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Abstract

Traceability in complex ship design involves keeping track of the evolving relations between
need, requirements and design. Such traceability is not fully developed in the current de-
sign process at DMO due to divisions in the design process and between design tools. This
thesis proposes to use a single information model to facilitate traceability by connecting the
need, requirements and design in a single database. Besides enabling traceability, such an
information model can also be used to support modern modelling design tools.

In the early design stage of naval vessels — the preliminary design phase — the capabil-
ity, technical feasibility and affordability of a new ship are defined. Interactions between
these three aspects are opaque and rely on the need for a new naval vessel and supporting
requirements and preliminary design(s).

Determining the need, requirements and design is in this thesis considered to be a ‘wicked
problem’. In such problems, information gained by developing solutions helps define the
problem itself. However, these solutions can only be determined with a certain interpreta-
tion of the initial problem. This results in many (evolving) interactions between the need,
requirements and design in the ship design process as one is needed to define the other.
With the help of Systems Engineering and Requirements Engineering information and rela-
tions in a ship design process can be determined and structured. These engineering fields
are widely applied, and current technology enabled the development of computer aided ap-
proaches incorporating design theory, including computer aided traceability.

One of the current developments in design approaches is the introduction of model-based
approaches, which creates the possibility to actively manage more relations and interactions
in the design process. Model based approaches such as the Design Structure Matrix are used
to visualise relations between information, and Axiomatic Design enables the decomposition
and creation of complex relations. A different approach to modelling in design processes
is the use of Knowledge Based Engineering. Knowledge Based Engineering field aims to
capture not only the relations and interactions between information in design processes, but
also knowledge’ about the ‘how’ and ‘why’ in these processes. Each of these model-based
developments relies on, or enables, traceability of information. However, having a program
capable of supporting an information storage to support these approaches remains difficult to
achieve. For this purpose, Shipbuilder software was created to support transparent storage
and management of information.

In this thesis, theories for modelling approaches, Systems and Requirements Engineering
and the DMO design process have been combined. This resulted in one information struc-
ture, applied in the Shipbuilder application, which enables traceability. To show that the
proposed information model can model a ship and supports traceability, a case study has
been performed. A small model of both an S- and L-frigate has been created to show how
traceability can be performed in this information model.

With the help of an information model representing the design process in a single database,
it seems possible to trace interactions between need, requirements and design. This will re-
sult in having better understanding of the relations and interactions between capability,
feasibility and cost. The method in this thesis can help to better understanding of the in-
teractions in less time, freeing time to make more and/or better improvements during the
preliminary design phase.
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List of definitions

Definitions from literature

Capability

Feasibility

Cost

Need

Requirement

Configuration

The ability to complete a task or execute a course of action under specified
conditions and level of performance [33]. It relates to effectiveness as used
by Duchateau [15], Van Oers et al. [44].

A feasible ship (or system) fulfils physical (and technical) requirements and
design constraints. For example the need for a ship to float (upright) [43,
p- 8]. In this thesis a feasible ship does not necessarily fulfil the need for
this ship. It relates to performance as used by Duchateau [15], Van Oers
et al. [44].

The initial (building) cost of building a ship (or system). It relates to the
cost and financial feasibility as used by [15, 44]. A ship costing less than
the budget is affordable.

The need is the problem that a customer has which initiates the design
of a ship. The need can be captured in ”stated requirements” which are
requirements given by the customer[47, p. 2].

A statement is an attribute in a system, a statement to help guide the design
of a system, in a way that is useful for different stakeholders and applies
value of the system to a customer or user[31, p. 94][47, p. 2].

Integration of requirements, systems and components into a solution in-
cluding a proposed general arrangement with spaces, fulfilling the need
[15, p. 7].

Definitions as used in this thesis

Suitable ship
Insight

Partial solution

Configuration

Design

A suitable ship is capable, feasible and affordable (see definitions above).
Knowledge or understanding of information, relations and interactions.

A partial solution is a (combination of) system(s) which can be incorporated
in the configuration of a design. A partial solution fulfils a part of the com-
plete set of requirements.

The configuration of a ship is a integration of several partial solutions. This
will lead to an arrangement of spaces and systems. Based on Duchateau
[15].

The design of a ship is the combination of the configuration, partial solu-
tions and requirements. This design is then the whole ’solution’ for the
design problem.

Configuration design cycle

The part of the design cycle concerned with creating a configuration (to fit
the requirements).

Requirements cycle

The part of the design cycle concerned with creating requirements.

Creating (phase) The phase in a design cycle where a complex system is created and/or

defined.
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Testing (phase) The phase in a design cycle where the complex system is tested on fulfilling
capability, feasibility and cost.

Insight phase The phase in a design cycle where insight in a ship design. This phase is
used to propose changes to the complex system if needed.

Propose changes (phase)
This phase in a design cycle is where the proposed changes to the complex
system are defined with the help of the insight gained in the previous phase.



Context

1.1. Buying a naval vessel

Buying a ship is like buying a new car. When buying a car, you only have a rough idea of
what you want the new car to be - except when you want to buy that one specific (dream) car.
While searching for the new car you get a better view of what car you actually want. This can
be because you have seen enough candidates, or because a salesman tried to sell you one of
his models.

During this search there are two things to which you will test a car: capability and cost.
The capability of the car is the extent to which the car fulfils the need you have for the new
car. If a car is not able to fulfil your need, this car is an unsuited option. A car is similarly
unsuitable if it is too expensive to buy. A new car can also be unsuitable if it is not feasible.
In the example of a car, this feasibility is far fetched as all considered options are already
designed. Yet, a car can be unsuitable due to feasibility in constraints. Take for example a
restriction in the width of a car. Living in a historic, small, city centre with narrow streets
will make the option of an old school American car infeasible, as this car is simply too wide
to navigate through the streets.

So the buying process of a car actually relies on three things: capability, feasibility and
cost. These three can be determined by relating a possible car to your need, situation, and
wallet. What it exactly is you want and can afford becomes more clear with each possible car
you examine.

When buying a ship, the process above can be used in a similar way. There is a need for
a ship; and this new ship needs to be capable, feasible and affordable. In the beginning it is
not completely clear what a suitable ship looks like, but this will become more clear during
the process.

When the Dutch government wants a new ship, they too go through this process. One big
difference here - one that makes it a seemingly completely different problem - is that there
are generally no complete, suitable, off-the-shelf options. The options for new naval vessels
have to be created during the searching process for a new ship; they have to be designed.

Designing a vessel with the need known would then surely lead to the new design to be
perfect, as it can be made to match the need. This, unfortunately, has been proven not to
be possible. Having a design to be created to match the need will most likely result in the
need to be altered slightly during the designing. This is the result of the need becoming more
clear and being better understood during the buying process. As a design is created from the
need, and not only matched to it, this will result in the design having to change. With this
new design possibly leading to more knowledge on the need, and so forth.

This led to the use of the iterative design process, guiding the definition of the need and
the creation of a design in the same process. These iterative processes are not only used to
determine a possible solution to fulfil the need, they are also used to design these possible
solutions. Designing in these processes is just as big a part as the buying process.

So the major difference between buying a car and a naval vessel, is that the latter does not

1



2 1. Context

only rely on a buying process. In this buying process the need becomes more clear through
looking at alternatives. The addition to this, when buying a naval vessel, the alternatives are
to be designed in this process as well.

1.2. Designing the naval vessel

It is the mission of the Defence Materiel Organisation (DMO), and more specifically the de-
partment for marine systems ([Afdeling Maritieme Systemen] AMS), to support the Dutch
government in determining their need for a new ship. The DMO is also responsible in en-
suring that the determined need can result in a feasible and affordable ship. The resulting
task for DMO is then to elucidate requirements for a new vessel. This process is supported
by the creation of preliminary and concept designs (Figure 1.1). These resulting preliminary
designs are generally not designed to be built. This process phase (concept exploration and
definition) is called the preliminary design phase [15, 43]. In this phase the goal is to deter-
mine a set of requirements which can be set out to shipyards. From this set of requirements
a design for a ship can be created by the shipyard.

\ 4
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Figure 1.1: A simplified view of a design process, where requirements and designs are created and improved over time. A design
in this figure is the combination of partial solutions and configuration.

To support the (complex) process of designing a new ship, DMO uses the Systems Engi-
neering (SE) approach. This approach helps in providing a framework which can be used to
create a design and also supports the structuring of created information in the process. In
Figure 1.2 is shown what one (high level system) cycle in the design process might look like,
based on Systems Engineering and the design process as adapted at DMO". In the process
the determination of feasibility and cost is called determining the performance and the deter-
mination of capability and affordability is called effectiveness. The cost of the conceptual ship
is therefore determined separately from the affordability. The latter is the result of the cost
in combination with the performance and capability of a ship. DMO wants to improve this
process by having better ways of following information and changes during design iterations.
By doing so they aim to improve the process of determining the balance between capability,
feasibility and cost to support the Dutch government in their buying process.

1.2.1. The difficulty in this process
Finding a balance between capability, technical feasibility and cost relies on the relations
between need, requirements and design. With the right requirements and design it is possible

"This is an interpretation based on the DMP as used by DMO [32]. Need = A, Requirements = B, Partial solution + design = C
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[ Need ]—)[ Requirement ]—)[Partial solutions]—)[ Configuration ]—)[ Performance ]—)[ Effectiveness ]

Figure 1.2: Steps in a design cycle, stating per step what is determined. Based on the process at DMO, which is built on SE
theory

to represent the need for a naval vessel. However, determining the right’ need, requirements
and design for a ship can be seen as a ‘wicked problem’ as said by Andrews [1] [15]. Such
‘wicked problems’ have no definitive answer and can be redefined an resolved in different ways
over time and according to whom interprets the problem [10]. This is because information
on the solution is needed to understand the problem [37].

With this definition the need can be seen as part of the ’problem’ and the requirements and
design as part of the ’solution’. Since these now rely on each other for clear definitions the
interactions between the need, requirements and design have to be understood as well. The
line between ’problem’ and ’solution’ is blurred in wicked problems, meaning it is difficult to
trace cause and effect’. To be able to do so, it is important to define and capture the relations
between need, requirements and design. These relations can be used to trace information
and find interactions.

1.3. The research

In current design practices the design process and design tools are well developed. However,
traceability of relations between need, requirements and design remains problematic. While
these relations can be defined with the help of design approaches, it is difficult to actually
capture them [44]. It is this not being able to capture the relations that prevents traceability.

For this thesis the goal is to see how traceability between need, requirements and design
in the DMO design process can be improved. This is to better understand, and optimise,
the trade-off between capability, feasibility and cost. This traceability is being able to follow
connections in information; these traces can help in analysing a system [28].

In order to realise this goal both the theory behind creating a design and the practical
approach for this at DMO are analysed. During the process it was possible to generate and
answer the research questions which led to this thesis.

1.3.1. Research questions
To reach the goal of this thesis the following main question has been stated:

How can we capture the relations between need, requirements and design to improve the
traceability of information on a naval vessel in the preliminary design phase?

To find an answer to this main question several research questions have been determined.
With the problem now known, first the theory behind designing - and the relations between
need, requirements and design - has to be discussed. After that the current practice at DMO
is examined, with theory as a base line. The next question to be answered is how to use theory
and practice to capture the relations, before looking into the improvement in traceability.

1 How does Systems Engineering (and Requirements Engineering) define the relations?

2 How are the relations currently managed during the design process at DMO?

3 What could be a method to be able to capture and manage these relations?

4 How does this method help in providing traceability, and what insight can be gained
through this?

The answers to these questions are found in consecutive order in this document to work
to an answer to the main question. The first question is answered in chapter 2 and is about
the theory behind the design process. Capturing relations (with connections), question two,
is about modelling ship design and is the subject of section 2.2. The third question is about
the implementation of this theory at DMO and is discussed in chapter 3. With the proposed
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method in this thesis in chapter 4 the fourth question is answered. In this chapter the theory
behind the fifth research question is found, but the answer for the fifth research question is
mostly the subject of chapter 5.

1.3.2. Research outline

In the beginning of the research the impact of having requirements and design separate in the
process was investigated. One of the challenges that was found is that defining requirements
is difficult enough to have its own research field: Requirement Engineering (RE). A separate
field for the designing of (the configuration of) ships within the theory has not been found,
but separate methods and theories for this have. The difficulty in managing the relation
between requirements and design was therefore not only a problem encountered by DMO,
but is present in the theory as well.

During the research on design tools and requirement management tools, the term ’trace-
ability’ was found. At the same time some approaches for ‘'model based development’ were
studied. The idea to build a model capable of managing relations between requirement and
configuration came up, and became the goal of the research. This model would then be
used to study if such relations management could work and if extra information could be
captured within it. To be able to study this, a model first had to be designed and created.
While there are some theories and approaches to create such data models, they are often still
in development or privately owned. One program which DMO is currently implementing is
Shipbuilder. This software is created to capture the (complex) data model of a ship during
the design phase. Using this software created the possibility to store, manage and connect
both requirements and design in one database.

During the course of the research it has been determined that going to "model based de-
velopment” is a step in the direction of a improving [the information flow in] the design pro-
cess [7, 17, 31, 45]. For these models several approaches were analysed: Axiomatic Design
[17, 22], Design Structure Matrices [7], the Engineering Structure Matrix [4] and Knowledge
Based Engineering ([26, 45]). In each approach the connection of information was the most
applicable item for this research. Finding relevant research about the connection of infor-
mation and the impact changes can have in this information through having connections,
briefly led to looking into change impact of systems [9, 19]. While having the possibility to
determine the impact of changes in the complex system is very useful, it is impossible with-
out having a complete connected complex system in the first place. To capture a complete
complex system in one model will require storing all known information and connections of
a complex system. As this is - within the coming years - far from possible, it is the question
how to take a step in this direction.

The research then moved towards finding out how a interactions of a complete, high level,
complex system can be captured in one information model. With this question in mind
the design process of DMO was yet again analysed, this time with the focus on information
storage and flow.



Systems Engineering in ship design

In this chapter the first sub-question, 'How does Systems Engineering (and Requirements
Engineering) define the relations?’, is to be answered. The first part of this chapter goes
into the theory of Systems Engineering (SE), applied on (naval) ships. It will focus on how
Systems Engineering defines the relations between need, requirements and configuration.
For this the design process is discussed in two parts: Requirements Engineering (RE) and
configuration definition.

The second part of this chapter is about the shift towards model based development, or
Model Based Systems Engineering (MBSE) [21]. The focus for these models will be to capture,
manage and use the relations. One of the difficulties in using a computer to manage relations
is that data for a computer has to be linked for a relation to exist. The architecture in which
the data is linked in a computer has a great impact on the flexibility of the data. Having a too
rigid architecture will help in maintaining overview in data, while a flexible architecture will
better support changes in the data. The difficulty then is to have a solid, comprehensible,
data model to support the relations while at the same-time requiring this data model to be
flexible.

This chapter will only go into the theory behind design processes, the practical side of a
design processes and the resulting limitations is the subject of chapter 3. In that chapter
the theory is used to explain the process and problems which arise by using the theory will
also be discussed.

2.1. Systems Engineering

The design process as pictured in Figure 1.2 is a good starting point to explain why this
process is difficult. In the picture there are some relations which are missing. The first is
the relation between performance and requirements. This relation is the direct result of the
performance being the combination of requirements and design; this feasibility is about how
and if the design fulfils the requirements. A second relation which is missing is the one going
from design back to partial solutions. It is uncommon for a combination of partial solutions
to be incorporated into one feasible design in one go. Going from partial solutions to one
design is therefore also an iterative process in itself. To show these missing connections in
the same picture as the design process could look as in Figure 2.1. The third missing relation
is between effectiveness and need, or determining the capability [15, 43].

