
Aerosol
dynamics in
human lungs
Modelling deposition
fractions under different
respiratory conditions

R.A. BraasD
el
ft

U
ni
ve
rs
ity

of
Te

ch
no

lo
gy

Aerosol dynamics
in human lungs
Modelling deposition fractions under different

respiratory conditions

by

R.A. Braas

to obtain the degree of Bachelor of Science

in Applied Mathematics,

and Applied Physics,

at the Delft University of Technology,

to be defended publicly on Monday July 20, 2020 at 09:00.

Student number: 4449215
Project duration: September, 2019 – July, 2020
Thesis committee: Prof.dr.ir. C. Vuik TU Delft, supervisor

Prof.dr. S. Kenjereš TU Delft, supervisor
Dr.ir. R. van der Toorn TU Delft
Assoc.Prof.dr. J.M. Thijssen TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Abstract

Knowledge of particle deposition is important in clinical settings or when discussing environ-
mental effects of aerosols on humans. Particle deposition in the human respiratory tract is
determined by breathing patterns and lung morphology, as well as particle properties and
deposition mechanisms. In this study we develop a 1-dimensional model that numerically solves
the general dynamic aerosol equation in the human respiratory tract. The model can be used to
calculate deposition fractions for a range of initial parameters. We use Weibel’s morphometric
model to describe the lung geometry.

The model is validated by comparing it with previous numerical results, and running sensi-
tivity tests to examine its consistency with parametric variations. The model proved to be
computationally efficient, requiring just seconds to run a simulation. We use this to perform
a number of parametric studies, most notably changing the tidal volume and the breathing
rate. For both of these, an increase in either the volume or the rate decreased the deposition
fraction across the spectrum of particle sizes, apart from at the tails of the distribution. We
also examine the effect of particle density on the deposition fraction, which increases with an
increasing density. The source code is published along with this thesis, allowing anyone to
perform arbitrary parametric studies of their own.

iii

Contents

1 Introduction 1

2 Theory 3
2.1 Lung model . 3
2.2 Aerosol dynamics . 4

2.2.1 Deposition velocity . 5
2.3 Derivation of the velocity field . 7
2.4 Calculating the deposition fraction . 8
2.5 Aerosol parameters and other constants . 8
2.6 Breathing patterns. 9

3 Numerics 11
3.1 Developing the numerical scheme . 11
3.2 Boundary conditions . 13
3.3 Matrix form of the discretisation . 13
3.4 Consistency, stability and convergence . 14

3.4.1 Consistency . 15
3.4.2 Stability . 15

3.5 Miscellaneous observations . 17
3.5.1 The CFL condition . 17
3.5.2 Upwind vs central difference. 17
3.5.3 Nonuniform grid spacing . 17
3.5.4 Numerical calculation of the velocity field. 18

4 Model verification 19
4.1 Comparison with analytical solution . 19
4.2 Comparison with literature. 20

4.2.1 Velocity profile. 20
4.2.2 Concentration profile . 21
4.2.3 Deposition fraction . 22

5 Parametric studies 25
5.1 Sensitivity runs. 25

5.1.1 Geometry rescaling . 25
5.1.2 Weibel’s lung geometry or Yeh and Schum’s 26
5.1.3 Time-dependent vs fixed geometry . 26

5.2 Deposition fractions under eupnoea and hyperpnea 27
5.3 The effect of aerosol density . 28

6 Conclusions and recommendations 31

References 34

v

vi Contents

A Morphometry data 35

B Steady state verification 37

C Source code 39
C.1 constants.py . 40
C.2 model.py . 49
C.3 solution.py . 55
C.4 terms/advection.py . 59
C.5 terms/diffusion.py . 61
C.6 terms/deposition.py . 63
C.7 results.py . 68
C.8 exact.py . 81

1
Introduction

Aerosols are by no means a modern invention. They have been around since before humans
inhabited the earth, and indeed, the English language has a lot of words to describe aerosol
groups: dust, mist, fumes, smoke, etc. Aerosols are small particles suspended in air or other
gases, so the term not only encompasses the environmental phenomena described above, but
also deodorants or cough droplets. People have studied aerosols for a long time, but recently,
they have gained the eye of the public when discussing the environmental effects of soot in
large cities, or when discussing the infectiousness of COVID-19 through aerosols.

The focus of this study is to create a computational model of aerosol deposition in the lungs.
Knowledge of aerosol deposition and distribution in the lungs is of importance when studying
environmental effects, or in clinical settings. There is a lot more flexibility in computational
models as opposed to empirical studies of aerosol deposition - it is possible to tweak every
parameter to perform parametric studies on this deposition fraction. The drawback is of
course, that numerical models need extensive empirical verification before the results are
deemed trustworthy enough. But where the application of empirical models is restricted to the
particular experimental conditions for which the model was tested, numerical models can vary
the lung conditions, physiology of the patient, and even the morphology of the patient’s lungs.
It is suddenly trivial to model any type of patient, where in a lab setting this could be more
difficult to control.

The flexibility of computational models extends to more than just parametric variation. Many
considerations must be made in their creation, such as choosing whether to model 1 or 3
dimensions; choosing a stochastic or deterministic approach; which physical effects to take into
account; which numerical method to use; up to even choosing to model the particles using
Eulerian or Lagrangian mechanics. The present study attempts to recreate a one dimensional
model developed by Mitsakou, Helmis, and Housiadas [1]. Current 3-dimensional models
have the advantage of providing a complete description of aerosol dynamics, but have the
disadvantage of requiring a lot of computational resources. The 1-dimensional approach allows
us to quickly determine the deposition ratios for particles of different sizes under a range of
respiratory conditions.

We will use this model to examine the effect of various parameters on the deposition fraction.
Most notably, we will vary the breathing conditions like the tidal volume and the breathing rate,
to see the effect on the total absorption. This will be used to shine light on the infectiousness
of COVID-19 through aerosols and the health hazards of smoke inhalation during the bushfires

1

2 1. Introduction

that devastated Australia in the summer of 2019-20.

Chapter 2 introduces the mechanics behind aerosol dynamics, and a description of lung
morphology and lung models. The numerical method used to model the aerosol dynamics is
designed in Chapter 3, along with an analysis of its convergence. After the relevant theory
and numerics are introduced, validation of the model will be treated in Chapter 4. Extensive
verification is needed to ensure that the model accurately describes aerosol deposition under
a range of conditions, which will be the subject of Chapter 5. Here, we perform parametric
studies to analyse the effect of different breathing conditions on the deposition fraction. Finally,
Chapter 6 summarises the findings and provides some recommendations for further research.

2
Theory

The goal of this chapter is to introduce the underlying theory behind calculating aerosol
deposition in the lungs. We first introduce the lung model, after which we will discuss the
behaviour of aerosol dynamics. Calculations of deposition fractions and the velocity field is
discussed next, and this chapter concludes by specifying various constants used in the model,
and introducing the medical terminology required to understand the parametric studies in
Chapter 5.

2.1. Lung model
The model used in this research is the Weibel model “A” [2], which describes the lungs as a
series of bifurcations. Lungs are composed of a series of tubular branches, starting with the
trachea (windpipe), and ending with the alveoli. The Weibel model has 23 generations: the
trachea (generation 0) splits up into two bronchi (generation 1), and this process continues all
the way up to generation 23 (alveoli). The model is symmetric, and therefore easy to describe
using a 1-dimensional model.

A schematic of the model is shown in Figure 2.1. The model consists of purely conducting
airways for the first 16 generations. Generation 16 marks the start of the transitional section,
and from generation 16 onward, the lungs become alveolated and contract and expand due to
breathing mechanics. The size of the later generations is very small, but because the model
bifurcates at every generation, the number of alveolar sacs in the last generation is 8 388 608.
This also means that the volume and surface area of the lungs greatly increases towards the
end. This is why this type of model is also known as the “trumpet” model, and an illustration
of this can be found in Figure 2.2.

The parameters that define the Weibel model are the generation length, the generation diameter,
the branching angles, the gravity angles, and the number of airways per generation. Both the
generation length and the diameter decrease with the generation number, while the number
of airways per generation obviously increases. The branching angle is the angle that the next
generation makes with the previous, and it varies from 20° to 30° for the first generations, and
is around 45° for the later generations. The gravity angle is the angle the airway makes with
the gravity vector (when standing upright) and ranges from about 40° to 60°. In this research,
the data for the Weibel model “A” is obtained from [3] and is included in Appendix A.

Note that this model does not account for the nose or mouth and its accompanying structure.
If the nose or mouth need to be modelled, it is possible to add a generation before generation 0,

3

4 2. Theory

generation

0

1

2

3

4
5

Figure 2.1. Schematics of hierarchy by Weibel’s model. The bifurcations continue until the 23rd
generation.

as has been done in [1] for example.

Figure 2.2. Illustration of the one-dimensional “trumpet” model. Image taken from [4].

2.2. Aerosol dynamics
Aerosol dynamics are governed by a number of physical processes, and we can mathematically
model these to get a description of the complete particle distribution. The models describing
these dynamics can be split into three different groups: particle movement, particle-surface
interaction, and particle-particle interaction. The main processes describing particle movement
are Brownian diffusion and advection, which describe how particles move en masse. Brownian
diffusion also describes how smells disperse through the air, whereas advection is usually
associated with wind. Apart from these two main processes, particle movement can also arise
from electric fields or temperature gradients.

The second group, particle-surface interaction, models the situation in which particles either
deposit on a surface, or release from it. In this research, we are particularly concerned with
particle deposition on the walls of the lungs.

The third group is comprised of processes with particle-particle interactions. This is primarily
coagulation, where aerosols collide with each other to form larger aerosols (or split to form
smaller ones). Other processes included are growth laws, in which other particles attach to the
aerosol in a manner known as gas-to-particle interaction.

2.2. Aerosol dynamics 5

These groups of processes can be summarised in an equation known as the Aerosol General
Dynamics Equation (GDE). This equation describes how aerosols behave as a group. The
one-dimensional form of the equation reads [1]

∂

∂t
(AT qi) =− ∂

∂x
(AAuqi) + ∂

∂x

(
ATDeff

∂qi
∂x

)
− VdΓqi

+
(
∂

∂t
(AT qi)

)
coagulation

+
(
∂

∂t
(AT qi)

)
growth

.
(2.1)

Our goal is to determine qi(x, t) for all x (the position in the respiratory tract) and t (the time
coordinate). The index i iterates over the different particle sizes, making it possible to model
particles of different diameters, while including particle-particle interaction for particles of
different sizes. The equation also includes AA and AT , which are the airway cross-sectional areas
(of all airways). The difference between the two terms is that AT includes a time dependency
for the alveolated generations, which vary in diameter with time.

The first term on the right side of (2.1) is the advection term. This describes how particles
behave under an external flow field. In our case, this external field is the velocity of the air u
traveling through our lungs due to breathing. It is the dominant force for aerosol migration, and
it reverses sign every breathing cycle. Advection is modelled to occur only in the conducting
part of the airway, which is why AA is used for the advection term (advection does not occur
through the alveolar part).

The second term is the Brownian diffusion term. This arises from fluctuating forces exerted by
surrounding molecules, and the random motion results in a net movement of aerosols against
the direction of the concentration gradient. The strength of the diffusion is described by the
effective diffusion coefficient: Deff, and it also depends on the particle size.

The linear term −VdΓqi describes the deposition of particles into the lungs. Deposition is an
interaction in which particles collide with the surface (the airway walls) and are absorbed. This
is the term we are most interested in, and it depends on the deposition velocity Vd, which will
be described in Section 2.2.1. The parameter Γ = nπdT is the wetted perimeter, which depends
on the number of airways per generation n and the airway diameter dT . In essence, the amount
of deposition depends on the perimeter of the airway, the deposition velocity and the local
concentration of aerosols.

The coagulation term describes particles changing their respective particle size group by
combining (or splitting) with other particles. It results from particle-particle interactions and
is one of the ways the particle sizes are interdependent. Particle coagulation also leads to a
reduction in the overall concentration of particles.

Unlike coagulation, which modifies the size distribution of aerosols, gas-to-particle conversion
increases the aerosol mass concentration, while also affecting the size distribution. The latter can
be modelled by so called “growth” laws and allows for calculating the changing size distribution
function. There are a number of growth laws, for example: molecular bombardment, surface
reaction, droplet-phase reaction. The growth law can be calculated using Mason’s theory [5].
This process, along with particle coagulation, will not be considered in this research.

2.2.1. Deposition velocity
The deposition velocity is the velocity of the aerosols that deposit on the surface of the
airways. It is comprised of three separate effects: gravitational settling, Brownian diffusion,
and impaction due to curves in the lung bronchi and bronchioles. This is explained in detail
in [1] and is included here for completion.

6 2. Theory

Gravitational settling The simplest of the three is the deposition due to gravitational
settling. Like all objects in a gravitational field, aerosols are also affected by it, and it is written
as follows:

Vs = us sin θ. (2.2)

Here the velocity us is determined from Stokes’ law, and the angle θ is the angle the airways
make with the gravity vector. We assume that the particle terminal velocity is reached instantly,
and then the velocity us follows from a balance of forces of the gravitational force and the
Stokes’ drag force [6]

0 = mg − 3πµgdus (2.3)

=⇒ us = ρd2g

18µg
, (2.4)

where we have assumed that the aerosols are spherical. In this equation, ρ is the particle
density, d its diameter, g is the gravitational field strength, and µg the fluid viscosity. This
expression does not yet account for particle slipping, but this is easily rectified by multiplying
the expression by the Cunningham correction factor, which accounts for slip effects for small
particles [7].

Brownian diffusion The deposition velocity arising from Brownian diffusion can be found
from mass transfer theory, and depends on Sherwood’s number in the following manner [8],

Vd = DBSh

dT
. (2.5)

Here the Brownian diffusion constant DB is given by the Stokes-Einstein equation [9], found by
Einstein and Sutherland independently all the way back in 1905,

DB = kBTgCc
3πµgd

. (2.6)

Here, kB is Boltzmann’s constant, Tg is the temperature of the fluid (air), and Cc is Cun-
ningham’s correction factor; the other constants have already been introduced. Sherwood’s
number Sh is found using an empirical relation for circular ducts. We use the same source for
the empirical relation as [1]; however, they copied it incorrectly. The correct expression for
Sherwood’s number is shown below [10]

Sh =
{

1.077(x∗)−1/3 − 0.7 for x∗ ≤ 0.01,
3.657 + 6.874(103x∗)−0.488 exp (−57.2x∗) for x∗ > 0.01.

(2.7)

Here, the value x∗ is the dimensionless length measured from the beginning of the airway (not
the beginning of the respiratory tract). The dimensionless length depends on Reynolds and
Schmidt’s numbers in the following manner:

x∗ = x

dTReSc
(2.8)

Reynolds number is given by the standard expression Re = ρudT /µ. On the other hand,
Schmidt’s number is given by µ/ρDB.

2.3. Derivation of the velocity field 7

Impaction Finally, the last component of the deposition velocity stems from the fact that
particles may not be able to follow the fluid path due to their inertia. This effect is greatest for
large (>1 µm) particles [11]. Due to the different branching angles φ in the lungs, the impaction
velocity is significant and is given by.

Vi =
{

0 (over first 80% of the airway length),
Stk uφdT /0.2L (over last 20% of the airway length),

(2.9)

where Stk is Stokes number, and L is the branch length. This expression is based on a formal
analysis (instead of empirical modelling) and is described in detail in [1].

2.3. Derivation of the velocity field
To solve the GDE (2.1) we need to solve for the velocity field u(x, t). This is done by solving
the continuity equation

∂ρ

∂t
+ ∂(ρu)

∂x
= 0. (2.10)

Before deriving the continuity equation specific to our problem, we need to define how the lung
volume varies with time. This is necessary because our cross sectional area AT varies with time,
according to the lung volume.

Inspiration and expiration (inhalation and exhalation) can be modelled by a simple function
f(t) that varies from -1 to +1. For our purposes, we will use a sinusoidal function with a
breathing rate of 12 breaths per minute, which is the normal respiratory rate for an adult [12].
The lung volume is then defined as follows,

VL =
(
VFRC + VT

2

)
+ VT

2 f(t). (2.11)

It consists of a constant part, the functional residual capacity VFRC, and a varying part that
depends on the tidal volume VT , and the breathing function f(t). These terms will be explained
in Section 2.6, and in particular, Figure 2.3. The cross sectional area AT , or rather, the time
dependent diameter dT , relates to the lung volume as follows

dT
dA

=
(

VL
VFRC

)1/3
. (2.12)

These equations specify AT for all x and t, which we will use to calculate the velocity profile.

We can derive the continuity equation for our problem by considering how the total volume of
air varies over a section in the RT. If the section in question starts at a point x = a and ends
at a point x = b, then the total volume of air varies with the flux over the section boundaries∫ b

a

∂

∂t
AT dx = F (a)− F (b), (2.13)

where F (x) is the flux function. Since advection only happens in the conducting part of the
airway AA (not AT), the flux function is F (x, t) = u(x, t)AA(x). Inserting this into (2.13) and
simplifying yields, ∫ b

a

∂

∂t
AT dx = −uAA

∣∣∣b
a
. (2.14)

Solving this for u, we obtain

u(b, t) = 1
AA(b)

[
u(a, t)AA(a)−

∫ b

a

∂

∂t
AT (x, t) dx

]
, (2.15)

8 2. Theory

which holds for all a, b, and t. This last property allows us to calculate u(x, t): we can simply
fill in whatever b, because we already know AT (x, t) and u(0, t). Indeed, the inlet velocity is
simply u(0, t) = ∂

∂tVL(t)/AA(0). Note that in the entire derivation here, we have assumed a
constant air density ρ.

Luckily for us, this calculation can be decoupled from the partial differential equation for
the aerosol concentrations, because the “continuous” quantity in the continuity equation is
the volume of air, which we assume to be incompressible, and that it does not depend on
the concentration of aerosols. In this way, the velocity profile only depends on the breathing
pattern specified, and can therefore be calculated ahead of time. In fact, it can be calculated
analytically for most breathing functions. The numerical approximation will be treated in
Section 3.5.4.

2.4. Calculating the deposition fraction
The deposition fraction is the ratio of the total number of particles introduced into the respiratory
tract, and the amount of deposited particles. The former is easy to calculate: it is the influx of
particles into the respiratory tract (RT), and since this only happens at the inlet (trachea), the
expression is as follows

total RT =
∫ T/2

0
q(0, t)AA(0)u(0, t) dt, (2.16)

where T is the period of the breathing cycle. Note that we only integrate over half of a period:
the inspiration phase.

The total deposition is simply the deposition term of (2.1) integrated over G, which could be a
generation or the entire respiratory tract, depending on what we’re interested in. In this case,
we do integrate over the entire period, because we want the deposition fraction over a whole
breathing cycle. The total deposition is shown below:

total deposition =
∫ T

0

∫
G
q(x, t)Vd(x, t)Γ(x, t) dx dt. (2.17)

The deposition fraction is the ratio of the two previous expressions, as follows [1]

deposition fraction =
∫ T

0
∫
G q(x, t)Vd(x, t)Γ(x, t) dx dt∫ T/2
0 q(0, t)AA(0)u(0, t) dt

. (2.18)

Several numerical integration methods are possible, in this case we use a standard library that
implements the trapezoidal rule. The reason we choose this integration method instead of e.g.
Simpson’s rule, is because we require the integration to be independent of our starting and
ending points. This will play a role when we are calculating local deposition (as opposed to
total deposition). If we use the trapezoidal rule, then we ensure that local and total deposition
calculations do not differ.

2.5. Aerosol parameters and other constants
We are primarily concerned with comparing the deposition rates of aerosols of different sizes.
However, the particle diameter has an effect on a number of other aerosol properties. In this
section, these properties are discussed as well as how they depend on the aerosol diameter.

First, the particle density ranges from about 0.5 g cm−3 to 3.0 g cm−3 [13]. We will take a
standard value of 1.0 g cm−3 Note that this is the density of a single particle, and so it does not
depend on the concentration of the particle in the fluid.

