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Abstract
The substantial increase in traffic data offers new opportunities to inspect traffic congestion dynamics from different 
perspectives. This paper presents a novel framework for the interpretable representation and customizable retrieval of traffic 
congestion patterns using causal relation graphs, which harnesses many of these opportunities. By integrating domain 
knowledge with innovative data management techniques, we address the challenges of effectively handling and retrieving 
the growing volume of traffic data for diverse analytical purposes. The framework leverages causal graphs to encode 
traffic congestion patterns, capturing fundamental phenomena and their spatiotemporal relationships, thus facilitating an 
interpretable high-level view of traffic dynamics. Moreover, a customizable similarity measurement function is introduced 
based on inexact graph matching, allowing users to tailor the retrieval process to specific requirements. This framework’s 
capability to retrieve customizable and interpretable congestion patterns is demonstrated through extensive experiments 
with real-world highway traffic data in the Netherlands, highlighting its value in supporting diverse data-driven studies and 
applications.

Keywords Traffic congestion patterns · Highway traffic · Knowledge-guided data retrieval · Graph matching

Introduction

The increasing mass of traffic data serves as a vital foun-
dation for research and practical applications in traffic and 
transportation. Traffic state data encompass crucial informa-
tion for understanding various aspects of traffic, with none 
more significant than traffic congestion, a major nuisance 
of traffic flow. Traffic congestion is characterized by low 
speed and high vehicle density, affecting both spatial and 

temporal dimensions. Hence, congestion can be effectively 
visualized on space-time maps. For instance, a low-speed 
region on space-time maps represents that a stretch of road 
is congested for a certain duration. These two-dimensional 
images are the so-called traffic congestion patterns.

Traffic congestion data are essential for numerous appli-
cations in travel services and traffic management. One of its 
primary uses is in traffic state forecasting and arrival time 
estimation. Platforms providing traffic and travel services 
use real-time data to predict the evolution of congestion (Li 
et al. 2017, 2021) and to estimate the arrival time (Van Lint 
et al. 2005). There has been significant research interest in 
data-driven forecasting models, particularly those based on 
deep learning, which effectively utilize large datasets of traf-
fic congestion patterns. For example, Ma et al. (2017) build 
Convolutional Neural Networks (CNN) and train the model 
on congestion pattern datasets to predict corridor-level traf-
fic states in the short future. A comprehensive review of 
this field is provided by Yin et al. (2021). Besides forecast-
ing, traffic congestion data can assist road authorities in 
optimizing traffic control schemes (Calvert et al. 2018; van 
de Weg et al. 2018) and in evaluating the effectiveness of 
implemented controls (Wang et al. 2006; Kim et al. 2013). 
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Moreover, congestion patterns offer valuable insights for 
large-scale traffic management. Lopez et al. (2017) examines 
the network-level day-to-day regularity of highway conges-
tion in the Netherlands, revealing a global picture of traffic 
dynamics. In addition, although congestion patterns are usu-
ally macroscopic traffic data, they also play a crucial role in 
understanding microscopic traffic phenomena. Researchers 
can calibrate and test driving models (Calvert et al. 2011) 
and traffic flow models (Vlahogianni et al. 2005) using con-
gestion data. For instance, van Lint et al. (2020) analyze the 
relationship between highway Congestion Warning Systems 
(CWS) and congestion patterns. The authors find that differ-
ences in maximum deceleration distributions when vehicles 
enter the first stop-and-go wave in congestion can be used 
as a surrogate (un)safety indicator. These diverse uses high-
light the significant value of congestion pattern data in both 
theoretical research and practical applications.

Meanwhile, as congestion pattern data is gaining more 
attention, its growing size poses novel challenges for 
developing an effective data management and retrieval 
system. From a practical perspective, the system should 
return the desired congestion patterns based on users’ 
specific requirements on interested traffic phenomena, 
congestion scale, or congestion structures. For example, for 
studying relationships between congestion and accidents, 
heavy homogeneous congestion with one standing 
bottleneck is usually needed (Wang et al. 2009). If focusing 
on controlling multiple highway on-ramps, then large-
scale congestion patterns containing multiple interactive 
bottlenecks are ideal data. Such a data retrieval system 
can save researchers time on data acquisition and expedite 
diverse research directions.

To build a data retrieval system that can support various 
analytical purposes, two functionalities are critically 
important:

• Interpretability of pattern representation: How to 
represent high-level features of congestion patterns in a 
way that can explain underlying traffic phenomena?

• Customization of pattern retrieval: How to define a 
customizable similarity measurement between congestion 
patterns based on the interpretable representation?

Interpretability enables users to specify what patterns they 
want based on domain knowledge, and customizability 
ensures that the system can cater for different requirements 
according to users’ definitions of similarity. Many 
studies have addressed these two concerns from different 
perspectives in the literature.

In congestion pattern representation, commonly used 
features are low-level information such as colour, shape and 
texture (Andrews Sobral et al. 2013). Krishnakumari et al. 
(2017) used active shape methods to classify congestion 

patterns based on contours. Other methods, such as vari-
ational auto-encoders (Boquet et al. 2020) based on deep 
learning, compress high-dimensional images into low-
dimensional concatenated feature vectors. These methods 
result in unexplainable visual features with no conceptual 
meaning. To imbue interpretability into congestion pattern 
representations, connecting extracted features to the under-
lying meaningful traffic phenomena is important. Typical 
traffic phenomena include congestion bottlenecks, transient 
traffic, traffic oscillations (stop-and-go waves), homogeneous 
congestion (Helbing et al. 2009), etc. For example, Zheng 
et al. (2011) apply wavelet transform to recognize these phe-
nomena and analyze freeway traffic. Similarly, Nguyen et al. 
(2019) applied image segmentation methods to detect traffic 
oscillations and homogeneous congestion. The paper shows 
that compared to low-level 2D images, these traffic-specific 
elements can lead to sharper clusters of congestion patterns 
(Bay et al. 2008), revealing the regularity of highway traffic. 
Other studies focus on extracting one specific pattern feature. 
For example, Chen et al. (2004) considers all adjacent detec-
tor pairs and uses rule-based methods to recognize bottleneck 
activation. Wieczorek et al. (2010) further conducted a sen-
sitivity analysis of the parameters used in Chen’s method. 
Zhao et al. (2014) used extended spectral envelope method to 
detect stop-and-go waves. For more relevant papers, we refer 
the readers to Nguyen et al. (2019) for an overview.

