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A B S T R A C T   

Novel materials are the backbone of major technological advances. However, the development and wide-scale 
introduction of new materials, such as nanomaterials, is limited by three main factors—the expense of experi
ments, inefficiency of synthesis methods and complexity of scale-up. Reaching the kilogram scale is a hurdle that 
takes years of effort for many nanomaterials. We introduce an improved methodology for materials development, 
combining state-of-the-art techniques—multi-objective machine learning optimization, high yield microreactors 
and high throughput analysis. We demonstrate this approach through the optimization of ZnO nanoparticle 
synthesis, simultaneously targeting high yield and high antibacterial activity. In fewer than 100 experiments, we 
developed a 1 kg day− 1 continuous synthesis for ZnO (with a space-time-yield of 62.4 kg day− 1 m− 3), having an 
antibacterial activity comparable to hydrothermally synthesized nano-ZnO and cetrimonium bromide. Following 
this, we provide insights into the mechanistic factors underlying the performance-yield tradeoffs of synthesis and 
highlight the need for benchmarking machine learning models with traditional chemical engineering methods. 
Methods for increasing model accuracy at steep pareto fronts, in this case at yields close to 1 kg per day, should 
also be improved. To project the next steps for process scale-up and the potential advantages of this method
ology, we conduct a scalability analysis in comparison to conventional batch production methods, in which there 
is a significant reduction in degrees of freedom. The proposed method has the potential to significantly reduce 
experimental costs, increase process efficiency and enhance material performance, which culminate to form a 
new pathway for materials discovery.   

1. Introduction 

Material innovation is a stepping-stone for technology development. 
Yet, development and commercialization of new materials is signifi
cantly limited by the expense, time and experience required. The typical 
time to bring a novel material to market is 10 to 20 years [1]. For 
nanomaterials, which are touted as next generation materials for many 
industries, developmental and production-related issues severely limit 
their commercial potential [2–7]. Synthetic methods reported in liter
ature are often too expensive or too hazardous to directly translate to the 
industrial scale. Key fundamental knowledge is also lacking. Recent 

studies have revealed complex relationships between material formation 
and mass transfer characteristics, such as hydrodynamics, which change 
significantly during scale-up [8]. Furthermore, commercialization re
quires the optimization of multiple competing criteria, such as cost and 
specific performance, which are often neglected in published research 
studies and patents. The target of creating an accelerated methodology 
for the development and mass-production of new materials has become 
especially urgent in times of increasing climate change, epidemics and 
economic instability. Several national efforts have already been initiated 
to tackle this challenge, including the Accelerated Materials Develop
ment for Manufacturing Programme (SG) [9] and Materials Genome 
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Initiative (USA) [3]. In this work we present an accelerated methodol
ogy for materials development and scale-up, and demonstrate it through 
a scalable route to functional nano ZnO materials. 

Materials development and scale-up requires an exhaustive amount 
of experimentation to understand the multivariable material-processing- 
property relationship. Scaling-up production from the laboratory (mg-g) 
to the pilot (kg-ton) and production scale (multi-ton) is often heuristic or 
empirical, amplifying the complexity and expense of development. 
Although mechanistic model-based scale-up is possible, accurate kinetic 
models of nanomaterial formation are both computationally expensive 
and difficult to derive. Several variations of larger equipment must be 
purchased, lab protocols must be re-evaluated, engineering parameters 
must be determined at each stage, and the labor required increases with 
each scale and experiment. While moving from each scale in this 
segregated, sequential fashion (i.e. the “stage-gate” approach) can lower 
risk, it involves large teams, which frequently lack proper information 
exchange [10]. 

Pilot-scale trials are the most critical step in scale-up, at which 
optimal engineering parameters for large-scale production are deter
mined. Failures at the pilot scale are significantly more expensive than at 
the lab scale; work reverts to the laboratory and further investment in 
development is discouraged. Furthermore, the low availability of pilot 
production lines for nanomaterials, lack of industry technology readi
ness and poor knowledge of pilot processing amongst small-medium 
enterprises (SMEs) have recently been noted as barriers to the devel
opment of innovative material ecosystems [2]. 

Several tools have recently been developed to accelerate develop
ment. Coupling computational modelling with high-throughput experi
mentation can accelerate design and discovery [3,11]. Machine-learning 
(ML) algorithms can increase the efficiency of data analysis and opti
mization [12,13]. However, experimental applications of ML in mate
rials optimization are typically focused on batch, mg-g scale synthesis. 
Conventional batch synthesis is not readily scalable because not all mass 
transfer parameters can be preserved when scaling to larger volumes 
[14]. 

Recently, the scalability of wet chemical synthesis has increased 
through the development of new processing techniques. Annular 
microreactors [15], spinning disk reactors [16], supercritical flow re
actors [17] and helical flow reactors [18] can increase space-time-yield 
(STY – reaction yield per unit time per unit volume) by orders of 
magnitude while retaining control over nanoparticle size. Micromixers 
also provide precise control over mass transfer, which nanomaterials are 
sensitive to [19]. In contrast to conventional scaling of stirred tank re
actors by increasing reactor volume (“scale-out”), micromixers are 
typically scaled by increasing the number of reactors in parallel 
(“number-up”) to conserve mass transfer characteristics [20]. In addi
tion to the dimensionless parameters that have become the mainstay of 
scale-up methodology, hydrodynamic shear rate and residence time are 
also essential factors to consider in process intensification and scale-up 
of anisotropic nanoparticle production, for example, in the synthesis of 
layered double hydroxides [21], graphene [22] and titania nanotubes 
[23]. 

