 metric per run and  averaged over all 
runs in terms of Pearson correlation coefficient and  RSME. 
 

NR JPEG2000 Metric 
Pearson Correlation 

Coefficient 

Root Mean Square Error 
(RMSE) (normalized 

score scale [0, 1]) 

Run 1 0.942 0.115 
Run 2 0.934 0.138 
Run 3 0.926 0.144 
Run 4 0.924 0.155 
Run 5 0.923 0.145 
Run 6 0.925 0.139 

MEAN 0.930 0.139 
 

5.4.3 Comparison to Alternative Metrics 

In the image quality community, researchers are accustomed to compare their 
metrics to alternatives available in the literature. It is, however, important to note 
that the performance of these metrics needs to be evaluated  in a comparative setting, 
so that their strengths and  weaknesses are fairly analyzed . In this respect, apart 
from only listing the numerical results (e.g. Pearson correlation coefficient) of the 
metrics in comparison, we also address some important issues behind  these values.  

An objective metric is conventionally valid ated  through quantifying the 
correlation between its pred icted  values and  the subjective quality scores. This 
correlation, however, can be calculated  under three d ifferent testing conditions (TC) 
as reported  in literature. The first one is to d irectly calculate the linear correlation 
between the metric’s p red ictions and  the subjective d ata (see e.g. [11], [13], [40] and  
hereafter referred  to as TC1). This method  is often used  in metric comparison to 
better visualize d ifferences in performance. The second  method  is suggested  by the 
VQEG [39], and  applies a nonlinear mapping function (e.g. a logistic function) to fit 
the metric’s results to the DMOS before computing the correlation (referred  to as 
TC2).  A sophisticated  nonlinear fitting (often includ ing various parameters) 
accounts for a possible saturation effect, and  usually yields higher correlation 
coefficients in absolu te terms. However, in terms of performance comparison, it 
generally keeps the relative d ifferences between the metrics as computed  und er 
TC1 [11]. A more demanding testing condition is cross-valid ation, in which the 
dataset is partitioned  into complementary subsets: one for model calibration and  
the other for valid ation (see e.g. [23], [24], [29], and  hereafter referred  to as TC3). 
Therefore, it should  be noted  that simply comparing the reported  correlation 
coefficients of d ifferent metrics is not meaningful, unless they are evaluated  with 
the same database under the same testing condition. Even under the same testing 
condition, the quantitative comparison between metrics may be biased  due to  e.g. a 
d ifferent selection of the d isjoint sets for training and  testing (e.g. under TC3).  

Here, we compare the proposed  JPEG and  JPEG2000 metrics to state-of-the-art 
NR metrics in terms of performance. Issues related  to computational complexity 
will be d iscussed  in Section V.A. For practical reasons the NR metrics used  for 
comparison are limited  to four JPEG metrics and  three JPEG2000 metrics. To further 
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compare the performance of our NR metric with respect to RR and  FR metrics, we 
also include two RR metrics and  three FR metrics well-known in literatu re. 
However, is should  be noted  that a d irect comparison of NR metrics to RR/ FR 
metrics is not completely fair, since the design of  reliable NR metric is more 
challenging, and  often a NR metric is the only available option in real-time 
applications. Tables 3 and  4 list the Pearson correlation coefficient and  the 
corresponding testing environment for these metrics. It can be seen that the 
pred iction performance of our proposed  JPEG and  JPEG2000 metrics is slightly 
better than currently lead ing NR metrics. For the JPEG metric, our proposed  
approach even outperforms some of the existing RR and  FR metrics, and  comes 
close in performance to the best in class of these metrics. For the JPEG2000 metric, 
our approach is slightly underperforms with respect to RR and  FR metrics currently 
known in literature.   

 
Table 3.  Performance of state-of-the-art NR JPEG metrics. 
 

JPEG Metric 
Pearson Correlation 

Coefficient 
Testing Environment 

NR 

Liu et al [13] 0.918 LIVE JPEG --- TC1 
Wang et al [17] 0.931 LIVE JPEG --- TC2 

Gastaldo et al [23] 0.943 LIVE JPEG --- TC3 
Babu et al [24] 0.932 LIVE JPEG --- TC3 

Proposed 0.962 LIVE JPEG --- TC3 

RR 
Li et al [5] 0.889 LIVE JPEG --- TC2 

Carnec et al [6] 0.972 LIVE JPEG --- TC2 

FR 
PSNR [2] 0.901 LIVE JPEG --- TC2 
SSIM [3] 0.979 LIVE JPEG --- TC2 
VIF [4] 0.980 LIVE JPEG --- TC2 

 
Table 4.  Performance of state-of-the-art NR JPEG2000 metrics. 
 

NR JPEG2000 Metric 
Pearson Correlation 

Coefficient 
Testing Environment 

NR 

Marziliano et al [18] 0.850 LIVE JP2K --- TC3 
Sheikh et al [20] 0.910 LIVE JP2K --- TC3 
Sazzad  et al [19] 0.930 LIVE JP2K --- TC3 

Proposed 0.930 LIVE JP2K --- TC3 

RR 
Li et al [5] 0.957 LIVE JP2K --- TC2 

Carnec et al [6] 0.957 LIVE JP2K --- TC2 

FR 
PSNR [2] 0.904 LIVE JP2K --- TC2 
SSIM [3] 0.971 LIVE JP2K --- TC2 
VIF [4] 0.979 LIVE JP2K --- TC2 
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5.5 Evaluation of Specific Metric Components 

5.5.1 Reduction in Computational Complexity 

From a practical point of view, it is highly desirable to develop a NR metric that is 
easy to implement, computationally efficient, and  uses only a few parameters. In 
this section, we specifically elaborate on the reduction in computational complexity 
of the proposed  approach compared  to existing alternatives in the literature.  

Many NR metrics for JPEG compression are reported  in literature, and  the most 
successful ones are listed  in Table 3. Our proposed  metric, however, outperforms 
these alternatives in terms of simplicity, still obtaining a high reliability, as shown 
in Table 3. The metric of [13] explicitly models the HVS via texture and  luminance 
masking. To keep the computational load  of the metric within reasonable limits, 
both masking processes were heavily simplified , and  that limited  the metric’s 
performance. Compared  to the metrics of [17], [23], and  [24], which involved  an 
extensive feature computation or selection stage (e.g. in [17] both blockiness and  
signal activities were calculated , in [23] a large number of general pixel-based  
features were extracted , and  in [24] a variety of HVS related  features were 
computed), our metric clearly shows its advantage by only simply calculating the 
local blockiness in an computationally efficient way.  

Progress in NR metrics for JPEG2000 compression is limited , mainly because the 
various artifacts are inherently content-dependent, and  so, d ifficult to be detected  
and  modeled . Researchers have taken d ifferent approaches to this problem. The 
metric of [18] is a well-known metric that attempts to pred ict the overall quality of 
JPEG2000 compressed  images by modeling their most relevant artifact, which is 
blur. It is a very simple metric, however, its reported  performance is limited , since 
the averaged  blur is mapped  to the quality scores with only a simple nonlinear 
transformation. Our metric clearly outperforms the metric of [18] (see Table 3), yet 
without introducing additional computational cost. The metric of [20] adopts 
natural scene statistics for measuring the image quality, which, however, often 
requires sophisticated  modeling to achieve a reliable metric. A recently proposed  
NR metric for JPEG2000 compression [19] reports a high correlation with the LIVE 
database [35], but contains an intensive feature extraction stage (i.e. eight d ifferent 
spatial features) and  a complex parameter optimization proced ure (i.e. nine mod el 
parameters) to combine these features. Thus, our metric outperforms the 
alternatives of [19] and  [20] in implementation complexity and  computational 
efficiency. 

5.5.2 The Added Value of Using a Neural Network 

The promising performance of the NR metrics, proposed  in this paper, is primarily 
achieved  by the combination of two essential components: (1) a simplified  feature 
extraction that largely reduces the computational complexity and  avoids multiple -
feature modeling, and  (2) a powerful NN to map the extracted  feature to a quality 
rating. To valid ate the added  value of includ ing a NN, add itional experiments were 
conducted , in which the neural network was omitted . Instead , the averaged  feature 
value (i.e. the mean of the calculated  local b lockiness for the JPEG metric, and  the 



- 107 - 
 

mean of the calculated  local blur for the JPEG2000 metric) was used  as the metric’s 
output. To make a fair comparison to our original NN based  metric, we evaluated  
the resulting metrics und er three d ifferent testing conditions, as mentioned  in 
Section IV.C. Tables 5 and  6 list the correlation coefficient and  the RMSE for each of 
the testing conditions. It should  be mentioned  that the logistic function suggested  
by VQEG [39] is conventionally used  in both TC2 and  TC3. The nonlinear 
regression function transforms the metric’s pred ictions to a set of pred icted  MOS 
values (i.e. DMOSp), which are then compared  to the actual DMOS values. The 
three-parameter logistic function is expressed  as: 

 
))3(2exp(1

1

bMetricb

b
DMOS p b(2be1

 (8) 

Table 5.  Performance when using only the averaged  blockiness feature value for the three 
testing conditions described  in Section IV.C. 
 

