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Abstract

A medium size Dutch insurance company with third-party car insurance prod-
ucts initiated questions on whether the premium can be based on a statistical
analysis where the expected future liabilities are taken into account. These
questions are as follows:

e Which statistical models can be used to base the premiums on expected
future liabilities?

e Are there enough data available to predict future liabilities accurately
enough?

e How can the 'best’ model be chosen?
e How can the models be implemented?

e What are the results when using these models for the third-party car
products?

After a practical introduction about insurances in society, the thesis starts with
theory that can be used to answer the research questions. This analysis showed
that generalized linear models are very useful models for the pricing of non-life
insurance products. However, there are some disadvantages to these models
which could be avoided by other models, such as hierarchical generalized linear
models.

We will explore several methods to determine if enough data is available to
obtain credible enough estimates. One of these methods can be applied before
implementing a generalized linear model.

Choosing the ’best’ model is a non-trivial subject. Several statistical tests to
choose which risk factors should be included in the model and how they should
be included are discussed. These include tests for adding risk factors as random
or fixed effects, but also which definition of an risk factor should best be used.
This includes whether they should be added as a variate, as a factor or added
dynamically. In addition, several statistical methods to choose the distribution
that has the "best’ fit for the observations for both the number of claims and
the losses are discussed. These include graphical comparison methods, but also
hypothesis testing.

To answer the question how the models can be implemented, we will use the sta-
tistical programming language R. Algorithms that are used by some packages to
calculate the estimates of the models are discussed, as well as several features of
these algorithms. Codes are provided in the supplementary section of the thesis.

Next, a statistical analysis is performed for the third-party car products of
the insurance company. The performed theoretical analysis is applied in prac-
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tice on the available data, and unknowns were calculated. Then an analysis is
performed to determine which distribution ‘best’ fits the number of claims and
which distribution ‘best’ fits the losses. The data was subdivided into several
risk factors, such as age and region, and was analyzed again. A generalized
linear model with a Poisson and log-link assumption was implemented for the
number of claims, and a generalized linear model with a Gamma and log-link
assumption was implemented for the losses. How and if the risk factors should
be added was evaluated using a bottom-up approach. Initially, the models were
applied without allowing interaction between risk factors, and subsequently the
models were applied again, this time allowing interaction between risk factors
to determine if this improved the models.

Other models that may lead to a better fit for the data are also implemented.
These include generalized linear mixed models, which do not assume that the
observations are independent and assume a Normal distribution for the risk fac-
tors that are added as random effects. Also, a pure premium model in which
the Tweedie family is used was applied.

The study showed that the preferred models to calculate the pure premium
are a generalized linear model with Negative Binomial and log-link assumption
for the number of claims and a generalized linear model with Gamma and log-
link assumption for the losses. Due to overdispersion of the observations for
the number of claims, the Negative Binomial proved to be a better choice of
distribution leading to a better fit of the model for the number of claims. The
Normal and Pareto distribution were too symmetric and too right-skewed for
the observations, respectively. The pure premium model showed a worse fit,
when compared to the model for the number of claims. Furthermore, the effect
of the risk factors on the risk profile of a risk group were very clear when a two-
stage regression approach was used. The hierarchical models were not better
models, because the estimates were less accurate.

The results for the different models were then compared with the currently
used pricing system of the company and the expected outcomes of the data
analysis. This leads to recommendations for the insurance company, including
recommendations for pricing in general but also specific recommendations for
the pricing system of the third-party insurance product.

The full thesis contains confidential information, therefore, a public version was
provided in which the insurance company is anonymous. The full thesis was
made available to the thesis committee.
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A Practical Introduction

This introduction starts with a general introduction about insurances in soci-
ety. Then, the importance of a statistical analysis in pricing non-life insurance
products is described.

In our daily lives all kinds of accidents can happen and mostly they do not
happen on purpose. Sometimes the accidents lead to very large losses. This
could lead to undesirable debts for the responsible party. The party that has to
reimburse the damage can be compensated by the insurer, within the boundaries
of the contract. These losses are compensated by the premiums earned by the
insurer, which have to be paid by the policyholder regardless of whether there
is a claim or not. This means that the policyholders that pay more premium
than they obtain from the particular contract pay indirectly for the large losses
of others, dispersion of risk. With the insurance contract, the risk is transferred
from the policyholder to the insurer. When the insurer has a large number of
similar policies, his portfolio becomes more predictable and behaves like the ex-
pected value of the portfolio. This last point only holds true if not a substantial
number of policyholders ends or enters a contract. This is a result of the law of
large numbers, which will be discussed in section 12.9.

Before going into some features of a good premium, two concepts will be dis-
cussed, moral hazard and adverse selection.

Moral hazard refers to changes in the behaviour if, for example, a person is not
directly at risk for their actions. In the special case of insurance, moral hazard
can occur in two ways. Firstly, accidents may occur more often. The reason for
this is, for example, that a person is more likely to be less careful with a car
if this person knows that he or she is insured against damages of the car. Sec-
ondly, a person is more likely to claim a reimbursement when a damage occurs
to try to obtain some money from the insurance company even when this might
be unreasonable.

Adverse selection refers to a group B that mainly wants to do business with
company A, but which leads to bad risks for company A. For example, suppose
that for a particular car insurance people that are younger than 30 generate
more and larger losses on average than people that are older than 30. Fur-
thermore, let the premium policy of the insurance company for the particular
product be such that for the group of people that are younger than 30 and the
group of people that are older than 30 the same average premium is charged.
It is then more likely that drivers younger than 30 want to buy insurances at
the insurance company since the price will on average be lower than what they
claim and get from the insurance company. (Here, we are not considering the
costs of the insurance company. Minimizing the costs of the insurance company
such that the premiums can be lower is another topic which is not in the scope
of this thesis.) Hence, the company attracts bad risks for this product. Further-
more, the drivers that are older than 30 are likely to terminate their insurance
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contract at this particular insurance company since on average they pay more
than they claim. Therefore, the company also pushes off good risks for the
product. Note that good or bad risks not only depend on the total losses, but
also the premium asked. When the premium asked of drivers younger than 30
is more than the average loss for this group, than it is not bad to attract young
drivers to your company for the particular product. However, it is still bad to
push off the group of drivers that is older than 30 because of too large a premium.

When are premiums good and when are they bad? Some features of a good
premium are mentioned below. Note that defining the reinsurance policy, the
policy to minimize the costs of the company, the pricing policy and the policy
conditions by the company are all important in deciding what a good premium
is for a particular product. However, the features below are features that a good
premium should have in general.

1. The premium is competitive with premiums for similar products used
by companies with similar features, such as the reinsurance policy, the
number of policyholders, costs and pricing policy.

2. The premium protects from moral hazard. Although the policy conditions
can also protect from moral hazard, for example by not paying the claim
when it is proved that there was reckless behaviour involved, the influence
of the used pricing system should not be neglected. For example, to have
discounts on the premium according to the claim behaviour. That is, to
have larger discounts when there are no claims for a longer period of time.

3. The premium protects from adverse selection. The premiums asked of a
person should, in a perfect world, meet the exact losses that the person
will cause. However, there will always be problems with asymmetric infor-
mation, that is, a person will probably have more and possibly important
information about his or her situation which is not available for the insur-
ance company. Furthermore, estimating the exact loss that a person will
generate is a non-trivial subject, which is a main topic of this thesis.

4. The premium leads to a healthy loss/profit ratio on the balance sheet of
the insurance company.

Now some arguments will be posed for the use of a research method based on
statistical analysis, which was used in this thesis, when a product is priced, as
opposed to (solely) using a research method based on price comparison with
other companies.

1. A statistical study gives a better insight in the risk profile of the policy-
holders of a particular insurance company. The research per risk group
is done much more in depth in a statistical study than in a general com-
parison with other companies and only calculating unknowns such as the
loss ratios and claim frequencies. For example, in a statistical study, also
the loss distribution is evaluated which gives a better insight in the risk
profile. In addition, the statistical significance of the risk groups on the
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loss distribution and claim frequencies can be investigated, which leads to
more and better conclusions of the risk profile of the risk groups. Also the
correlation between risk groups can be more precisely investigated, which
can lead to better pricing conclusions. One can imagine that discounting
two risk groups that are very closely correlated can lead to discounting
more or less the same group twice, which might lead to discounting a large
group of people too much.

2. The pure premium is calculated per risk level, which should be asked
to cover the losses of the own policyholders. There can always be risk
groups that are not taken into account by an insurance company and
other companies while they are of significant impact. This means that
using the pure premium is a safer approach, because without explicitly
taking it into account as a variable in the model, it is taken into account
by the model anyway since the claim and loss behaviour is captured in
the data. The premiums used by the other companies can be misleading
for the own risks.

3. Comparisons with other companies lead to the question to what extent
the companies really are comparable.

(a) What are the choices of the other companies regarding the premium?
Do they want a low premium to obtain a large number of policyhold-
ers or do they want a higher profit per policy?

(b) What are the policy conditions of the product, what exactly is insured
and under which conditions will the company pay the claim?

(c) What is the reinsurance policy of the other companies? Is the reinsur-
ance such that the other company can more easily ask low premiums?

(d) What is the risk profile of the policyholders of the other company?

When relying on the market comparison, answering these questions is
important. However, answering these questions can be challenging, maybe
even impossible. A study based on a statistical analysis does not require
answers to these questions since the insurance company can make decision
based on the risk profiles of the policyholders and the risk appetite of
the insurance company. In this way, an insurance company can be more
autonomous.

Monitoring the market is very important nonetheless. The premium in compar-
ison to other insurance companies will have a large impact on the number of
policyholders for the product, more specifically for different risk groups. When
all other companies are much more expensive, it is wise to follow their lead. On
the other hand, depending on the risk appetite, reinsurance policy and product
policy, being relatively expensive might not be preferable. Having more poli-
cyholders means being able to better monitor the product, being able to cover
large losses better, and being able to predict the total losses better. Further-
more, the cost per policyholder is lower. When the estimates are not credible
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enough, for example, when the number of claims is not sufficient, the pricing
can definitely not solely depend on the pure premium calculation given by the
models that are described. In that case, these premiums are then more a guide-
line. On the other hand, when the estimates are credible enough and the pure
premiums are evaluated and they are realistic per group, the pure premiums
can be leading in determining the premiums. In this case the market research
can be done for adjustments on the premiums determined by the pure premiums
and not the other way around.
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Chapter 1

Generalized Linear Models

1.1 Overview of Chapter 1

In chapter 1 generalized linear models are described. These models are widely
used in the pricing of non-life insurance products. In general they are regression
models and pricing is often based on these models as a two-stage regression
model. The claim numbers and losses can be modelled separately, that is, with
two different generalized linear models.

Furthermore, some features of generalized linear models will be discussed. Af-
terwards, some advantages and disadvantages of generalized linear models in
actuarial practice will be discussed.

1.2 Characteristics

A generalized linear model is a model of the form
g(pi) = wi;B;. (1.1)
J

The following three characteristics hold for (non-hierarchical) generalized linear
models:

1. The stochastic component of the model states that the observations are
independent random variables Y;, ¢ € 1,...,n, with a density in the expo-
nential dispersion family.

2. The systematic component of the model attributes to every observation
a linear predictor n; = Zj x;;8;, linear in the parameters 1, ..., 3. The
x5 are called covariates.
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3. The link function links the expected value u; of Y; to the linear predictor
by n; = g(pi)-

1.3 Stochastic Component

A density in the exponential dispersion family has the following form
f<y2j; 91’]’; ¢) = elYii0i—b(0:;)]/a(d)+c(yij ) (1_2)

For different functions of a(.), b(.) and ¢(.) there are several known densities.
The function a(¢) can be of the form a(¢p) = ¢. The dispersion parameter is
denoted by ¢. Suppose that ¢ is known then the density function becomes

Fyig;0i5) = a*(0:)b" (ys;)ev @0), (1.3)

where Q(0) = %, a*(0) = e 2(0)/a(@) and b*(y) = W0,
Formula 1.2 can be applied to describe two parameter families such as the
Normal and Gamma distribution. Formula 1.3 can be applied to describe one
parameter distributions, such as the Poisson distribution.

Furthermore, a Poisson distribution where ¢ is not equal to one is called a quasi-
Poisson distribution.

Distributions that belong to the exponential dispersion family are allowed, such
as the Normal, Poisson, Binomial and Gamma distributions.

Note that in practice, weights have to be taken into account since some cells will
typically contain more policies than others. In this case, deciding not taking
weights into account, disregards the fact that observations in cells with many
policies have been measured with much more precision than the ones in prac-
tically empty cells. Weights are often the natural or exposure weights. For
example, let the claim frequency be the quantity of interest. Suppose that the
observations are all claims over one particular year. Then the exposure is the
number of policies that are in force throughout the year. Note that in some
cases policies are in force during a part of the year, in these cases the exposure
is the sum of the number of policies that are in force the whole year and the
fractions of the year for the policies that are only in force a part of the year.

1.4 Likelihood

The log likelihood function is given by I(¢;0;y) = logfy (y;0;$). Also, given
the exponential dispersion family, the two relations E( %) = 0 and E(g—;é) +

E (%)2 = 0 can be derived. This leads to the following relation for the expected

value p;; of Y;; and the variance of Y;;

E(Yi;) = piz = V' (0i5) (1.4)
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Var(Yi;) = V(Y;5) = b"(0:5)a(o). (1.5)

However, the variance can also be described as a function of the average, that
is, Var(Yi;) = a(¢)V(pi;). The function V(.) is called the variance function.
Note that including weights leads to Var(Y;;) = a(¢)/wi; V (1:j).

Suppose that the distribution is not known, but that the first two moments
are given, then the so-called quasi-likelihood function can be used instead of the
likelihood function.

Let Y7,Y5, ..., Y, be independent random variables with expected value E(Y) =
w and variance Var(Y) = V(u) for a certain known function V'(.). The so-called
quasi-likelihood function is defined as (when the dispersion parameter is equal
to one and weights are not included)

Qn) = ; / My yv@f dp. (1.6)

In many ways this function behaves the same as the likelihood function. If u is
estimated in a similar way, by maximizing the quasi-log-likelihood, then, typi-
cally, results will be found with similar optimality conditions.

For the maximum likelihood estimates for the parameters in the generalized
linear models the following property holds [17]. Note that we use an iterative
algorithm, such as the iteratively reweighted least squares method which is ex-
plained in section 14.1.1.

Property 1.4.1. For the Maximum Likelihood Estimates, ﬂj‘,
1. 51 is an asymptotically unbiased and consistent estimator of E

2. V() = (XTWX) "¢ consistently, as the iteratively estimated 3* con-
verges to the true 8, where W = diag(w;,...,w,) with weights wy =
(69" (11:)V ()] ™1, and matriz X with the covariates vectors.

3. B* —d N(ﬁ_’7 (XWX)~t¢), i.e. it converges in distribution with the itera-
tive algorithm.

1.5 Link Function

The link function g(.) links the stochastic and systematic component, where g(.)
is monotone and differentiable. Often used link functions are the logarithmic or
identity function. Hence, the models can be additive but also multiplicative.
The link function influences the estimates made. Adding also to the previous
section, the link function has an influence on the bias of the maximum likelihood
estimates [21]. The canonical link function has some nice properties [2], however
one may judge that under another link function, the estimates are better.
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1.5.1 Canonical Link Function

Each of the distributions of the exponential family have their own natural link
function which is called the canonical link function. Some examples are the
identity function for the Normal distribution, the logarithmic function for the
Poisson distribution and the reciprocal function for the Gamma distribution.

Definition 1.5.1. The canonical link function is the link function that has the
property that the natural (also called canonical) parameter 6 coincides with the
linear predictor 7.

This holds if the link function is the inverse function of u(8) = v/(9).

Property 1.5.1. If in any generalized linear model with covariates x;; and
canonical link g(.), the fitted value for observations i = 1,...,n under a mazi-
mum likelihood estimation is pf = g~ () = g~ ( ?:1 ©ijB7), the following
equations hold:

> wiyimi; =Y wipiwig, = 1,..,p (1.7)
i i

Proof. An extremum of the total log-likelihood based on the entire set of obser-
vations Y1 = vy, ..., Y, = y, satisfies the conditions

Z%Kﬁlvvﬁ[nyz) :07] = 177]3 (18)
i J

Applying the chain rule and using the § = n property of the canonical link leads

to:
o0 _ao _ao
oB;  000B; 0008
Using the dispersion parameter ¢, the density of exponential dispersion fam-

ily and the equation p(f) = ¥'(9), it can be shown that the relation for the
observations, with ¢ = 1,...,n:

(1.9)

ﬁ _ wz(yv - M)l’ij

0B; ¢ ’
holds. Now summing over all i = 1,...,n, the observations, the log-likelihood of
the whole sample 1, ..., y, is obtained. Now setting the normal equations equal

to zero, this directly leads to maximum likelihood equations of the form to be
proved. O

j=1,....p (1.10)

Note that if the x;; are dummies with a characterized membership of a certain
group like a row or column of a table. Furthermore, the y; are averages of w;
independent identically distributed observations, on the left hand side there is
the observed total, and on the right the fitted total.
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Property 1.5.2. In a generalized linear model, if the canonical link 6; = n; =

Zj xi;8; is used, the quantities S; = Y, w;Yix;j, j = 1,...,p, are a set of

sufficient statistics for 31, ..., Bp.

Proof. The joint density of Y7, ...,Y,, can be factorized as

le,...,Yn (y17 ces Yns /617 7Bp) = g(Sla ceey Sp;/Bh 7Bp)h(y1a "'ayn)v (111)

where s; = >, w;y;xi;, j = 1, ..., p and suitable functions g(.) and h(.). Indeed,

le,...,Yn (y17 cey Yns 617 "'75}))

= H?—lexp(w + c(yi; o/ wi)
_ exp(zi: Yidj $ij5;/_wbi(zj xijﬂj))wp(zi: el w%)) (1.12)
= efﬂp(% [zj: Bj z; WiYiTij — z; wib(; xijﬁj)]exp(zi: c(yis %)}

Now, the functions ¢(.) and A(.) can be derived immediately. O

Background information about statistics can be found in section 12.3.