To approach the issues of scalability, efficiency and process 
complexity in nanomaterials development, a cross-disciplinary toolbox 
of acceleration techniques is needed. In this study we incorporated three 
tools: scalable processing technology, surrogate-based multi-objective 
optimization, and high-throughput testing. By doing this, we circum
vented the classical stage-gate approach of product development, which 
is often upset by repeated failures and miscommunication between en
tities at different scales, and implement an “agile-inspired” development 
methodology, seen in Fig. 1. 

To demonstrate the potential of the proposed approach in a case 
study, we developed a kg-per-day process for manufacture of highly 
active antimicrobial ZnO particles. ZnO possesses well-known antimi
crobial properties, which stem from its surface activity, release of Zn2+

and catalyzed production of radical oxygen species [24,25], which are 
correlated to its nanostructure [26,27]. As a model system, ZnO pos
sesses many of the challenges common to nanomaterial synthesis – 
morphological diversity, hard-to-scale published synthesis methods, and 
a complex performance-property relationship. Cost-effective 

Fig. 1. Development methodology utilizing multiple acceleration tools (a) and an agile-inspired development strategy (b), illustrated schematically in (c).  
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antibacterial nanomaterials also have high social importance due to the 
rise of antibiotic resistance and high risk of surface-transmitted disease 
in public areas. 

To synthesize ZnO in a scalable manner, we used annular micro
reactor synthesis (AMS), which was recently developed for the precise 
and high yield synthesis of two-dimensional materials, including layered 
double hydroxides [15] and metal-organic frameworks [28] with low 
clogging. Reagents and reactor conditions, including the shear rate and 
residence times, were varied to optimize antimicrobial efficiency and 
production efficiency. We employed the Thompson Sampling Efficient 
Multi-Objective algorithm (TSEMO); an approach for the simultaneous 
optimization of competing objectives with limited experimental evalu
ations [29–31]. Antimicrobial activity was assessed through the disk- 
diffusion test for inhibition of Escherichia coli growth, which allows a 
large number of samples to be tested in parallel. Mechanistic insights on 
ZnO synthesis with this approach were then drawn by characterizing a 
limited set of materials post-optimization. We then assessed this 
approach by comparing development time, safety, complexity and 
scalability to previously-reported continuous and batch processes. 

2. Materials and methods 

2.1. ZnO synthesis and yield 

Synthesis of ZnO was conducted in an annular microreactor [15,28], 
which was assembled with three quartz capillary tubes from VitroCom 
(Tube 1 = 0.30 mm inner diameter × 0.4 mm outer diameter × 100 mm 
long, T2 = 0.50 mm inner diameter × 0.7 mm outer diameter × 100 mm 
long, and T3 = 1 mm inner diameter × 1.2 mm outer diameter × 100 
mm long) in a “tube-in-tube” coaxial fashion. Stainless steel tee unions 
with 1/16” diameter tube compression fittings (Swagelok) with graphite 
ferrules (Restek) were used to connect the fittings stainless steel fittings 
and quartz tubes. A custom-built mount was used to precisely align the 
capillaries and fittings, which was evaluated visually using a portable 
microscope and magnifying glass. The length of the region in which 
reagents mix in the outermost tube was 50 mm. 

A KDS Legato Dual Syringe Pump using disposable plastic 10 mL 
syringes was used to deliver liquid reagents to T2 and T3. The flow of 
filtered, compressed dried air through T1 was controlled using a Sierra 
SmartTrak C50L Mass Flow controller (20 L min− 1 max, 2% accuracy). 

Reagent solutions of Zn-reagent (“A”) and alkaline reagent (“B”), 
prepared in the same solvent (either water or ethanol), were pumped 
simultaneously at equal flowrates into the outermost tubes (T2 and T3) 
of the annular microreactor while the compressed dried air flowed at 
high velocity through the innermost tube (T1). Solution A was pumped 
through T2 and solution B through T3. The resulting precipitates were 
centrifuged at 6000 rpm and rinsed three times in water or ethanol, 
ensuring that the final suspensions were of the same volume as their 
original reaction slurry. After rinsing, the solids content of the suspen
sion and the corresponding dry-equivalent solid yield were determined 
gravimetrically by evaporating 1 mL of purified slurry in pre-weighed 
glass vials at 110 ◦C. Three replicates were performed per experi
mental condition, using the average result for optimization. No unex
pected or unusually high safety hazards were encountered. 

Shear rates, pressure drops and velocities within the mixing region 
were calculated using the empirical model of Han et al. for wall stresses 
in gas-liquid annular flows for laminar and turbulent gas flows in tubes 
of 1 mm in diameter [32]. The averaged residence time (τR) was 
calculated using Eq. (1), where τR is the estimated average residence 
time (s), l is the length of the mixing region (m) and UL is the liquid film 
velocity (m s− 1). 

τR =
l

UL
(1) 

The mean rate of energy dissipation per unit mass ε (m2s− 3 or 
W⋅kg− 1) was calculated using Eq. (2), whereΔP is the change in pressure 

(Pa) and ρ is the liquid density (998 kg⋅m3). 

ε =
ΔP
ρτR

(2) 

The characteristic mixing time was then estimated from the rela
tionship between the rate of energy dissipation and micromixing time 
for vortex engulfment [33], which is given by Eq. (3), where τE is the 
characteristic micromixing time (s) and υ is the kinematic viscosity 
(m2s− 1). 

