
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy
,F

ac
ul

ty
of

A
er

os
pa

ce
En

gi
ne

er
in

g,
D

ep
ar

tm
en

tC
on

tr
ol

&
O

pe
ra

ti
on

s,
Se

ct
io

n
Co

nt
ro

l&
Si

m
ul

at
io

n Time-Varying
Human-Operator
Identification with
Box-Jenkins Models
Master of Science Thesis

Graduation Report
Á. Ortiz Moya

Time-Varying
Human-Operator

Identification with
Box-Jenkins Models

Master of Science Thesis

by

Á. Ortiz Moya

to obtain the degree of

Master of Science in Aerospace Engineering at Delft University of Technology,

to be defended publicly on Wednesday December 6, 2023 at 12:45 PM.

Student number 5487862

Supervisors: Prof. Dr. Ir. M. Mulder

Dr. Ir. M. M. van Paassen

Dr. Ir. D. M. Pool

Date of submission: November 2023

The work in this thesis was conducted in the:

Section Control & Simulation

Department Control & Operations

Faculty of Aerospace Engineering

Delft University of Technology

Cover: Commercial airplane cockpit by Rob Mark under Flying [39] (Modified)

Copyright © 2023 by Á. Ortiz Moya and Delft University of Technology, Faculty of Aerospace

Engineering, Delft, The Netherlands.

All rights reserved.

Department of Control and Operations, Section Control and Simulation

Delft, The Netherlands

The undersigned hereby certify that they have read, and recommend to the Faculty of Aerospace

Engineering at Delft University of Technology for acceptance, a thesis entitled: Time-Varying Human-
Operator Identification with Box-Jenkins Models, submitted by Á. Ortiz Moya in partial fulfillment of

the requirements for the award of the degree of Master of Science.

Dated: 6 December 2023

Assessment committee

Professor:

Prof. Dr. Ir. M. Mulder

Supervisors:

Dr. Ir. M. M. van Paassen

Dr. Ir. D. M. Pool

External examiner:

Prof. Dr. Ir. J. C. F. de Winter

Preface

The work completed for my Master of Science (MSc) degree in Aerospace Engineering at Delft University of
Technology is summarized in this thesis. This project was conducted at the Control and Simulation (C&S).

Part I includes a scientific paper that covers the main results and conclusions drawn from this project. In
Part II, the preliminary graduation report is presented, which comprehends a literature study in time-varying
identification methods and an analysis of the applicability of Box-Jenkins structures. Part III contains additional
appendices that complement the work presented in Part I. Both Part I and III are meant for the Thesis Control and
Operations (AE5310), while Part II was already graded for the Literature Study course (AE4020).

This graduation project has been a great opportunity to grow as a professional and acquire new skills. Learning
more about system identification and how we can model human behaviour, while performing an extensive research
project, has been a worthwhile experience. In addition, finding a mathematically feasible method by which the
Box-Jenkins model can be applied, and deriving an expression to compute the remnant gain to be used, were the
most exciting parts of this work.

I would like to thank Max, René and Daan who played a fundamental role in supervising this MSc Thesis.
The goals proposed in this research project can be challenging and full of obstacles, so it was essential to rely on
professors with adequate expertise to guide me as a student.

During these past two years, the best experience has been stepping out of my comfort zone and living in
a different country, where I have had the great opportunity to meet friends from different parts of the world.
Undoubtedly, discovering new cultures and ways of thinking not only enriches your mind, but also offers a new
perspective on life. Thus, I want to thank them for their support and the great experiences we shared.

Á. Ortiz Moya
Delft, November 2023

i

Contents

List of figures iv

List of tables xii

List of Abbreviations and Symbols xiv

I Scientific Article 1

II Preliminary Report 23
Summary 24

1 Introduction 25

2 Literature survey 26
2.1 Compensatory manual-control task . 26

2.2 Human operator models . 27

2.3 Controlled-element dynamics . 27

2.4 Identification of time-varying operator behaviour . 28

3 Research Objective and Questions 29

4 Human-controller simulation setup 30
4.1 Simulation iterative approach . 30

4.2 Forcing function . 31

4.3 Remnant noise . 31

4.4 Simulation conditions . 31

4.5 Identification process . 32

5 Human-controller identification setup 33
5.1 Transfer-function models . 33

5.2 Prediction Error Method . 35

5.2.1 The PEM algorithm . 36

5.2.2 Initial states estimation . 37

5.2.3 Variance estimation . 37

5.2.4 Summary . 38

5.3 Recursive Least-Squares . 38

5.3.1 The deterministic RLS algorithm . 38

5.3.2 Forgetting factor . 38

5.3.3 Forgetting matrix . 39

5.4 ARX model estimation . 39

5.4.1 Ordinary Least-Squares . 39

5.4.2 RLS application . 40

5.5 BJ model estimation . 41

5.5.1 PEM application . 41

5.5.2 Recursive Prediction Error minimization . 42

5.6 Quality-of-fit metrics . 43

6 Preliminary simulation analysis 44
6.1 Batch-fitting . 44

6.1.1 ARX results . 44

ii

Contents iii

6.1.2 BJ results . 45

6.1.3 Implementation of m∗
= 1 in BJ model . 46

6.1.4 Modification of initial conditions in BJ model parameters 47

6.2 Recursive-fitting . 48

6.2.1 ARX results . 48

6.2.2 Perspectives for BJ results . 48

7 Conclusions and Future Works 49

References 50

A Remnant gain definition 53
A.1 Theoretical background . 53

A.2 PSD function of the forcing function . 54

A.3 Remnant gain definition . 54

A.3.1 First option . 54

A.3.2 Second option . 55

A.4 Validation of the remnant gain formula . 55

B Continuous-time parameter retrieval 57
B.1 Human operator . 57

B.2 Remnant filter and noise . 58

B.3 Requirements for discrete-time parameters . 59

C Relative Bias Results 60
C.1 Simulation Condition C1 . 60

C.1.1 ARX . 60

C.1.2 BJ: m∗ ∈ {1, 2, 3, 4} . 61

C.1.3 BJ: m∗
= 1 . 63

C.2 Simulation Condition C2 . 64

C.2.1 ARX . 64

C.2.2 BJ: m∗ ∈ {1, 2, 3, 4} . 65

C.2.3 BJ: m∗
= 1 . 67

D Bode Plots 69
D.1 Simulation Condition C1 . 69

D.1.1 ARX: n∗

k
∈ {26, 27, 28, 29, 30} . 69

D.1.2 BJ: n∗

k
∈ {26, 27, 28, 29, 30} . 70

D.1.3 ARX vs. BJ: n∗

k
= 29 . 72

D.2 Simulation Condition C2 . 72

D.2.1 ARX: n∗

k
∈ {26, 27, 28, 29, 30} . 72

D.2.2 BJ: n∗

k
∈ {26, 27, 28, 29, 30} . 74

D.2.3 ARX vs. BJ: n∗

k
= 29 . 75

E VAF and Relative Bias for Multiple Remnant Orders in BJ structure 76
E.1 Simulation Condition C1 . 76

E.1.1 Simulation data from m0
= 1 . 76

E.1.2 Simulation data from m0
= 2 . 77

E.1.3 Simulation data from m0
= 3 . 77

E.1.4 Simulation data from m0
= 4 . 78

E.2 Simulation Condition C2 . 79

E.2.1 Simulation data from m0
= 1 . 79

E.2.2 Simulation data from m0
= 2 . 79

E.2.3 Simulation data from m0
= 3 . 80

E.2.4 Simulation data from m0
= 4 . 81

F Multiple Initial Conditions in BJ structure 82

G Recursive ARX Results 87
G.1 Discrete-time parameters . 87

G.2 Continuous-time parameters . 89

Contents iv

III Final Report Appendices 91
H General Simulation Results for Recursive Estimation 92

H.1 Simulation Condition C1 . 92

H.2 Simulation Condition C2 . 93

H.3 Simulation Condition C3 . 94

H.4 Simulation Condition C4 . 95

H.5 Simulation Condition C5 . 96

H.6 Simulation Condition C6 . 97

I Experimental Results for Recursive Estimation 99
I.1 Simulation Condition C1 . 99

I.2 Simulation Condition C2 . 101

I.3 Simulation Condition C3 . 102

I.4 Simulation Condition C4 . 104

I.5 Simulation Condition C5 . 105

I.6 Simulation Condition C6 . 107

List of Figures

2.1 The multi-channel, learning, adaptive human controller. Adapted from Mulder et al. [28]. 26

2.2 Single-axis compensatory manual-control task with time-varying dynamics: (a) Compen-

satory display, where 𝑒(𝑡) acts as stimulus, and (b) Block diagram. 27

A.1 Obtained noise levels for simulation condition C1 and remnant filter order𝑚0 ∈ {1, 2, 3, 4},
averaged for 𝑀 = 100 realizations: demanded 𝑃𝑛 (red), obtained 𝜇𝑃𝑛 (blue), confidence

interval 𝐼 = [𝜇𝑃𝑛 − 𝜎𝑃𝑛 , 𝜇𝑃𝑛 + 𝜎𝑃𝑛] (shaded area). 56

C.1 Relative bias results in discrete-time parameters for ARX model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 60

C.2 Relative bias results in continuous-time parameters for ARX model: simulation con-

dition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 61

C.3 Relative bias results in discrete-time parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 61

C.4 Relative bias results in continuous-time parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 62

C.5 Relative bias results in remnant filter parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 62

C.6 Relative bias results in discrete-time parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 63

C.7 Relative bias results in continuous-time parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 63

C.8 Relative bias results in remnant filter parameters for BJ model: simulation condi-

tion C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 64

C.9 Relative bias results in discrete-time parameters for ARX model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 64

C.10 Relative bias results in continuous-time parameters for ARX model: simulation con-

dition C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 65

C.11 Relative bias results in discrete-time parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 65

v

List of Figures vi

C.12 Relative bias results in continuous-time parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 66

C.13 Relative bias results in remnant filter parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0
. Box and Whisker plots made

from 𝑀 = 100 realizations. 66

C.14 Relative bias results in discrete-time parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 67

C.15 Relative bias results in continuous-time parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 67

C.16 Relative bias results in remnant filter parameters for BJ model: simulation condi-

tion C2, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈

{26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots made

from 𝑀 = 100 realizations. 68

D.1 Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.0, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 69

D.2 Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.10, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 69

D.3 Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.20, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 70

D.4 Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.30, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 70

D.5 Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.0, simulation remnant

filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays

𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH discretization.

Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations. . . . 70

D.6 Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.10, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 71

D.7 Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.20, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 71

List of Figures vii

D.8 Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.30, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 71

D.9 Bode plots for ARX and BJ models: simulation condition C1, noise level𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30},
simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0

,

model time-delay 𝑛∗
𝑘
= 29. Simulated HO model (black, dashed line): ZOH discretization.

Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations. . . . 72

D.10 Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.0, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 72

D.11 Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.10, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 73

D.12 Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.20, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 73

D.13 Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.30, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 73

D.14 Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.0, simulation remnant

filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays

𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH discretization.

Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations. . . . 74

D.15 Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.10, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 74

D.16 Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.20, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 74

D.17 Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.30, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model

time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black, dashed line): ZOH

discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100

realizations. 75

D.18 Bode plots for ARX and BJ models: simulation condition C2, noise level𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30},
simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0

,

model time-delay 𝑛∗
𝑘
= 29. Simulated HO model (black, dashed line): ZOH discretization.

Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations. . . . 75

List of Figures viii

E.1 VAF results of discrete-time parameters for BJ model: simulation condition C1, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 76

E.2 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C1, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

1 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 76

E.3 VAF results of discrete-time parameters for BJ model: simulation condition C1, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 77

E.4 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C1, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

2 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 77

E.5 VAF results of discrete-time parameters for BJ model: simulation condition C1, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 77

E.6 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C1, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

3 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 78

E.7 VAF results of discrete-time parameters for BJ model: simulation condition C1, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 78

E.8 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C1, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

4 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 78

E.9 VAF results of discrete-time parameters for BJ model: simulation condition C2, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 79

E.10 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C2, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

1 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 79

E.11 VAF results of discrete-time parameters for BJ model: simulation condition C2, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 79

E.12 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C2, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

2 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 80

E.13 VAF results of discrete-time parameters for BJ model: simulation condition C2, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 80

E.14 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C2, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

3 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 80

List of Figures ix

E.15 VAF results of discrete-time parameters for BJ model: simulation condition C2, model rem-

nant filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol

×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 81

E.16 Absolute relative bias results of discrete-time parameters for BJ model: simulation condi-

tion C2, model remnant filter orders𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order𝑚0 =

4 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}.

Obtained values averaged from 𝑀 = 100 realizations. 81

F.1 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 1:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 82

F.2 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 2:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 83

F.3 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 3:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 83

F.4 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 4:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 84

F.5 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 5:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 84

F.6 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 6:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 85

F.7 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 7:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 85

F.8 Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 8:

simulation condition C1, simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-

delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations. 86

G.1 Online estimation results in discrete-time parameters for recursive ARX model: simulation

condition C3, simulation remnant filter order 𝑚0 = 1, model time-delay 𝑛∗
𝑘
= 29, noise

levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100 realizations. . 87

G.2 Online estimation results in discrete-time parameters for recursive ARX model: simulation

condition C3, simulation remnant filter order 𝑚0 = 2, model time-delay 𝑛∗
𝑘
= 29, noise

levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100 realizations. . 87

G.3 Online estimation results in discrete-time parameters for recursive ARX model: simulation

condition C3, simulation remnant filter order 𝑚0 = 3, model time-delay 𝑛∗
𝑘
= 29, noise

levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100 realizations. . 88

G.4 Online estimation results in discrete-time parameters for recursive ARX model: simulation

condition C3, simulation remnant filter order 𝑚0 = 4, model time-delay 𝑛∗
𝑘
= 29, noise

levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100 realizations. . 88

G.5 Online estimation results in continuous-time parameters for recursive ARX model:

simulation condition C3, simulation remnant filter order 𝑚0 = 1, model time-delay

𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100

realizations. 89

G.6 Online estimation results in continuous-time parameters for recursive ARX model:

simulation condition C3, simulation remnant filter order 𝑚0 = 2, model time-delay

𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100

realizations. 89

List of Figures x

G.7 Online estimation results in continuous-time parameters for recursive ARX model:

simulation condition C3, simulation remnant filter order 𝑚0 = 3, model time-delay

𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100

realizations. 90

G.8 Online estimation results in continuous-time parameters for recursive ARX model:

simulation condition C3, simulation remnant filter order 𝑚0 = 4, model time-delay

𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from 𝑀 = 100

realizations. 90

H.1 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C1,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 92

H.2 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C1, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 93

H.3 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C2,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 93

H.4 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C2, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 94

H.5 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C3,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 94

H.6 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C3, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 95

H.7 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C4,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 95

H.8 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C4, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 96

H.9 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C5,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 96

List of Figures xi

H.10 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C5, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 97

H.11 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in

discrete-time parameters. ARX estimations: OLS (dashed line), RLS (continuous line).

BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C6,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}.
Obtained values averaged from 𝑀 = 100 realizations. 97

H.12 Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO

coefficients. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations:

PEM (dashed line), RPEM (continuous line). simulation condition C6, simulation remnant

filter order𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged

from 𝑀 = 100 realizations. 98

I.1 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1 and 2. Simulation condition C1. Obtained values averaged

from 5 runs. 99

I.2 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1 and 2. Simulation condition C1. Obtained values averaged from 5 runs. . . . 100

I.3 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1 and 2. Simulation condition C1. Obtained values averaged

from 5 runs. 100

I.4 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1 and 2. Simulation condition C2. Obtained values averaged

from 5 runs. 101

I.5 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1 and 2. Simulation condition C2. Obtained values averaged from 5 runs. . . . 101

I.6 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1 and 2. Simulation condition C2. Obtained values averaged

from 5 runs. 102

I.7 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C3. Obtained values averaged

from 5 runs. 102

I.8 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1, 2 and 3. Simulation condition C3. Obtained values averaged from 5 runs. . . 103

I.9 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C3. Obtained values averaged

from 5 runs. 103

I.10 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C4. Obtained values averaged

from 5 runs. 104

I.11 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1, 2 and 3. Simulation condition C4. Obtained values averaged from 5 runs. . . 104

I.12 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C4. Obtained values averaged

from 5 runs. 105

I.13 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C5. Obtained values averaged

from 5 runs. 105

I.14 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1, 2 and 3. Simulation condition C5. Obtained values averaged from 5 runs. . . 106

I.15 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C5. Obtained values averaged

from 5 runs. 106

List of Figures xii

I.16 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C6. Obtained values averaged

from 5 runs. 107

I.17 Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for

subjects 1, 2 and 3. Simulation condition C6. Obtained values averaged from 5 runs. . . 107

I.18 Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time

parameters for subjects 1, 2 and 3. Simulation condition C6. Obtained values averaged