The two properties stated above can be very convenient in actuarial practice.
The observations may have been aggregated into a table of which only the
marginals (row and column sums) are available. Also, the policies could have
been grouped into cells, to save time and space. Moreover, if the canonical link
function is used, the marginal totals, as well as the cell totals, apparently are
sufficient statistics. Hence, knowing only their outcomes, the maximum likeli-
hood estimates can still be determined.

1.6 Parameters as Variates and Factors

The parameters to be estimated in the generalized linear model of your choice,
can be estimated as a variate or a factor. In the case of a factor the risk factor
levels ¢ = 1,..., I are used as labels. Which means that every «; is an arbitrary
number. This implies that every «; needs to be estimated. On the other hand,
if variates are used, then for the level i there is i * o, which implies that only
a needs to be estimated. In practice, the question whether such a relation is
indeed more or less valid, arises immediately and has to be discussed. On the
other hand, using the risk characteristic, when divided into more than two levels,
has consequences for the complexity of the model.
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1.7 Full and Null Models

The generalized linear model that only uses a constant for the systematic com-
ponent is called the null model. This model implies that every observation has
the same distribution and that the weighted average is the best estimator for
every p;. On the other extreme, there is the full model. This model implies
that every unit of observation ¢ has its own parameter. Intuitively one may
immediately think that the null model is not accurate enough to be of any use.
On the other hand, the full model may be too complicated and has too many
parameters that have to be estimated to be of any practical use because of
computational issues. And indeed, often the optimal model is somewhere in
between. This trade-off has to be made.

1.8 Offset

The offset is defined as an additional model variable with coefficient 1. Often
the offset is included when dealing with Poisson counts, where the canonical
log-link function is used. Then the fit looks like

log(m;) = Z%‘ﬁj + log(ei) (1.13)

where € is the offset. Note that when using weights, claim frequencies can
be obtained. In this case these will still have a Poisson distribution since the
claim frequency modelling, with weighted exposure, is equivalent to claim count
modelling with log-linked exposure.

1.9 Generalized Linear Models in Actuarial Prac-
tice

After describing the generalized linear model, some advantages and disadvan-
tages for the use in actuarial practice are discussed. First of all, we state to
what extent the generalized linear model is a generalization of the linear model.
The generalization is in two directions [2]. The random variables involved are
assumed to be Normal in a linear model with a variance independent of the
mean. In the generalized linear model however, the observed values, need to
have a density in the exponential dispersion family. In actuarial practice this
is a very convenient generalization, since the number of claims and losses are
often assumed to be for example Poisson and Gamma respectively. On the other
hand, in the linear model, the response is assumed to be linear in the covariates
on the identity scale. For the generalized linear model the scale can be different
from the identity scale. Often we see a scale which involves logarithm in actu-
arial practice, since this leads to having a multiplicative model rather than an
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additive one.

Although the generalized linear models have some advantages that can be very
convenient in actuarial practice in comparison to the linear models, they still
have disadvantages. Two disadvantages will be stated which may not be valid
for other statistical models that are discussed in this thesis. First note that the
independent assumption of the observations given their explanatory variables
still holds. This assumption need not be valid and can therefore be a disadvan-
tage. Also, either zero or full credibility is given to the data and blending is not
possible. There are four other disadvantages stated by the GIRO APT working
party from the Institute and faculty of Actuaries in the UK [7]. These disad-
vantages are as follows. Firstly, model predictions depend on the mixture of
rating factors in the data. Secondly, maximum likelihood estimate of prediction
is lower than mean of prediction distribution. Thirdly, the link function could
bias the model prediction and significantly change the lower and upper bound
of prediction. Finally, model diagnostics is only relevant in the segments where
the model is used.



Chapter 2

Hierarchical Generalized
Linear Models

2.1 Overview of Chapter 2

In chapter 2 the hierarchical generalized linear model is discussed. First the
reason why the hierarchical generalized linear models can be useful in actuarial
practice is discussed. Then, the difference between the hierarchical generalized
linear model and the generalized linear model is explained, that is, to what
extent the hierarchical generalized linear model is a generalization of the gener-
alized linear model. At the end some features about likelihood estimates in the
case of hierarchical generalized linear models are explained.

2.2 Introduction

In the case of hierarchical generalized linear models the assumption of the ob-
servations being independent from each other given the predictor values does no
longer have to be valid. The situation of the observations being dependent on
each other given the predictor values, also in actuarial practice, can certainly
occur. Hierarchical models are often made with the use of Bayesian inference.
In this case there is a distribution chosen a priori of the parameter(s) that has
to be estimated in the distribution of the particular random variable of interest.
And afterwards, the distribution is updated by computation using the data to
get the posterior distribution. Using the conjugate prior family, where the pos-
terior and prior distribution are of the same parametric form is desirable due to
some properties that hold in that case. Also a likelihood approach can be used.
The results of the likelihood-based analysis can be used, for instance to choose

13
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starting values for the chains and to check the reasonableness of the results. In
an actuarial context, an important advantage of the Bayesian approach is that
it yields the posterior predictive distribution of quantities of interest.

However, although there are advantages of the hierarchical generalized linear
model in actuarial practice, there is an increase of the complexity of both the
model and the calculations. The discussion on the trade-off between complexity,
credibility of the estimates and performance of the models arises immediately.

2.3 Characteristics

The characteristics of the hierarchical generalized linear models are different
in some ways. Firstly, note that the stochastic component is different in the
sense that the observations do not have to be independent. Secondly, note that
the systematic component is different in the sense that a stochastic component
is added to the linear predictor. This results in n; = Zj (2585 + ziju;j) where
there is a distribution parametrized by U over the parameters of 4. The random
effects do not only determine the correlation structure between observations on
the same subject, they also take into account heterogeneity among subjects,
due to unobserved characteristics. Furthermore, note that for the purpose of
completeness, if the random effect U follows a Normal distribution, then the
hierarchical generalized linear model is also called a Generalized Linear Mixed
Model.

2.4 Structure of Hierarchical Generalized Lin-
ear Models

In the previous section it was already mentioned that the hierarchical general-
ized linear model provides an extension for the generalized linear model by the
addition of random factors. The structure is as follows

yi | u~ fmu(yi | u),
(RS o), (2.1)
u~ fu(u),

where fy(u) denotes the density function for the random effect. When fy(u) is
a Normal density function, then we have a generalized linear mixed model, but
in general there can be a non-Normal distribution for the random effect.

Note that there can be dependence now, specified by the covariance. The fol-
lowing equalities hold for the mean, variance and covariance, that depend on

fmu(yi | u) = exp
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the link function.
Ely;] = E[Ely; | u]]
[124]
97" O (@185 + ziju5))]

J

o
& =

Var(y;) = Var(Ely; | u]) + E[Var(y; | u)]
= Var(w) + E[V (1))
=Var(g™' [D>_(i;B8; + ziju;)]) + E6V (g7 [D (i85 + 2iju;)])

J J

Cov(yi, y;) = Cov(Ely: | ul, Elyi | u]) + E[Cou(ys, y; | w)]

= Cov(pi, ptj)
= Cov(g_l[Z(xijﬂj + Zijuj)]ag_l[Z(xijﬁj + ziju;)])

(2.2)

To get more insight into particular cases which will be applied, the further
derivation by implementing the link function will be useful.

2.5 Maximum Likelihood Estimation

For hierarchical generalized linear models there are some other features for the
maximum likelihood estimates. In the next section the restricted maximum
likelihood estimates are proposed. Calculating maximum likelihood estimates
often involves an integral that does not have a closed-form solution. A closed-
form solution can be found for conjugate distributional specifications. Also,
calculating the integral often has to be done for every iteration. There are
several approximation techniques that are discussed in chapter 14.

2.5.1 Restricted Maximum Likelihood Estimation

For hierarchical generalized linear models, the standard maximum likelihood
estimation can give biased estimates for the variance of (random) components.
This is due to the fact that in the estimation procedure (by taking the deriva-
tive of the log-likelihood function with respect to both parameters, which can be
vectors, and set to zero), the existence of fixed effects is ignored, and the degrees
of freedom used in deriving the estimators do not adjust to this. The restricted
maximum likelihood estimation method can be a solution in the sense that it
can give unbiased estimates for the random effects. The restricted maximum
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likelihood estimation method works by first obtaining regression residuals for
the observations modelled by the fixed effects portion of the model, ignoring at
this point any random components. Then the question what is the statistical
model for these residuals should be asked. There is no more fixed effect part,
because all fixed effects are taken out when the residuals are taken. Aspects of
the random effects part and error part remain. Taking residuals changes the
covariance structure, but that is taken into account. This method works in a
very convenient way for generalized linear mixed models. However for hierarchi-
cal generalized linear models, where the distribution of the random component
belongs to the family of conjugate Bayes distributions for an exponential fam-
ily, the Laplace approximations of the marginal likelihood function is proposed.
Restricted maximum likelihood estimation makes use of a different likelihood
function than simple likelihood (in particular, it does not even depend on the
fixed effects coefficients), so its achieved likelihood is also different. Comparing
nested models that only differ in the random terms can be done by using the
restricted maximum likelihood or the ordinary likelihood. Comparing models
that differ in fixed effects terms can be done by using ordinary likelihood.



Chapter 3

Calculating the Premium

3.1 Overview of Chapter 3

The (hierarchical) generalized linear (mixed) models have been described, how-
ever the calculation of the risk premium when using these models is not yet
derived. In this chapter the calculation of the pure premium is discussed. How-
ever, when the data is not sufficient enough to implement reliable generalized
linear models an alternative is presented. The alternative that is discussed, is
calculating the credibility premium with the use of the Biithlmann-Straub model.
Into the next sections, three different premiums are mentioned, namely the rela-
tive premium, the pure premium and the quoted premium. The relative premium
is the premium for a given risk class relative to the intercept group. The inter-
cept group is formed when all risk levels, for the risk factors chosen in the model,
are at the standard level. The pure premium is directly given by the output of
the models. And the quoted premium is the premium that the insurer brings
to the market. The relative and pure premium can be calculated by combining
the models for the claim severity and the claim frequency.

3.2 Calculating the Pure Premium

Suppose E is estimated such that it is the best fit for the equation
Y = X8 (3.1)

in a fixed setting and that 5 and ¢ have been estimated such that they give the
best fit for the equation .
Y=Xp+2Zu (3.2)

17
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in a model where random effects are also considered. The observation y; is the
observation given the risk classes and where § and @ are estimated such that
they are the best fit for the equation

Yi = B1 + Bawiz + Bawiz + ... + BpTip (3.3)

in a purely fixed setting and
Yi = P14 Bawio + B3iz + ... + BpZip + U1 + U2zio + ugziz + ... + upzip  (3.4)

in a model where random effects are also considered. The calculation of the
pure premium, given the estimates E* and u*, is then very straightforward.
Suppose that S is the severity and N is the number of claims, where the link
functions used are h and g, respectively. Furthermore, suppose that the chosen
variables for the severity model are denoted by z~ and 2z~ for the fixed and
random factors respectively and x, z for the count model. Then for the number
of counts given the risk classes the following equation holds,

Ny =g~ (B + Bszia + B3z + ... + Bpip) (3.5)

and for the severity

S;=g97' (B} + B5% + Bixz + o+ Brxi,),s (3.6)

given that only fixed effects are considered. If random effects are included then
the above equations are changed to

Ni =g ' (Bf +Bsxia+ Baxis+ ..+ Biwip +uf +ubzio +uizis + ...+ uhzip) (3.7)

and

Si =g ' (Bi+ 8w+ Bia+..+ By,

T, Ul Fuszin Huizis +otupzy), (3.8)

pTip

respectively. Now the pure premium, given the risk classes, is given by

3.3 Credibility Premium

In the case where a limited amount of data is available, credibility theory could
be used to determine the credibility premium, which is given by

where X; is the average claim (severity) of group j and X the overall mean of
the data. The most difficult task is to determine 2’ the credibility factor for each
group j = 1,...,n. The Biihlmann-Straub model is often used, but the classical
approach can also be used.
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3.3.1 Heterogeneous Portfolio

Consider the random variable X, representing the claim figure of cell j in
year t, where j € {1,2,...,J} and ¢t € {1,2,...,T}. Suppose that all X;, are
independent and N (mj,SQ) distributed, with possible unequal mean m; for
each cell, but equal variance s2>0. If the portfolio is homogeneous in the sense
of the mean, in other words that it is reasonable to assume all m; are equal,
then there is no reason not to ask the same premium for each contract. To test
if the portfolio is heterogeneous or homogeneous, the so-called variance ratio or
F ratio can be used, which is defined as

LS (X — X)2
o MSB 7125 T = X) . (3.11)

T i (Xt — X;)?

It can be proved that the ratio F has a F(J — 1, J(T — 1)) distribution. Fur-
thermore, for this statistical technique of analysis of variance, a linear model
explaining the responses X from the group number j as a factor can be defined

2].

3.3.2 Buhlmann-Straub Model

Suppose that X, is the average claim (severity) for contract j = 1,...,J in
year t. Assume that all X;; are independent and N(my, s*) distributed, with
possible unequal mean m; for each cell, but equal s*> = a. Note that if the
portfolio is homogeneous, that is, the group means are all equal, then there is
sufficient reason to ask the same premium for each contract (which could be
the average loss for one year). However, when the portfolio is homogeneous,
which means that the group means are not all equal, then there is reason to ask
different premiums. Let the portfolio be heterogeneous. Assume that each m; is
produced by ’white noise’ similar to the one responsible for the deviations from
the mean within each cell. Then the following model holds, which is a variance
components model,

X]‘t :m+Ej+Ejt,j: ].,...,J,t: ].,...,:Zj7 (312)
with =; and Z;; as independent random variables for which

E[Z;] = E[Zj¢] = 0,Var[Z;] = a,Var[Z;] = s2. (3.13)
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In the Biithlmann-Straub model there are the following estimates of the (corre-
sponding) structure parameters a, s> and m, which are unbiased [2]

%
m = qun

1
2% § : 2
5 J(T—1) " wji (X jw)

(3.14)
. Zj w; E(ij — Xupw)? — (J — 1)s*
a = 3
W s = 2 Wi /Wy
where
T W
Xju = X,
J wz
X’ww = ! X‘wa
;“’ZZ !
(3.15)

T
Wiy = E :wjtv
t=1

J
Wy = ijZ'

Jj=1

When these estimates have been calculated, one can determine the credibility
premium by substituting the estimates in the following equation

Zijw + (1 - Zj)sz (316)
where
iy
Zi =
T s+ aw; s

J
2 sz (3.17)
j=1
J

Xow = Z %

j=1 22 Xjuw

Note that in section 15.3 there is a code included to calculate the credibility
premiums for this model. Also, the credibility premiums with a, m and s>
known are compared with the credibility premiums with unbiased estimates a*,
m* and s2* as described above, for the same generated data.



Chapter 4

Model Choice

4.1 General Aspects of Model Choice

The question of which models should be chosen is important and non-trivial. To
answer this question, one should answer several other questions. For example,
whether if the sample size is sufficient to implement a model. Or which distri-
bution fits the observations best. Also, which risk characteristics show the most
significant changes for the response of interest. And, which levels should be cho-
sen for the risk characteristics. There are many more questions that should be
answered. In chapter 4, theory on how one could discriminate between models,
to end with the 'best’ model is presented.

Answering the question whether the amount of useful data is sufficient in order
to be able to implement (hierarchical) generalized linear (mixed) models is very
useful. Indeed, it is not useful to implement generalized linear model if the
estimates are not credible. For evaluating whether the sample size is sufficient
enough to implement generalized linear models, the method explained in section
4.5.2 may be very helpful.

Note that the distribution which fits the observations best has implications for
the model that should be chosen. In section 4.2 some possible distributions and
ways to discriminate between distributions are discussed.

Also, the choice of the link function will be discussed in section 4.3. Although
the canonical link function is often chosen, other link functions can be preferred
as well.

Furthermore, which risk characteristics should be added (if they should be
added) as random or fixed variables in the model will be discussed. Note that if
there are no random effects, then a generalized linear model is obtained, other-
wise a hierarchical model is obtained. More on deciding if a risk characteristic
should be added as a fixed or random variable can be found in section 4.4

21
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Furthermore, some fitting criteria are given in section 4.6 to make a choice be-
tween which risk characteristics should be taken into account. The goodness of
fit that a model provides is crucial in this case. To answer these questions, one
may use fitting criteria, such as residuals and log-likelihood ratio. The purpose
often is to reflect on the distance between fits and observations; large distances
are intuitively not desirable. Furthermore, using for example deviance residuals,
nested models can be compared. But the trade-off between complexity and the
goodness of fit is also an interesting topic regarding the choice of the model.
The use of information criteria is often recommended for this purpose.

This thesis will generally use a bottom-up approach, where the method starts
with an empty/null model, or with a model which only includes a set of risk
characteristics that should be included in any case. Then risk characteristics are
added and it can be determined if they have a significant impact. The choice
for this approach is made because of the choice of included factors is very clear.
If a top-down approach is chosen, then the method starts with the full model
and the risk characteristics are removed. A risk characteristic is in this case not
included, or, to be more precise, removed, if the test shows little to no predictive
power.

Apart from choosing the risk factors and which of the (hierarchical) (general-
ized) linear (mixed) models that should be chosen, the choice between a Bayesian
approach, with for example (Markov Chain) Monte Carlo methods and a point-
estimation approach, with for example a (restricted) maximum likelihood es-
timate should be made. The choice between a hierarchical or non-hierarchical
model and the properties of the estimates are important. Fitting criteria can
be also applied for this purpose. Next to these properties there is also the
computational complexity that has to be considered.