τE = 17.2
̅̅̅̅̅̅̅
υ/ε

√
(3)  

2.2. Disk-diffusion test for antimicrobial activity 

In an adaptation of the Kirby-Bauer Disk Diffusion Test [34], 
Escherichia coli (ATCC 8739-BioRev) grown in Nutrient Broth (BioRev) 
at 37 ◦C was dispersed in 0.85% saline solution to an optical density of 
0.1 at a wavelength of 600 nm. This dispersion was then spread on 
Mueller Hinton Agar (VWR) in petri dishes with sterile cotton swabs. 

30 µL of 2.5 wt% ZnO suspensions were dropped onto disks of cel
lulose filter paper measuring 6 mm in diameter and dried. These disks 
were then placed face-down onto the inoculated plates, which were then 
incubated at 37 ◦C for 16–18 h. The diameter of the clear “inhibition” 
zone around each disk was measured. A ZnO control sample, which was 
known to reduce E.Coli colony forming units by > 99%, supplied by 
A*STAR SIMTech and synthesized according to reference [35], and a 
2.5% solution of cetyltrimethylammonium bromide (CTAB – Merck), a 
known bactericide, were used as controls for each test. The average 
diameter of the control and CTAB were 9.9 ± 1.7 and 9 mm ± 0, 
respectively. 

The antibacterial performance score, which represents the difference 
between the sample inhibition area and control inhibition areas, is given 
as S = DS − DC, where Ds is the sample inhibition zone diameter and DC 
is the inhibition zone diameter. For regions with no inhibition DS =

6mm, the diameter of the filter paper. Due to the variability of the 
method, three replicates were performed for each ZnO sample. Testing 
was done at a frequency of one batch (six samples) per day. 

2.3. Experimental design and optimization 

The experimental design methodology, shown schematically in 
Fig. 2, consists of the following steps: 

1) Antibacterial performance S in the disk-diffusion agar method 
with E. Coli as test bacteria (in units of mm) and reactor time yield Y (in g 
of dry equivalent ZnO per minute) were selected as objectives. 

2) 25 papers (references [25–27,35–57]) were surveyed for wet- 
chemical precipitation methods that are compatible with annular 
microreactor synthesis to determine relevant synthesis variables. These 
synthesis variables were determined to be the zinc reagent anion (ni
trate, sulfate, acetate or chloride), the alkaline reagent (NaOH or KOH), 
zinc and alkaline reagent concentrations and mixing intensity. 

3) These variables were screened in a blocked factorial design to 
reduce the number of redundant variables and establish valid ranges on 
conditions for optimization, which amounted to 26 different synthesis 
conditions. From the results of these experiments, we saw that zinc re
agent anions and alkaline reagent cations did not have significantly 
different effects on yield and performance. Zn(NO3)-6H2O (reagent A) 
and KOH (reagent B) were selected as reagents, and water was selected 
as the solvent due to its lower cost and less hazardous nature compared 
to most organic solvents. The four selected input variables and their 
ranges are summarized in Table 1. 

4) Three iterations of the Thompson Sampling Efficient Multi- 
Objective algorithm (TSEMO) were performed. An initial set of 20 
experimental conditions was generated via Latin hypercube sampling 
(LHS) [58]. From this initial experimental dataset, TSEMO fits Gaussian 
process surrogate models (GPs) for each objective; from these surrogate 
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models, the next set of experimental conditions that would best mini
mize model uncertainty and maximize the objectives (i.e. best approx
imate the Pareto front) is computed. After these conditions are 
experimentally tested, the optimization process is repeated until a 
specified maximum number of iterations has been reached. In this study, 
the covariances of the GP models were modelled by Matérn kernels of 
the 1/2 and 3/2 orders for yield and antibacterial score GPs respectively. 
For a more detailed description of TSEMO we recommend the reader to 
consult reference [29]. TSEMO code used for optimization was written 
in MATLAB and is available at [https://github.com/Eric-Bradford/TS-E 
MO]. 

5) To further extend our approach, we have included another 
decision-making step—if the optimal conditions to reach the target ob
jectives have not been determined, the process must revert back to step 2 
and iterate. In this study, three iterations were used with 6 experimental 
conditions per iteration, were found to be sufficient. Hence, TSEMO 
chooses overall 18 experimental conditions to be carried-out. 

6) To assess the Gaussian Process (GP) model quality, leave-one-out 
cross-validation (LOO-CV) was performed, in which the model was 
trained on the experimental dataset 38 times, each time leaving one data 
point out for prediction [59]. To assess GP model predictions, we use the 
average absolute error (ε), which is defined in Eq. (4), where i is a 
sample point, ̂yi is the measured result at i, yGP

i is the GP mean result and 
n is the number of samples. The errors of LOO-CV for yield and anti
bacterial score are referred to as εLOO-CV,Y and εLOO-CV,S. 

ε =
1
n
∑n

i=1

⃒
⃒
⃒
⃒ŷi − yGP

i

⃒
⃒
⃒
⃒ (4) 

7) Materials were synthesized at 6 chosen conditions with yield 
values of 0.6 g min− 1 and antibacterial scores ranging from − 0.6 to 3.8 
mm to verify promising experimental conditions and to evaluate the 
model accuracy (i.e. “experimental evaluation”). Further, a limited set 
was further characterized with powder X-ray diffraction (XRD) and 
transmission electron microscopy (TEM). The errors of experimental 
evaluation for yield and antibacterial score are referred to as εexp,Y and 
εexp,S. 

2.4. Materials and reagents 

Reagent grade Zn(NO3)2-6H2O, Zn(SO4)-7H2O, Zn(Cl)2, Zn 
(CH3CO2), KOH (≥85%) and NaOH (≥98%) were obtained from Sigma- 
Aldrich. Deionized water (Millipore) and ethanol (96% - Singapore 
Chemical Reagent Co.) were used as solvents. 