The resulting figure does not quite capture the information that has to be shown in it. To
have a better figure showing the design process a new shape has been used in SE to picture
the process: the V-model (Figure 2.2a). This V-model is used to visualise an iterative process
going from determining to integrating and testing. By introducing a second dimension in
the visualisation of the process it is possible to capture more information [25]. Not only is
the cycle performed from left to right each iteration, it is now also visible that the lower’
cycles are covered by the ’higher’ cycles as well. Each lower’ cycle is a part of a ’higher’ cycle.
Using this shape to visualise the design process in Figure 2.1 results in a representation as

5



6 2. Systems Engineering in ship design

Figure 2.1: Connections in the design cycle. Blue is the "need cycle”, red the "requirements cycle” and purple the "designing
cycle”. The last cycle is subordinate to the first two in the preliminary design phase, therefore combining the two colours.

in Figure 2.2b.

Life Cycle Processes

[Parlial solutions H Configuration J

(a) An example of a general V-model. From Systems Engineering (b) The design cycle shaped to the V based on the process in 2.1
Principles and Practice [25]

Implementation

Time Line Development Processes

Figure 2.2: Two implementations of the V-model in SE

Using SE to structure the process led to more than only better visualisation of the process.
It also helps in structuring the information model which is used to describe a ship. This
information model will help to determine how a ship is tested to be suitable or not. This
testing is about determining if a new design is capable, feasible and affordable. The terms
creating and testing of a (complex) system will be used throughout the rest of the report; they
are based on the terms design and analysis in Figure 2.3 [34]. With "creating” in a complex
system the steps of determining the requirements, partial solutions and design are meant.
The term "testing” in a complex system is about determining the fulfilment of effectiveness,
performance and cost; or about determining capability, feasibility and affordability. In Figure
2.4 it is shown which steps in the design process are about creating (blue) and testing (red).
The need in the figure (green) is said to be assumed fixed. While this is technically not the
case in the preliminary design phase, it is not the task of DMO to determine this. They will
help the Dutch government in shaping their need, which is still the starting point of a design
cycle at DMO.

Stationary System L » Output
inputs —_— unknown > specified
(known) >

Design mode
Input _ System —— Output
specified . known . unknown

Analysis mode

Figure 2.3: The difference between creating and testing a system. Based on the design mode and analysis mode (as seen) in
the illustration from Pedersen and Engja [34]

Creating and testing a complex system now seems to be performed in that order in the
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v

Need

Effectiveness

Requirement Performance

1 Partial solutions ’—)‘ Configuration

Figure 2.4: Show which steps in the design cycle are about creating (blue) and testing (red). The need (green) is assumed to
be known.
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Figure 2.5: The design cycle (continued from Figure 2.4) where the focus of Requirement Engineering and designing of config-
uration is shown. Based on information from [47]

design cycle as pictured in Figure 2.4. Whereas this would probably lead to practical prob-
lems, it is also not entirely possible in theory as well. The step to create requirements - from
only the need - has proven to be very difficult. Not only is this the reason that a preliminary
design is determined in the first place, this difficulty in the process resulted in a new engi-
neering field within SE: Requirements Engineering (RE) or requirement analysis. The goal of
RE is to create, store, allocate and manage (supporting) information of a requirement during
its life-cycle [47]. This can done irrespective of a design for the complex system but should
not limit the design freedom to the extent that only one design is possible. In Figure 2.5 the
purple section shows where the focus of RE lies with respect to the design cycle. This shift
in focus in a design cycle, first requirements and then design, is also mentioned by Singer
et al. [40].

The creation of partial solutions is the first step in creating a configuration design to
fulfil the requirements. This is a step in the design cycle which relies on the creativity of
engineers; here it is possible to apply the most innovative design solutions. Combining these
partial solutions into one design, or configuration, is also a creative process, but is limited
by the choice of partial solutions to incorporate. Creating a design from requirements is then
iterated in itself as well to ensure the correct partial solutions are used. In Figure 2.5 the
yellow section shows where the focus of designing” of a ship lies with respect to the design
cycle.

Within SE a complex system is divided into separate pieces of which the following are
relevant in order to structure the information in a preliminary design phase:

* Need

* Requirements
* Functions

* Systems

* Sub-systems
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* Components [31, sec. 3.5.7]

By structuring information for a ship in the above mentioned parts, a ship is easier di-
vided in partial solutions. These partial solutions do not always include a configuration in
order to be designed, they can also be (high-level) functionally specified or described using
a set of (design) information [17, 40]. Using this approach will also facilitate the ‘configura-
tion design cycle’ by now only having to create the configuration aspects of partial solutions
into one design. Before starting to visualise a design all necessary partial solutions could be
determined functionally. This functional determination is the result of having suitable re-
quirements which are derived from the need. How the creation of requirement works can be
found in section 2.1.1 and further theory behind the creation of a design from requirements
is found in section 2.1.4.

Having the separate parts in a ship and using them does not automatically result in a
structured (information) model for the complex system; as a model is a representation of a
thing [41]. While there is a thing, the ship, captured in several parts, there is no ’base model’
for this ship connecting information. For this (information) model to be useful it is needed
to connect parts to each other in a comprehensible way. What the benefits are of connecting
the information in one computer model is the subject of section 2.2.

2.1.1. Requirements Engineering

Requirements Engineering (RE) is about creating, storing, allocating and managing (sup-
porting) information of a requirement during its life-cycle [47]. The first step in a design
cycle (Figure 2.4) is about determining requirements to capture the need. This step includes
two important terms: need and requirements. This section is about determining what these
terms mean, how they can be structured and how they can be managed. The definitions of
need and requirement are taken as follows:

Need The need is the problem that a customer has which initiates the design
of a ship. The need can be captured in ”stated requirements” which are
requirements given by the customer [47, p. 2]

Requirement A statement is an attribute in a system, a statement to help guide the design
of a system, in a way that is useful for different stakeholders and applies
value of the system to a customer or user [31, p. 94][47, p. 2]. A collection
of requirements defining the constraints of a specific physical entity can
be called a specification [8, p. 29]. For more information on this, and a
breakdown of requirements, see Appendix A

Need Effectiveness

Requirement

Partial solutions > Configuration

Y

Performance

Figure 2.6: The part of the design cycle (Figure 2.4) focusing on creating requirements.

For this thesis the need comes from the Dutch Ministry of Defence, which is the prob-
lem owner. They state some requirements with which they try and capture their need for
a new ship. These requirements can change slightly over time, they too have to be formed
during the design process. A change of a requirement can actually lead to a better under-
standing of the need. Requirements help in capturing the need; they do not define the need
[47]. Requirements themselves develop/evolve during the design process in a similar way
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as a configuration develops/evolves during this process. While this change can help in un-
derstanding the project, it is required to keep track of these changes to keep order. For this
traceability can be used, see Section 2.1.3.

Capturing the need for a ship can be done by using requirements. These requirements
then state what the problem owner wants and does not want. The document where these
requirements are printed is then the starting point for the design process (e.g. DMP-A brief
[32]). It does not mean that there can be no changes in this document during the design pro-
cess [47]. Especially in the preliminary design phase the need is still to be shaped. Saying
then that the preliminary design phase is then only to elucidate requirements is a simplifi-
cation as it is also about defining the need.

To still refer to the preliminary process as being focused on requirements, a distinction
has to be made in requirements. For this the terms stated and real requirements can be
used. Where the stated requirements are about capturing the need and are stated by the
problem owner and the real requirements are those that reflect the need of a customer for a
specific capability or system [47, p. 2]. The real requirements are the requirements as they
are mentioned in the design cycle for this thesis.

The number of requirements is growing at a rapid pace in the beginning of a design process
(Figure 2.7), while the knowledge about a design is still low [5, p. 45]. Not only are documents
generated to capture the need, there are also multiple documents generated to capture the
‘real’ requirements as well. These latter documents are mainly used as starting point for
designers, as the requirements in these documents are constraining their design freedom
and design space. This transition between ’stated’ to 'real’ requirements is an interpretation
of the 'need domain’ and ’functional domain’ in Axiomatic Design (see Section 2.2.2) [17].
Having to manage many documents adds to the complexity of having to manage the large
number of requirements in them as well. Adding to the complexity of managing the shear
amount of requirements is the number of stakeholders or large project teams [16, 31].

Portion of
Requirements Known

None

0 20 40 60 80 100

Percent of Development Complete

Figure 2.7: The number of requirements grows rapidly in the early design stage. (From Bernstein [5, p. 45])

Capturing the need and defining requirements prior to starting a design process may be
subject to a similar iterative process of searching. When stating the need it is easier to say
what you want, and more difficult to say what you do not want. This latter is due to you not
knowing what you do not want at the beginning, because you do not know what is possible.
Stating what one wants can lead to infinite possibilities to fulfil the need, the number is
being constrained by possibilities having to be feasible as well. These constraints come from
physical aspects (design constraints) and also from what the problem owner does not want.
Describing a need with both what the problem owner wants and does not want will be a good
starting point for a design. To have the best start this need has to be as compact as possible
while still containing the essence of the problem. This means that both defining the need
prior to a design process and designing a ship in itself can be seen as ‘wicked problems’,
where a solution is required to define the problem [10, 37].

“Perfection is achieved not when there is nothing more to add, but when there is nothing
left to take away.” - Antoine de Saint-Exupery
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2.1.2. Implementing (ambiguous) requirements

Implementing the meaning of a requirement is an important task of an engineer. Take for
example the requirement ”"include a large number within this report”. While it seems easy to
fulfil this requirement, the requirement is ambiguous. The definition of a large number can
be fulfilled in at least two ways: 2 and 1e10 are both large numbers - in a different manner.

Since there is no further goal given to support this requirement it is impossible to conclude
which of the two numbers is the proper implementation of the requirement. For an engineer
the rationale (or context) for a requirement might help guide towards a (good) design [12].
It is important to store the supporting arguments supporting a requirement. Whether it is
in a requirement document or via relations to other information should not matter; if the
relations in a complex system are correct.

Not having very definitive or clear requirements can also have other unwanted results.
One of these results is often called requirement creep. This is a change of scope or require-
ments as a result of engineers not being able to keep track of high-level requirements. Such
requirement creep can lead to a project verifying all requirements while not meeting the needs
of a problem owner.

Just as with the SE approach in a ship design process, requirements rely on context.
While only some requirements are able to be implemented and validated without context,
most requirements are better understood, and therefore supported, with context [24].

The insight gained through trying to relate requirements to context led to the following
conclusion for this thesis: Having the option to connect requirements to one another it is
less important for a requirement to be unambiguous. Ambiguity is created by a difference
in interpretation which relies on context. By capturing the context in the relations to a
requirement (object) ambiguity is counteracted.

2.1.3. Tracing requirements

Tracing information through requirements (for complex systems) has been of interest for
researchers some time [28]. This documenting and managing of relations between (layers)
of information is named traceability. Such traceability within a complex system can help to
increase understanding of a design and make an impact analysis [14]. It can also help in
understanding changes during a design project.

Using traceability to describe and follow the life of a requirement can help to communi-
cate, integrate changes, preserve design knowledge and support quality assurance. Proper
requirement traceability could also help a design team in finding looming problems in an
earlier stage, as it can help identify these problems in the requirements [16].

Within the requirements engineering the traceability between entities can be seen as three-
dimensional as can be seen in Figure 2.8. O Grady describes each type - axis - of traceability
as follows:

* Vertical - the parent-child relation, this is the traceability between different levels of
requirements

* Longitudinal(horizontal) - the traceability to a design and verification of a requirement

* Lateral - the traceability to methods or the rationale used for a requirement [31]

Or, as seen for this thesis, more general:

* Vertical - within the same ’domain’ (within a ship)
* Longitudinal(horizontal) - to (implementation in) another 'domain’ (within a ship)
* Lateral - supporting documents/methods/context (not necessarily within a ship)

The traceability information can best be generated simultaneously to the generation of
the item it is used for. For this to work, time and money have to be invested in a system
capable of creating, storing and managing a system which can capture both the item and
traceability [31]. This means that some structure has to be created to be able to interpret
all the generated information. Such structure can be called a tracery [20]. By having both
the traceability information and a tracery it is possible to gain insight in requirements or a
complex system.
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Figure 2.8: Three-dimensional traceability in requirements [31, p. 109]

Implementing traceability does not have to imply huge changes on a design process. In-
formation on the relationships between entities is already used in the design process: each
time a review of a design comes to pass [14]. Storing this information, having a capable
program to do so and having a structure to interpret this information, is what traceability is
about.

To see how such (3D) traceability could help, a small example will help. Take the spec-
ification section B 200 Field-of-vision from within the wheelhouse as stated by Det Norske
Veritas (DNV) (in 2011) [13]. Within this specification there are several other specifications
(and requirements) such as B 201. These can be interpreted as the ’children’ of B 200. The
specification section B 200 does also have a parent, the section 'B. Bridge Design’, which in
turn has a parent as well ’A. General’ [13]. These are the vertical traces for the specification
section B 200. Longitudinal and lateral traces are not mentioned in the same document.

Longitudinal and lateral traces, however, do apply to the specification section B 200. The
lateral trace is knowledge present at DNV, and holds information on why the specifications are
as designed. The longitudinal trace will be generated as soon as an engineer uses these rules
to design a wheelhouse, both in requirements and in configuration. One of the longitudinal
traces leads then to the ’design of the wheelhouse’ and one to the ’verification’ of this design.
This trace is thus split into two.

2.1.4. Designing the configuration of a ship

To determine if a set of requirements describes a ship which is capable, feasible and afford-
able, it is useful to have some sort of design - ranging from a combination of parameters
to detailed arrangements. This design may help in supporting the requirements and to find
answers to uncertainties and assumptions [2]l. So, while in the preliminary design phase
a design is indeed created, this design is not necessarily intended to be built: it is to sup-
port requirements and concept exploration [15, 43]. This then also leads to this preliminary
design to incorporate assumptions and uncertainties.

Creating a preliminary design comes after the (initial) definition of requirements (Figure
2.9). Without a set of requirements guiding the preliminary design, the chance of a design
fulfilling the requirements is nought. For this reason the defined requirements are taken as
the starting point for a design. There are still assumptions and choices to be made during the
creation of a preliminary design. These assumptions and choices are most likely the points
of improvement in a next design iteration.

The preliminary design is the first translation in the design process between need and
design, with the requirements as guideline and bridge. In a preliminary design the first
geometrical shapes and physical aspects of a new ship can be determined and studied.

2.1.5. Iterating with Systems Engineering

Performing a requirement and designing cycle is part of the bigger design cycle covering a
process from need to design to effectiveness. The resulting design cycle is therefore more
complex than pictured in Figure 2.2b.
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Figure 2.9: The part of the design cycle (Figure 2.4) focusing on creating a design for a ship.

The iterative process can be divided in four stages in this thesis:

1 Create (/improve)
2 Test

3 Gain insight

4 Propose changes

The creating and testing stages have been discussed briefly in the first part of section 2.1.
During these stages in the ship process, information and relations are defined at first and
later tested for compliance with the initial need. Understanding of the relations, is needed
if (quick) insight has to be gained on a design [14]. This insight can be used to propose
changes or learn from a design. In the iterative process, the insight is mostly used to find
improvements in a design.

As Systems Engineering is used to define the steps in a design process, a V-model has
been used to visualise what happens in each of the four stages in Figure 2.10. This V-model
acts as a tracery to understand information flows in a (high-level) ship in the stages.

These steps iterate during one design phase. Such phase can be ’concept exploration’,
‘concept definition’ or ’design definition’, see Figure 1.1. At the start of a new phase more
detail is added to a design. For the first phase this detail is actually just the first information.

In more detail the four stages can be described as follows:

Create In this stage a ship is created, meaning that information about the ship is
defined. Here the requirements, partial solutions and configurations are
defined - according to the level of detail in a design phase. In the V-model,
this part is about defining need to design and about defining when such
design is effective and performs.