2.6. Breathing patterns 9

Next, we have the Cunningham slip correction factor. This correction reduces the amount of
drag force on particles (because of slip effects). It depends on the particle diameter d and the
mean free path λ:

C = 1 + λ

d

[
2.34 + 1.05 exp

(
−0.39d

λ

)]
. (2.19)

The Cunningham correction factor for a range of particle sizes is shown in Table 2.1.

Another factor that depends heavily on the particle diameter is the particle relaxation time.
This characterises the time that a particle needs to adjust its velocity when exposed to a new
environment. The shorter the time, the quicker the particle adjusts to new force conditions.
Because of inertial effects, smaller particles tend to have a much shorter relaxation time than
large particles, which tend to maintain their old path. The expression for the relaxation time is
as follows

τ = ρd2C

18µ . (2.20)

The relaxation time is used for calculating Stokes’ number, which we need to calculate the
deposition velocity due to inertial effects.

In addition to particle-specific properties, we also need to take into account properties of the
air in the lungs. The density of air is 1 kg m−3, and its viscosity is 18.1× 10−6 Pa s. The mean
free path of air (used in the previous paragraphs) is 0.066× 10−6 m [14]. Finally, we assume
the temperature to be room temperature (293 K), and we discount warming up of the air in
our calculations.

Table 2.1. Cunningham slip correction factor and the particle relaxation time for a range of particle
sizes.

Particle diameter [µm] Cunningham slip correction Relaxation time [s]
0.01 23.0 2.12× 10−8

0.1 2.93 2.70× 10−7

1 1.15 1.06× 10−5

10 1.02 9.35× 10−4

2.6. Breathing patterns
Respiration generally refers to the absorption of O2 and the removal of CO2 from the body.
Breathing functions to move air into and out of the lungs through the trachea, where it undergoes
a gas exchange in the alveoli. During a normal respiratory pattern, the most important factor
describing breathing mechanics is the tidal volume VT . This is the amount of air inhaled or
exhaled in one breath. After each breath, the lungs still contain a residual volume that cannot
be voluntarily expirated, as well as some expiratory reserve volume that is the amount of tidal
expiration that can be exhaled with maximum effort. Similarly, during normal breathing, there
is some inspiratory reserve volume that can be inhaled with maximum effort. For an illustration
of the different respiratory volumes refer to Figure 2.3.

For an average young adult male, the total lung capacity is 5900 ml, and the tidal volume during
relaxed, quiet breathing is 500 ml [12]. The medical term for relaxed breathing is eupnoea. In
this thesis, we will investigate breathing patterns during exercise, also known as hyperpnea.
Breathing patterns like Biot’s respiration and Cheyne-Stokes respiration that occur during
drug overdoses or in a clinical setting will not be investigated. Likewise, hyperventilation and

10 2. Theory

Figure 2.3. Respiratory volumes and capacities for an average young adult male [12].

hypoventilation will also not be considered, because although these situations may have a
significant effect on the deposition fraction, they are also infrequent and of short duration.

Hyperpnea is the body’s response to requiring more oxygen. It primarily results in taking
deeper breaths, or an increase in the tidal volume, but it can also result in faster breathing.
Usually, hyperpnea is a response to the body’s activity or environment; for example, exercise or
high altitude. We will both investigate deeper breathing as well as changing the respiratory
rate.

3
Numerics

3.1. Developing the numerical scheme
The goal of this chapter is to develop a numerical scheme that will solve the partial differential
equation (2.1). We will solve this equation without the growth and coagulation terms. This
means that we will drop the index i from the solution q(x, t), because we are taking the
interaction between particle classes out of consideration. To simplify matters further, we will
write the coefficients for the time derivative and the advection, diffusion and deposition terms
as follows:

α = AT ,

γ = AAu,

β = ATDeff,

ρ = VdΓ.

Thus, the equation we wish to solve is as follows,
∂

∂t
(αq) = − ∂

∂x
(γq) + ∂

∂x

(
β
∂q

∂x

)
− ρq. (3.1)

Our numerical scheme will be based on the finite volume method, which divides the spatial
domain into intervals. The solution q will be estimated by averaging over this volume. In each
time step, the solution will change due to the flux through the cell boundaries, and due to the
linear term (the deposition term). Now let Qnj be the approximation of the solution q at the
jth grid cell at time step n. Then this value will approximate the average solution as [15]

Qnj ≈
1

∆x

∫ xi+1/2

xi−1/2

q(x, tn) dx. (3.2)

Integrating (3.1) in space gives
d

dt

∫ xi+1/2

xi−1/2

αq(x, t) dx = f(q(xi−1/2, t))− f(q(xi+1/2, t))−
∫ xi+1/2

xi−1/2

ρq(x, t) dx, (3.3)

where f is the flux function depending on the solution q. We can use this expression to develop
a mixed implicit/explicit time marching algorithm. The mixed implicit/explicit scheme will be
based on a modified version of the rectangle rule for integration,∫ tn+1

tn
αq(xj , t) dx = ∆t[(1− θ)q(xj , tn) + θq(xj , tn+1)]. (3.4)

11

12 3. Numerics

This method, also known as the θ-method, allows a parameter θ to vary between 0 and 1, where
a value of 0 is a fully explicit method, and a value of 1 is fully implicit. When θ = 0.5, it is
known as the Crank-Nicolson method. Integrating in time from tn to tn+1 and rearranging,
yields

αQn+1
j = αQnj + ∆t

∆x

[
(1− θ)

(
Fnj−1/2 − F

n
j+1/2 −∆xρQnj

)
+ θ

(
Fn+1
j−1/2 − F

n+1
j+1/2 −∆xρQn+1

j

)]
.

(3.5)

Here Fnj−1/2 is an approximation to the average flux through xj−1/2:

Fnj−1/2 ≈
1

∆t

∫ tn+1

tn
f(q(xj−1/2, t)) dt. (3.6)

Depending on the term (advection or diffusion), we will approximate this flux using the values
of the neighbouring grid cells: Qj−1 and Qj . We can estimate this flux based on the values of
Qnj−1 and Qnj . An illustration of the grid point system is shown in Figure 3.1.

j − 1 j j + 1j − 1/2 j + 1/2

∆x

(δx)j−1/2 (δx)j+1/2

Figure 3.1. Grid-point cluster for the one-dimensional problem.

The flux f(q) for our problem is

f(qx, q, x) = −β(x)qx + γ(x)q. (3.7)

For the derivative qx, we need to make a profile assumption. The simplest is a piecewise-linear
profile, so that the derivatives on the cell edges are well defined (if β is constant, then this
reduces to the central difference scheme). Unlike the diffusion term, the advection term cannot
be discretised using central differences, doing so can result in solutions that are not physically
realistic [16]. Instead, the discretisation scheme used for the advection term is the upwind-
scheme. In this way, the value of the advective property is equal to the value on the upwind
side of the face.1 Then, the flux Fnj−1/2 can be defined as

Fnj−1/2 = −βj−1/2

(
Qj −Qj−1

∆x

)
+ γj−1/2Qj−1. (3.8)

Expressions for Fnj+1/2, F
n+1
j−1/2, and F

n+1
j+1/2 can be found using a similar approach. Inserting

these approximations for the flux into equation (3.5) yields (for the inspiration phase, and
θ = 0)

αQn+1
j = αQnj + ∆t

∆x

[(
−βnj−1/2

(
Qnj −Qnj−1

∆x

)
+ γnj−1/2Q

n
j−1

)

−
(
−βnj+1/2

(
Qnj+1 −Qnj

∆x

)
+ γnj+1/2Q

n
j

)
−∆xρQnj

]
.

(3.9)

1Note that the upwind face changes depending on whether we are in the inspiration or expiration phase.

3.2. Boundary conditions 13

A similar expression can be derived for the arbitrary θ and for the expiration phase. The
discretisation equation (3.9) leads to a system of linear equations, which can be put in matrix
form (see Section 3.3). The equation describes how interior points depend on their neighbours;
what remains to be done is determine equations for the end-points: the boundary conditions.

3.2. Boundary conditions
Boundary conditions specify how the solution behaves on the boundary values (the beginning
and the end of the respiratory tract). There are two main types of boundary conditions that are
of our concern: boundary conditions of the first-type (Dirichlet), and boundary conditions of
the second-type (Neumann). Dirichlet boundary conditions specify the value of the solution on
the boundary (e.g. the inlet concentration is 1 µg m−3). Neumann boundary conditions specify
the value the derivative of the solution on the boundary. In our case, the boundary condition
on the right side (at the alveoli) is a Neumann boundary condition: the concentration gradient
is zero at the end of the respiratory tract, meaning that no aerosols travel further than this.

Boundary conditions of the first-type pose no additional problems in the discretisation process
because the concentration at the boundary is already known. The second-type is slightly more
involved, because only the flux is known at the boundary. Consider the right boundary j = N
during the inspiration phase. The flux FN is given, and since FN ≈ FN+1/2, we can insert this
into (3.5) to obtain an equation for QN , without requiring a ghost cell QN+1.

The numerical model allows for a custom specification of boundary conditions. That is, it is
possible to choose the boundary condition type on both sides. In our case, it is very much
necessary that the boundary conditions are able to change. When applying the model on the
Weibel lung geometry, the boundary condition at the trachea changes type when switching from
expiration to inspiration or vice versa [1]. During inspiration, the trachea boundary condition
is of the first-type with a specified concentration of the aerosol; during expiration, the flux is
zero. Unlike the trachea, the boundary condition at the alveoli is always a second-type where
the flux is zero.

3.3. Matrix form of the discretisation
We obtained a discretisation equation in Section 3.1. For each time step tn, there is a system of
linear discretisation equations. These equations can be written in matrix form. If we denote
Qn as the vector containing the solution at the grid points {x0, x1, . . .} at a time step tn, then
the matrix form the the discretisation reads

Qn+1 = Qn + ∆t
∆x [(1− θ)(AnQn + bn) + θ(An+1Qn+1 + b)]. (3.10)

The system is linear, so it is actually possible to solve this for Qn+1 directly, as the derivation
below shows:

Qn+1 = Qn + ∆t
∆x [(1− θ)(AnQn + bn) + θ(An+1Qn+1 + bn+1)],

Qn+1 − ∆t
∆xθA

n+1Qn+1 = Qn + ∆t
∆x(1− θ)AnQn + ∆t

∆x((1− θ)bn + θbn+1),

(I − ∆t
∆xθA

n+1)Qn+1 = (I + ∆t
∆x(1− θ)An)Qn + ∆t

∆x((1− θ)bn + θbn+1),

Qn+1 = (I − ∆t
∆xθA

n+1)−1[(I + ∆t
∆x(1− θ)An)Qn + ∆t

∆x((1− θ)bn + θbn+1)].

This expression makes it very easy to calculate the concentration for the next time step, both
explicitly and implicitly. For a higher dimensional problem, the computational cost of solving

14 3. Numerics

the system implicitly immediately becomes clear, as it requires a costly O(n3) matrix inversion.
In our case, we can use the tridiagonal matrix algorithm to do this in O(n).

3.4. Consistency, stability and convergence
In this section we analyse how our numerical method converges to the correct solution as the
grid is refined. In particular, we will look at the stability and consistency of our numerical
method, and use these to prove it converges. A numerical method can be said to converge
if the difference between the solution and the numerical approximation tends to zero as the
grid is refined. To analyse the convergence, we introduce the global truncation error at a time
T = n∆t as

En = Qn − qn;

our goal is to keep En bounded for arbitrary n, by choosing the grid size appropriately. What
it means to be convergent, is formalised in the following definition.

Definition 1 (Convergence). A numerical method N is called convergent a time T in the
norm || · || if

lim
∆t→0

||En|| = 0. (3.11)

In general, it is difficult to obtain an analytical expression for the global truncation error as
the number of time steps increases. Instead, we will make use of a result known as the Lax
Equivalence Theorem, which states that a consistent approximation to a well-posed initial-value
problem is convergent if and only if it is stable. Before we can define consistency, we need
to introduce a concept called the local truncation error, which indicates how much error is
introduced at a single time step. If we let N represent our numerical operator mapping the
solution from one time step to the next, then the local truncation error is defined as:

τn = 1
∆t

[
N (qn)− qn+1

]
. (3.12)

Definition 2 (Consistency). A numerical method N is called consistent with the differential
equation if the local truncation error vanishes as ∆t → 0 for all smooth functions q(x, t)
satisfying the differential equation [15].

Where consistency aims to get a bound on the error introduced in a single time step, stability
aims to extend this bound to the global truncation error, thus proving convergence. To prove
that our numerical method is stable, we will use von Neumann stability analysis. The idea
behind this is expanding Qnj as a Fourier series, and proving that Q̂n is bounded. Subsequently,
it is possible to obtain a bound on Qnj using Parseval’s relation. Parseval’s relation requires
using the 2-norm, instead of say, the ∞-norm. For completeness, we will give the definition of
stability and Lax’s Equivalence Theorem.

Definition 3 (Stability). A numerical method N is called stable in the norm || · || if for some
C > 0,

||N n
j || ≤ C (3.13)

for all n and j such that 0 ≤ nj ≤ T .

Theorem 1 (Lax Equivalence Theorem [17]). Let N be a consistent approximation to a
well-posed linear initial-value problem. Then N is convergent if and only if it is stable.

Using the definitions from the previous section, we can now go about proving consistency and
stability for our numerical method. To simplify matters, we will assume that our differential

3.4. Consistency, stability and convergence 15

equation contains constant coefficients. In addition, we will do the derivation for the explicit
case, and show how this can be extended to the mixed explicit-implicit scheme.

3.4.1. Consistency
Applying our numerical method (3.9) to the true solution gives the local truncation error

τn = 1
∆t

(1
α

[
αqj + ∆t

∆x

(
β
qj+1 − 2qj + qj−1

∆x + γ(qj−1 − qj)−∆xρqj
)]
− qn+1

j

)
(3.14)

where we have assumed constant coefficients for simplicity. The polynomial approximation of
qnj−1, qnj+1 and qn+1

j about qnj gives the following

qnj+1 = qj + ∆xqx + 1
2∆x2qxx +O(∆x3), (3.15)

qnj−1 = qj −∆xqx + 1
2∆x2qxx +O(∆x3), (3.16)

qn+1
j = qj + ∆tqt +O(∆t2). (3.17)

If we insert this into our expression for the local truncation error, we obtain the following

τn = 1
∆t

(
1
α

[
αqj + ∆t

∆x

(
β

∆x2qxx +O(∆x3)
∆x − γ∆xqx +O(∆x2)−∆xρqj

)]
− qn+1

j

)
,

τn = 1
∆t

 1
α

αqj + ∆t

βqxx − γqx − ρq︸ ︷︷ ︸
αqt

+O(∆x)


− qnj −∆tqt +O(∆t2)

 ,
τn = 1

∆t
(
∆tO(∆x) +O(∆t2)

)
,

τn = O(∆x) +O(∆t).
(3.18)

Here the error is dominated by both a ∆t and ∆x term, so we see that the method is first-order
accurate.2 This proves that our numerical method is consistent with the differential equation.

For the mixed explicit-implicit case, the term in (3.14) will be split into an explicit 1− θ part,
and an implicit θ part. In this case, the qn+1

j would be split as such as well, but only the part
pertaining to the explicit solution would be Taylor expanded around qnj . Similarly, the implicit
term in brackets would be Taylor expanded about qn+1

j . This results in first-order accuracy, as
before.

3.4.2. Stability
In this section we will prove our numerical method is stable using von Neumann stability
analysis. We follow the approach stipulated in LeVeque et al. [15], writing Qnj as follows

Qnj = eiξj∆x. (3.19)

Rewriting our finite difference scheme and grouping by like terms, we obtain

αQn+1
j = αQj + ∆t

∆x

(
β
Qj+1 − 2Qj +Qj−1

∆x + γ(Qj−1 −Qj)−∆xρQj
)
,

=
(
α− 2β∆t

∆x2 −
∆t
∆xγ −∆tρ

)
Qj + ∆t

∆x2βQj+1 +
(∆t

∆xγ + ∆t
∆x2β

)
Qj−1.

(3.20)

2In fact, expanding up to O(∆x4) shows that the diffusion term is second-order accurate.

16 3. Numerics

Substituting the coefficients of Qj , Qj+1 and Qj−1 by A, B and C, respectively, and apply-
ing (3.19) to our finite difference scheme yields

αQn+1
j = AQj +BQj+1 + CQj−1,

= Aeiξj∆x +Beiξ(j+1)∆x + Ceiξ(j−1)∆x,

=
(
A+Beiξ∆x + Ce−iξ∆x

)
eiξj∆x.

(3.21)

Then, the amplification factor becomes

g(ξ,∆x,∆t) = 1
α

[
A+Beiξ∆x + Ce−iξ∆x

]
. (3.22)

Here, if |g(ξ,∆x,∆t)| ≤ 1 for all ξ then the numerical scheme is stable. Absolute stability is
obtained if the amplification factor is strictly less than 1. Because the amplification factor
consists of multiple terms, it is not trivial to see when the inequality holds. We can make
progress by invoking the triangle inequality, which gives

|g(ξ,∆x,∆t)| =
∣∣∣∣ 1α
[
A+Beiξ∆x + Ce−iξ∆x

]∣∣∣∣ ≤ 1
α

[|A|+ |B|+ |C|] . (3.23)

By looking at A, B, and C, it seems plausible that the amplification factor can become less than
unity depending on the input parameters and grid size. In particular, if we look at B = ∆t

∆x2β,
we see that ∆t must be of the same order as ∆x2. We require this because if they are of the
same order, then B →∞, rendering our numerical scheme unstable.

Invoking the triangle inequality does not guarantee that we can prove that the numerical scheme
is stable. In fact, it could be the case that our upper limit (using the triangle inequality) is
always larger than one, but that the numerical scheme is still stable for some ∆x and ∆t. A
better approach is plotting the function g and inspecting it visually. It can be difficult to
visualise functions f : C → C but there are some tools3 that accomplish this. We can also
parameterise the domain and plot it on an Argand diagram, this is done in Figure 3.2.

For the mixed explicit-implicit case we can substitute qnj = gneiξj∆x into our finite difference
scheme, and we obtain

g(ξ,∆x,∆t) =
1
α

(
A+Beiξ∆x + Ce−iξ∆x

)
(1− θ)

1− 1
α

(
A+Beiξ∆x + Ce−iξ∆x

)
θ
. (3.24)

If θ = 0, then this reduces to our familiar expression (3.22). Note that this expression is not
valid for θ = 1, which results in an amplification factor of zero, regardless of the grid size and ξ.

We know from Section 3.4.1 that our numerical approximation is consistent with the boundary
value problem, and in this section we have seen that it is also stable. This proves, using Lax’
equivalence theorem, that our numerical approximation is convergent.

3https://people.ucsc.edu/~wbolden/complex/#(a-(2bt/x%5E2)-(t/x)g-tp)+(t/x%5E2)be%5E(iz)+((t/x)
g+(t/x%5E2)b)e%5E(-iz)

https://people.ucsc.edu/~wbolden/complex/#(a-(2bt/x%5E2)-(t/x)g-tp)+(t/x%5E2)be%5E(iz)+((t/x)g+(t/x%5E2)b)e%5E(-iz)
https://people.ucsc.edu/~wbolden/complex/#(a-(2bt/x%5E2)-(t/x)g-tp)+(t/x%5E2)be%5E(iz)+((t/x)g+(t/x%5E2)b)e%5E(-iz)

3.5. Miscellaneous observations 17

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Re

Im

Figure 3.2. Argand diagram showing how g maps the domain R to C. Clearly, for these particular
values of ∆x and ∆t, the image of g is contained in the unit circle.

3.5. Miscellaneous observations
In this section a few comments are made to give a more complete view of how our differential
equation is discretised, as well as some considerations made in the process.