E. Coli ATCC 8739, nutrient broth (HiMedia-MM244) and nutrient 
agar (HiMedia-MM012) were supplied by Bio-Rev. Whatman No. 5 filter 
paper (VWR), Petri dishes (90 × 14 mm), sterile swabs, culture tubes 
and sodium chloride (NORMAPUR analytical reagent) were supplied by 
VWR. 

2.5. Powder X-ray diffraction 

Suspensions were diluted in ethanol, drop-cast onto a non-reflective 
silicon wafer (100) and dried at 80 ◦C for 10 min. The powder x-ray 
diffraction pattern was collected with a Brucker D8 Advance Powder 
Diffractometer using Cu Kα radiation (λ = 1.5418 Å) at 40 kV from a 2θ 
of 3◦ to 70◦ with a step size of 0.02◦ and a scanning rate of 1.25◦ min− 1. 

2.6. Transmission electron microscopy 

Suspensions were diluted in ethanol, dropped on holey carbon 200 
mesh copper TEM grids (InLab Supplies) and dried at ambient temper
ature. Images were taken with a JEOL 2100F FETEM at 200 kV. 

Fig. 2. Schematic of the experimental design and optimization process.  

Table 1 
Optimization variables and their bounds.  

Variable name Unit Lower bound Upper bound 

Concentration, Zn2+ in A (CZn,A) M 0.1 1 
Ratio KOH: Zn2+ (RKOH:Zn) – 1.5 3 
Total liquid flowrate (QL)* mL min− 1 8 20 
Total air flowrate (QG) L min− 1 0.5 3  

* The flowrates of A and B are equal (QA = QB). 
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3. Results and discussion 

3.1. Optimization 

From the 64 experiments performed (26 screening + 20 LHS + 18 
TSEMO) an experimental Pareto front was resolved, ranging from anti
bacterial scores of − 1.7 to 5.2 mm and yields of 0.56 to 0.71 g min− 1 

(shown in Fig. 3a). If we take an antimicrobial score > 0 mm as a lower 
bound specification and target maximum yield, we find that the highest 

performing experimental condition produces ZnO with a score of 2.17 
mm and a yield of 0.70 g min− 1 (1.0 kg day− 1) in a single reactor. 

Analyzing the set of conditions used (see Fig. 3b) we see that the 
initial LHS training set provides a sufficient spread of testing conditions. 
During subsequent TSEMO iterations, the experimental conditions nar
row to the set of optimal conditions. Interestingly, CZn,A reaches a nar
row region of optimal conditions after the first iteration, indicating that 
high concentrations can produce both high performance and high yield, 
which was not obvious from previous literature review. The results of 

Fig. 3. TSEMO optimization, crossvalidation and experimental evaluation results. a) Antibacterial score and yields for each experimental iteration and the final 
corresponding Pareto fronts (modeled and experimental) b) Corresponding experimental conditions, where QL is the total liquid flowrate, QG is the gas flowrate, 
RKOH/Zn is the molar ratio of KOH to Zn, and Czn,A is the molar concentration of Zn(NO3) in reagent A. Data within the dashed lines are the results of LHC initialization 
and data within the solid lines are results of TSEMO optimization c) Modelled Pareto fronts across different TSEMO iterations and model targets for experimental 
evaluation. d) Model antibacterial scores and e) yields compared with measured yields and antibacterial scores at the same conditions, where the red dashed line is 
the ideal fit (100%) and error bars are model 95% confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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each iteration are shown in Fig. 3a. 
The modelled Pareto front (i.e. the Pareto front of the GP model 

shown in Fig. 3a) lies along the experimental Pareto front (i.e. the Pareto 
front of the experimental measurements). The modelled Pareto changes 
in shape as more data is added (seen in Fig. 3c) showing an increase in 
accuracy with each iteration. The surprising steepness of the Pareto 
front and the narrow window of optimal processing conditions illustrate 
the sensitivity of this tradeoff to processing conditions and highlight the 
importance of finely controlled process parameters in the synthesis of 
nanomaterials. 

The results of model cross-validation and experimental evaluation 
are shown in Fig. 3d and e, where the GP model predictions are 
compared with the respective measurements. The greater 95% confi
dence intervals of modelled antibacterial scores reflect the larger vari
ance in experimentation. εexp,S and εexp,Y were 2.3 mm and 0.08 g min− 1 

respectively, while εLOO-CV,S and εLOO-CV,Y were 1.5 mm and 0.04 g 
min− 1. 89% of the cross-validation results lied within the 95% confi
dence interval of model predictions (seen in the error-bars of Fig. 3d and 
e), indicating the accuracy of the model. Within the experimental 
evaluation, 4/6 of the yields and 5/6 of the antibacterial scores lied 
within the 95% confidence interval of model predictions. 

Model variance is strongly influenced by the precision of experi
mental measurements. Antimicrobial tests had an average standard 
deviation of 1.03 mm (9.8% of the measurement range). This is close to 
εLOO-CV,S and is likely due to variation in biological samples, filter papers 
and dosing of ZnO. Yield results had standard deviations of 0.04 g min− 1 

(5.8% of the measurement range), and is the same as εLOO-CV,Y, and may 
be a result of uneven sampling and loss of sample during purification. 