Test The created ship from the previous stage is now tested. Now the capability,
feasibility and affordability are determined. This testing is about seeing if
constraints and requirements are fulfilled; why they are fulfilled as they
are is not yet of importance. In the V-model, this part is about determining
(testing) the performance and effectiveness of a ship.

Gain insight In this stage insight in a ship is sought, based on existing information in
the design process. This can either be to find out why the test results are
as found or to learn from a design for future projects. In the V-model, this
stage goes ’'through’ the V-model backwards. It is about finding out how
the result came to be, and why this happened.

Propose changes
This stage is about determining what changes to the ship can be applied to
ensure the next test phase to not repeat an unwanted result. Here change
propagation can be helpful to quickly see the impact of a change, however
this relies on information being (actively) connected [9, 19, 29]. In the V-
model, this part is about determining what, and where, can be changed to
change the results.
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Iterating the design of a ship using these stages could help in structuring and understand-
ing information flows in a design process. It is a way of thinking used by the author of this
thesis to later specify the use of a new method to ‘connect’ requirements to configuration.
These stages help to identify where the most difficult part in gaining the insight in a ship
design lies.

2.2. Model based design

Systems Engineering, and the design cycle (Figure 2.2b), is created to support a (ship) design
process through structuring information [25]. Within the design cycle are other iterative
processes: defining requirements and defining configuration (see Figure 2.5). This adds to the
complexity of iterating according to the V-model during a design cycle. With the information
for a ship being created, stored and managed with the help of the V-model structure, it should
be possible to find information for a ship with relative ease. However, this has proven to be
more difficult in practice. Capturing the information concerning a complete V” means storing
and managing a vast amount of information. Whereas this first led to information being
separated in documents and later in databases, computers can currently help in creating a
model for this information. This is a change in the design process from being a document
based development towards model based development [31, p. 81].

The model based approach resulted in approaches such as the Design Structure Matrix
(DSM), Domain Mapping Matrix (DMM) and Engineering Structure Matrix (ESM) [4, 7]. An-
other approach that has been developed for this purpose is Axiomatic Design [17, 22].

The matrix based models (DSM, DMM, ESM) aim to create an overview of relations in
the information in a design process [7]. Axiomatic Design is a more model based approach,
aiming to connect domains of a system [17]; which can be used to create overviews such
as in matrix based approaches [17, sec. 1.2.5]. These approaches have been researched for
some time now, and as research progressed new tools improving these methods have been
developed . Some of these tools aim to improve traceability of information in the models. One
of these tools is Capra, which creates a framework to be able to trace information in a model
[27, 28]. However, traceability programs such as these still require a connected information
model; meaning that a computer can see and interpret relations between information.

Tracing information in a design has been done with Design Matrices and Axiomatic design
giving information on the relation between entities but no information on the underlying
structures of those entities [20].

Another approach to modelling a design process and complex system is Knowledge Based
Engineering (KBE). The goal of KBE is to create tools which can manage knowledge in a design
process [12, 45]. The focus of these KBE tools is then on the structure and the connections of
all the information in a design process, to capture knowledge and have models able to perform
design steps. Having a model of the design process, supporting processes, knowledge and
tools, is therefore a large part of the KBE field [39].

2.2.1. Matrix frameworks

One way to increase the insight in a ship design and related data while at the same time make
the information comprehensible for engineers are matrices. In a matrix it is possible to show
connections or relations between entities by marking the associated column and row. This is
the basis for the Design Structure Matrix (DSM) (Figure 2.11), which was introduced to gain
more insight in the architecture of a ship design [7, 11]. According to Browning [7] "the DSM
brings the advantages of simplicity and conciseness in representation, and, supported by
appropriate analysis, can also highlight the important patterns in system architectures (i.e.,
design structures), such as modules and cycles”. In the traceability problem the visualisation
of found ’traces’ or relations is important to keep information comprehensible.

From the DSM, new types of frameworks evolved to further increase the gained insight
in systems: the Design Mapping Matrices (DMM) and Multi Domain Matrix (MDM) (Figure
2.12)[7]. These DMMs are capable of connecting information in multiple domains as the name
suggests. In some cases a DMM has been used to connect functions to components [7]; this
imposes that this approach could be applied for traceability. Bartolomei et al. [4] proposes
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Figure 2.10: The information flow "in” the V-model during a design cycle. Blue arrows are defining relations which are able to be directly interpreted. Red arrows are used for testing and can be
indirect relations; these relations often rely on context.
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Figure 2.11: An example of a Design Structure Matrix, and its equivalent node-link diagram (from [7])

a new approach for the evolution of modelling frameworks: the Engineering Systems Matrix
(ESM) (Figure 2.13).
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The definition of Axiomatic design (AD) is that it will connect the functional and physical
domain [22]. Using this method can prove helpful in many occasions and it has been used
in some occasions to connect requirements to design parameters [7]. However the data used
in the approach can be stored in several ways. It is possible to use this approach - and data
- separate from a design process; for example, it can be used to validate decisions.

Bonjour et al. [6] use a DMM to couple functions to systems in order to create a complex
system structure. As it is vital to have relations in a complex system, the DMM and DSM
can be used to visualise and manage these. However, these matrices are currently limited in
managing and visualising large quantities of (complex) design data. Underlying data models
are becoming more complex and more difficult to manage; which is a fundamental problem
in improving matrix based models (and other approaches) [7]. With a smart database appli-
cation, such as Shipbuilder, it is possible to manage relations within a complex system as

Figure 2.12: A MDM framework comprised of DSMs and DMMs (from [11])
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Objects DXO SXO0 el FXO OX0o AXO DSM
Activities DXA SXA VXA FXA O XA AXA DMM

Figure 2.13: The structure of an ESM, decomposed to DSMs and DMMs (from [4])



16 2. Systems Engineering in ship design

well as store additional data on each element. By using such databases for the information
model, it is likely that matrix based models can help in gaining insight in this information
[7].

Matrix based structures have also been applied to change propagation in complex systems
[9, 19, 29]. This is another way of gaining insight in the system a (matrix based) model
describes.

2.2.2. Axiomatic design

Axiomatic design aims to connect the physical and functional aspects of a design through
coupling Design Parameters to Functional Requirements. This connection is one of the con-
nections between the four domains in Axiomatic Design: Stakeholder requirements, Func-
tional architecture, physical architecture and process architecture (Figure 2.14) [17]. This
coupling is an important step in understanding the development of a (ship) design. It can
therefore be seen as a method connecting RE to configuration design. While configuration
design can also implement the functional aspects of a design, these aspects are generally only
a few specific requirements of a system. In RE the coupling between the first two domains
are covered.

synthesis synthesis synthesis

> "> -
M
Stakeholder Functional Physical Process
Requirements Architecture Architecture Architecture
Domain Domain Domain Domain

Figure 2.14: The four domains in the Axiomatic Design perspective (from [17])

Axiomatic design is built on two axioms (hence the name): the independence and infor-
mation axiom. The independence axiom is about mapping relations in a way that one DP
corresponds to one FR and the information axiom is about minimising the amount of infor-
mation required for a design [17, 22]. Axiomatic design was first applied in the Mechanical
Engineering field, later it expanded to other disciplines as well [17].

In Axiomatic design a design in synthesised in a so called ”zig-zag” approach (Figure 2.15).
In this approach first the high-level parameters are determined across domains, after that
lower-level parameters are determined for the ’starting domain’. By using zig-zagging and
mapping a design can be defined in different levels of detail [17, 42].

The use of Axiomatic design does help engineers in gaining insight and structure informa-
tion in a marine system [22]. For this thesis the basics of Axiomatic Design can be applied
to manage the relations between need, requirements and configuration.

2.2.3. Knowledge Based Design

Knowledge Based Engineering (KBE) is mostly used in combination with CAD applications,
or at least this is were the idea started [26, 35, 45]. KBE was thought to help engineers to
develop a design in a CAD program by having knowledge stored in the computer. This stored
knowledge would support, correct or predict design solutions. An other aspect of the KBE
development is that corporate knowledge can be stored, thus being less dependent on that
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Physical Domain

Figure 2.15: Synthesis according to the zig-zag approach in the functional and physical domain (from [17])

‘one senior engineer’ with all the knowledge and losing parts of this when the engineer leaves
the company.

In the ideal design process key design decisions will be made as late as possible, as this
generally means that the decision can be based on more knowledge. This view can be seen
in the articles by Verhagen et al. [45] and Mavris and DeLaurentis [30]. Figure 2.16 from
Verhagen et al. [45] illustrates what what the goal of KBE is: increase design freedom, delay
committed cost and advance (design) knowledge in a process. Mavris and DeLaurentis [30]
describe the same problems and goals in his research. The idea here is that by creating a
general approach for a design process, through applications, it is possible to reduce cost and
duration of projects while getting better results. One of the encountered problems is that
most information is not available for all relevant parties, not that the information is non-
existent. This problem can be limited by using a single database to store design data; having
a way of easily gaining insight from this data even further.

Where Mavris and DeLaurentis are looking from the design perspective of aeroplanes,
Verhagen et al. are taking on the problem from a broader perspective. Early KBE systems
exists since the 1970’s, but only since the 1990°s has the development of such systems gained
increased interest. This is the result of acknowledging the difficulty of knowledge models
and the corresponding research required for further development and use [39, sec. 2.1].
KBE aims to use (corporate) knowledge to create artificial intelligent programs which can
design products. The ultimate goal is that such a system will design a product, create all
necessary data and documents, make the production process and check products against
industry rules. In order to create such systems it is required to divide products in as generally
applicable parts as possible. Reusing these parts will speed up a design process as a lot of
information is thereby already known in later products [26].

In KBE the DIKW (Data, Information, Knowledge, Wisdom) pyramid is used to define
knowledge (Figure 2.17, which has been used for several years to structure the 'wisdom
hierarchy’. In the paper from Rowley [38] it is found that there are fairly clear definitions of
‘data’ and ’information’

Data Data items are elementary representations of observations which are mean-
ingless without context.

Information Information is processed data. It adds meaning and structure to data,
mostly aimed to be understood by human interpretation.

Knowledge Knowledge is a collection of information and data. It can lead to under-
standing, learning and being able to relate information.

Wisdom Wisdom can be a result of knowledge and knowing what to do with this. It
is mostly a human skill but has no general, clear, definition.

The definition of the higher levels in the pyramid are less obvious and differ between
researchers [38]. However, it is at this level that it becomes interesting to be able to let a
computer help engineers. If a computer is able to work with, and manipulate, information
and data it could be called ’advanced knowledge modelling’ [39].

To have an idea of how a DIKW structure could help, the following example is given:
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Figure 2.16: Product life-cycle cost, design knowledge and freedom related to design process. By Verhagen et al. [45]

Data: 128

Information: the length in metres of a S-frigate
Knowledge: the L-frigate is equally as long, as it is built on the same hull

Wisdom: the length of these frigates is the result of a design process for a ’standard
frigate’ and suited the requirements at that time [23, 46]
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Figure 2.17: Relations between data, information, knowledge and wisdom (from [3]).

With the help of the DIKW structure, one of the goals of KBE is to have a knowledge
model to help engineers with tedious jobs [45]. As there is knowledge in this field in creating
and managing complex models (containing and relying on context), a KBE system might be

helpful in connecting requirements to configuration.

2.2.4. Moving to model based development
Using an information model in the design process of a ship could make it easier to store and
manage relations between information in a design. By using one information model to store
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information some indirect relations can actually be managed. Having two separate informa-
tion models - and databases - can rely on implied relations [17, 27, 31, 41]. Generally one
information model is manged in a database or program. Information models crossing sev-
eral databases or programs can be difficult to manage as this requires programs to (actively)
communicate.

Take for example system A in Figure 2.18a. System A has to be supported by components
B and C, and is stored and managed in database 1. Now take another system, D, which has
to be supported by C and E, and is managed in database 2. Both systems A and D thus have
to be supported by component C: there is an indirect relation between A and D. By using
separate databases to manage A and D this indirect relation can become an implied relation.
This is because component C is in both databases. While C remains the same component, it
is now managed by two separate data entries. As these data entries both refer to the same
component, but are not the same object, there is now an implied relation between A and D,
based on the assumption that component object C in database 1 is the same component as
object C in database 2.

Such implied relations are common in information models in a ship. Same requirements
are stated in the ConOps, Program of Requirements and entry fields in design programs,
yet these requirements are not the same object. It is possible to manage these implied re-
lations through the knowledge of engineers working on the project and documents storing
information for these implied relations (references between documents/databases). However,
finding information in this construction can be tedious and errors can occur by interpreting
information differently.

As finding information in data models based on separate databases can be difficult or
tedious, a solution could be found by using a combined database - or model. In a combined
database it is possible to actually connect pieces of information (data) to each other.

For the example above, using one model to manage both systems A and D will provide
the possibility to only have one data object for component C (Figure 2.18b). As a result
the implied relation between A and D is now an indirect connection, captured in the actual
relations between A and C and C and D.

Having the implied relations captured through other relations in a model can help in
gaining (quicker) insight in the information. This is the underlying principle to proposing the
stated method.

Implied relation Indirect connection
g “a el s
] o
(o) (e (e [e]  [s]
L - J L ~ J [ - J
Model 1 Model 2 One model

(a) A representation of an indirect (implied) relation between two (b) A representation of an indirect relation (connection) between
objects in different information models (each in a database) two objects in one information model (one database)

Figure 2.18: One of the aspects in relations which is covered by moving to a model based development process

2.3. Conclusion

With the help of Systems Engineering and the ’sub-field’ Requirements Engineering a good
framework supporting the development of a ship has been created. By using SE and RE
it is possible to structure information on a ship design as well as define this information.
As the discussed frameworks were all high-level, similar to the level of detail found in the
preliminary design phase. For this reason the ship as a whole will be taken as the complex
system in this thesis, systems such as propulsion engines will then be ‘components’.
Relations between need, requirements and design are part of the defining structures for
information in both SE and RE. Where in SE the decomposition is often more focused on
the ’design’ part of a complex system, the RE is about the structure of the requirements for
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such system [31, 47]. It is in RE that the term traceability has been introduced [14]. This
traceability is the result of using computers in the design process, or going to model-based
development.

In the model-based developments there are programs and approaches created to help in
defining and managing relations. With the Design Structure Matrix it is possible to visualise
connections in a ship, which helps in understanding relations [7]. Another approach is called
Axiomatic Design, which helps in defining relations and complex breakdown structures. Here
the decomposition of a ship can be structured across domains and in different levels of detail
[17]. To see what such relations are capable of, and what more can be gained from them, the
research field of Knowledge Based Engineering has been developed. This field aims to capture
’knowledge’, which is a level above ’information’, to aid engineers in developing designs [39].
All of these approaches benefit from having a solid information source. In a solid data source
relations should be stored and managed, enabling digital traceability. While the relations are
well defined in theory, and they can be used in model-based approaches, it remains difficult
to create a single information source to capture the relations.

The issue that exists in the design process at DMO is that it is tedious and difficult to
trace information between need, requirements and design. With the underlying theory and
possible solutions to manage and use these now known, the next step is to evaluate the
current design approach at DMO. This will be done in the next chapter.



The DMO design process

Without the ability to trace relations between need, requirements and design it is impossible
to create a capable, feasible and affordable ship. Yet, at DMO they are capable of creating
a ship which is capable, feasible and affordable, without this traceability. This means that
the relations between need, requirements and design are present and known in their design
process. How they are currently defined and managed is therefore analysed in this chapter
to answer the second sub-question: 'How are the relations currently managed during the
design process at DMO?’.

To find the answer to this question, first the theoretical side of the DMO design process
will be discussed, before the practical implementation is described. This will give a good view
of how the relations should be and are currently managed in their design process. Here, a
division between requirements engineering and designing can also be seen, just as in theory
in the previous chapter. This division is the result of programs not being able to cover all
information and them being used in different design stages.