from 5 runs. 108

List of Tables

4.1 Target function parameters for each component. 31

4.2 CE, HO and HO×𝐶𝐸 parameters for states 𝑠1 and 𝑠2. 32

4.3 Discrete-time parameters values for ZOH discretization: states 𝑠1 and 𝑠2. 32

4.4 Simulation conditions. 32

5.1 Principal model structures based on general family of discrete-time transfer functions. . 34

5.2 Discretization methods of continuous-time transfer functions. 35

6.1 Initial conditions of discrete-time parameters in BJ models. 47

xiii

List of Abbreviations and Symbols

Abbreviations

Abbreviation Definition

ANN Artificial Neural Network

AR Auto-Regressive

ARX Auto-Regressive-eXogeneous

ARMA Auto-Regressive-Moving-Average

ARMAX Auto-Regressive-Moving-Average-Exogenous

BJ Box-Jenkins

CE Controlled Element

EWP Exponential-Weighting-into-the-Past

EKF Extended Kalman Filter

FIR Finite Impulse Response

FOH First-Order Hold

GWN Gaussian White Noise

HO Human Operator

IC Initial Conditions

LS Least-Squares

LPV Linear Parameter Variable

LTV Linear-Time Variant

ML Maximum Likelihood

MA Moving-Average

NMS Neuro-Muscular System

OL Open Loop

OLS Ordinary Least-Squares

OE Output-Error

PBSID Predictor-Based Subspace Identification

PEM Prediction Error Method

RIV Refined Instrumental Variable

RLS Recursive Least-Squares

RPEM Recursive Prediction Error Method

RRIV Recursive Refined Instrumental Variable

RW Rectangular Window

SLLANN Single-Layer Linear Artificial Neural Network

TF Transfer Function

UKF Unscented Kalman Filter

VAF Variance Accounted For

ZOH Zero-Order Hold

Symbols

Symbol Definition Unit

𝐴(𝑧−1) ARX model’s output polynomial -

𝐴𝑘 Sinusoid amplitude 𝑑𝑒𝑔

𝑎𝑑
𝑖

Coefficient 𝑖 of 𝐴(𝑧−1) -

𝐵(𝑧−1) ARX or BJ model’s HO input polynomial -

𝐵(𝑧−1) ARX or BJ model’s HO input polynomial with time delay 𝜏𝑒 -

𝐵𝑟,𝑖 Relative bias for parameter 𝑖 %

𝑏𝑑
𝑖

Coefficient 𝑖 of 𝐵(𝑧−1) -

xiv

List of Tables xv

Symbol Definition Unit

𝐶(𝑧−1) BJ model’s remnant input polynomial -

𝑐𝑑
𝑖

Coefficient 𝑖 of 𝐶(𝑧−1) -

𝐷(𝑧−1) BJ model’s remnant output polynomial -

𝑑𝑑
𝑖

Coefficient 𝑖 of 𝐷(𝑧−1) -

𝑒(𝑡) Error signal 𝑑𝑒𝑔

𝐹(𝑧−1) BJ model’s HO output polynomial -

𝑓 𝑑
𝑖

Coefficient 𝑖 of 𝐹(𝑧−1) -

𝑓𝑠 Sampling frequency 𝐻𝑧

𝑓𝑡 Forcing function 𝑑𝑒𝑔

𝐺 Maximum rate of change in sigmoid 𝑠−1

𝑔(𝑡𝑘) Gain vector -

𝐻𝐶𝐸(𝑠, 𝑡) Time-varying CE dynamics -

𝐻𝐻𝑂 (𝑠, 𝑡) Time-varying HO dynamics -

𝐻𝐻𝑂𝑒
(𝑠, 𝑡) Time-varying HO’s linear response to 𝑒(𝑡) -

𝐻𝑛𝑚(𝑠, 𝑡) Neuromuscular dynamics -

𝐻𝑚
𝑛 (𝑠, 𝑡) Time-varying remnant filter of order 𝑚 -

𝐾𝑒 (𝑡) Error gain -

𝐾𝑛(𝑡) Remnant gain -

𝐾𝑝(𝑡) Control gain -

𝑀 Monte Carlo replications -

𝑚 Order of remnant filter -

𝑚0
True order of remnant filter -

𝑚∗
BJ model’s order of remnant filter -

𝑁 Number of samples -

𝑁𝑖 Memory horizon in samples for 𝜆𝑖 -

𝑛(𝑡) Remnant signal 𝑑𝑒𝑔

𝑛𝑎 Number of coefficients in 𝐴(𝑧−1) -

𝑛𝑏 Number of coefficients in 𝐵(𝑧−1) -

𝑛𝑐 Number of coefficients in 𝐶(𝑧−1) -

𝑛𝑑 Number of coefficients in 𝐷(𝑧−1) -

𝑛 𝑓 Number of coefficients in 𝐹(𝑧−1) -

𝑛𝑘 HO model’s integer time delay -

𝑛∗
𝑘

ARX or BJ model’s integer time delay -

𝑛0

𝑘
True HO model’s integer time delay -

𝑛𝑡 Integer in sinusoid 𝑘 -

𝑃(𝑡𝑘) Scaled covariance matrix -

𝑃
0

Initial scaled covariance matrix -

𝑃𝑛 Remnant intensity level -

𝑝(𝑡) Parameter function -

𝑝𝑖 Initial value of the parameter function -

𝑝 𝑓 Final value of the parameter function -

𝑠 Laplace variable -

𝑇𝑒 ,𝑖 Memory horizon for 𝜆𝑖 s

𝑇𝐿(𝑡) Lead-time constant s

𝑇𝑚 Total simulation time s

𝑇𝑛 Remnant-time constant s

𝑇𝑠 (𝑡) Sampling time s

𝑡 Continuous-time variable s

𝑡𝑘 Discrete-time variable s

𝑡𝑀 Time of maximum rate of change s

𝑡
0

Transient time s

𝑈 Control-output vector 𝑑𝑒𝑔

𝑢(𝑡) Control-output signal 𝑑𝑒𝑔

𝑉𝑁 Cost function 𝑑𝑒𝑔2

𝑉0

𝑁
Initial cost function 𝑑𝑒𝑔2

𝑉𝐴𝐹𝑛
∗
𝑘
,𝑚∗

Variance Accounted For at BJ model’s 𝑛𝑘 and 𝑚 %

𝑥(𝑡) System output signal 𝑑𝑒𝑔

𝑧 Z-transform variable -

List of Tables xvi

Symbol Definition Unit

𝑍𝑁 Data set with pairs {𝑢(𝑡𝑘), 𝑒(𝑡𝑘)} [𝑑𝑒𝑔,𝑑𝑒𝑔]

𝑍𝑁
0

Initial data set with pairs {𝑢(𝑡𝑘<1
), 𝑒(𝑡𝑘<1

)} [𝑑𝑒𝑔,𝑑𝑒𝑔]

𝜀(𝑡) Remnant Gaussian White noise 𝑑𝑒𝑔

𝜖(𝑡) Prediction error 𝑑𝑒𝑔

𝜁𝑛𝑚(𝑡) Neuromuscular damping ratio -

𝜃 Parameter vector -

𝜃0
Initial parameter estimate -

𝜃𝐴𝑅𝑋 ARX model parameter vector -

𝜃𝐵𝐽 BJ model parameter vector -

Λ Forgetting matrix -

𝜆 Forgetting factor -

𝜋(𝑡𝑘) Negative prediction error gradient -

𝜎2

𝑛 Variance of remnant noise signal -

𝜎2

𝑢 Variance of control-output signal -

𝜎2

𝑢𝑛 Variance of control-output signal due to remnant -

𝜎2

𝜀 Variance of Gaussian White noise -

𝜏𝑒 HO time delay s

Φ Regression matrix -

𝜙𝑘 Sinusoid phase shift 𝑟𝑎𝑑

𝜑𝑚 Phase margin 𝑑𝑒𝑔

𝜑(𝑡𝑘) Regression vector -

𝜔 Frequency 𝑟𝑎𝑑/𝑠
𝜔𝑏(𝑡) Break frequency 𝑟𝑎𝑑/𝑠
𝜔𝑐(𝑡) Crossover frequency 𝑟𝑎𝑑/𝑠
𝜔𝑘 Sinusoid frequency 𝑟𝑎𝑑/𝑠
𝜔𝑘,0 Sinusoid base frequency 𝑟𝑎𝑑/𝑠
𝜔𝑛𝑚 Neuromuscular frequency 𝑟𝑎𝑑/𝑠

Part I

Scientific Article

1

Time-Varying Human-Operator Identification with Box-Jenkins
Models

Á. Ortiz Moya∗

Delft University of Technology, Delft, South Holland, The Netherlands

The identification of time-varying, adaptive behaviour of a human operator in basic manual
control tasks is undoubtedly under development since most methodologies only account for
time-invariant systems. Previous authors have proved that estimation techniques based on ARX
structures can generally identify the HO model parameters. Nonetheless, ARX methods present
several problems, such as the persistent bias in estimates that may increase due to coupled
noise and system models. Therefore, a novel identification technique based on Box-Jenkins
models is proposed to achieve a more adequate match between the estimator structure and
the HO model. The identification process can be conducted offline by the Ordinary Least
Squares and Prediction Error Method, or online, when Recursive Least Squares and Recursive
PEM are employed, respectively, in ARX and BJ models. The BJ estimator has excellent
potential as an identification tool due to its bias reduction capabilities, as clearly shown in
batch-fitting, although non-linear optimization processes decrease its convergence speed by
500%. An RPEM algorithm with forgetting factor 𝝀 = 0.99609 and first-order remnant BJ
structure is implemented and tested under Monte Carlo simulation and experimental data.
Recursive BJ algorithms could help to achieve the ideal identification method by diminishing
the Neuro-Muscular parameter bias in ARX.

Keywords: ARX, Box-Jenkins, Equalization, Human Operator, Manual Control, Prediction Error
Method, Recursive Prediction Error Minimization, Remnant, Time-varying Identification.

Nomenclature

Latin letters
𝐴(𝑧−1) BJ model’s HO output polynomial
𝐴𝑘 Sinusoid amplitude, 𝑑𝑒𝑔
𝑎𝑖 Coefficient 𝑖 of 𝐴(𝑧−1)
𝐵(𝑧−1) BJ model’s HO input polynomial
𝐵𝑟 (𝜗) Relative bias for parameter 𝜗, %
𝑏𝑖 Coefficient 𝑖 of 𝐵(𝑧−1)
𝐶 (𝑧−1) BJ model’s remnant input polynomial
𝑐𝑖 Coefficient 𝑖 of 𝐶 (𝑧−1)
𝐷 (𝑧−1) BJ model’s remnant output polynomial
𝑑𝑖 Coefficient 𝑖 of 𝐷 (𝑧−1)
𝑒(𝑡) Error signal, 𝑑𝑒𝑔
𝑓𝑡 (𝑡) Forcing function, 𝑑𝑒𝑔
𝐺 Maximum rate of change in sigmoid, 𝑠−1

𝑔(𝑡𝑘) Gain vector
𝐻𝐶𝐸 (𝑠, 𝑡) Time-varying CE dynamics
𝐻𝐻𝑂 (𝑠, 𝑡) Time-varying HO dynamics
𝐻𝐻𝑂𝑒 (𝑠, 𝑡) Time-varying HO’s linear response to 𝑒(𝑡)
𝐻𝑛𝑚 (𝑠, 𝑡) Neuromuscular dynamics
𝐻𝑚

𝑛 (𝑠, 𝑡) Time-varying remnant filter of order 𝑚
𝐾𝑒 (𝑡) Error gain

𝐾𝑛 (𝑡) Remnant gain
𝐾𝑝 (𝑡) Control gain
𝑀 Monte Carlo replications
𝑚 Order of remnant filter
𝑁 Number of samples
𝑁𝑒 Memory horizon in samples for 𝜆
𝑁𝑡 Number of sinusoids
𝑛(𝑡) Remnant signal, 𝑑𝑒𝑔
𝑛𝑎 Number of coefficients in 𝐴(𝑧−1)
𝑛𝑏 Number of coefficients in 𝐵(𝑧−1)
𝑛𝑐 Number of coefficients in 𝐶 (𝑧−1)
𝑛𝑑 Number of coefficients in 𝐷 (𝑧−1)
𝑛𝑘 HO model’s integer time delay
𝑛𝑡 Integer in sinusoid 𝑘
𝑃(𝑡𝑘) Scaled covariance matrix
𝑃𝑛 Remnant intensity level
𝑝(𝑡) Parameter function
𝑠 Laplace variable
𝑇𝑒 Memory horizon for 𝜆, s
𝑇𝐿 (𝑡) Lead-time constant, s
𝑇𝑚 Total simulation time, s

∗MSc Student, Control and Simulation Section, Faculty of Aerospace Engineering, 2600 GB Delft, The Netherlands;
a.ortizmoya@student.tudelft.nl. Student Member AIAA.

1

𝑇𝑛 Remnant-time constant, s
𝑇𝑠 Sampling time, s
𝑡 Continuous-time variable, s
𝑡𝑘 Discrete-time variable, s
𝑡𝑀 Time of maximum rate of change, s
𝑢(𝑡) Control-output signal, 𝑑𝑒𝑔
𝑉𝑁 Cost function, 𝑑𝑒𝑔2

𝑉𝐴𝐹 Variance Accounted For at BJ model
𝑥(𝑡) System output signal, 𝑑𝑒𝑔
𝑧 Z-transform variable
𝑍𝑁 Data set with pairs {𝑢(𝑡𝑘), 𝑒(𝑡𝑘)}, 𝑑𝑒𝑔
Greek letters
𝜀(𝑡) Remnant Gaussian White noise, 𝑑𝑒𝑔
𝜖 (𝑡) Prediction error, 𝑑𝑒𝑔
𝜁𝑛𝑚 (𝑡) Neuromuscular damping ratio
𝜃 Parameter vector
𝜗 Global variable for BJ or HO parameter
𝜆 Forgetting factor
𝜋(𝑡𝑘) Negative prediction error gradient

𝜎2 Variance
𝜏𝑒 HO time delay, s
𝜙𝑘 Sinusoid phase shift, 𝑟𝑎𝑑
𝜑𝑚 Phase margin, 𝑑𝑒𝑔
𝜔 Frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑏 (𝑡) Break frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑐 (𝑡) Crossover frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑘 Sinusoid frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑘,0 Sinusoid base frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑛𝑚 Neuromuscular frequency, 𝑟𝑎𝑑/𝑠

Superscripts
0 True
∗ Simulated in BJ model
𝑑 Discrete time
𝑐 Continuous time

Subscripts
𝑖 Initial
𝑓 Final

I. Introduction
Human manual-control behaviour naturally changes over time, in various contexts, and across operators. In order to

explain the dynamic features of human operators (HOs) in skill-based manual control tasks, identification methods have
been developed [1–8]. However, they are often only applicable in situations when the control behaviour is sufficiently
time-invariant [6]. The availability of control-theoretic models that can capture both the adaptive and learning aspects of
manual-control behaviour has long been a goal [9–14]. Modern cybernetics is unable to fully explain how HOs modify
their behaviour to deal with control-task changes. The continued development of time-varying identification techniques
is necessary to make rapid progress in our knowledge of how people really interact with dynamic control systems [15].