Cross-validation errors were likely lower than the errors of experi
mental evaluations due to the increased sample size. Discrepancies be
tween the TSEMO model predictions and experimental results may be a 
result of several factors. Model deviation likely arises from experimental 
noise as well as the DOE selected. TSEMO selects experimental points 
with dual objectives – increasing model accuracy (“exploration”) and 
optimizing outputs (“exploitation”) – which involves some sacrifice of 
global model accuracy. To increase the accuracy of the GP model, more 
data would be needed. 

Furthermore, the larger deviations in predictions of antimicrobial 
activity may be attributed to the larger amounts of biological variation 
in samples, which in turn increase the error of the model. There may also 
be other variables that affect synthesis that are not accounted for in the 
model, for example, variations in the starting materials used across 
different batches from a single supplier and the microbiologist per
forming each test. Particle characteristics were also not considered as 
model parameters within the study. The robustness of model predictions 
should be honed in the future by conducting larger numbers of experi
ments and including more variables. 

In an extension to this study, pairing model predictions with output 
targets can guide further development and scale-up trials. For example, 
if we target an antibacterial score of ≥ 0 mm, the modelled Pareto front 
can be used to predict promising process conditions with 95% certainty. 
Processing tolerances could also be incorporated for sensitivity analysis. 
For example, although yields of up to 0.7 g min− 1 can be achieved, the 
range of conditions that can achieve this may be very narrow, and a 
yield of 0.6 g min− 1 may be a safer experimental target (see Fig. 3c). The 
model yield can then be used to estimate the number of reactors needed 
for scale-up. 

In further studies it is necessary to benchmark the GP model obtained 
from TSEMO to those using traditional chemical engineering methods, 
from simpler methods like empirical numerical models to the more 
complex, deterministic models that couple computational fluid dy
namics, molecular dynamics and population balance models for crystal 
growth. 

It is important to note the limitations of the specific methods used in 
our case study. Wet chemical synthesis and microreactors are not uni
versally suitable for every new material. Process selection should 

initially be guided by practical knowledge; however, experimentalists 
still benefit from using efficient synthesis methods with well-defined 
engineering parameters early in the development. The design of exper
iment and/or statistical model used should also be tailored to the 
problem at hand. TSEMO is appropriate when multiple competing ob
jectives exist, the variables used are continuous and experiments are 
expensive to evaluate. For problems in which objectives are non
competing, variables are discrete or large datasets are readily obtained, 
the experimental problem may be significantly different and the present 
methodology can be extended through the selection of another DOE 
approach [60]. 

3.2. Synthesis and characterization along the Pareto front 

Along the synthesis conditions of the Pareto front, QG and RKOH:Zn 
vary the most, from 2.0 to 2.6 L min− 1 and from 2.03 to 2.40, (30% and 
18% of their minimum values respectively). RKOH:Zn is correlated to 
increasing yield, possibly as a result of the decreased solubility of Zn2+

in more alkaline media, but may also lead to lower antibacterial scores. 
The gas flowrate strongly influences the hydrodynamics of the reactor. 
Increasing QG generally leads to higher shear rates and lower mixing 
times. Within the Pareto front conditions, the shear rates range from 
3.2⋅105 to 4.8⋅105 s− 1 and theoretical energy dissipation rates range 
from 300 to 640 W/kg, corresponding to estimated characteristic 
micromixing times of 0.93 to 0.64 ms respectively. Calculated average 
reactor residence times varied from 13 to 29 ms, which are significantly 
greater than the characteristic micromixing times. Zinc reagent con
centrations, ranging within 0.94–0.95 M were high compared to many 
published synthesis methods, which often use concentrations in the 
range of 0.01–0.1 M Zn2+ [46,48,51]. The liquid flowrate (QL) also 
occupied a narrow range close to its upper bound, 18–20 mL min− 1. 

Materials synthesized with different antibacterial scores in experi
mental evaluation possessed significantly different morphologies and 
sizes, which are known correlators for antibacterial activity. Three 
distinct morphologies were observed – spheres, rods and stars – which 
are shown in Fig. 4a-d and in Fig. 3a (conditions I, II and III). Powder X- 
ray diffraction (XRD) of the structures confirmed that they possess the 
wurtzite ZnO structure (shown in Fig. 4e). Across all conditions quasi- 
spherical particles (~17 ± 6 nm) are observed, and are the likely pre
cursors for the larger structures (Fig. 4a). In condition I, we produce 
large, star-like aggregates>1 μm in diameter (Fig. 4b). In condition II, 
we produce nanostars (~100 nm) and their aggregates, which were 
typically less than 1 μm in size (Fig. 4c). In condition III, we produce 
short rods with length of approximately 180 nm and an aspect ratio of 2 
(Fig. 4d). These structures have all been synthesized in previous studies 
through various methods (stars in references [48,51], rods in references 
[46,50] and quasi-spherical particles in references [35,42], which allow 
us to make a clear mechanistic analysis of their formation mechanism. 

High shear reactors, such as the annular microreactor, rotor stator 
mixers [62], and other turbulent mixers [63] are known to influence the 
physical characteristics of nanomaterials, such as the particle size dis
tribution, morphology and crystallinity, through a variety of mecha
nisms [8]. Shear stress is a key driving force for mixing by increasing 
bulk convective transport and molecular diffusion rates. Nanoparticle 
formation kinetics are often rapid, for example during nucleation in 
highly supersaturated precipitation, and necessitate fast mixing to 
obtain a homogeneous particle size and morphological distribution. 