Although there are many pattern representation and rec-
ognition studies, most of these methods focus on isolated 
congestion regions and separate sub-features. This approach 
results in local features that are not integrated into a cohesive 
structure, which is necessary for representing the broader, 
macroscopic evolution of complex congestion patterns. 
Such fragmentation significantly constrains the scalability 
of these representation methods, limiting their effectiveness 
in broader traffic management applications.

Compared to congestion pattern recognition, traffic data 
retrieval systems are less discussed. There are two common 
approaches in the literature, namely the text-based approach 
and content-based approach (Datta et al. 2008). The text-
based approach labels each image by keywords when 
preparing the database. By specifying query keywords, 
relevant patterns can be easily identified and retrieved. 
One advantage of this approach is the simplicity of the 
implementation mechanism. However, image annotation is 
often done manually, which is time-consuming and prone to 
errors due to a large number of available items. On the other 
hand, the content-based approach is performed by providing 
a query example image when retrieving data. The system 
automatically extracts features from this query image and 
searches for matching images from the database. We refer 
the readers to Zhou et al. (2017) for a literature review.

However, in data retrieval, “similarity” is a subjective 
concept. Different studies may require “similar” data in 
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different aspects. Existing content-based approaches tend 
to use a pre-defined, fixed similarity measurement, which 
limits their capabilities to retrieve user-defined data. To the 
best of our knowledge, how to define customizable similarity 
measures based on interpretable congestion pattern 
representations has not been discussed in the literature.

In summary, two research gaps in interpretable pattern 
representation and customizable similarity measures restrict 
the potential benefits of congestion pattern retrieval systems 
in supporting different research purposes and applications. 
This paper aims to fill these gaps by developing a novel 
methodological framework.

This paper proposes a congestion pattern management 
and retrieval framework that combines domain-knowledge-
driven interpretable congestion representation and 
customizable similar pattern retrievals. The contributions 
are summarized as follows:

• Proposition of a novel methodological framework to 
represent a congestion pattern as a causal relation graph 
of domain-specific traffic features.

• Proposition of a customizable similarity function 
between two relation graphs of congestion patterns based 
on inexact graph matching methods.

• Evaluation of the efficacy and efficiency of the built 
pattern management system using a large-scale real-
world dataset.

The paper is organized as follows. “Methodological 
Framework” section firstly presents the methodological 
framework. Next, “Causal Relation-Graph-Based Pattern 
Representation” section describes the process of extracting 
relevant features and constructing the so-called relation 
graphs as the representation for congestion patterns. The 
measurement of similarity between two patterns is presented 
in “Customizable Similarity Measurement” section. In 

“Experiments” section, we describe an extensive experiment 
for evaluating the proposed method. Finally, “Conclusion 
and Perspectives” section concludes this study and gives 
several relevant research directions.

Methodological Framework

Figure 1 illustrates the framework of the proposed pattern 
retrieval system. This methodology comprises two key com-
ponents, the so-called pattern representation and similar-
ity measurement. The pattern representation module first 
determines and extracts core traffic features (or traits) from 
a congestion pattern. Next, these features are integrated into 
a single causal relation graph to interpret high-level charac-
teristics of congestion patterns. The similarity measurement 
module determines the degree of resemblance between two 
patterns. Its inputs include two relation graphs (representing 
two patterns, one is a query pattern) and user’s customizable 
control parameters (representing what “types” of similarity 
users want to use) that define the similarity function. The 
output is a corresponding similarity score.

In the offline stage, patterns are processed into relation 
graphs and registered in a database. In the online stage, 
the system retrieves top-ranked patterns that conform best 
to the query pattern based on the user-defined similarity 
measurement. If some retrieval outcomes do not meet 
certain expectations, users can adjust control parameter 
settings and repeat the retrieval process to improve results. 
The following sections dive deeper into the framework 
after the two key components of pattern representation and 
similarity measurement are explained. To better explain 

Fig. 1  The framework for con-
gestion pattern retrieval
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how the methodology works, this data retrieval system that 
covers the congestion patterns collected on all highways in 
the Netherlands is made available online: https:// mirro rs- 
ndw. citg. tudel ft. nl/ webapp/ app- cosi/.1

Causal Relation‑Graph‑Based Pattern 
Representation

This section presents the conversion of a low-level traffic 
congestion pattern into a high-level causal relation graph. 
For clarity, we first introduce several key concepts from the 
lowest to the highest level:

• Congestion patterns: A congestion pattern represents 
the traffic state on a particular road segment over a 
certain period. In essence, it is a two-dimensional matrix 
(spatio-temporal image) of traffic states (e.g., speed, 
flow or density). A pixel value represents the traffic state 
observed at a certain location and time.

• Traffic primitives: A traffic primitive refers to a 
spatio-temporal region representing a specified well-
acknowledged traffic phenomenon or characteristic.

• Causal relation graphs: A causal relation graph is a 
directed acyclic graph whose nodes are traffic primitives 
and edges are their spatiotemporal relationships. The 
mathematical definition will be explained later.

Therefore, the pattern representation module contains two 
steps connecting the three levels. Feature extraction first 
extracts traffic primitives from original congestion patterns. 
Then relation-graph formulation synthesizes a causal 
relation-graph from extracted traffic primitives. The key 
principle for both steps is keeping the interpretability of the 
used representation.