3.5.1. The CFL condition
The CFL condition, named after Courant, Friedrichs and Lewy, is a necessary condition for a
finite volume scheme if we expect it to be convergent. It requires that the numerical domain of
dependence contains the true domain of dependence. In other words, for a given point Qn+1

j ,
the numerical method must include every other point that is able to affect it. For the fully
implicit method, the CFL condition is always satisfied. The reason for this is that determining
the approximation at tn+1 requires knowledge of all values at tn, meaning that no matter the
grid spacing or time step, we are always using the entire physical domain of dependence [18].
For the explicit upwind method without diffusion, the CFL condition is∣∣∣∣γ∆t

∆x

∣∣∣∣ ≤ 1. (3.25)

If we were solving the equation explicitly, our grid size would have to conform to this criterion.

3.5.2. Upwind vs central difference
Usually the advection term is not discretised using a central difference scheme, as doing so can
result in solutions that are not physically realistic [16]. The benefit of using a central difference
scheme for the advection term, is that it is second-order accurate. This allows for a larger grid
size while keeping the numerical scheme consistent, reducing computational time. In general,
the order of accuracy is only as good as the worst order of accuracy in the approximation.
Since we have both a diffusion and advection term, the order of accuracy of our method will be
equivalent to the order of accuracy of the worst of the two. In our case, the advection term is
first-order accurate, but since we are only trying to solve the problem for a few breathing cycles,
pursuing higher order accuracy is unnecessary, because computational time is not an issue.

3.5.3. Nonuniform grid spacing
Instead of using a grid with uniform grid spacing, we can employ a so called nonuniform
grid. This means that the distances (δx)j−1/2 and (δx)j+1/2 are not necessarily equal. Usually,

18 3. Numerics

nonuniform grid spacing is used to deploy computing power more efficiently. In places where q
varies steeply with x the grid should be finer than where q changes rather slowly with x.

These concerns are a valid reason to use a nonuniform grid, but in our case there is another
reason. This stems from the fact that the first generation is a lot longer than say, the 21st. If
we use a nonuniform grid, it is possible distribute the grid points over the generations equally.
This is especially useful when using fewer grid points, because in that case it is possible that
final generations have only a single grid point, and if this grid point is in the first 80% of the
airway, then the impaction velocity over the whole generation is zero (see Section 2.2.1).

3.5.4. Numerical calculation of the velocity field
In Section 2.3 we derived an expression for the velocity profile. Here, we will briefly touch on
how to numerically evaluate this profile. By looking at equation (2.15), we see that we need to
be able to numerically evaluate the derivative ∂

∂tAT , and the spatial integral over this derivative.
The first thing to notice is that ∂

∂tAT = 0 for generations < 16, simplifying the equation to a
simple mass balance. If we evaluate this expression for the later generations, then we can start
to iterate over x and t to derive the entire velocity profile.

Fortunately, it simply suffices to use a central difference rule for the derivative, and any
numerical integration method such as the trapezoidal rule. There exists a central difference
function numpy.gradient that calculates the central difference for us, and uses forward and
backward differences for the two endpoints. Similarly, the trapezoidal rule is implemented in
scipy.integrate.trapz. We can then choose a = 0 or any other a < generation 16 and start
the iteration process.

4
Model verification

As in any numerical study, it is important to verify that the numerical results are physically
accurate. In addition to standard sanity checks such as interchanging the boundaries or using
physical common sense, another way to do this is by comparing numerical results to experimental
results. In our case, this is not possible, but it is possible to compare the results to those of
Mitsakou, Helmis, and Housiadas [1]. Additionally, it is also possible to apply the model to a
problem that has a known analytical solution. This increases (by induction) the confidence in
our solution for the extended problems (but it is by no means certain that the solutions for the
extended problems are correct!).

4.1. Comparison with analytical solution
We begin our verification with the last approach: we test our model on the 1-dimensional
advection-diffusion equation, with a first-type boundary condition on the left side, q(0, t) = 2,
and a second-type boundary condition on the right qx(3, t) = 0. The governing equation reads

∂q

∂t
= −u∂q

∂x
+D

∂2q

∂x2 , (4.1)

where the initial condition is q(x, 0) = 0.

The analytical solution to this equation is known, and has been compiled (along with solutions
to similar problems) by Genuchten and Alves [19]. The comparison between their analytical
solution and the solution of our model is shown in Figure 4.1. It is easy to see that for the
range of different Péclet numbers1, the numerical model holds up well.

In addition to the non-stationary problem, the solution for the stationary problem was also
compared with the numerical model. The exact solution to the stationary problem is known, it
is

q(x) = q(0) + [q(L)− q(0)]exp (Pex/L)− 1
exp (Pe)− 1 , (4.2)

where Pe is the Péclet number and the boundary conditions are both of the Dirichlet type.
A comparison of this solution with that of the numerical model at large times is shown in
Appendix B.

1The Péclet number is defined as the ratio of the rate of advection to the rate of diffusion of a physical quantity,
or Pe = Lu/D.

19

20 4. Model verification

0 1 2 3
0

0.5

1

t=0.0

t=1.2

t=2.5

t=3.8

t=5.0

x

co
nc

en
tr
at
io
n

(a). Péclet = 0.003

0 1 2 3
0

0.5

1

t=0.0

t=1.2

t=2.5

t=3.8

t=5.0

x

co
nc

en
tr
at
io
n

(b). Péclet = 0.03

0 1 2 3
0

0.5

1

t=0.0

t=1.2

t=2.5

t=3.8

t=5.0

x

co
nc

en
tr
at
io
n

(c). Péclet = 0.3

0 1 2 3
0

0.5

1

t=0.0

t=1.2

t=2.5

t=3.8
t=5.0

x

co
nc

en
tr
at
io
n

(d). Péclet = 3

Figure 4.1. The solutions to a 1-dimensional advection-diffusion equation for different Péclet numbers.
The dotted lines represent the numerical solutions, and the solid lines represent the analytical solutions.

4.2. Comparison with literature
In this section we concern ourselves with comparing our results to those of Mitsakou, Helmis,
and Housiadas [1]. We will primarily compare the deposition fractions for a range of different
particle sizes, as they do not specify the aerosol concentration for a range of different time steps.
Before the literature comparison, we will look at the velocity profile and concentration profile
ourselves, to see if they are physically viable.

4.2.1. Velocity profile
As explained in Section 2.3, we first have to calculate the velocity field before we can solve the
GDE (2.1). The velocity is of course closely related to the breathing function, and the tidal
volume. In our case we have a symmetric breathing function, and we use a tidal volume of
1000 ml.

From the inlet velocity, we can calculate the total velocity profile over the entire RT. This profile
will be a step function in the non-alveolated generations, because the velocity over a generation
is assumed to be constant (due to the continuity equation and the fact that the airway diameter
is constant over a generation). The velocity profile over a range of different time steps is shown
in Figure 4.2a. From the velocity profile and the (changing) airway diameter, it is possible to
calculate Reynolds number as well. This is done in Figure 4.2b. Likewise, this is also a stepwise
function due to the stepwise properties of generation values.

4.2. Comparison with literature 21

0 0.05 0.1 0.15 0.2 0.25
0

0.5
1

1.5
2

2.5
3

t=0.1

t=0.2

t=0.5

t=1.0

0 1 2 3 4 5 6 7 8
9
10
11
12
15
18
21

Distance from trachea [m]

Ve
lo
ci
ty

[m
s−

1]

(a). Velocity profile in the RT.

0 0.05 0.1 0.15 0.2 0.25
0

500

1,000

1,500

2,000

t=0.1

t=0.2

t=0.5

t=1.0

0 1 2 3 4 5 6 7 8
9
10
11
12
15
18
21

Distance from trachea [m]

R
ey
no

ld
s’s

nu
m
be

r

(b). Reynolds number in the RT.

Figure 4.2. The velocity profile and Reynolds number plotted during the first second of a symmetric
breathing cycle of period 4 s. At t = 1 s the velocity reaches its peak. The dotted lines in these and
subsequent figures signify the start of a new generation. Naturally, the tidal volume and breathing
function have a large impact on the velocity profile.

It is clear that the velocity is highest in the third generation, and approaches zero for the
later generations. This is because the cross sectional surface area decreases up until the third
generation, and after this increases monotonically. Throughout the cycle, Reynolds number
varies between 1 and around 2500, which just about reaches the critical value that marks the
change into the turbulent regime. In the RT, Reynolds number decreases monotonically due to
the decreasing velocity, and decreasing characteristic linear dimension (diameter). In the later
generations the velocity is almost negligible, because most of the air moves into the alveolar
sacs instead of continuing through the conducting part of the RT. This also conforms to our
expectation, and for these reasons the velocity profile looks to be physically acceptable. What
remains to be seen is whether the concentration profile is acceptable as well.

4.2.2. Concentration profile
By solving the aerosol general dynamic equation (2.1), we are able to determine the concentration
q(x, t) for the entirety of the respiratory tract and also at every time step t. We thus obtain a
complete description of the aerosol dynamics. The concentration profile depends heavily on the
particle size. If the particles are small, then they are able to reach the transitional bronchioles
(generation ≥ 17), and even the alveolar ducts (generation ≥ 20). The larger particles however,
do not penetrate as deeply, and because of this they also leave the RT quicker than the smaller
particles, which can stay in the RT even at the end of the expiration phase (depending on the
tidal volume).

Figure 4.3 shows the concentration profile at different time steps for particles of size d = 0.01 µm.
The different time steps correspond to the first second of a symmetric breathing cycle of period
4 s, in 0.1 s intervals. It is remarkable that the concentration profile very quickly approaches
zero when the expiration phase starts. And because the concentration is zero at the end of
expiration, a steady breathing pattern is established instantaneously. This seems counter-
intuitive, especially if you pay attention to your own breathing. If you breathe in deeply, it
can take quite a while before all the air has exited your lungs. However, the aerosols do not
penetrate the lungs so deeply (compared to the much smaller N2, O2, and CO2 molecules),
which is why the aerosols exit the lungs much quicker. For a study specifically describing the
effect of these smaller molecules, consult [20].

22 4. Model verification

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
0 1 2 3 4 5 6 7 8

9
10
11
12

15
18
21

Distance from trachea [m]

C
on

ce
nt
ra
tio

n

Figure 4.3. The concentration profile of an aerosol of diameter 0.01 µm plotted during the first second of
a symmetric breathing cycle of period 4 s. Starting at 0, the concentration increases with each time step
(in 0.1 s intervals), until it stabilises. Note that the total time span is the first half of the inspiration
phase.

In principle, our model accepts particle sizes in the range of 0.1 nm, but applying our model on
the constituent gasses of air (with those sizes) results in nonphysical results. This is because
the concentration of these gasses is much higher, at which point our original partial differential
equation does not describe our particles any longer. Indeed, the deposition will be much lower
than described by the general aerosol equation.

4.2.3. Deposition fraction
The goal of our programme is to calculate the deposition fraction for different classes of aerosol
particles. The difference in particles that leads to the biggest change in the deposition fraction
is the particle diameter. Indeed, smaller particles will experience strong diffusion, whereas the
dominant deposition mechanism for bigger particles is gravitational settling or impaction.

In Section 4.1 we tested our model on a known analytical solution. This is not enough however,
because this gives us confidence only for a particular situation. Our models aims to determine
the deposition ratio of aerosols of different sizes, and we can compare our results to [1]. The
literature study compares the deposition ratio for particles of different sizes, ranging from
0.01 µm to 10 µm in diameter. The lung conditions are a tidal volume of 1000 ml and a period
of respiration of 4 s. Their results, along with ours are shown in Figure 4.4.

The results match very closely, even though we do not take into account particle-particle and
gas-to-particle interactions (coagulation and growth). The offset cannot entirely be explained
by the neglection of these two terms. Including these two interactions increases or decreases
the particle diameter during the simulation process either by growth or coagulation. Because
of the high humidity in the lungs, particles are expected to grow significantly, which increases
their effective particle diameter. This would shift our results to the left, but this is not entirely
explained by Figure 4.4.

More likely, the offset is explained by a difference in starting conditions. For example, the
particle density influences the curve as well. In this case, the particle density is 1 g cm−3,
but if we increase this two or threefold, the deposition fraction increases for all particle sizes.

4.2. Comparison with literature 23

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

Figure 4.4. Comparison of the calculated deposition fraction with literature [1] as a function of particle
diameter. The dotted line shows our results.

The larger particles (>1 µm) are especially affected, however, as their relaxation time is much
higher (which influences impaction), and the particle relaxation time depends non-linearly on
the particle diameter. It is a bit unclear what the exact starting conditions of the literature
study [1] are. They produce a number of graphs with seemingly different deposition fraction
curves, some of which look more similar to our results in Figure 4.4.

Instead of calculating the total deposition fraction, it is also possible to calculate local deposition
fractions, for example the deposition fraction per generation. This is done in Figure 4.5, where
we also compare our results to those compiled by [1]. Here, we have calculated the local
deposition fraction for particles with diameters of 0.01 µm and 1 µm.

The results for the smaller particles match closely with literature, as can be seen in Figure 4.5a.
The model seems to overestimate the deposition fraction for the larger class of particles from
generation 20 onward. This could be due to an overestimation of the diffusion velocity, which
especially affects generations with smaller diameters. Here, the flexibility of our programme
starts to be appreciated, because we can turn off particular deposition mechanisms to see which
is the cause of the irregularity.

In this case, gravitational sedimentation seems to be culpable for the difference in Figure 4.5b.
This does not necessarily cast doubt on the validity of our model; the literature study is slightly
vague in how they obtained the gravity angles for their model. Although they specified that they
obtained the angles from Weibel’s model “A”, this model neither specifies individual branching
angles, nor the angles of inclination with respect to the horizontal (the gravity angles) [21].
If the gravity angles are smaller in the later generations, the results would look more similar.
Nevertheless, the preceding comparisons give us the confidence that our model performs well
under a range of different conditions, and we will use this to perform a parametric study in
Chapter 5.

24 4. Model verification

0 4 8 12 16 20
0

0.02

0.04

0.06

0.08

0.1

Generation

D
ep

os
iti
on

fra
ct
io
n

(a). d = 0.01 µm

0 4 8 12 16 20
0

0.02

0.04

0.06

0.08

0.1

Generation

D
ep

os
iti
on

fra
ct
io
n

(b). d = 1 µm

Figure 4.5. Comparison of the calculated local deposition fraction with literature [1] for particles of
size 0.01 µm and 1 µm The dotted line shows our results.

5
Parametric studies

Knowing how the breathing rate affects aerosol deposition is important, as the recent example
of bush fires in Australia (2019-20) demonstrates. This bushfire season, also known as the Black
Summer, scorched over 18 million hectares of land, and killed more than 400 people. Smoke
inhalation was the cause of 417 of these deaths [22]. Bushfire smoke covered large areas of land,
and sports events were cancelled because of concerns of smoke inhalation, while normal exercise
was discouraged. In this parametric study, we will examine how the breathing pattern affects
deposition rates and total deposition of aerosols. Exercise results in an elevated heart rate and
quickened breathing, so the expectation is that the total deposition will increase - we wish to
quantify this.

In addition, the world is currently plagued by the COVID-19 pandemic, and preliminary
case studies have indicated that airborne transmission plays a profound role in spreading the
virus [23]. For this reason, we will pay special attention to particles of around 1 µm in diameter,
which is the predominant size of coughed droplets [24].

5.1. Sensitivity runs
Before investigating the effect of different breathing conditions, we will do a series of sensitivity
runs to check how the model responds to other parametric variations. These variations differ
from changing the breathing conditions in that they pertain to the computational model in
question, and not the environmental conditions of the patient.

All of the simulations have been run with a time step of ∆t = 0.1 s, and a grid size of 480 nodes.
These nodes have been distributed equally over the different generations, with 20 nodes in each
generation. With these parameters, a single simulation takes a few seconds to complete on
a personal computer. Examining the effect of particle size (to produce plots like Figure 5.2)
generally takes a few minutes for a particular set of initial parameters, making it very easy to
quickly analyse a number of parametric variations.

5.1.1. Geometry rescaling
The first of these is checking how the scaling the generation lengths and radii affects the
deposition fraction. It is customary to scale Weibel’s lung model by a factor of (VFRC/4.8 l)1/3,
as is explained in Appendix A. The deposition fractions with and without this scaling factor
are shown in Figure 5.1a.

For lungs with a VFRC = 3300 ml, the rescaling of the geometry makes almost no difference.

25

26 5. Parametric studies

This effect becomes more pronounced when the functional residual capacity becomes smaller,
which makes the scaling factor larger. A possible explanation for the slightly higher deposition
fractions when the geometry is rescaled is that the bronchi and bronchioles become smaller,
resulting in more deposition due to diffusion and impaction. This is also seen in Figure 5.1b,
which explores the effect of the rescaling on the local deposition fraction. Here, the deposition
increases in the first few generations, but seems to equalise beyond generation 16, where the
effect of the rescaling is offset by the varying diameter dT due to breathing mechanics.

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

(a)

0 4 8 12 16 20
0

0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

Generation

D
ep

os
iti
on

fra
ct
io
n

(b)

Figure 5.1. (a) Deposition fractions with (dotted) and without (dot-dashed) a rescaling of Weibel’s model,
for a range of different particle sizes. The dashed line also includes a rescale but with VFRC = 2400 ml,
and (b) the local deposition fraction for the same parameters but with d = 4 µm.

5.1.2. Weibel’s lung geometry or Yeh and Schum’s
Weibel’s model “A” is only one of many lung models devised over the years. Some vary in
the volume of the alveolar sacs or the number of generations, others include the asymmetry
of the left lung. We will look at a proposed geometry by Yeh and Schum, which varies in the
generation length and radius, making a comparison simple. The different lung geometries are
compared in Figure 5.2.

Note that in these calculations we have discounted the final generation in Yeh and Schum’s
model, which is why the difference between the two models is very pronounced. Across the entire
spectrum, Weibel’s model reports more deposition than Yeh and Schum’s. The final generation
of Yeh and Schum’s model consists of 3× 108 alveolar sacs each with a length of 250 µm and a
diameter of 300 µm [3]. Future work could look into implementing Yeh and Schum’s typical
path lung model in its entirety, which would include quasi 3-dimensional geometries and allow
for more accurate comparison. The quasi 3d structure is due to their model’s asymmetry - they
specify six different segments, considering the difference between the right and left lung, and
their top, middle and lower lobes. Each of these six segments has their own number of alveolar
sacs. Implementing these corrections, deposition fractions would be more akin to those seen in
Weibel’s model, as can be seen in [4].

5.1.3. Time-dependent vs fixed geometry
Lastly, we will look at the effect that the time-dependent geometry has on particle deposition.
For generations >16, the generation radii are allowed to increase or decrease to account for the
varying lung capacity, as explained in Section 2.3. The effect of the time-varying geometry is
shown in Figure 5.3a

5.2. Deposition fractions under eupnoea and hyperpnea 27

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

Figure 5.2. Deposition fractions for the parameters of Weibel’s model “A” (dotted) and Yeh and Schum’s
(dashed). For the latter model, the final generation has not been taken into consideration.

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

(a)

0 4 8 12 16 20
0

0.01

0.02

0.03

0.04

0.05

Generation

D
ep

os
iti
on

fra
ct
io
n

(b)

Figure 5.3. (a) Deposition fractions for time-dependent (dotted) and fixed lung geometry (dashed), and
(b) the local deposition fraction for the same parameters but with d = 0.3 µm.

The time-dependent geometry makes almost no difference on the deposition fraction across
the range of particle sizes. The slightly higher deposition fractions when the geometry is
time-dependent can be explained by the fact that the wetted perimeter increases in the last few
generations, increasing the deposition surface. But the difference is very small, and is only seen
for d = 0.3 µm, where the difference in deposition is largest.

5.2. Deposition fractions under eupnoea and hyperpnea
In this section we will investigate how the deposition fraction varies of a range of particle sizes
under different respiratory conditions. The main parameter that we will change is the tidal
volume VT . During exercise, the functional residual capacity decreases [25] and the tidal volume
increases. Figure 5.4a shows the deposition fraction for a number of respiratory conditions.