Testing Environment 
Pearson Correlation 

Coefficient 
Root Mean Square 

Error (RMSE) 

LIVE JPEG - TC1 0.661 0.349 

LIVE JPEG - TC2 0.906 0.247 

LIVE JPEG --- 
TC3 

RUN1 0.875 0.250 
RUN2 0.929 0.188 
RUN3 0.912 0.245 
RUN4 0.926 0.237 
RUN5 0.872 0.238 
RUN6 0.907 0.211 
MEAN 0.904 0.228 

 
Table 6.  Performance when using only the averaged  blur feature value for the three testing 
conditions described  in Section IV.C. 
 

Testing Environment 
Pearson Correlation 

Coefficient 
Root Mean Square 

Error (RMSE) 

LIVE JPEG2000 - TC1 0.715 0.257 

LIVE JPEG2000 - TC2 0.741 0.221 

LIVE JPEG2000 
--- TC3 

RUN1 0.811 0.198 
RUN2 0.779 0.230 
RUN3 0.769 0.214 
RUN4 0.818 0.213 
RUN5 0.669 0.259 
RUN6 0.675 0.255 
MEAN 0.754 0.228 

 
The experimental results show that the simple, single feature without the use of a 

NN hard ly achieves a reliable metric, even not after a complex fitting of the metric’s 
output values to the corresponding subjective ratings. Of course, the performance 
of these simple metrics can be improved  by add ing properties of the HVS and  by 
explicitly modeling the inherent artifacts (see e.g. [9], [12], [13]). This generally 
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yields metrics that can be used  to assess the overall image quality, but at the 
expense of complex HVS modeling and  an extensive parameter optimization 
process. For real-world  applications, our proposed  approach includ ing a NN tends 
to be an efficient and  inexpensive solution. 

5.5.3 Limitations and Future Research 

The NR metrics, proposed  in this paper, aim for assessing the perceived  overall 
quality of JPEG and  JPEG2000 compressed  images. To achieve a simple yet e fficient 
metric, especially for real-time processing, we kind  of neglect the occurrence of and  
interaction between various artifacts that may occur simultaneously in an image, 
thus affecting the perceived  overall quality. In our case, only the most relevan t 
artifact is extracted  to pred ict the overall image quality, and  we fully rely on the NN 
to approximate the unknown relationship between this single feature and  the 
quality rating. As a consequence, the proposed  NR metrics intrinsically exhibit two 
major d rawbacks: (1) the local d istortion values (simply calculated) are not 
necessarily in agreement to what the human eye perceives, and  thus cannot be used  
to precisely reflect the local annoyance of a perceived  artifact, and  (2) the perceived  
annoyance of other artifacts, e.g. ringing in JPEG and  JPEG2000 compression, 
cannot be assessed  by the overall metric. Being able to quantify the annoyance of 
more types of artifacts is of fundamental importance to e.g. noise reduction in 
image/ video enhancement. It requ ires research in the design of ded icated  metrics 
(see e.g. [8]-[13]) to detect and  estimate the local annoyance of a specific artifact 
type. However, in current visual communication systems, pred icting the perceived  
overall quality in real-time without compromising the system’s complexity is very 
valuable, but still challenging. We feel that designing an NR metric based  on a NN 
is promising in terms of pred icting the overall image quality. We are continuing our 
efforts into designing NR metrics for more typ es of d istorted  images, such as blur, 
noise and  wireless channel errors. 

5.6 Conclusions 

In this paper, we provide an efficient NR approach for the perceived  overall quality 
assessment of JPEG/ JPEG2000 compressed  images. Its reliable pred iction ability at 
a largely reduced  computational cost is achieved  by skillfully combining a 
simplified  feature extraction strategy with an adap tive neural network. The first 
component efficiently selects and  calculates the most relevant feature representative 
for the overall image quality, and  thus avoids explicitly modeling the occurrence of 
and  interaction between various artifacts inherent in a d istorted  image. The latter 
component, subsequently, is used  to empirically learn the highly nonlinear 
relationship between the relevant feature and  the overall image quality rating. The 
resulting NR JPEG and  JPEG2000 metrics are valid ated  with subjective data und er a 
critical cross-valid ation condition, and  are fairly compared  to several alternative 
metrics existing in literature.  
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Chapter 6 

Visual Attention in Objective Image Quality 
Assessment: Based on Eye-Tracking Data 

 
 
Abstract : Since the human visual system (HVS) is the ultimate assessor of image 
quality, current research on the design of objective image quality metrics tends to 
include an important feature of the HVS, namely visual attention. Different 
metrics for image quality prediction have been extended with a computational 
model of visual attention, but the resulting gain in reliability of the metrics so far 
was variable. To better understand the basic added value of including visual 
attention in the design of objective metrics, we used measured data of visual 
attention. To this end, we performed two eye-tracking experiments: one with a 
free-looking task and one with a quality assessment task. In the fi rst experiment 
twenty observers looked freely to twenty-nine unimpaired original images, 
yielding us so-called natural scene saliency. In the second experiment twenty 
different observers assessed the quality of distorted versions of the original 
images. The resulting saliency maps showed some differences with the natural 
scene saliency, and therefore, we applied both types of saliency to four different 
objective metrics predicting the quality of JPEG compressed images.  For both 
types of saliency the performance gain of the metrics improved, but to a larger 
extent when adding the natural scene saliency. As a consequence, we further 
integrated natural scene saliency in several state-of-the-art quality metrics, 
including three full-reference metrics and two no-reference metrics, and 
evaluated their prediction performance for a larger set of distortions. By doing so, 
we evaluated whether and to what extent the addition of natural scene saliency is 
beneficial to objective quality prediction in general terms. In addition, we 
address some practical issues in the design of an attention-based metric. The eye-
tracking data are made available to the research community [1]. 
 
 
 
 
 
Copyright © 2010 IEEE. Personal use of this material is permitted . However, permission to 
use this material for any other purposes must be obtained  from the IEEE by sending an email 
to pubs-permissions@ieee.org. 
 
 
 
This chapter is based  on the research article accepted  as ‘‘Visual Attention in 
Objective Image Quality Assessment: Based  on Eye-Tracking Data’’ by H. Liu  and  I. 
Heynderickx for IEEE Transactions on Circuits and  Systems for Video Technology.  
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6.1 Introduction 

Image quality metrics are already integrated  in a broad  range of visual 
communication systems, for example for the op timization of d igital imaging 
systems, the benchmarking of image and  video coding algorithms, and  the quality 
monitoring and  control in d isplays [2]. These so-called  objective metrics have the 
aim to automatically quantify the perceived  image quality, and  so, to serve 
eventually as an alternative for expensive quality evaluation by human observers. 
They range from dedicated  metrics that measure a specific image d istortion to 
general metrics that assess the overall perceived  quality. Both the ded icated  and  
general metrics can be classified  into full-reference (FR), reduced -reference (RR), 
and  no-reference (NR) metrics, depending on to what extent they use the original, 
non-degraded  image or vid eo as a reference. FR metrics are based  on measuring the 
similarity between the d istorted  image and  its original version. In real-world  
applications where the original is not available, RR and  NR metrics are used . RR 
metrics make use of features extracted  from the original, while NR metrics attempt 
to assess the overall quality or some aspect of it without the use of the original. 

Since the human visual system (HVS) is the ultimate assessor of image quality, it 
is highly desirable to have objective metrics that pred ict image or video quality 
consistent with what humans perceive [2]. Trad itional FR metrics, such as the mean 
squared  error (MSE) or the peak signal-to-noise ratio (PSNR), are simple, since they 
are purely defined  on a p ixel-by-pixel d ifference between the d istorted  and  the 
original image, but, they are also known for their poor correlation with perceived 
quality [3]. Therefore, a considerable amount of research is devoted  to the 
development of more reliable objective metrics taking characteristics of the HVS 
into account.  

Some meaningful progress in the design of HVS-based  objective metrics is 
reported  in the literature [4]-[18]. In these stud ies, lower level aspects of the HVS, 
such as contrast sensitivity, luminance masking and  texture masking, are 
successfully modeled  and  integrated  in various metrics. The basic idea behind  the 
metrics in [4]-[7] is to d ecompose the image signal into channels of various 
frequencies and  orientations in order to reflect human vision at the neural cell level. 
Classical HVS models, such as the contrast sensitivity function (CSF) per channel, 
and  interactions between the channels to simulate masking, are then implemented . 
These metrics are claimed  to be perceptually more meaningfu l than MSE or PSNR. 
In [8]-[13], metrics are designed  to explicitly quantify the annoyance of various 
compression artifacts. In this research, properties of the HVS are combined  with the 
specific physical characteristics of the artifacts to estimate their supra -threshold  
visibility to the human eye. The added  value of includ ing HVS aspects in these 
metrics is validated  w ith psychovisual experiments. Instead  of simulating the 
functional components of the HVS, the metrics in [14]-[18] are rather based  on the 
overall functionality of the HVS, e.g. by assuming that the HVS separates structural 
information from nonstructural information in the scene [14]. These metrics are able 
to successfully pred ict image quality in close agreement with human judgments. 