Feature Extraction

Feature extraction aims to identify instances of widely 
acknowledged traffic phenomena from the original image 
of congestion patterns. In this work, we define three basic 
traffic primitives. They are traffic bottlenecks, wide-moving 
traffic disturbances (also called traffic oscillations in some 
papers), and homogeneously heavy congestion. These three 
components are the most important features that determine 
the evolution of traffic congestion. Their definitions and 
detection methods are described below:

Traffic Bottleneck (B)

A traffic bottleneck is a specific point or section of a road 
where traffic speeds are severely impeded or restricted, 
usually caused by over-saturated ramps. Traffic bottleneck 
detection has a large body of literature. In this study, we 
adopt the framework proposed by Nguyen et al. (2021), 
which identifies bottleneck location and activation time from 
speed maps. Furthermore, the used method also extracts the 
boundaries of upstream congestion regions. In principle, 
congestion regions are identified by applying the active 
contour model without edges (Chan and Vese 2001)—a 
well-known image segmentation technique in computer 
vision. The model formulates congestion as foreground and 
free-flowing regions as background in the segmentation 
problem. Bottleneck locations are detected by observing 
speed gradients along the direction of characteristic 
waves. Discontinuities (drops of speed upstream) of traffic 
speeds are associated with possible bottleneck activation. 
Both primary and secondary bottlenecks can be identified 
successfully using this method. We refer to the original 
paper for a complete description.

Traffic Disturbances (D)

Traffic disturbances are the observation of back-propagating 
stop-and-go waves, which occur regularly in traffic and can 
be visualised by spatiotemporal speed maps. Disturbances 
usually emerge from a bottleneck where approaching 
vehicles try to synchronise with slow traffic therein. These 
disturbances can propagate further upstream and form wide-
moving jams (WMJ). Krishnakumari et al. (2017) proposed 
and successfully applied the Active Shape Model (Cootes 
et al. 1995) to identify WMJs in congestion patterns. The 
Active Shape Model technique describes a shape by utilizing 
a mean shape and its variations derived from a set of similar 
training shapes. Consequently, when presented with a new 
shape, the fitting error of the shape model to this form can 
be employed for shape identification or classification. To 
obtain these shapes, pattern images are segmented using the 
Watershed transformation (Nguyen et al. 2019) into different 
traffic state regions. The boundaries of these regions are 
identified and clustered by the Active Shape Model to detect 
traffic disturbances. We refer to the original paper (Nguyen 
et al. 2019) for further details.

Homogeneous Congestion (H)

Homogeneous congestion represents the spreading of 
congested traffic over space and time with consistently 
low vehicular speeds. They are normally associated with 
extreme demand or accidents. The regions associated with 
homogeneous congestion are referred to as Demand–Supply 

1 Please contact the authors for a guest account.

https://mirrors-ndw.citg.tudelft.nl/webapp/app-cosi/
https://mirrors-ndw.citg.tudelft.nl/webapp/app-cosi/
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elements in Nguyen et al. (2019). This paper uses texture 
analysis to identify homogeneous congestion. Haralick 
et al. (1973) proposed to derive various texture features of 
an image using a grey-level co-occurrence matrix (GLCM). 
This method calculates different statistics to quantify the 
texture characteristics of the related image. Each number 
in the GLCM shows how frequently the related pair of 
intensities is present in the related image for a pre-defined 
(two-dimensional) offset. Some widely used features are 
energy, contrast, homogeneity, and entropy. A preliminary 
analysis suggests that the energy feature is the most 
promising for identifying homogeneous regions. Energy is 
a measure of the homogeneity of an image, defined by:

The number of grey levels in a homogeneous region is 
expected to be low, shifting the whole distribution to a small 
group of pd(i, j) ( pd(i, j) represents the frequency of having 
the co-occurrence of intensities i and j at a certain distance 
d). The more homogeneous a region is, the higher the energy 
feature gets. Thus, homogeneous congestion regions can be 
effectively identified.

Figure 2 presents an example of feature extraction. The 
top left plot shows the original speed map, a complex con-
gestion pattern. The results show that our algorithm suc-
cessfully identifies bottlenecks, homogeneous congestion 
regions, and stop-and-go disturbances. After recognizing 
these 3 fundamental traffic primitives, we can formulate 
high-level causal relation graphs.

It is useful for readers to note that there exist other 
methods that can also effectively extract desired features 
and traffic phenomena, as discussed in the introduction. The 
methods above are chosen mainly based on our previous 
research. Another point is that deep learning represents a 
potent method for identifying these traffic features. However, 
the application of supervised learning in this context is 

(1)Energy =

N∑
i=1

N∑
j=1

pd(i, j)
2

limited by the need for labelled data, and currently, there 
are no annotated datasets or pre-trained models available for 
traffic pattern recognition, to our knowledge. Our proposed 
method can also serve as an automated congestion pattern 
annotation pipeline for developing further deep-learning-
based models.

Causal Relation‑Graph Formulation

To make the high-level representation of traffic congestion 
patterns interpretable and conform to domain knowledge, 
extracted traffic primitives cannot be simply concatenated 
but must be structured by rules. In this study, we propose 
to use the so-called causal relation-graph to organize a set 
of traffic primitives into a directed acyclic graph causal 
representation. The key intuition is interpreting “Which 
bottleneck causes which type of congested region?” and 
“How does one bottleneck influence others by congestion 
propagation?”

Specifically, one node (or vertex) in our relation graph 
represents a traffic primitive. A node furthermore contains 
attributes describing the corresponding traffic primitive. In 
this study, the main attribute of a node is type (B, D, or H) 
and size, in either absolute form [km × hour] or relative form 
[proportion % of overall congested area]. The size is calcu-
lated from the area within the contour of a traffic primitive 
on the space-time map. A directed link (or edge) represents 
a spatiotemporal relation between primitives. This relation 
indicates a plausible causality if the starting point t, x of one 
primitive is associated with another primitive. For example, 
to represent many disturbances emerging from a single bot-
tleneck, the corresponding relation graph has an edge from 
the related bottleneck node to the related disturbance node, 
with the edge weight indicating the number of disturbances. 
This example is shown in the Fig. 3. This relation graph has 
a tree-like structure. For convenience, we define that the 

Fig. 2  An example of feature 
extraction
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left branch (leaf) happens earlier if one bottleneck causes a 
sequence of congestion of different types.