Furthermore, at high shear rates the dynamics of nanoparticles in 
fluid flow become sensitive to shear stress. Shear stress not only in
creases diffusion, which can accelerate aggregation, but can also stress 
particles, causing them to breakup [64–66], as in the case of graphene 
[22]. In the case of anisotropic particles, shear stress can influence the 
rotational diffusivity of particles, which in turn affects their alignment 
and formation of aggregate structures, affecting their size, morphology 
and crystallinity [67–69]. 

The formation of the different ZnO geometries is explained from the 
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interplay of nucleation, growth, aggregation and hydrodynamics, and 
shown schematically in Fig. 4f. Particle nucleation rates are governed by 
the drive to lower free energy - in the reactive precipitation of ZnO, this 
is driven by the supersaturation of Zn2+ and concentration of hydroxyl 
ions. Our use of highly concentrated solutions paired with fast mixing 
effectively results in a LaMer-type precipitation [70,71], in which 
nucleation and growth are segregated, and result in the formation of the 
observed, smaller quasi-spherical particles, which are the precursors for 
later growth and aggregation (step 1 in Fig. 4f). The high shear rates and 
sub-millisecond characteristic micromixing times achieved in AMS are 

essential for achieving this crystallization pathway. 
Driven to lower their surface energy, the nanoparticles then crys

tallize via oriented attachment (steps 2–3 in Fig. 4f), which is driven by 
surface reduction [42], direction specific interactions [56] and surface 
active species [54]. The concentration of hydroxyl ions is known to play 
a key role in the crystallization of ZnO nanostructures, possibly due 
variations in their interactions with specific ZnO crystal faces, where 
increasing hydroxyl concentration increases the anisotropy of growth 
along the 〈002〉 directions [46,50,51]. High shear rates also influence 
the oriented attachment of anisotropic nanoparticles in AMS, as has 

Fig. 4. Materials characterization of selected ZnO samples: TEM images of a) Precursor nanoparticles and their intermediate aggregates, b) micron-sized stars, c) 
nanostars and d) short rod assemblies. Inset in d) is a schematic indicating positions of the (002) and (00–2) planes and their charge signs on a representative crystal 
e) Representative XRD pattern, identified with the characteristic reflections of wurtzite ZnO at 2θ = 31.8◦, 34.4◦, 36.3◦, 47.6◦, 56.6◦, 62.9◦, 66.5◦, 67.9◦ and 69.1◦

[61]. (f) Proposed structure formation pathway with steps (1) to (6) discussed in the text. 
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been observed in previous studies with layered double hydroxides [15]. 
At lower hydroxyl concentrations and low shear rates (condition III), 

anisotropic particles attach to form short rods (step 4 in Fig. 4f). With 
increasing hydroxyl concentrations (conditions I and II, corresponding 
to steps 6 and 5 respectively in Fig. 4f), more anisotropic structures 
form, and higher shear rates accelerate their oriented attachment and 
aggregation. The star shape arises from the branching of rods from a 
central origin. Condition II has a higher KOH:Zn2+ ratio but a lower 
shear rate than Condition II, likely explaining in the difference in size of 
the star-shaped structures. 

The antibacterial effects of ZnO stem from a collection of physical 
and chemical interactions with E.Coli. ZnO surface defects catalyze the 
production of radical oxygenated species (ROS) and H2O2 that damage 
the cellular envelope and components, solubilized Zn2+ enters cells and 
disrupts internal processes, and ZnO nanostructures electrostatically 
interact with cell membranes, causing them to rupture [45,72]. In the 
antibacterial test used, diffusivity across the agar surface is also an 
important factor. In general, smaller particle sizes will increase the 
concentration of surface defects, speed of Zn2+ dissolution, local electric 
field strength, and particle diffusivity. Therefore, the ~ 17 nm precursor 
particles are likely a dominating source of the antibacterial activity. The 
shapes and sizes of particle assemblies then determine the surface area- 
to-volume ratio, diffusivity and resulting efficiency of the material. 
Smaller and less dense structures, such as the short rods and nanostars 
possess both higher surface-area-to-volume ratios and higher diffusivity, 
resulting in their higher antibacterial activity. With higher relative 
surface areas, smaller particles possess an increased number of active 
surface sites for the catalytic production of ROS. Smaller particles will 
also be more sensitive to Brownian forces, and will thus diffuse more 
quickly in liquid mediums to interact with a greater number of bacteria. 
The electrostatic field is also enhanced by morphology; for example, the 
internal electric field of ZnO is generated from the positive charge 
(terminal Zn2+) of the (002) plane and the negative charge (terminal 
O2− ) of the (00–2) plane, respectively (inset, Fig. 4d); it is thus observed 
that the antibacterial activity of the short rods (3.0 mm, Table 2) is 
higher than those of the nanostars (2.7 mm, Table 2) and large stars 
(− 2.0 mm, Table 2). 

It is important to note that, in this study, only the antimicrobial 
performance and yield were modelled as functions of synthesis condi
tions. In comparison to typical materials science studies, the amount of 
physical materials characterization was purposefully light; TEM and 
XRD were only performed on select samples on the Pareto front. While 
this produces less “fundamental” knowledge initially, it identified 
important relationships between the materials and processing condi
tions that can be further studied. Sufficient data to correlate particle 
characteristics like size and morphology with yield in annular micro
reactor synthesis were not collected in this analysis. This is the scope of 
future studies. 

Particle characteristics are not considered by the TSEMO modelling 
approach, as the study’s objectives are only to target high antimicrobial 
activity and high yield. Inclusion of data on particle characteristics may 
be essential to improve the model and further examine why deviations 
occur. For such a specific study on particle characteristics, one would 
need to modify the TSEMO algorithm to accept particle attributes as 
outputs, and select objective targets related to those. The accuracy of 

modelled predictions would then also depend on the accuracy of particle 
measurements and the experimentalist’s ability to control synthesis 
parameters. 