The majority of research on identifying time-varying manual-control behaviour focuses on task variable changes,
particularly those caused by variations in the dynamics of the controlled element (CE) [3, 9–13, 16]. Many research
projects begin by examining single-axis compensatory control tasks and are based on the well-known crossover theory
[3], assuming that those developed models are scaleable to scenarios with additional types of inputs to the HO or even
multiple axes of control [13].

The purpose of this article is to study and develop a tool capable of identifying real-time (i.e. online) human
control behaviour adaptation in a compensatory manual-control task. Real-time execution of these processes offers new
possibilities in addition to advancing the earlier study objectives. For instance, pilot adaptation to anomalies in aircraft
or controlled elements could be studied and predicted [11–14]. On the other hand, reduced attention or distraction in
real-world control activities could be identified by continuously monitoring the operator through an update of a human
operator model [17]. Additionally, this might allow for adaptive haptic feedback that matches the operator’s present
behaviour [18]. Online identification can assist in modifying experimental circumstances in real time to directly analyse
adaptation behaviour or obtain desired haptic feedback characteristics in research with humans-in-the-loop.

Multiple authors have attempted to apply different techniques to achieve a successful online identification [7, 10, 18–
23]. Nevertheless, most of the methodologies used are not able to provide ideal results due to the high difficulty of the
problem. For instance, strategies based on recursive estimation of Auto-Regressive-eXogeneous (ARX) model structures
[6, 10, 12, 24, 25] may fail in reducing the relative bias [10] of the predicted model, in spite of their outstanding
qualities in terms of low computational effort and straightforward estimation. Consequently, it is necessary to find
an identification method that is truly capable of assuming this task, so that a novel estimation technique based on
Box-Jenkins (BJ) structures is proposed. This paper lays the foundation for the development of a recursive BJ algorithm,
which aims to solve the previous issues in the human behaviour identification process. In parallel, the performance of
such a novel identification technique is compared to the ARX estimation outcome. Both methods are evaluated under a
time-varying scenario through Monte Carlo simulation and with experimental data obtained by Van Grootheest et al.
[10].

2

This article is structured as follows. The compensatory manual-control task and previous identification methods
are described in Section II. The Box-Jenkins identification approach is detailed in Section III. Afterwards, Section
IV discusses the required simulation conditions and their setup, while Section V presents an overview of the Monte
Carlo simulation results obtained. Identification results for experimental data are presented in Section VI. Section VII
discusses the applicability, limitations and impact of the research project. Final conclusions are drawn in Section VIII.

II. Compensatory Manual-Control Task
In a control task, the human operator is typically a multichannel, adaptive, learning, non-linear controller [6–

8, 20, 24–26]. Although a general control-theoretic model of the human controller has not yet been discovered, validated
models do exist for certain control tasks as shown in [27]. In particular, McRuer and Jex [3] proposed quasi-linear human
operator models that still represent the state-of-the-art in HO modelling. These models are based on the Crossover
Model theory [1, 3], which is only applicable to simple cases, i.e., single-channel tracking tasks with only a feedback
path from visual perception (pure compensatory display). The quasi-linear models separate the additional unexplained
behaviour by adding noise called ’remnant’ 𝑛 and capture the linear behaviour of the human controller in a descriptive
transfer function 𝐻𝐻𝑂𝑒 (𝑠, 𝑡).

Figure 1 depicts the quasi-linear operator model embedded in a compensating tracking task [11]. The HO, represented
by the model 𝐻𝐻𝑂 (𝑠, 𝑡), monitors and responds to the error 𝑒(𝑡) between a goal 𝑓𝑡 (𝑡) and the output 𝑥(𝑡) of the CE
dynamics 𝐻𝐶𝐸 (𝑠, 𝑡). The HO dynamics are composed of the remnant 𝑛(𝑡) and deterministic responses from 𝐻𝐻𝑂𝑒 (𝑠, 𝑡).
Regarding the remnant 𝑛(𝑡), it is generated by feeding a white-noise signal 𝜀(𝑡) with a determined statistical distribution
through a remnant filter 𝐻𝑚

𝑛 (𝑠, 𝑡). Additionally, the HO must alter its control strategy as the CE dynamics change over
time (CE adaptation) [9].

Figure 1. Single-axis compensatory manual-control task with time-varying dynamics: (a) Compensatory display, where 𝑒 (𝑡) acts as a
stimulus, and (b) Block diagram.

A. Human-Operator Dynamics
In the Crossover model, McRuer and Jex [3] state that people modify their control behaviour to satisfy

𝐻𝑂𝐿 (𝑗𝜔) = 𝐻𝐻𝑂𝑒 (𝑠 = 𝑗𝜔)𝐻𝐶𝐸 (𝑗𝜔) = 𝜔𝑐

𝑗𝜔
𝑒− 𝑗𝜔𝜏𝑒 , 𝜔 ≈ 𝜔𝑐 (1)

in the crossover zone when transitory behaviour is eliminated. Then adjustment rules define how the describing function
𝐻𝐻𝑂𝑒 (𝑠, 𝑡) behaves in relation to the controlled element 𝐻𝐶𝐸 (𝑠, 𝑡) and what impact it has on crossover frequency 𝜔𝑐

and time delay 𝜏𝑒 in the frequency domain [3, 9]. By modelling the neuromuscular system (NMS) as a second-order
transfer function 𝐻𝑛𝑚 (𝑗𝜔) and the operator equalization as a gain and a lead(L) [3–5, 11], while using the approach
stated in [10–12], the general formulation of the describing function can be defined as follows:

𝐻𝐻𝑂𝑒 (𝑠, 𝑡) = 𝐾𝑒 (𝑡) [𝑇𝐿 (𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝐻𝑛𝑚 (𝑗𝜔) =
𝐾𝑒 (𝑡) [𝑇𝐿 (𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝜔2

𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2
𝑛𝑚

. (2)

The equalization parameters, i.e. 𝐾𝑒 (𝑡) and 𝑇𝐿 (𝑡), determine the action of the feedback controller in the pilot-vehicle
loop. On the other hand, 𝜔𝑛𝑚 and 𝜁𝑛𝑚 model the neuromuscular dynamics.

Regarding possible remnant signal models, the theoretical background is limited and there is no consensus on how
to model and take into account this remnant in Monte Carlo simulations [11, 20, 28, 29]. In most cases, a remnant
signal is obtained by passing zero-mean Gaussian white noise (GWN) through a filter.

3

The literature contains a variety of filter options, however, the most accepted one is the 𝑚𝑡ℎ-order remnant-filter
proposed by Zaal [11] and later used in [10, 12]:

𝐻𝑚
𝑛 (𝑠, 𝑡) = 𝐾𝑛 (𝑡)

(𝑇𝑛𝑠 + 1)𝑚 . (3)

Additionally, the noise level 𝑃𝑛 has to be set during Monte Carlo simulations to give a certain value for the remnant
gain. The most adequate definition is provided by Van der El et al. [30], 𝑃𝑛 = 𝜎2

𝑢𝑛/𝜎2
𝑢 , which compares the variance of

𝑢(𝑡) due to the remnant to the 𝑢(𝑡) signal’s total variance 𝜎2
𝑢 .

B. Controlled-Element Dynamics
The following second-order CE dynamics were taken into consideration by several authors [10–12], which serve as

a general low-order approximation of typical vehicle dynamics [3]:

𝐻𝐶𝐸 (𝑠, 𝑡) = 𝐾𝑐 (𝑡)
𝑠(𝑠 + 𝜔𝑏 (𝑡)) . (4)

The break frequency 𝜔𝑏 (𝑡) and the control gain 𝐾𝑐 (𝑡) can both change over time. The dynamics variation of
the controlled element from single- to double-integrator dynamics (i.e., 1/𝑠 ↔ 1/𝑠2) occurs at approximately 𝜔𝑏 (𝑡).
Furthermore, a sigmoid function is used in [10–12] to define the time variation of the operator equalization parameters
in Equation (2) and CE coefficients in Equation (4):

𝑝(𝑡) = 𝑝𝑖 +
𝑝 𝑓 − 𝑝𝑖

1 + 𝑒−𝐺 (𝑡−𝑡𝑀) , (5)

where 𝑝(𝑡) is the time-varying parameter, 𝑝𝑖 and 𝑝 𝑓 are the initial and final parameter values, 𝐺 is the transition rate,
and 𝑡𝑀 is the time when states transition occurs.

C. Identification of Time-Varying Operator Behaviour
In HO system identification, there are two possible directions to estimate the 𝐻𝐻𝑂𝑒 dynamics. The non-parametric

method [7, 18, 19, 31, 32], only provides direct estimations of frequency response, and the parametric approach assumes
a HO model structure and requires estimation of its parameters.

The parametric methodology provides a more tangible understanding of the human controller than non-parametric
strategies. Five research lines are found: batch-fitting methods (maximum likelihood estimation [11, 20], fitting Linear
Parameter Variable (LPV) state space systems [21]) and recursive fitting methods (Kalman filter estimation [16, 22, 33],
fitting recursive ARX models [10, 12, 25], identification of Artificial Neural Networks (ANNs) [23]).