By having both the information from theory and practice it is possible to see what could be
used to improve traceability. Some requirements are stated to be fulfilled by a new method
in order to improve traceability. How such method can look like is discussed in the next
chapter.

3.1. The theory behind the DMO design process

Acquiring new materiel for the Netherlands Ministry of Defence follows the "Defensie Materieel
Process” (DMP) [32]. This process comprises of five phases:

A - Statement of requirement and budget
The A phase is about stating the initial need for a ship. This is about
the 'what’ and ‘'why’. In this phase the first operational requirements are
determined and a budget is defined. The Dutch parliament has to approve
a project by looking at the results of this phase.

B - Study-phase After aproval, DMO starts a project to acquire a ship. In this phase more
detailed operational, functional and some technical requirements are de-
termined. This is supported by different preliminary designs, in order to
determine which alternative is capable, feasible and affordable.

C - Detailed study & development phase
If at the end of the B-phase it is determined that there are no off-the-shelf
ships available, this more detailed study phase is started. This is generally
the case for a warship [44]. During this phase the functional and techni-
cal requirements are determined in more detail. With this a more detailed
design is made.

21
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D - Procurement preparation
This phase is to determine a contract specification which is used to put
out a quote to the industry. After approval of the parliament a contract is
signed and a ship can be built.

E - Evaluation Large or complex projects are evaluated after some years of service.

Supporting this DMP, the design process at DMO is based on the Total Ship System En-
gineering Process of the NATO, which is supported by their own V-model (Figure 3.1b) [44].
Compared to a general V-model (Figure 3.1a), the biggest difference is that the "requirements”
are not in the V itself.
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Time Line Development Processes

(a) A generic V-model in SE [25] (b) The V-model as used by DMO for a ship. This model is pro-
posed by Van Oers [43] and adapted by Duchateau [15]

Figure 3.1: The process to the V-model

One of the reasons that the V-model as used by DMO is different compared to a more
general V-model (Figure 3.1a), is that this V-model is used to support the elucidation of
requirements. A design of a ship then is not leading in the process, it should reflect the
requirements to test them on describing capability, feasibility and cost.

Using the System Life Cycle from Kossiakoff et al. [25], the design process at DMO covers
the ”"concept development phase” and a part of the "engineering development phase”. The
projection of the design phases and DMP documents on a timeline is seen in Figure 3.2. This
figure shows a difference in DMO (blue) or a shipyard (grey) being the leading stakeholder in
the design process. During this process, the DMP is used to inform the Dutch politics of the
progress. In the figure the documents used for this are shown as the ’decision points’ in a
process, where one phase changes to the consecutive phase.

In the lower part of Figure 3.2 there are several V-models shown. This has been done
to indicate that during each phase the same V-model is used to define all design aspects of
a ship in the process. However, in each design phase the focus within this process is on
different parts of the V-model. This focus is highlighted by circles; as used before the colour
blue indicates what is ‘created’ and the colour red indicates what is *tested’. While the focus
in these stages is on these aspects, the other aspects in the V-model are also defined. These
aspects are mostly assumed or determined in low detail to support findings of the highlighted
aspects.

In the first two stages the focus is on capturing the need, setting the requirements and
determining some functionalities. During these phases the scenarios and effectiveness of
the ’ship’ are tested. In the third and fourth design phase, the focus shifts towards the
lower part of the V-model. This is to indicate that in these phases the focus lies in creating
a configuration (or solution) for the design problem. Here the performance is the leading
‘test’ for a ship. However, during each phase the V-model is used in total as the preliminary
design phase (Concept design phase and the advanced development phase in Figure 3.2) is
still about elucidating requirements for a complete ship.
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Figure 3.2: A system life cycle as seen in the DMO design process, with points indicating the DMP documents, and the V-model
highlighting the points of interest. The highlighted ovals are blue for creating’ and red for 'testing’ parts of the V-model. Based
on information in [15, 25, 32, 44]

3.2. The implementation of the DMO design process

The implementation of their theoretical design cycle model (Figure 3.1b) is limited due to prac-
tical limitations. These limitations lead to the process not being as streamlined as hoped, this
is where the issue starting this thesis initiated. One of this limitations is that there are mul-
tiple stakeholders needed in the process to support the input and generation of information,
which is a standard issue within System Engineering [36]. Storing, managing and using this
information is also divided. This is the result of a ship containing a vast amount of informa-
tion, which covers many aspects of a design (e.g. functional, operational, hydrodynamics).
This leads to several programs used to manage the information [44].

Both these limitations have one side-effect, it blurs the line between requirements and
design. A design is created to test the need and requirements before the DMP-A and B briefs,
after which the need and requirements are supposed do be as good as fixed - to some level[32].
Only if there is no possible design able to fit the need and requirements these two can be
altered. Therefore it is important to know where in the process a choice, trade-off, decision
or assumption has been made. Finding this information becomes tedious by having multiple
stakeholders and programs, which could lead to an uncertainty regarding having to change
the need, requirements or design; thus blurring the lines between them.

3.2.1. Stakeholders

In the DMP there are three main stakeholders: Defence staff (DPLAN), the Royal Netherlands
Navy (CZSK) and DMO [44]. However, there are more stakeholders in the design process of
a warship. In total there are at least seven stakeholders which have impact on the design
process in the preliminary design phase. Who these stakeholders are, and what their interest
in the design process is, is stated below.

Defence Staff (DPLAN)
DPLAN is responsible for the functional requirements and the budget; for
the functional requirements they get support of DMO.

The Netherlands Royal Navy (CZSK)
CZSK is responsible for the operational requirements and the concept of
operations. They are also the user of the new ship and also take care of the
maintenance of a ship; this is done by a separate section "Directie Materiéle
Instandhouding” (DMI).

Naval Maintenance and Sustainment Agency (DMI)
DMI is the responsible unit for the maintenance of the ships and systems
of CZSK. With this they have knowledge on current used systems, which
may be valuable information in a design process.
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Defence Materiel Organisation (DMO)
DMO is responsible for the materiel of the Dutch Ministry of Defence. Within
DMO there is a section responsible for naval systems. Their main task in
the DMP is to determine the technical requirements and they are responsi-
ble for the procurement of the ship.

”Specialist” Within DMO there are multiple ”specialists”. For this thesis these ”spe-
cialists” are engineers which are specialised on a certain field (e.g. marine
engineering, hydrodynamics, weapon systems). The interest of a specialist
is thereby only on a part of the model of a ship as proposed in this thesis.

Shipyard A shipyard does not have direct influence on, or responsibilities in the DMP.
However, keeping the shipyard in mind during the design process could
help structure a design to ensure feasibility of the design.

NATO The NATO has rules and regulations for new warships. These rules affect
the design process of a ship. Furthermore, as the NATO conducts missions
with the aid of national forces, the NATO has to be informed during the
design process.

Here it can be seen that all the stakeholders are, to some extent, responsible for the re-
quirements of a new ship. Only DMO is responsible for a design of a ship. Not all stakeholders
play an equally large role in each of the DMP phases. For this thesis these stakeholders are
mentioned to show that it is not only DMO which is concerned with the design of a warship.
The other stakeholders also have interest and input in this process. This makes the design
process more complicated [36].

3.2.2. Programs
The relevant programs for this thesis are FIDES, PACKING, QUAESTOR, Rhinoceros and
DOORS, as they are used during (different phases) the design process of a ship at DMO.

DOORS IBM’s DOORS is a requirement management program, used at DMO.

PACKING PACKING is a bin-packing model used to generate and change a ship model
in the design exploration phase. It is able to generate a large amount of
high-level ship designs, which can be used to study trade-offs.

FIDES FIDES (Functional Integrated Design Exploration of Ships) is used in the
design definition phase. With this program, and the link with Rhinoceros,
it is possible to generate 3D models of a ship, with variable levels of detail.

Rhinoceros A 3D-CAD program used to visualise the design of a ship. The input for a
3D model are the blocks as defined in FIDES.

QUAESTOR This is a knowledge management shell, managing a numerical model of a
ship. FIDES can be used to generate input for this program. This program
is also used to couple several other programs, such as SARC’s stability
program PIAS and MARIN’s SHIPMO seakeeping code [44].

Shipbuilder Shipbuilder is an application currently used as a requirement management
program in one project. This program is a semantic database capable of
storing information of a ship [18].

Table 3.1 shows where in the DMP each program is used. Here it can be seen that there
are two programs used during the whole process, DOORS and Shipbuilder. Both these pro-
grams are currently used as requirement management tools. For the design of a ship, several
programs are used. PACKING is used for concept exploration in DMP-B, and the other design
programs are mainly used in the DMP-C phase.

In this table, the software tool Shipbuilder is shown to be used during a complete pro-
cess for requirements engineering. This program, however, is also capable to be used as a
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design tool. This program can then be used for this purpose as well during the design pro-
cess, already partially closing the gap between information management of requirements and
design.

Program Need definition Concept exploration Concept definition
DOORS X X X
Shipbuilder X X X
PACKING X

QUAESTOR X

FIDES X
Rhinoceros X

Table 3.1: Programs used in different DMP phases, determined from Van Oers et al. [44]

(a) The parts of the design process sup- (b) The parts of the configuration design (c) The scope of the Shipbuilder software,
ported by DOORS process supported by FIDES, PACKING, applied to the model in this thesis
QUAESTOR and Rhinoceros

Figure 3.3: Parts of the design process and their supporting programs. Similar to Figure 2.4, blue indicates what is 'created’ and
red indicates what is 'tested’. Dashed lines are indirect relations, solid lines are connections

In Figure 3.3 the discussed programs are shown with respect to their focus on the design
process. The division between Requirements Engineering (Figure 3.3a) and designing a con-
figurations (Figure 3.3b) can be seen in these figures. Only DOORS, and in a new project
Shipbuilder, is used for the requirement management. The other discussed programs are
used to define a configuration. As such configuration is used to represent the requirements
there should be a connection between the two. Such connection is currently often an indi-
rect relation, which has to be interpreted by an engineer. There is currently no program used
to cover the information of both requirements and configuration. Shipbuilder is capable of
doing this, but is now only used for RE. When DMO wants to move to model based design,
this program can prove to be very useful, that is one of the reasons it was chosen.

The division between requirements and configuration design tools results in ’implied rela-
tions’ between the two. There is no connection between items on either side of this division.
The consequences of this is are discussed in Section 2.2.4.

Shipbuilder

To improve the flow of information DMO is implementing the Shipbuilder software in the
workflow of one of their projects. Shipbuilder is a web based data management tool based on
the SE approach. With this their goal is to make the information in a ship more transparent.

Shipbuilder software is build on the database platform Relatics and is dedicated to the
maritime industry. The configuration of a ship and the project are stored in a semantic
network based on a maritime knowledge base. Knowledge is stored based on entities, pa-
rameters, relations and constraints. The software is supporting the Systems Engineering
method [18].

The scope of the Shipbuilder software is to create and manage a ship in one program.
This includes both the requirement and configuration parts of a design process. The ship
is a high-level complex system, meaning that systems such as engines can be considered
as a component of the ship. The software is built to be adaptable, making it possible to
incorporate the design approach as used by DMO. This possibility for adaption is one of the
benefits of using a model based approach, such as Shipbuilder [18§].

As Shipbuilder is already applied at DMO, the information model in Shipbuilder has been
adapted to fit the process at DMO. This was the information model which was encountered
at the beginning of this research. The current use of the software is to create the initial set
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of requirements the relations between requirements and relations, and relations and other
objects in a ship are more important than relations between objects in a ship.

For support in designing a ship, Shipbuilder already implements some information struc-
ture and management to support this process. The software is built to also support the
structural design of a ship. For this purpose the arrangement of components is done by
adding spaces and decks to a ship. These components, spaces and decks are supported by
the construction of a ship. This construction is not a part of this thesis, as it is also not a
part of the preliminary design phase. The required level of detail in a ship design is too high.
The use of spaces and decks, however, is suitable to be used for this thesis. With these two
objects it is possible to (partially) define the configuration of a ship. Spaces and decks are
also useful in placing components, and indicating placement of systems, in a configuration
[18]. The information model used for this configuration is seen in Figure 3.4. In this figure it
is shown with dashed lines that there are indirect connections between a space and a system
and between a component and a deck. Having the option to see these relations is useful
for engineers, as this increases the context for an object. For this thesis, this information
model is not part of the scope. However, this information model does make it possible to
connect the 'configuration’ of a ship to the rest of the information. The information model for
a configuration can also be used when a ship is visualised in a 3D CAD program.

Solution

{ Systems H Components J
A /A
[ Spaces ]—[ Decks ]

Construction

Configuration

Figure 3.4: A possible interpretation of the information model for the configuration in Shipbuilder, applied to the 'configuration’
and ’solution’ as found in the V-model of DMO. This part of a design is therefore covered in the Shipbuilder software

Using Shipbuilder as a leading program in the design process, means also the ’knowl-
edge management shell’ of QUAESTOR needs to be replaced. This can be done by using
the 'Knowledge Base’ (KB) of Shipbuilder. The KB can be used to store general information
(knowledge) for the ship design process. As this KB is implemented in the software it is
possible to directly apply stored information to a new ship [18, 44].

3.3. A small example of a naval ship

To give a small example of a naval vessel, using SE, may help to identify why it can be difficult
to have traceability in the information for a ship. In the case study performed for this thesis
(chapter 5) the example of a frigate, based on the standard frigates once used by the Dutch
Navy, is taken. The standard frigate came in two variants: the S-frigate and L-frigate. The
first is an anti-submarine warfare vessel and the latter an anti-aircraft warfare vessel. More
details on these vessels can be found in chapter 5.

To examine the use of the Requirement Engineering and Systems Engineering as described
above, it is useful to create a small example. For this example the steps performed as in the
design cycle will be followed.

The example is short and is only to indicate how the terms mentioned above can be used.
For this means there is only one stated requirement, two requirements and one function used
as output from the ”defining requirements” cycle. For the design only one, still high-level,
partial solution is mentioned to fulfil the requirements. In the design this partial solution is
used to indicate how this system can in another complex system take the role of a component.

As there is knowledge on how to build, operate and use ships the result stated at the
effectiveness will generally be tackled in the first design meetings. It is still a good indication
of how the need can become both more clear as well as change during the course of a process.
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Need
Stated requirement: Have a ship capable of providing submarine defence at sea.

Requirements
Two requirements will be stated, supporting the need (represented as a stated require-
ment) above. These requirements are both high-level system requirements.

* The ship shall be able to defend itself from nearby submarine threats
* The ship shall have a system to take out a submarine

Functions
Disable hostile submarine close to the ship

Partial solution
To fulfil the function, one of the possible solutions is to fire a torpedo from the ship.
This is a self-defence system.

* System: Torpedo launch tube
* Sub-system: Pressurised air system
* Component: Control pad of the torpedo tube

Design
For the sake of this example only one partial solution has been used. This results in
the design only having one partial solution. Generally, a design is the integration of
several partial solutions, each solving different requirements.

* System: Self-defence system
* Sub-system: Torpedo launch system
* Component: Torpedo launch tube

Performance
The ship shall able to disable a submarine effectively within the range of X nautical
miles from the ship in conditions until sea state Y.

Effectiveness
The ship is able to provide submarine defence for itself against a nearby hostile sub-
marine, with a survival chance of 90%.

This provided defence however, is only for the ship itself. If this vessel would be a true
ASW frigate it should be able to provide support for other ships as well. As this is not
stated in the initial need, a new requirement has to be added to the "need”; the current
requirements do not have to be changed.