4.2 Choice of Distribution

Overview of Section 4.2

As mentioned before, the generalized linear model and the linear model, hier-
archically modelled or not, differ in the assumption of the distribution of the
observed data. Hence, the choice between a linear model or a generalized linear
model simply comes down to deciding which distribution has the best fit for the
observed data in both a statistical and explanatory sense. If this distribution is
a Poisson or Gamma distribution, which often are distributions seen as the best
fits for the claim frequency and severity respectively, then a generalized linear
model should be chosen instead of a linear model. However, other distributions
can be preferred.

Briefly some possibilities for the distributions of the severity model are discussed
in section 4.2.1. Then, some possible comparison methods are discussed, such as
the Zipf, mean-excess function, the discriminant moment-ratio plot, the Zenga
and the QQ-plot. More detailed information can be found in [22].
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In section 4.2.2, possibilities for modelling the claim frequency are discussed.
The Poisson distribution in a generalized linear model is often chosen, where
time independence is assumed. However, time dependence may occur. For ex-
ample, in the winter more accidents could occur than in other periods of the
year. Furthermore, when the variance divided by the mean shows a big dif-
ference from one, it might be wise to choose another model since the Poisson
distribution assumes that the mean and variance are equal.

4.2.1 Loss Distribution

For the loss distribution, sometimes the Normal, Lognormal, Gamma or Pareto
distribution are chosen. The Normal distribution is symmetric and often does
not fit the right tail of the loss distribution. When it is chosen in the model,
the problem may arise that large risks are not modelled correctly. The Lognor-
mal, Gamma and, in a more extreme way, the Pareto distributions, generally
show large outliers. The Gamma and Lognormal distributions are quite simi-
lar. However, the Gamma distribution tends to have a heavier left tail and a
lighter right tail than the Lognormal distribution. An illustration can be found
in figure 4.1.

Important to mention in the framework of generalized linear models, is that the
Lognormal distribution does not belong to the exponential dispersion family.
This means that transforming has to be done. A way to nonetheless fit a gener-
alized linear model anyway with a Lognormal distribution for the observations
is fitting a normal linear model with a log transformation of the responses. How-
ever, the result is not quite the same since E(log(Y")) # log(E(Y')) generally.
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Figure 4.1: An example where both the Lognormal and Gamma distribution
have a mean of 1 and a variance of 1/4. The top plot shows the density and the
lower plot shows the densities of the logs, where the green colour indicates the
Gamma and the blue colour the Lognormal distribution.

Zipf Plot

Suppose that the cumulative distribution function is denoted as F'(x). The
survival function is then defined as F(z) = 1 — F(z). In other words, the
chance of obtaining larger values than x. The Zipf plot is the survival function
on the y-axis and the losses on the z-axis, where both axis are on the log scale.
If the data follow a power law (that is, a Pareto distribution), then one can
expect to observe a negative linear trend in the Zipf plot. Figure 4.2 is made

for the theoretical behaviour of the Zipf plot for some distributions.
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Zipf plot (Log-log plot of the survival function)

Exponential A=1

Weibull a<1, Lognormal

or Gamma o= 1

log(1-F(x))

MNormal or Weibull o> 1

log(x)

Figure 4.2: Zipf plot behaviour for some classical distributions [22].

Note that in practice, the observed data will generally not exactly follow one of
the lines of figure 4.2. Therefore, discriminating between distributions might be
a problem. Some other plots can be used to obtain more information on which
theoretical distribution fits the data best.

Mean Excess Function Plot

The mean excess function of X (a random variable with distribution F) is
defined as

[t —u)dF(t)

e(u) =EX —u| X>u] = T dF @)

,0<u<zp, (4.1)

where xp = sup{x € R: F(x)<1}. In practice, this comes down to

Loy (12)
Zi:l 1{X1->u}

for a sample of size n. In words, the sum of the exceedances over the threshold
u divided by the number of data points exceeding u. Also in this case, in figure
4.3 the theoretical behaviour of some distributions can be found for the mean
excess function plot.

en(u) =
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Mean Excess Function Plot (MEPLOT)

Weibull e<'1 or Lognorn

Normal

e(u)

Power Law

Gamma o> 1

Exponential

Weibull o> 1

Thrashold u

Figure 4.3: Shape of the mean excess function e(u) for some classical distribu-
tions as a function of the threshold w [22].

The Discriminant Moment-ratio Plot

A moment-ratio plot is a graph in which a distribution is represented as a pair
of standardized moments plotted on a single set of coordinated axes. In figure
4.4 some guidelines for the interpretation of these plots can be found.
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Discriminant Moment-ratio Plot

Pareto Inv. Camma Lognormal

Exponential /Thin Tailed

Skewness
L]

Bernoulli

Normal /Symmetric

CV (scale is not representative)

Figure 4.4: Guidelines for the interpretation of the Discriminant Moment-ratio
Plot. Notice that the scale of the CV (coefficient of variation) axis is not repre-
sentative, since it has been condensed [22].

For the Zipf and mean excess function plot, the corresponding figures can be
made for the empirical data. Afterwards, the behaviour of the graphs can be
studied and compared with figures 4.2 and 4.3. In this case it is suggested to
use the point (v3,75) in the discriminant moment-ratio plot [22], where

X s x,
P Y S E. (43)
Ix \/ﬁ Zi:l(Xi - X)2
I~ X — X,
g 283, 4.4
v () (4.4)

The location of this point will indicate which underlying distribution is likely
to be true. A description of what the location of (v3,~3) indicates follows. If
the point lies in the Lognormal-like zone then the underlying distribution is
likely to be Lognormal or Gamma: the closer to the Lognormal line, the more
likely it is Lognormal and vice versa for Gamma. Similarly, for the Paretian
zone, the closer the point is to the Pareto line, the more likely the underlying
distribution is Pareto I, and the more it moves away, the more likely that it
is for example a Pareto II distribution. For the Exponential/thin tailed zone,
the Weibull is a possible distribution, the Lognormal and the Pareto are very
unlikely in this case. If the point falls in the grey zone then more analysis is
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required (for example an analysis of the other plots). If the point is close to the
Normal line, then a symmetric distribution, or a very thin tailed distribution,
is likely to fit the observed data best. However, this is not likely for the loss
distribution of a non-life insurance product.

Maximum to Sum Plot

The maximum to sum plot indicates whether moment p € Z~o for the loss
distribution is finite or not. This plot relies on the fact that, for a sequence
X4, Xo, ..., X,, of nonnegative independent identically distributed random vari-
ables, if for p =1,2,3, ..., E[XP]<oo, then R,, = MP/SF — 0 as n — oo, where
Spo= 3" XP and MP = max(X7,XP). This follows from the law of large
numbers [24]. The maximum to sum plot is, in this case, given by plotting R,
against n and can indicate if Paretianity can be ruled out or not. Indeed, it can
show the existence of the first four moments.

Zenga Plot

The Zenga plot is based on the Zenga curve which can be expressed as

u— L(u)
Z = ——"",0 1 4.5
e T T R (4.5)
where L(u) = ﬁ Jo F~Y(s)ds,u € [0,1], is the Lorenz curve. For the Zenga
plot the behaviour of some distributions can be found in figure 4.5.
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Zenga Plot
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Figure 4.5: Zenga curve behaviour for some classical size distributions [22].

QQ-Plot

A QQ-plot is a probability plot that compares two probability distributions by
plotting their quantiles against each other. If the QQ-plot is similar, the point
in the QQ-plot will approximately lie on the line y = x.

Model Comparisons

Graphical methods have been discussed in this section to determine which dis-
tribution is most likely to fit the data. However, one can also observe the quality
of the estimates of the model. The choice can be made to discriminate between
models, where the distributions fitted on the data are both likely, but where the
performance of the estimates are different, for example in the sense of standard
error. If the accuracy of the estimates of the first model is much worse than
for the second, then the second model can be the preferred model. Also other
fitting criteria, which are discussed in section 4.6, can be used for this purpose.
However, it is not preferable to choose the underlying distribution. Determining
the underlying distribution by using the model comparison can lead to wrong
decisions. This is due to computational issues for example. That is, the per-
formance of a model is dependent on the algorithm used to calculate the values
for the parameters.
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4.2.2 Claim Frequency Modelling

The generalized linear model with a Poisson assumption is often chosen as the
model for the number of claims for non-life insurance products [27]. Also, there
are some elegant mathematical features for the Poisson distribution, such as the
simplicity: there is only one parameter and the variance is equal to the mean.
However, the Negative Binomial distribution can be preferred for the frequency
model instead of the Poisson distribution when overdispersion is observed. Fur-
thermore, the Poisson process can be homogeneous or non-homogeneous. The
difference lies in the intensity. In the case of a homogeneous process the intensity
is constant, and for the non-homogeneous case the intensity can be a function
depending on, for example, time. This means that the non-homogeneous Pois-
son process, which has been used to model the number of medical malpractice
claims in Ttaly [24], can better model phenomena like claim occurrences to be
more likely to depend on the year. Furthermore, not only the Negative Bino-
mial can be used, but also the mixed Poisson process when overdispersion is
observed. In the mixed Poisson process the distribution is given by a mixture
of Poisson processes, such that the process behaves like a homogeneous Poisson
process [23].

4.3 Choice of Link Function

4.3.1 Limited Fluctuations Credibility

The canonical link-function has some elegant properties, but sometimes one may
prefer a different link function [21]. In this section a method to compare models
with different link functions is shown.

Let u} be the estimator of a parameter m;. The full credibility is achieved when
the distance between the estimator and the parameter is small enough with a
large enough probability, that is

P{| it —mi |<rmg} > 7, (4.6)

where r € (0, 1) is the estimation-error tolerance level and 7759 ) is the probability.
Note that the tolerance level should be chosen.

The confidence coefficient 772(9) indicates how credible the estimator is. That
is, large values for the confidence coefficient indicate higher credibility of the
estimates. As indicated, it depends on the link function g and the covar(iagtes
9 is

i

factor ;. For an arbitrary link function g, the confidence coefficient m

given by
@) &

Sq Si

m? = ®( ) (4.7)
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where @ is the cumulative distribution function of the standard normal dis-
tribution and s; is the standard deviation of the sum of the estimators. This
is a function of the covariate vector(s) (there are multiple vectors in a mixed
setting). Furthermore, 1 and Qs are given by

Q1 = g[(1 —r)m;] — g(m;) (4.8)

and

Q2 = g[(1 + r)m;] — g(my). (4.9)
For the log-link the closed form with Q2 = in(1+7) and Q1 = In(1—r) is known
[17]. Also it appears that the portfolio size influences the size of the confidence
coefficient. Therefore, it is possible that the size of the portfolio, the number of
observations, is too small to achieve a large enough confidence coefficient in a
generalized linear (mixed) model setting.
A natural criterion for the choice of the link function is now

ﬂ.:(gl) <7T;‘(92)

7 (4.10)

where the estimator under the link function g; is less credible, and therefore
that go is a better choice in this sense. Note that 71':(91) is notated, since, if the
true parameter value m; is unknown, then @; and @5 can be approximated by

substituting the estimator p} for m;.

4.4 Fixed or Random Factors

Choosing whether factors are added as random effects or as fixed effects is
important in choosing whether a hierarchical generalized linear model or a gen-
eralized linear model should be chosen. Also, choosing which factors should be
added as random effects or as fixed effects is important. This subject is under
a lot of debate. Sometimes the reasoning not to use random effects is that if
the covariates are correlated with the unit effects, there may be resulting bias
in the parameter estimates. However, note that because there will in almost
any case be some level of correlation between risk characteristics, there will be
bias. Random effects can be a good fit for this correlation. Hence, as is often
the case in statistical analysis, there should be a trade-off between how much
bias is created against how much variance is introduced, by using fixed instead
of random effects.

Often, the random effects will create more bias but less variance, which could
lead to the estimate being closer to the real parameter value, depending also on
how much data is provided. A little amount of data will generally lead to more
variance for a model with fixed effects, especially if there are a lot of risk charac-
teristics in the model, with a lot of factor levels. There should be an awareness
of sparse data, which means that there is a greater number of parameters to
be estimated than observations. However, apart from the problem with bias
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created by the random effects, there is also a possible problem with the more
complex structure and, with that, the more complex computational part. For
this computational part, further explanation can be found in chapter 14.

4.4.1 Hausman test

The Hausman test can be used to decide whether a factor should be added
as random or fixed. Although it is neither a necessary nor sufficient statistic
for deciding between fixed and random effects [8], it is still a helpful tool in
detecting whether estimates in the fixed effects are similar to estimates in the
random effects. If this is indeed the case, then there is no to little correlation
between the independent variable(s) and the unit effects. This test suggests a
measure of the difference between two estimates:

H = ("~ ) [Var(8*) = Var(u")] ™ (1" = 5%, (4.11)

where 5* is the estimate in the fixed effects model and u* is the estimate in the
random effects model. After calculation of the measurement, the test uses the
assumption of H to be x? distributed, with the degrees of freedom equal to the
number of regressors in the model. If p<0.05 then the random effects model in
favour of the fixed effect model should be rejected since the two models are dif-
ferent enough. However, if p>0.05, then there is not such a clear interpretation.
Hence, in that case there should be a further evaluation. In this thesis, a code
is added for this test, which can be found in section 15.2.

4.5 Data Analysis

4.5.1 Variables

Before implementing models, it can be assessed which risk characteristics have
a significant influence on, for example, the claim frequency and loss distribu-
tion. For example, one can make boxplots with on the horizontal x-axis the risk
specifications and on the y-axis the logarithmic scale of the severities. Then one
can see if the loss distributions for these risk specifications roughly follow the
logarithmic distribution of the losses, when considering all observations.

It can happen that with a one-dimensional analysis one sees a significant im-
pact of a risk factor on for example the claim frequency but that in combination
with other risk characteristics, this impact vanishes. This can be explained by
the correlation between risk characteristics. Therefore, the data analysis should
not stop at a one-dimensional analysis. Tables can be made in which the claim
frequency and the exposure is given for more risk characteristics and levels to
see correlations.

Also, the loss ratio percentage can be determined, which is defined as 100 times
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the total claim divided by the total premium. This can be done for every risk
characteristic at all levels of the particular risk factor, but also for risk char-
acteristics in combination with each other. When presented in a table, it can
easily be judged at which risk level for the risk characteristic relatively less is
paid (according to the corresponding claim total). If there is a percentage of
more than 100, then there is a loss. In general, there is a loss when the combined
ratio (which is the sum of the loss and cost ratio) is larger than 100 percent.
This is undesirable. However, for other reasons, such as commercial reasons
and keeping policyholders in the portfolio, it can be decided not to completely
balance the loss ratio for each risk class at each level. Note that you actually
overcharge another group in that case. If so, take into account that a 'wrong’
rating system could lead to policyholders leaving, because they are overcharged
while on the other hand it could attract bad risks. Tables can be made for the
loss ratio percentage before fitting models and after, from which the premium
can be determined from the fitted values. In this way, it can be determined
whether the new premium is an improvement in the sense of balancing the losses.

4.5.2 In a Generalized Linear Model Tariff Setting

The amount of data typically gives an implication of how precise estimators are.
Answering the questions on how much data is needed to get accurate enough
estimates and on when estimates are accurate enough, are very important in
practical situations. When the amount of data is truly too little, credibility
theory can be used to calculate the premium instead of the (hierarchical) gen-
eralized linear models.

Assume that the estimates are calculated using a tariff calculation with a gen-
eralized linear model. A method to determine the number of claims that will
be needed to get estimates that can be considered credible, depending on the
number of risk characteristics and their levels, is as follows [16].

Let ¢ be the region around the true parameter value in which the estimate is
allowed to lie and let p be the probability that the estimate should be in the
allowed region around the true parameter value. For example, suppose that the
observations are assumed to be Poisson distributed and that the link function
used is the canonical log-link. An estimate, which typically can be seen as the
expected number of claims in a given time period for a particular risk profile, is
given by e®1+++28]  This estimate should not be lower than (1—¢)efr+-+ibs
and not higher than (1 + ¢)e®T+#w8i This is equivalent to saying that the
distribution of the exponent of the estimate, which follows approximately a
Normal distribution, should not deviate from its expected value by more than
In(1 —¢). The use of a z-score, z,, seems now natural since it is defined by
P{| Z |< z,} = p, where Z follows the standard Normal distribution. Note
that since the cumulative distribution function of a standard Normal distribu-
tion does not have an algebraic closed form, values are taken from well-known
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tables. Now let u be the reciprocal sum of the following elements. Let a; be the
number of claims of risk level 4 for risk characteristic a € {1,...,q}. Further-
more assume that the data are subdivided into i € {1,...,n} risk levels for risk
characteristic a. Let j, k,r € {1,...,n} be such that a; > a; and a; < a, < g;
for all 7. The elements that are needed for the calculation of u consist of ax, the
element > pap—agq, forallg € Q = {1,...,n}\{j, k}, where R = {1, ..., n}, the
previous elements should be determined for all risk characteristics a € {1, ..., ¢},
and the element EpeR ap. Note that u is the upper bound of the variance of
the estimate with the largest variance. Hence, if the inequality

In(1 — c)?
w< =l (4.12)
z
P
is satisfied, the estimate is sufficiently precise. However, if this inequality does
not hold, then f is the factor by which each number of claims for a given risk
profile should be multiplied to obtain sufficiently precise estimate and is given
by

22 xu

P

f= In(l = o2 (4.13)
Often used constants for p, c and z, are 0.95, 0.1 and 1.96, respectively.
Note that cells in which there is only a very small number of observed claims,
have the biggest impact on how big « is, indeed, these cells have a big impact on
how precise the estimate is. However, in practice it might just be tolerated that
some rather insignificant tariff segment is less accurately rated, provided that
the accuracy of the important segments is sufficient. Testing if there is enough
data to get accurate enough estimates without this particular cell can be done
in this case. Also note that the advantage of this approach is that whether
ones estimates are going to be precise enough can be evaluated without having
to calculate estimates. Hence, this method can be applied before building the
actual model.