In batch fitting strategies, the fitting is applied on the whole dataset at once, and typically, the operation limitation
parameters (neuromuscular dynamics and operator time delay) are deemed constant while only the operator equalization
parameters may vary. On the other hand, in recursive fitting methods, the operation equalization parameters can vary,
but also, the NMS and HO time delay can be set constant or assumed time-varying depending on the type of estimator
used. The ARX model structure [34] is employed in [10, 12, 25] to estimate time-varying HO behaviour, extending the
work done in [6, 24]. ARX parameters are computed by the Recursive Least Squares (RLS) [35], which minimizes a
weighted linear least squares cost function relating to the input signals. Additionally, the RLS algorithm can be tuned by
evaluating the ARX structure for constant HO models [10] through an Ordinary Least Squares (OLS) algorithm [34].

ARX identification methods represent a simple, efficient option since they only require a linear optimization
process. In addition, convergence is fast in recursive estimation, which guarantees an acceptable adaptation to HO
changes. However, permanent biases are found in estimated model parameters due to the mismatch in the remnant filter
poles (mainly when the remnant order 𝑚 equals 1 [10]), seeing that both denominators of the HO linear component
and remnant filter are considered as equivalent in ARX structures. Hence, an analysis of other model structures is
recommended in order to reduce the persistent bias found in ARX.

III. Box-Jenkins Model Identification

A. Box-Jenkins Model Family
Ljung [34] presents a series of transfer-function models from a general family of model structures, which can be

employed to identify the discrete-time TF corresponding to the HO model. Figure 2 shows the ARX and BJ structures:

4

Figure 2. Discrete-time model structures: (a) ARX, and (b) Box-Jenkins.

For the present case study, the Box-Jenkins structure represents the most suitable option since it enables more
freedom for zero and pole placement in both the remnant filter and the linear HO model, while ARX assumes a coupling
between these two components. This BJ family can be represented by the following expression:

𝑢(𝑡𝑘) = 𝐵(𝑧−1)
𝐴(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) + 𝐶 (𝑧
−1)

𝐷 (𝑧−1) 𝜀(𝑡𝑘), 𝜀(𝑡𝑘) ∼ 𝑁 (0, 𝜎𝜀), (6)

where 𝑢(𝑡) is the output signal associated with the control-output, 𝑒(𝑡) is the input signal corresponding to the tracking
error, and 𝜀(𝑡) is the Gaussian White Noise (GWN) with a standard deviation 𝜎𝜀 . The variable 𝑧−1 acts as a discrete-time
shift operator, while 𝑡𝑘 represents the discretized time. The general model structure depends on a total of 4 polynomials
{𝐴, 𝐵, 𝐶, 𝐷} with orders defined by the integers {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑}:

𝐴(𝑧−1) = 1 + 𝑎𝑑1 𝑧−1 + . . . + 𝑎𝑑𝑛𝑎 𝑧−𝑛𝑎 , 𝐵(𝑧−1) = 𝑏𝑑0 + 𝑏𝑑1 𝑧−1 + . . . + 𝑏𝑑𝑛𝑏 𝑧−𝑛𝑏 , (7a)

𝐶 (𝑧−1) = 1 + 𝑐𝑑1 𝑧−1 + . . . + 𝑐𝑑𝑛𝑐 𝑧−𝑛𝑐 , 𝐷 (𝑧−1) = 1 + 𝑑𝑑1 𝑧−1 + . . . + 𝑑𝑑𝑛𝑑 𝑧−𝑛𝑑 . (7b)

In addition, the predictor of the control-output signal, �̂�(𝑡), would present the following general expression [34]:

�̂�(𝑡𝑘 | 𝜃) = 𝐵(𝑧−1)𝐷 (𝑧−1)
𝐶 (𝑧−1)𝐴(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) +
[
1 − 𝐷 (𝑧−1)

𝐶 (𝑧−1)

]
𝑢(𝑡𝑘), (8)

where 𝜃 is the adjustable parameters vector, i.e.,

𝜃 =
[
𝑎𝑑1 , 𝑎

𝑑
2 , . . . , 𝑎

𝑑
𝑛𝑎 , 𝑏

𝑑
0 , 𝑏

𝑑
1 , . . . , 𝑏

𝑑
𝑛𝑏 , 𝑐

𝑑
1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝑛𝑐 , 𝑑

𝑑
1 , 𝑑

𝑑
2 , . . . , 𝑑

𝑑
𝑛𝑑

]𝑇
. (9)

By adjusting this previous expression, the prediction error is found:

𝜖 (𝑡𝑘 , 𝜃) = 𝑢(𝑡𝑘) − �̂�(𝑡𝑘 | 𝜃) = 𝐷 (𝑧−1)
𝐶 (𝑧−1)

[
𝑢(𝑡𝑘) − 𝐵(𝑧−1)

𝐴(𝑧−1) 𝑧
−𝑛𝑘 𝑒(𝑡𝑘)

]
. (10)

B. HO Model Discretization and BJ Structure
Before setting batch-fitting or recursive estimations of BJ models, it is necessary to make sure those structures match

the discretized HO and remnant filter models. Franklin et al. [36] present a variety of discretization techniques that can
be applied to the continuous-time TF, and can follow a numerical integration, a Z-transform mapping strategy or try
to model the sampled system. The discrete equivalents via numerical integration are based on the numerical method
[37] used to find a solution of the differential equation associated to the continuous-time TF to be discretized. The
principal methods are: Forward-Euler, Backward-Euler, Tustin (with/without pre-warp). Then, the zero-pole matching
equivalents are obtained by mapping the continuous-time TF’s poles and zeros from the relationship between s- and
z-planes. On the other hand, Tangirala [38] proposes model-sampling techniques, based on the Zero-Order Hold (ZOH)
or First-Order Hold (FOH), that reconstruct the measured signal and enable a two-step continuous-to-discrete time TF
conversion. In the HO model, a combination between ZOH and Backward Euler is applied.

1. HO Linear Component
In the case of 𝐻𝐻𝑂𝑒 (𝑠, 𝑡), Hess and Mnich [39] proved that the only discretization method option is ZOH (there

must be a single solution for HO coefficients), achieving a discrete model with 𝑛𝑎 = 2 and 𝑛𝑏 = 1:

𝐻𝐻𝑂𝑒,𝑑𝑖𝑠 (𝑧) =
𝑏𝑑0 + 𝑏𝑑1 𝑧−1

1 + 𝑎𝑑1 𝑧−1 + 𝑎𝑑2 𝑧−2
· 𝑧−𝑛𝑘 , (11)

5

where an additional unit-sample delay 𝑧−1 is obtained due to the discretization method. The integer 𝑛𝑘 represents the
time delay in the discretized model. Thus, the estimated continuous-time TF of the HO model, �̂�𝐻𝑂𝑒 (𝑠, 𝑡𝑘), and the
identified human operator coefficients are:

�̂�𝐻𝑂𝑒 (𝑠, 𝑡𝑘) =
𝑏𝑐0 𝑠 + 𝑏𝑐1

𝑠2 + 𝑎𝑐1 𝑠 + 𝑎𝑐2
⇒

{
�̂�𝑒 =

𝑏𝑐1
𝑎𝑐2
, 𝑇𝐿 =

𝑏𝑐0
𝑏𝑐1
, �̂� ¤𝑒 =

𝑏𝑐0
𝑎𝑐2
, �̂�𝑛𝑚 =

√︃
𝑎𝑐2 , 𝜁𝑛𝑚 =

𝑎𝑐1

2
√︁
𝑎𝑐2
, 𝜏𝑒 = 𝑇𝑠 (𝑛𝑘 − 1)

}
.

(12)

2. Remnant Filter
By the Backward Euler discretization, 𝑠 = (1 − 𝑧−1)/𝑇𝑠, a proper discrete-time transfer function for the remnant

filter is achieved:

𝐻𝑚
𝑛 (𝑠) = 𝐾𝑛

(𝑇𝑛𝑠 + 1)𝑚 → 𝐻𝑚
𝑛,𝑑𝑖𝑠 (𝑧) =

𝐾𝑛

(𝑇𝑛 1−𝑧−1

𝑇𝑠
+ 1)𝑚

=
𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)𝑚
(
1 − 𝑇𝑛

𝑇𝑛+𝑇𝑠 𝑧
−1

)𝑚 . (13)

Since the numerator of the estimated discrete-time remnant filter must be equal to 1 based on the BJ model structure,
the resulting coefficient in the numerator of 𝐻𝑚

𝑛,𝑑𝑖𝑠 (𝑧) will be incorporated into the variance 𝜎2
𝜀 , giving as a result a

modified 𝜀′ with standard deviation 𝜎𝜀′ :
𝜎𝜀′ =

𝐾𝑛𝑇
𝑚
𝑠

(𝑇𝑛 + 𝑇𝑠)𝑚𝜎𝜀 . (14)

Hence, the discrete-time model of the remnant noise signal would be the following one:

𝑛(𝑡𝑘) = 1(
1 − 𝑇𝑛

𝑇𝑛+𝑇𝑠 𝑧
−1

)𝑚 𝜀′ (𝑡𝑘), 𝜀′ (𝑡𝑘) ∼ 𝑁 (0, 𝜎𝜀′). (15)

Depending on the 𝑚𝑡ℎ-order of the remnant filter, the number of discrete-time parameters, 𝑑𝑑𝑖 , to be estimated
changes, while the time constant 𝑇𝑛 would need to be averaged from such parameters computed:

𝑑𝑑𝑖 = 𝑓𝑖 (𝑇𝑠 , 𝑇𝑛,𝑑𝑑
𝑖
) → 𝑇𝑛,𝑑𝑑

𝑖
→ 𝑇𝑛 =

1
𝑚

𝑚∑︁
𝑖=1
𝑇𝑛,𝑑𝑑

𝑖
. (16)

3. Applied BJ Model Expression
Therefore, a BJ model structure {𝑛𝑎 = 2, 𝑛𝑏 = 1, 𝑛𝑐 = 0, 𝑛𝑑 = 𝑚∗} is chosen to address the identification problem:

𝑢(𝑡𝑘) =
𝑏𝑑0 + 𝑏𝑑1 𝑧−1

1 + 𝑎𝑑1 𝑧−1 + 𝑎𝑑2 𝑧−2
𝑧−𝑛

∗
𝑘 𝑒(𝑡𝑘) + 1

1 + 𝑑𝑑1 𝑧−1 + . . . + 𝑑𝑑𝑚∗ 𝑧−𝑚
∗ 𝜀

′ (𝑡𝑘), 𝜀′ (𝑡𝑘) ∼ 𝑁 (0, 𝐾𝑛𝑇
𝑚∗
𝑠

(𝑇𝑛 + 𝑇𝑠)𝑚∗ 𝜎𝜀), (17)

where 𝑚∗ and 𝑛∗𝑘 are the remnant order and time delay considered in the estimation model, respectively. Thus, the
𝐵𝐽 (𝑛∗𝑘 , 𝑚∗) prediction error and adjustable parameter vector are given by the expressions:

𝜖 (𝑡𝑘 , 𝜃) = 𝐷 (𝑧−1)
[
𝑢(𝑡𝑘) − 𝐵(𝑧−1)

𝐴(𝑧−1) 𝑧
−𝑛∗𝑘 𝑒(𝑡𝑘)

]
, 𝜃 =

[
𝑎𝑑1 , 𝑎

𝑑
2 , 𝑏

𝑑
0 , 𝑏

𝑑
1 , 𝑑

𝑑
1 , . . . , 𝑑

𝑑
𝑚∗

]𝑇
. (18)

C. Prediction Error Method
The parameter estimation of each BJ discrete-time polynomial requires the optimization of a non-linear problem,

hence, a Prediction Error Method (PEM) algorithm has to be evaluated as explained in [34, 38, 40, 41]. The PEM
procedure consists of initial state estimation, definition of the optimization model, and variance estimation.