For the most part, the deposition fraction decreases as the tidal volume increases. At the tails,
the process seems to reverse. The results match closely with the results of Mitsakou, Helmis,

28 5. Parametric studies

and Housiadas [1]. Unfortunately, we cannot compare the tail behaviour because the literature
only tested the model under regular breathing circumstances.

Instead of looking at the deposition fraction, we can also look at how the total deposition
develops over time, for different tidal volumes. This will enable us to explain whether the
banning of exercise in Australia during the bushfires was academically founded. The cumulative
absorption of aerosols is shown in Figure 5.4b. Indeed, we see that despite the smaller deposition
fraction, the cumulative absorption of the larger tidal volume increases at almost twice the
speed compared to the smaller one. This of course, is entirely as expected, because the air
intake rate is a lot higher.

Note that the “normalised” absorption in Figure 5.4b is the total absorption assuming a
normalised concentration at the inlet. In this sense, the absorption is not “normalised” in the
standard sense of the word. We also notice the step-wise increase of absorption - absorption
mostly occurs during the inspiration phase.

In addition to tidal volume variation, we also investigated the effect of breathing rate on the
deposition fraction. Breathing rates of 10, 12 and 15 breaths per minute result in an almost
uniform decrease of the deposition fraction across the spectrum. However, because of the
similarity between this figure and Figure 5.4a, we have not included it here.

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

(a)

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0.04

time [s]

N
or
m
al
ise

d
ab

so
rp
tio

n

(b)

Figure 5.4. (a) Deposition fractions for tidal volumes of 500 ml, 1000 ml, 2000 ml and 3000 ml (dotted to
solid, respectively) for a range of particle sizes, and (b) the cumulative absorption during the first minute
for particles of size 0.3 µm with tidal volumes of 1000 ml and 3000 ml (dotted and dashed, respectively).

5.3. The effect of aerosol density
In Section 4.2.3 we briefly discussed the effect of particle density on the deposition fraction of
different classes of particles. This was in relation to the literature comparison, because it was
unclear what parameters they ran their programme with, making the comparison more difficult.
Figure 5.5 show the effect of particle density on the deposition fraction.

Particle density does not seem to have a great effect for the smaller particles, whose deposition
mechanism is mostly due to diffusion. The larger classes of particles, whose main deposition
mechanism is impaction, experience a greater effect. The deposition fraction increases for
particles bigger than about 0.1 µm. Overall, the trough for medium sized particles decreases
and shifts to the left.

Cough droplets, which have a density of 1.0 g cm−3 and a typical particle diameter of 1 µm [24],

5.3. The effect of aerosol density 29

0.01 0.1 1 10
0

0.2

0.4

0.6

0.8

1

Particle diameter [µm]

D
ep

os
iti
on

fra
ct
io
n

Figure 5.5. Deposition fractions for particle densities of 0.5 g cm−3, 1.0 g cm−3, 1.5 g cm−3 and 2.0 g cm−3

(dotted to solid, respectively) for a range of particle sizes.

seem to deposit around 50% of the time. This indicates that COVID-19 borne droplets have a
high chance of being absorbed in the lungs, but modelling the actual transmission risk is out of
the scope of this thesis.

6
Conclusions and recommendations

In this study, we developed a 1-dimensional model describing the behaviour of aerosols in
the human respiratory tract. It proved capable of accurately calculating the local particle
deposition, while taking into account both particle properties and respiratory conditions of the
patient. The model was based on a model developed by Mitsakou, Helmis, and Housiadas [1],
who investigated particle deposition fractions for a range of different particle sizes. We validated
our results by comparing them with literature, and we obtained satisfactory agreement across
the entire spectrum of particle sizes.

Our study had a similar focus as the aforementioned one, and we extended their work by
considering the deposition fraction under a range of different respiratory conditions. This was
facilitated by the little computational effort required to generate results, requiring just seconds
to calculate the deposition fraction during a breathing cycle. In contrast, present 3-dimensional
models require millions of control volumes to model only a part of the RT, which demonstrates
the usefulness of our simplistic 1-dimensional approach.

After verifying that the numerical scheme was convergent, we did extensive verification on both
the concentration profile as well as the (local) deposition fraction. This was used to perform a
sensitivity analysis of the computational parameters on the model, which proved to respond in
a consistent way. Varying the physiological parameters of the patient was done next, where we
varied the tidal volume and the breathing rate and assessed their influence on the deposition
fraction. Both an increase in tidal volume as well as an increase in the breathing rate proved to
decrease the deposition fraction across the spectrum of particle sizes, apart from at the tails
of the distribution. Despite this, an increase in tidal volume resulted in increased normalised
absorption, due to the extra air intake.

Apart from varying physiological parameters, we also looked at particle-specific parameters
like the density. It was reported that an increase in particle density increased the deposition
fraction for the larger class of particles (> 0.1 µm).

There are a number of improvements to this study that can be realized in a future work. We
briefly experimented with different morphological models such as that of Yeh and Schum, but
we did not implement it in its entirety. By using this morphological description, it will be
possible to report lobar deposition instead of merely the average deposition for the whole lungs.
In addition, we did not model hydroscopic growth, which has a big effect on particle deposition
due to the high relative humidity (≈ 99.5%) prevailing in the human lungs [1]. If this growth is
also implemented, the model could be used to accurately model regional deposition while taking

31

32 6. Conclusions and recommendations

into account all of the important physical interactions that aerosols undergo in the lungs.

Of lesser importance, a higher order numerical scheme can be developed in an attempt to
further reduce the computational time required to run simulations. Moreover, we made various
assumptions that can be challenged, such as that the terminal settling velocity is reached
instantly, and that impaction is the same during inspiration and expiration. Addressing these
issues can improve the model’s predictions, but care must be taken as not to lose sight of the
bigger picture. A numerical model can be used as a benchmark, but empirical verification
should always be employed in a real world scenario.

References

[1] C. Mitsakou, C. Helmis, and C. Housiadas. “Eulerian modelling of lung deposition
with sectional representation of aerosol dynamics”. In: Journal of Aerosol Science 36.1
(2005), pp. 75–94. ISSN: 0021-8502. DOI: https://doi.org/10.1016/j.jaerosci.
2004 . 08 . 008. URL: http : / / www . sciencedirect . com / science / article / pii /
S0021850204003283.

[2] Ewald R Weibel, André Frédérick Cournand, and Dickinson W Richards. Morphometry
of the human lung. Vol. 1. Springer, 1963.

[3] “Chapter 2 Morphometry of the human respiratory system”. In: Inhaled Particles. Ed.
by Chiu-sen Wang. Vol. 5. Interface Science and Technology. Elsevier, 2005, pp. 7–30.
DOI: https://doi.org/10.1016/S1573- 4285(05)80006- 7. URL: http://www.
sciencedirect.com/science/article/pii/S1573428505800067.

[4] Werner Hofmann. “Modelling inhaled particle deposition in the human lung—A review”.
In: Journal of Aerosol Science 42.10 (2011), pp. 693–724. ISSN: 0021-8502. DOI: https:
//doi.org/10.1016/j.jaerosci.2011.05.007. URL: http://www.sciencedirect.
com/science/article/pii/S0021850211000875.

[5] B. J. Mason. The physics of clouds, by B. J. Mason. English. 2nd ed. Clarendon Press
Oxford, 1971. ISBN: 0198516037.

[6] Keith James Laidler. Student solutions manual for physical chemistry. eng. Menlo Park,
Calif., [etc.]: Benjamin/Cummings Pub. Co, 1982. ISBN: 0805356835.

[7] Emma Cunningham and Joseph Larmor. “On the velocity of steady fall of spherical
particles through fluid medium”. In: Proceedings of the Royal Society of London. Series A,
Containing Papers of a Mathematical and Physical Character 83.563 (1910), pp. 357–365.
DOI: 10.1098/rspa.1910.0024. eprint: https://royalsocietypublishing.org/doi/
pdf/10.1098/rspa.1910.0024. URL: https://royalsocietypublishing.org/doi/
abs/10.1098/rspa.1910.0024.

[8] L.P.B.M. Janssen and M.M.C.G. Warmoeskerken. Transport Phenomena Data Compan-
ion. 3rd ed. Delft: VSSD, 2006. ISBN: 9789071301599.

[9] Albert Einstein et al. “On the motion of small particles suspended in liquids at rest
required by the molecular-kinetic theory of heat”. In: Annalen der physik 17 (1905),
pp. 549–560.

[10] Ramesh K Shah and Alexander Louis London. Laminar Flow Forced Convection in Ducts.
A source book for compact heat exchanger analytical data. Academic Press, 1978. ISBN:
0-12-020051-1.

[11] Sheldon K. Friedlander. Smoke, Dust, and Haze. Fundamentals of Aerosol Dynamics.
2nd ed. Oxford University Press, 2000. ISBN: 978-0-195129-99-1.

[12] Kim E. Barrett et al. Ganong’s Review of Medical Physiology. 23rd ed. McGraw-Hill
Medical, July 2009, p. 593. ISBN: 978-0-07-160568-7.

[13] B. Sarangi et al. “Aerosol effective density measurement using scanning mobility particle
sizer and quartz crystal microbalance with the estimation of involved uncertainty”. In:
Atmospheric Measurement Techniques 9.3 (2016), pp. 859–875. DOI: 10.5194/amt-9-
859-2016. URL: https://www.atmos-meas-tech.net/9/859/2016/.

33

https://doi.org/https://doi.org/10.1016/j.jaerosci.2004.08.008
https://doi.org/https://doi.org/10.1016/j.jaerosci.2004.08.008
http://www.sciencedirect.com/science/article/pii/S0021850204003283
http://www.sciencedirect.com/science/article/pii/S0021850204003283
https://doi.org/https://doi.org/10.1016/S1573-4285(05)80006-7
http://www.sciencedirect.com/science/article/pii/S1573428505800067
http://www.sciencedirect.com/science/article/pii/S1573428505800067
https://doi.org/https://doi.org/10.1016/j.jaerosci.2011.05.007
https://doi.org/https://doi.org/10.1016/j.jaerosci.2011.05.007
http://www.sciencedirect.com/science/article/pii/S0021850211000875
http://www.sciencedirect.com/science/article/pii/S0021850211000875
https://doi.org/10.1098/rspa.1910.0024
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1910.0024
https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1910.0024
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1910.0024
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1910.0024
https://doi.org/10.5194/amt-9-859-2016
https://doi.org/10.5194/amt-9-859-2016
https://www.atmos-meas-tech.net/9/859/2016/

34 References

[14] S.G Jennings. “The mean free path in air”. In: Journal of Aerosol Science 19.2 (1988),
pp. 159–166. ISSN: 0021-8502. DOI: https://doi.org/10.1016/0021-8502(88)90219-
4. URL: http://www.sciencedirect.com/science/article/pii/0021850288902194.

[15] Randall J LeVeque et al. Finite volume methods for hyperbolic problems. Vol. 31. Cam-
bridge university press, 2002.

[16] Suhas Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
[17] Lloyd N. Trefethen. “Finite Difference and Spectral Methods for Ordinary and Partial

Differential Equations”. unpublished text. 1996. URL: https://people.maths.ox.ac.
uk/trefethen/pdetext.html.

[18] David Wells (https://scicomp.stackexchange.com/users/1891/david- wells).
Understanding the Courant–Friedrichs–Lewy condition. Computational Science Stack
Exchange. Version 2016-11-07. URL: https://scicomp.stackexchange.com/q/25439.

[19] Martinus van Genuchten and W.J. Alves. Analytical Solutions of One Dimensional Con-
vective Dispersive Solute Transport Equations. Vol. 1661. June 1982.

[20] F.H.C. De Jongh. “Ventilation modelling of the human lung”. doctoral thesis. Delft
University of Technology, 1995. URL: http://resolver.tudelft.nl/uuid:ed787c31-
f9de-45c6-b2da-974578d0f581.

[21] Peter R. Byron. Respiratory Drug Delivery. 1st ed. Boca Raton: CRC Press, 1989. DOI:
https://doi.org/10.4324/9780203710456.

[22] Nicolas Borchers Arriagada et al. “Unprecedented smoke-related health burden associated
with the 2019–20 bushfires in eastern Australia”. In: Medical Journal of Australia (Feb.
2020). DOI: 10.5694/mja2.50545. URL: https://onlinelibrary.wiley.com/doi/
abs/10.5694/mja2.50545.

[23] Mahesh Jayaweera et al. “Transmission of COVID-19 virus by droplets and aerosols: A
critical review on the unresolved dichotomy”. In: Environmental Research 188 (2020),
p. 109819. ISSN: 0013-9351. DOI: https://doi.org/10.1016/j.envres.2020.109819.
URL: http://www.sciencedirect.com/science/article/pii/S0013935120307143.

[24] Shinhao Yang et al. “The Size and Concentration of Droplets Generated by Coughing in
Human Subjects”. In: Journal of aerosol medicine : the official journal of the International
Society for Aerosols in Medicine 20 (Feb. 2007), pp. 484–94. DOI: 10.1089/jam.2007.
0610.

[25] M.T. Sharratt et al. “Exercise-induced changes in functional residual capacity”. In:
Respiration Physiology 70.3 (1987), pp. 313–326. ISSN: 0034-5687. DOI: https://doi.
org/10.1016/0034- 5687(87)90013- 2. URL: http://www.sciencedirect.com/
science/article/pii/0034568787900132.

[26] Warren H. Finlay. “5 - Introduction to the respiratory tract”. In: The Mechanics of
Inhaled Pharmaceutical Aerosols. Ed. by Warren H. Finlay. London: Academic Press,
2001, pp. 93–103. ISBN: 978-0-12-256971-5. DOI: https://doi.org/10.1016/B978-
012256971-5/50006-7. URL: http://www.sciencedirect.com/science/article/
pii/B9780122569715500067.

https://doi.org/https://doi.org/10.1016/0021-8502(88)90219-4
https://doi.org/https://doi.org/10.1016/0021-8502(88)90219-4
http://www.sciencedirect.com/science/article/pii/0021850288902194
https://people.maths.ox.ac.uk/trefethen/pdetext.html
https://people.maths.ox.ac.uk/trefethen/pdetext.html
https://scicomp.stackexchange.com/users/1891/david-wells)
https://scicomp.stackexchange.com/q/25439
http://resolver.tudelft.nl/uuid:ed787c31-f9de-45c6-b2da-974578d0f581
http://resolver.tudelft.nl/uuid:ed787c31-f9de-45c6-b2da-974578d0f581
https://doi.org/https://doi.org/10.4324/9780203710456
https://doi.org/10.5694/mja2.50545
https://onlinelibrary.wiley.com/doi/abs/10.5694/mja2.50545
https://onlinelibrary.wiley.com/doi/abs/10.5694/mja2.50545
https://doi.org/https://doi.org/10.1016/j.envres.2020.109819
http://www.sciencedirect.com/science/article/pii/S0013935120307143
https://doi.org/10.1089/jam.2007.0610
https://doi.org/10.1089/jam.2007.0610
https://doi.org/https://doi.org/10.1016/0034-5687(87)90013-2
https://doi.org/https://doi.org/10.1016/0034-5687(87)90013-2
http://www.sciencedirect.com/science/article/pii/0034568787900132
http://www.sciencedirect.com/science/article/pii/0034568787900132
https://doi.org/https://doi.org/10.1016/B978-012256971-5/50006-7
https://doi.org/https://doi.org/10.1016/B978-012256971-5/50006-7
http://www.sciencedirect.com/science/article/pii/B9780122569715500067
http://www.sciencedirect.com/science/article/pii/B9780122569715500067

A
Morphometry data

Table A.1 shows the characteristics of the respiratory tract for an average adult with a lung
volume of 5600 ml. Although Yeh and Schum devised the trachea as generation 1, we have
started the numbering at 0 to facilitate comparison with Weibel’s model.

Table A.1. Characteristics of Yeh and Schum’s model [3].

Generation
number

Number of
airways per
generation

Airway
diameter
[cm]

Airway
length [cm]

Gravity
angle

Branching
angle

0 1 4.02 10.0 0° 0°
1 2 3.12 4.36 20° 33°
2 4 2.26 1.78 31° 34°
3 8 1.654 0.965 43° 22°
4 16 1.302 0.995 39° 20°
5 32 1.148 1.010 39° 18°
6 64 0.870 0.890 40° 19°
7 128 0.746 0.962 36° 22°
8 256 0.644 0.867 39° 28°
9 512 0.514 0.667 45° 22°

10 1024 0.396 0.556 43° 33°
11 2048 0.312 0.446 45° 34°
12 4096 0.236 0.359 45° 37°
13 8192 0.184 0.275 60° 39°
14 16 384 0.146 0.212 60° 39°
15 32 768 0.120 0.168 60° 51°
16 65 536 0.108 0.134 60° 45°
17 131 072 0.100 0.120 60° 45°
18 262 144 0.094 0.092 60° 45°
19 524 288 0.090 0.080 60° 45°
20 1 048 576 0.088 0.070 60° 45°
21 2 097 152 0.088 0.063 60° 45°
22 4 194 304 0.086 0.057 60° 45°
23 8 388 608 0.086 0.053 60° 45°

35

36 A. Morphometry data

Table A.2 shows the characteristics of Lung Model A for an average adult with a lung volume of
4800 ml. The average male adult has a functional residual capacity of approximately 3000 ml, so
the lengths and diameters of the lung model are usually scaled by a factor of (VFRC/4.8 l)1/3 [26].
The gravity and branching angles are generally taken as 45° and 30°, respectively [21].

Table A.2. Characteristics of the Weibel model “A” [3].

Generation
number

Number of
airways per
generation

Airway
diameter [cm]

Airway length
[cm]

0 1 1.80 12.0
1 2 1.22 4.76
2 4 0.83 1.90
3 8 0.56 0.76
4 16 0.45 1.27
5 32 0.35 1.07
6 64 0.28 0.90
7 128 0.23 0.76
8 256 0.186 0.64
9 512 0.154 0.54

10 1024 0.130 0.46
11 2048 0.109 0.39
12 4096 0.095 0.33
13 8192 0.082 0.27
14 16 384 0.074 0.16
15 32 768 0.050 0.133
16 65 536 0.049 0.112
17 131 072 0.040 0.093
18 262 144 0.038 0.083
19 524 288 0.036 0.070
20 1 048 576 0.034 0.070
21 2 097 152 0.031 0.070
22 4 194 304 0.029 0.067
23 8 388 608 0.025 0.075

B
Steady state verification

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

t=0.0

t=1.0

t=2.0
t=3.0

x

co
nc

en
tr
at
io
n

Figure B.1. The steady state solution of the advection-diffusion equation, along with the models approach
to this solution at various time steps. The solution is given by (4.2), for Pe = 3.

37

C
Source code

The programme is structured in an object oriented manner, where solution.py contains a class
that specifies how the eventual solution to the problem is stored. Initially, a constructor is
called in constants.py that loads preset constants and passes them to model.py. Here, the
bulk of the work is done, including the time iteration and building the discretisation matrix
using advection.py, diffusion.py and deposition.py. The file results.py uses this to create
figures and other results. Finally, exact.py is used to make the Péclet figure (it implements the
analytical solution for the 1d advection-diffusion problem).

The directory structure of the files is shown below. For completeness, we also included the entire
source code, starting on the next page. Most of the documentation is in the files themselves.