In this example, all the information is located in one location. This enables the user to
quickly identify what the change in specifying the need would indicate: change the solution
fulfilling the function. This can either mean to change the system, or add another system.
To have an answer to which of these two options is better, it would be logical to also include
the cost of such systems. In the example the cost is left aside, but the cost generally plays a
large role in decision making[44]. In a standard design process the budget, however, is set.
So let’s assume that the ship is currently on the cost limit, so adding a new system would
be too expensive. This assumption, with the argument is now a driver for the design choice
which has to be made. If later on in the process there is more budget, this could mean that
two systems for the function could also work. However, if the assumption on the cost is not
properly stored, the solution of one system for the function is no longer a variable but a set
solution.

So, information on the budget and cost should now also be included in the breakdown
above. This changing of stored information, and input, creates difficulty in tracing informa-
tion through a design process if there is a lot of information involved.



28 3. The DMO design process

3.4. Combining theory and practice

Looking back at the process using a V-model (Figure 2.10) and projecting the practical ap-
proach at DMO on this a new figure can be made. This is Figure 3.5. In this figure the V-model
is used as an information model, defining a ship. The problem they encounter in these steps
is that the current information model is distributed over several programs, whereas there
can only be one ship. With the approaches as described in this chapter and looking at this
figure it can be seen that the process of creating a ship is very complex and can be confusing.
This is the result of the process being divided in itself and practical limitations of programs
amplifying this.

The issue which started this thesis - the difficulty in tracking, and back-tracking, infor-
mation - can be seen in this figure. The difficulty in tracking the information in the process
has several causes:

* The complexity of a ship

* Uncertainties in the design process [2, 44]

* Separate processes (see Section 2.1)

* Relying on interpretation (see Section 2.2.4)
* Separate programs (see Section 3.2.2)

None of these causes individually are preventing the information flow. However, relying on
engineers to find separate pieces of information and interpreting implied relations themselves
is time consuming and is considered a tedious job. It is the tediousness of finding each
piece of information and creating the traces that is considered a problem, this could be
solved by using a tool capable of traceability management [14, 31, 44]. To decrease the time
used to trace information the underlying problem has to be solved. This problem lies in
the storage and management of information and relations. Solving this problem can lead to
improvements which can reduce the impact of the above mentioned issues.

By using the Shipbuilder software the segregation in the designing cycle” is already mostly
covered. Using this software creates a possibility to connect requirements to design. As
external programs can be coupled to this software to both read and create information, a
complete model of a ship should be possible to be created [18]. The remaining question is
then to find out if the model used in this software can be changed to further implement the
theoretical model of a design cycle. The design cycle based on literature is mostly covered in
Shipbuilder, but there are some differences between this model and the design cycle used at
DMO.

Create |:{>

Iterate

Figure 3.5: The information flow "in” the V-model used by DMO during a design cycle. Blue are information flows for defining (or
creating), red are information flows for testing.

3.5. Possible improvements

To solve the issue DMO encounters in tracing information throughout a preliminary ship
design a solution could be found in actually connecting the separate items present in their
V-model (Figure 3.1b). By solving the problem of having one ’definitive’ database to store
and manage information, issues preventing traceability could be resolved. Implementing
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the Shipbuilder software seems to move towards a solution to their problem, as it is based
on Systems Engineering and creates the possibility to create one database for important
information.

As Shipbuilder can be seen as a KBE program, and is focused on storing and managing
(transparent) information of a ship, it should then be possible to build a model of a ship
in this program. This model should be built in a way that is implementing both theory -
SE, already in Shipbuilder - and practice - V-model of DMO. The last part will be the key to
helping DMO to solve the issue they have with finding information in their process.

To ensure that using the Shipbuilder software in combination with the DMO design ap-
proach will improve traceability, some requirements have been stated:

* Quick access to information

* Quick insight in the gained information

* Have the ability to apply changes in the information model
* Use the software for different ships [44]

These four requirements are already partially fulfilled by DMO using the Shipbuilder soft-
ware. Having quick access to the information and making this transparent is the goal of
Shipbuilder, so checking these requirements should come as no surprise. Since the Ship-
builder software is Object Oriented the information model that is used can be changed, but
most importantly the information in this model can be changed without losing the model.
However, there are still possible improvements to be made.

Quick access to information For the first requirement - quick information - the missing con-
nections take away the possibility to create traces from the configuration to mission. So
another requirement has to be added to the first requirement(which is a stated one to
capture the need): Quick creation in a trace from need to component and back).

Quick insight in the gained information This requirement is fulfilled through the possibility
to add background information about an information entry in Shipbuilder. This back-
ground information (e.g. source or rationale) can help in gaining insight on an object.
Yet, as the connections as seen in the V-model are not all present, the lack of some of
the connections could hinder an engineer in seeing the reason why the model incorpo-
rates a certain connection. This will lead to not having insight in the overview of the
information. To solve this problem two requirements are added to the second require-
ment: Store information in the model which tells how information can be interpreted and
Use an information architecture fitting the DMO approach of a design cycle.

Have the ability to apply changes in the information model This third requirement can use some
extra information as well. Here, only having the option to make changes to information
in the model can actually slow the traceability of information later on. This is because it
might not be known what the impact of this change is or will be. The direct impact of a
change is difficult to define, this is the subject of the research field Change propagation
[9, 19]. Still, having the option to see what a change in the model might do is helpful
for engineers in going through iterations. This insight is built on having correct traces
for information, having insight in these traces and having a known structure to com-
pare the traces and information to. These are the extra requirements as stated above.
An extra requirement then added to the third requirement, and incorporating all other
requirements, could read: Quick insight in the impact of changes in the model.

Use the information model for different ships This requirement is applicable as concept ex-
ploration is a part of the preliminary design phase. Exploring different concepts, can
be interpreted as designing different ships. In the Shipbuilder software it is possible
to create different ships. These ships can contain information stored in the Knowledge
Base. However, this does not directly result in a comprehensible information model,
this has to be created in Shipbuilder by the user. As it is not defined what a design
looks like at the beginning of a design process - neither is a design defined at the end of
the preliminary design phase - the method should be able to work for ’any’ ship design.
The actual requirement for the method will then read: Be reusable for different ships
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With these extra requirements in mind there are now five requirements to be fulfilled in
order to get to a solution for the issue of insight in information. All the requirements, possible

solutions and fulfilment are stated in table 3.2.

Need Solution

Use an information architecture fitting Use the same information structure as *
the DMO approach of a design cycle the V-model used by DMO

Quick creation in a trace from need to A program capable of creating these ?
component and back traces using the existing information

Store information in the model which Link information in a way which can be ?

tells how information can be interpreted

used to interpret the information and

links

Use stored information and relationsto 7
identify the impact of changes

Have an information model capable of ?
describing different ships

4 Quick insight in the impact of changes
in the model
5 Be reusable for different ships

Table 3.2: Requirements that may help solving the issue of gaining quick information from a ship model

3.6. Conclusion

The theoretical design approach at DMO, which incorporates Systems Engineering, defines
the relations between need, requirements and design. However, in the practical implemen-
tation a division between requirements engineering and designing can be seen. This creates
difficulty in tracing information from requirements to design, while in theory these relations
between both are defined. The difficulty in traceability is then not part of the design pro-
cess itself, it lies in the practical implementations of computer programs. Having one single
source to store information could create the possibility to improve traceability.

By solving the requirements set in the section above it should be possible to create a
method which will improve this traceability. The main issue that has to be solved is to use
one database for information and connections with a comprehensive structure. This will
most likely improve traceability; opening the way to resolve issues which exist because of the
difficulty of determining cause and effect.

How a method fulfilling the stated requirements can look like is described in the next
chapter. The proposed method will be shown and explained. Difficulties encountered with
implementing this method are also discussed.
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Using an information model, covering need, requirements and design, in one database will
help to capture and manage the relations between these three aspects. This will help to
improve traceability. In this chapter, the answer to the third sub-question 'What could be
a method to be able to capture and manage these relations?’ is answered by the previous
sentences.

The method in this chapter is created to fulfil the requirements mentioned earlier. In this
chapter the outline of the method is discussed and the building and early implementation of
the method is described. This will not directly lead to fulfilling the set requirements. In order
to see if the method actually does this a case study has been performed, this is the subject
of the next chapter.

4.1. The proposed method

To fulfil the requirements stated in the previous chapter in table 3.2 the following method is
stated for this thesis:

Build a model of a ship in Shipbuilder, following the structure of the V-model as used by
DMO, to capture relations between configuration and requirements to improve traceability
in the design process

The steps in examining this method are the following:

1 *Visualise’ the information model in Shipbuilder, according to the V-model
2 Change the information structure to represent the V-model

3 Create a model of a ship with the improved database model

4 Show traceability between information of requirements and configuration

The first two steps for this method will be discussed in this chapter, the last two are the
subject of the case study in Chapter 5. In Section 4.2 first the proposed information structure
is visualised and related to the current Shipbuilder structure. Changes to this structure to
represent the proposed information model can be seen in Section 4.3.

The objective of the method is to support information traceability and the creation of
insight in this information. This is done so that in the insight phase the best possible changes
can be proposed. By having good traceability in the information of a complex system it should
be possible to determine what changes are possible and which are not. The traceability
should lead to finding an uncertainty, assumption or choice in the design which can be
changed. Finding information on where and how to change a design to improve it - while not
imposing a new problem - is then the goal of the method.

For such traceability to be possible, the easiest way is to use one program to model the
ship. Why this can be useful has been discussed in Section 2.2.4.
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The information model, following the V-model of DMO, will look as pictured in Figure 4.1.
In this figure the information model exists of the objects shown in white, the yellow blocks are
activities to evaluate the complex system. The complex system then comprises of objects and
the activities produce new information (in documents or databases) stating the test results.

Requirement(s)

Mission

Operation (Enterprise task)

Function s---=-eof---{---{--------3  Determine performance

Configuration J

S @
.|2g
Lge
S
@
g3
22
LI
=0 .
@
2

System

Sub-system (component)

Figure 4.1: The proposed information model, based on the V-model by Duchateau [15]. The yellow objects are not really objects
in the information model, they are more activities resulting in documents which contain information.

4.2. Visualising the information model in Shipbuilder

To see how the current information model (structure) relates to the proposed model, the
structure in Shipbuilder has been visualised to represent the V-model (Figure 4.2. This
figure shows some differences related to the proposed model. One difference is that not all
connections between the shown items are present, the other is not directly visible but is
shown with the red marking of the *function’ object.

Requirement(s)

| Determine effectiveness
Enterprise Task h Study_scenano_s 0

\ operational profiles
7777777777777777777777 =

[ System

Configuration }

Component

Figure 4.2: The information model in Shipbuilder using the V-model as reference. The ‘function’ is red as this object is only
present in the Knowledge Base and not in the model of a ship

4.2.1. Implementation of the ’functions’ object

For all but one object that has been discussed in the method it is currently possible to apply
this object to a ship. Only for the ’function’ object this is not possible. The problem this
poses however can be seen in Figure 4.3b. Here it can be seen that all but one object has
been placed in the green field. This green field represents the boundary of a ship. Within this
field information is specific for the ship, outside this field is non-specific information. Such
division is helpful to prevent clutter in the KB.

In the red circle in Figure 4.3b is a function object. This object is not placed in the field of
the ship but is connected to objects in the ship. This should not prevent tracing information
through a model, so it does not pose a big problem for understanding the relations in a ship. If
functions are specified specifically enough in the database this could prove to be no problem
at all. However, such solution will undermine the thought of the KB being the place to store
general information as the stored information is specific for one (type of) ship. In addition
to that, the relation between a system in a ship and a function (for the ship) is now only
indirect. This is the result of a function only being in the KB. Having this function only in
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the KB currently implies that a relation can only exist in this KB, not outside of it. Meaning,
that a function can be connected to a system object. The system in a ship is an instance
of such a system object, it is not the object itself. Now, there is no connection between the
instance of the system object and the function, only between the parent object of the system
and the function.

Ship Knowledge Base Ship Knowledge Base
[ Mission' H Mission } Mission' Mission }
| |

[ Operatlon H Operation } Operation' H Operation }
{ Functlon H Functlon J
[ System H System } System' H System }
{ Component' H Component } Component H Component

{ Space H Space J [ Space H Space }

(a) The proposed implementation of the model in the software. (b) The initial implementation of the model in the Shipbuilder. Here

it can be seen that a 'function’ is not implemented in a ship, and
has no connections to other objects

Figure 4.3: Both the proposed and initial implementation of the model of a ship (green) in Shipbuilder as built from objects from
the Knowledge Base.

One of the problems that arises by not resolving this problem is that the line between
’knowledge’ and ’project information’ blurs. With the current size of the models of the ship
this is not a problem, but having large projects will be hindered by this problem. If someone
thinks a function has to be altered for one ship, the current implementation will also change
the functions for all other connected ships. Having a ’base function’ in the KB and imple-
menting ’specific functions’ for a ship will prevent this. This structure can also be seen in
the requirements in the Shipbuilder software. Here are also requirements’ and ’ship specific
requirements’, of which the latter is built on a 'requirement’ but is altered to fit the structure
of one specific ship.

Solving the current implementation through defining each function to be specific enough
to be only used by one ship, may result in the database for functions becoming too large.

4.3. Changing the information structure

The found information model in Shipbuilder is missing some connections compared to the
proposed model (Figure 4.1). The connections for the functions’ have an extra difficulty due
to the current implementation of this object, as discussed above.

To be able to test the working of the proposed method, and later implement it, this model
has to be connected. Therefore are the missing connections to be created. The missing
connections are:

1 Mission - requirements
2 Enterprise task - function
3 Function - system

By implementing these connections, some indirect connections as shown in the informa-
tion model will also be able to be implemented. These connections are more the result of the
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Ship Knowledge Base Ship Knowledge Base

MisTon' H Mis‘sion } [ Miss‘ion‘ H Mission }

Operation' X Operation J [ Operation' < Operation }

Requirement Function - Function
-

[ System' X System J [ System' . System }
[ Component' - Component } [ Component' < Component }

[ Space' X Space } { Space' e Space }

(a) With help of requirements a function can be connected to a (b) The final implementation of a function at the end of this thesis.
ship A function can now be (indirectly) connected to objects in a ship
model

Figure 4.4: The way a function is currently connected in the information model in Shipbuilder. The dotted lines are indirect
connections, related through requirements

Elements in System

Component Component Type Show Space

5 AC Unit AC Unit Detai ] Crew quarters

Figure 4.5: The list of components (‘elements’) in the electrical system of the S-frigate. In this list the space connected to a
component is also shown, this is an indirect connection from the system to this space

connections between a requirement, an object and this object in the configuration (applied
object).

In the Shipbuilder software there is also an interface. With this interface it is possible
to create and manage the data. To do this there are visual fields to show what connections
are present for a certain object. Most of the connections of an object are visualised in the
interface, and even some indirect connections can be shown. An example for the latter is
the connection to a space in the interface for a system (Figure 4.5). A system in itself is
not bounded by one space, but the components in this system are. As the components in
a system are shown in the interface, the relation between this component and a space is
shown with it. While this does not have a direct impact on the design of a system, it does
give valuable insight in the application of this system for engineers.

The final implementation of the information model in Shipbuilder is not exactly as pro-
posed. An overview of the final connections in the information model can be found in Ap-
pendix C. The first missing connection has not been implemented. This is the result of two
reasons: 1 - only in a late stage in the research it became clear for all involved parties what
exactly was this connection and 2 - the current implementation of the object mission has
practical limitations. These practical limitations meant that, for the time being, the connec-
tion was not implemented along with adding more information to this object as well. However,
this will be solved if DMO and Shipbuilder agree on the working of the model.

Such practical limitations are also present for the object functions. For the best imple-
mentation of this object, the structure of the underlying information model and this object
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itself have to be changed. As this is a time consuming task, and a quick work around (adding
the connections) did work, this limitation has not been resolved. Since it was still possible
to add some missing connections to the object, this did not result in a problem.