In recent years, researchers tend  to include higher level aspects of the HVS, such 
as visual attention, in objective metrics. Limited  progress has been made in this 
research area, mainly due to the fact that the mechanism of attention for image 
quality judgment is not fully understood  yet, and  also due to the d ifficu lties of 
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precisely modeling visual attention. Current research  mostly incorporates visual 
attention into the objective metrics in an ad -hoc way, based  on optimizing the 
performance increase in pred icting perceived  quality. For example, stud ies in [19]-
[23] are based  on the assumption that a d istortion occurring in an  area that gets the 
viewer’s attention is more annoying than in any other area, and  they attempt to 
weight local d istortions with local saliency, a process referred  to as ‘‘visual 
importance pooling’’. The essential concep t behind  this approach is that the n atural 
scene saliency (i.e. saliency driven by the original image content, and  referred  to as 
NSS) and  the image d istortions are taken into account separately, and  they are 
combined  to determine the overall quality score. In such a scenario, a variety of 
computational attention models are implemented  in d ifferent metrics, resulting in a 
performance gain as reported  in [19]-[23]. As such, this approach appears to be a 
viable way of includ ing visual attention in objective metrics. 

There are, however, several concerns related  to the development of attention -
based  objective quality metrics. First of all, most research published  so far in the 
literature employs an existing attention model to specifically optimize a targeted  
objective metric. Computational attention models are available, e.g. in [24] and  [25], 
but they are either designed  or chosen for a specific domain, and  therefore, not 
necessarily generally app licable. Moreover, the accuracy of these models in 
pred icting human visual attention is not always com pletely proved  yet, especially 
not in the domain of image quality assessment. Therefore, the question arises 
whether an attention model successfully embedded  in one particular metric is also 
able to enhance the performance of other metrics, and  even if so, whether the gain 
by add ing this attention model to a specific metric is comparable to the gain that 
can be obtained  with alternative metrics. Secondly, it is well known that eye 
movements depend  on the task assigned  to the observer [26]. Hence, whether NSS 
or saliency during image quality assessment should  be included  in the design of 
objective quality metrics is still insufficiently stud ied . It is, e.g., not known yet 
whether the d ifference between both types of saliency is sufficiently large to 
actually affect the performance gain for the objective quality metrics. Third ly, since 
computational efficiency becomes a significant issue when applying an objective 
metric in real-time processing, the measured  gain in metric performance should  be 
balanced  against the add itional costs needed  for the rather complex attention 
modeling. This implies that before implementing an attention -based  metric, it is 
worthwhile to know exactly whether and  to what extent includ ing visual attention 
can improve existing objective quality metrics. Finally, stud ies combining visual 
attention and  image d istortions in a perceptually meaningfu l way are still limited , 
and  hard ly d iscuss a generalized  strategy for combining d istortion visibility and  
saliency.  

Obviously, investigating the aspects mentioned  above heavily relies on the 
reliability of the visual attention data used . Since record ing eye movements is so far 
the most reliable means for stud ying human visual attention [26], it is highly 
desirable to use these ‘‘ground  truth ’’ visual attention data for the evaluation of the 
added  value of attention in objective quality metrics. This idea is recently exploited  
in [27], in which the d ata of an eye-tracking experiment are integrated  in the PNSR 
and  SSIM [14] metric. The results obtained  in [27], however, are inconsistent w ith 
those found  in [19]-[23], i.e. no clear improvement is found  in the metric 
performance when weighting the local d istortions with local saliency. It should , 
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however, be noted  that the eye-tracking data of [27] were collected  during image 
quality assessment with the DSIS (Double Stimulus Impairment Scale) protocol [28]. 
This implies that each observer saw an unimpaired  reference and  its impaired  
version several times during the experiment. As a consequence, the observer  might 
have learnt where to look for the artifacts, and  thus, the recorded  eye -tracking d ata 
on the impaired  images may have been more affected  by the image d istortions than 
by the natural scene content. Simply add ing then these eye-tracking d ata to a 
quality metric may overweight the d istraction power of the d istortions compared  to 
the NSS, and  this may explain d ifferences in the conclusions between [27] and  [19]-
[23]. To evaluate these assumptions, more data on whether to include NSS or 
saliency during scoring in the design of an attention -based  metric is needed . This 
issue is addressed  in [29] and  [30], and  the results show a trend  of a larger 
improvement in pred ictability of the objective metrics when using eye-tracking d ata 
obtained  during freely looking to unimpaired  images. It should , however, be kept 
in mind  that the stud y reported  in [29] and  [30] only made use of a limited  number 
of human subjects (five participants looked  freely to the images, while two scored  
the images). Nonetheless, the observed  trend  is in line with research recently 
published  in [31], showing that add ing ‘‘ground  truth’’ NSS (in this case obtained  
by asking human observers to select the region -of-interest (ROI) in reference images) 
significantly improves the performance of metrics that pred ict the perceived  quality 
of images that are wirelessly transmitted . Artifacts in these images are typ ically 
clustered  in certain areas of the image. In such a specific scenario, using NSS is 
more practical since it can be transmitted  as side in formation through the wireless 
communication channel. As such, the metric can make use of ROI versus 
background  (BG) segmentation at the receiver end  in real-time.  

To better understand  the added  value of includ ing visual attention in the design 
of objective metrics, we start from eye-tracking data obtained  during free looking 
and  during scoring image quality, as explained  in Section II.  Both types of saliency 
are then added  to several objective quality metrics well-known in literature. The 
corresponding resu lts are d iscussed  in Section III, and  reveal that although both 
types of saliency are beneficial for objective quality pred iction, NSS tends to 
improve the metrics’ performance more. As a consequence, we integrate, as 
discussed  in Section IV, NSS in three full-reference metrics and  two no-reference 
metrics with the aim to provide more accurate quantitative evidence on whether 
and  to what extent visual attention can be beneficial for objective quality pred iction. 
We also d iscuss some important issues of applying NSS in the design of an 
attention-based  metric. Moreover, we have made the eye-tracking d ata publicly 
available [1] to facilitate future research in image quality assessment.  

6.2 Eye-Tracking Experiments 

It is generally agreed  that under normal circumstances human eye movements are 
tightly coupled  to visual attention [32]-[34]. Therefore, we performed eye-tracking 
experiments to obtain ‘‘ground  truth ’’ visual attention data. Actually, two eye-
tracking experiments were conducted . In the first experimen t, the NSS for the 
twenty-nine source images of the LIVE database [35] was collected  by asking 
twenty observers to look freely to the images. In the second  experiment, the 
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saliency was recorded  for twenty d ifferent observers, who were requested  to score 
the quality of d istorted  versions of the source images. 

6.2.1 Test Environment 

The eye-tracking experiment was carried  out in the New Experience Lab of the 
Delft University of Technology [36]. Eye movements were recorded  with an 
infrared  video-based  tracking system (iView X RED, SensoMotoric Instruments). It 
had  a sampling rate of 50 Hz, a spatial resolu tion of 0.1 , and  a gaze position 
accuracy of 0.5 -1.0 . Since the system could  compensate for head  movements 
within a certain range, a chin rest was sufficient to reduce head  movements and  
ensure a constant viewing d istance of 70cm. The stimuli were d isp layed  on a 19-
inch CRT monitor with a resolution of 1024x768 pixels and  an active screen area of 
365x275mm. Forty students, being twenty-four males and  sixteen females, 
inexperienced  with eye-tracking record ings, were recruited  as participants. They 
were assigned  to two groups of equal size (Group A and  B), each with twelve males 
and  eight females. Each session (per subject) was preceded  by a 3x3 point grid  
calibration of the eye-tracking equipment. 

6.2.2 Experiment I: NSS 

Participants of Group A were requested  to look freely to the twenty -nine source 
images of the LIVE database [35]. Each participant saw all stimuli in a random 
order. Each stimulus was shown for 10s followed  by a mid -gray screen during 3s. 
The participants were requested  to look at the images in a natural way (‘‘view it as 
you normally would ’’).  