.
constants.py
exact.py
model.py
results.py
solution.py
terms

advection.py
deposition.py
diffusion.py

39

40 C. Source code

C.1. constants.py
1 """
2 Physical constants and accompanying Weibel geometry.
3 """
4

5

6 import numpy as np
7 import scipy.constants
8 from scipy import integrate
9

10

11 # Weibel model
12 gravity_angle = np.ones(24) * 45 * np.pi/180
13 branching_angle = np.ones(24) * 30 * np.pi/180
14 generations = np.arange(0, 24)
15 number_airways_per_generation = np.power(2, generations)
16 weibel_length = np.array([
17 12.0e-2, 4.76e-2, 1.90e-2, 0.76e-2, 1.27e-2, 1.07e-2,
18 0.90e-2, 0.76e-2, 0.64e-2, 0.54e-2, 0.46e-2, 0.39e-2,
19 0.33e-2, 0.27e-2, 0.16e-2, 0.133e-2, 0.112e-2, 0.093e-2,
20 0.083e-2, 0.070e-2, 0.070e-2, 0.070e-2, 0.067e-2, 0.075e-2,
21])
22 weibel_radius = np.array([
23 1.80e-2, 1.22e-2, 0.83e-2, 0.56e-2, 0.45e-2, 0.35e-2,
24 0.28e-2, 0.23e-2, 0.186e-2, 0.154e-2, 0.130e-2, 0.109e-2,
25 0.095e-2, 0.082e-2, 0.074e-2, 0.050e-2, 0.049e-2, 0.040e-2,
26 0.038e-2, 0.036e-2, 0.034e-2, 0.031e-2, 0.029e-2, 0.025e-2
27]) / 2
28 yeh_schum_length = np.array([
29 10e-2, 4.36e-2, 1.78e-2, 0.965e-2, 0.995e-2, 1.01e-2, 0.89e-2, 0.962e-2,
30 0.867e-2, 0.667e-2, 0.556e-2, 0.446e-2, 0.359e-2, 0.275e-2, 0.212e-2,
31 0.168e-2, 0.134e-2, 0.12e-2, 0.092e-2, 0.08e-2, 0.07e-2, 0.063e-2,
32 0.057e-2, 0.053e-2
33])
34 yeh_schum_radius = np.array([
35 2.01e-2, 1.56e-2, 1.13e-2, 0.827e-2, 0.651e-2, 0.574e-2, 0.435e-2, 0.373e-2,
36 0.322e-2, 0.257e-2, 0.198e-2, 0.156e-2, 0.118e-2, 0.092e-2, 0.073e-2,
37 0.06e-2, 0.054e-2, 0.05e-2, 0.047e-2, 0.045e-2, 0.044e-2, 0.044e-2,
38 0.043e-2, 0.043e-2
39])
40 yeh_schum_gravity_angle = np.array([
41 0, 20, 31, 43, 39, 39, 40, 36, 39, 45, 43, 45,
42 45, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60
43]) * np.pi/180
44 yeh_schum_branching_angle = np.array([
45 0, 33, 34, 22, 20, 18, 19, 22, 28, 22, 33, 34,
46 37, 39, 39, 51, 45, 45, 45, 45, 45, 45, 45, 45
47]) * np.pi/180
48 cumulative_length = np.append(0, np.cumsum(weibel_length))
49

50

51 # Grid
52 N = 20
53 N_zeros = np.zeros(N*len(generations))
54 # Time
55 theta = 1

C.1. constants.py 41

56 dt = 0.1
57 t_start = 0
58 t_final = 5.1
59 # General
60 EPS = 1e-15
61 run_flags = ["diffusion", "advection", "deposition"]
62

63 # Boundary conditions
64 N_r = 0
65 right_boundary = ("neumann", N_r)
66 initial_condition = N_zeros
67

68 # Physics constants
69 boltzmann_constant = scipy.constants.Boltzmann
70 gravity = scipy.constants.g
71

72 # Particle constants
73 particle_density = 1000 # from Wikipedia
74 particle_diameter = 10e-6
75 # Fluid properties
76 fluid_density = 1
77 fluid_viscosity = 18.1e-6 # viscosity of air
78 fluid_gas_temperature = 293
79 mean_free_path = 0.066e-6
80

81 # Lung constants
82 functional_residual_capacity = 0.0033
83 tidal_volume = 0.001
84 breathing_rate = 12/60 # 12 breaths per minute
85 # We start the respiratory cycle in the inspiration phase.
86 breathing_pattern = lambda t: -np.cos(t*breathing_rate*2*np.pi)
87

88

89 class Constructor():
90 """
91 Represents the parameters required for airway calculations.
92

93 All parameters are always in SI units. The eventual output is in the from
94 the `self.unpack` function.
95

96 Parameters
97 ----------
98 initial_condition: numpy array
99 Initial concentration in the respiratory tract

100 right_boundary: tuple
101 Tuple of boundary type and value. Should always be Neumann and 0, stems
102 from when the programme could solve arbitrary airways.
103 N: int
104 Number of grid points per generation
105 theta: float in [0, 1]
106 Parameter theta for the theta-method. A value of 0 is completely
107 explicit, and a value of 1 is completely implicit.
108 dt: float
109 Time step size
110 t_start: float
111 Initial time step (should be zero)

42 C. Source code

112 t_final: float
113 Final time step
114 fluid_density: float
115 Density of air
116 fluid_viscosity: float
117 Viscosity of air
118 fluid_gas_temperature: float
119 Temperature of air
120 mean_free_path: float
121 Mean free path (lambda) in air
122 particle_density: float
123 Density of the particles (not concentration)
124 particle_diameter: float
125 Diameter of the particles
126 generations: numpy array
127 Generation numbers (0-23)
128 generation_radius: numpy array
129 Generation radii
130 generation_length: numpy array
131 Generation lengths
132 number_airways_per_generation: numpy array
133 Number of airways per generation
134 branching_angle: numpy array
135 Branching angles per generation
136 gravity_angle: numpy array
137 Gravity angles per generation
138 functional_residual_capacity: float
139 V_FRC of the patient
140 tidal_volume: float
141 V_T of the patient
142 breathing_rate: float
143 Breathing rate of the patient
144 breathing_pattern: function
145 periodic function, f: [0, infty] -> [-1, 1]
146 run_flags: list
147 List of run flags (diffusion, advection, or deposition)
148 constant_diameter: bool
149 Whether to include expanding lung effects
150 rescale_geometry: bool
151 Whether to rescale the model according to Weibel's original size.
152 """
153 ALVEOLI_INDEX = 16
154 LEFT_CONCENTRATION = 1
155 LEFT_FLUX = 0
156 WEIBEL_ORIGINAL_FRC = 0.0048
157

158 def __init__(
159 self,
160 initial_condition=initial_condition,
161 right_boundary=right_boundary,
162 N=N, # per generation
163 theta=theta,
164 dt=dt,
165 t_start=t_start,
166 t_final=t_final,
167 fluid_density=fluid_density,

C.1. constants.py 43

168 fluid_viscosity=fluid_viscosity,
169 fluid_gas_temperature=fluid_gas_temperature,
170 mean_free_path=mean_free_path,
171 particle_density=particle_density,
172 particle_diameter=particle_diameter,
173 generations=generations,
174 generation_radius=weibel_radius,
175 generation_length=weibel_length,
176 number_airways_per_generation=number_airways_per_generation,
177 branching_angle=branching_angle,
178 gravity_angle=gravity_angle,
179 functional_residual_capacity=functional_residual_capacity,
180 tidal_volume=tidal_volume,
181 breathing_rate=breathing_rate,
182 breathing_pattern=breathing_pattern,
183 run_flags=run_flags,
184 constant_diameter=False,
185 rescale_geometry=True,
186):
187 args = locals().copy()
188 del args['self']
189 for key, value in args.items():
190 setattr(self, key, value)
191 # Variables constant for the duration of the simulation
192 self.T = np.concatenate([np.arange(self.t_start, self.t_final, self.dt),
193 [self.t_final]])
194 if self.rescale_geometry:
195 self.scale_geometry()
196 self.cumulative_length = np.append(
197 0, np.cumsum(self.generation_length))
198 self.x = np.concatenate([
199 np.linspace(self.cumulative_length[i], self.cumulative_length[i+1],
200 self.N, endpoint=False)
201 for i in range(len(self.cumulative_length)-1)])
202 # The grid spacing below is edge based: i.e. the spacing is defined by
203 # which edge is in the "center".
204 self.grid_spacing = self.x[1:]-self.x[:-1]
205 self.lung_volume = self.get_lung_volume()
206 self.A_A = self.get_generation_number(
207 self.number_airways_per_generation
208 * np.pi
209 * np.power(self.generation_radius, 2)
210)
211 # Variables that can change for each time step during the simulation
212 self.airway_diameter_all = self.get_airway_diameter()
213 if self.constant_diameter:
214 self.airway_diameter_all[:, :] = self.generation_radius*2
215 self.A_T_all = self.get_generation_number(
216 self.number_airways_per_generation
217 * np.pi
218 * np.power(self.airway_diameter_all, 2)
219 / 4
220)
221 self.inlet_velocity = self.get_inlet_velocity()
222 self.velocity_all = self.get_velocity_profile()
223 self.left_boundary_all = self.get_left_boundary()

44 C. Source code

224 self.initial_condition = self.initial_condition
225 self.cunningham_slip_correction = self.get_cunningham_slip_correction()
226 self.particle_relaxation_time = self.get_particle_relaxation_time()
227 self.gravity_angle = self.get_generation_number(self.gravity_angle)
228 self.terminal_settling_velocity = self.get_terminal_settling_velocity()
229 self.gravitational_settling_velocity = (
230 self.get_gravitational_settling_velocity())
231 self.brownian_diffusion_coefficient = self.get_brownian_diffusion_coefficient()
232

233 def scale_geometry(self):
234 """
235 Scale geometry according to Weibels original lung volume of 4.8 litre
236 """
237 self.generation_radius = self.generation_radius * np.power(
238 self.functional_residual_capacity / self.WEIBEL_ORIGINAL_FRC, 1/3)
239 self.generation_length = self.generation_length * np.power(
240 self.functional_residual_capacity / self.WEIBEL_ORIGINAL_FRC, 1/3)
241

242 def get_generation_number(self, quantity):
243 """
244 Quantity extended to the grid points instead of generation numbers
245

246 Take a quantity of length 24 (amount of generations), and conform it to
247 `self.x`, while taking into account which generation each value is in.
248

249 If the quantity is 2-dimensional, the function is applied recursively
250 (row-wise), and the output will be 2-dimensional.
251

252 Parameters
253 ----------
254 Quantity: numpy array
255 Quantity on generation numbers
256

257 Returns
258 -------
259 numpy array
260 Quantity on grid points
261 """
262 if len(quantity.shape) > 1:
263 return np.array([self.get_generation_number(quantity[i, :])
264 for i in range(quantity.shape[0])])
265 bin = np.digitize(self.x, self.cumulative_length)-1
266 return quantity[bin]
267

268 def get_lung_volume(self):
269 """
270 Calculate the lung volume at time steps `self.T`
271

272 Returns
273 -------
274 numpy array
275 Lung volume
276 """
277 lung_volume = (self.functional_residual_capacity
278 + self.tidal_volume/2 * (1+self.breathing_pattern(self.T)))
279 return lung_volume

C.1. constants.py 45

280

281 def get_airway_diameter(self):
282 """
283 Calculate the airway diameter due to breathing mechanics.
284

285 Returns
286 -------
287 numpy array
288 Airway diameter at every x and t.
289 """
290 airway_diameter = self.generation_radius * 2
291 d_T = np.zeros([len(self.lung_volume), len(airway_diameter)])
292 d_T[:, :] = np.copy(airway_diameter)
293 # Airway diameter only varies with time from generation >= ALVEOLI_INDEX
294 # (alveolated airways)
295 d_T[:, self.ALVEOLI_INDEX:] = (
296 d_T[:, self.ALVEOLI_INDEX:]
297 * np.power(self.lung_volume/self.functional_residual_capacity, 1/3)
298 .reshape(-1, 1))
299 return d_T
300

301 def get_alveoli_index(self):
302 """
303 Find the alveoli index on the spatial grid.
304

305 Returns
306 -------
307 int
308 index where the alveoli start
309 """
310 return np.nonzero(
311 (self.x > self.cumulative_length[self.ALVEOLI_INDEX]) == 1)[0][0]
312

313 def get_inlet_velocity(self):
314 """
315 Calculate the inlet velocity at all time steps
316

317 Returns
318 -------
319 numpy array
320 Inlet velocity at all time steps
321 """
322 volume_derivative = np.gradient(self.lung_volume, self.dt)
323 inlet_velocity = volume_derivative / self.A_A[0]
324 return inlet_velocity
325

326 def get_velocity_profile(self):
327 """
328 Calculate the velocity profile u(x, t)
329

330 Returns
331 -------
332 numpy array
333 Velocity profile at all x and t
334 """
335 alveoli_index = self.get_alveoli_index()

46 C. Source code

336 copy_array = self.inlet_velocity.reshape(-1, 1) * self.A_A[0]
337 u = np.hstack(
338 [np.copy(copy_array) for i in range(self.A_T_all.shape[1])])
339 # For the time dependent part:
340 deriv = np.gradient(self.A_T_all[:, alveoli_index:], self.dt, axis=0)
341 u /= self.A_A
342 for idx_t in range(len(self.T)):
343 for idx_x in range(alveoli_index, len(self.x)):
344 u[idx_t, idx_x] = (u[idx_t, alveoli_index-1] * self.A_A[alveoli_index-1]
345 - integrate.trapz(
346 deriv[idx_t, :idx_x-alveoli_index+1],
347 self.x[alveoli_index:idx_x+1]
348)) / self.A_A[idx_x]
349 return u
350

351 def get_left_boundary(self):
352 """
353 Determine the left boundary condition at all time steps
354

355 The boundary condition changes from inspiration to expiration and vice
356 versa
357

358 Returns
359 -------
360 list of tuples
361 Left boundary condition at all time steps.
362 """
363 left_boundary_all = list(self.velocity_all[:, 0] >= 0)
364 left_boundary_all = [("dirichlet", self.LEFT_CONCENTRATION)
365 if bc else ("neumann", self.LEFT_FLUX)
366 for bc in left_boundary_all]
367 return left_boundary_all
368

369 def get_particle_relaxation_time(self):
370 """
371 Calculate particle relaxation time.
372

373 Returns
374 -------
375 float
376 particle relaxation time
377 """
378 # https://aerosol.ees.ufl.edu/aerosol_trans/section07.html
379 return (self.particle_density * np.power(self.particle_diameter, 2)
380 * self.cunningham_slip_correction
381 / (18 * self.fluid_viscosity))
382

383 def get_cunningham_slip_correction(self):
384 """
385 Calculate Cunningham slip correction factor.
386

387

388 Returns
389 -------
390 float
391 Cunningham slip correction factor

C.1. constants.py 47

392 """
393 # https://aerosol.ees.ufl.edu/aerosol_trans/section06_c.html
394 cunningham_slip_correction = (
395 1 + (self.mean_free_path/self.particle_diameter)
396 * (2.34 + 1.05 * np.exp(
397 -0.39 * self.particle_diameter/self.mean_free_path)))
398 return cunningham_slip_correction
399

400 def get_gravitational_settling_velocity(self):
401 """
402 Calculate the gravitational settling velocity.
403

404 Returns
405 -------
406 numpy array
407 Gravitational settling velocity for all x
408 """
409 return self.terminal_settling_velocity * np.sin(self.gravity_angle)
410

411 def get_terminal_settling_velocity(self):
412 """
413 Calculate the terminal settling velocity.
414

415 Returns
416 -------
417 float
418 Terminal settling velocity
419 """
420 return (self.particle_density * self.particle_diameter**2 * gravity
421 * self.cunningham_slip_correction / (18 * self.fluid_viscosity))
422

423 def get_brownian_diffusion_coefficient(self):
424 """
425 Calculate the Brownian diffusion coefficient from Stokes-Einsten equation.
426

427 Returns
428 -------
429 float
430 Brownian diffusion coefficient
431 """
432 return ((boltzmann_constant * self.fluid_gas_temperature
433 * self.cunningham_slip_correction)
434 / (3 * np.pi * self.fluid_viscosity * self.particle_diameter))
435

436 def unpack(self):
437 """
438 Unpack all constants for use in Airway or ExactAirway
439

440 Returns
441 -------
442 dict
443 Dict of parameters
444 """
445 boundaries = {
446 'initial_condition': self.initial_condition,
447 'left_boundary_all': self.left_boundary_all,

48 C. Source code

448 'right_boundary': self.right_boundary,
449 }
450 space_discretisation = {
451 'x': self.x,
452 'grid_spacing': self.grid_spacing,
453 }
454 time_integration = {
455 'theta': self.theta,
456 'T': self.T,
457 'dt': self.dt,
458 }
459 general = {
460 'A_T_all': self.A_T_all,
461 'A_A': self.A_A,
462 'velocity_all': self.velocity_all,
463 'fluid_density': self.fluid_density,
464 'airway_diameter_all': self.get_generation_number(
465 self.airway_diameter_all),
466 }
467 meta = {
468 'run_flags': self.run_flags,
469 }
470 deposition = {
471 'number_airways_per_generation': self.get_generation_number(
472 self.number_airways_per_generation),
473 'branching_angle': self.get_generation_number(self.branching_angle),
474 'generation_length': self.get_generation_number(self.generation_length),
475 'cumulative_length': self.get_generation_number(self.cumulative_length),
476 'fluid_viscosity': self.fluid_viscosity,
477 'gravitational_settling_velocity': self.gravitational_settling_velocity,
478 'particle_relaxation_time': self.particle_relaxation_time,
479 'brownian_diffusion_coefficient': self.brownian_diffusion_coefficient,
480 'breathing_rate': self.breathing_rate,
481 }
482 return {
483 'boundaries': boundaries,
484 'space_discretisation': space_discretisation,
485 'time_integration': time_integration,
486 'general': general,
487 'meta': meta,
488 'deposition': deposition,
489 }

C.2. model.py 49

C.2. model.py
1 """
2 This module can be used to simulate the inhalation of particles in the lungs,
3 using a 1-D advection-diffusion model.
4 """
5

6

7 import numpy as np
8 from scipy.sparse import dia_matrix, identity, SparseEfficiencyWarning
9 from scipy.sparse.linalg import spsolve

10 from scipy import integrate
11 import solution as da
12 from terms.advection import Advection
13 from terms.diffusion import Diffusion
14 from terms.deposition import Deposition
15

16 import warnings
17 warnings.simplefilter('ignore', SparseEfficiencyWarning)
18

19

20 class Airway(da.Solution):
21 """
22 Represents an airway in the lungs using a Weibel-like geometry.
23

24 Takes the output of `Constructor.unpack()` as arguments.
25 """
26

27 def __init__(self, **kwargs):
28 super().__init__(**kwargs)
29 self.total_deposition = []
30 self.A_A_interface = self.grid_to_interface(self.A_A)
31 self.initialise_time_dependent_variables()
32 self.sol = self.make_df(self.theta_method())
33

34 def initialise_time_dependent_variables(self):
35 self.velocity = self.velocity_all[0, :]
36 self.v_interface = self.grid_to_interface(self.velocity)
37 self.airway_diameter = self.airway_diameter_all[0, :]
38 self.left_boundary = self.left_boundary_all[0]
39 self.A_T = self.A_T_all[0, :]
40 self.A_T_interface = self.grid_to_interface(self.A_T_all[0, :])
41 self.diffusion_constant = self.get_effective_diffusion_coefficient()
42 self.D_interface = self.grid_to_interface(self.diffusion_constant)
43

44 def grid_to_interface(self, grid_values):
45 """
46 Take grid points values and turn them into values specified on interfaces.
47

48 Parameters
49 ----------
50 grid_values: numpy array
51 Grid values
52

53 Returns
54 -------
55 numpy array

50 C. Source code

56 Values specified on interface
57 """
58 # This function used to calculate the harmonic mean. This was changed
59 # to ensure a mass balance when stepping over generation boundaries.
60 return grid_values[:-1]
61

62 def build_discretisation_matrix(self):
63 """
64 Build the discretisation matrix
65