A formal definition of this causal relation graph is 
described as follows:

Definition 1 The causal relation graph representing a con-
gestion pattern is an attributed, directed graph G = (E,V ,A) . 
Descriptions of these sets are as follows.

Figure 3 illustrates the principle by showing the traffic pat-
tern (left) and the resulting relation graph (right). The pat-
tern shows an example of traffic congestion patterns at a 
bottleneck which is likely related to an incident. At the onset, 
traffic is heavily homogeneously congested. After some time, 
a few (minor) disturbances emerge before traffic regains 
free-flow states. The corresponding relation graph is con-
structed by identifying three main elements in this pattern. 
These include bottlenecks—B node, homogeneous conges-
tion node—H node, and disturbances—D node. Edges are 
associated with w. Specifically, the link (B–H) has a weight 
of 1 to represent 1 homogeneous region as shown in the pat-
tern, whilst the link (B–D) has a weight of 6 that shows the 
number of disturbances detected. Furthermore, each node 
consists of attributes, namely absolute size and proportion.

V = {v|v is a traffic primitive}

E = {(vi, vj)|vi (possibly) triggers vj}
A = (�, sa, sp,w) attribute set

� ∶ V → {B − bottleneck,D − disturbance,H − homogeneous congestion}

sa ∶ V → R absolute size of a node

sp ∶ V → R relative size, i.e. the proportion (%), of a node

w ∶ E → R number of connection instances represented by the edge

So far, we have explained how to construct high-level causal 
relation graphs from congestion patterns in one-dimensional 
highway roads. Compared to feature vector representations, 
this relation-graph-based method is transparent and interpret-
able. The evolution of congestion is represented by an acyclic 
causal graph describing how preceding traffic phenomena 
influence the following.

Adapting the proposed representation method to road 
networks requires significant modifications. The network 

structure introduces complex spatial dependencies in 
congestion patterns due to interactions between road links 
(Ermagun and Levinson 2019). For instance, road networks 
that include cycles could lead to cyclic congestion patterns. 
This happens when congestion at one bottleneck circulates 
back to the same point via these cycles. Therefore, the relation 
graph is not cascading but cyclic. Therefore, the structure of 
the road network must be integrated into the relation graph. 
Further research is needed to effectively represent road 
networks (Fafoutellis and Vlahogianni 2023) and incorporate 
these complex features into the relation graphs. In this study, 
we only consider congestion patterns along 1D road stretches.

Fig. 3  An example of relation graph: a a pattern of congested traffic 
at a bottleneck which causes 1 heavily homogeneous congestion and 
later 6 small-scale disturbances, b its relation graph proposed by our 

method. This method can also be applied to multiple bottlenecks and 
complex congestion patterns
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Customizable Similarity Measurement

The previous section shows how to construct an abstract 
but interpretable causal relation graph for congestion 
patterns. This section describes the second key module: how 
similarities between congestion patterns are measured based 
on those relation graphs, and how to make the similarity 
measurement customizable. Overall, a similarity function 
using adopted inexact graph matching is proposed. This 
function reflects several key aspects of a pattern, including 
the structure similarity and the proportions and frequencies 
of traffic primitives. A set of control parameters is made 
explicit as input to let users customize the desired similarity 
measurements.

Graph Matching

By representing congestion patterns using relation graphs, 
the measurement of similarities is transformed into graph 
similarity or the so-called graph matching problem. There 
are two main categories of methods, namely exact graph 
matching and inexact graph matching (also known as error-
tolerant graph matching) (Conte et al. 2004; Foggia et al. 
2014; Riesen 2015; Emmert-Streib et  al. 2016). Exact 
graph matching strictly compares two graphs by nodes or 
edges. This type of method is mainly used to match identical 
graphs. Meanwhile, inexact methods are more flexible and 
allow differences in node/edge/subgraph mappings. In 
principle, these discrepancies are tolerated with a penalty. 
This property makes inexact graph-matching methods more 
practical in real problems. It also gives users some room for 
flexibility, which is key for customizable graph matching. In 
our application, we use an inexact matching method.

Graph matching is formulated as an optimisation problem 
between 2 graphs A and B. The cost is generally defined by 
Eq. (2) (rewritten from Foggia et al. (2014)):

Note that, in inexact mapping, some nodes or edges 
of one graph might not have matches with the other 
graph. To formally describe this, a special null node � is 

(2)

C(f ) =
∑

v ∈ VA

f (v) ≠ �

CN
R
(v, f (v)) +

∑

v ∈ VA

f (v) = �

CN
D
(v) +

∑

v� ∈ VB

f −1(v�) = �

CN
D
(v�)

+
∑

e = (v1, v2) ∈ EA

e� = (f (v1), f (v2)) ∈ EB

CE
R
(e, e�) +

∑

e = (v1, v2) ∈ EA

e� = (f (v1), f (v2)) ∉ EB

CE
D
(e)

+
∑

e� = (v�
1
, v�

2
) ∈ EB

(f −1(v�
1
), f −1(v�

2
) ∉ EA

CE
D
(e�)

introduced. Accordingly, the mapping f is annotated as 
f ∶ VA ↦ VB ∪ {�} . It is injective for nodes in VA that are not 
mapped to � . For such nodes, the cost is called replacement 
cost CN

R
 . Mapping a node to � is reasonably seen as the 

deletion of that node, and the related cost is called deletion 
cost CN

D
 . Besides, edges are also needed to be mapped. Two 

similar types of mapping, i.e. replacement and deletion, 
are relevant to edge mapping and are evaluated by the cost 
functions CE

R
,CE

D
 , respectively. Note that these individual 

cost functions are specialised, which means their definitions 
depend greatly on specific applications.