4.6 Fitting Criteria

The following criteria can be taken into account after the implementation of the
models, when the estimates have been determined. Note that this is also the
case for the Hausman test.

4.6.1 Residuals

Suppose there are observation y and fitted value p.
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Pearson Residuals

The Pearson residual is defined as

P =YK (4.14)

where ¢ is the standard deviation, dependent on p through o2 = ¢V (1), with
V(.) the variance function; these residuals are simple, but often remarkably
skewed.

Deviance Residuals

This measure for the difference between vectors of fitted values and observations
is widely used in the case of generalized linear models. It is defined as

rP = sign(y — p)Vd, (4.15)

where d is the contribution of the observation to the deviance (that is, the
likelihood ratio statistic). Furthermore,

D = —2¢log(A) (4.16)

where A is the likelihood ratio such that the maximized likelihood under the
particular model is divided by the maximized likelihood of the full model. The
scaled deviance is when both sides on the equations are divided by ¢.

In the case of quasi-likelihood, the quasi-deviance is given by

—2¢log(A) = —2hq(u7, ... i) (4.17)

where the resulting means are depending on the parameters of the systematic
component.

Analysis of Deviance

It is known that the scaled deviance is approximately y? distributed, with as
degrees of freedom the number of observations minus the number of estimated
parameters. Also, if one model is a sub model (nested model) of another model,
it is known that the difference between the scaled deviances is a y2-distribution.
An example of a (sub) model A that is nested in model B is if the two models
are the same but not in the sense that a factor of model B is replaced by a
variate for model A. Recall that a variate was of form i * o, where ¢ denotes the
risk level and « is some real constant, hence when the value of « is determined,
for every risk level the value is known. The choice of a factor results in the risk
level ¢ being a label for the variable for that particular level. This means that
for every risk level i there can be arbitrary values, therefore, they can be the
same as in the variate case, but it can also have other values. In this sense A is
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nested in B. Another example could be, when for B some interactions between
risk factors are allowed that are not allowed for model A. Model A is a restricted
version of model B and B is the relazed model, when A is nested in B.

The analysis used is that the nested/sub/restricted model will be chosen when
the relaxed model is not a significantly better fit. The relaxed model is said
not to be a significantly better fit if the gain in scaled deviance from choosing
the restricted model exceeds the, say, 95 percent critical value of the x2(k) dis-
tribution (with the degrees of freedom equal to the extra parameters estimated
that the relaxed model uses). The null-hypothesis that the extra parameters
are actually equal to zero in the linear predictor is rejected or not rejected. The
null-hypothesis is rejected if the gain in scaled deviance exceeds the critical value
and it is not rejected if it does not. In other words, the relaxed model is chosen
if the gain in scaled deviance exceeds the critical value and the restricted model
is chosen if the gain in scaled deviance does not exceeds the critical value.
Note that this method cannot be used when models are not nested.

4.6.2 Information Criteria

To examine the balance of the complexity of the model together with the good-
ness of its fit, the information criteria can be used. The problem which often
occurs is that a model has a very good fit but is not very useful because of its
complexity, in this case choosing a less complex model with a less good fit can
be a good idea, this trade-off has to be examined if the choice of the model is
based on good reasoning. Note that in contrast with the analysis of deviance,
the information criteria can be used to compare models that are not nested.

Akaike Information Criterion

The preferred model, which in the sense of the Akaike Information Criterion
has the best balance, is the model with the lowest Akaike Information Criterion
value. The Akaike Information Criterion is defined as

AIC = —21 + 2k, (4.18)

where k denotes the number of parameters and [ the maximized log-likelihood,
both for the particular model.
The relative likelihood is strongly linked to the Akaike Information Criterion.
Suppose that there are R € N different candidate models and let the jth model
(with j € N<g) be the model that has the smallest value for the Akaike In-
formation Criterion. The relative likelihood of model i € N<pg is then given
by

emp{(AIC’MJ, - AICMI)/2}, (419)

which can be interpreted as being proportional to the probability that the ¢th
model minimizes the estimated information loss. In other words, suppose that
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the value of the relative likelihood of model i is given by x € R, then the
1th model is x times as probable as the jth model to minimize the expected
information loss. If x is very close to zero, say smaller than 0.05, then it is
reasonable to say that model 7 is omitted from further consideration. However,
when z is for example larger than 0.2 then it is not straightforward which model
is in this sense better. Choosing between the ith and jth model has to be done
by (also) using other fitting criteria in this case.

The sample size, proportional to the number of parameters used in the model,
is important for the quality of using an Akaike Information Criterion test as
described above. When the sample size, denoted by n, is not at least many
times k2, then the probability of the Akaike Information Criterion test leading
to choosing a model that has too many parameters, in other words over fitting,
can be significantly large. The AICc has a greater penalty for a model having
extra parameters, it is defined as

E+D(k+2)

2
AlCe = A1C 4+ 2 (4.20)

n—k—2
The same test as for the Akaike Information Criterion can then be used.
Suppose that the full model is denoted by F' and a restricted model denoted by
R. Then,
AAIC = AICg — AICF (4.21)

is based on the same statistical information as the p-value [20]. One can use
this expression to compare or obtain decisions on which model to choose. A
(certainly not unique and generally accepted) table of interpretations of AAIC
is given in chapter 13.

Bayesian Information Criterion

In the case of a Bayesian approach the Bayesian Information Criterion can be
useful to give information about the balance between complexity and the fit of
the model. Models with lower values of

BIC = =21+ log(n)k, (4.22)

where k denotes the number of parameters an [ the maximized log-likelihood
of the particular model and n the number of observations, in the sense of the
Bayesian Information Criterion, have a better balance.

The Bayes factor is strongly linked with the Bayesian Information Criterion.
Suppose that under model M, the prior density is given by g;(f) and the
number of parameters is p;, analogue for go(#) and py for model My, then the
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following approximation can be made

o, f(@;0)g1(0)d6
B f®2 f(x;0)92(0)do
supg, f(z;01, M)
supg, f(2; 02, Ma)

B

) — (p2 — p1)log(n)]} = ea:p{—%ABIC}.
(4.23)

1
~ egcp{—§ [—2log(

This approximation is very useful because of the often complex form of the Bayes
factor. The approximation is more accurate when the sample size is bigger.

A well-known table for the Bayes factor is given by Harold Jeffreys and can be
found in chapter 13. Note that using the Bayes factor could lead to a different
conclusion than when using the classical approach [1].

Deviance Information Criterion

The Deviance Information Criterion is a hierarchical modelling generalization
of the Akaike Information Criterion and the Bayesian Information Criterion. It
is especially useful in Bayesian model selection where the posterior distribution
of the model is obtained by Markov Chain Monte Carlo simulation, which is
explained in chapter 14. Models with lower values of

DIC = D(E[f]) + 2(Es[D(8)] — D(E[f])) (4.24)

are better in this sense.

4.6.3 Out of Sample Comparison of Models

To compare distinctively different models, tests for the predictive capability of a
model when it is introduced to new data can be used. Two tests that are often
used are the Root Mean Squared Error, which is given by

n *

RMSE = M (4.25)
and therefore gives the mean squared error of prediction, and the Mean Absolute
Deviance.

Some difficulties can occur with an out-of-sample comparison since data have
to be generated or found. Deciding if the data are valid for the out-of-sample
comparison can be difficult [18].
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Chapter 5

Data Description

5.1 Overview of Chapter 5

In this chapter, the data structure of the third-party car insurance products will
be investigated. Questions on what can be found in the data and which risk
characteristics are analyzed are answered in this chapter. Before going into the
next sections and chapters, general definitions are given. A risk characteristic is
the general characteristic of a group of people that is investigated (for example,
the age of the person). A risk group is the group of people that all belong to
the same subdivision for this risk characteristic (for example, all people younger
than 35). And a risk level is a subdivision of the risk characteristic (for example,
the age of the person with an upper bound of 35).

5.2 Data Structure

There are two Excel-documents. The first document has insurance information,
that is, the information about the product that is insured, the premium and
the person that has the insurance. Let DOCV be this document. In the sec-
ond document, one can find information about the claims, ranging from which
product was the claim, who the owner of the product is, and the claim severity
to the date of the claim.

5.2.1 DOCV

For the car insurance that is evaluated, the information that can be found in
DOCYV can be summarized as follows.

40
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1. Information details of the person (or company) that is owner of the in-
surance product, such as relation number, gender, the Bonus-Malus class,
date of birth and region where the person lives.

2. Information details of the insurance product for this particular policy code,
such as premium, which product and when the product started and ended
(if it ended).

3. Information details of the product that is insured, such as, the type of car,
in which year the car was built and the weight of the car can be found
here.

In table 5.1 there is an explanation of the risk characteristics that are investi-
gated in the analysis, their abbreviations are also shown.

Table 5.1: The risk characteristics with the programming notations (which are
also the abbreviations used) added. Explanations and more information can be
found in chapter 7.

Notation Explanation

BJ Age of the car.

G or GEW Weight of the car.

SVJ or SVJ.BM Bonus-Malus number of years.
R or REG Region.

GES Gender.

V0 Insured part.

BRST Fuel used by the car.

VERM Capacity of the car.
JAREN.GN.SCHADE Years that there are no claims.
TR.BM Bonus-Malus class.

KM Mileage.

ASS Assertivity of the car.

LFD Age of the person.

The covariate values, now in the form of dummy variables, are constructed as
follows
1, if the risk factor for p is true

ip = 5.1
Tip {O, otherwise. (5-1)

For example, if the risk factor for p is when the car is ’small’, then the covariate
just gives the value one in case the particular car falls in the defined category
’small’. This is done for all risk factors that are considered as possible interest-
ing factors for the premium at all their levels. Then, the number of claims and
insurances for each risk factor at each level is determined, not only to check if
all contracts have been selected, but also to get an idea whether it is a good
idea to include them.

Apart from making the covariate levels, the age is calculated, where the years
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are integers and the months are divided by 12, which later on are combined
to get a more accurate idea of the real age. This method is also used to cal-
culate exposure factors for those policies that are only in force a part of the time.

5.2.2 DOCC

The claim data are in DOCC. Here the information about when the claim is
made and how much the claim has cost the company can be found. Because
DOCYV has information about contracts of VO 48** (royal car insurances, see
13.5), the only claims that can be taken into account are claims on these con-
tracts.

The data consider the policies that are not ended before 2016 and the claims
can be found for these policies from 2007 until 2016. For a lot of claims in 2016
the losses are not reported. To avoid the consequences of recording delays, or
even loss delays, the year 2016 is not taken into account. That is, also in the
exposures.

5.3 Assumptions

Not only for the model used or the algorithm implemented assumptions are
made, but also for the data. The data should be correct and complete. As-
sumptions are of the following kind.

1. The policy code for the claims and contracts are the same.
2. All claims for the given contracts are in the data for the given time period.

3. The given information, such as premium, date of birth, start-date and so
on, are correct.

If these assumptions are not met, then the analysis can be in real danger.



Chapter 6

Distributions

6.1 Introduction

In this section the underlying distributions for the losses and number of claims
are evaluated. Note that a Gamma or Lognormal distribution are often used
for loss distributions of non-life insurance products. On the other hand, the
Poisson distribution is often used for the frequency distribution. It is expected
that also in this case these distributions fit the observed data well. However,
just using these distributions, without investigating whether these distributions
can model the observed losses and claim frequencies well, can lead to wrong
indications of the risks. To investigate which theoretical distribution fits the
losses and claim frequencies well, some comparison methods are used which are
discussed in chapter 4.2. The distributions that seem to fit best will be chosen
in making the models. The possibility that more than one distribution seems
a good fit is certainly there. Although a distribution is chosen to build the
models, there are still methods to evaluate if another distribution has a better
fit, as explained in section 4.2.1. Please note that for the graphical comparisons
the figures 4.2, 4.3, 4.4 and 4.5, for the Zipf, mean excess function, discriminant
moment-ratio and Zenga plot, respectively, are used for the comparison with
the theoretical distributions. The R codes that are used to make the plots can
be found in section 15.5.

6.2 Loss Distributions

For the loss distribution, two distributions are evaluated. The distribution of
the observed losses but also of the observed loss divided by the corresponding
number of claims are investigated and compared. This choice is made since it
is sometimes convenient, when the weight of the severity model, the number
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of claims, is not statistical significant, not to take this variable into account.
For example, when out-of-sample comparison with a generalized linear model
assuming a distribution from the Tweedie family is done, it is convenient not to
take the number of claims into account, since then a proxy needs to be developed
[18]. Note that testing the statistical significance after the models have been
built is still a wise decision.

Histogram Loss/nClI Histogram Loss
i .
2 g 7
D M —_
& 2 7 )
o [ o
[ih) [iE} [
0 o 0 w
o 0 — o
@ = @ 4
(I8 L
(o]
[ [as]
(] 0 —
(o]
o — o —
T 1T 17 T 1T 1 T 1T 17 T 171
D 2000 5000 0 2000 5000
Loss Loss

Figure 6.1: The histogram of the observed losses. The left-hand panel shows the
plot for the observed losses divided by the number of claims and the right-hand
panel for the observed losses.
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Figure 6.2: The density of the observed losses. The left-hand panel shows the
plot for the observed losses divided by the number of claims and the right-hand
panel for the observed losses.
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Figure 6.3: The density of the observed losses on a logarithmic scale. The left-
hand panel shows the plot for the observed losses divided by the number of
claims and the right-hand panel for the observed losses.

From figures 6.1 and 6.2 a general indication of the underlying distribution of
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the observed losses (and observed losses divided by the number of claims since
the graphs are very similar) can be made. A symmetric distribution, such as the
Normal distribution, is probably not a good fit, since the right tail of the density
is much larger than the Normal distribution will model. Also, the large difference
between the median, 824.59, and the mean, 1743.71, of the losses indicate a
non-symmetric distribution. On the other hand, the Pareto is probably too
right-skewed, with too small a left tail. The Gamma or Lognormal distribution
can probably fit the observed loss distribution better, this can also be observed
in figure 6.3 (figure 4.1 indicates indeed a similar behaviour). However, these
observations are not enough to be sure about the loss distribution. Therefore,
based on the observed losses, some other figures are made.
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Figure 6.4: Zipf plot of the observed losses divided by the number of claims.
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Figure 6.5: Zipf plot of the observed losses.

When figures 6.4 and 6.5 are given for the losses only between 1000 and 6000,
one might think that a Pareto distribution is a good choice for the underlying
distribution of the observed losses (and observed losses divided by the number
of claims since the figures are very similar) since a linear trend is observed.
However, as indicated in [22], it can be dangerous to use solely the Zipf plot
when investigating the theoretical distribution that could be a good fit for the
observations. Also, figure 6.4 does not show a linear trend in general. However,
now discriminating, based on this plot, between the Normal and Lognormal
(or Gamma «>1) distributions and between the Exponential and Lognormal
distributions can be difficult.
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Figure 6.6: Mean excess function plot of the observed losses. The left-hand
panel shows the plot for the observed losses divided by the number of claims
and the right-hand panel for the observed losses.

Based on the first part of figure 6.6 (for example take the figure for threshold
u<18000), there is a clear linear trend. Also, now the Pareto distribution might
seem a better fit than the Lognormal or Gamma distribution. However, in gen-
eral a very large sample is needed, more than 10000 observations, to observe
a real concave trend [22]. In the used data set, less than 7500 losses can be
found. Also, the linear trend does not continue for threshold u>20000. Hence,
the linear trend at the beginning of the graph cannot be solely used.

In figure 6.7 the maximum to sum plot can be found for the first four mo-
ments. A convergence towards zero can be observed for all moments which sug-
gests that the corresponding moments are finite. Hence, it not only indicates
that the losses are not Pareto distributed, it also indicates that the necessary
moments for the discriminant moment-ratio plot exist.
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Figure 6.7: Maximum to sum plot for the observed losses (larger than 0) for the
first four moments (p = 1,...,4).
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Figure 6.8: Discriminant moment-ratio plot where the red dot is based on the
observed losses and the lines indicate the theoretical distributions. The left-
hand panel shows the plot for the observed losses divided by the number of
claims and the right-hand panel for the observed losses.

The red dot in figure 6.8 based on equations 4.3 and 4.4 lies in the Lognormal-
like zone. Also, the point lies closer to the Lognormal line than to the Gamma
line. Therefore, this figure discriminates in favour of the Lognormal distribution.
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Figure 6.9: Zenga plot of the observed losses. The left-hand panel shows the
plot for the observed losses divided by the number of claims and the right-hand
panel for the observed losses.

Figure 6.9 indicate a Lognormal distribution with large o since the graph is
almost constant.

The observations mentioned in this section lead to the conclusion that the Log-
normal or Gamma distribution fit the observed losses (and the observed losses
divided by the number of claims) probably pretty well in comparison to for ex-
ample the Pareto, Normal or Exponential distribution. To discriminate between
the Gamma and Lognormal distribution the discriminate moment-ratio plot has
been used. The Lognormal seems to be a slightly better fit than the Gamma
distribution. However, the Gamma distribution also seems to be a good choice.

6.3 Frequency Distribution

For the claim frequencies, often used distributions are the Poisson, and the Nega-
tive Binomial distribution. However, time-dependence models are also suggested
[27].

It is expected that the number of claims would increase over time since the
number of policies increase in the given data. And indeed, the number increases
over the years as can be seen in table 6.1. However, it is not necessarily expected
that the number of claims grows over the years if only the policies are considered
that started before a certain year, and only the claims of these policies after a
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certain year. Indeed, these observations can be made from table 6.1, that is,
there is no clear trend for the increase of the number of claim over the years.