66 Returns
67 -------
68 numpy array
69 Discretisation matrix A
70 numpy array
71 Discretisation vector b
72 """
73 N = len(self.x)
74 A = np.zeros([3, N])
75 b = np.zeros(N)
76 # OPTIMIZE: This can probably be optimized if every separate term does
77 # not make its own matrix, and instead adds to a given one.
78 if "diffusion" in self.run_flags:
79 diffusion = Diffusion(
80 self.x, self.D_interface, self.A_T_interface,
81 self.left_boundary, self.right_boundary, self.grid_spacing
82)
83 A += diffusion.A
84 b += diffusion.b
85 if "advection" in self.run_flags:
86 advection = Advection(
87 self.x, self.v_interface, self.fluid_density, self.A_A_interface,
88 self.left_boundary, self.right_boundary
89)
90 A += advection.A
91 b += advection.b
92 if "deposition" in self.run_flags:
93 deposition = Deposition(
94 self.x, self.airway_diameter,
95 self.number_airways_per_generation, self.fluid_viscosity,
96 self.velocity, self.fluid_density, self.branching_angle,
97 self.generation_length, self.cumulative_length,
98 self.grid_spacing, self.gravitational_settling_velocity,
99 self.particle_relaxation_time,

100 self.diffusion_constant, self.brownian_diffusion_coefficient
101)
102 A += deposition.A
103 b += deposition.b
104 # For deposition calculations:
105 self.deposition_coefficients = deposition.A[1, :]
106 A, b = self.add_boundary_conditions(A, b)
107 offsets = [-1, 0, 1]
108 A = dia_matrix((A, offsets), shape=(A.shape[1], A.shape[1]))
109 return (A, b)
110

111 def add_boundary_conditions(self, A, b):

C.2. model.py 51

112 """
113 Add boundary conditions to A and b.
114

115 When the boundary condition is of type Neumann, advection is disregarded
116 depending on whether the velocity is positive or negative (because we
117 are using the upwind scheme).
118

119 For a boundary condition of type Dirichlet, the matrix is not resized.
120 Instead, the effect of the boundary is placed in vector b, and the effect
121 of the boundary in the matrix A is set to zero. The Dirichlet conditions
122 are added later.
123

124 Parameters
125 ----------
126 A: numpy array
127 Discretisation matrix A
128 b: numpy array
129 Discretisation vector b
130

131 Returns
132 -------
133 numpy array
134 Discretisation matrix A with boundary conditions
135 numpy array
136 Discretisation vector b with boundary conditions
137

138 See Also
139 --------
140 fix_boundaries: Add Dirichlet conditions.
141 """
142 left = 0
143 right = 0
144 if self.left_boundary[0] == "dirichlet":
145 if "diffusion" in self.run_flags:
146 left += self.A_T_interface[0] * \
147 self.D_interface[0] / self.grid_spacing[0]
148 if "advection" in self.run_flags and self.velocity[0] > 0:
149 left += self.A_A_interface[0] * \
150 self.velocity[0] * self.fluid_density
151 b[1] = left * self.left_boundary[1]
152 A[0, 0] = 0
153 elif self.left_boundary[0] == "neumann" and "diffusion" in self.run_flags:
154 b[0] = self.left_boundary[1]
155 if self.right_boundary[0] == "dirichlet":
156 if "diffusion" in self.run_flags:
157 right += self.A_T_interface[-1] * \
158 self.D_interface[-1] / self.grid_spacing[-1]
159 if "advection" in self.run_flags and self.velocity[0] < 0:
160 right -= self.A_A_interface[-1] * \
161 self.velocity[-1] * self.fluid_density
162 b[-2] = right * self.right_boundary[1]
163 A[2, -1] = 0
164 elif self.right_boundary[0] == "neumann" and "diffusion" in self.run_flags:
165 b[-1] = self.right_boundary[1]
166 return (A, b)
167

52 C. Source code

168 def handle_grid_spacing(self):
169 """
170 Return grid spacing with a mesh based centre.
171

172 This grid spacing, unlike self.grid_spacing is mesh based. That is, the
173 spacing has a meshpoint in the center instead of an edge.
174

175 Returns
176 -------
177 numpy array
178 mesh based grid spacing
179 """
180 dxs = 0.5*(self.grid_spacing[1:] + self.grid_spacing[:-1])
181 dxs = np.concatenate(([0.5*dxs[0]], dxs, [0.5*dxs[-1]]))
182 return dxs
183

184 def get_total_deposition(self):
185 """
186 Calculate the local (per generation) deposition per time step.
187

188 Returns
189 -------
190 list of numpy arrays
191 local deposition per time step
192 """
193 w = np.copy(self.w)
194 dxs = self.handle_grid_spacing()
195

196 bin = np.digitize(self.x, self.cumulative_length)-1
197 change_indices = np.concatenate(
198 ([0],
199 np.where(bin[:-1] != bin[1:])[0]+1,
200 [-2])
201)
202 change_pairs = zip(change_indices[:-1], change_indices[1:]+1)
203 local_deposition = []
204 for pair in change_pairs:
205 local_deposition.append(
206 integrate.trapz(
207 (-self.deposition_coefficients[slice(*pair)]
208 * w[slice(*pair)] / dxs[slice(*pair)]),
209 self.x[slice(*pair)])
210)
211 self.total_deposition.append(local_deposition)
212

213 def get_effective_diffusion_coefficient(self):
214 """
215 Calculate effective diffusion coefficient.
216

217 Returns
218 -------
219 numpy array
220 Effective diffusion coefficient
221 """
222 equals_array = (self.velocity == 0)
223 greater_array = (self.velocity > 0)

C.2. model.py 53

224 smaller_array = (self.velocity < 0)
225 return abs(equals_array * self.brownian_diffusion_coefficient
226 + greater_array * (self.brownian_diffusion_coefficient
227 + (1.08 * self.velocity * self.airway_diameter))
228 + smaller_array * (self.brownian_diffusion_coefficient
229 + (0.37 * self.velocity * self.airway_diameter))
230)
231

232 def set_time_dependent_terms(self, time_index):
233 self.A_T = self.A_T_all[time_index, :]
234 self.A_T_interface = self.grid_to_interface(
235 self.A_T_all[time_index, :])
236 self.airway_diameter = self.airway_diameter_all[time_index, :]
237 self.velocity = self.velocity_all[time_index, :]
238 self.v_interface = self.grid_to_interface(self.velocity)
239 self.diffusion_constant = self.get_effective_diffusion_coefficient()
240 self.D_interface = self.grid_to_interface(self.diffusion_constant)
241 self.left_boundary = self.left_boundary_all[time_index]
242

243 def fix_boundaries(self):
244 """
245 Add Dirichlet conditions to `self.w`
246 """
247 if self.left_boundary[0] == "dirichlet":
248 self.w[0] = self.left_boundary[1]
249 if self.right_boundary[0] == "dirichlet":
250 self.w[-1] = self.right_boundary[1]
251

252 def theta_method(self):
253 """
254 Solve the boundary value problem with the theta method.
255

256 For details and readability, consult the thesis.
257

258 Returns
259 -------
260 numpy array
261 Concentration of aerosol at every x and t
262 """
263 self.w = self.initial_condition
264 self.N_theta = len(self.w)
265 self.I_theta = identity(self.N_theta, format='dia')
266 w_array = [self.w]
267 self.spacing_reciprocal = 1/self.handle_grid_spacing()
268 A, b = self.build_discretisation_matrix()
269 self.fix_boundaries()
270 if "deposition" in self.run_flags:
271 self.get_total_deposition()
272 for idx_t in range(1, len(self.T)-1):
273 w_old = np.copy(self.w)
274 A_old, b_old = A.copy(), np.copy(b)
275 A_T_old = np.copy(self.A_T)
276 self.set_time_dependent_terms(idx_t)
277 A, b = self.build_discretisation_matrix()
278 factor = dia_matrix((self.A_T, 0), shape=(len(self.A_T), len(self.A_T))) \
279 - (self.dt * self.theta

54 C. Source code

280 * A.multiply(self.spacing_reciprocal[:, np.newaxis]))
281 inv_factor = spsolve(factor, self.I_theta)
282 self.w = inv_factor.dot(np.ravel(
283 (dia_matrix((A_T_old, 0), shape=(len(A_T_old), len(A_T_old)))
284 + self.dt * (1-self.theta)
285 * A_old.multiply(self.spacing_reciprocal[:, np.newaxis]))
286 .dot(w_old)
287 + (self.dt * self.spacing_reciprocal
288 * (self.theta * b + (1-self.theta) * b_old))))
289 self.fix_boundaries()
290 w_array.append(self.w)
291 if "deposition" in self.run_flags:
292 self.get_total_deposition()
293 w_array = np.vstack(w_array)
294 return w_array
295

296

297 if __name__ == "__main__":
298 from constants import Constructor
299 numerical_solution = Airway(**Constructor().unpack())
300 numerical_solution.surface_plot()
301 print(numerical_solution.deposition_fraction())

C.3. solution.py 55

C.3. solution.py
1 """
2 This module is used to visualise the results of the solution of the 1D
3 advection-diffusion equation
4 """
5

6

7 import numpy as np
8 from mpl_toolkits import mplot3d
9 import matplotlib.pyplot as plt

10 import pandas as pd
11 from scipy import integrate
12 from constants import cumulative_length
13

14

15 class Solution():
16 """A solution of a 1d advection-diffusion equation.
17

18 The solution is stored in a pandas DataFrame and has various methods to
19 display it.
20

21 Parameters
22 ----------
23 boundaries: dict
24 space_discretisation: dict
25 time_integration: dict
26 general: dict
27 meta: dict
28 deposition: dict
29

30 Returns
31 -------
32 Solution of 1d advection diffusion equation in human lungs
33

34 """
35

36 def __init__(
37 self,
38 boundaries=None,
39 space_discretisation=None,
40 time_integration=None,
41 general=None,
42 meta=None,
43 deposition=None
44):
45 for dict in [boundaries, space_discretisation, time_integration,
46 general, meta]:
47 for key, value in dict.items():
48 setattr(self, key, value)
49 if deposition is not None:
50 for key, value in deposition.items():
51 setattr(self, key, value)
52 self.sol = None
53

54 def make_df(self, mat):
55 """

56 C. Source code

56 Create solution DataFrame
57

58 Returns
59 -------
60 a pandas DataFrame
61 """
62 # We have to remove the last time point, because we cannot calculate
63 # this using an implicit method, which is why the iteration stops one
64 # time step early in theta_method in model.py
65 self.T = self.T[:-1]
66 return pd.DataFrame(mat, index=self.T, columns=self.x)
67

68 def surface_plot(self):
69 """
70 Show a 3d surface plot
71 """
72 fig = plt.figure()
73 ax = fig.gca(projection='3d')
74 X, T = np.meshgrid(self.x, self.T)
75 surf = ax.plot_surface(X, T, self.sol.to_numpy(), cmap='viridis')
76 fig.colorbar(surf)
77 ax.set_xlabel('x')
78 ax.set_ylabel('t')
79 ax.set_zlabel('N')
80 ax.set_zlim(-1, 2)
81 plt.show()
82

83 def time_evolution_plot(self, time_steps=0, times=[],
84 show_generations=False):
85 """
86 Show a time evolution plot of the concentration
87

88 Parameters
89 ----------
90 time_steps: int
91 Number of time steps to plot
92 times: list
93 Exact time steps to plot
94 show_generations: bool
95 Whether to show generation boundaries
96 """
97 if ((time_steps == 0 and len(times) == 0)
98 or (time_steps != 0 and len(times) != 0)):
99 raise ValueError(

100 "should give exactly one of time_steps or times arguments")
101 fig = plt.figure()
102 ax = fig.gca()
103 if len(times) == 0:
104 times = [self.sol.index[i*self.sol.shape[0] //
105 max(time_steps-1, 0)] for i in range(time_steps-1)]
106 times.append(self.sol.index[-1])
107 ilocs = [
108 self.sol.index.get_loc(
109 time,
110 method='nearest') for time in times]
111 ax.plot(self.sol.T.iloc[:, ilocs], color='k', linewidth=1)

C.3. solution.py 57

112 create_labels(times, self.sol, ax)
113 ax.set_xlabel('x')
114 ax.set_ylabel('concentration')
115 ax.set_xlim([min(self.sol.columns), max(self.sol.columns)])
116 if show_generations:
117 show_plot_generations(ax)
118 plt.show()
119

120 def deposition_fraction(self, offset=0.0):
121 """
122 Get the deposition fractions for a breathing cycle.
123

124 Parameters
125 ----------
126 offset: float
127 Start calculation at this time step
128

129 Returns
130 -------
131 dict
132 Dictionary containing the local and total deposition fractions
133 """
134 period = 1/self.breathing_rate
135 t_half = self.sol.loc[offset:offset+period/2].index
136 N0 = self.sol.loc[offset:offset+period/2, 0]
137 offset_idx = self.sol.index.get_loc(offset)
138 v = self.velocity_all[offset_idx:offset_idx+len(N0), 0]
139 total_RT = integrate.trapz(N0 * self.A_A[0] * v, t_half)
140

141 t = self.sol.loc[offset:offset+period].index
142 local_deposition = []
143 deposition_array = np.array(self.total_deposition)
144 for gen in range(24):
145 local_deposition.append(
146 integrate.trapz(
147 deposition_array[offset_idx:+offset_idx+len(t), gen], t)
148)
149 local_deposition = np.array(local_deposition)
150 total_deposition = sum(local_deposition)
151 return {
152 "total_deposition": total_deposition,
153 "total_RT": total_RT,
154 "deposition_fraction": total_deposition/total_RT,
155 "local_deposition_fraction": local_deposition / total_RT,
156 }
157

158

159 def create_labels(times, solution, axis, x_index=-1):
160 """
161 Create solution labels on a particular figure
162

163 Parameters
164 ----------
165 times: list
166 Times steps for the labels
167 solution: Solution DataFrame

58 C. Source code

168 DataFrame containing solution (`Solution.sol`)
169 axis: matplotlib axis type
170 Matplotlib axis to plot on
171 x_index: int
172 The X index for the labels
173

174 Returns
175 -------
176 None
177 """
178 coords = solution.loc[times, solution.columns[x_index]]
179 # to make the key a string
180 coords = {
181 "t={:.3}".format(key): value for key, value in zip(
182 coords.index.map(str),
183 coords.values)}
184 for key, value in coords.items():
185 axis.text(float(solution.columns[x_index]), value, key,
186 horizontalalignment='right', verticalalignment='top')
187

188

189 def show_plot_generations(axis):
190 """
191 Create generation indicators on a particular figure
192

193 Parameters
194 ----------
195 axis: matplotlib axis type
196 Matplotlib axis to plot on
197

198 Returns
199 -------
200 None
201 """
202 y = axis.get_ylim()[1]
203 # Alternate vertical alignment to save space in later generations
204 verticalalignment = ['bottom', 'top']
205 # BUG: cumulative_length is not dynamically obtained, which means that you
206 # cannot show plot generations using Yeh and Schum geometry or when using
207 # rescale_geometry=True (which is the default!)
208 for idx, x in enumerate(cumulative_length):
209 if idx < 8:
210 va = verticalalignment[0]
211 else:
212 va = verticalalignment[idx % 2]
213 axis.axvline(x=x, linestyle=':', color='k', linewidth=0.5)
214 if ((idx > 11) and (idx % 3 != 0)) or (idx == 24):
215 # We only plot some generation labels, to avoid clutter.
216 continue
217 axis.text(x=x, y=y, s="{}".format(idx), fontsize='small',
218 horizontalalignment='center', verticalalignment=va)

C.4. terms/advection.py 59

C.4. terms/advection.py
1 """
2 This module contains the discretisation matrix for advection of the 1d general
3 dynamic aerosol equation.
4 """
5

6

7 import numpy as np
8

9

10 class Advection:
11 """Represents a advection discretisation matrix
12

13 Parameters
14 ----------
15 x: numpy array
16 Grid points
17 velocity: numpy array
18 fluid velocity
19 density: float
20 fluid density
21 A_A: numpy array
22 Cross sectional area of all airways
23 left_boundary: tuple
24 Boundary condition on the left side
25 right_boundary: tuple
26 Boundary condition on the right side
27

28 Returns
29 -------
30 numpy array
31 Advection matrix, A, in diagonal ordered form
32 numpy array
33 Advection vector, b, for 1D advection, using the upwind scheme
34 """
35

36 def __init__(self, x, velocity, density, A_A,
37 left_boundary, right_boundary):
38 self.x = x
39 self.velocity = velocity
40 self.density = density
41 self.A_A = A_A
42 self.left_boundary = left_boundary
43 self.right_boundary = right_boundary
44 self.A, self.b = self.sparse_advection_matrix()
45

46 def __repr__(self):
47 data = {
48 'x': self.x,
49 'velocity': self.velocity,
50 'density': self.density,
51 'A_A': self.A_A,
52 'left_boundary': self.left_boundary,
53 'right_boundary': self.right_boundary,
54 }
55 return ("Diffusion({x}, {velocity}, {density}, {A_A}, {left_boundary}, "

60 C. Source code

56 "{right_boundary})").format(**data)
57

58 def __str__(self):
59 return (self.A, self.b)
60

61 def sparse_advection_matrix(self):
62 N = len(self.x)
63 A = np.zeros([3, N])
64 b = np.zeros(N)
65 # interior points
66 coefficients = self.A_A * self.velocity * self.density
67 # Take only the first element of velocity. We assume that velocity has
68 # the same sign everywhere.
69 if self.velocity[0] == 0:
70 return (A, b)
71 elif self.velocity[0] > 0:
72 # west
73 A[0, :-1] = coefficients
74 # interior
75 A[1, :-1] = -coefficients
76 # The boundary point has no coefficient in the upstream model, so we
77 # just copy the one before that.
78 A[1, -1] = -coefficients[-1]
79 elif self.velocity[0] < 0:
80 coefficients *= -1
81 # east
82 A[2, 1:] = coefficients
83 # interior
84 A[1, 1:] = -coefficients
85 # The boundary point has no coefficient in the upstream model, so we
86 # just copy the one before that.
87 A[1, 0] = -coefficients[0]
88 return (A, b)

C.5. terms/diffusion.py 61

C.5. terms/diffusion.py
1 """
2 This module contains the discretisation matrix for diffusion of the 1d general
3 dynamic aerosol equation.
4 """
5

6

7 import numpy as np
8

9

10 class Diffusion:
11 """Represents a diffusion discretisation matrix
12

13 Parameters
14 ----------
15 x: numpy array
16 Grid points
17 D_interface: numpy array
18 Diffusion constants for faces between grid points
19 A_T: numpy array
20 Cross sectional area of all airways
21 left_boundary: tuple
22 Boundary condition on the left side
23 right_boundary: tuple
24 Boundary condition on the right side
25 grid_spacing: numpy array
26 Mesh grid distance
27

28 Returns
29 -------
30 numpy array
31 Diffusion matrix, A, in diagonal ordered form
32 numpy array
33 Diffusion vector, b, for 1D diffusion
34 """
35

36 def __init__(self, x, D_interface, A_T, left_boundary, right_boundary,
37 grid_spacing):
38 self.x = x
39 self.D_interface = D_interface
40 self.A_T = A_T
41 self.left_boundary = left_boundary
42 self.right_boundary = right_boundary
43 self.grid_spacing = grid_spacing
44 self.A, self.b = self.sparse_diffusion_matrix()
45

46 def __repr__(self):
47 data = {
48 'x': self.x,
49 'D_interface': self.D_interface,
50 'A_T': self.A_T,
51 'left_boundary': self.left_boundary,
52 'right_boundary': self.right_boundary,
53 'grid_spacing': self.grid_spacing,
54 }
55 return ("Diffusion({x}, {D_interface}, {A_T}, {left_boundary}, "

62 C. Source code

56 "{right_boundary}, {grid_spacing})").format(**data)
57

58 def __str__(self):
59 return (self.A, self.b)
60

61 def sparse_diffusion_matrix(self):
62 N = len(self.x)
63 A = np.zeros([3, N])
64 b = np.zeros(N)
65 # interior points
66 coefficients = self.A_T * self.D_interface / self.grid_spacing
67 # west
68 A[0, :-1] = coefficients
69 # east
70 A[2, 1:] = coefficients
71 # interior
72 A[1, :] = -(A[0, :] + A[2, :])
73 return (A, b)