6.2.3 Experiment II: Saliency during Scoring 

Participants of Group B were requested  to score JPEG compressed  versions of the 
source images (using MATLAB’s imwrite function). To include a broad  range of 
quality, while avoid ing that the recorded  saliency was biased  by viewing a scene 
multiple times, the source images were d iv ided  into six groups (i.e. five groups of 
five scenes each, and  one group of four scenes, ind icated  by ‘‘S1’’ to ‘‘S6’’). Each 
group of scenes was compressed  at a d ifferent level (i.e. S1 at Q=5, S2 at Q=10, S3 at 
Q=15, S4 at Q=20, S5 at Q=30, and  S6 at Q=40). By doing so, each scene was viewed  
only once per subject, and  for each subject in a d ifferent random order. The subject 
was requested  to score the image quality for each stimulus with the single -stimulus 
(SS) method , i.e. in the absence of a reference [28]. A categorical scoring scale 
(recommended  by ITU-R [28]) w ith the semantic terms ‘‘excellent’’, ‘‘good ’’, ‘‘fair’’, 
‘‘poor’’ and  ‘‘bad ’’ was used . Each stimulus was shown for 10s, followed  by a 
scoring screen as illustrated  in Figure 1. The actual experiment was p receded  by a 
training, in which the participant was instructed  on the task and  could  familiarize 
himself/ herself with how to use the scoring scale. 
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Fig. 1.  Illustration of the scoring screen. 

6.3 NSS versus Saliency during Scoring Applied in Objective 
Metrics 

6.3.1 Saliency Map 

A saliency map representative for visual attention is usually derived  from the 
spatial pattern of fixations in the eye tracking data [32]-[34]. To construct this map, 
each fixation location gives rise to a gray-scale patch whose activity is Gaussian 
distributed . The wid th (σ ) of the Gaussian patch approximates the size of the fovea 
(about 2  of visual angle). A mean saliency map (MSM) over all fixations of all 
subjects is then calculated  as follows: 
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where Si(k, l) ind icates the saliency map for stimulus Ii of size M×N pixels (i.e. kϵ[1, 
M] and  lϵ[1, N]), (xj, yj) are the spatial coord inates of the jth fixation (j=1…T), T is 
the total number of all fixations over all subjects, and  σ  ind icates the stand ard  
deviation of the Gaussian (i.e. σ =45 pixels in our specific case). The intensity of the 
resulting saliency map is linearly normalized  to the range [0, 1]. Figure 2 illustrates 
as an example a MSM derived  from eye-tracking data obtained  in experiment I for 
one of the original images, and  the MSM obtained  in experiment II for a JPEG 
compressed  version of the same image (the saliency maps for the entire d atabase 
can be accessed  in [1]). 

The example illustrates typ ical correspondences and  d ifferences between the NSS, 
derived  from experiment I, and  the saliency during scoring, derived  from 
experiment II. In general, the most salient regions are comparable between the NSS 
and  the saliency during scoring, but there are some devia tions for which it is 
worthwhile to investigate their impact on the performance of an objective metric. 
An extensive d iscussion on the d ifferences between NSS and  saliency during 
scoring, includ ing aspects of the appropriate comparison method , and  the impa ct of 
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the experimental protocol, is outside the scope of this paper, and  will be treated  in a 
separate contribution [37].  
 

 
 
Fig. 2. Illustration of the saliency map: (a) original image, (b) mean saliency map (MSM) of (a) 
derived  from the eye-tracking data of experiment I, (c) saliency map (b) superimposed  on the 
image (a), (d ) JPEG compressed  image (Q=5), (e) mean saliency map (MSM) of (d ) derived  
from the eye-tracking data of experiment II, (f) saliency map (e) superimp osed  on the image 
(d). Note that the darker the regions are, the lower the saliency is. 
 

6.3.2 The Added Value of NSS and Saliency during Scoring in 
Objective Metrics 

Based  on the eye-tracking data, obtained  from both our experiments, we evaluate 
whether and  to what extent add ing saliency is beneficial to the pred iction 
performance of objective metrics. In this evaluation we compare the performance 
gain obtained  when adding NSS versus saliency during scoring. To this end , we use 
the subjective scores we obtained  in experiment II, and  we try to pred ict these 
scores with several well-known objective metrics, all weighted  with both types of 
saliency. 

Subjective Scores 

In experiment II, twenty human subjects scored  the quality of twenty-nine JPEG 
d istorted  images. We transformed the raw quality ratings (i.e. ‘‘excellent’’=5, 
‘‘good ’’=4, ‘‘fair’’=3, ‘‘poor’’=2 and  ‘‘bad ’’=1 as shown in Figure 1) into numbers, 
and  calculated  the Mean Opinion Score (MOS) as described  in [13]. The resulting 
MOS are illustrated  in Figure 3. 
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Fig. 3.  The mean opinion scores (MOS) of the 29 JPEG images of experiment II. The error 
bars ind icate the 95% confidence interval. 
 

Objective Metrics 

The evaluation of add ing saliency was performed with four objective me trics (i.e. 
three FR metrics and  one NR metric), which are so far widely accep ted  in the image 
quality community to assess the quality of JPEG compressed  images. The FR 
metrics are: 

 PSNR: The Peak Signal-to-Noise Ratio simply measures the d ifference (i.e. 
mean squared  error) between the d istorted  image and  its original version 
on a pixel-by-pixel base. 

 SSIM: The Structural SIMilarity index [14] assumes that the HVS is highly 
adap ted  for extracting structural information from a scene, and  it measures 
image quality based  on the degradation in structural information. 

 VIF: The Visual Information Fidelity [15] quantifies how much of the 
information present in the reference image can be extracted  from the 
d istorted  image. Note that in this paper we use the implementation of the 
VIF in the spatial domain (as described  in [35]). 

The NR metric is:  
 GBIM: The Generalized  Block-edge Impairment Metric [8] is one of the 

most well-known metrics to quantify blocking artifacts in DCT coding. It 
measures blockiness as an inter-pixel d ifference across block bound aries (i.e. 
referred  to as block-edges) scaled  with a weighting function, which 
addresses luminance and  texture masking of the HVS. 
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The objective metrics mentioned  above are all formulated  in the spatial d omain. 
They estimate the image d istortion locally, yield ing a quantitative d istortion map, 
which provides a spatially varying quality degradation profile. As an example, 
figure 4 (a) illustrates the d istortion map calculated  by SSIM for the JPEG 
compressed  image of Figu re 2 (d ) (bit rate of 0.41 bbp). The intensity value of each 
pixel in the d istortion map ind icates the local degree of d istortion, i.e. the lower the 
intensity, the larger the d istortion is.  

Including Saliency 

Saliency (i.e. either NSS or saliency during scoring) is included  in a metric by locally 
weighting the d istortion map, as illustrated  in Figure 4 (b) and  (c) for the d istortion 
map  of SSIM weighted  with NSS and  saliency during scoring, respectively. Note 
that in the case of GBIM, the metric is calcu lated  only around  block-edges. As a 
result, weighting its d istortion map with saliency actually gives more weight to the 
block-edges in the salient areas than in the non -salient areas.  
 

 
 
Fig. 4. Illustration of an objective metric based  on saliency: (a) d istortion map of SSIM 
calculated  for the JPEG compressed  image (bit rate 0.41bbp) of Fig 2 (d ), (b) the 
corresponding NSS superimposed  on (a), and (c) the corresponding saliency during scoring 
superimposed  on (a). For the d istortion map, the lower the intensity, the larger the distortion 
is. 
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Adding saliency to PSNR, SSIM, VIF and  GBIM results in eight attention -based  
metrics, which are referred  to as WPSNR_NSS, WPSNR_SS, WSSIM_NSS, 
WSSIM_SS, WVIF_NSS, WVIF_SS, WGBIM_NSS and  WGBIM_SS, respectively. 
They can be defined  as: 
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where distortion_map is calculated  by the metric used , S ind icates the corresponding 
saliency map derived  from the eye-tracking experiment, and  WMetric denotes the 
resulting attention based  metric. It should  be noted  that the combination strategy 
used  here is a simple weighting function similar to that in [19]-[23]. More complex 
combination strategies may further improve the metric’s performance, as is 
discussed  in Section IV. 

Experimental Results 

As prescribed  by the VQEG (Video Quality Experts Group) [38] the performance of 
an objective metric is determined  by its ability to pred ict subjective quality ratings 
(the MOS). This ability can be quantified  by the Pearson linear correlation 
coefficient (CC) ind icating pred iction accuracy, the Spearman rank order correlation 
coefficient (SROCC) ind icating pred iction monotonicity, and  the root -mean-squared  
error (RMSE). With respect to the latter measure, we want to note that the scores are 
normalized  to the scale [1, 10] before the calculation of the RMSE. As suggested  in 
[38], the metric’s performance can also be evaluated  with non -linear correlations 
using a non-linear mapping of the objective pred ictions before computing the 
correlation. Indeed , the im age quality community is more accustomed to e.g. a 
logistic function, to fit the pred ictions of an objective metric to the MOS. It may, for 
example, account for a possible saturation effect in the quality scores at high quality. 
A non-linear fitting usually yields higher correlation coefficients in absolute terms, 
while generally keeping the relative d ifferences between the metrics [39]. On the 
other hand , w ithout a sophisticated  non-linear fitting (often includ ing additional 
parameters) the correlation coefficients cannot mask a bad  performance of the 
metric itself, as d iscussed  in [23]. To better visualize d ifferences in performance we 
avoid  any non-linear fitting and  d irectly use linear correlation and  RMSE between 
the metrics’ pred ictions and  the MOS. 