For example, to examine the trade-off between yield and particle 
morphology, quantitative measurements of the particle shapes must be 
taken from each experiment. Both yield and particle data would then be 
taken as an input to the algorithm, which would then output a model for 
the relationship between the two objectives, in addition to suggestions 
for future experiments that could increase the accuracy of the model and 
optimize yield and particle size with respect to the desired targets. 

3.3. Development acceleration and scalability analysis 

Compared to conventional DOE techniques for multi-factor prob
lems, the machine-learning approach has significant advantages. Many 
experimenters use an “Edisonian” or empirical screening approach 
where only one factor is varied in an experimental run. This is ineffi
cient, confounds the roles of different factors, and can lead to misiden
tification of maxima [12]. Factorial designs, which primarily focus on 
exploring the experimental parameter space, are better able to establish 
correlations and reduce confounding, but the number of experiments 
increases exponentially with the number of factors and levels. With two- 
or three-level factorial designs, non-monotonic relationships are also 
difficult to resolve. Fractional or “blocked” factorial designs can reduce 
this issue if some relationships are found to be insignificant, though at 
the risk of confounding and reduced resolution. For this reason, we only 
used a blocked factorial design for an initial screen to reduce the number 
of potentially redundant variables and identify ranges for conditions to 
optimize. 

Response surface methodologies like TSEMO are better suited for 
multivariable optimization problems [73]. Surrogate-based optimiza
tion using GPs is well-suited for multivariable optimization for moderate 
input dimensions since GPs are multivariable regression models. For 
example, in the original algorithm paper [29] it is shown that the al
gorithm shows good performance for up to 8 inputs. Randomized se
lection of the initial training dataset provides a better distribution of 
experimental points with fewer experiments and can identify non- 
monotonic relationships. Then, sequential optimization algorithms 
(gradient-based or otherwise) compromise exploration of search space 
and exploitation of promising areas to more efficiently lead to optimal 
conditions [60,74]. 

For the optimization of four continuous variables, as seen in Fig. 5a 
and b, a 3-level factorial design, requiring 34 = 81 experiments (20.25 
days), gives a sparse set of experimental conditions, which would not 
identify the optimal conditions. A 4-level factorial design, requiring 44 

= 256 experiments (64 days) would give a better distribution of con
ditions that may contain the optimum, but would sacrifice resolution 
within the optimal region. Our approach requires 64 experiments (16 
days) to both identify optimal conditions and the Pareto front, signifi
cantly accelerating the development process. 

Although high-throughput disk-diffusion testing increases uncer
tainty in test results, it reduces the experimental time needed to char
acterize material. Quantitative analysis via counting of colony forming 
units significantly increases experimental time because it requires up to 
three days of culturing per batch and significantly more labor due to the 

Table 2 
Selected synthesis conditions and material characteristics.  

Condition CZn,A 

(M) 
RKOH: 

Zn 

QG (L 
min-1) 

QL (mL 
min-1) 

Antimicrobial score 
(mm) 

Shear rate 
(s-1) 

Yield (g 
min-1) 

Structure Residence Time 
(ms) 

Characteristic 
micromixing time (ms) 

I 0.94 2.3 2.6 18.0 -2.0 4.1⋅10-5 0.56 Stars (>1 μm) 16 0.74 
II 0.95 2.4 2.0 18.0 2.7 2.9⋅10-5 0.50 Nanostar (<1 μm) 19 1.0 
III 0.95 2.0 1.9 18.0 3.0 2.7⋅10-5 0.48 Short rods (~180 

nm) 
19 1.1 

I,II,III – – – – – – – Quasi-spherical 
(~ 17 nm) 

– –  
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increased cell culturing and colony counting [75]. The cumulative 
experimental times for each DOE method and test method for gram scale 
optimization are shown in Fig. 5c. 

Compared to conventional laboratory synthesis techniques, AMS of 
antibacterial ZnO is significantly more efficient. The space–time yield, 
reported here as the yield divided by solvent volume, is 62.4 kg day− 1 

m− 3, which is 102 – 105 times greater than other reported methods, 
shown in Fig. 6a, and described in Table 3. Operating at room temper
ature reduces power consumption, compared to reported continuous 
methods and decreases process hazards. Using water as a solvent also 
reduces process hazards and material costs. Process efficiency could be 
further increased by the removal of byproduct potassium nitrate (which 
can be resold for a range of industrial uses) and recycling of solvent, 
though further technoeconomic analysis would also be necessary to 
make this case. 

Projected scaling up of AMS of ZnO via number-up presents signifi
cant advantages, primarily from the reduction of complexity. This is 
illustrated in a comparison of hypothetical scaling scenarios with stirred 
tank reactors (STRs), the most common reactor for bottom-up wet syn
thesis, as shown in Fig. 6b and Table 4. In g day− 1 synthesis, AMS and 
stirred tank reactors require the optimization of the same number of 
variables (7). When shifting to kg day− 1 synthesis, it is necessary to 
define engineering and scaling parameters in a STR, which is typically a 
heuristic and experimental process if they have not been defined 
through extensive simulations. For many materials produced in the 
typical magnetically stirred flask, these parameters are undefined. 
Dimensionless parameters, such as Reynolds number (Re), Nusselt 
number (Nu) and Damköhler number (Da) describe the dynamics of 
mass transfer, heat transfer and reaction kinetics, which affect material 
formation and should stay as constant as possible to retain process 
consistency during scale-up [76]. These parameters are functions of the 
physical geometry and operating conditions of each unit operation, such 
as the reactor size and agitator method. In our scenario, we have 

considered six additional variables, shown in Table 4. In this case study, 
AMS was able to achieve kg day− 1 scale production rates using a single 
reactor stage, in which engineering parameters, such as the mixing rate 
and reactor geometry are already well defined. Temperature regulation 
in the single reactor is not necessary because the reaction is not strongly 
exothermic, and the compressed dried air stream is a sufficient tem
perature control agent. 