Other methods can also be applied to the discrete-time transfer function estimation problem, such as the Maximum
Likelihood (ML) or the Refined Instrumental Variable (RIV) method [34, 40, 41]. The ML technique finds the full
optimization model from a log-likelihood function, which is based on a Gaussian distribution of the noise 𝜀. The RIV
method is a pseudo-linear regression approach to ML estimation. Both methods could be in ARX and BJ structures, but
they are only applicable to systems with Gaussian noise, thus, the PEM algorithm presents a more generalist alternative.
The ML model is only used to find an expression to estimate the noise variance (see Equation (30)).

6

1. The Algorithm
Prediction error methods are based on the idea of minimising a cost function, 𝑉𝑁 , that measures the level of

prediction error, 𝜖 (𝑡𝑘 , 𝜃), to find a solution for 𝜃 [34, 40]. Thus, from a batch of data 𝑍𝑁 ,

𝑍𝑁 = [𝑢(𝑡1), 𝑒(𝑡1), 𝑢(𝑡2), 𝑒(𝑡2), . . . , 𝑢(𝑡𝑁), 𝑒(𝑡𝑁)] , (19)

and the prediction error formula (see Eq. (18)), the cost function can be defined as follows:

𝑉𝑁 (𝜃, 𝑍𝑁) = 1
𝑁

𝑖=𝑁∑︁
𝑖=1

𝑙 (𝜖 (𝑡𝑖 , 𝜃)). (20)

In 𝑉𝑁 (𝜃, 𝑍𝑁), 𝑙 (·) is a scalar-valued (typically positive) function. The quadratic norm is the most common in
optimization problems:

𝑙 (𝜖) = 1
2
𝜖2. (21)

Therefore, the goal of a PEM algorithm is to find the vector of parameters 𝜃 that minimizes the cost function:

𝜃 = arg min
𝜃

𝑉𝑁 (𝜃, 𝑍𝑁) = arg min
𝜃

{
1

2𝑁

𝑖=𝑁∑︁
𝑖=1

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴(𝑧−1) 𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2}

. (22)

To optimize such cost function, the partial differentiation of 𝑉𝑁 (𝜃, 𝑍𝑁) with respect to all the parameters is made:

∇𝜃

[
𝑉𝑁 (𝜃, 𝑍𝑁)] = 1

𝑁

𝑖=𝑁∑︁
𝑖=1

𝜖 (𝑡𝑖 , 𝜃)∇𝜃 [𝜖 (𝑡𝑖 , 𝜃)] . (23)

Consequently, the optimization model is defined by the following set of equations when equalled to zero:

𝜕𝑉𝑁

𝜕𝑎𝑑𝑗=1,2
=

1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴(𝑧−1) 𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
× 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴2 (𝑧−1) 𝑧− 𝑗−𝑛𝑘 𝑒(𝑡𝑖) = 0, (24a)

𝜕𝑉𝑁

𝜕𝑏𝑑𝑗=0,1
=

1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴(𝑧−1) 𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
× 𝐷 (𝑧−1)
𝐴(𝑧−1) 𝑧

− 𝑗−𝑛𝑘 𝑒(𝑡𝑖) = 0, (24b)

𝜕𝑉𝑁

𝜕𝑑𝑑𝑗=1,2,...,𝑚∗
=

1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴(𝑧−1) 𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
×

[
𝑧− 𝑗𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝑧− 𝑗−𝑛𝑘

𝐴(𝑧−1) 𝑒(𝑡𝑖)
]
= 0. (24c)

At this point, the PEM and ML optimization problems are identical [41], since Equations (24) match the ones
obtained in an ML scenario. In order to find the optimal solution to this minimization problem, BJ models require
non-linear optimization methods based on gradient-based schemes [42], or more innovative techniques, such as the
combination of different line search algorithms at each iteration [43], which is used in this case.

When calculating each component of Equations (24), there might be some difficulties in evaluating fractions of
polynomials. To solve this issue, Maclaurin series [43, 44] can be used to convert a fraction into a pure polynomial:

1
1 + 𝑥 = 1 − 𝑥 + 𝑥2 − 𝑥3 + . . . (25)

2. Initial States Estimation
In BJ estimation, the index 𝑖0 in Eqs. (24) should be always equal to 1 due to the higher relevance of the initial states

in the optimization process. Otherwise, if a first-order series is assumed, the minimum index should be:

𝑖0 = 3𝑛𝑎 + 𝑛𝑏 + 𝑛𝑑 + 𝑛𝑘 + 1 = 𝑚∗ + 𝑛∗𝑘 + 8. (26)

Therefore, an initial model needs to be estimated beforehand to find the pairs {𝑢(𝑡𝑘<1), 𝑒(𝑡𝑘<1)}, i.e.,

𝑍𝑁
𝑖 = [. . . , 𝑢(𝑡−1), 𝑒(𝑡−1), 𝑢(𝑡0), 𝑒(𝑡0)] , (27)

based on the initial conditions 𝜃𝑖 (i.e., 𝐴𝑖 (𝑧−1), 𝐵𝑖 (𝑧−1), 𝐶𝑖 (𝑧−1), 𝐷𝑖 (𝑧−1)) [43]:

�̂�𝑁
𝑖 = arg min

𝑍𝑁
𝑖

𝑉𝑁
𝑖 (𝜃𝑖 , 𝑍𝑁

𝑖) = arg min
𝑍𝑁
𝑖

{
1

2𝑁

∑︁
𝑖<1

[
𝐷𝑖 (𝑧−1)𝑢(𝑡𝑖) − 𝐵𝑖 (𝑧−1)𝐷𝑖 (𝑧−1)

𝐴𝑖 (𝑧−1) 𝑧−𝑛
∗
𝑘 𝑒(𝑡𝑖)

]2}
. (28)

7

3. Variance Estimation
Once, the optimization process is converged and a parameter vector solution is found, a partial differentiation of the

log-likelihood function for 𝑁 observations shown by Young [41],

L (𝜃, 𝜎2
𝜀′ , 𝑢(𝑡), 𝑒(𝑡)) = −𝑁

2
ln(2𝜋) − 𝑁

2
ln

(
𝜎2
𝜀′

)
− 1

2𝜎2
𝜀′

𝑖=𝑁∑︁
𝑖=1

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) − 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴(𝑧−1) 𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

(29)

is computed to find an estimation of the noise variance �̂�2
𝜀′ based on the predicted parameter vector:

𝜕L

𝜕𝜎2
𝜀′

= 0 → �̂�2
𝜀′ =

1
𝑁

𝑖=𝑁∑︁
𝑖=1

[
�̂� (𝑧−1)𝑢(𝑡𝑖) − �̂�(𝑧−1)�̂� (𝑧−1)

�̂�(𝑧−1)
𝑧−𝑛

∗
𝑘 𝑒(𝑡𝑖)

]2

. (30)

D. Recursive Prediction Error Minimization
The Recursive Prediction Error Minimization (RPEM) is one of the most extended online estimation techniques,

which enables a recursive implementation of the PEM algorithm [34, 40]. Other methods can be applied to the online BJ
structure estimation problem, such as the Real-Time Recursive Refined Instrumental Variable (RRIV) or the Extended
Kalman Filter (EKF) [40]. The RRIV method is probably the most similar to the RPEM algorithm, although it presents
some differences in terms of the covariance matrix definition (two sub-matrices with null off-diagonal blocks are used in
RRIV), the robustness of the algorithm (the Instrumental Variable modifications ensure a stable estimation process), or
the steps required (while RPEM is fully recursive, RRIV needs to iterate at each 𝑘 𝑡ℎ period).

1. The Algorithm
A Recursive PEM algorithm [40] is built, by analogy with the RLS method and fulfilling the theoretical requirements

to achieve convergence. The RPEM algorithm is an online estimation method that consists of 3 steps, in which the
parameter vector 𝜃 (𝑡𝑘) is adjusted online by means of the gain vector 𝑔(𝑡𝑘) and the prediction error of 𝑢(𝑡𝑘). The
gain vector is also tuned based on a forgetting factor 𝜆, the negative gradient of the prediction error 𝜋(𝑡𝑘), and the
scaled covariance matrix 𝑃(𝑡𝑘), which accounts for the certainty in the estimation conducted of each model parameter.
Equations (31) [34, 40] present the formulas used in this iterative process:

𝜃 (𝑡𝑘) = 𝜃 (𝑡𝑘−1) + 𝑃(𝑡𝑘)𝜋(𝑡𝑘)𝜖 (𝑡𝑘), (31a)

𝑔(𝑡𝑘) = 𝑃(𝑡𝑘−1)𝜋(𝑡𝑘)
𝜆 + 𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1)𝜋(𝑡𝑘)

, (31b)

𝑃(𝑡𝑘) = 1
𝜆

[
𝑃(𝑡𝑘−1) − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1)

]
. (31c)

Equation (31a) can be evaluated in two ways due to the relationship 𝑔(𝑡𝑘) = 𝑃(𝑡𝑘)𝜋(𝑡𝑘), although the first option is
usually preferred since it is more computationally efficient [40]. Each element of the forgetting matrix must belong to
the interval 𝐼 = [0, 1], where a 𝜆 near a null value provides a negligible memory horizon, and values close to 1 increase
this horizon significantly. Hence, for a forgetting factor 𝜆, a total number of 𝑁𝑒 = 1/(1 − 𝜆) samples are considered in
the RLS algorithm for a time horizon of 𝑇𝑒 = 𝑇𝑠/(1 − 𝜆).