Various approaches have been proposed for graph 
matching by reformulating an optimisation problem on 
the cost function C(f) such as graph edit distance (Bunke 
1997; Gao et al. 2010), graph kernels (Gärtner et al. 2003), 
iterative methods (Blondel et al. 2004; Zager and Verghese 
2008). We refer to Foggia et al. (2014) and Emmert-Streib 
et al. (2016) for an in-depth survey of these approaches. Our 
work is motivated by the iterative approach. In principle, 
similarities between nodes consider not only the two nodes 
but also their neighbour nodes. Hence, this approach, to 
some extent, combines notations of different individual cost 
functions (Eq. (2)) into one similarity function.

We propose a two-phase algorithm for measuring the 
similarity of two congestion patterns based on their relation 
graphs. Firstly, similarities of all possible pairs of nodes 
between two graphs are calculated. Secondly, the total 
similarity score of mapping all available nodes is optimised. 
The obtained score represents how similar the two patterns 
are. The following subsections describe these two terms in 
detail.

Phase 1: Nodes Similarity

The similarity between two nodes (or source nodes) is 
measured in a recursive way as motivated by Zager and 

Verghese (2008). Specifically, the similarity of subsequent 
nodes recursively contributes to the similarity score of their 
source nodes. Unlike in the initial paper where scores from 
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all possible pairs of nodes are accumulated, our proposed 
method only considers those from the best mapping between 
subsequent nodes.

The overall similarity score between two nodes, 
nA ∈ VA, nB ∈ VB from GA,GB respectively, is formulated as 
Eq. (3). The first part of the right-hand side of an equation, 
S0 , measures the similarity intrinsically based on their 
attributes (regardless of their neighbour nodes). The second 
part represents the accumulation of similarities from their 
subsequent nodes. Here, the parameter �i regulates how 
much of subsequent nodes’ similarity attributes to the 
similarity of two source nodes. Note that the contribution 
of subsequent node similarities is, to some extent, equivalent 
to the similarity of matching corresponding links (which is 
related to function CE

R
 in Eq. 2):

where CA,CB represents two sets of subsequent nodes of 
nA, nB , respectively.

Similar to the overall cost defined in Eq. (2), the base 
similarity S0 captures several possibilities of node matching, 
which depend on whether both nodes are in the original 
graphs. Accordingly, two similar evaluations need to be 
defined, namely the so-called replacement—SR(nA, nB) and 
deletion—CD(n) . Eq (4) summarises these cases.

There are two cases when matching two non-null nodes 
regarding whether they represent the same primitive type. 
If these nodes are different types, their mapping is equivalent 
to two deletion operations (see Eq (5)).

The previous setup leads to defining two basic functions, 
i.e. M(nA, nB) and CD(n) . The choices of these functions are 

(3)

S(nA, nB) = S0(nA, nB)

+ �i ×min[S0(nA, nB), argmax f∶CA→CB

∑
cA
i
∈CA

S(cA
i
, f (cA

i
))]

(4)S0(nA, nB) =

⎧
⎪⎨⎪⎩

SR(nA, nB), if nA ≠ �, nB ≠ �

−CD(nA), if nB = �

−CD(nB), if nA = �

(5)SR(nA, nB) =

{
M(nA, nB), if �(nA) = �(nB)

−CD(nA) − CD(nB), if �(nA) ≠ �(nB)

application-specific. In our proposed framework, we formu-
late these functions concerning selected attributes associated 
with nodes and edges in relation graphs. Also, these functions 
are parameterised by utilising certain parameters. The objec-
tive is to inject different perspectives when looking for similar 
characteristics from congestion patterns.

The proposed function for measuring similarity between 
two commonly labelled nodes accounts for both the resem-
blance between their attributes and the importance of their 
difference. For that, the designed function includes both their 
overlapping size and the size of the referenced node. The for-
mer acts as a proxy for the similarity of two nodes. The latter 
is used to compensate for the difference (if any) between two 
nodes. The first node is selected as a referenced node in our 
setup. The parameter �g regulates the scales of these two terms 
(see Eq. 6).

The detailed similarity between two nodes is measured 
based on the overlapping size. Note that a different function is 
possible when different properties are used for node attributes. 
On the other hand, the unmatched size is also taken into 
account as this assists in ranking the closeness of different 
pairs of nodes. In particular, a logistic function is formulated 
to translate the size difference (in terms of proportions to the 
total size) to a number (i.e. weight) that scales the overall 
similarity. The contribution of this difference is regulated by 
the parameter �s ≥ 0 (see Eq. (6)). In addition, the difference 
in the occurrences (w) of the two nodes is also dealt with. A 
’virtual node’ nE , with relevant features, a (see Equation 13) 
and w, is created as shown in Eq. (11). The underlying idea 
is to apply deletion cost CD(nE) to the occurrence difference 
when matching two nodes. Parameter �w ≥ 0 regulates the 
tolerance of this difference:

where,
(6)

M(nA, nB) =(1 − �g) ∗
�
2 × wmin × amin × L�1,�0

�
�s,

Δa∑
a

�

− CD(nE)
�
+ �g × 2 × w(nA) × a(nA)

(7)Common size amin = min
(
a(nA), a(nB)

)

(8)Size difference Δa = |a(nA) − a(nB)|

Table 1  Control parameters 
for customising similarity 
measurement between relation-
graphs

Parameter Description

�s Penalise size difference
�g Regulate the trade-off between node size match (maximised when �g = 0 ) and node type 

match (maximised when �g = 1)
�d Penalise node type difference, therefore, regulate the tolerance of having unmatched nodes
�w Penalise the differences in frequency attribute: whether to focus on overall structure or details
�i Regulate the contribution of subsequent-node similarities to the matching of two source nodes
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As overlapping sizes are used for attributing commonly 
labelled nodes, the cost of deleting a node can be justified 
by its size. A parameter �d is introduced here to regulate how 
much penalty is applied for not finding a match for a node. 
Equation (14) defines this cost:

Table 1 summarises all the control parameters and their 
meanings in customizing a similarity measurement between 
any pair of nodes.