C.6. terms/deposition.py 63

C.6. terms/deposition.py
1 """
2 This module contains methods for the deposition of particles in the aerosol
3 dynamic equation.
4 """
5

6

7 import numpy as np
8 from constants import gravity, boltzmann_constant, EPS
9 import warnings

10

11

12 class Deposition:
13 """Represents a Deposition discretisation matrix
14

15 Parameters
16 ----------
17 x: numpy array
18 Grid points
19 airway_diameter: numpy array
20 Diameter of RT at every x
21 number_airways_per_generation: numpy array
22 Number of airways per generation
23 fluid_viscosity: float
24 Viscosity of air
25 velocity: numpy array
26 Velocity of at every x
27 fluid_density: float
28 Density of air
29 branching_angle: numpy array
30 Branching angles per generation
31 generation_length: numpy array
32 Length of the generations
33 cumulative_length: numpy array
34 Cumulative generation lengths
35 grid_spacing: numpy array
36 Grid spacing
37 gravitational_settling_velocity: numpy array
38 Gravitational settling velocity for all x
39 particle_relaxation_time: float
40 Relaxation time of the particle
41 effective_diffusion_coefficient: numpy array
42 Diffusion coefficients for all x
43 brownian_diffusion_coefficient: float
44 Brownian diffusion coefficient for all x
45

46 Returns
47 -------
48 numpy array
49 Deposition matrix, A, in diagonal ordered form
50 numpy array
51 Deposition vector, b
52 """
53

54 def __init__(self, x, airway_diameter, number_airways_per_generation,
55 fluid_viscosity, velocity, fluid_density, branching_angle,

64 C. Source code

56 generation_length, cumulative_length, grid_spacing,
57 gravitational_settling_velocity, particle_relaxation_time,
58 effective_diffusion_coefficient,
59 brownian_diffusion_coefficient):
60 self.x = x
61 self.airway_diameter = airway_diameter
62 self.number_airways_per_generation = number_airways_per_generation
63 self.fluid_viscosity = fluid_viscosity
64 self.velocity = velocity
65 self.fluid_density = fluid_density
66 self.branching_angle = branching_angle
67 self.generation_length = generation_length
68 self.cumulative_length = cumulative_length
69 self.grid_spacing = grid_spacing
70 self.gravitational_settling_velocity = gravitational_settling_velocity
71 self.particle_relaxation_time = particle_relaxation_time
72 self.effective_diffusion_coefficient = effective_diffusion_coefficient
73 self.brownian_diffusion_coefficient = brownian_diffusion_coefficient
74 self.wetted_perimeter = self.get_wetted_perimeter()
75 # Brownian diffusion velocity
76 if np.any(abs(self.velocity) < EPS) == 0:
77 # This if statement is to avoid inf values when dividing by
78 # velocity. In that case we assume that the diffusion velocity is
79 # 0.
80 self.reynolds_number = self.get_reynolds_number()
81 self.schmidt_number = self.get_schmidt_number()
82 self.dimensionless_length = self.get_dimensionless_length()
83 self.sherwood_number = self.get_sherwood_number()
84 self.diffusion_velocity = self.get_brownian_diffusion_velocity()
85 else:
86 self.diffusion_velocity = 0
87 # Impaction velocity
88 self.stokes_number = self.get_stokes_number()
89 self.impact_velocity = self.get_impact_velocity()
90 self.deposition_velocity = sum([
91 self.gravitational_settling_velocity,
92 self.diffusion_velocity,
93 self.impact_velocity
94])
95 self.A, self.b = self.sparse_deposition_matrix()
96

97 def __repr__(self):
98 data = {
99 'x': self.x,

100 'airway_diameter': self.airway_diameter,
101 'number_airways_per_generation': self.number_airways_per_generation,
102 'fluid_viscosity': self.fluid_viscosity,
103 'velocity': self.velocity,
104 'fluid_density': self.fluid_density,
105 'branching_angle': self.branching_angle,
106 'generation_length': self.generation_length,
107 'cumulative_length': self.cumulative_length,
108 'grid_spacing': self.grid_spacing,
109 'gravitational_settling_velocity': self.gravitational_settling_velocity,
110 'particle_relaxation_time': self.particle_relaxation_time,
111 'effective_diffusion_coefficient': self.effective_diffusion_coefficient,

C.6. terms/deposition.py 65

112 'brownian_diffusion_coefficient': self.brownian_diffusion_coefficient,
113 }
114 return ("Deposition({x}, {airway_diameter},"
115 " {number_airways_per_generation}, {fluid_viscosity},"
116 " {velocity}, {fluid_density}, {branching_angle},"
117 " {generation_length}, {cumulative_length}, {grid_spacing},"
118 " {gravitational_settling_velocity},"
119 " {particle_relaxation_time},"
120 " {effective_diffusion_coefficient},"
121 " {brownian_diffusion_coefficient})").format(**data)
122

123 def __str__(self):
124 return (self.A, self.b)
125

126 def get_wetted_perimeter(self):
127 """
128 Calculate the wetted wetted perimeter.
129

130 Returns
131 -------
132 numpy array
133 Wetted perimeter
134 """
135 return (self.number_airways_per_generation *
136 np.pi * self.airway_diameter)
137

138 def get_brownian_diffusion_velocity(self):
139 """
140 Calculate the Brownian diffusion velocity.
141

142 Returns
143 -------
144 numpy array
145 Brownian diffusion velocity
146 """
147 return self.brownian_diffusion_coefficient * \
148 self.sherwood_number / self.airway_diameter
149

150 def get_dimensionless_length(self):
151 """
152 Calculate the dimensionless length.
153

154 Returns
155 -------
156 numpy array
157 Dimensionless length
158 """
159 # This is different than what the paper says. The paper takes the total
160 # x, that is, from the beginning of the RT.
161 absolute_distance = self.x - self.cumulative_length
162 return (absolute_distance / (self.airway_diameter *
163 self.reynolds_number * self.schmidt_number))
164

165 def get_sherwood_number(self):
166 """
167 Calculate Sherwood's number.

66 C. Source code

168

169 Returns
170 -------
171 numpy array
172 Sherwood number
173 """
174 sherwood_number = np.zeros(len(self.x))
175 threshold = 0.01
176 smaller_than_indices = np.where(self.dimensionless_length <= threshold)
177 larger_than_indices = np.where(self.dimensionless_length > threshold)
178 with warnings.catch_warnings():
179 # We suppress the warning, because we later replace the inf values
180 # before returning sherwood_number.
181 warnings.filterwarnings(
182 "ignore", message="divide by zero encountered in power")
183 sherwood_number[smaller_than_indices] = (
184 1.077 * np.power(
185 self.dimensionless_length[smaller_than_indices], -1/3) - 0.7)
186 sherwood_number[larger_than_indices] = (
187 3.657 + 6.874
188 * np.power(1000 * self.dimensionless_length[larger_than_indices], -0.488)
189 * np.exp(-57.2 * self.dimensionless_length[larger_than_indices])
190)
191 # remove inf values (hacky)
192 sherwood_number[sherwood_number > 1E308] = 3.657
193 return sherwood_number
194

195 def get_reynolds_number(self):
196 """
197 Calculate Reynolds number.
198

199 Returns
200 -------
201 numpy array
202 Reynolds number
203 """
204 return abs(self.fluid_density * self.velocity * self.airway_diameter
205 / self.fluid_viscosity)
206

207 def get_schmidt_number(self):
208 """
209 Calculate particle Schmidt number.
210

211 Returns
212 -------
213 float
214 Schmidt number
215 """
216 return self.fluid_viscosity / \
217 (self.fluid_density * self.brownian_diffusion_coefficient)
218

219 def get_stokes_number(self):
220 """
221 Calculate Stokes' number.
222

223 Returns

C.6. terms/deposition.py 67

224 -------
225 numpy array
226 Stokes' number
227 """
228 return abs(self.particle_relaxation_time * self.velocity
229 / self.airway_diameter)
230

231 def get_impact_velocity(self):
232 """
233 Calculate the impact velocity.
234

235 Returns
236 -------
237 numpy array
238 impact velocity
239 """
240 relative_distance = ((self.x - self.cumulative_length)
241 / self.generation_length)
242 truth_array = relative_distance >= 0.8
243 impact_velocity = (truth_array * (
244 self.particle_relaxation_time * self.velocity**2 * self.branching_angle
245 / (0.2 * self.generation_length)
246))
247 return impact_velocity
248

249 def sparse_deposition_matrix(self):
250 N = len(self.x)
251 A = np.zeros([3, N])
252 b = np.zeros(N)
253 # interior points
254 dxs = 0.5*(self.grid_spacing[1:] + self.grid_spacing[:-1])
255 dxs = np.concatenate(([0.5*dxs[0]], dxs, [0.5*dxs[-1]]))
256 coefficients = -(self.deposition_velocity *
257 self.wetted_perimeter * dxs)
258 A[1, :] = coefficients
259 # vector b is empty because we do not have to linearise the source term
260 return (A, b)

68 C. Source code

C.7. results.py
1 """
2 This module can be used to generate results and figures/images for use in the
3 thesis.
4 """
5 import os
6

7 from constants import Constructor
8 from model import Airway
9 from solution import create_labels, show_plot_generations

10

11 from tikzplotlib import save as tikz_save
12 import numpy as np
13 import pandas as pd
14 import matplotlib.pyplot as plt
15 import matplotlib.ticker as mticker
16

17

18 # Directories
19 DIR = os.path.dirname(os.path.realpath(__file__))
20 BASE_DIR = os.path.abspath(os.path.join(DIR, '..', '..'))
21 TEX_IMAGE_DIR = os.path.abspath(os.path.join(BASE_DIR, 'Images', 'Graphs'))
22 OTHER_IMAGE_DIR = os.path.abspath(
23 os.path.join(BASE_DIR, 'Images', 'Unused', 'parametrical_tests'))
24 LITERATURE_RESULTS_DIR = os.path.abspath(
25 os.path.join(BASE_DIR, 'Datasets', 'Literature'))
26 RESULTS_DIR = os.path.abspath(os.path.join(BASE_DIR, 'Datasets', 'Results'))
27 # Plot constants to make every plot look consistent
28 COLOR = 'k'
29 LINEWIDTH = 1
30 LINESTYLES = [':', '-.', '--', '-']
31 TICK_LABEL_STYLE = """ticklabel style={
32 /pgf/number format/fixed,
33 }"""
34

35

36 def _handle_output_file(output_filename, subfigure=False):
37 """
38 Plot or save a matplotlib figure in .png or .tex format
39

40 Parameters
41 ----------
42 output_filename: str or None
43 Either none for a direct plot, or an output filename to save. Two
44 extension are supported: .tex and .png
45 subfigure: bool
46 Specify if the figure should be a subfigure (only for saving in .tex
47 format).
48

49 Returns
50 -------
51 None
52 """
53 if output_filename is None:
54 plt.show()
55 else:

C.7. results.py 69

56 if (ext := os.path.splitext(output_filename)[1]) == '.tex':
57 extra_axis_parameters = [
58 'clip=false',
59 'log ticks with fixed point',
60 TICK_LABEL_STYLE,
61 'scaled y ticks = false',
62]
63 if subfigure:
64 extra_axis_parameters.append(r'width=\textwidth')
65 output_filename = os.path.join(TEX_IMAGE_DIR, output_filename)
66 tikz_save(
67 output_filename,
68 strict=True,
69 extra_axis_parameters=extra_axis_parameters,
70)
71 elif ext == '.png':
72 output_filename = os.path.join(OTHER_IMAGE_DIR, output_filename)
73 plt.savefig(output_filename)
74

75

76 def _handle_time_indices(time_indices):
77 """
78 Calculate time indices if not specified.
79

80 Parameters
81 ----------
82 time_indices: None or list
83 Indices of time steps
84 Returns
85 -------
86 list
87 list of time indices
88 """
89 if time_indices is None:
90 max_index = len(T)
91 time_indices = [0, max_index//3, 2*max_index//3, -1]
92 return time_indices
93

94

95 def get_deposition_fractions(output_filename, start=-2, stop=1, number=10,
96 extra_constructor_properties={}):
97 """Calculate the deposition fractions for a range of particle diameters.
98

99 Particle diameters vary in logspace, and results are saved to a file.
100

101 Parameters
102 ----------
103 output_filename: str
104 output filename
105 start: int
106 start diameter (integer, where 0 is 1e-6, 1 is 1e-5 etc)
107 stop: int
108 stop diameter (like start)
109 number: int
110 number of diameters to calculate
111 extra_constructor_properties: dict

70 C. Source code

112 Extra parameters for `Constructor`
113 """
114 # Calculating deposition fractions
115 diameters = np.logspace(start, stop, number) * 1e-6
116 deposition_values = []
117 for diameter in diameters:
118 numerical_solution = Airway(**Constructor(
119 particle_diameter=diameter,
120 **extra_constructor_properties,
121).unpack())
122 deposition_values.append(
123 numerical_solution.deposition_fraction()['deposition_fraction'])
124 data = np.array([diameters, deposition_values])
125 df = pd.DataFrame(data.T, columns=['diameter', 'deposition'])
126 df.to_csv(os.path.join(RESULTS_DIR, output_filename), index=False)
127

128

129 def create_deposition_plot(results, literature_filename=None,
130 output_filename=None, subfigure=False):
131 """
132 Create a deposition plot (particle diameter vs deposition fraction)
133

134 Parameters
135 ----------
136 results: str or list
137 Filename or filenames from `get_deposition_fractions`
138 literature_filename: str or None
139 Filename of literature results to compare to
140 output_filename: str
141 output filename
142 subfigure: bool
143 Specify if the figure should be a subfigure (only for saving in .tex
144 format).
145

146 See Also
147 --------
148 `get_deposition_fractions`
149 """
150 if isinstance(results, str):
151 results = [results]
152 fig, ax = plt.subplots()
153 if literature_filename is not None:
154 literature_filename = os.path.join(
155 LITERATURE_RESULTS_DIR, literature_filename)
156 literature = pd.read_csv(literature_filename)
157 ax.plot(
158 literature['diameter'],
159 literature['deposition'],
160 color=COLOR,
161 linewidth=LINEWIDTH,
162 linestyle='--')
163 results = [os.path.join(RESULTS_DIR, filename) for filename in results]
164

165 for idx, result in enumerate(results):
166 df = pd.read_csv(result)
167 ax.plot(

C.7. results.py 71

168 df['diameter']*1e6,
169 df['deposition'],
170 color=COLOR,
171 linestyle=LINESTYLES[idx],
172 linewidth=LINEWIDTH)
173

174 ax.set_xscale('log')
175 ax.xaxis.set_major_formatter(mticker.ScalarFormatter())
176 ax.set_xlabel(r'Particle diameter [\si{\micro\metre}]')
177 ax.set_ylabel('Deposition fraction')
178 ax.set_xlim((0.01, 10))
179 ax.set_ylim((0, 1))
180 _handle_output_file(output_filename, subfigure=subfigure)
181

182

183 def create_local_deposition_plot(extra_constructor_properties, output_filename=None,
184 literature_filename=None, subfigure=False,
185):
186 """
187 Create a local deposition plot (generation vs deposition fraction)
188

189 Parameters
190 ----------
191 extra_constructor_properties: dict
192 Extra parameters for `Constructor`
193 output_filename: str
194 output filename
195 literature_filename: str or None
196 Filename of literature results to compare to
197 subfigure: bool
198 Specify if the figure should be a subfigure (only for saving in .tex
199 format).
200 """
201 if isinstance(extra_constructor_properties, dict):
202 extra_constructor_properties = [extra_constructor_properties]
203 local_deposition_fraction = []
204 fig, ax = plt.subplots()
205 for idx, result in enumerate(extra_constructor_properties):
206 numerical_solution = Airway(**Constructor(
207 **result
208).unpack())
209 ldf = numerical_solution.deposition_fraction()[
210 'local_deposition_fraction']
211 local_deposition_fraction.append(ldf)
212 ax.plot(range(24), ldf, color=COLOR,
213 linewidth=LINEWIDTH, linestyle=LINESTYLES[idx])
214 if literature_filename is not None:
215 literature_filename = os.path.join(
216 LITERATURE_RESULTS_DIR, literature_filename)
217 literature = pd.read_csv(literature_filename)
218 ax.plot(literature['generation'], literature['deposition'],
219 color=COLOR, linewidth=LINEWIDTH, linestyle='--')
220 ax.set_xlabel('Generation')
221 ax.set_ylabel('Deposition fraction')
222 ax.yaxis.set_major_locator(
223 mticker.MaxNLocator(

72 C. Source code

224 min_n_ticks=3, steps=[
225 1, 2]))
226 ax.xaxis.set_major_locator(mticker.MaxNLocator(steps=[4]))
227 ax.set_ylim(bottom=0)
228 ax.set_xlim((0, 23))
229 _handle_output_file(output_filename, subfigure=subfigure)
230

231

232 def concentration_vs_time_plot(extra_constructor_properties, output_filename=None,
233 subfigure=False):
234 """
235 Create a concentration plot (concentration vs time)
236

237 Parameters
238 ----------
239 extra_constructor_properties: dict
240 Extra parameters for `Constructor`
241 output_filename: str
242 output filename
243 subfigure: bool
244 Specify if the figure should be a subfigure (only for saving in .tex
245 format).
246 """
247 if isinstance(extra_constructor_properties, dict):
248 extra_constructor_properties = [extra_constructor_properties]
249 fig, ax = plt.subplots()
250 for idx, result in enumerate(extra_constructor_properties):
251 numerical_solution = Airway(**Constructor(
252 **result
253).unpack())
254 t = numerical_solution.sol.index
255 deposition_array = np.array(numerical_solution.total_deposition)
256 ax.plot(t, np.cumsum(deposition_array.sum(axis=1)), color=COLOR,
257 linewidth=LINEWIDTH, linestyle=LINESTYLES[idx])
258 ax.set_xlabel(r'time [\si{\second}]')
259 ax.set_ylabel('Normalised absorption')
260 ax.set_ylim(bottom=0)
261 ax.set_xlim(left=0)
262 _handle_output_file(output_filename, subfigure=subfigure)
263

264

265 def get_dimensions(number_plots):
266 """
267 Return the dimensions for `matplotlib.pyplot.subplots`
268

269 Parameters
270 ----------
271 number_plots: int
272 Number of subplots
273

274 Returns
275 -------
276 Dimensions of subplots
277 """
278 if number_plots < 2:
279 raise ValueError("must have at least 2 plots")

C.7. results.py 73

280 if number_plots > 9:
281 raise ValueError("cannot have more than 9 plots")
282 switcher = {
283 2: (2,),
284 3: (2, 2),
285 4: (2, 2),
286 5: (2, 3),
287 6: (2, 3),
288 7: (3, 3),
289 8: (2, 4),
290 9: (3, 3),
291 }
292 return switcher[number_plots]
293

294

295 def time_evolution_plot(time_steps, solutions_bundle, output_filename=None):
296 """
297 Subplots of concentration vs time for multiple solutions
298

299 Parameters
300 ----------
301 time_steps: list
302 List of time steps
303 solutions_bundle: list of pandas DataFrame
304 List of `Solution.sol`
305 output_filename: str
306 output filename
307

308 Notes
309 -----
310 There is probably some duplication with `single_time_evolution_plot` and
311 `compare_multi_solutions_plot`.
312 """
313 dimensions = get_dimensions(len(solutions_bundle))
314 fig, ax = plt.subplots(*dimensions)
315 times = [solutions_bundle[0][0].index[
316 i*solutions_bundle[0][0].shape[0] // max(time_steps-1, 0)]
317 for i in range(time_steps-1)]
318 times.append(solutions_bundle[0][0].index[-1])
319 for idx, solutions in enumerate(solutions_bundle):
320 index = np.unravel_index(idx, dimensions)
321 ax[index].set_xlabel('x')
322 ax[index].set_ylabel('concentration')
323 for idx2, solution in enumerate(solutions):
324 solution.columns = map(float, solution.columns)
325 ax[index].plot(
326 solution.T[times],
327 color='k',
328 linestyle=LINESTYLES[idx2],
329 linewidth=1)
330 ax[index].set_xlim([float(solution.columns[0]),
331 float(solution.columns[-1])])
332 create_labels(times, solution, ax[index])
333 _handle_output_file(output_filename)
334