When translating stirred tank reactors to the ton day− 1 scale, the 
reactor geometry, agitation and maintenance (cleanout) parameters 
must be defined again, although the previous identification of engi
neering parameters from the kg day− 1 scale reduces the difficulty 
[76–79]. On the other hand, AMS scales to ton day− 1 by simply multi
plying the number of reactors, which can be achieved using proper 
manifolding techniques (for which established design rules are known) 

Fig. 5. Comparison of selected conditions across (a) RKOH:Zn and CZn,A and (b) QL and QG from factorial designs and TSEMO (using the LHS initial dataset). (c) 
Comparison of cumulative experimental time between different DOEs and antibacterial test methods. 

Fig. 6. Comparison of AMS with other synthesis methods: (a) space time yields of different reported techniques for nano-ZnO synthesis vs synthesis temperature, (b) 
scale-up complexity in terms of development dimensions for the scale-up of stirred tank reactors and numbering-up of AMS. Lines are added to guide the eye. 

Table 3 
Description of the reported reactors used for batch and continuous nanoparticle 
ZnO synthesis.  

Reference Reactor description 

Liu et al., 2004 [46] Covered plastic container 250 mL in volume under 
constant stirring. Reactor geometry and agitation method 
are unreported. 

Sondergaard et al., 
2011 [51] 

Specially designed supercritical fluid synthesis apparatus. 
Geometry is unreported. 

Oliveira et al., 2003  
[48] 

Double walled water-jacketed hemispheric reactor, 1.5 L 
capacity with four Teflon baffles, 45 deg tilted blade 
propellor @ 500 rpm. Impeller blade dimensions and 
immersion depth are unreported. 

Sue et al., 2003 [52] T mixer in an elbow configuration, consisting of a 2.38 mm 
inner diameter nozzle for a Zn(NO3)2/KOH sol, a 2 mm ID 
nozzle for supercritical water, and a 2 mm inner diameter 
reaction tube (0.51 cm3 volume). 

Wu et al., 2007 [35] Vigorously stirred flask with refluxing. Geometry or 
dimensions are unreported.  
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and machining tolerances [20,80]. This allows precise conservation of 
engineering parameters from the g and kg day− 1 scale, and only requires 
the design of temperature control and optimization of a maintenance 
schedule. In total, for the hypothetical scale-up scenario, scaling AMS 
involves 10 dimensions compared to 20 for stirred tank reactors, halving 
the complexity. AMS may also be scaled via increase of tubing diameter, 
scaling the flowrates and tubing length to conserve shear rates, micro
mixing times and residence times. Targeting the correct flowrates and 
tube dimensions for parameter conservation may be done by hydrody
namic modelling or experimentally. 

The costs of scaling may also be reduced through a number-up 
strategy. In numbering-up, a single reactor is scaled by increasing the 
number of reactors and operating them in parallel. This can be achieved 
through a range of techniques, most commonly with the use of a single 
pump and distribution manifolds [20]. Conventional stirred tank reactor 
costs scale nearly linearly with reactor volume [81] and are sensitive to 
supplier lead times and material availability. If single reactors can be 
mass produced with precision injection moulding processes or additive 
manufacturing, reactor costs may decrease per unit capacity. Further
more, numbering-up using prefabricated modular components is well 
suited for distributed chemical processes and has an accelerated learning 
ratio [82], which could further lower costs in some business models. 

Numbering-up of AMS to the ton scale is another important mile
stone to be achieved, which requires precision manufacturing and 
manifold design, and is the topic of current research. Additive 
manufacturing and injection molding are potentially viable techniques 
for mass production of modular annular microreactor components. The 
use of such equipment can enable rapid reactor prototyping, standardize 
development practices in different laboratories, and simplify 
distribution. 

4. Conclusions 

In summary, the pairing of annular microreactor synthesis, the 
multiobjective optimization algorithm TSEMO and highthroughput 
testing for the development of antibacterial ZnO has yielded three sig
nificant results. An optimized process for 1 kg per day production of a 
material with activity comparable to a commercially available antimi
crobial and conventionally synthesized nano-ZnO was developed in less 
than 100 experiments. A brief analysis of the materials synthesized in 
these trials suggested that nanostar and nanorod morphologies may 
emerge from the assembly of nanoparticle precursors, and that the 
interplay of surface area, anisotropy and particle size influence 

antibacterial activity. Finally, a scalablility assessment was conducted, 
and showed how scaling-up of AMS via numbering-up may reduce the 
complexity of scaling. This study also opens new grounds for further 
improvements in the area. Validation should be performed with tradi
tional chemical engineering techniques for crystal growth simulation 
and process scale-up. The accuracies of models produced using TSEMO 
should also be improved, particularly in regions of high yields (>0.5 g 
min− 1) and where there is a steep Pareto front. Computational methods 
for the automated screening of literature [83] and simulation of struc
tures can accelerate the initial efforts of process design. The same 
methodology could also be applied to downstream processes, particu
larly in purification and product formulation, where multi-step optimi
zation methods may be required. 
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