The definition of vector 𝜋(𝑡𝑘) is based on the minimization of the instantaneous part of the cost function in Equation
(20), in which the one-step-ahead prediction error can be approximated by the employment of the model parameters
estimation at the previous (𝑘 − 1)𝑡ℎ instant:

𝑉 𝑘 (𝜃 (𝑡𝑘)) = 1
2

[
𝜖2 (𝑡𝑘 , 𝜃 (𝑡𝑘))

] ≈ 𝑉 𝑘 (𝜃 (𝑡𝑘−1)) = 1
2

[
𝜖2 (𝑡𝑘 , 𝜃 (𝑡𝑘−1))

]
. (32)

As a result, the gain 𝜋(𝑡𝑘) is computed as the negative gradient of the prediction error [40]:

𝜋(𝑡𝑘) = −𝜕𝜖 (𝑡𝑘 , 𝜃 (𝑡𝑘−1))
𝜕𝜃 (𝑡𝑘−1))

. (33)

8

From Eq. (18), the prediction error derivatives can be defined as follows:

𝜕𝜖 (𝑡𝑘)
𝜕𝑎𝑑𝑖=1,2

=
𝐷 (𝑧−1)
𝐴(𝑧−1)

𝐵(𝑧−1)
𝐴(𝑧−1) 𝑒(𝑡𝑘−𝑖−𝑛𝑘) =

𝐷 (𝑧−1)
𝐴(𝑧−1) 𝑦(𝑡𝑘−𝑖−𝑛𝑘) = 𝑦 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘), (34a)

𝜕𝜖 (𝑡𝑘)
𝜕𝑏𝑑𝑖=0,1

= −𝐷 (𝑧−1)
𝐴(𝑧−1) 𝑒(𝑡𝑘−𝑖−𝑛𝑘) = −𝑒 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘), (34b)

𝜕𝜖 (𝑡𝑘)
𝜕𝑑𝑑𝑖=1,2,...,𝑚∗

= −𝐷 (𝑧−1)𝑢(𝑡𝑘−𝑖) − 𝐷 (𝑧−1)𝐵(𝑧−1)
𝐴(𝑧−1) 𝑒(𝑡𝑘−𝑖−𝑛𝑘) = −𝜖 (𝑡𝑘−𝑖). (34c)

Where the subscript 𝑓1 denotes that the variable is filtered by the transfer functions:

𝑓1 =
𝐷 (𝑧−1)
𝐴(𝑧−1) . (35)

Therefore, the negative gradient 𝜋(𝑡𝑘) presents the following expression:

𝜋(𝑡𝑘) = −𝜕𝜖
𝜕𝜃

=
[
−�̂� 𝑓1 (𝑡𝑘−1−𝑛𝑘),−�̂� 𝑓1 (𝑡𝑘−2−𝑛𝑘), 𝑒 𝑓1 (𝑡𝑘−𝑛𝑘), 𝑒 𝑓1 (𝑡𝑘−1−𝑛𝑘), 𝜖 (𝑡𝑘−1), . . . , 𝜖 (𝑡𝑘−𝑛𝑑)

]𝑇
. (36)

The prefilter 𝑓1 and variables �̂�(𝑡𝑘) are calculated from the latest estimated polynomials, respectively:

𝑓1 =
�̂� (𝑧−1)
�̂� (𝑧−1) , �̂�(𝑡𝑘) = �̂�(𝑧−1)

�̂� (𝑧−1) 𝑒(𝑡𝑘−𝑛𝑘). (37)

Thus, the classical RLS algorithm is adapted to non-linear cases by means of converting 𝜋(𝑡𝑘) into a vector composed
of linear variables, as shown in Equation (36). A forgetting factor 𝜆 = 0.99609 is selected for the implementation of
the recursive BJ method, based on previous results from Van Grootheest et al. [10]. In addition, the initial covariance
matrix can be defined as:

𝑃𝑖 = 𝑑𝑖𝑎𝑔 (0.1, 0.1, 0.1, 0.1 × 𝑚∗) . (38)

E. Quality-of-Fit Metrics
In order to verify the quality of the estimation performed, several metrics need to be used. These metrics have to be

relevant in terms of addressing how well the predicted model represents the dynamics of the real one. To achieve such a
goal, the prediction error in estimated model parameters has to be analysed, but the prediction capabilities of such a
model must be also studied.

Hence, two different quality-of-fit metrics are employed: the Variance Accounted For (𝑉𝐴𝐹) [6], and the relative
bias, 𝐵𝑟 (𝜗). Both have been employed in previous works to verify the ARX results [10, 12], thus, these ones should be
also applicable to the BJ results. The 𝑉𝐴𝐹 metric [45],

𝑉𝐴𝐹𝑛∗𝑘 ,𝑚
∗
= 𝑚𝑎𝑥

{
0,

(
1 −

∑𝑁
𝑘=1 | 𝑢(𝑡𝑘) − �̂�𝑛

∗
𝑘 ,𝑚

∗ (𝑡𝑘) |2∑𝑁
𝑘=1 | 𝑢(𝑡𝑘) |2

)
· 100%

}
, (39)

evaluates the correctness of a model, by comparing the real output, 𝑢(𝑡𝑘), with the estimated output of the model,
�̂�𝑛

∗
𝑘 ,𝑚

∗ (𝑡𝑘). The 𝑉𝐴𝐹 of two signals that are the same is 100%, while it will be lower if they differ. For a certain
combination of time delay and remnant filter order in the structure, the 𝑉𝐴𝐹 difference between ARX and BJ models
can be used to compare the accuracy of both methods and analyze the effect of the BJ model remnant order on estimation
results:

Δ𝑉𝐴𝐹𝑛∗𝑘 ,𝑚
∗
= 𝑉𝐴𝐹

𝑛∗𝑘 ,𝑚
∗

𝐵𝐽 −𝑉𝐴𝐹𝑛∗𝑘
𝐴𝑅𝑋 . (40)

On the other hand, the relative bias can be used to verify the accuracy of parameter estimation:

𝐵𝑟 (𝜗) =
(
�̂� − 𝜗0

𝜗0

)
· 100%, (41)

where 𝜗 can be a discrete-time parameter from ARX or BJ models, or an HO coefficient.

9

IV. Method

A. Forcing Function
To accomplish adequate simulations, the forcing function needs to be defined properly. As proposed by Zaal [11], a

summation of 𝑁𝑡 sinusoids with different amplitudes 𝐴𝑘 , frequencies 𝜔𝑘 and phases 𝜙𝑘 ,

𝑓𝑡 (𝑡) =
𝑁𝑡∑︁
𝑘=1

𝐴𝑘 · sin (𝜔𝑘 · (𝑡 − 𝑡0) + 𝜙𝑘) , (42)

is an effective option to excite the closed-loop system shown in Figure 1. To avoid leakage phenomena, the frequencies
𝜔𝑘 are multiples of the base frequency 𝜔𝑘,0 = 2𝜋/𝑇𝑚, where 𝑇𝑚 is the total simulation time. Thus, the integer 𝑛𝑡 is
defined as 𝑛𝑡 = 𝜔𝑘/𝜔𝑘,0. In addition, a transient interval time is introduced in the simulation, 𝑡0, in order that control
loop variables are stabilised, consequently, the sinusoids are initialized at 𝑡 = 𝑡0. Table 1 shows the coefficients of each
sinusoid employed in simulations, while Figure 3 depicts its auto-Power Spectral Density (PSD) function, 𝑆 𝑓𝑡 𝑓𝑡 (𝑗𝜔),
and its peaks located at 𝜔𝑘 .

Table 1. Target function parameters for each component.

𝑘,− 𝑛𝑡 ,− 𝜔𝑘 , 𝑟𝑎𝑑/𝑠 𝐴𝑘 , 𝑑𝑒𝑔 𝜙𝑘 , 𝑟𝑎𝑑

1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875
10 229 17.564 0.025 0.604

10
0

10
2

10
-30

10
-20

10
-10

10
0

Figure 3. Auto-PSD of forcing function 𝒇𝒕 (𝒕) .

B. Remnant Noise
Then, a remnant realisation is generated for every single simulation run by feeding the zero-mean GWN with

unit variance through a filter, i.e., 𝜎𝜀 = 1. Different 𝑚𝑡ℎ-order filters, 𝑚 ∈ {1, 2, 3, 4}, and a remnant time constant,
𝑇𝑛 = 0.06, can be simulated to address their influence on results (see [10, 11, 26]). Additionally, it is possible to introduce
multiple noise levels 𝑃𝑛 ∈ [0.0, 1.0) in the system by modifying the remnant gain 𝐾𝑛. 𝑃𝑛 ∈ {0.0, 0.1, 0.2, 0.3} are
considered in batch-fitting estimation, while 𝑃𝑛 ∈ {0.01, 0.10, 0.20} are used in recursive analysis. Consequently, a
certain value for the 𝐾𝑛 parameter has to be selected to obtain a requested noise level at each simulation, for which the
stochastics theory presented by Ljung [34] can be employed, so that a suitable formula is developed. From the noise
level definition, 𝑃𝑛 = 𝜎2

𝑢𝑛/𝜎2
𝑢 , based on the forcing function expression and HO and CE models:

𝐾𝑛 =

√√√√√√√ 𝑃𝑛

(1 − 𝑃𝑛) · 𝑇𝑠

𝜋
2
∑𝑁𝑡

𝑘=1 𝐴
2
𝑘

��� 𝐻𝐻𝑂𝑒 (𝑗𝜔𝑘)
1+𝐻𝐻𝑂𝑒 (𝑗𝜔𝑘)𝐻𝐶𝐸 (𝑗𝜔𝑘)

���2∫ 𝜋/𝑇𝑠
0

d𝜔
| (𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂𝑒 (𝑗𝜔)𝐻𝐶𝐸 (𝑗𝜔)) |2

. (43)

C. Simulation Conditions
To create a time-varying simulation framework, two different states, 𝑠1 and 𝑠2, are defined on the basis of the

CE dynamics variation and its effect on the human operator. Zaal [11] employs two sets of parameters for the CE
dynamics and the assumed HO dynamics resulting from adaptation. In the state 𝑠1, the HO×CE dynamics are given by
a crossover frequency 𝜔𝑐 = 1.5 𝑟𝑎𝑑/𝑠 and a phase margin 𝜙𝑚 = 77.0◦, while these two parameters are converted into
𝜔𝑐 = 2.8 𝑟𝑎𝑑/𝑠 and 𝜙𝑚 = 22.7◦ in state 𝑠2. When a ZOH discretization is applied, different discrete-time coefficients
are obtained for each set. Furthermore, the corresponding remnant gain 𝐾𝑛 is defined for each state based on Equation
(43). These parameters are recorded in Table 2:

10

Table 2. CE, HO and ZOH-discretization parameters for states 𝒔1 and 𝒔2.