Phase 2: Nodes Mapping

Given two relation graphs that represent two congestion 
patterns, the previous section shows how to measure the 
similarity between any pairs of nodes therein. This section 
describes how to come up with a similarity score at the pat-
tern level.

To evaluate how the two patterns match, we formulate the 
problem as an assignment problem which finds the so-called 

(9)Total size
∑

a = a(nA) + a(nB)

(10)Logistic function L�1,�0
(�, x) = 1 −

1

1 + e�1(�x)+�0

(11)

Occurrence-difference node nE =

⎧
⎪⎨⎪⎩

a =

�
a(nA), if w(nA) > w(nB)

a(nB), if otherwise

w = f𝛽1,𝛽0(𝜃w,Δw)

(12)Occurrence difference Δw = |w(nA) − w(nB)|

(13)Size selection: a(n) =

{
sa(n), for absolute size

sp(n), for proportion

(14)CD(n) = �t × a(n)

perfect matching between nodes from the two graphs. That 
assignment maximises the total scores from all pairs of 
matched nodes under the condition that one node is matched 
with exactly another one. This perfect matching (once found) 
is considered the best mapping between the two source nodes. 
The corresponding total score then indicates the similarity 
between the two patterns. An illustration of our assignment 
problem is depicted in Fig. 4. A complete bipartite graph 
is constructed to show all possible mapping of nodes from 
two graphs. The weight of each edge is associated with the 
similarity score of corresponding nodes. The solution of 
pattern mapping is the perfect matching with the maximum 
total edge’ weights. Equation (15) formulates this assignment 
approach in mathematical terms.

The assignment problem is solved by applying the well-
known Hungarian algorithm (also known as the Kuhn-Munkes 
algorithm), which was developed by Kuhn (1955). It has 
polynomial complexity, in particular, O(n3).

In summary, this section describes how to match two 
relation graphs based on the customized graph similarities. 
5 parameters ( � ) are modifiable for users to control the 
desired similarity functions from different perspectives, such 
as congestion size differences, overall congestion pattern 
structures and so on. Next, we will carry out experiments on a 
real-world dataset to evaluate the proposed method.

(15)

S(pA, pB) = argmax f∶ΩA→ΩB

∑
n∈ΩA

S(n, f (n))

where,

ΩA = VA ∪ {�,… , �}

ΩB = VB ∪ {�,… , �}

|ΩA| = |ΩB| = |VA| + |VB|

Fig. 4  An illustration of how to 
formulate the pattern match-
ing as an assignment problem 
between their node sets. Edges’ 
weights are the similarities 
between the corresponding end 
nodes using Eq. (3). A feasible 
assignment is highlighted in 
blue colour, in which one node 
is exactly matched to another 
node
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Experiments

In this section, we demonstrate the proposed framework 
to retrieve similar patterns from a collection of traffic 
congestion patterns. The analysis includes three aspects. 
First, some exemplary queries are conducted, and their 
performances are investigated concerning the corresponding 
obtained patterns. Second, we discuss the impacts of the 
control parameters (in Table  1) for reflecting different 
perspectives on similarities between patterns. Third, we 
consider the computational complexity and its implication 
in applying it to large datasets of the proposed method.

Data and Parameter Settings

To evaluate the proposed method, a corridor on the ring of 
Rotterdam is selected, which is one of the busiest highways 
in the Netherlands. The total length of the selected road is 
approximately 19 km. Figure 5 shows a broad view of one 
stretch of the road. This segment is around 4 km long and 
comprises several active bottlenecks next to the Rotterdam 
central station. These bottlenecks and downstream 
bottlenecks have caused much recurrent traffic congestion, 
therefore, it is a suitable choice for evaluating our proposed 
framework.

Speed data are provided by the National Data Warehouse 
(NDW) (ndw.nl), in which each measurement is a one-min-
ute aggregation of average speed (of all lanes at a location) 
surpassing the related induction-loop detector’s imple-
mented location. In the raw data, the space interval between 
two adjacent loop detectors is not uniform, ranging from 

60 to hundreds of meters. To have a better view of result-
ing traffic, we apply the ASM method (Adaptive Smoothing 
Method) (Treiber and Helbing 2002; Schreiter et al. 2010) 
to map speeds into uniform grids at finer resolutions both 
spatially and temporally, namely 100 ms by 30 s. We have 
processed data from the entire year of 2018 to obtain 778 
patterns, which constitute the collection of traffic congestion 
patterns for evaluating our proposed method.

For the similarity measurement, the settings for all 
parameters are given in Table 2 (as the first example). By 
setting �t, �s, and �w to 1, the total differences in type, size, 
and frequency, respectively, are fed to the logistic function 
to measure related penalties. As �i is set to 1, similarities 
from subsequent nodes are accumulated to the correspond-
ing president nodes. This, to some extent, considers pat-
tern structure. Therefore, we set �g to 0 to simplify the base 
similarity function. This leads to a full assessment of related 
attributes when matching two nodes. Chosen values of � set 
the changing point of the corresponding logistic function 
at the middle of input ranges. Note that there are no strict 

Fig. 5  A broad view of the selected corridor in the experiment. The image is taken from the Open Street Map (OSM)

Table 2  Control parameter 
settings in the conducted 
experiment

Parameter Value

�s 1
�g 0
�t 1
�w 1
�i 1
logistics L
(�1, �0) (10,−5)
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regulations in selecting these parameters. The presented set-
tings are one of many possibilities.