Table 6.1: The number of claims per year. The second row considers all data,
the third row only considers the data with the policies that started before 2010
and the corresponding claims after 2010 and the fourth row only considers the
data with the policies that started before 2012 and the corresponding claims
after 2012. Notice that all policies were in force until 2016.

year 2007 2008 2009 2010 2011 2012 2013 2014 2015
All data 8 122 189 309 322 447 734 1119 1737
Data 2010 276 213 213 222 230 265
Data 2012 332 366 342 444

Time dependency can also occur when the months of a year are considered.
It can be expected that in months where there is more rain or ice, the claim
frequencies increase. Also, depending on what exactly is insured, the claim
frequency could be different in months where there are a lot of persons on
vacation. From figures 6.10 and 6.11 the observations can be made that in
August generally the least number of claims are made and in December the
most.
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l

Figure 6.10: The number of claims per month. The red line is based on all data,
the blue line on the data with the policies that started before 2012 and the
corresponding claims after 2012 and the green line on the data with the policies
that started before 2010 and the corresponding claims after 2010. Notice that
all policies were in force until 2016.
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Figure 6.11: The number of claims per month. The blue line is based on the
data with the policies that started before 2012 and the corresponding claims
after 2012 and the green line on the data with the policies that started before
2010 and the corresponding claims after 2010. Notice that all policies were in
force until 2016.

Another, important factor that can change the frequency model, more specifi-
cally the distribution that fits the observations well, is the dispersion factor. For
the data the dispersion factor is 1.22, which means that there is overdispersion.
For the Poisson distribution, the mean and variance are equal, the overdisper-
sion implies that this is not the case. Using for example a Negative Binomial
distribution might be a better option in this case.



Chapter 7

Risk Characteristics

7.1 Overview of Chapter 7

The risk characteristics that can be found in table 5.1 will be investigated in
this chapter. That is, important values will be calculated to determine the
risk profile of the risk levels of the risk characteristics. Also an explanation of
the risk characteristics will be given. Furthermore, it will be evaluated if the
amount of claims is sufficient, to determine if the fitted value will be accurate
enough. Finally, decisions will be made on how the risk characteristics will be
taken into account in the model building process. That is, which possibilities
will be evaluated in the implementation of the models.

The information of this chapter can be considered as confidential information.
Therefore, the outcomes are not presented.

o4



Chapter 8

Generalized Linear Model
Analysis

8.1 Overview of Chapter 8

In this chapter generalized linear models are build and analyzed. Before starting
the generalized linear model analysis, note that the models are chosen using a
bottom-up approach. Hence, the analysis is started with the null model and
risk characteristics are added in order of how much they improve the model.
In this way the intuition is clear, only the risk characteristic that improves the
model most significantly is added. In each step the risk characteristic which
improves the model most significantly should be evaluated due to correlations.
More information about the tests and values used can be found in chapter 4. For
the Akaike Information Criterion table 13.4 is used. Furthermore, the option of
allowing interaction between risk characteristics is evaluated.

The information of this chapter can be considered as confidential information.
Therefore, the outcomes are not presented.
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Chapter 9

Other Models

9.1 Overview of Chapter 9

In chapter 8 a frequency-severity approach is fitted on the data. The two re-
gression models are generalized linear models assuming a Poisson distribution
with a log-link and a Gamma distribution with a log-link for the frequency
and severity model respectively. The models have been fitted allowing interac-
tion or not allowing interaction. In chapter 9 other models will be considered.
Other generalized linear models will be considered, such as zero inflated models
and a Tweedie regression model. Furthermore, hierarchical generalized linear
models are considered. All these models are compared with the other models
that are used to evaluate which model can be considered as the preferred model.

The information of this chapter can be considered as confidential information.
Therefore, the outcomes are not presented.

96



Chapter 10

Expectations

Some expectations about outcomes have been presented. The purpose of this
chapter is not to see the exact outcomes of the performed study. However,
this chapter is based on outcomes that follow from the performed study. The
purpose is to give a general idea of the outcomes regarding the difference of
the claim frequencies, average losses and premium per general risk level when
compared to the claim frequencies, average losses and premium when all data is
taken into account, and compare them with expected outcomes that have been
presented.

The information of this chapter can be considered as confidential information.
Therefore, the outcomes are not presented.

o7



Chapter 11

Conclusions

11.1 Recommendations

In this chapter, some recommendations will be made based on the outcomes of
the study, how the premium is now determined and how to keep the company
solvable. Note that some recommendations can be considered as confidential
information. Therefore, these recommendations are not presented.

The premium should be based on a sound line of reasoning for every part
of the premium. One part should be based on the ability to pay the
future claims and another part should be based on costs. Note that the
part ’costs’ can also be subdivided into two parts. One part is based on
the costs of the company (processes). Another part is based on capital
requirements.

Start by applying statistical research on the products of the insurance
company to develop a premium that is based on managing future liabilities.

Apply statistical research on the products of the insurance company peri-
odically to incorporate changes in expected future liabilities.

Use a multiplicative formula to calculate the premium instead of an ad-
ditive formula. The premium for the policyholders with a heavier car is
more likely to be a percentage of the premium for policyholders with a
lighter car when all other risk characteristics are the same.

Change a parameter for a risk characteristic or risk level instead of chang-
ing one factor by which the whole formula is multiplied. This approach
will lead to a far better diversification of the premium which will lead to
less adverse selection and healthy profits for all groups, when based on
statistical research.

98
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e Implement the weight of the car and mileage as a continuous trend.

e Verify whether the claim frequency of insured part level 2 is indeed larger
than the claim frequency of insured part level 1.

e Allow for interaction between risk groups. For example, if no interaction
is allowed between the age of a driver, then the younger and the older
driver will have a fixed percentage of additional claims when all other risk
characteristics are the same. When interaction is allowed between the age
of the person and the region, a younger driver will have a different fixed
percentage of additional claims compared to an older driver in region 2
than in region 3. Therefore, allowing for interaction is preferred, when the
data allows for this approach.

e Correlations should be taken into account. Basing the premium on a one-
dimensional data analysis can, for example, lead to punishing or rewarding
a policyholder twice, although this may not coincide with the expected
future liability of this policyholder.

e A market based study should be based on a far-reaching diversification of
risk characteristics to compare the obtained premiums from the market
based study with the premiums obtained from the statistical study.

e Keep an eye on the actuarial developments regarding pricing. New tech-
niques and data could lead to more accurate predictions of future liabili-
ties.

e Make decisions on how to incorporate costs into the premiums. Base these
decisions on the expected claim numbers and the Solvency (II) Capital
Requirements.

e Make data more easily accessible and less polluted. Also, keep an eye on
whether other data can be added to the already existing data.

e Regarding the pricing system that is now used for the third-party car
insurance products, the following can quickly be changed. The premium
for older policyholders should be higher than the premium for middle
aged policyholders. Policyholders with a small number of Bonus-Malus
number of years should generally pay more premium and policyholders
with a larger number of Bonus-Malus number of years should generally
pay less premium. The premium should increasingly decrease when the
Bonus-Malus number of years increases. The same holds for mileage but
the other way around (increasing instead of decreasing). The risk profile
of the different insurance parts should be investigated again.
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11.2 Summary

Here, the research questions will very briefly be answered.

Q: Which statistical models can be used to base the premiums on expected
future liabilities?

A: Generalized linear models in general can be used for this purpose. Keep an
eye on which variations can be made to improve the predictions. When too
little data is available the Biihlmann-Straub model can be used.

Q: Are there enough data available to predict future liabilities accurately enough?
A: Based on the data of the third-party car products, generalized linear models
can be implemented where quite a lot of risk characteristics are taken into ac-
count. However, more data will lead to better predictions.

Q: How can the ‘best’ model be chosen?

A: One can use for example the analysis-of-deviance, Akaike Information Cri-
terion, coefficient of variation and ¢ and z values correctly to make a trade-off
between the complexity, accuracy and goodness-of-fit of the models. Also, com-
paring the outcomes of a model with what is expected based on the data is
important.

Q: How can the models be implemented?

A: Statistical programming languages such as R and SAS are convenient to use
for this purpose, as functions and algorithms that have been developed for this
purpose are incorporated in these languages.

Q: What are the results when using these models for the third-party car prod-
ucts?

A: Results of the data and model analysis can be found in previous sections.
For some models that have been implemented an order of preference has been
made.

Models for the claim numbers in order of preference.

e Generalized linear model assuming the Negative Binomial distribution and
a log link function with as risk factors the Bonus-Malus number of years
(dynamically until 15), the weight of the car dynamically, mileage dynam-
ically, age of the person as a variate and insured part as a factor. In
addition, interaction between age and the Bonus-Malus number of years
should be allowed.

e Generalized linear model assuming a Negative Binomial distribution and
a log link function with as risk factors the Bonus-Malus number of years
(dynamically until 15), the weight of the car dynamically, mileage dynam-
ically, age of the person as a variate and insured part as a factor.

e A generalized linear model assuming the Poisson distribution instead of
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the Negative Binomial distribution.
e A zero inflated model variant.
e A generalized linear mixed model variant.
Models for the losses in order of preference.

e Generalized linear model assuming the Gamma distribution and a log link
model with Bonus-Malus number of years as a variate.

e Generalized linear model assuming the Gamma distribution and a log link
without the number of claims as weights.

Furthermore, the Tweedie regression model is less preferred than the frequency-
severity approach.
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Chapter 12

A, Statistical Background
Information

12.1 Introduction

This thesis will, in the most general description, propose several models to pre-
dict future events based on historical data. The models will estimate parameters
to make these predictions. Theory about which data should be or can be used
and how this data behaves is important, but also which estimators will be used
and how to compare these. The purpose of this chapter is to provide background
information about models, statistics and estimators if they are unknown.

12.2 Estimator Criteria

12.2.1 Consistency

Definition 12.2.1. Let 8}, be an estimator of a parameter 6 based on a sample
of size n. Then 0} is said to be consistent in probability if 6 converges in
probability to 6 as n approaches infinity; that is, for any >0,

P{| 0 — 0| >e} — 0, as n — oo. (12.1)

Nearly always it is a desirable property for a statistical estimator to be consis-
tent. It also intuitively implies that the amount of non superfluous data for the
estimator is important.
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12.2.2 Bias

Definition 12.2.2. Let 0}, be an estimator of a parameter 6 based on a sample
of size n. Then 6}, is said to be unbiased if the bias, that is the difference of the
expected value of the estimator and the true parameter value, of an estimator
is zero; that is

]—6=0. (12.2)

Intuitively one would say that it is a desirable property for an estimator to be
unbiased, which is true in most cases. However, in some cases, like the Stein’s
paradox, there are estimators that are not unbiased but are better than the
unbiased estimators.

12.2.3 Variance

The variance of an estimator is a measure of how much the estimator can differ
from the expected value of the estimator. Intuitively a small variance is pre-
ferred, if the estimator is unbiased. However, often there is a trade-off between
the bias and variance of an estimator. Also, the decision of which estimator
should be used is difficult and not straight-forward. The sample size is an im-
portant factor in the decision. A large sample size often means that the unbiased
estimator is preferred because the variance is probably quite small, but with a
small sample size, one may decide (possibly with good reason) to choose an
estimate with a small bias.

Under very general conditions, there is a lower bound on the variance for un-
biased estimators. This is the so called Cramer-Rao Lower Bound. Hence, it
is known that if the conditions are satisfied, no unbiased estimator can have a
smaller variance than the Cramer-Rao Lower Bound. Hence, if an estimator has
a lower variance than the Cramer-Rao Lower Bound, under these conditions,
then it has to have a bias not equal to zero, and this estimator has a lower
variance than all possible estimators that have no bias.

12.2.4 t- and p-value

Judging which parameters have a significant statistical influence can be done
by using ¢ and p-values. Suppose that the null hypothesis is that a parameter
does not have strong statistical significance.

The t-value measures the size of the difference relative to the variation in the
sample data. That is, the ¢-value is simply the calculated difference represented
in units of standard error. The greater the magnitude of the t-value (it can be
either positive or negative), the greater the evidence against the null hypothesis
that there is no significant difference.

In contrary, the p-value is the probability that the statistical summary (such as
the sample mean difference between two compared groups) would be the same
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as or more extreme than the actual observed results. The conclusions based on
the p-value are opposite, the greater the magnitude of the p-value the greater
the evidence to accept the null hypothesis.

The two values are strongly linked. For example, for large values of the t-value,
the p-value is expected to be close to zero.

This section concludes with a mathematical definition. The scaled deviance,
under a broad array of distributions of the data (such as the Poisson, Normal
and Gamma distributions), will have a x? distribution with & degrees of freedom
for large sample sizes. The p-value is then given by

P =P(x3i>—). (12.3)

12.3 Statistics

A statistic is such that it only depends on the data, for example a particular
function of the data that does not involve unknown parameters.

Definition 12.3.1. The statistic T = T'(X) is sufficient for 6 if the distribution
of X, conditional on T(X) = t, is independent of 6.

However, there can still be information that is superfluous for the estimate.
Therefore, the statistic that contains as little as possible information but is still
sufficient is preferred. This is the minimal sufficient statistic.

Definition 12.3.2. A sufficient statistic T(X) is complete if for any real func-
tion g,
Eglg(T)] =0 for all 0, (12.4)

implies

Po{g(T) = 0} = 1 for all 6. (12.5)

The Lehman-Scheffe theorem states that if there is a statistic which is sufficient
and also complete then the statistic is also mimimal. If in this case some function
of the statistic is an unbiased estimator, then it is also unique. The question that
arises for the best unbiased estimator, is that of which unbiased estimator has
the minimum variance. Given a convex loss function, there is a best unbiased
estimator which is a function of the sufficient statistic, and that, if the sufficient
statistic is also complete, this estimator is unique. If the loss function is the
squared error loss, then this is equivalent to the Rao-Blackwell theorem on the
existence of a minimum variance unbiased estimator [1]. However, there can
be biased estimators that have less variance than the unbiased estimator with
least possible variance. Unbiased estimators are therefore not always the best
estimates.



CHAPTER 12. A, STATISTICAL BACKGROUND INFORMATION 66

12.4 Bayesian Modelling

The key conceptual point of Bayesian approach of inference is the way that
the prior distribution 7(6) on the unknown parameter 6, which is chosen a
priory, is updated, on observing the realised value of the data x, to the posterior
distribution, via Bayes’ law, by

(0| 2) = O/ (:0) (12.6)

f@ 7 (0) f(x;60")do"’

where © denotes the parameter space of 6. Note that the function f(z;6)
is treated as a function of 6 for fixed = and is called the likelihood function.
Inference about € is then extracted from this posterior. The question about
which prior distribution to choose arises immediately.
In the Bayesian statistics the observed data X as well as the parameter 6 (which
you want to estimate) are both regarded as random variables, which implies that
they both have their own distribution with their own density. For example,
X |0~ N@1) and 6 | 72 ~ N(0,72) is a Bayesian approach where the
distribution of # has been chosen and the parameter 72 is, as in non-Bayesian
statistics is customary, treated as a fixed parameter. If this is not the case then
72 will have a distribution which first has to be evaluated, then the model is a
so-called hierarchical model.
Furthermore, briefly stated is that empirical Bayes analysis is characterized by
the estimation of prior parameter values from marginal distributions of data.
Having estimated the prior parameter values, then proceed as if these values
had been fixed at the beginning.
In a lot of cases, such as some special cases of hierarchical generalized linear
models, there is in some sense, for example asymptotically, equivalence between
empirical Bayes estimates and maximum likelihood estimates.

12.4.1 Hierarchical Modelling

In general hierarchical modelling is used if the assumption that the observa-
tions are independent of each other given the predictor variables may not be
true. This assumption is made for generalized linear models and can be omitted
if hierarchical modelling is used.

Point estimation with for example maximum likelihood estimation or restricted
maximum likelihood estimation and Bayesian inference by choosing prior distri-
butions of the parameters and compute the posterior distribution(s), can both
be used for calculating values for the parameters in a hierarchical model.

12.4.2 Prior Distribution

When the Bayesian approach is chosen, the prior distribution has to be defined.
Both fixed and random effects can have a different prior. Sometimes the prior
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distribution belongs to a different distribution family than the posterior distri-
bution. However, sometimes only the parameters have different values, in this
case the common parametric form is called the conjugate prior family. Having
a conjugate prior family can have several advantages such as a closed analytic
form of the likelihood and more easy and accurate algorithmic approaches. For
the prior their can be a density that does not integrate to 1, if integrated over
the whole parameter space. If this is the case then the prior is improper. Fur-
thermore, the prior can be informative and uninformative. Typically there are
many nuance variations between the two. Strictly speaking, an informative
prior gives specific, definite information about a variable (such as the distribu-
tion and its parameter values), and an uninformative prior expresses only vague
or general information about a variable (such as equal probabilities to all pos-
sible outcomes). The question arises if the information given to the prior are
based on facts or on subjective judgment.

12.5 Compound Poisson Distribution

The compound Poisson distribution can be used in cases where there is an inter-
ested for the claim sizes rather then the number of claims. Let IV be the number
of claims payable by the insurer generated by a portfolio of insurance policies
in a fixed time period and let N follow a Poisson distribution with a constant
parameter. Furthermore, assume that the claim size, denoted as X;,7 =1, ..., N,
are identically distributed and each X; is independent of N. If Y denotes the
aggregated size of the claims, that is Y = X; +... + Xy, then Y follows a com-
pound Poisson distribution. This can also be applied to a certain group within
the portfolio, characterized by risk factors.

Lemma 12.5.1. Suppose that Y1, ..., Yy are independent random variables such
that Y; ~ compoundPoisson(X;), i = 1,....,k. Let Y = ZleYi then ¥ ~
compmmdPoisson(Zf:1 Ai).

Proof. The moment generating function that belongs to Y; is given by My, (t) =
eiMi()=1) " Then the moment generating function of the independent sum
Y=Yi+..+Yis

ko Ai

My (t) = IIF_ et Mi)=1) — Alize TMi(H)-1], (12.7)

The moment generating function of the independent sum Y has now the form
of a compoundPoisson(Z:f:1 Ai). O
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12.6 Tweedie Family

An exponential dispersion family is called a Tweedie Family if the domain of its
variance function V' is (0, 00) with

Vip) =, (12.8)

for some p € R. The parameter p is called the shape parameter.