335

74 C. Source code

336 def single_time_evolution_plot(
337 time_steps, solutions_bundle, output_filename=None):
338 fig, ax = plt.subplots()
339 times = [solutions_bundle[0].index[
340 i*solutions_bundle[0].shape[0] // max(time_steps-1, 0)]
341 for i in range(time_steps-1)]
342 times.append(solutions_bundle[0].index[-1])
343 ax.set_xlabel('x')
344 ax.set_ylabel('concentration')
345 for idx2, solution in enumerate(solutions_bundle):
346 solution.columns = map(float, solution.columns)
347 ax.plot(
348 solution.T[times],
349 color='k',
350 linestyle=LINESTYLES[idx2],
351 linewidth=1)
352 ax.set_xlim([float(solution.columns[0]), float(solution.columns[-1])])
353 create_labels(times, solution, ax)
354 _handle_output_file(output_filename)
355

356

357 def compare_multi_solutions_plot(number_plots, *solutions):
358 if not all(solution.shape == solutions[0].shape for solution in solutions):
359 raise ValueError("all the input arrays must have same number of"
360 " dimensions")
361 dimensions = get_dimensions(number_plots)
362 fig, ax = plt.subplots(*dimensions)
363 times = [solutions[0].index[
364 i*solutions[0].shape[0] // max(number_plots-1, 0)]
365 for i in range(number_plots-1)]
366 times.append(solutions[0].index[-1])
367 for idx, time in enumerate(times):
368 index = np.unravel_index(idx, dimensions)
369 for solution in solutions:
370 ax[index].plot(solution.T[time])
371 ax[index].set_ylim([0, 2])
372 ax[index].set_xlabel('x')
373 ax[index].set_ylabel('concentration')
374 ax[index].set_title('{:.2f}%'.format(100*idx/(number_plots-1)))
375 plt.show()
376

377

378 def create_inlet_velocity_plot(output_filename=None):
379 """
380 Plot inlet velocity vs time
381

382 Parameters
383 ----------
384 output_filename: str
385 output filename
386 """
387 constructor = Constructor()
388 inlet_velocity, T = constructor.inlet_velocity, constructor.T
389 fig = plt.figure()
390 ax = fig.gca()
391 ax.plot(T, inlet_velocity, color=COLOR, linewidth=LINEWIDTH)

C.7. results.py 75

392 ax.set_xlabel(r'Time [\si{\second}]')
393 ax.set_ylabel(r'Inlet velocity [\si{\metre\per\second}]')
394 ax.set_xlim((T[0], T[-1]))
395 ax.set_ylim((-1.1*max(abs(inlet_velocity)), 1.1*max(abs(inlet_velocity))))
396 _handle_output_file(output_filename)
397

398

399 def get_velocities_df(time_indices=None):
400 """
401 Get DataFrame with velocity profile
402

403 Parameters
404 ----------
405 time_indices: None or list
406 Indices of time steps
407

408 Returns
409 -------
410 pandas DataFrame
411 velocity for all x and times at time_indices
412 """
413 constructor = Constructor()
414 velocity_all, T = constructor.velocity_all, constructor.T
415 x = constructor.x
416 time_indices = _handle_time_indices(time_indices)
417 velocities = velocity_all[time_indices, :]
418 df = pd.DataFrame(velocities.T, index=x, columns=T[time_indices])
419 return df
420

421

422 def get_reynolds_df(time_indices=None):
423 """
424 Get DataFrame with Reynolds numbers profile
425

426 Parameters
427 ----------
428 time_indices: None or list
429 Indices of time steps
430

431 Returns
432 -------
433 pandas DataFrame
434 Reynolds numbers for all x and times at time_indices
435 """
436 constructor = Constructor()
437 velocity_all, T = constructor.velocity_all, constructor.T
438 x = constructor.x
439 time_indices = _handle_time_indices(time_indices)
440 reynolds = abs(velocity_all[time_indices, :] * constructor.fluid_density
441 * constructor.get_generation_number(
442 constructor.airway_diameter_all[time_indices, :])
443 / constructor.fluid_viscosity)
444 df = pd.DataFrame(reynolds.T, index=x, columns=T[time_indices])
445 return df
446

447

76 C. Source code

448 def get_concentration_df(time_indices=None):
449 """
450 Get DataFrame with concentration profile
451

452 Parameters
453 ----------
454 time_indices: None or list
455 Indices of time steps
456

457 Returns
458 -------
459 pandas DataFrame
460 Concentration profile for all x and times at time_indices
461 """
462 numerical_solution = Airway(**Constructor().unpack())
463 time_indices = _handle_time_indices(time_indices)
464 df = numerical_solution.sol.T.iloc[:, time_indices]
465 return df
466

467

468 def create_multi_plot(df, y_label=None, time_indices=None,
469 show_generations=True, output_filename=None,
470 subfigure=False, show_labels=True, x_index=-1):
471 fig, ax = plt.subplots()
472 ax.plot(df, color=COLOR, linewidth=0.4)
473 ax.set_xlabel(r'Distance from trachea [\si{\metre}]')
474 ax.set_ylabel(y_label)
475 ax.set_xlim([min(df.index), max(df.index)])
476 ax.xaxis.set_major_formatter(mticker.ScalarFormatter())
477 if show_labels:
478 create_labels(df.columns, df.T, ax, x_index)
479 if show_generations:
480 show_plot_generations(ax)
481 _handle_output_file(output_filename, subfigure=subfigure)
482

483

484 def create_multiple_deposition_fractions(d):
485 for filename, properties in d.items():
486 print(filename)
487 get_deposition_fractions(
488 filename,
489 number=20,
490 extra_constructor_properties=properties)
491

492

493 def stability_plot(output_filename=None):
494 def g(z, dx, dt, alpha, beta, gamma, rho):
495 return (alpha - (2*beta*dt/dx**2) - (dt/dx)*gamma - dt*rho) \
496 + (dt/dx**2)*beta*np.exp(1j*z) \
497 + ((dt/dx)*gamma + (dt/dx**2)*beta)*np.exp(-1j*z)
498

499 fig, ax = plt.subplots()
500 # unit circle
501 t = np.linspace(0, 2*np.pi, 50)
502 ax.plot(np.cos(t), np.sin(t), color=COLOR, linestyle=':')
503

C.7. results.py 77

504 s = np.linspace(-100, 100, 1000)
505 w = g(s, 0.07, 0.01, 0.15, 0.1, 1, 0.1)
506 ax.plot(w.real, w.imag, color=COLOR)
507 lim = 1.2
508 ax.set_xlabel(r'\(\operatorname{Re}\)')
509 ax.set_ylabel(r'\(\operatorname{Im}\)')
510 ax.set_xlim((-lim, lim))
511 ax.set_ylim((-lim, lim))
512 _handle_output_file(output_filename)
513

514

515 if __name__ == '__main__':
516 generate_results = input('Generate results? (y/n): ')
517 if generate_results.lower() != 'y':
518 exit()
519 create_inlet_velocity_plot()
520 get_deposition_fractions('deposition_fraction.csv',
521 start=-2, stop=1, number=20)
522 create_deposition_plot('deposition_fraction.csv',
523 literature_filename='Eulerian_deposition_fraction.csv',
524 output_filename="deposition_fraction.tex")
525 time_indices = [10, 20, 50, 100]
526 create_multi_plot(get_velocities_df(time_indices=time_indices),
527 y_label=r'Velocity [\si{\metre\per\second}]',
528 time_indices=time_indices, x_index=35,
529 output_filename='multi_velocity.tex', subfigure=True)
530 create_multi_plot(get_reynolds_df(time_indices=time_indices),
531 y_label=r"Reynolds's number", time_indices=time_indices,
532 x_index=35, output_filename='multi_reynolds.tex',
533 subfigure=True)
534 time_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) * 10
535 create_multi_plot(get_concentration_df(time_indices=time_indices),
536 y_label=r"Concentration", time_indices=time_indices,
537 show_labels=False,
538 output_filename='multi_concentration.tex')
539 create_local_deposition_plot(
540 {'particle_diameter': 0.01e-6, 'tidal_volume': 0.000625, 'dt': 0.01},
541 literature_filename='local_deposition_0.01e-6.csv',
542 output_filename='local_deposition_0.01e-6.tex', subfigure=True)
543 create_local_deposition_plot(
544 {'particle_diameter': 1e-6, 'tidal_volume': 0.000625, 'dt': 0.01},
545 literature_filename='local_deposition_1e-6.csv',
546 output_filename='local_deposition_1e-6.tex', subfigure=True)
547 # Peclet plot
548 solutions_bundle = [
549 [pd.read_csv(
550 f'../../Datasets/Results/simple_peclet/{T}-{P}-peclet.csv',
551 index_col=0)
552 for T in ['analytical', 'numerical']] for P in [0.003, 0.03, 0.3, 3]
553]
554 for name, bundle in zip([0.003, 0.03, 0.3, 3], solutions_bundle):
555 single_time_evolution_plot(
556 5, bundle, f'peclet-{name}.tex')
557

558 # Results generation
559 # Effect of geometry rescaling:

78 C. Source code

560 d = {
561 'deposition_fraction-default.csv': {},
562 'deposition_fraction-rescale_geometry-False.csv': {
563 'rescale_geometry': False,
564 },
565 'deposition_fraction-rescale_geometry-False-FRC-2400.csv': {
566 'rescale_geometry': False,
567 'functional_residual_capacity': 0.0024,
568 },
569 }
570 create_multiple_deposition_fractions(d)
571 create_deposition_plot(
572 [
573 'deposition_fraction-default.csv',
574 'deposition_fraction-rescale_geometry-False.csv',
575 'deposition_fraction-rescale_geometry-False-FRC-2400.csv',
576],
577 output_filename='rescale_geometry.tex',
578 subfigure=True)
579 create_local_deposition_plot(
580 [{'particle_diameter': 4e-6, 'rescale_geometry': False},
581 {'particle_diameter': 4e-6}],
582 output_filename='rescale_geometry_local.tex',
583 subfigure=True)
584

585 # Effect of different geometries
586 from constants import yeh_schum_length, yeh_schum_radius
587 d = {
588 'deposition_fraction-YS.csv': {
589 'generation_length': yeh_schum_length,
590 'generation_radius': yeh_schum_radius,
591 'rescale_geometry': False,
592 },
593 }
594 create_multiple_deposition_fractions(d)
595 create_deposition_plot(
596 [
597 'deposition_fraction-rescale_geometry-False.csv',
598 'deposition_fraction-YS.csv',
599],
600 output_filename='weibel_vs_yehschum.tex')
601

602 # Effect of time-dependent geometry vs fixed
603 d = {
604 'deposition_fraction-fixed_geometry.csv': {
605 'constant_diameter': True,
606 },
607 }
608 create_multiple_deposition_fractions(d)
609 create_deposition_plot(
610 [
611 'deposition_fraction-default.csv',
612 'deposition_fraction-fixed_geometry.csv',
613],
614 output_filename='time_dependent_geometry.tex',
615 subfigure=True)

C.7. results.py 79

616 create_local_deposition_plot(
617 [{'particle_diameter': 0.3e-6},
618 {'particle_diameter': 0.3e-6, 'constant_diameter': True}],
619 output_filename='fixed_geometry_local.tex',
620 subfigure=True)
621

622 # Effect of tidal volume
623 d = {}
624 values = [0.0005, 0.001, 0.002, 0.003]
625 for value in values:
626 d[f'deposition_fraction-tidal_volume-{value}.csv'] = {
627 'tidal_volume': value,
628 'functional_residual_capacity': 0.003,
629 }
630 create_multiple_deposition_fractions(d)
631 create_deposition_plot(
632 [
633 'deposition_fraction-tidal_volume-0.0005.csv',
634 'deposition_fraction-tidal_volume-0.001.csv',
635 'deposition_fraction-tidal_volume-0.002.csv',
636 'deposition_fraction-tidal_volume-0.003.csv',
637],
638 output_filename='tidal_volume.tex',
639 subfigure=True)
640

641 concentration_vs_time_plot(
642 [{'t_final': 60.0, 'particle_diameter': 0.3e-6},
643 {'t_final': 60.0, 'tidal_volume': 0.003, 'particle_diameter': 0.3e-6}],
644 output_filename='concentration_vs_time.tex',
645 subfigure=True)
646

647 # Effect of particle density
648 d = {}
649 values = np.linspace(500, 2000, 4)
650 for value in values:
651 d[f'deposition_fraction-particle_density-{value}.csv'] = {
652 'particle_density': value,
653 'functional_residual_capacity': 0.003,
654 }
655 create_multiple_deposition_fractions(d)
656 create_deposition_plot(
657 [
658 'deposition_fraction-particle_density-500.csv',
659 'deposition_fraction-particle_density-1000.csv',
660 'deposition_fraction-particle_density-1500.csv',
661 'deposition_fraction-particle_density-2000.csv',
662],
663 output_filename='particle_density.tex')
664

665 stability_plot("stability.tex")
666

667 # Effect of breathing rate
668 breathing_rate = [10/60, 12/60, 15/60]
669 # NOTE: you would *expect* the following code to work, but it does not
670 # (see: https://stackoverflow.com/a/34021333/7770654). Therefore, we use
671 # the partial function from functools.

80 C. Source code

672 #
673 # breathing_pattern = [
674 # lambda t: -np.cos(t*br*2*np.pi) for br in breathing_rate
675 #]
676 from functools import partial
677 breathing_pattern = [
678 partial(lambda t, coef: -np.cos(t*coef*2*np.pi), coef=br)
679 for br in breathing_rate
680]
681 d = {}
682 for br, bp in zip(breathing_rate, breathing_pattern):
683 d[f'deposition_fraction-breathing_rate-{br}.csv'] = {
684 'functional_residual_capacity': 0.003,
685 'breathing_rate': br,
686 'breathing_pattern': bp,
687 't_final': 1/br + 0.1,
688 }
689 create_multiple_deposition_fractions(d)
690 create_deposition_plot(
691 [
692 'deposition_fraction-breathing_rate-0.16666666666666666.csv',
693 'deposition_fraction-breathing_rate-0.2.csv',
694 'deposition_fraction-breathing_rate-0.25.csv',
695],
696 output_filename='breathing_rate.tex')

C.8. exact.py 81

C.8. exact.py
1 """
2 This module computes the exact solution in the case of 1D advection-diffusion,
3 with a Dirichlet condition on the left, and Neumann on the right.
4 Solution taken from https://naldc.nal.usda.gov/download/CAT82780278/PDF
5 """
6

7

8 import numpy as np
9 import solution as da

10 from scipy.optimize import fsolve
11

12

13 class ExactAirway(da.Solution):
14 """
15 Represent a 1d pipe in a advection/diffusion situation
16 """
17

18 def __init__(self, **kwargs):
19 super().__init__(**kwargs)
20 self.R = 1 # hardcoded value
21 self.D = self.D_interface[0]
22 self.initial_condition = np.append(self.left_boundary[1],
23 self.initial_condition)
24 self.check_analytical_conditions()
25 self.velocity = self.velocity[0]
26 self.sol = self.make_df(self.solve())
27

28 def check_analytical_conditions(self):
29 if not all([self.left_boundary[0] == "dirichlet",
30 self.right_boundary[0] == "neumann"]):
31 raise ValueError("boundaries must be of type Dirichlet and Neumann"
32 " respectively")
33 if not max(self.D_interface) == min(self.D_interface):
34 raise ValueError("analytical solution does not support nonconstant"
35 " diffusion coefficient")
36 if not max(self.velocity) == min(self.velocity):
37 raise ValueError("analytical solution does not support nonconstant"
38 " velocity")
39 if "deposition" in self.run_flags:
40 raise ValueError("analytical solution does not support deposition")
41 return True
42

43 def A3_get_eigenvalues(self):
44 """
45 Get eigenvalues for the 1D advection-diffusion problem.
46

47 Returns
48 -------
49 numpy array
50 Array of eigenvalues
51 """
52 initial_guess = np.arange(2.5, 2.5+3.1*self.N, 3.1)
53 # These hard-coded values come from a graphical analysis of the function
54 # below.
55 f = lambda m: m/np.tan(m) + self.velocity*self.L/(2*self.D)

82 C. Source code

56 return fsolve(f, initial_guess)
57

58 def A3_exact(self, t):
59 """
60 Get solution of the 1D advection-diffusion equation for given t
61

62 Parameters
63 ----------
64 t: float
65 t coordinate
66

67 Returns
68 -------
69 numpy array
70 concentration at the x array, at a time t
71 """
72 x, R, D, v, L, c_i, c_0, N = [self.x, self.R, self.D, self.velocity,
73 self.L, self.initial_condition,
74 self.left_boundary[1], self.N]
75 # m is an eigenvalue
76 summand = lambda m: (
77 (2*m * np.sin(m*x/L)
78 * np.exp(v*x/(2*D) - v**2*t/(4*D*R) - m**2*D*t/(L**2*R)))
79 / (m**2 + (v*L/(2*D))**2 + v*L/(2*D))
80)
81 eigenvalues = self.A3_get_eigenvalues()
82 sum_array = np.array([summand(l) for l in eigenvalues])
83 u = c_i + (c_0 - c_i)*(1-np.sum(sum_array, axis=0))
84 return u
85

86 def solve(self):
87 mat = np.array([self.A3_exact(t) for t in self.T[1:]])
88 mat = np.vstack([self.initial_condition, mat])
89 return mat
90

91

92 def exact_steady_state(x, D, v, L, c_0, c_L):
93 """
94 Get steady state solution of 1D convective-diffusion equation for given `x`
95

96 Parameters
97 ----------
98 x: numpy array
99 x coodinates

100 D: float
101 Coefficient of the diffusive term
102 v: float
103 Velocity of the convective flow
104 L: float
105 Length of the tract
106 c_0: float
107 Dirichlet boundary condition on the left side
108 c_L: float
109 Dirichlet boundary condition on the right side
110

111 Returns

C.8. exact.py 83

112 -------
113 numpy array
114 Concentrations at positions `x`
115 """
116 P = v*L/D # Peclet number
117 return c_0 + (c_L-c_0)*(np.exp(P*x/L)-1)/(np.exp(P)-1)
118

119

120 if __name__ == "__main__":
121 analytical_solution = ExactAirway()
122 analytical_solution.surface_plot()
123 analytical_solution.time_evolution_plot(6)

	Introduction
	Theory
	Lung model
	Aerosol dynamics
	Deposition velocity

	Derivation of the velocity field
	Calculating the deposition fraction
	Aerosol parameters and other constants
	Breathing patterns

	Numerics
	Developing the numerical scheme
	Boundary conditions
	Matrix form of the discretisation
	Consistency, stability and convergence
	Consistency
	Stability

	Miscellaneous observations
	The CFL condition
	Upwind vs central difference
	Nonuniform grid spacing
	Numerical calculation of the velocity field

	Model verification
	Comparison with analytical solution
	Comparison with literature
	Velocity profile
	Concentration profile
	Deposition fraction

	Parametric studies
	Sensitivity runs
	Geometry rescaling
	Weibel's lung geometry or Yeh and Schum's
	Time-dependent vs fixed geometry

	Deposition fractions under eupnoea and hyperpnea
	The effect of aerosol density

	Conclusions and recommendations
	References
	Morphometry data
	Steady state verification
	Source code
	constants.py
	model.py
	solution.py
	terms/advection.py
	terms/diffusion.py
	terms/deposition.py
	results.py
	exact.py