The twelve metrics (i.e. PSNR, WPSNR_NSS, WPSNR_SS, SSIM, WSSIM_NSS, 
WSSIM_SS, VIF, WVIF_NSS, WVIF_SS, GBIM, WGBIM_NSS and  WGBIM_SS) are 
applied  to the 29 JPEG compressed  images, and  the results are compared  to the 
corresponding MOS of experiment II. Figure 5 shows the resulting CC, SROCC and  
RMSE-values, and  demonstrates that the performance of all metrics enhances by 
includ ing both NSS and  saliency during scoring. The experimental results also tend  
to ind icate that add ing NSS to a metric yield s a larger amount of performance gain 
than add ing saliency during scoring. Adding NSS to PSNR corresponds to an 
increase of 8% in CC and  of 10% in SROCC, and  a decrease of 0.258 in the RMSE 
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value, but add ing saliency during scoring to PSNR results only in an increase of 6% 
in CC and  of 8% in SROCC, and  a decrease of 0.225 in the RMSE value. The same 
trend  of changes in performance is consistently found  for the three other metrics.  

Based  on the above results, we can conclude that the small d ifference in saliency 
due to scoring with respect to the NSS is nonetheless sufficient to yield  a consistent 
d ifference in performance gain when includ ing visual attention to objective metrics. 
The relatively lower performance gain obtained  with the saliency during scor ing is 
possibly caused  by the fact that this saliency is more spread  towards background  
areas in the image due to the d istraction power of annoying artifacts. As such, 
artifacts in background  areas are weighted  more (in relative terms) than artifacts in 
salient areas, and  so, this might result in an overestimation of the annoyance of 
d istortions in the background . Our results tend  to support the assumption made in 
Section I for the d ifference in conclusion given in [27], on the one hand , an d  in [19]-
[23], on the other hand . When add ing saliency to objective metrics, it should  be the 
NSS, obtained  when people look at a d istortion -free image for the first time. The 
saliency or d istraction power of the image d istortions themselves is kind  of 
addressed  by the metric (especially, when HVS aspects, such as contrast sensitivity 
and  masking are already included  in the d istortion map).  

 

 
(e) 

 
Fig. 5. Correlation coefficients and  RMSE values (without nonlinear regression) of six metrics 
PSNR, WPSNR_NSS, WPSNR_SS, SSIM, WSSIM_NSS and  WSSIM_SS for the 29 JPEG images 
of experiment II. 
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6.4 Adding NSS in Objective Metrics: Based on LIVE Database  

To further evaluate the added  value of visual attention in objective metrics, we 
include the NSS obtained  from our eye-tracking d ata in experiment I into various 
objective metrics available in literature, and  compare the performance of these 
attention-based  metrics to the performance of the same metrics w ithout visual 
attention. To also evaluate a variety of d istortion types, this validation is d one for 
the entire LIVE database [35], which consists of 779 images d istorted  with JPEG 
compression (i.e. JPEG), JPEG2000 compression (i.e. JP2K), white noise (i.e. WN), 
Gaussian blur (i.e. GBLUR), and  simu lated  fast fad ing Rayleigh occurring in 
(wireless) channels (i.e. FF). Per image the database also gives a d ifference in mean 
opinion score (DMOS) derived  from an extensive subjective quality assessment 
study [40]. Based  on the evaluation, we address some technical issues relevant to 
the application of visual attention in objective metrics. More specifically, we d iscuss 
the effect of image content and  of the combination strategy. 

6.4.1 Objective Metrics 

For practical reasons the objective metrics used  in ou r valid ation are limited  to three 
well-known FR metrics and  two NR metrics. The FR metrics are PSNR, SSIM and  
VIF, as explained  in Section III. The NR metrics are GBIM (also explained  in Section 
III) and  NRPB. The latter refers to the No-Reference Perceptual Blur metric [11] 
based  on extracting sharp  edges in an image, and  measuring the wid th of these 
edges. 

6.4.2 Evaluation of the Overall Performance Gain 

Adding NSS to the metrics mentioned  above resu lts in five attention -based  metrics, 
which are referred  to as WPSNR, WSSIM, WVIF, WGBIM and  WNRPB, respectively. 
The six FR metrics, i.e. PSNR, SSIM, VIF, WPSNR, WSSIM and  WVIF, are intended  
to assess image quality ind ependent of d istortion type, and  therefore, are applied  to 
the entire LIVE database [35]. The metrics GBIM and  WGBIM are designed  
specifically for block-based  DCT compression, and  are applied  to the JPEG#1 and  
JPEG#2 sub-sets of the LIVE database. The metrics NRPB and  WNRPB are designed  
to quantify blur in images, and  they are app lied  to the Gaussian blur sub-set of the 
LIVE database. 

Figures 6 and  7 give the corresponding correlation coefficients and  RMSE values. 
The overall gain (averaged  over artifacts where appropriate) of an attention -based  
metric over its corresponding metric without NSS is summarized  in Tables I and  II. 
Both figures and  tables demonstrate that there is indeed  a gain in performance 
when includ ing visual attention in the objective metrics PSNR, SSIM, VIF, GBIM 
and  NRPB, independ ent of the metric used  and  of the image d istortion type tested . 
The actual amount of performance gain, however, depends on the metric and  on the 
d istortion type. A promising performance gain (expressed  in terms of CC) is found  
for the subset of the LIVE database d istorted  by Gaussian blur: the gain of WPSNR 
over PSNR is 2%, of WSSIM over SSIM is 7%, of WVIF over VIF is 2%, and  of 
WNRPB over NRPB is 5%. The amount of performance gain, however, is relatively 
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small for the subset of the LIVE database d istorted  by white noise: the gain (again 
in terms of CC) of WPSNR over PSNR is 0.01%, of WSSIM over SSIM is 1%, and  of 
WVIF over VIF is 1%. Differences in performance may be attribu ted  to two possible 
causes: (1) the performance of a metric (i.e. w ithout NSS) varies with the d istortion 
type, and  as such it is more d ifficult to obtain a significant increase in performance 
by add ing NSS when a metric alread y has a high pred iction performance for a 
given type of d istortion, and  (2) in the specific case of images d isto rted  by Gaussian 
blur, some metrics might confuse unintended  (Gaussian) blur with intended  blur in 
the background  to increase the field  of depth (i.e. a high -quality foreground  object 
with an intentionally blurred  background). Adding NSS reduces the import ance of 
blur in the background , and  as such might improve the overall pred iction 
performance of a metric.  
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(d ) 
 
Fig. 6. Correlation coefficients and  RMSE values (without nonlinear regr ession) of six full-
reference (FR) metrics PSNR, WPSNR, SSIM, WSSIM, VIF and  WVIF for images d istorted  by 
JPEG#1, JPEG#2, JPEG2000#1, JPEG2000#2, white noise (i.e. WN), Gaussian blur (i.e. GBLUR), 
and  fast-fad ing (i.e. FF), respectively. Note that the data  used are taken from the LIVE 
database [35]. 
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Fig. 7. Correlation coefficients (without nonlinear regression) of four no-reference (NR) 
metrics: (a) GBIM and  WGBIM for JPEG#1, JPEG#2, and  (b) NRPB and  WNRPB for Gaussian 
blur (i.e. GBLUR). The corresponding RMSE-values are given in (c). 
 

TABLE I 
Performance of PSNR, WPSNR, SSIM, WSSIM, VIF and  WVIF averaged  over all d istortion 

types for the images of the LIVE database [35] 
 

 
 

TABLE II 
Performance of GBIM and  WGBIM for the sub-sets JPEG#1 and  JPEG#2, and  performance of 

NRPB and  WNRPB for the sub-set GBLUR of the LIVE database [35] 
 

 
 

6.4.3 Statistical Significance 

In order to check whether the numerical d ifference in per formance between a 
metric with NSS and  the same metric w ithout NSS is statistically significant, we 
performed some hypothesis testing to provide statistical soundness on the 
conclusion of superiority of the attention -based  metrics. As suggested  in [38], the 
test is based  on the residuals between the DMOS and  the quality pred icted  by the 
metric (hereafter referred  to as M-DMOS residuals). Before being able to d o a 
parametric test, we evaluated  the assumption of normality of the M -DMOS 
residuals. A simple Kurtosis-based  criterion (as used  in [40]) was used  for normality: 
if the residuals had  a kurtosis between 2 and  4, they were assumed to be normally 
d istributed , and  the d ifference between the two sets of M -DMOS residuals could  be 
tested  with a parametric test. The results of the test for normality are summarized  in 
Table III, and  ind icate that in most cases the residuals are normally d istributed . 
Considering that most parametric tests are not too sensitive to deviations from 
normality, we decided  to test statistical significance for the performance 
improvement of NSS based  metrics with a parametric test for all combinations of 
objective metrics w ith d istortion types. In our particular case, the two sets of 
residuals being compared  are dependen t samples: one is from the metric itself, and  
one is from the same metric after add ing the NSS. Therefore, a paired -sample t-test 
[41] is used  instead  of the F-test, as suggested  in [38], since the latter one assumes 
that the two samples being compared  are independ ent. The paired -sample t-test 
starts from the nu ll hypothesis stating that the residuals of one metric are 
statistically ind istingu ishable (with 95% confidence) from the residuals of that same 
metric w ith NSS. The results of this t-test are given in Table IV for all metrics and  
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distortion types separately. This table illustrates that in most cases the improvement 
in pred iction performance by add ing NSS to an objective metric is statistically 
significant. The improvement reported  in  Section IV.B is not statistically significant 
only in three combinations of metrics applied  to a given d istortion type (with only 
29 stimuli). 
 