The Tweedie family contains many distributions, characterized by the value p.
For example, for p = 0 a Normal distribution is obtained, for p = 1 a Poisson
distribution is obtained, for p € (1,2) a Compound Poisson-Gamma distribu-
tion is obtained, for p = 2 a Gamma distribution is obtained and for p = 3 an
inverse Gamma distribution is obtained [31].

The Compound Poisson-Gamma distribution is further considered since this
distribution can be useful to obtain the pure premium when used in a general-
ized linear model.

Let N, Y and X; be as defined in section 12.5. Assume N to be Poisson(\)
distributed and X; to be identically Gamma(a, §) distributed. Let Y follow a
Compound Poisson distribution with parameter A. Suppose that the parame-
ters satisfy A = %, a = % and % = ¢(p — 1)uP~t. The density function
for Tweedie(\, a, B) is given by

& Bnaynaflefﬁy )\nef)\

Frly) = Z I(na) n!

n=1

(12.9)

It can be shown that this density function satisfies the definition of the density
function of the exponential dispersion family [2].

12.7 Model for the Number of Claims

Suppose that the number of claims are modelled with a Poisson distribution in
a generalized linear model setting with a log-link. Furthermore, let N; be the
number of reported claims for policyholder i. Then the Poisson distribution
comes down to

P{N; =n;} = PR

(12.10)

where A; ¢ = exp(D_; zi;55).
When the time dependence is included then, when assuming the following func-
tional form of the intensity function

Ai(t) = 6t Texp(Y i), (12.11)
J
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the following equation holds
Ai(t) = Pexp(Y_ i), (12.12)
J

since the cumulative intensity, at time ¢, is such that

A(t) = /Ot Ns(u)du, (12.13)

Suppose that the claim numbers are modelled with a Negative Binomial distri-
bution in a generalized linear model setting with a log-link. Then the following
equation holds

B _ Tni+a™t) i ni a”l e !
P{NG = ni} = T(n; + ) (o 1) (a—l + )\i) * (a—l + )\) , (12.14)

where \; = exp(}_; z;;3;) and the function I' is the gamma function [27].

12.8 Model for the Losses

Suppose that the Lognormal distribution seems to be the better fit and a gen-
eralized linear model will be implemented. Since the Normal distribution does
belong to the exponential family and the Lognormal distribution does not, the
logarithmic function is used. The model becomes a linear model on log-scale
with an identity link. Then the expected value of the losses comes down to

2

exp(i+ 7), (12.15)

where g and o2 are the mean and variance of the Normal distribution. Hence,
the estimated mean comes down to

2
p=exp(Y @By + ) (12.16)
J

12.9 Laws of Large Numbers

First some definitions are given.

Definition 12.9.1. A sequence of random variables {Y7, Y3, ...} is said to con-
verge in probability to a € R if, given €>0 and §>0, there exists a ng = ng(J, €)
such that, for all n>ny,

P{| Y, —a| >e}<d. (12.17)

Often Y, 2 a is notated.
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Definition 12.9.2. A sequence of random variables {Y7, Y5, ...} is said to con-
verge almost surely to a € R if, given e>0 and §>0, there exists a ng = ng(d, €)
such that

P{| Y, — a | >¢ for some n>ng}<d. (12.18)

a.s.

Often Y,, = a is notated.

Definition 12.9.3. A sequence of random variables {Y7, Y3, ...} is said to con-
verge in distribution if there exists a distribution function F' such that,

limP{Y, <y} =F(y) (12.19)

n—oo

for all y that are continuity points of the limiting distribution F. If F' is the

distribution function of the random variable Y, then Y, Y is often notated.

Two law of large numbers, and afterwards the well-known Central Limit Theo-
rem, will be stated. Proofs can be found in [3].

Property 12.9.1. Let X1, Xo,...,X,, be independent, identically distributed
random variables with finite mean p. The strong law of large numbers says
that the sequence of random variables Y,, = n= (X1 +...+ X,,) converges almost
surely to u, if and only if E[| X; |] is finite.

Property 12.9.2. Let X;, Xo,..., X, be independent, identically distributed
random variables with finite mean p and assume that X; has finite variance
for alli € {1,2,...,n}. The weak law of large numbers says that the sequence of
random variables Y, = n~1 (X1 + ... + X,,) converges in probability to p.

Theorem 12.9.3. Let Xi, Xo,...,X,, be independent, identically distributed
random variables with finite mean p and assume that X; has finite variance
o2 for all i € {1,2,...,n}. Furthermore, write Y, = n=1(X; + ... + X,,). The
Central Limit Theorem says that Z, = \/n(Y, — p)/o converges in distribution
to a random variable Z having the standard Normal distribution N(0,1).
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B, Tables

Table 13.1: Commonly used distributions and link functions with their, Bayesian
conjugate, which can be fit by hglm().

Model name y | u distribution  Link g(p) u distribution Link v(pu)
Linear mixed model Gaussian identity Gaussian identity
Binomial conjugate  Binomial logit Beta logit
Binomial GLMM Binomial logit Gaussian identity
Binomial frailty Binomial comp-log-log  Gamma log
Poisson GLMM Poisson log Gaussian identity
Poisson conjugate Poisson log Gamma log
Gamma GLMM Gamma log Gaussian identity
Gamma conjugate Gamma inverse Inverse-Gamma inverse
Gamma-Gamma Gamma log Gamma log

Table 13.2: Interpretation of the Bayes factor, the null-hypothesis is that model
M is more supported than model M.

Bayes factor Interpretation
B>1 evidence supports Hg
1>B>10"2 slight evidence against Hy

1072>B>10"1 substantial evidence against Hg
1071>B>10"2 strong evidence against Hy
10-3>B>10"2 very strong evidence against Hy
1072>B decisive evidence against H

71
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72

Table 13.3: The main classes of distributions in the generalized linear model
exponential dispersion family, with the customary parameters as well as the
(1, @) and (0, ¢) reparameterizations, and more properties

Distribution Density (i, ) reparameterization; Cumulant function b(0)
canonical link
Domain Canonical link 6(u) E[Y;0] = (9) =
Variance function V()
2 1 _ (y=m)? 2 2
N(u,0%) v b=o0 e
(1) = 0
Vip) =1
Poisson(u) e*“‘;—? p=1 e?
y=0,1,2,... o(u) =log(p) e’
V(p) =p
—u(4)F
Poisson(u, ¢) e’ (‘@), O(p) = log(u) e?
51
y=0,¢,29, .. V(p) =p e’
Binomial(m,p) (3" )p?(1 —p)™ ¥ p=mp; ¢ =1 mlog(1 + ¢)

(m € N fixed)

y=0,....m

mee

1+4ef
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Table 13.4: Interpretation of AAIC, i is the reduced/restricted model.

AIC; — AIC; Relative likelihood (j :¢) Interpretation
between 0 and 2 between 1 and 2.7 substantial support for model i
between 4 and 7 between 7.4 and 33.1 considerably less support for model ¢

greater then 10

greater then 148 substantial support for model j

Table 13.5: Explanation of the risk characteristic insured part (VO). Note that

*

can be replaced by 1 until 4 and indicate the region. Also note that all

insurances have a third-party insurance.

Level Code Explanation

1 48*1  Royal car third-party insurance without casco cover.

2 48*2  Royal car third-party insurance with limited casco cover.

3 48*3  Royal car third-party insurance with full casco cover.

4 48*4  Royal car third-party insurance with limited casco and window cover.
5 48*5  Royal car third-party insurance with full casco and window cover.




Chapter 14

C, Algorithms used by R

14.1 Frequentist Approach

14.1.1 Fitting Generalized Linear Models

The R function glm() can be applied for generalized linear models. When used
appropriately it will try to compute maximum likelihood estimates.

Calculation of Maximum Likelihood Estimates

It uses the iteratively reweighted least squares method for this purpose. This
method is an iteratively method in which each step involves solving a weighted
least squares problem of the form

BHY = argming Z wi(BY) | yi = £(B) |7 - (14.1)

i=1

This method however can only guarantee to converge to a local maximum.
When finding a local maximum, it is possible that the method does not continue
in searching for another maximum when for a small enough neighbourhood
there is not a better value. Note that if the function is concave, then, for this
function, there is an unique global maximum. Furthermore, since the function
is concave the method will always find a better value in the neighbourhood
of where it is at that particular point, unless it is at the global maximum.
Therefore, for concave functions the method guarantees that it will give the
global maximum. For the maximum likelihood estimates a value for which the
likelihood function is maximum has to be found. Hence, if the likelihood function
is concave, then this method will find the maximum likelihood estimate, which
is also unique. Applying the canonical link function will guarantee a concave

74
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likelihood function. A proof of this is as follows.

Since only generalized linear models are used, assume that the observations
are independent random variables with a density in the exponential dispersion
family. The density of the exponential family is given by

Pz | 0) = h(z)exp(0” ¢(x) — A(0)), (14.2)

where A(0) is the log-partition function. The following properties are known,

which can be generalized to higher dimensions, 4 = E[¢(x)], fe’? = BE[¢*(z)] -
E[¢(x))* = var(¢(x)), A2A() = cov(¢(z)), cov(p(x)) is positive semidefinite,

and A(#) is convex. The likelihood function is given by

N
p(D | 0) = I h(z;) exp(6” [Z ¢(xi)] — NA(D)). (14.3)
Thus the log-likelihood function is given by
N
log(p(D | 9)) = 9T[Z $(a;) — NA(0) = 0T[¢(D)] — NA(0). (14.4)

Note that 07 [¢(D)] is linear in #. It can be concluded that A(#) is concave.
Hence, any link function n(6) for which the whole log-likelihood is concave in
6 (such as the canonical link function) will guarantee concavity for A(n(f)). A
very important result is that when the canonical link function is used, the R
function glm() will give as result the unique maximum likelihood estimates.
Note that it was assumed that the maximum is not infinitely large. However,
this can happen if for example complete separation occurs. If the maximum is
infinitely large, then a warning will be showed that the fitted probabilities are
numerically 0 or 1. The algorithm then did not converge.

Helpful Functions Applied to glm()

One function which helps to compare different (nested) models is anova(). This
function can be applied to a generalized linear model and gives an analysis of
deviance table. Also the function summary() can be applied to a generalized
linear model. This function will give more information about errors, deviance
residuals and degrees of freedom.

14.1.2 Fitting Generalized Linear Mixed Models

The R package 1me4 allows the use of the function glmer (), which can be ap-
plied for generalized linear mixed models. Under rather general conditions,
the glm() function finds maximum likelihood estimates for generalized linear
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models. Unfortunately, the calculation, or rather approximation, of maximum
likelihood estimates for generalized linear mixed models is more complicated.
The glmer () function uses adaptive Hermite-Gaussian quadrature and Laplace
approximations. However, there are many reasons for these methods to fail.

Laplace Method

The method used, unless specified differently, by glmer () is the Laplace method.
The Laplace method approximates integrals of the form

/eh(“)du, (14.5)

where u is a ¢g-dimensional vector and h(u) is a sufficiently smooth function
with a local maximum wug in its domain. The method uses a second order
Taylor expansion of the exponential term in wug

h(u) & h(ug) + %(u —ug) TR (uo) (u — uo). (14.6)

Substituting this approximation for the exponent and approximating v with a
multivariate Gaussian distribution N (ug, (—h" (ug))~!) leads to

/eh(u)du ~ (2m)3 | =B (ug) | =% €. (14.7)

State
h(u) = log[fyu(y | u)] + log[fu (u)] (14.8)

since the log-likelihood can be written as
= togl [ Frivy | w) (i

(14.9)
— log| / cloalfy o (hlHloglfu () gy )

Given the second order Taylor expansion, there is the need of calculating the

second order derivative of the new defined h(u).

Assume u to be multivariate normal distributed, u ~ N(0, D). Then the fol-

lowing equality holds

1 1
log(fv) = —iuTDflu - glog(Qﬂ) - §log(| D). (14.10)
Then the derivatives are given by m%g‘]) =—D 'y and % =—-D1.

Using the chain rule leads to the derivative

Ologfyw(yu) 1 1
 ou ¢Z(yi _Ui)V(

1:)g’ () 2L

%

= %ZTWA(y - ’U/),

(14.11)
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where W = [V (11;)g'(1:)%] 7" and A = ¢/ (;).
In order to find ug there is the need to solve

oh 1
Ohl) = —Z"WA(y —u) — D 'u=0, (14.12)
u ¢
which is highly non-trivial as all factors involved except for y are functions of
u.
For the second order derivative the following expression holds

ou ow

9*h(u) 1
oudu' ¢

The second term of this last expression is ignored. Note that for a Poisson
distribution of the observations it is 0 and in all other cases it has expectation
0. This expression is now substituted in the log-likelihood function

1 1 1
L~ log(fyu(y | uo)) — 5ugD—luo - 5zog(| (aZTWZD +I)D7')). (14.14)
Then, the derivative with respect to g is given by
ol 1
— - XTWA(y — ), 14.15
55~ g X WAl - w) (14.15)

where W is assumed to change negligibly with respect to 5. The estimates of 8
and u are obtained by solving the equations

%XTWA(y —p) =0,

1
GZTWAW —p) =D,

which also arises if a penalized quasi-likelihood is used, where the quasi-likelihood
term is augmented with a penalty term [18], that is,

(14.16)

togfyio(y | w)] ~ gu” DM (14.17)

There are now some possible characteristics given that could lead to failure of
this method.

e The assumption u ~ N (0, D) may not hold for the random effect.

e The assumption that the second term, for the second order derivative, can
be ignored may be false.

The assumption that W varies negligibly with respect to 8 may not be
true.

The approximation for the first order derivative may fail.
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e The approximation for the second order derivative may fail.
e The approximation in the last step may fail.

In some cases approximations can be made better by using optimizer theory.
Furthermore, the first assumption is very important, because random effects do
not have to follow a Normal distribution. The other two assumptions, when
the link function is chosen properly and the variance function has small values,
should not be of too much problem.

Non-adaptive Gauss-Hermite Quadrature

The non-adaptive Gauss-Hermite quadrature is an approximation technique for
integrals that have the form

/h(z)e_Zde, (14.18)

where h(z) is an integrable function on R and sufficiently smooth, that is, at
least twice differentiable. The non-adaptive Gauss-Hermite quadrature uses a
weighted sum of order @ for the approximation

Q
/ h(z)e * dz = 3 wih(z). (14.19)
=1

The Hermite polynomial of order @), and z; the zero’s corresponding to this
order Hermite polynomial, is defined as

0.2d%
with corresponding weights
20-1Q! /1

(14.21)

W = —5——— 5
" Q[Hg-a(2)]?
Note that the method does not depend on the values of h and is symmetric
around 0. Since h may have its weight elsewhere, the approximation is often
very poor. Therefore, the adaptive Gauss-Hermite quadrature is proposed and
used in glmer().

Adaptive Gauss-Hermite Quadrature

In this method the factor given by e~ is replaced by a Gaussian functions with
suitable changes in the weights and approximation points.

Suppose ¢(t; u, o) to be the probability density function of the Normal distri-
bution with mean y and standard deviation o. The integral [ g(¢)dt is going to
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be approximated, where g(t) is such that g(¢)>0, sufficiently smooth and with
a unique mode. Now [ h(z)e=*"dz is replaced by

[ 1ttt o). (14.29)

The sampling nodes z; and t; are transformed according to the transformation
from e* to ¢(t; u, o) which is given by

ti = p+ V202 (14.23)

Let u* be the mode of ¢g(t) and o* = \/17 where j* = —g—;log(g(t)) le=pr -
Also, define h(t) = % then

/ g(t)dt = / h(t)o(t; i, o*)dt. (14.24)

Using the Gauss-Hermite quadrature gives

Q
/g(t)dt = V20" wag(u* +V20%2), (14.25)

2
where w; = w; e .

For generalized linear mixed model given a single random effects, the method is
given below. Note that the adaptive Gauss-Hermite quadrature indeed does not
allow to have many random effects. The effect can be considered as clustered
over different groups. For every cluster i there is a random effect u; that follows
a Normal distribution with mean 0 and variance o?. The posterior mode of u;
has to be determined, which depends on the factors 8, ¢ and o. Let 8%, ¢*
and o * be current estimate according to the definitions given before. Let p be
such that the posterior

fQyi lwi) f(ui | o™) oc f(ui | yi)(14.26)

is maximized. Then p} can be used as the mode for u;. The Gauss-Hermite
quadrature gives the following approximation

Q
/fY|U(yi | wi) fu(ui)du; = ZWT[H?LJY\U(?JUZT)L (14.27)
=1

where n; is the size of cluster 7, y;; the jth element of cluster i and w; the
adaptive weights given by w; = ﬁaz‘wlezlzqﬁ(zl"‘; 0,1). Also, :cz;ﬂ + oz is the
linear predictor fy | (vi;2))-

There are now some possible characteristics given that could lead to failure
of this method.
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e The assumption that the random effect follows a Normal distribution may
not be true.

e The maximization of the mode may fail.

e Solutions may depend heavily on starting values for %, ¢* and o *.

In this case also, the optimization method is of big influence on the algorithm.

In general, assuming a generalized linear mixed model, with a small number
of random effects, the adaptive Gauss-Hermite quadrature approach is recom-
mended because of its accuracy [18]. In other cases, the Laplace method could
be used which can lead to bad fits because of the large amount of approximations
that have to be done.

Solving Failures of glmer()

Unfortunately the glmer () function sometimes fails. One of the errors this
function gives, is an error referring to scaling of variables. This error can be
fixed relative easily, and more importantly, the outcome of the model will not
change in a severe way when used properly on fixed effects. There is a numerical
example provided in section 15.4 and a sketch of a proof outlined below.

Suppose that X is the matrix of predictors and X’ is the matrix after rescaling
one fixed effect, which is equivalent to changing one column in X. Furthermore,
assume that p and o is respectively the mean and standard deviation of this
particular column. Then the column is transformed for a fixed column j to
ZUE for all i € {1,...,n}. Let y* be the fit where X is used and y*’ where X is
used. It is sufficient to show that y’ does not differ substantially from y* since
any rescaling of a column of X gives a new valid matrix X’. Also, note that
there are no distributional changes when rescaling from X to X’ since there is
no change in the value of y.