[ Requirement(s) ]
[ Mission } ,,,,,j\,\\,,::v:\,,,,,,,,,,fj::;::,[ Determine effectiveness ]
) _________ Study scenarios /
[ Enterprise Task { operational profiles ]
- N Pie
hY
[ Functon ~ f--------f---y--------- 1[ Determine performance ]
v ~
AN
[ System Configuration ]
[ Component ]

Figure 4.6: The final version of the model at the end of this thesis. Yellow objects are activities and the red object cannot yet be
placed in a ship.

4.4. What does the method solve

As stated at the beginning of this chapter, the goal of this method is to provide traceability in
information of a complex system. The main issue to solve is to close the gap between infor-
mation storage and management between requirements and design. Defining requirements
and creating a design can be performed separately by assuming information in the other
process. These assumptions are generally the subject of discussion and possible points of
change. Getting quicker to these points of attention, and having insight information on these
at the same time, may be possible with the proposed method.

This method is then to be used to create a model for a ship which can be used in each of
the design steps in the process V (Figure 4.7). It therefore fulfils requirement 3 of the stated
requirements in Section 3.5 (see Table 4.1).

Create > Test ————> Gaininsight —————>Propose changes

Iterate

Figure 4.7: The information flow 'steps’ as used in this thesis. By using one information model in one program (Shipbuilder) it
is possible to perform each of these steps directly with Shipbuilder. The information model is currently distributed over several
programs

To prove that this method is capable of reaching the goal, it has to be shown that it fulfils
its requirements. To do this, a case study has been used. With this case study it will be
shown that:

* A model can be created according to the V-model
* A trace can be created from this model
* Insight on such trace can be gained from the model



36 4. A new method

* This information and insight could help in proposing a change

To prove some of the general applicability of the method, two ships will be modelled. This
will result in proving that the information model can be used for multiple vessels, as well as
proving that insight from these models can be used to interpret the vessels. For this purpose
the S-, and L-frigates will be used. Having two models will also help in proving if the method
is capable of fulfilling the fourth item in the list above. By having the ability to determine -
through insight in information - if a trace is for a specific ship it might be possible to use this
model to distinguish vessels. As design exploration is part of the preliminary design process,
this can be helpful to compare concepts. By seeing differences between designs more insight
may be gained in the impact of assumptions, without having to use change propagation or
altering of the model.

Need Result Section
Use an information architecture fitting Use the same information structure as v 4.3
the DMO approach of a design cycle the V-model used by DMO
Quick creation in a trace from need to A program capable of creating these +/? -
component and back traces using the existing information
Store information in the model which Link information in a way which can be  +/? -
tells how information can be interpreted used to interpret the information and

links
Quick insight in for possible changes in  Use stored information and relations to ~ +/? -
the model identify possible impact of changes
Be reusable for different ships Have an information model capable of +/? -

describing different ships

Table 4.1: Requirements that may help solving the issue of gaining quick information from a ship model

4.5. Conclusion

The method in this chapter is built to improve traceability in the design process of DMO.
For this purpose the information model which has been proposed resembles the V-model
structure as used by DMO, connecting need, requirements and design. This could be altered
to fit another design process, by using the bespoke design process outline for that process.
By storing this information model in one database (in Shipbuilder) traceability should be
improved. This method is the result of combining theory from Systems Engineering and
Requirements Engineering and underlying theories from model-based approaches discussed
in Chapter 2.

Building the information model in Shipbuilder meant some changes to the software. While
most changes were possible to achieve, some were not. The changes that have not been
implemented should not hinder the application of the method for the purpose of this research.
However, they should be resolved if this method is to be used.

To see if the proposed method does indeed fulfil the requirements, and solve the traceabil-
ity issue, a case study has been performed. In this case study two (small) models of frigates
are built which are used to show how traceability works in this method. The case study does
not stop at proving traceability is possible, it is also used to show why such traceability is
useful.



Case Study

The case study in this chapter is to see how traceability works in the method proposed in the
previous chapter. This method takes the first step in solving the issue of traceability being
slow and tedious. How this method exactly does this, and what more can be achieved by
having good traceability is described in this chapter. It will answer the sub-question: 'How
does this method help in providing traceability, and what insight can be gained through
this?’.

To prove the working of the method several requirements have been set at the end of
Chapter 3, in Table 3.2. To show that the method can fulfil these requirements the case
study should show that:

* A model can be created according to the V-model

* A trace can be created from this model

* Insight on such trace can be gained from the model

* This information and insight could help in proposing a change

In Sections 5.1 and 5.2, models based on the S-, and L-frigates, once part of the Dutch
Navy, are defined and built. How information can be traced through the information models
in Shipbuilder, is shown in Section 5.3. Such traces are defined to help an engineer in gaining
insight in a ship design. This is done by connecting requirements to configuration, and also
by understanding relations in the information model of a ship. The subject of Section 5.4 is
how such insight can be gained. Section 5.5 is about 'using’ such insight for understanding
(and building) an information model of a ship. There is a brief study of seeing how the
information model can help in proposing a change to the model, in Section 5.6.

5.1. The S-, and L-frigates

The Kortenaer-class frigates (Figure 5.1a) from the Dutch navy, also known as the standard
frigate or S-frigate, were designs resulting from the replacement need at the end of the 1960’s.
In 1978 the first (Hr. Ms. Kortenaer) came into service, this was an anti-submarine frigate.
Since 2003 all of the 10 S-frigates are out of service. The L-frigates (Figure 5.1b) operated
from 1986 until 2005 for the Dutch navy. The hull is based on the Georges Leygues class from
the French navy, the gas turbines are the same used in the Tromp-class (guided weapons)
frigates. The German Bremen-class frigates are based on the design of the S-frigates.

After the design was approved twelve S-frigates were ordered and a thirteenth one with
altered - air defence - specifications. During the building of the 12 ordered ships two were
sold to Greece. This opened the possibility to change the plans for one altered design to
change two vessels. The single extra vessel now became two L-class frigates.

The design of the S- and L-frigates are considered excellent designs by the Netherlands
and foreign navies alike. The success of the altered design and the fact that the design is
based on the standards as set by the NATO this design is perfect for a study to show how a
design can fulfil its requirements.
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Where the S-frigate was designed for anti-submarine warfare with anti-air defence and
anti-ship warfare capabilities; it was designed to be an escort vessel. The L-frigate focused
on anti-air warfare and operating as flagship; anti-submarine and anti-ship were reduced to
be used for self defence purposes only.

(a) Side view of the Hr. Ms. Kortenaer (S-frigate) as it was built’

Netheriands, Kortenaer Class
(MConrads)

Metheriands, von Heemskerck Class
(MConrads)

| e }

(b) Side view of the Hr. Ms. Jacob van Heemskerck (L-frigate) as it was built?

Figure 5.1: Both the S- and L-frigates as they were built

The fact that both ships have many similarities will help to use these ships as example
for preliminary designs. Both vessels are built on the same basis, but have different mis-
sions and components. Having both ships and comparing them on mission or component
should then lead to being able to distinguish the difference in the vessels. This can be used
to simulate the uncertainties and different design solutions as can be encountered in the
preliminary design phase.

For the early models to be built both the aft parts of the ship will be taken as point of
interest. The aft ship is where the biggest (visual) differences between the S-, and L-frigates
are. For the S-frigate the aft localises the helicopter (green square in Figure 5.1a), while the
L-frigate localises a guided missile launcher (red square in Figure 5.1b). To also include a
similar system for both vessels a part of the electrical system of the vessels will be used. Later
in the test cases, more systems and components will be added. Initially these three different
systems are used to model both ships.

"Source: http://www.shipbucket.com/drawings/3375 (06-2019)
2Source: http://www.shipbucket.com/drawings/3380 (06-2019)
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5.2. The model of a ship

The first step in building a model in Shipbuilder is to divide the parts of interest in the ships
according to the System Engineering approach. This goes according to one breakdown using
the items as found in the V-model: mission, operation, function, system and component
(sub-system). The resulting breakdown resulted in items as shown in Figure 5.2.

Missions Operations Functions Systems Components
L frigate
) ) ) Y
" . Long range Anti-missile Guided missile
MRS WELEE AT WETEE missile defence system launcher
- - - -
Implement ship Provide electrical Generate Electrical power Diesel electric

tasks

Maritime warfare

power

electrical power

Anti-submarine

Disable

generation system

Air supported anti-

warfare

submarine

generator

submarine system

Helicopter

LRI

S frigate

Figure 5.2: Breakdowns of some systems on board of the S-, and L-frigates, using an SE approach

The breakdown as described above, is then put into the information model in Shipbuilder.
This means that a ship is built from objects in the Knowledge Base. By adding such objects
to a ship, it is possible to adapt said object for a specific ship. For the model of the S-
frigate, Figure 5.3 shows how the information model looks like in Shipbuilder. Note, that as
described in Section 4.2.1 the function is not part of the ship. For the purpose of connecting
and storing information, and finding if the method suits its requirements, this is acceptable.

S-Frigate Knowledge Base

[ Maritime warfare Mission J

Air supported anti-submarine System

system
[ Helicopter Component ]
{ Hangar Space ]

Figure 5.3: The model in Shipbuilder, using the V-model as structure, of the S-frigate specific breakdown in Figure 5.2

5.3. Traceability - in the model of a ship

One of the goals of the information model of the method is to (quickly) create a trace in the
model. Such trace has to be able to be built from either mission to component (or even
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spaces) or created the other way around (component to mission). The best approach for
creating such a trace is to use the ’layers’ of the information model. For this the structure
of the V-model has to be used. Creating the trace is about following connections to another
layer’. Following connections in one ’layer’ does also create traces and may lead to insight,
but it does not give information concerning the object in the V-model structure.

So, in order to get the trace which is currently difficult to obtain is the vertical traceability
[31, p. 109]. The lateral and longitudinal traceability, whilst giving insight in the background
information, does not provide traceability in accordance with the structure as seen in the V-
model. The traces can therefore be said to be either top-down (mission to component) or
bottom-up (component to mission), with respect to the information model.

To give an example of a trace which can be created with this traceability approach, a trace
in the S-frigate has been created. While the connections leading to the creations of such
traces are in the software, there is currently no automated way to create the traces. The
created figure which shows this trace is therefore nothing more than a representation of this
trace.

Following the connections as presented in Shipbuilder led to traces as seen in Figure 5.4.
For all traces there is no direction given for the trace, it is not stated if this trace is top-down
or bottom-up. This is because there is no real distinction for this in the information model.
There either is a tracing possibility or there is not, and if the possibility exists it goes both
ways. So it is possible to go to a space when starting at a mission, and at the same time it
is possible to go to a mission starting from a space. Note that the problem with the current
implementation of functions in the software means that an engineer has to have knowledge of
the model in order to create such traces or requirements have to be used to create the traces.
The second option is somewhat of a proof that the design and requirements are indeed (good)
connected in the software.

S-Frigate L-frigate

Implement general ship| Mission
tasks
General ship functions Operation

Provide electrical Function Long range missile Provide electrical
power defence power
[ J Electrical system J

Maritime combat Implement general ship
operations at sea tasks

Maritime combat
operations at sea
Anti-submarine warfare

9 Disable submarine
Function

Torpedo system
System

{ Torpedo launcher

Mission

Anti-air Warfare

General ship functions
Operation

Air supported anti- Anti-missile system

submarine system

Electrical system System

Helicopter Component Missile launcher Diesel generator

Component { { Diesel generator }

Space sreee [Gmded - Space} { e

a) Traces in the model of the S-frigate (b) Traces in the model of the L-frigate

Figure 5.4: Representations of traces in the data of the S-, and L-frigate

5.4. Insight - connecting requirements to design
Now that it is possible to create traces in the model of a ship, representing the complex
system, the next step is to see if it is possible to get insight in such traces. This is where
the connection between design and requirements comes into play. In the figure showing
the traces in the S-frigate (Figure 5.4a) there are two branches below the function ”disable
submarine”. One branch leads to a torpedo system, the other to a helicopter. This is because
both systems can be used to perform this function, so both systems can be present in a ship.
But the trace does not tell why one (or both) of them is in this trace, it just shows that it is
in the model.

The reason that both systems are in the model of the S-frigate, is that the S-frigate has
two requirements connected to the ship:
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1 Perform offensive ASW operations
2 Perform defensive ASW operations

These two requirements come from the ASW operation which has to be performed by the
ship. Having these two requirements is the reason why the traces split below the function.
The proposed design solution for the first requirement is to use an on-board torpedo system,
while the second requirement has been fulfilled using a helicopter with an air-lifted torpedo
system.

To actually see the requirements on the traces, Figure 5.5 has been created. In this figure
it can be seen that the first requirement is connected to the air-lifted torpedo system, and
the second requirement is connected to the torpedo system. With this information, these
requirements applied to the ship, there is now a reason why both of the systems are in the
model of the ship.

S-Frigate
Mission

Maritime combat
operations at sea

.__|Anti-submarine warfare
T

3 Disable submarine
Functign

} [ Torpedo system

{ Torpedo launcher

Implement general ship|
tasks

General ship functions

Provide dlectrical
pover

tEctrical system }

Requirement
Offensive ASW

Requirement
Defensive ASW

Air supported anti-
System submarine system

Helicopter [ Diesel generator J

Component [

Space

Figure 5.5: Requirements projected onto the trace from Figure 5.4, to show some context

In the figure only showing the trace (Figure 5.4a), the function is still ambiguous. It leads
to two different systems, and the figure holds no information to why this is. However, in the
model of the ship, this information is stored. This information is the presence of requirements
and connections of these requirements to the shown objects. These connections to an extra
piece of information then counteract the ambiguity which could arise from the figure. Note
then, that this figure is nothing more than a possible representation of the ship.

The use of connecting information can be described with the following statement: Having
the option to connect requirements (and other objects) to one another it is less important for
a requirement (or object) to be unambiguous. Ambiguity is created by a difference in inter-
pretation, which relies on context. By capturing the context in the relations to a requirement
(object), ambiguity can be counteracted.

5.5. Using insight
With the ability to create insight in the model, by capturing some context, it might be possible
to built a system with seeming ambiguity. Such ambiguity can be using one object for mul-
tiple solutions. Only seeing the object then does not give an answer as to why it is there; it is
ambiguous. Knowing the context for this object will counteract this ambiguity, and exactly
this can be done by connecting other pieces of information to this object.

In this section two possible ambiguous objects are analysed: a function and a system.
For both objects two implementations are determined, which will be supported by extra in-
formation on these objects.

5.5.1. For an ambiguous function
To show how a system can be ambiguous, and information can counteract this, the function
as discussed in section 5.4 is taken as example. How the function "disable submarine” can
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be interpreted in two ways, and thus ’solved’ in two ways is shown in this section. In Figure
5.6 the breakdown for the function leading to two systems and corresponding components is
shown. This breakdown is based on the same underlying information as the traces earlier:
there are two requirements each leading to one of the branches.

- Maritime warfare
Mission

Operation

. Disable submarine
Function

Torpedo system Air supported anti-
System submarine system
Component [ Torpedo tube } [ Helicopter }

Figure 5.6: A breakdown with one function leading to two systems

In the S-frigate the application of the function with the offensive and defensive require-
ments is now known. To show that not having one of the requirements does indeed lead to
another model of a ship, the L-frigate is also observed. The L-frigate, being an AAW frigate,
does hot have the offensive ASW requirement placed in the model of the ship. The defensive
requirement is, however, placed in the model. This is because of the fact that this require-
ment does not come from either the ASW or AAW missions or operations. The defensive
requirement is the result of the frigate needing to have a general defensive capability. Since
both the S-, and L-frigate do need this defensive capability the requirement remains.

To show how the model of a ship is affected by the implementation of a requirement, the
Figures 5.7a and 5.7b were created. In Figure 5.7a the defensive requirement is taken as
the context and in Figure 5.7b the offensive requirement is taken as context. What can be
seen is that both models of the vessels do have the torpedo system incorporated, while the
helicopter is only present in the S-frigate model. However, the function (and higher level
objects) is present in both models.