TABLE III 
Normality of the M-DMOS residuals: ‘‘1’’ means that the residuals can be assumed to have a 

normal d istribution since the Kurtosis lies between 2 and  4. 
 

 JPEG#1 JPEG#2 JP2K#1 JP2K#2 WN GBLUR FF 
PSNR 1 1 1 1 1 1 1 

WPSNR 1 1 1 1 1 1 1         
SSIM 1 1 1 1 1 0 1 

WSSIM 1 1 1 1 1 0 1 
VIF 1 1 1 1 1 1 1 

WVIF 1 1 1 1 1 1 1 
GBIM 1 0      

WGBIM 1 0      
NRPB      1  

WNRPB      1  
 

TABLE IV 
Results of t-test based  on M-DMOS residuals: ‘‘1’’ means that the attention-based  metric is 

statistically significantly better that the metric without NSS, and  ‘‘-’’ means that the d ifference 
is not statistically significant. 

 
 JPEG#1 JPEG#2 JP2K#1 JP2K#2 WN GBLUR FF 

PSNR&WPSNR 1 1 1 - 1 1 - 
SSIM&WSSIM 1 1 1 1 1 1 1 

VIF&WVIF 1 1 1 1 1 1 1 
GBIM&WGBIM 1 -      
NRPB&WNRPB      1  

 
It should , however, be noted  that statistical significan ce testing is not 

straightforward , and  the conclusions d rawn from it largely depend  e.g. on the 
number of sample points, on the selection of the confidence criterion, and  on the 
assumption of normality of the residuals. These issues are extensively d iscussed  in 
[40].  

6.4.4 Evaluation of the Influence of Image Content 

The d istribution of saliency over an image largely depends on its content, and  
therefore it makes sense to also study whether the ad ded  value of includ ing visual 
attention to objective metrics is content dependent. The effect of content on NSS is 
quantified  by calculating per image the correlation between the MSM obtained  
from experiment I and  each ind ividual saliency map (ISM) (derived  from the 
fixations of an ind ividual subject). The correlat ion between two saliency maps (i.e. 
SMA and  SMB) is often measured  by the coefficient (ρ ), as employed  in [32]. It is 
defined  as follows, with its value ranging between [-1, 1]: 
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where μA and  μB are the mean values of the SM A and  SMB, respectively. M is the total 
number of pixels in both maps. A higher value of ρ  ind icates a larger similarity 
between the two saliency maps. Figure 8 gives the ρ -values between the MSM and  
the ISM averaged  over all subjects. This averaged  ρ -value strongly varies over the 
d ifferent natural scenes, with the highest value of ρ  for ‘‘scene25’’ (ρ  =0.7549) and  
the lowest value of ρ  for ‘‘scene3’’ (ρ  =0.4521). This averaged  ρ -value quantifies 
the variation in eye-tracking behavior among human subjects when viewing a 
single stimulus. A large value of the ρ  averaged  over all subjects ind icates a small 
variation in saliency among subjects, while a small value of ρ  ind icates that the 
saliency is widely spread  among subjects. Figure 9 presents the images with the 
three smallest values of the averaged  ρ  (i.e. ‘‘set_low ’’) in Figure 8. These images 
clearly lack highly salient features, and  their corresponding MSM includes fixations 
d istributed  all over the image. Figure 10 shows the three images, with the largest 
value of the averaged  ρ  (i.e. ‘‘set_high’’) in Figure 8. These images generally 
contain a few salient features, such as the human face in the images ‘‘statue’’ and  
‘‘studentsculpture’’ and  the billboard  in the image ‘‘cemetry’’. For these images the 
saliency converges around  these features in the MSM. The d ifference in saliency 
between both sets of images is apparently d riven by image content.  
 

 
 
Fig. 8.  The correlation coefficient (ρ ) between the mean saliency map (MSM) and the 
ind ividual saliency map (ISM) averaged  over all subjects per scene. 
 

To evaluate the content dependency in the performance gain when adding 
saliency to objective metrics, we repeated  the experiment in Section IV.B once for 
the source images of ‘‘set_low ’’, and  once for the source images of ‘‘set_high’’. The 
former set contained  20 stimuli with JPEG compression, 17 stimuli with JPEG2000 
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compression, 15 stimuli with white noise, 15 Gaussian blurred  stimuli, and  15 
stimuli w ith fast fad ing artifacts, while the latter set consisted  of 18 stimuli w ith 
JPEG compression, 17 stimuli with JPEG2000 compression, 15 stimuli with white 
noise, 15 Gaussian blurred  stimuli, and  15 stimuli with fast fad ing artifacts. Figure 
11 illustrates the comparison in performance gain (i.e. quantified  by the Pearson 
correlation coefficient) between a metric and  its NSS weighted  version for the 
‘‘set_low ’’ and  ‘‘set_high’’ images separately. In general, it shows the consistent 
trend  that includ ing saliency results in a larger performance gain in the objective 
metrics for the images of ‘‘set_high’’ than for the images of ‘‘set_low ’’; more 
particu larly, for the images of ‘‘set_low ’’, the performance gain when adding 
saliency is actually non-existing. The gain of WPSNR over PSNR corresponds to an 
average increase in the Pearson correlation coefficient (over all d istortion types of 
the LIVE database) from 0.942 to 0.943 for the ‘‘set_low ’’ images (i.e. 0.1%), and  
from 0.882 to 0.910 for the ‘‘set_high’’ images (i.e. 2.8%). The gain of WSSIM over 
SSIM is 0 (from 0.976 to 0.976) for the ‘‘set_low ’’ images and  3.1% (from 0.934 to 
0.965) for the ‘‘set_high’’ images. The gain of WVIF over VIF is 0 (from 0.958 to 0.958) 
for the ‘‘set_low ’’ images and  1.6% (from 0.966 to 0.982) for the ‘‘set_high’’ images. 
The gain of WGBIM over GBIM is 1.6% (from 0.929 to 0.945) for the ‘‘set_low ’’ 
images and  7.7% (from 0.789 to 0.866) for the ‘‘set_high’’ images. There is, however, 
one exception to this trend , namely for the metrics WNRPB and  NRPB. As shown in 
Figure 11 (e), add ing saliency degrades the performance of NRPB for the images of 
‘‘set_high’’.  This may be due to the specific design of the blur metric, which is 
based  on measuring the wid th of extracted  strong edges. Includ ing the saliency of 
Figure 10 to the NRPB metric with a linear weighting combination strategy runs the 
risk of eliminating some very obvious edges in the calculation of blur, and  may 
consequently affect the accuracy of the metric.  

In summary, our find ings suggest that the performance gain in an objective 
metric when applying saliency depend s on the image content as well as on the 
specific metric design.  

 

 
 
Fig. 9. Illustration of the three images with the smallest correspondence in saliency between 
subjects (i.e. smallest value of averaged  ρ  in Figure 8). 
 



- 130 - 
 

 
 
Fig. 10. Illustration of the three images with the largest correspondence in saliency between 
subjects (i.e. largest values of the averaged  ρ  in Figure 8). 
 

 
 

(a) PSNR vs. WPSNR 
 

 
 

(b) SSIM vs. WSSIM 
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(c) VIF vs. WVIF 
 

 
 

(d ) GBIM vs. WGBIM 
 

 
 

(e) NRPB vs. WNRPB 
 
Fig. 11. Comparison in performance gain when adding saliency (quantified  by the Pearso n 
correlation coefficient) between images of ‘‘set_low ’’ (d istorted  images extracted  from the 
LIVE database [35] based  on the source images of Figure 9) and images of ‘‘set_high’’ 
(d istorted  images extracted  from the LIVE database [35] based  on the source imag es of Figure 
10). 
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6.4.5 Evaluation of the Influence of Combination Strategy 

 
 

Fig. 12. An image JPEG compressed at a bit rate of 0.43bpp, and  its corresponding NSS 
obtained  from our eye-tracking data. 
 