Assume that the estimates are obtained using the previously described Laplace
method, where the specific denoted system of equations

1
~XTWAQY —p) =0
¢
1
gZTWA(y —u)=D"tu
is solved. Then the optimal values of y*, 3* and u* have been found and there-
fore, an optimal p as function of 8* and u*. For a sketch of a proof with a
restriction to linearity in X and 3, suppose that by transforming X to X',
as described above, the optimality is lost. In the last equation the change of
the matrix of predictors is only through u; = ¢g='(z!'8 + 2I'u). Therefore, 8*
is changed to $*' if the original optimality of u} is regained, but this change

(14.28)
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leads to previous optimality p} in the first equation. Moreover, the linear change
in the particular column of X has no effect as the equation equals 0 to the right.

Now assume that the estimates are obtained using the previously described
adaptive Gauss-Hermite quadrature. To recall, the following approximation is
made

Q
[ o ) o Cwddus = Y- wi T3 o ) (14.29)
=1

Note that xz;ﬂ—i-ozl* is the linear predictor fy |y (yi;2;). Using the same reason-
ing and the knowledge that a linear shift in one of the columns of X will result
in a linear adjustment of 3, leading to the same fit since the prediction is done
in a linear manner, there can be concluded that the scaling and centering has
no result on the fit of the model.

Another error that can arise is due to convergence problems. These can some-
times be solved by rescaling. However, the use of another solution can be
necessary. The use of different optimizers can be helpful and if this does not
work, the number of iterations can be increased. For different optimizers and
the choice of optimizers a code is provided in section 15.4. This code tries to
find the possible reason of failure. For example, the singularities of the random
effects parameter estimates are checked. If these are very close to zero it could
lead to convergence issues. On the other hand, the derivative approximations
may turn out to be bad and these can be replaced by approximations that may
be better.

14.2 Bayesian Approach

14.2.1 Introduction

More information about Bayesian statistics can be found in section 12.4. The
Bayesian approach leads often to difficulties in computation, especially in high
dimensional cases. The reason for this is often the difficult normalising constant
term that is needed to make the posterior density a proper density function.
Approximating the integral is often needed, the Markov Chain Monte Carlo
methods are widely used for this purpose.

14.2.2 Monte Carlo Methods

The Monte Carlo methods are methods in which random numbers are drawn to
simulate a sample from the posterior distributions. These methods use computa-
tional algorithms known as pseudo-random number generators to obtain streams
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of numbers, which look like independent, identically distributed uniform ran-
dom numbers over (0,1). Afterwards, a variety of transformation techniques are
used to convert these uniform numbers to any desired distribution.

14.2.3 Markov Chain

A Markov Chain is a stochastic process which satisfies the Markov Property.
The Markov property refers to the memoryless property of a stochastic process.
A stochastic process has the Markov property if the conditional probability
distribution of future states of the process (conditional on both past and present
states) depends only upon the present state, not on the sequence of events that
preceded it.

14.2.4 Markov Chain Monte Carlo

The Markov Chain Monte Carlo methods are well-known for (hierarchical) gen-
eralized linear models where the Bayesian approach is used. The parameters
are now not estimated by using point estimation, such as maximum likelihood
estimation but by choosing a prior distribution and adjust this to the data. A
posterior distribution is obtained. The Monte Carlo part of the method denotes
that the random variable is for many times simulated. Afterwards, probabilities
from these simulated random numbers are calculated. This is done by simply
looking at the proportion of numbers that is in a particular interval. Hence,
it is very important to generate enough data to obtain a good estimation of
the posterior distribution, but even then it is still inherently random. This last
disadvantage is omitted by using Markov Chains. If the same limiting distribu-
tion is applied with the memoryless property of a Markov Chain, then, again
when enough data have been generated, we have probably managed to take in-
dependent samples as if they are from the posterior distribution that we wanted
to know. What is needed to make this method possible is, a test that decides
if a generated number is or is not added to the list of generated number that
estimates the distribution. This can depend on the expected distribution for
example.

When a generalized linear model is fitted with a Bayesian approach, then the R
function bayesglm() will assume a t-distribution for the prior, if another prior
is used then this should be specified in this function. If a generalized linear
mixed model or a hierarchical generalized linear model is implemented where
the Bayesian conjugate distribution is used, then the MCMCglmm package in R and
the MCMCglmm () function [9]. Then the deviance is calculated for the lowest level
of the hierarchy, furthermore the Deviance Information Criterion is calculated.
Also the software WinBUGS uses the Markov Chain Monte Carlo method.

Since WinBUGS is very flexible, the use of this software will be recommended.
The models chosen can be constructed without the limitations of the assump-
tion that for example bayesglm() makes for the prior distribution.
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The following steps have to be made when using WinBUGS.
e State the Bayesian model.

e Develop a Markov Chain that has an expected distribution of the joint
posterior distribution of interest.

e Run the chain until output converges in distribution to draws from the
target distribution.

e Base inference regarding unidentified parameters in the simulated outcome
of the model with successive iterations of the chain.

14.2.5 Markov Chain Monte Carlo methods

In this section, two Markov Chain Monte Carlo methods are explained, that
WinBUGS uses. One of the two methods is the Metropolis-Hastings algorithm,
the other is the Gibbs sampler which is a special case of the Metropolis-Hastings
algorithm.

Metropolis-Hastings algorithm for a continuous state space

Suppose that the state space x is continuous, often a subspace of R¢ for some
d € Z~q. Assume that the true density of X is f(z), where X is often written
as 0. Let g(x,y) be a trial density such that ¢(x,y) > 0 and fx q(z,y)dy = 1,
for all . Also, an irreducibility condition is assumed, that is, from any starting
point X (9 = z, it should be possible to get arbitrarily close to any other point
x, for which f(y)>0, in a finite number of steps, with positive probability. The
steps below summarises the algorithm in the case of a continuous state space.

e Step 1: Start from an arbitrary X(©).

e Step 2: Given X (") =z, generate a trial value Y = g from the probability
denisty g(z,y).

e Step 3: Define o = min(%, 1). If @ = 1 then set X(**D =Y. If
0<a<1 perform an auxiliary randomisation to accept Y with probability
a. If Y is accepted then X ("t =Y else X (1) = X (),

e Step 4: Replace n by n + 1 and return to step 2.

If the state space is discrete then the steps above are similar. A more specified
explanation of the steps in the and a proof of convergence of the Metropolis-
Hastings algorithm in the discrete case can be found in [1].
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Gibbs sampler

Suppose 8 = (61,...,04) € © C R Define an arbitrary initial vector #(9) =
(9%0), ...,6&0)). The following procedure describes one iteration of the Gibbs
sampler.

e Step 1: Holding 950), - 9&0) fixed, generate a new value of #; conditional
on 92 = 9(()0), ...,Gd = 91(10)

e Step 2: Generate a new value 0y = Gél) from the conditional distribution
given 6 = 951),03 = 9:(30), g = 9;0),)( =x.

e Step 3 until d-1: The procedure is followed analogue to the first and second
step.

e Step d: Generate a new value 0; = 0&1) from the conditional distribution
given 6, = 04" . 0,1 =0 X = .

14.2.6 Convergence

For Markov Chain Monte Carlo processes, testing the convergence is very im-
portant. The convergence determines when it is secure to halt sampling and
utilize the outcome to evaluate and estimate characteristics of the distribution
of interest. There are several ways of testing the convergence. Some diagnostic
procedures are visual inspection of history plots, autocorrelation, Brook-Gelman-
Rubin test and Monte Carlo Error Estimation.
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D, R Codes

15.1 Credibility GLM

#Data example
RADATA <— read.table ("H:\\ vDesktop\\R Code & txt\\RATEST. txt” ,header=ITRUE)

#suppose that Expo is the number of claims.

RADATA

# Expo R A
#1286 1 1
42 333 2 1
#3 413 3 1
44 441
#5 4100 1 2
#6 4848 2 2
#7 6920 3 2
48 106 4 2
#9 1380 1 3
#10 1877 2 3
#11 2942 3 3
#1234 4 3
attach (RADATA)

Claims.A <— rep (0,max(A))

###!Note: take corresponding columns in other data
for (i in 1:max(A)){

Claims.A[i] <— sum (RADATA[which (RADATA[,3]==1),1])
}

85
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Min. level .A <— which.min(Claims.A)
Max. level .A <— which.max(Claims.A)

Claims.R <— rep (0,max(R))

for (i in 1:max(R)){
Claims.R[i] <— sum(RADATA[which (RADATA[,2]==1),1])
}

Min. level .R <— which.min(Claims.R)
Max. level .R <— which.max(Claims.R)

j.A <— rep(0,(max(A)—-2))
for (i in 1:(max(A)—-2)){
j <— ifelse(Min.level A = i & Max.level . A != i, i,
ifelse (Min. level .A<max(A) & Max.level .A<max(A),
max(A), max(A)—1))
jAL] < ]
}

j R <= rep(0,(max(R)—2))
for (i in 1:(max(R)—2)){
j <— ifelse(Min.level .R != i & Max.level . R != i, i,
ifelse (Min. level .R<max(R) & Max.level .R<max(R),
max(R), max(R)—1))
PR <=
}

#filling Q
###!Note: this code is valid only when there are less
#H##then 5 factor levels for the risk classes
Length.Q <— ncol (RADATA)+max (A)—2+max (R)—2
Q <— rep(0,Length.Q)
Q[1] <— sum(RADATA[,1])
Q[2] <— min(Claims.A)
i <— 0 #if risk class has 1 or 2 levels
if (max(A)>2){ #if riskclass has 1 or 2 levels
for (i in 1:(max(A)—2)){
Q[24+1i] <— min(Claims.A)4+max(Claims.A)+ifelse (max(A
ifelse (max(A) = 4, Claims.A[j.A[i
}

}

Continue <— 2+i+1
Q[ Continue] <— min(Claims.R)

i
w
o
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i<—0
if (max(R)>1){
for (i in 1:(max(R)—
Q[ Continue+i] <—

}
}

2))4{
min (Claims.
ifelse

)

#If another riskfactor included:

#Continue2 <— Contin
#Q[Continue2] <— min
#i <— 0

#if en for loop
#writing again a for

Q
#[1] 23243 1036 170

ue+i+1

()

loop

87

R)+max(Claims.R)+ifelse (max(R) = 3,
(max(R) == 4, Claims.R[j.R[i]], NA)

10 144 16185 17477

#upper bound of variance of the worst risk class combination
#Note: Lowest value of Q has most influence on how large u is

u_data <— sum(1/Q)

c <— 0.1
z.p <— 1.96

#max variance to be sufficiently precise

umax <— (log(l—c)"2

)/(z-p"2)

#testing how much difference there is

Dif <— u_data—u_max

Dif

#[1] 0.005240872
#little difference
#accurate level that

the variance
is chosen.

is a bit larger then for the

This could be an accurate enough GLM.

#calculating how many more data is needed if variance is bigger
#(hence, accuracy is not sufficient)

if (Dif > 0){

f <— (z-p“"2xu_data)/(log(l—c)"2)

}

f
#[1] 2.813677
#Sample size needed

(for all levels uniformly) is 2.813677
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15.2 Hausman test

#Hausman test

phtest_glmer <— function (glmerMod, glmMod, ...) {
coef.wi <— coef (glmMod)
coef.re <— fixef(glmerMod) ## changed coef() to fixef() for glmer
veov.wi <— vcov (glmMod)
veov.re <— vcov (glmerMod)
names.wi <— names(coef.wi)
names.re <— names(coef.re)
coef.h <— names.re[names.re %in% names. wi]

dbeta <— coef.wi[coef.h] — coef.re[coef.h]
df <— length (dbeta)
dvcov <— vcov.re[coef.h, coef.h] — vcov.wi[coef.h, coef.h]

stat <— abs(t(dbeta) %% as.matrix(solve (dvcov)) %% dbeta)
pval <— pchisq(stat, df = df, lower.tail = FALSE)

names(stat) <— ”chisq”

parameter <— df

names ( parameter) <— 7 df”

alternative <— ”one model is inconsistent”

res <— list(statistic = stat, p.value = pval, parameter = parameter
method = ”"Hausman Test”, alternative = alternative ,

data.name=deparse (getCall (glmerMod) $data))
class(res) <— "htest”
return (res)

15.3 Buhlmann-Straub model

The codes of the Bithlmann-Straub model are small adjustments of codes that
can be found in [2].

#Credibility premium with B hlmann—Straub model
#comparing estimates also for theoretical (exact,
#since chosen) a, s2 and m and estimates

THHAHA

#first creating a theoretical data set

T

# exposure for 5 years (claims over 5 years,
# contracts over 5 years)
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# J is number of contracts
J <— 10

# K is exposure
K<-5

# calculating exposure
j <— rep(1:J, each=K)

#exposure as a factor
j <— as.factor(j)

#m, a and s2 normally have to be estimated from the data
#see below for estimating from real data using (8.44)
m<— 100; a <— 100; s2 <— 64

#to generate everytime the same dataset
set .seed (6345789)

#natural weights, such as total premium

#if weights =1 then (homogeneous) B hlmann model
#now ’‘random’ generated for each observations

w <— 0.50 + runif (J«K)

#generate the ’'observations’ such as number of claims
X <— m + rep(rnorm(J,0,sqrt(a)),each=K) +
rnorm (J*K,0,sqrt (s2/w))

#Testing for homogeneous or heterogeneous portfolio
anova (lm(X™j , weight=w))
#If homogeneous then don’t have to continue

#Output :

#Analysis of Variance Table

#

#Response: X

#Df Sum Sq Mean Sq F value Pr(>F)

#i 9 5935 659.45 14.836 3.36e—10 *xx

# Residuals 40 1778 44.45

G—

# Signif. codes: 0 * %k 0.001 * % 0.01 * 0.05 . 0.1
#Conclusion :

#The probability of obtaining a larger F—value than the one
#we observed here is 3.36e—10, so the null—hypothesis that
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#the group means are all equal is rejected at 5% level
#Hence: heterogeneous portfolio.

#calculate the parameters can be found (8.32)
w.js <— tapply(w,j ,sum)

w.ss <— sum(w.js)

z.j <— 1/(1+s2/(axw.js))

z.s <— sum(z.j)

X.jw <— tapply (Xsw,j ,sum)/w.js

X.ww <— sum(X.jwxw. js)/w.ss

X.zw <— sum(X.jwxz.j)/z.s

#calculating the premium (8.34)
pr.j <— z.jxX. jw+(1-z.j)*X.zw

THAH

#calculating estimates (real data) with (you need above)
#using (8.42), (8.43) and (8.44)
s

#calculate (8.42)
SSW <— sum (wx(X—X.jw[]j])"2)

#calculate (8.43)
SSB <— sum(w. js *(X.jw—X.ww) " 2)

#calculate (8.44)

m. tilde <— X.ww

s2.tilde <— SSW/J/(K-1)

a.tilde <— (SSB—(J—1)xs2.tilde)/(w.ss—sum(w.js "2)/w.ss)

#calculate from (8.32) some needed parameters
z.j.tilde <— 1/(14+s2.tilde/(a.tilde*w.js))
z.s.tilde <— sum(z.j.tilde)

X.zw. tilde <— sum(X.jwxz.j.tilde)/z.s.tilde

#calculating the new credibility premiums (vector,
#for each cell) from (8.34)
pr.j.tilde <— z.j.tilde*X.jw+(1—z.j.tilde )*X.zw. tilde

#pr.j and pr.j.tilde almost the same

#> pr.j

#1 2 3 4 5 6
#85.79192 107.13432 105.32094 109.84200 98.60685 90.32069
#HT 8 9 10

#101.86342 110.93065 95.70341 82.54719
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#> pr.j.tilde

41 2 3 4 5 6
#85.18367 107.48218 105.69892 110.43350 98.59832 89.90267
#7 8 9 10

#102.01843 111.57450 95.58069 81.82776

15.4 Testing Scaling

HHHHAHHE File for testing the effect of scaling and centering on gl(m)m fits
library (lme4)

RADATA <— read.table ("H:\\ vDesktop\\R Code & txt\\RATEST. txt” ,header=T)
attach (RADATA)

#making factor levels (each level arbitrary)
RF <— as.factor (RADATASR)
AF <— as.factor (RADATAS$A)

glmmfitnAGQ <— glmer (Expo = R
+ (1]A),family = poisson(link = 7log”),
data = RADATA, nAGQ=25)

# Compare these fits to the scaled and centered version for ’year’

RAScaled <— cbind (RADATA, RegionScaled=scale (RADATASR))
RACentrd <— cbind (RADATA, RegionCentrd=scale (RADATASR, scale=FALSE))

# Rerun the glmm/glm fits

glmmfitn AGQSc <— glmer (Expo ~ RegionScaled
+ (1|AF),family = poisson(link = 7log”),
data = RAScaled, nAGQ=25)

glmmfitn AGQCt <— glmer (Expo ~ RegionCentrd #RegionCentrd
+ (1|AF),family = poisson(link = 7log”),
data = RACentrd ,nAGQ = 25)

# Build the predictions
predictionTableGlmmnAGQ <— c¢bind (glmmfitn AGQ=predict (glmmfitnAGQ ,
type="response” ),
glmmfitn AGQSc=predict (glmmfitn AGQSc,
type="response”),
glmmfitn AGQCt=predict (glmmfitn AGQCt
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type="response”))

head (predictionTableGlmmnAGQ)
#  glmmfitn AGQ glmmfitnAGQSc glmmfitnAGQCt

#1 358.0366 358.0366 358.0366

#2 282.0187 282.0187 282.0187

#3 222.1408 222.1408 222.1408

#4 174.9761 174.9762 174.9762

#5 5513.9691 5513.9689 5513.9689

#6 4343.2498 4343.2497 4343.2497

#calculate the total squared error

avgDIffGlmmnAGQ <— c¢(sum ((predictionTableGlmmnAGQ[, 2]

—predictionTableGlmmnAGQ [, 1])"2),

[
sum ( (predictionTableGlmmnAGQ [, 3]
—predictionTableGlmmnAGQ |

print (avgDiffGlmmnAGQ)
#[1] 6.041523e—08 6.856661e—08
#the fitted values are almost equal.