S-Frigate Knowledge Base L-Frigate S-Frigate Knowledge Base L-Frigate

[ Maritime warfare Mission Maritime warfare } [ Maritime warfare Maritime warfare J

i J
[ ASW H Operation H ASW } { ASW H Operation H ASW ]

‘ Function ’ b
’ N . Funcllon
‘ Disable submarine ’ D|sable submarine '
[ Torpedo system System |  Torpedo system } Air supported anti- System

‘ ‘ ‘ submarine system
[ Torpedo tube Component > Torpedo tube J [ Helicopter Component }

(a) The implementation of the function for the defensive ASW re- (b) The implementation of the function for the offensive ASW re-
quirement quirement

Mission

Figure 5.7: A visualisation of both the SE models of the S- and L- frigates where both figures include the same function (disable
submarine) connected to the vessels but with different implementation
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5.5.2. For an ambiguous system
Similar to ambiguous functions, it is also possible to use systems for different purposes.
Again, it is the context, in the form of requirements, that helps resolve the ambiguity. This
example, however, is somewhat more complicated than the example with the function. This
is because the observed system does not only lead to different branches, but is also at the
end of two different other branches. This can be seen in Figure 5.8.

Again the distinction in the breakdown is the result of two requirements: offensive AAW
and defensive AAW. For both requirements, as with the ASW requirements, it is the case that
the defensive requirement is related to survive-ability of the ship.

- Maritime warfare
Mission

Operation

[ |

Protect from incoming Take out ballistic
aerial threats missiles

l l

System Anti missile system

[ |

CIWS } [ Guided missile }

Function [

Component
P { launcher

Figure 5.8: A breakdown with one system leading to two functions and thus components

As with the ambiguous function, the visualisation of the ambiguous system is based on
two different requirements: offensive and defensive. The resulting figures are Figure 5.9a, for
the defensive requirement, and Figure 5.9b, for the offensive requirement. Both the models
of the S-, and L-frigate are shown.

S-Frigate Knowledge Base L-Frigate S-Frigate Knowledge Base L-Frigate

[ Maritime warfare Mission Maritime warfare ] [ Maritime warfare Mission Maritime warfare

[ AAW Operation AAW ] [ AAW Operation AAW
Function
Take out ballistic missile

System

-/

Function
Protect from incoming
aerial threats

[ Anti missile system System Anti missile system ]

Anti missile system }

[ ciws - Component H ciws } [ Component Guided missile launcher ]

(a) The implementation of the function for the defensive AAW re- (b) The implementation of the system for the offensive AAW re-
quirement quirement

Figure 5.9: A visualisation of both the SE models of the S- and L- frigates where both figures include the same system (missile
launch system) connected to the vessels but with different implementation

5.6. Help in proposing a change
The impact of a change to the model is still up to an engineer to determine. It is, however,
possible to create traces in the model to determine where a choice has been made. It is also



44 5. Case Study

possible to gain some insight in this choice as the requirements create context and supporting
information can be linked to objects in the Shipbuilder software. This information can help
an engineer in proposing a change to the design, in the model.

For seeing how this would work, a small example is used. This example is based on one
of the breakdown branches in Section 5.5.1: the torpedo tube (see Figure 5.6). This branch
comprises of: Maritime Warfare, ASW, Disable Submarine, Torpedo System and Torpedo
tube. Each of these objects has requirements, and the component (torpedo tube) is placed in
a space in the configuration of a ship. When testing a ship on fulfilment it can happen that
one of the requirements connected to this branch is not satisfied. For this example, this is
that the torpedo tube cannot deliver the required force to fire a torpedo.

In the model in Shipbuilder, an engineer is able to see where the torpedo tube is connected
to. At the ’other end’ of the connection is also an object, containing information and connec-
tions. So is the torpedo tube part of the torpedo system and the electrical system (see Figure
S5.4a). Itis then brought to attention of the engineer, that changing the torpedo tube does not
only impact the torpedo system, but also has an impact on the electrical system. Proposing
a change to the torpedo tube to increase its power, will also influence the electrical system
of the ship (for the sake of this example the pneumatic system used by the torpedo tube is
also part of the electrical system). If the electrical system has been optimised for a specific
load, it could be possible that applying a change to this system is difficult or expensive.

The example given is short, and somewhat obvious. However, having the possibility to
actually see how these objects interact is important. Such interactions can also be those
that are not obvious. In those cases, having the possibility to trace this information can be
helpful for engineers to make an assessment of the impact of a proposed change. To see
how this can really benefit engineers, more research is required. The models created for this
thesis are too small: making the interactions ’too obvious’ and not very complicated.

5.7. Checking requirements

In Chapter 4, a method was proposed to see if traceability can be increased. For this to be
concluded some requirements were set up. In this chapter, the method has been tested to
see how it fulfils the requirements. The results can be found in Table 5.1.

Need Result Section
Use an information architecture fitting Use the same information structure as 4.3
the DMO approach of a design cycle the V-model used by DMO
Quick creation in a trace from need to A program capable of creating these 5.3
component and back traces using the existing information
Store information in the model which Link information in a way which can be 5.4
tells how information can be interpreted used to interpret the information and

links
Quick insight in for possible changes in  Use stored information and relations to 5.6

the model
5 Be reusable for different ships

identify possible impact of changes
Have an information model capable of v 5.2
describing different ships

Table 5.1: Requirements that may help solving the issue of gaining quick information from a ship model

Performing the case study resulted in seeing how the requirements are fulfilled. With
this it can be said that the proposed method can indeed help in solving the issue of tracing
information in a ship design process. However, the case study has now only been used to
prove that the method could work. To see how good the method works and if it can handle
large, complex, models more research has to be done. This can also be in the form of using
this method during a (small) project.

With the current test case, it has not been tested how much time can be gained in the
insight phase. Neither has been proven that gaining insight works with real complex models.
While it has been shown that it is possible to trace information, gain insight with this and
even possible determine impact of change, this is only the first step in applying the method.
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Nevertheless, has the case study provided positive results. By proving, with a small example,
that this method does work the first step in proving the use of this method has been taken.

5.8. Conclusion

The case study in this chapter shows how traceability works with the proposed method. What
can be done with these traces and traced information has also been shown. Combining the
theory from Systems Engineering, Requirements Engineering, Model based approaches and
current practice of the DMO design approach led to the method and the here discussed case
study. By seeing how the method fulfils the set requirements with this case study, it can be
said that this method does look like a solution to capturing and using the relations between
need, requirements and design. Seeing an example of how this could support the design
effort, in determining changes, shows that this method does support traceability in order to
improve the design effort.






Conclusions

This thesis started with the issue at DMO of having difficulty in tracing information - quickly
- during a design project. As DMO operates mostly in the preliminary design phase, where
requirements are elucidated and configurations are used to support this, the focus of tracing
of information was between requirements and design [44]. This led to the following question
to be answered in this thesis:

How can we capture the relations between need, requirements and design to improve the
traceability of information on a naval vessel in the preliminary design phase?

To find an answer to this question, four separate sub-questions have been answered. With
the help of these questions the author was able to understand the context of the problem
and work towards a possible solution for the issue. These questions are:

1 How can Systems Engineering (and Requirement Engineering) help to capture the rela-
tions?

2 How are the relations currently managed during the design process at DMO?

3 What could be a method to be able to capture, manage and use these relations?

4 How does this method help in capturing these relations, and what knowledge can be
gained through this?

Each of the sub-questions have been answered in a chapter, of which a summary of the
findings are stated below.

How can Systems Engineering (and Requirement Engineering) help to capture the relations?
Systems Engineering and the incorporated field Requirements Engineering, are both
research fields for creating and managing information and configurations of a design
process. From these two fields it is possible to see how an information model could help
the design process; after all a generic information model for a design is what these two
research fields are about. One of the used process models is the V-model. This model
covers the relations between need, requirements and configuration. In a V-model, Re-
quirements Engineering can be seen as having focus on the ’'top-half’ while the config-
uration design is located at the ’bottom-half’, see Figure 6.1.

With the help of modelling programs and computers, it is possible to create large, com-
plex, information models. However, these 'models’ are generic and do not have one
specific application which can be used, resulting in difficulty in finding research for
applied models with lessons learned. To use such a model based approach, an applied
model for DMO has to be created. While building such model takes a long time, it could
save time in an iterative process. In an iterative process it is useful to have one infor-
mation model capable of growing with it, instead of having to redefine information for a
ship in each iteration or design phase. For more information, see Chapter 2.
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Need Effectiveness

Requirement Performance

[Partial solutions ]—>[ Configuration }

Requirement Engineering

Bulubisaq

Figure 6.1: An interpretation of a Systems Engineering V with highlighted sections focusing on Requirements Engineering and
"design of configuration’. The colours of the rectangles should be interpreted as follows: green is the 'given’ description leading
to a solution, the blue is the ’creation’ of this solution and red is the "testing’ of the solution.

How are the relations currently managed during the design process at DMO?

At DMO the Systems Engineering approach is used to define the information structure
and process architecture in their design process, in the form of a V-model. Their infor-
mation model is spread over several programs (Figure 6.2), which are used in different
design stages and by different stakeholders. This can make it difficult to find infor-
mation and relations in the complexity of programs, stakeholders and uncertainties.
This does not result in unsuited designs, but it hinders the search of information when
looking for insight in a design. To improve the information storage, the Shipbuilder ap-
plication is integrated in the DMO design process. This program can be used to capture
and manage large quantities of information, ranging from need to configuration. For
more information, see Chapter 3.

Need J- ——————————————— Need Effectiveness
’

7’
] (oo | (ontrmn = = = = = = = =

Partial solutions Configuration [Panial solutionsH Configuration J

(a) The parts of the design process supported by DOORS (b) The parts of the configuration design process supported by

FIDES, PACKING, QUAESTOR and Rhinoceros

Figure 6.2: The focus of the current most used programs in the design process. The programs are separated by focus on
Requirements Engineering and 'design of configuration’. The blue colour is on ’creating’ a solution and red is the 'testing’ of a
solution.

What could be a method to be able to capture, manage and use these relations?

One method to capture and manage the information and relations for a design process is
using the V-model as used by DMO as the architecture for an information model, which
can be seen in Figure 6.3. As the V-model, at DMO, is used to define the design steps in
a ship design process, but also to define objects for decomposition of a ship, this model
is perfect to use as base for an information model. As Shipbuilder is being implemented
at DMO, and this program is based on Systems Engineering, and information (objects)
can be defined in Shipbuilder, this program is a useful base to create an information
model as proposed.

To prove the working of this proposed method the following steps have been defined:

1 *Visualise’ the information model in Shipbuilder, according to the V-model
2 Change the information structure to represent the V-model

3 Create a model of a ship with the improved database model

4 Show traceability between information of requirements and configuration

The information model in Figure 6.3 is the result of the first two steps. With one infor-
mation model in the Shipbuilder software covering requirements and configuration, the
two last steps are performed with a case study. For more information, see Chapter 4.
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Figure 6.3: The information model proposed in this thesis. This model is able to capture information of a ship ranging from need
to configuration while being applied in one program (Shipbuilder).

How does this method help in capturing these relations, and what knowledge can be gained

through this?

To see how the proposed method actually works, a case study has been used. With this
case study, (small) models have been built which were then used to see how traces can
be created from these by showing the following steps:

* A model can be created according to the V-model

* A trace can be created from this model

* Insight on such trace can be gained from the model

* This information and insight could help in proposing a change

By showing the results for each step, the fulfilment of the requirements for the method
(stated in Chapter 3) can be checked. In Table 6.1 the fulfilment of each requirement
can be found, along with a reference to the section where the solution can be found.

Need Result Section

1 Use an information architecture fitting Use the same information structure as v 4.3
the DMO approach of a design cycle the V-model used by DMO

2 Quick creation in a trace from need to A program capable of creating these v 5.3
component and back traces using the existing information

3 Store information in the model which Link information in a way which can be v 54
tells how information can be interpreted used to interpret the information and

links

4 Quick insight in for possible changesin  Use stored information and relationsto v 5.6
the model identify possible impact of changes

5 Be reusable for different ships Have an information model capable of 5.2

describing different ships

Table 6.1: Requirements that may help solving the issue of gaining quick information from a ship model

By having an application capable of capturing information (both for requirements and
configuration) and connections between these pieces of information it is possible to
create traces. The traces built for the case study are focused on the ’configuration’ of
a ship, where requirements create context. Having the requirements connected to the
traces can give insight for an engineer. Not only is it possible to connect requirements
to a configuration in a design and trace information between them, it is also possible to
gain insight with these traces.

With this the proposed method does seem to manage the relations between requirements
and configuration, and knowledge can be gained from this. In the steps of 'creating’,
’testing’, ’gaining insight on’ and ’proposing changes to’ a model the proposed infor-
mation model can be used as seen in Figure 6.4. For more information, see Chapter
S.

How can we capture the relations between need, requirements and design to
improve the traceability of information on a naval vessel in the preliminary
design phase?
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Figure 6.4: The steps that can be performed with the model. By using the method with these steps it should be easier to gain
insight and propose changes during a ship design process.

With these answers it is possible to state an answer for the main question in this thesis.
The relations between requirements and configuration can be captured in one information
model (Figure 6.3) - in one program - and thereby the traceability of information is improved.
This information model is based on Systems Engineering and Requirements Engineering.
With this model it is possible to define a ’ship’ and store information on this ship accordingly.
The information model, can be used to create, test and gain insight and can help in proposing
changes in a design (see the steps in Figure 6.4). As the model is based on the V-model
used by DMO, it covers requirements and design. The need is also covered, as the need is
captured in requirements. This then creates a connection between need, requirements and
design. Having one information model to cover all these in one program, it is possible to trace
information through a design (captured with an information model).

6.1. Discussion and limitations

Where the use of one information model in one database has been shown, there are several
limitations and implications with this method. One of which is that in this thesis the struc-
ture of an information model has been proposed. Models of ships build with this structure
proved to be able to support traceability.

Using one ship model might also help when going through different phases a design pro-
cess in general. Using this ship model as a base for the next design phase could improve
traceability throughout the design process. By adding more detail to the ship model corre-
sponding to each phase, the model should better describe a design fitting the phase. To be
able to do this, the ship model should be tested to work if it is far more complex (i.e. contain
more interactions). The information structure to build the ship model should not increase in
complexity. Next to this added complexity, the approach (and information model) also has to
be tested to see if it holds when a design project proceeds to a next phase.

Even with more complex ship models describing the wanted level of detail, there is still
room for improvement. What is not really mentioned in this thesis is that the design of a
naval vessel is not really about one vessel, it is about designing a vessel class. This is partially
covered in the Shipbuilder software by using a separate project for each class. While this does
divide stored, and related, information per class, it does not provide means of using ’partial
solutions’ for the all concepts for this class. In a project it is possible to built ships, but these
do not have to be related to each other; they are all built separately on the Knowledge Base.
Here it might be beneficial to create an extra ’‘information layer”: a ship class. This layer is
placed between the KB and a ship. With this it might be possible to use (design) solutions
for each concept (ship) in the class, while keeping the knowledge in the KB as generic as
possible. Such approach might help to separate general knowledge (KB), applied knowledge
for a class (new ’'information layer’) and applied knowledge for each concept (ship).

Besides the added complexity to this model in the approach, there are other aspects with
are of interest as well. One of this is to find an answer to the question of how much faster
tracing information with this approach actually is. It has been shown that tracing of in-
formation does work in the model, but no time restrictions have been used. Also were the
models for the case study built purposely to show traceability, not to show that the method



6.2. Recommendations 51

supports development of a design. Tracing information in a ship design process is currently
a tedious job, but it is not impossible. The proposed method seems to be able to quickly trace
information. However, it has not been proven that it is actually faster than in the current
approach.