So far, saliency was added  to the objective metrics  based  on a linear weighting 
combination strategy. This method  is simple and  intuitive, and  has been widely 
adopted  to pool local d istortions of an image with saliency [19]-[23]. Our results of 
Section III and  IV demonstrate the general effectiveness of using the linear 
combination strategy. This strategy, however, has limitations in dealing with 
certain d istortions in more demand ing cond itions [42]. Figure 12 illustrates an 
image JPEG compressed  at a bit rate of 0.43 bpp, and  its corresponding NSS 
obtained  from our eye-tracking d ata. Due to texture and  luminance masking in the 
HVS [10], this image exhibits imperceptible blocking artifacts in the more salient 
areas (e.g. the foreground  of the white tower), and  relatively ann oying blocking 
artifacts in the less salient areas (e.g. the background  of the sky). In such a case, 
combining the d istortion and  saliency map with a linear combination strategy 
intrinsically underestimates the annoyance of the artifacts in the background ,  and  
their impact on the quality judgment. 

To quantify the effect of linearly add ing saliency in an objective metric for the 
quality pred iction of demanding images, a subset of nine images was selected  from 
the LIVE database. The images ‘‘img{9, 37, 44, 47, 63, 69, 89, 92, 105}’’ of the subset 
JPEG#1 typically represent the type of JPEG compressed  images with the artifacts in 
the more salient areas locally masked  by the content, and  with clearly visible 
artifacts in the less salient areas. The blockiness metr ics, GBIM and  WGBIM are 
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applied  to this sub-selection of the d atabase. As illustrated  in Figure 13, WGBIM 
fails in accurately pred icting the subjective quality ratings for this subset of 
demanding images, mainly due to the inappropriate integration of saliency in the 
blockiness metric (i.e. the gain of WGBIM over GBIM in CC is -59%). Hence, the 
overall gain in CC of WGBIM over GBIM (i.e. 1%) for the entire LIVE database of 
JPEG compressed  images is explained  by the fact that most of the images in this 
database exist of one of the following types: (1) images having visible artifacts 
uniformly d istributed  over the entire image, and  (2) images having the artifacts 
masked  by the content in the less salient areas, but showing visible artifacts in the 
more salient areas. Obviously, for these two types of images, add ing saliency with a 
linear combination strategy is reasonable.  

 

 
Fig. 13. Performance of the blockiness metrics GBIM and  WGBIM in pred icting the subjective 
quality rating of a subset of demanding images (i.e. img{9, 37, 44, 47, 63, 69, 89, 92, 105}) 
selected  from the LIVE database JPEG#1 [35]. 
 

So, these find ings ind icate that a linear combination strategy is not necessarily 
appropriate for add ing saliency in objective metrics. Hence, from a point of view of 
metric optimization, it is worthwhile to investigate ad aptive combination strategies 
as, e.g., d iscussed  in [23] and  [42].  

6.5 Discussion 

In this paper we evaluate the intrinsic gain in pred iction accuracy that can be 
obtained  by introducing visual attention in objective quality metrics. This 
evaluation is performed for a d iverse, though limited  set of images, and  mainly for 
d istortions that affect the images globally. The results we obtained  show that there 
is added  value in weighting pixel-based  d istortion maps with local saliency. The 
amount of added  value is bigger when extending the objective metrics with natural 
scene saliency than with saliency recorded  while the viewers assess the quality of 
the images. The actual gain in performance accuracy is highly dependent on the 
image content, on the d istortion type and  on the objective metric itself. Images with 
a clear ROI demonstrate a bigger gain as compared  to images in which the NSS is 
spread  over the whole image. In add ition, the gain is small for  objective metrics that 
alread y show a high correlation with perceived  quality for a given d istortion type.  
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Although showing clear results, the study reported  here has some limitations. 
First, as mentioned  above, the set of images used  has a fair size, bu t could  be 
extended  in order to investigate the effect of image content on the gain in pred iction 
accuracy in a more systematic way. Second , most images are degraded  with 
d istortions that affect the image quality globally, i.e. the artifacts are uniformly 
d istributed  over the entire image. In specific app lications, such as in wireless 
imaging, artifacts may occur localized , i.e. only at some random, but limited  
location in the image. Although we d id  not investigate this type of d istortions 
specifically, we expect that introd ucing visual saliency in quality pred iction metrics 
for this type of d istortions is still beneficial. At least, results reported  in [31] support 
this hypothesis.  Finally, the gain in pred iction accuracy claimed  in this paper is 
based  on eye-tracking record ings. These record ings intrinsically have some 
inaccuracy, which may limit the overall reliability of our conclusions. We have 
shown, however, that recorded  saliency d ata are highly consistent when using well -
calibrated  equipment and  a w ell-defined  protocol; the consistency is even shown 
for data collected  in various laboratories [43]. Using eye-tracking data, of course, is 
unrealistic for real-time applications. Hence, a visual attention model will be 
needed  in the actual implementation of an objective metric. Since the reliability of 
most visual attention models is still limited , we expect that the actual gain in 
pred iction accuracy that can be obtained  in a real-time application is lower than 
what we showed here, at least w ith the current soundness of visual attention 
models. In the coming years the soundness of visual attention models may improve, 
but most probably at the expense of their computational cost.  

Given the fact that the ad ded  value of having NSS weighted  objective quality 
metrics depends on the image content, d istortion type and  objective metric, an 
adap tive approach might be desirable in real-time applications to limit the overall 
computational cost. In such an approach, the performance of an objective metric 
needed  in the video chain can be optimized  off-line; i.e. for each metric the add ed  
value of incorporating saliency can be estimated  from its general pred iction 
accuracy. For those metrics that contain saliency in their extended  version a simple 
visual attention model can be used  to determine the size of the ROI in the image. 
Only when the ROI is limited  in size, the extended  version of the metric is needed . 
Otherwise, the metric w ithout saliency model can be applied  at sufficient accuracy.  

6.6 Conclusions 

In this paper, we investigate the added  value of visual attention in the design of 
objective metrics. Instead  of using a computational model for visual attention, we 
conducted  eye-tracking experiments to obtain ‘‘ground  truth ’’ visual attention d ata, 
thus making the results independent of the reliability of an attention model. 
Actually, two eye-tracking experiments were performed: one in which the 
participants looked  freely to undistorted  images, and  a second  one, in which 
d ifferent participants were asked  to score the quality of a JPEG compressed  version 
of the images. The resu lting eye-tracking d ata ind icate that there is some deviation 
between the natural scene saliency (NSS) and  saliency during scoring.  

Adding either type of saliency to an objective metric improves its performance in 
pred icting perceived  image quality. However, we also found  a tendency that 
add ing NSS to a metric yields a larger amount of gain in the performance. Based  on 



- 135 - 
 

this evidence, the data of NSS were further integrated  in several objective metrics  
available in literature, includ ing three FR metrics and  two NR metrics. This 
evaluation shows that there is indeed  a gain in the performance for all these metrics 
when linearly weighting the local d istortion map of the metrics with the NSS. The 
extent of the performance gain tend s to depend  on the specific objective metric and  
the image content. But our find ings also illustrate that for some image content and  
for some d istortion types, the linear combination strategy is insufficient and  
adap tive strategies are needed . Current and  future research includes modeling 
saliency for real-time quality assessment, and  integrating this saliency in objective 
metrics in a perceptually even more meaningful way.  
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Chapter 7 

Discussion and Conclusions 

In this thesis, we have described  our contributions to the development of objective 
image quality metrics, which are increasingly demanded  due to the fast growth in  
nowad ays d igital imaging systems. Reliably pred icting the extent to which humans 
perceive quality aspects remains an academic challenge, and  current research is still 
far from mature. Our study specifically focused  on two main research questions:  

- what is the added  value of add ing HVS characteristics to the design of 
specific NR metrics? 
- what is the added  value of add ing visual attention to the design of objective 
metrics? 

Our find ings on these two research questions are detailed  below. In add ition, we  
d iscuss our most significant achievements and  suggestions for further research in 
this area. 

7.1 Adding HVS Characteristics to NR Metrics 

The essential component of our proposed  approach towards the design of artifact 
specific NR metrics is the local add ition of human vision characteristics to the 
physical features of the artifacts. Obviously, add ing human vision characteristics to 
objective metrics of artifacts is expected  to increase their reliability in pred icting 
perceived  artifact annoyance. The HVS, however, is complex and  its functionality is 
not fu lly understood  yet. As a result, modeling the HVS functionality to its full 
extent is computationally very demanding, if possible at all. Hence, from a practical 
point of view, especially in case of real-time implementation, add ing HVS 
characteristics to an artifact specific NR metric needs to consider the tradeoff 
between accuracy and  computational cost.  In this thesis, we considered  what 
aspects of the HVS to take into account and  how to simulate them in  a 
computationally efficient way. 