15.5 Plots

These codes for the plots are small adjustments of codes that can be found in
[22].

##Zipf Plot
zipfplot=function (data,type= plot ,title=T) {
# type should be equal to points if you want to add the

# Zipf Plot to an existing graph
# With other strings or no string a new graph is created.
# If title is set to be F, the title of the plot is not given.
# This can be useful when embedding the Zipf plot into other
# plots.
data <— sort (as.numeric(data)) #sorting data
y <— 1 — ppoints(data) #computing 1-F(x)
if (type=— points )
points (data, y, xlog=T, ylog=T, xlab = "x on log scale”,
ylab = ”"1-F(x) on log scale”)}
else{
if (title=F) {plot(data, y, log="xy”, xlab = "x on log scale”,
ylab = "1-F(x) on log scale”)}
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else {plot(data, y, log="xy”, xlab = "x on log scale”,
ylab = "1-F(x) on log scale”, main= Zipf Plot )}
}

}

# In cut you can specify the number of maxima you want to exclude.
# The standard value is 5
meplot=function (data,cut=>5) {

data=sort (as.numeric(data));

n=length (data);

mex=c () ;

for (i in 1:n) {

mex [ i]=mean (data[data>data[i]]) —data[i];

data_out=data[l:(n—cut)];

mex_out=mex [1:(n—cut )];

plot (data_out ,mex_out,xlab="Threshold u”, ylab="Mean Excess e(u)”,
main="Mean Excess Plot Loss”)

}

##Zenga plot
zengaplot=function (data){
# Since the code relies on the Lorenz curve
# as computed by the ”ineq” library ,
# we upload it
library (ineq)
# Empirical Lorenz
est=Lc(data)
# Zenga curve
Zu=(est$p—est$L )/ (estp*x(1—est$L))
# We rescale the first and the last point for
# graphical reasons
Zu[l]=Zu[2]; Zu[length(Zu)]=Zu[(length (Zu)—-1)]
# Heres the plot
plot (est$p ,Zu, xlab="u” ,ylab="Z(u)” ,ylim=c(0,1), main="Zenga Plot Loss”  lty=1)

##Moment plot
moment_plot=function (data,i){
# 7data” is a vector containing the sample data

# CV and Skewness functions
coefvar=function (data){
CV=sd (data)/mean(data)
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CV}
skewness=function (data) {
m_3 <— mean ((data—mean(data))”3)
skew <— m_3/(sd(data)"3)
skew }

S ) ]

T T A i i i i i i i i it
S L ) g ) L ) ) ) L
T A i i i it

# Computation of CV and Skewness
# CV
CV=coefvar (data);
# Skewness
skew=skewness (data)
# Rule of Thumb
if (CV<0 || skew <0.15){print(” Possibly neither Pareto
nor lognormal. Thin tails.”); stop}

# Preparation of the plot

S ) L L ) L

T i i i i i i i i i i i i i i i i i it

# Paretian Area

# The upper limit — Pareto 1

if (i==1){

p=seq (3.001,400,length.out=250)

g2brup=1/(sqrt (px(p—2)))
g3brup=(14+p)/(p—3)*2/(sqrt(1-2/p))

# The lower limit, corresponding to the Inverted Gamma
g2ibup=seq (0.001,0.999,length.out=250)
g3ibup=4xg2ibup/(1—g2ibup "2)

N N N N N IR IRy
/I /I 71 II Il Il I/ 71 /I /I /I 71 II Il Il T /I /I /I 71 II Il Il 71 /I /I /I /I 71 Il Il Il 71 II /I /I // 71 Il Il Il 71 II /I /I

# Lognormal area

# Upper limit: Lognormal

w=seq (1.01,20,length.out=250)
g2log=sqrt (w—1)

g3log=(w+2)xsqrt (w—1)

# Lower limit — Gamma
g2iblow=seq (0,20,length .out=250)
g3iblow=2xg2iblow

#Exponential Area

# The upper limit corresponds to the lower limit of the
# lognormal area

# The lower limit — Bernoulli

g2below=seq (0,20,length . out=250)

g3below=g2below —1/g2below

L g L ) ) L
/I /I 71 II Il Il I/ 71 /I /I /I 71 II Il Il // /I /I /I /I 71 II Il Il 71 II /I /I /I 71 Il Il Il 71 II /I /I // 71 Il Il I/ 71 II /I /I

# The Gray area is obtained for free from
# the previous lines of code.
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L
T T ey

# Normal / Symmetric distribution
g2nor=seq (0,20,length . out=250)
g3nor=rep (0,250)

# PLOT

# Limits

plot (g2iblow , g3iblow , x1lab="CV” ,ylab="Skewness” ,main="Discriminant Moment—
ratio Plot Loss” ,xlim=c(0,20),ylim=c(—1,40)) #, 1

lines (g2ibup , g3ibup)#, 1

lines (g2brup , g3brup)+#, 1

lines (g2below , g3below )#, 1

lines (g2log , g3log ,lty=2) # Lognormal

lines (g2nor , g3nor ,1ty=2) # Normal

# Strictly Paretian Area

polygon (c(g2ibup , g2brup),c(g3ibup,g3brup))#,col= green
points (0,2 ,pch=1,cex=0.8) # Pareto limit point
}
# Hints for interpretation
"/
text (—0.2,20,cex=0.8,srt=90," Pareto 17)
text (1.2,20,cex=0.8,s1rt=90," Inverted Gamma”)
text (2.5,12,cex=0.8,srt=70," Lognormal”)
text (12,21,cex=0.8,srt=23,”Gamma”)
text (14,11 ,cex=0.8,srt=10," Bernoulli”)
text (15,1.5,cex=0.8,” Normal or Symmetric”)
/7
if (i==1){
points (CV,skew ,pch=16,col="red”)#
}
if (i==2){
points (CV,skew ,pch=16,col="black”)
}
if (i==3){
points (CV,skew ,pch=16,col="purple”)
}
if (i==4){
points (CV,skew ,pch=16,col="brown”)
}
if(i::5){
points (CV,skew ,pch=16,col="green”)
}
if (i==6){
points (CV,skew ,pch=16,col="blue”)
}

return (¢ (CV, skew))
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15.6 Codes for Chapter 7

15.6.1 Figures and Tables

#Function to obtain Number of Contracts, Total Exposure, Number of Claims,
#Claim Frequency, Average Loss, Minimum Loss, First Quantile, Median,
#Third Quantile and Maximum Loss
TABLES <— function(Loss, LengthContracts, TotalExposure){
Qs <— quantile (Loss)
Ml <— mean(Loss)
Ncl <— length (Loss)
Ncontracts <— LengthContracts
TExpo <— TotalExposure
Mcl <— length (Loss)/TotalExposurex100
return (rbind2 (¢ (” Number of Contracts”,” Total Exposure” ,” Number of Claims”,
7Claim Frequency (%)”,” Average Loss” ,”Minimum Loss”,” First Quantile”,
"Median” ,” Third Quantile” ,” Maximum Loss”),
¢(Ncontracts , TExpo, Ncl ,Mcl,Ml,
} Qs[[1]],Qs[[2]],Qs[[3]],Qs[[4]],Qs[[5]])))

Fr'VGEW <— rep (0,6)

x <— rep(0,6)
y <= rep(OaG)
z <— rep(0,6)
q <— rep(0,6)
HUCEWG6

#subset for the sixth weight level
GEWG6 <— subset (WAMdf, WAMdSGEW>=1500)

#obtaining all losses for every claim separately
SeverityDatal <— subset (GEW6, GEW6SBETAALDI>0)
SeverityData2 <— subset (GEW6, GEW6SBETAALD2>0)
SeverityData3d <— subset (GEW6, GEWGSBETAALD3>0)
SeverityDatad <— subset (GEW6, GEWGSBETAALD4>0)
SeverityDatab <— subset (GEW6, GEWGSBETAALD5>0)

#all claims in a vector
CL <— c(SeverityDatal$BETAALDI , SeverityData2$BETAALD2 | SeverityData3$BETAALD3 ,
SeverityDatad$BETAALD4 , SeverityData5$BETAALD5)
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#generating outcomes
TABLES(Loss=CL, LengthContracts = length (GEWG$DEKKING.ID ) ,
TotalExposure = sum(GEW6SEXPO) )

#vectors to make the graphs where the trends can be seen

x[6] <— TABLES(Loss=CL, LengthContracts = length (GEW6$DEKKING.ID) ,
TotalExposure = sum(GEWGSEXPO))[2 ,5]

y[6] <— TABLES(Loss=CL, LengthContracts = length (GEW6SDEKKING.ID) ,
TotalExposure = sum(GEW6SEXPO) ) [2 ,8]

z[6] <— TABLES(Loss=CL, LengthContracts = length (GEW6SDEKKING.ID ) ,
TotalExposure = sum(GEWGSEXPO))[2,7]

q[6] <— TABLES(Loss=CL, LengthContracts = length (GEW6$DEKKING.ID) ,
TotalExposure = sum(GEW6SEXPO) ) [2,9]

#trend of average, median and first and third quantile for the losses

plot (log (as.numeric(x)), type="1", xlab="Risk Levels’
ylab="Logarithmic Loss’,col="green” ,ylim=c (5,8))

lines (log (as.numeric(y)), col="blue”)

lines (log(as.numeric(z)), col="red”)

lines (log(as.numeric(q)), col="black”)

)

#vector for the frequency
Fr'VGEW [6] <— length (CL)/sum (GEW6SEXPO)+100

#two plots next to each other
par (old . par)
old.par <— par(mfrow=c(1l, 2))

#plot for the claim frequencies

plot (Ff'VGEW, type="1", xlab='Risk Levels’
col="green” ,ylim=c(2,4))

lines (FrVBJ, col="blue”) #age of the car

lines (Fr'VVERM, col="red”) #capacity of the car

lines (FrVLFD, col="black”) #age of the person

lines (FrVKM, col="darkorange”) #mileage

lines (FrVASS, col="hotpink”) #assertivity of the car

#new plot for the Bonus—Malus risk characteristics

plot (FrVTR.BM, type="1", xlab=’"Risk Levels’, ylab='Claim Frequencies’
col="purple” ,ylim=c (0,13))

lines (FrVSVJ, col="brown”)

, ylab="Claim Frequencies’

7

)

#adding sixth point for discriminant moment—ratio plot
moment_plot (data=CL, i =6)

#generating the loss ratio and income
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#note that the premium can be found in another dataset
X <— GebPRSdek.id %in% GEW6SDEKKING.ID

X <— which (X = TRUE)

sum (GEW6STOTSEV) /sum ( GebPR$geboekte . premie [X])*100

sum ( GebPR$geboekte . premie [X])

#claim frequencies and the mean of the weight
m6 <— sum(length (CL))/sum (GEWGSEXPO)*100
L6 <— log (mean (GEWGESGEW) )

#vector with claim frequency and mean for all weight levels
L <~ c¢(L1,L2,L3,L4,L5,L6)

m <— c¢(ml,m2,m3,m4,m5,m6)

#obtaining the plot with the median against the weight of the car
#and the claim frequency against the weight of the car, all on log scale
plot (L,log (m), ylab="Claim frequency on log scale”,
xlab="Weight of the car on log scale” ,type="0")
plot (L,log (as.numeric(y)),ylab="Median on log scale”,

» ”

xlab="Weight of the car on log scale” type="0")

15.6.2 Risk Characteristics

#Capacity of the car, variate and factor approach
VERM.F <— function (){
BRSTL <— rep (0,length (WAMASDEKKING.ID ) )
for (i in 1:length (WAMABDEKKING.ID)){
BRSTL[i] <— if (WAMdSVERM|[i]<65){1}else{if (WAMIBSVERM[i]|>65 &
WAMASVERM [ 1] <95){2} else {3}
}

}
return (BRSTL)

}

WAMASVERML <— VERM.F ()

WAMASVERML <— as. factor (WAMdSVERML)
WAMASBVERMLY <— as.numeric (WAMA$SVERML)

#Capacity of the car, dynamic approach
VERM1 <— subset (WAMdf, WAMdSVERM< 52)
VERM2 <— subset (WAMdf, WAMdSVERM>=52 & WAMASVERM< 65)
VERM3 <— subset (WAMdf, WAMdSVERM>=65 & WAMASVERM< 80)
VERM4 <— subset (WAMdf, WAMdSVERM>=80)
VERMD.F <— function (){

BRSTL <— rep(0,length (WAMdASDEKKING.ID ))

for (i in 1:length (WAMASDEKKING.ID)){

BRSTL[i] <— if (WAMASVERM|[i]<52){1}else{if (WAMISVERM[i]|>52 &
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WAMASVERM [ 1] <65){2} else{
if (WAMdSBVERM|[i]>65 & WAMASVERM[i]<80){3} else{4}}}
}
return (BRSTL)
}
WAMASVERMD <— VERMD.F ()
WAMABVERMD <— as . factor (WAMdASVERMD)
Actual VERM <— ¢ (mean (VERMISVERM) , mean (VERM2SVERM) ,
mean (VERM3SVERM) , mean (VERM4$VERM ) )
#1=+-52.29653 2=+-72.05052 3=+-91.30751 4=+—133.18355
WAMASVERMD <— log (ActualVERM /mean (VERMI$VERM ) ) [ WAMASVERMD |

#Bonus—Malus number of years dynamic approach until 9
SVID.F <— function (){
BRSTL <— rep(0,length (WAMdSDEKKING.ID ))
for (i in 1:length (WAMASDEKKING.ID)){
BRSTL[i] <— if (WAMASSVI.BM[i] >= 9 ){15} else {WAMASSVI.BM[i]+6}

}
return (BRSTL)

}

WAMASBSVID <~ SVJID.F()

WAMABSVID <— as.numeric (WAMA$SVID)
WAMAf$SVJDminusl <— WAMA$SVID-1
WAMAf$Bis15 <— as.numeric (WAMdA$SVID==15)
WAMA$SVID <— as. factor (WAMASSVID)

SVID <— as.factor (WAMA$SVID)

15.7 Codes for Chapter 9

#dispersion test
library (AER)
dispersiontest (gSVJID2.GEWD.KMD. LFDLVCF.VOL)

#fitting Negative Binomial

library (MASS)

gSVJID2 .GEWD.KMD.LFDLVCF.VOL.nb <— glm.nb(nCl =~ SVJD2minusl + Bis21 +
W + MIL + LFDLVS 4 VOL + offset (log (EXPO)), link=log, data=WAMdf)

#1 divided by theta and log—likelihood difference
1/gSVJID2 .GEWD.KMD.LFDLVCF.VOL. nb$theta
—2x(logLik (gSVID2 .GEWD.KMD.LFDLVCF.VOL)—logLik (gSVJD2 .GEWD.KMD. LFDLVCF.VOL. nb ) )

#obtaining the estimated dispersion parameter with Pearson X 2
phi <— sum(pr~2)/df.residual (gSVID2.GEWD.KMD. LFDLVCF .VOL)
round (¢ (phi,sqrt(phi)),4)
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#obtaining largest difference in |CV| with adjusted factor

max (summary (gSVJD2 .GEWD.KMD.LFDLVCF.VOL) $§coefficients [,2]%1.0237/

abs (summary (gSVJD2 .GEWD.KMD.LFDLVCF.VOL) $coefficients [,1]) — summary (gSVJD2.GEWD.]
abs (summary (gSVJD2 .GEWD.KMD.LFDLVCF.VOL.nb) $coefficients [ ,1]))

#obtaining mean—variance relation plot

xb <— predict (gSVJID2.GEWD.KMD.LFDLVCF.VOL. nb)

g <— cut(xb, breaks=quantile(xb,seq(0,100,5)/100))
m <— tapply (WAMdf$nCl, g, mean)
v <— tapply (WAMdf$nCl, g, var)

png (" cdafigl .png” , width=>500,height=400)

plot (m, v, xlab="Mean”, ylab="Variance”,
main="Mean—Variance Relationship”)

x <— 8eq(0.01,0.6,0.01)
lines (x, xxphi, lty="dashed”)
lines (x, xx*(1+x/gSVJID2.GEWD.KMD.LFDLVCF.VOL. nb$theta))

legend (” topleft”, lty=c(” dashed”,” solid”),
legend=c (”Q. Poisson”,”Neg. Binom.”), inset=0.05)

lines (x, x, lty="dashed”)

#estimate proportion of no claims based on data, Poisson model and
#zero inflated Poisson model

zobs <— WAMd$nCl==

mean (zobs)

zpoi <— exp(—exp(predict (gSVID2.GEWD.KMD.LFDLVCF.VOL) ) )

mean (zpoi)

library (pscl)

mzip <— zeroinfl(nCl -~ SVJD2minusl + Bis21 + W + MIL + LFDLVS + VOL + offset (log
pr <— predict (mzip,type="zero”)

mu <— predict (mzip,type="count”)

zip <— pr + (1—pr)*exp(—mu)

mean (zip)

#obtaining the shape parameter by profile likelihood
library (tweedie)

library (statmod)

out=tweedie. profile (TOTSEV ~ 1,
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data=WAMdf, p. vec=seq (1.1,1.9,length=9),
method="interpolation” ,do. ci=ITRUE,
do . smooth=TRUE, do . plot=TRUE)

out$p.max;out$phi.max #out$p.max is het estimate of the shape parameter

#Example of checking outcomes, checking AIC outcomes
aic <— —2xlogLik (gSVJD2.GEWD.KMD.LFDLVCF.VOL.nb) +
2xgSVJD2 .GEWD.KMD. LFDLVCF.VOL. nb$rank
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