Retrieval Result Examples

To demonstrate the feasibility of the proposed relation 
graph in the retrieval application, we analyse some example 
queries, namely for single disturbance, stop-and-go 
congestion, homogeneous congestion and a mix of these. 
These are typical patterns of congestion that are commonly 
observed in traffic data (Helbing et al. 2009; Nguyen et al. 
2016, 2019; Krishnakumari et al. 2017).

Single Disturbance Retrieval

Figure 6 shows an example of retrieving patterns represent-
ing a single disturbance. The implemented framework suc-
cessfully returned patterns representing small disturbances 
as indicated in the query pattern. Regarding the order of 
these patterns, some might seem more similar than those in 
higher ranks. For example, pattern p4 seems more resem-
bling the query pattern than the above two patterns (in the 
order list). The reason is that by choosing areas as an attrib-
ute, we have reduced two dimensions, i.e. spatial and tem-
poral, down to only one. Therefore, introducing propagating 

Fig. 6  The 11 most similar patterns returned from searching for 
a moving disturbance (shown in the top-left pattern). Patterns are 
shown in the same resolution, hence, their size differences can be rel-
atively shown. Note that, regions of congestion at the edges of some 

patterns should be ignored because they are the results of cropping 
out the patterns, i.e. they are not included as (main) content of the 
patterns. Besides, similarity scores are given as S for each of the pat-
terns

Fig. 7  Retrieval results of stop-and-go congestion
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lengths as attributes for disturbance nodes could fine-tune 
the results further.

Stop‑and‑Go Congestion Retrieval

Stop-and-go traffic waves are another common type of con-
gestion where multiple disturbances occur over time. An 
example of retrieving such patterns is shown in Fig. 7. In 
the query pattern, a bottleneck is activated, from which 
many disturbances emerge. All obtained patterns represent 
the same traffic phenomena. By detecting both the primary 

bottlenecks and probably the minor upstream secondary 
bottleneck, along with multiple disturbances, the obtained 
relation graphs are effective for locating patterns with the 
same topology.

Homogeneous Congestion Retrieval

An example of retrieving homogeneous congestion is 
illustrated in Fig. 8. The given pattern represents signifi-
cantly slow traffic upstream of a bottleneck (probably due 
to incidents like accidents). Hence, the two most important 

Fig. 8  Retrieval results of homogeneous congestion

Fig. 9  Retrieval results of meta congestion
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components of the corresponding relation graph for this pat-
tern are a bottleneck node and a homogeneity node. Overall, 
the obtained patterns do represent the main phenomenon. 
Note that the shapes of homogeneous areas in obtained pat-
terns are not necessarily identical to those in the query pat-
tern because the chosen attribute includes only sizes.

Complex Congested Traffic Retrieval

Figure  9 illustrates an attempt to retrieve large-scale 
congestion patterns. The query pattern consists of various 
types of traffic jams, including disturbances that occur 
fairly frequently, multiple bottleneck activation, and a 
homogeneous congested area. Many obtained patterns can 
cope with these complications in the input pattern, meaning 
they have different bottlenecks that cause dense stop-and-go 
traffic. Some of them show homogeneous regions. Regarding 

the overall structure, several patterns (for instance, p1, p2 or 
p3) represent two clusters of disturbances that are potentially 
due to the activation of two primary bottlenecks.

Large-scale complex congestion patterns are rare in the 
dataset. For example, among the 778 patterns, only 29 patterns 
(around 3.5%) have congestion areas that are larger than 50,000 
[km × min]. These patterns typically span large areas and coin-
cide with morning or evening peak traffic hours, limiting their 
occurrence to at most twice a day. In contrast, smaller and more 
isolated congestion patterns are observed more frequently.

Impacts of Control Parameters

In this subsection, we analyse how control parameters 
change similarity scores and, hence, alter the ranks of 

Fig. 10  Another retrieval result of the homogeneous congestion in Fig. 8) with different parameter �
s
= 2

Fig. 11  Another retrieval result of the stop-and-go congestion in Fig. 7 by increasing �
w
 to 3
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obtained patterns. This is relevant for customizing retrieval 
results.

Size Penalty �s

�s penalises size differences between two matched nodes. 
Therefore, it regulates the importance of searching for 
nodes of similar types. To demonstrate this, we modify 
�s = 2 for the retrieval in Fig. 8. This modification enforces 
a stricter condition on the sizes of matching nodes. The 
corresponding result is shown in Fig. 10. Overall, the simi-
larity scores of returned patterns decrease. The order of 
patterns consists of various changes such as the promot-
ing of p1 (from the 2nd to the 1st place) and p5 (from the 
1st to the 5th). In addition, new patterns are also moved 
forward, such as p10.

Weight Penalty �w

�w controls the frequency of a component’s appearances. 
This is mostly relevant to disturbances in stop-and-go traf-
fic patterns. By increasing or decreasing this parameter, 
the outcomes are adjusted to be against or in favour of 
the differences in the frequencies of disturbances. Fig-
ure 11 demonstrates the impact of increasing �w on the 
same search made in Fig. 7. Even though there is not much 
(overall) difference compared to the previous result, this 
new result shows several changes in the order. The new 
ranking promotes those patterns with more similar num-
bers of disturbances as in the example pattern. The overall 
similarity scores are smaller due to the stricter condition 
of occurrence frequencies.

Unmatch Penalty �d

There may be unmatched nodes from two relation graphs. 
How much this decreases the similarity score is regulated 
by �d . By lowering this parameter, users opt for finding the 
completion of the components in the query pattern, and at 
the same time tolerate the existence of extra components 
in the target patterns. Similarly, increasing �d aims for the 
compact of target patterns concerning the given pattern. An 
example of the effect of increasing �d is shown in Fig. 12, 
which is a modified retrieval of the one in Fig. 8. Since �d 
has a higher value, those patterns with a more compact 
representation of homogeneous regions, less other extra 
regions, are advanced in the ranking list.