Our investigations show that includ ing texture and  luminance masking improves 
the performance of the estimation of the suprathreshold  visibility of blocking and  
ringing artifacts. Comparing the pred iction reliability of a metric for perceived  
annoyance of blockiness or ringing with and  without HVS characteristics shows an 
improvement of roughly 30% in the Pearson correlation coefficient, obtained  by 
includ ing texture and  luminance masking only. At the same time, several mea sures 
are taken to maintain low complexity of the HVS-based  metric. First, the metric is 
calculated  using the luminance component of the images only (i.e. exclud ing 
chromaticity channels of the incoming signal). This simplification does not affect 
the performance of the metric, at least not for the artifacts considered  in this thesis. 
Second , the HVS characteristics are only calculated  at those locations in the image 
where the artifacts are detected . This largely reduces the computational power by 
avoid ing modeling of the HVS in irrelevant regions. Apart from limiting the 
computational cost of the metric, this step also makes the quantification of artifact 
annoyance more reliable. Detecting blocking artifacts is relatively easy, since their 
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spatial location is very regular. As a consequence a relatively simple grid  detection 
method  can be used  to ensure the location detection of blocking artifacts in all 
practical app lications. Detecting the location of ringing artifacts is more d ifficult 
and  largely image content dependent. The use of our proposed  perceptually more 
meaningful edge detection method  has shown its great benefit to the reliability of 
the ringing metric. Third , having a further reduction of computational cost in mind , 
masking of the HVS is implemented  in a d ifferent way in our blockiness metric than 
in our ringing metric. For our blockiness metric, HVS masking is simply formulated  
as a weighting coefficient that calcu lates the visibility of each detected  blocking 
artifact based  on its local image content. For our ringing metric masking is applied  
to each line segment resu lting from our edge detector, and  only those regions 
around  each line segment, in which ringing is not visually masked  are extracted . In 
line with these find ings, we can state that computational cost can be gained  when 
includ ing HVS aspects to a specific artifact metric by carefully ad apting the design 
of the metric to the specific structure of the targeted  artifact type.  

7.2 The Added Value of Visual Attention in Objective Metrics  

Researchers attempt to further improve the reliability of objective metrics by taking 
into account visual attention of the HVS. Modeling this aspect in an objective metric 
is not a trivial task, and  many d iscussions focus on two questions: first, whether 
visual attention should  be included  in objective metrics, and  second , if so, how it 
should  be done. In our investigations, we use measured  data of visual attention (i.e. 
eye-tracking data) in an attempt to make the results independent of the reliability of 
a computational attention model. As such, our investigations allow us to conclude 
whether and  to what extent the add ition of saliency can be beneficial to objective 
quality pred iction in more general terms. From our investigations, we can conclude 
that if saliency is added  to an objective m etric, it should  be the natural scene 
saliency (NSS) driven by the scene content and  not the saliency obtained  during 
scoring the quality of the scene. Apparently, the saliency or d istraction power of the 
d istortions present in the image is already sufficiently addressed  by the metric itself. 
In add ition, we can conclude that add ing NSS improves a metric’s performance in 
pred icting image quality, but the actual amount of performance gain depends on 
the specific metric and  on the d istortion type assessed . Ad ding saliency seems to be 
less beneficial for metrics that already have a high pred iction performance for a 
given type of d istortion. Furthermore, also the image content has a strong influence 
on the added  value of includ ing visual attention in objective m etrics. The 
performance gain when adding saliency seems non -existing for images without a 
clear region-of-interest. To include our find ings in a real-time implementation of an 
objective metric, a computational visual attention model instead  of eye -tracking 
data measured  off-line will be needed . In that case, we expect that the actual gain in 
pred iction accuracy is lower than what we show in this thesis, at least with the 
current sound ness of visual attention models. Therefore, it is still far from 
conclusive whether yes or no visual attention should  be added  to an objective 
metric. More research here is clearly needed . 
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7.3 Significant Findings 

In summary, this thesis has advanced  the research field  of NR objective quality 
modeling with a number of significan t find ings. We propose a novel design for NR 
metrics that quantify the perceived  annoyance of a specific artifact type. The 
essential idea behind  the approach is to precisely pred ict where humans perceive 
the specific artifacts in an image and  to limit the estimation of the artifact 
annoyance to these regions. The advantage of this approach is that relevant HVS 
aspects can be explicitly simulated  to improve the reliability of a metric, while the 
add itional cost introduced  by the HVS is minimized . Following this approach, a NR 
blockiness metric and  a NR ringing metric that have the intrinsic capability of being 
implemented  in a real-time application, are developed . The reliability of these 
metrics in pred icting quality as perceived  by observers exceeds that o f alternative 
metrics available in literature. We believe that the proposed  framework can be 
extended  to more types of artifacts, such as wireless errors, color artifacts and  
temporal d istortions. 

Measuring and  combining specific artifacts inherent in an image to determine the 
overall perceived  quality is promising, but this approach is so far strongly limited  
by the insufficient progress in the design and  combination of ind ividual artifact 
metrics. In this thesis, we demonstrate that a NR approach based  on  a neural 
network is a simple yet efficient means for pred icting overall perceived  quality. 
Neural networks are by now well defined , and  as a consequence, the issue of which 
features to extract to feed  the neural network becomes the essential component in 
the metric design. Extracting a large number of features is computationally 
expensive and  the consequent increase in the metric’s complexity may affect its 
pred iction accuracy. We have shown that using ded icated  features based  on artifact 
characteristics is highly beneficial to the reliability of the metric, while at the same 
time the computational effort is limited . For example, when targeting image quality 
assessment of a specific d istortion process such as JPEG2000 compression, the use 
of features related  to the most relevant artifact being blur enables to obtain a 
performance of the metric comparable to that obtained  with very general (pixel-
based) features, bu t the latter requires a larger effort for feature computation and  
selection. It should , however, be noted  that the neural network approach only 
provides an approximation to the overall image quality, and  it does not give any 
information on the actual perceived  annoyance of ind ividual artifacts occurring in 
the image. 

7.4 Future Research 

To design specific NR metrics, understand ing the way human beings perceive a 
specific artifact type is of fundamental importance. Unfortunately, most of the 
subjective experiments performed by the image quality community are conducted  
to obtain overall quality ratings rather than artifact annoyance ratings. In other 
words, for the design of artifact specific NR metrics more ded icated  perception 
experiments beyond  quality scoring are needed . Collecting such d ata, however, is 
more d ifficult than conducting a conventional scoring experiment, basically because 
you ask the viewer to assess the annoyance of one specific artifact while more 
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artifacts that degrade the quality of the image may be present. As a consequence, 
training the participants becomes essential, and  with th at the experiment becomes 
more time-consuming, and  so, costly. In add ition, an appropriate design for 
perception experiments that assess artifact visibility or annoyance may largely 
depend  on the type of artifact as well as on its specific application scen ario. And  so, 
the extension of our proposed  framework on the design of a NR metric to more 
types of artifacts essentially requires add itional subjective stud ies on how the 
targeted  artifact type is perceived  by the human eye. Also the datasets on overall 
image quality scores may be too limited  for the development of NR quality metrics, 
especially when a machine learning approach is chosen to attack the problem. To 
better train and  test the model, large-scale subjective tests are highly beneficial. On 
the other hand , it is important to be aware of the limitations of subjective data. The 
d iversity in image content, the amount of stimuli and  the number of subjects that 
can be included  in a subjective test are usually restricted . As a consequence, the 
performance of objective metrics usually is tested  on a limited  dataset and  no 
guarantee is given on how robust the performance of the metric is against new 
datasets. So, to validate and  compare image quality metrics, future work should  
focus on collecting and  d istr ibuting more reliable subjective datasets.  

Readers may notice that we have not addressed  some topics related  to quality 
pred iction in this thesis. One of these topics is color specific quality metrics. Our 
proposed  metrics, and  also most of the metrics av ailable in the literature, are based  
on the luminance signal of an image only. The computational complexity of a 
metric is firmly reduced  by calculating only one (i.e. the luminance) instead  of all 
three color components. In add ition, most image processing  techniques also only 
use gray-scale images, and  so, a metric based  on the luminance signal only can be 
d irectly implemented  in these algorithms. However, taking into account 
chromaticity in the development of objective metrics is worth special attention, 
since it is one of the essential components in visual perception. Some image 
d istortion types specifically introduce perceived  color artifacts, and  color 
enhancement is one of the most effective ways to a normal consumer to improve the 
image quality. Hence, introducing chromaticity related  objective metrics may be a 
valuable extension of the current work.  

Probably more important is the extension towards video quality assessment, 
which in the research community on quality assessment is still in the early st ages of 
development. Although the past years have witnessed  a transition in research 
attention from image quality to video quality, video quality research is far from 
mature. To some extent video quality can be approached  as a summation of the 
image quality of the ind ividual frames in the video, and  therefore, the development 
of objective metrics for image quality are an essential step towards video quality 
metrics. But, by only considering the quality of the ind ividual frames, temporal 
aspects of artifact perception are fully neglected  while they may have a significant 
contribution to the perceived  overall quality. Unfortunately, compared  to what is 
known about spatial aspects of human vision, our knowled ge on modeling 
temporal aspects is very limited . We believe that extend ing our work to the more 
complex problem of video quality assessment is a promising d irection, given the 
ubiquity of streaming vid eos for e.g. d igital television, the internet, and  d igital 
cinema. 
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