Using one model seems like a good step in the direction of creating better traceability
through the ship design process. However, there is one problem with an approach like this.
That is that for defence purposes it is often practice to divide information in order to prevent
leaking of information and access to ‘unnecessary’ information. In the Shipbuilder software
there are possibilities to give each individual access, or deny access, to pieces of information.
While this prevents the access to 'unwanted’ information, the traceability through the infor-
mation should still be based on the connections to these 'unwanted’ pieces of information.
In the end, all information is still related to each other. This might pose difficulty in main-
taining the ’kneed-to-know’ basis of information, or at least this has to be implemented from
the start when implementing such model based approach.

6.2. Recommendations

To get a solution to the traceability and change propagation issue in balancing capability,
feasibility and cost, some more research has to be done. Some aspects have been mentioned
throughout the report and some have been mentioned above in the discussion. The proposed
method seems to be a step forward in working towards a solution for the current issue.
Traceability between need, requirements and design will be easier with the proposed method.
This should help engineers to balance capability, feasibility and cost.

The information model and ship models built for this thesis did help in proving the initial
working of the method. To be able to further prove the working of the method during a design
process and understand the impact of having connections between relations, some aspects
are to be researched.

Create visualisations for the model to show traceability and ’insight’

While the model is capable to store and manage connections, there is no (quick) adapt-
able visualisation possible of traces in the model. To provide engineers with the insight
of seeing these connections Design Structure Matrices could help. However, these ma-
trices could prove to be too large to be helpful in a large complex model. Therefore, it
is useful to research what kind of information stakeholders need from an information
model of a ship. When this is known, then the step of visualising this information can
be taken. Having only a model capable of connecting a complex model could still be
beneficial, but if insight can quickly be gained from it by using visualisations it is even
more useful.

Build bigger models to see if the structure works
The current models of the S-, and L-frigates are small. They can be small, because they
were only used to prove the basics of the method. To see if this method really works in a
design process, larger (and more complex) models have to be created using this method.
Shipbuilder can work with large and complex models, as this is their business. The next
step is to use the information model as proposed to build and manage such models.

Research if the method can move along with consecutive phases

For this thesis only the preliminary design phase has been used to define the level of
detail for a ship. However, the design process covers several phases. To see if the
proposed method can also be used in different phases has to be researched. Along with
that research, it is also useful to determine if the model is able to ’'grow’ along with
the phases. If the method works with each phase, but cannot evolve with consecutive
phases, a new model has to be created in each phase. This would require time in each
step, but could also help in removing unnecessary information from the model. As said,
this requires further research.

See if the method does speed up the process of traceability
As said in the discussion, the current case study only proves that it is possible to create
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traces through the information. There is no mention of time in this test case. For this
method to be truly useful for engineers, it has to be faster in giving engineers insight in
the information in a ship.

While it might be possible with this method to see 'new’ relations in a ship, this is not
the main goal of this method. This is to speed up gaining insight in information and
changes in a ship.

Gain more knowledge on the ’captured context’

During the course of this research it has been found that it is possible to use ambigu-
ous information to clearly define information. This can be done by relating pieces of
information together, thus giving "ambiguous’ information context.

This context has slightly been used in the test case in Sections 5.4 and 5.5. Here it
shows that it might be possible to use related information in the model to define context.
How, and if, this can be used to provide context in a large model could be interesting
to research. When this does work it might mean that stored information can be better
reused in other projects, as this information does not have to be defined project specific.

See how the method can determine impact of change on a model

In Section 5.6 it is briefly mentioned how the method could help in determining changes,
and impact of these changes, to a model. However, it still relies heavily on engineers
with knowledge to be able to help here. Determining impact of change in the model with
the software itself will require implementation of change propagation software, whereas
now this comes form the engineers. It might prove to be difficult to have the application
itself being able to determine the impact of change, as change propagation software is
still being developed and researched. Even with the application being able to follow
changes, it starts with researching how the current traces can help stakeholders in
determining changes and change impact.

Build a requirement architecture in Shipbuilder

In the case study the focus was not really on the ’requirements side’ of a ship. Also,
the proposed information model contains no information for a requirement structure.
DMO is currently working in Shipbuilder to define requirements, lessons learned here
can be used to provide a requirement architecture. Such an architecture then has to be
connected to the proposed information model (and configuration model) in Shipbuilder.

Create an extra information ’layer’ for ship classes

As mentioned in the discussion, it could be helpful for the design process (at DMO) to
have the information model work on a ship class as well. Currently there is the Knowl-
edge Base and ship layer’ in the information structure of Shipbuilder. Most design
projects for naval vessels, however, focus on the design of a class and not only on one
design. Each design should fall within the needed class, they are not completely sep-
arate ships. This is currently not implemented in the software or the method. How
the method could include the use of classes between the stored knowledge and applied
knowledge at ships is an interesting subject for further research. This is more towards
an IT subject, as it is mostly concerned with the structure of the uses program (Ship-
builder in this thesis).

Besides further research on this method, improvements can be made on the actual imple-

mentation of the method into the workflow of DMO. The current model and implementation
of it in Shipbuilder are currently only set out to prove the basic workings of the method. For
the method to be used by DMO and Shipbuilder, some changes are in order. One of which is
the implementation of the ’functions’ object, as mentioned in Section 4.2.1. Besides changes
such as this, there might be some changes to terminology, definitions or implementations.

A last note to add here is the addition of the ’cost’ of a concept. When testing a ship on

performance, the building cost of such ship can be determined. In the effectiveness of a ship
the affordability of said ship can be determined as this is a combination of cost and other
aspects. Being able to trace information though the model should also imply that cost can be
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traced. This will help in determining the cost in the first place, and elaborate traceability can
help determining the affordability. Proposing changes based on cost should also be possible
with an information model as used in this thesis. However, this has not been implemented
or tested in the current model and could prove to be a great addition.

6.3. Personal reflection

At the beginning of this thesis there was an idea to improve the feedback (of information) in the
design cycle (see Figure 1.2). While searching for information on what such feedback could
be, and what the difficulty of defining a ship is, the ’separation’ between requirements and
configuration caught my attention. Therefore, my literature research has been on model-
based approaches (Design matrices and Axiomatic design), Requirements engineering and
Systems Engineering.

In the early stages of the research I set out to build a model capable of providing ’trace-
ability’ in ship design. This meant this model had to incorporate Systems Engineering, Re-
quirements Engineering and model-based approaches. During the course of the research I
kept digging in theories on these subjects to support decisions [ wanted to make for a model.
It proved difficult to create a satisfactory new model capable of doing this, and it turned out
that did was not needed. This resulted in the use of the V-model as used by Van Oers [43]
and Duchateau [15] to function as the architecture of the information model.

Only at a late stage in the research it became clear to me that I had done enough to say
something for the initial problem. At this point in time I started working on writing a report
to capture my research. The report that followed was created in too little time and with too
little cooperation. This resulted in my research being delayed.

The delay in my research meant that I had time to really think about the story I wanted to
tell with my research. I also had to do this because this was not clear from the initial report.
In this phase of the research I had a lot of contact with my supervisors and others to talk
about my research. From this I noticed that my story became clearer and better each time I
sparred with someone about it.

In the end I think the research has been beneficial for me and for others. Besides learn-
ing what research really encompasses, I also learned more about working ’alone’ on a project
with others. While there were some less pleasant times for me during my research, the over-
all feeling that I hold now is quite positive. In the end I think I have done some interesting
work and gained valuable insights in ship design and the corresponding process.
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A

Decomposition of a requirement

Requirements are statements or constraints to help guide the design of a system in a way
that it is useful to the stakeholders in a project; a collection of several requirements can
be called a specification [8, p. 29]. Generally speaking a requirement is more well defined
and specific than a need (stated requirements) [47, p. 45]. Any design of a system has
numerous specifications and requirements which create documents of large proportions. It
is therefore easy to lose the overview in a project. The field of Requirement Engineering
focuses on streamlining the creation and management of requirements. From this research
field the following definition of a requirement can be taken: a controlled attribute with a
relation expressed in a value of a certain [31, p. 94].
Here are some examples of requirements where this definition is used:

¢ Valve closure time is less than 0.5
* Visible length in front of the bow is less than 3

These examples can be seen as the bare minimum of a requirement. In the requirement
documentation there is usually more text used to describe a requirement to make it more
readable. Also is the rationale added to requirements in the documentation; this is the ‘why’
behind a requirement [12].

In the maritime classification sector the requirements and specifications are often referred
to as ’rules’. Within the shipbuilding and shipping sector however, requirements and specifi-
cations are commonly called by the same term: requirements. This makes the definition of a
requirement not straight forward to use. To show the working of this principle two examples
from the DNV Ship rules for nautical safety (July 2011) requirements for the field-of-vision
for the wheelhouse (bridge) are taken:

1 B 202 Every effort shall be made to place the bridge above all other decked super-
structures in order to obtain the best possible field of vision for safe navigation and
manoeuvring of the ship.

2 B 203 A horizontal field of vision to the horizon of 360° shall be obtained by using
not more than 2 positions within the confines of the wheelhouse on either side of the
workstation for navigating & manoeuvring and being not more than 15 m apart [13].

In the first rule (B 202) the requirement can be stated as: The place of the bridge shall
be higher than - . In this requirement there is no value to
express the relation to the unit of measure; this requirement is controlling a relation itself.
The rationale for this requirement is also included in the rule.

The second rule (B 203) is to be considered as a specification; there are multiple require-
ments controlling several attributes. The two controlled attributes are the horizontal field of
view and the viewing point(s). For an engineer this rule is comprehensible and possible to
evaluate as a whole. If a computer has to validate this rule, or to get more insight in the
requirements within the rule, the breakdown structure reveals six requirements:

1 The horizontal field of vision from the wheelhouse is more then 360
2 The horizontal field of vision from the wheelhouse is obtained from not more then 2

3 The viewing point(s) is(are) located within -
4 If there is one viewing position at the bridge: The viewing position is located next to -
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Stated requirements (need) (Real) requirements
Business
User
High-level High-level
Functional (operational) Functional (operational)
Non-functional (technical specification)
Performance (functional specifications for design items)
Item specific

Table A.1: Requirement types in the "stated” and "real” requirement space

5 If there are two viewing positions at the bridge: The two viewing positions are on either
side of -

6 If there are two viewing positions at the bridge: The two viewing positions are no more
apart then 15

These examples show that the requirement management for a relative simple attribute
can quickly become difficult. Controlling these requirements and complying with them is a
tedious task; it is easy to lose control. By managing these requirements and the attributes
they control in one single database - controlled by engineers - it should be easier to keep an
overview on this part of a complex system.

A.1. Types of requirements

Besides the requirements being divided in stated and real requirements there are different
types of requirements. In the Requirements Engineering Handbook by Young [47, Ch. 4] there
are several different types of requirements defined:

* Business Requirements (need)

e User requirements

* High-level Requirements

* Functional Requirements

* Non-functional Requirements (system specific properties: reliability and safety)
* Design constraints

* Performance Requirements (applied to functional requirements)

* Item specific (System, Subsystem and Component) Requirements

Next to these types there is a type called "business rules”, which are the basis for creating
the functional requirements. These requirements can be said to be the knowledge and rules
present at DMO, as well as the more general rules from the classification bureaus.

How requirements types can relate to stated and real requirements is shown in table A.1.
Adding more detail to a requirement makes it more ”real” while also narrowing the scope
of this requirement. Following this reasoning a stated requirement can be split up in real
requirements but not the other way around.

The (simplified) stated requirement from the 'Kustwacht’ were: fast top speed and operate
in rough seas. Since they used the functionally specified requirements for the first time they
did not translate their stated requirements into real requirements. This step was for the
shipyard. In the real requirements as created by the shipyard there was no ‘combination
requirement’ covering the speed and sea keeping. Still, the created requirements were able
to meet the stated requirements. The gap between the need and the requirements were not
noticed as there was little communication between the shipyard and the Dutch project team
for the RHIBS.

A.1.1. Design constraints
”A design constraint, or simply a constraint, is a boundary condition within which the
designer must remain while satisfying the aggregate of the performance requirements
for the item.” O Grady [31, p. 105]
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Design constraints are special types of requirements and are often in the physical aspect
of a design. When a new ship has to perform in an existing environment, this environment
imposes constraints on the design. Other aspects could be the physical rules as we know
them, budget or schedule constraints [47]. Such constraints tend to set the design space for
engineers to work with [31]. Not all these constraints - besides budget and schedule - are
immediately present in higher level requirements or documents. For a problem owner stating
constraints early on in the process will limit the design freedom later on.

Design constraints often require a parameter to be constrained. Such parameters are
influenced by the design. Where the design space for these parameters are set by the de-
sign constraints it is to a designer to actually determine the value of this parameter. If the
parameter is within the set boundaries the requirement is fulfilled.

This sounds straight forward, but it gets more difficult if two parameters are connected and
both have contradicting design constraints. Such contradicting parameters are plentiful and
are the reason for compromises in a design. Having a possibility to see these contradicting
parameters means both a designer and a requirement engineer can then find a solution to
this.






B

The catalogue in Shipbuilder

Creating objects in Shipbuilder starts with the initiation of an object type in the Knowledge
base. Such an object has to be as general as possible. To use such an object and specify an
actual entity, an entity of an object type has to be created in a catalogue. In the catalogue a
template of an object (class) is used and modified to represent an entity (e.g. an engine).

Objects added from a catalogue are able to be represented in multiple complex systems.
Using object classes from the KB to add an object to a complex system will result in having
stand alone objects, reusing such an object requires recreating the object - losing the added
value of the KB and catalogue.

e A ' A e N
Class > Object »  Applied object
. J . J . J
> > i
Knowledge base Catalogue Ship
Sensor Type A radar Type A radar
o Electricity o Electricity o Electricity
consumer consumer consumer
¢ Electrical power o Electrical power e Electrical power
usage: - kW usage: 25 kW usage: 25 kW
o Signal producer e Signal producer e Signal producer
o Is part of: > o Is part of: possible > e Is part of: possible
e Linkto solutions solution
requirement e Link to requirement e Link to requirement
o Link to ship
e Link to ship
specific
requirements
¢ Location

Figure B.1: Representation of the Knowledge Base, catalogue and applied versions of an éomponentin Shipbuilder
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C

Connections of the information model in Shipbuilder

The connections, with affiliation to this thesis, are shown in the table below (figure C.1). In
this table there is a distinction between four separate types of connections. These types are
for the purpose of providing insight in the connections for this thesis.

1 2 3 4 5 6 7 8 9 10 11] 12 13
1 Mission 1 2
2 Task 1 1 1 1 1 2
3 Function 2 1 2 2
4 System 1 1 1 1 1 - 2
5 Component 1 1 1 1 2
6 Any requirement 1 1 1 1 1 1 1 1 1 1] 2
7 Parameter 1 1 2
8 Ship type 1 2
9 System function 2
10 Space 1 1 1
11 Deck 1 1
12 Performance 1 1 1 1 1 1 2
13 Effectiveness 1 1 - 1 |:! 1

1 Shown link/connection
2 Not shown link/connection
Indirect link/connection

Figure C.1: The current connections in Shipbuilder, relevant for this thesis
Showing the connections in the form of the V-model of DMO, results in the visualisation in

Figure C.2. The final information model, at the time of this thesis, resulted in the possibility
to create a trace as can be seen in Figure 4.4b in Section 4.3.
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C. Connections of the information model in Shipbuilder

[ Requirement(s) ]
[ Mission }--- -----:‘-\\--:i*:‘----------:::---=-[ Determine effectiveness ]
Enterprise Task (ARERE R S QU - ..-.:\: _________ N > StUdylscenarlo's /
' operational profiles
~< S b
N N .
[ Function [ Determine performance ]
N ~
AN
[ System Configuration ]
[ Component ]

Figure C.2: A visualisation of the final version of the model at the end of this thesis. Yellow objects are activities and the red
object cannot yet be placed in a ship.
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