Structural Integrity �g

The parameters �g, �i are designed to promote the matching 
of pattern structures. A demonstration of their use is illus-
trated in Fig. 13. Figure 13a shows an example in which both 
similarities of pairs of matched nodes and their subsequent 
nodes are relatively important. On the other hand, by set-
ting �g = 0.7 , the importance of having the same structure 
becomes higher while that of node similarities is reduced. 
The obtained patterns in Fig. 13b demonstrate the effect of 
this change. Differences between components of obtained 
patterns and those in query patterns are more tolerant. As 
a result, some good similar patterns are advanced to the 
top list, e.g. p1, p3, p4, p8. Note that, increasing �i leads 
to low importance levels of node features. This, therefore, 
can result in patterns that are quite different from the query 
example despite sharing a common structure.

We have shown that users can customize the data 
retrieval by tuning the control parameters. To better 

Fig. 12  Another retrieval result of the homogeneous congestion in Fig. 8 by increasing the unmatch penalty �
d
 to 2
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explain how to choose these parameters, we provide a 
generic guidance here. We recommend fixing the size pen-
alty �s = 1 unless there are strict requirements on the size 
of each congested area. If users want to specifically study 
traffic disturbances, then the weight penalty can be set as 
�w = 2 or 3, otherwise 1. If users are interested in complex 
large-scale congestion patterns containing all features, 
choose the structural integrity �g between 0.7 and 1, other-
wise between 0.1 and 0.3. The unmatch penalty �d depends 
on how much data we have. If the congestion dataset is 

small and there are not too many similar patterns, choosing 
a lower value can give more retrieved patterns.

Time Complexity

The processing time in the proposed method is spent 
mainly on relation-graph construction and graph-similarity 
measurement. Regarding the former, relation graphs of 
all congestion patterns in the database are pre-processed 
and registered in advance. Hence, when retrieving data, 
only the example pattern needs to be parsed. The pro-
cessing time depends (almost) linearly on the size of the 

Fig. 13  The effect of the structural integrity
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corresponding congestion region (or pattern) as shown in 
Fig. 14. In addition, the majority of patterns have sizes of 
approximately under 1000 (km × minutes) and take around 
60 s to build their relation graphs.

Figure 15 illustrates the computation of relation-graph simi-
larity. This includes times for matching every single pair as 
shown in Fig. 15a and the total retrieving time in the experi-
ment dataset shown in Fig. 15b. It can be expected that the 
time complexity of the proposed matching method for relation 
graphs is polynomial w.r.t graph size (measured in the total 
number of nodes and edges). From a close examination of 
Fig. 15b, it takes less than one minute to retrieve similar pat-
terns for a pattern of up to 30 nodes plus edges in its relation 

graph. However, the waiting time can be long for large-scale 
patterns or a collection of numerous patterns. Therefore, 
to scale up the proposed method to larger datasets, further 
improvements are necessary. One approach is to narrow down 
the search space by some quick pre-processing. For example, 
as suggested by Fig. 15a, when retrieving small-scale patterns, 
a (computationally) fast filter can be applied to keep only pat-
terns with small numbers of nodes in their relation graphs.

Fig. 14  The constructing time 
of causality-graphs of all the 
patterns in the experiment data

Fig. 15  Computation time of measuring the similarity between two relation-graphs: a single pair measurement, b retrieval time from the whole 
data (of 778 congestion patterns)
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Conclusion and Perspectives

This paper presents a novel methodological framework 
for interpretable pattern representation and customizable 
pattern retrieval of highway traffic congestion data. 
We demonstrate the efficacy and efficiency of this 
framework on a large-scale traffic database that spans the 
entire Dutch freeway road network over several years. 
Our experiments reveal that the methodology allows 
for retrieving interpretable patterns tailored to users’ 
customized similarity measurements, by adjusting five 
control parameters to specify desired pattern types based 
on a query example. The scalability of this retrieval 
system is supported by time complexity analysis, enabling 
expansion to larger datasets. Most importantly, the case 
study highlights the success of our method in retrieving 
complex patterns across various scenarios, showing that 
integrating domain knowledge and causal relation graphs 
with pattern recognition techniques greatly enhances 
effectiveness.

Our proposed methodology is closely related to other 
feature extraction methods, particularly those based on 
deep learning, yet it stands apart in several ways. Deep 
learning methods are adept at precisely recognizing fun-
damental traffic primitives, such as congestion bottlenecks 
and disturbances, but they require a large, well-annotated 
dataset for training. In contrast, our training-free frame-
work offers a more feasible option when only raw conges-
tion patterns are available, particularly in the early stages 
of data collection. As data accumulates, leveraging the 
expanded dataset to train deep neural networks represents 
a promising avenue for future research. Additionally, our 
method has advantages in explainability and customizabil-
ity for data retrieval. However, as explainable AI emerges, 
deep-learning-based search approaches might provide 
equally satisfactory results in terms of customizable infor-
mation retrieval in the future.

Future research directions to enhance the proposed 
method include addressing computational time concerns. 
One approach involves initiating a rough classification of 
input patterns, effectively narrowing the search space to a 
single class. Another option is a two-step approach that com-
bines generic feature methods with the proposed approach, 
using fast-to-compute Euclidean distances to measure simi-
larities between patterns quickly. Additionally, integrating 
more relevant characteristics into the relation graph, espe-
cially traffic demand data that drives the evolution of traf-
fic congestion, could further improve the explainability of 
pattern representation and refine retrieval outcomes. For 
example, users can study the diversity of congestion pat-
terns under similar demand settings. This can give insights 
into effective traffic management.

The proposed system is a powerful toolkit to expedite 
many studies using traffic congestion data. Here, we give one 
closely relevant topic: generative AI for knowledge-guided 
rare congestion pattern generation. The proposed unified 
representation can be interpreted as a knowledge graph. 
For those rare congestion patterns based on a similarity 
measurement defined by users, using generative AI to create 
similar patterns in batches may ultimately break the barrier 
of macroscopic traffic data acquisition.
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