State
CE HO ZOH

𝐾𝑐,− 𝜔𝑏, 𝑟𝑎𝑑/𝑠 𝐾𝑒,− 𝑇𝐿 , 𝑠 𝐾 ¤𝑒,− 𝜏𝑒,− 𝜔𝑛𝑚, 𝑟𝑎𝑑/𝑠 𝜁𝑛𝑚,− 𝑇𝑛, 𝑠 𝑎𝑑,01 ,− 𝑎𝑑,02 ,− 𝑏𝑑,00 ,− 𝑏𝑑,01 ,−
𝑠1 90 6.0 0.09 0.40 0.036 0.28 11.25 0.35 0.06 -1.9121 0.9243 0.0443 -0.0432
𝑠2 30 0.2 0.07 1.20 0.084 0.28 11.25 0.35 0.06 -1.9121 0.9243 0.1024 -0.1016

Two types of simulation conditions are considered in this article based on the scenarios proposed by Zaal [11]: a
constant set of parameters (C1-C2), or a time-varying scenario (C3-C6). In the first case, the state 𝑠1 (C1) or 𝑠2 (C2)
is implemented during the entire simulation trial. The second case is defined by a change between states (performed
by a sigmoid function in Equation (5)) 𝑠1 → 𝑠2, in C3-C4 case, or 𝑠2 → 𝑠1, in C5-C6. Two types of transitions are
considered based on the sigmoid parameter 𝐺 (see Eq. (5)), i.e., a slow states change 𝐺 = 0.5 𝑠−1 in C3 and C5, and a
fast transition 𝐺 = 100 𝑠−1 in C4 and C6. A transition from single- to double-integrator dynamics, together with an
aggressive CE transition, i.e. 𝐺 = 100 𝑠−1, is applied in order to analyze the most challenging scenario, employing the
simulation condition ‘C4’ in consequence. The HO time-delay and NMS parameters are assumed to remain constant
during the simulation [10, 11]. Figure 4 shows the effect of each simulation condition on 𝐾𝑒 as an example:

0 20 40 60 80

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 0 20 40 60 80

Figure 4. HO gain for simulation conditions C1-C6 under simulation time 𝑻𝒎 = 81.92𝒔 and time of maximum rate of change 𝒕𝑴 = 40.96𝒔.

V. Simulation Results
Monte Carlo simulation results are addressed in this section. ARX and BJ estimators’ performance is evaluated in a

batch-fitting scenario under simulation condition C1 by OLS and PEM algorithms, respectively, so that the estimation
accuracy and influence of model parameters, such as the remnant filter or time delay, and the noise level can be
analyzed. Two cases of model remnant order 𝑚∗ are studied: an order that matches the simulation remnant order, i.e.
𝑚∗ = 𝑚0 ∈ {1, 2, 3, 4}, or a fixed first-order, i.e. 𝑚∗ = 1. An optimal PEM algorithm with a BJ(𝑚∗ = 1) structure
is selected due to its efficiency and accuracy. Once the BJ estimator is studied, the RLS and RPEM algorithms are
evaluated in a time-varying scenario (i.e. simulation condition C4) for ARX and BJ models, respectively. A total of
𝑀 = 100 replications are evaluated in each case, which are shown in Box and Whiskers plots in batch-fitting scenario,
or averaged in recursive estimation. A measurement time 𝑇𝑚 = 81.92 𝑠 and transient time 𝑡0 = 10.00 𝑠 are employed.
Estimation processes are only conducted during the measurement time, after tracking error and control output signals
are stabilized. The sample time is 𝑇𝑠 = 0.01 𝑠.

A. Batch-Fitting Estimation

1. ARX and BJ Model with Remnant Order 𝑚∗ = 𝑚0

Figure 5 shows that a large relative bias is obtained for 𝑚0 = 1 due to poles mismatch in the ARX remnant filter
structure, since it is modeled with the same discrete-time denominator used in the linear HO transfer function. Thus,
ARX method sacrifices estimation accuracy to explain the remnant dynamics more precisely, by means of a filter
structure unable to model a first-order one. However, when remnant filters with order 𝑚0 ≥ 2 are simulated, ARX bias
is diminished to acceptable values because the number of model remnant filter poles is never higher than the number of
poles in 𝐻𝑚

𝑛 (𝑠, 𝑡), although the estimation error in 𝑏𝑑0 and 𝑏𝑑1 is still around 50% in most cases.
Changes in model time delay (x-axis) produce a linear trend in computed relative bias since the ARX estimator tries

to create or reduce lag. Hence, first-order integrator dynamics are achieved sooner for time delays 𝑛∗𝑘 < 𝑛
0
𝑘 = 29 by

placing the NMS poles at a lower frequency, while additional lead is generated in cases when 𝑛∗𝑘 > 𝑛
0
𝑘 = 29.

Increments in noise level give as a result a greater bias in general, which affects the stability of the ARX estimator

11

severely. Since the model filter structure is wrong and imposes unrealistic poles, higher remnant levels will lead to an
increase in estimation error. On the other hand, a null bias can be obtained in a remnant-free scenario if the ideal time
delay is employed (this fact proves a discrete-time estimator is implemented properly).

As depicted in Figure 6, the BJ estimator is capable of improving on the ARX results considerably. The BJ model
is initialized with coefficients close to the true simulated HO parameters to ensure convergence, although the PEM
algorithm’s flexibility with inaccurate initial conditions has been proven. The important bias found in first-order remnant
order simulations is now highly reduced, while estimations with similar accuracy are achieved for different remnant
orders.

0

200

400

600

800

1000

1200

-50

0

50

100

0

200

400

600

800

1000

1200

-50

0

50

100

-50

-40

-30

-20

-10

0

-4

-3

-2

-1

0

1

2

3

-100

-80

-60

-40

-20

0

-8

-6

-4

-2

0

2

4

6

Figure 5. Box and Whisker plots for relative bias of discrete-time parameters in ARX model.

-40

-20

0

20

40

-40

-20

0

20

40

-3

-2

-1

0

1

-6

-4

-2

0

2

Figure 6. Box and Whisker plots for relative bias of discrete-time parameters in BJ model with 𝒎∗ = 𝒎0.

12

Since BJ structures allow different pole allocations in 𝐻𝐻𝑂𝑒 (𝑠, 𝑡) and 𝐻𝑚
𝑛 (𝑠, 𝑡), but also the same number of poles

in simulated and model remnant filters, BJ estimators are quite adaptive to create discrete-time structures that fit each
HO model adequately. For remnant orders 𝑚0 ≥ 2, ARX bias results present comparable values to BJ ones, nevertheless,
BJ estimators still provide a response with around 50% less estimation error.

Similar to the ARX case, the BJ estimator creates lag or lead depending on the assumed model time delay, hence, a
linear trend is also found. Nonetheless, relative bias values are close to zero for increasing values in noise level, which
ensures an ideal HO identification. Only small changes in 𝑏𝑑0 and 𝑏𝑑1 are found for 𝑚0 = 4. In contrast to ARX models,
relative bias results oscillate around the value obtained for the remnant-free scenario in BJ estimators. Therefore, BJ
structures represent a more consistent, robust alternative in batch-fitting cases, since the simulation remnant order and
noise level do not affect the accuracy of estimation.

2. ARX and BJ Model with Remnant Order 𝑚∗ = 1
Although the PEM algorithm for BJ model structures has been proven to be an adequate, precise estimation method

in the discrete-time domain, more information about the effect of the model remnant order is required to develop a
suitable, efficient estimator. Consequently, the 𝑉𝐴𝐹 metric is evaluated in Figure 7 for multiple BJ model time delays
and remnant orders in a 𝑚0 = 3 scenario, while it is also compared to the 𝑉𝐴𝐹 results for ARX models in Figure 8.
The BJ estimator presents a homogeneous average 𝑉𝐴𝐹 value for all model remnant orders, and differences are only
found for different time delays and noise levels. However, in scenarios with 𝑚0 = 1, it has been observed a poorer
performance when high model remnant orders are utilized. No significant differences are found between BJ and ARX
for cases with a time delay close to 𝑛∗𝑘 = 29. Hence, the use of BJ models with 𝑚∗ = 1 is recommended to reduce the
degrees of freedom in these structures without a cost in estimation accuracy.

Figure 7. 𝑉𝐴𝐹 results for BJ model with multiple model time delay 𝒏∗
𝒌

and remnant order 𝒎∗. Simulation time delay 𝒏0
𝒌
= 29 and remnant

order 𝒎0 = 3 (red cross).

Figure 8. Difference in 𝑉𝐴𝐹 results between BJ and ARX models with multiple model time delay 𝒏∗
𝒌

and remnant order 𝒎∗. Simulation
time delay 𝒏0

𝒌
= 29 and remnant order 𝒎0 = 3 (red cross).

Such a hypothesis about the use of a constant model remnant order 𝑚∗ = 1 can be also validated by the relative
bias analysis, shown in Figure 9. Equivalent results are found when compared to Figure 6, and the bias in 𝑚0 = 4 is
even slightly diminished. BJ structures with 𝑚∗ = 1 present a discretized remnant filter directly obtained from the
Backward-Euler method, while the number of parameters in 𝐻𝑚

𝑛 (𝑠, 𝑡) to be estimated differs from the number of 𝑑𝑑
coefficients, which makes the estimation more robust when 𝑚∗ = 1.

Bode plots of ARX and BJ models for multiple noise levels and simulation remnant orders, when the ideal time
delay is selected, are shown in Figure 10. The real 𝐻𝐻𝑂𝑒 dynamics are represented by the ZOH discretization. There is
a clear difference between both model structures, which can be explained by the relative bias results presented previously.
The zero is located at lower frequencies for higher noise levels in ARX results, obtaining a higher magnitude peak.
The ARX structure fails to capture the NMS poles in a first-order remnant filter, while these ones are moved to lower

13

frequencies when being estimated for higher remnant orders. ARX models attempt to explain remnant dynamics by
generating lag when the remnant order is increased, giving as a result a wrong estimation. This issue is not present in the
BJ case owing to the flexibility of its model structure, accomplishing almost 100% accurate estimations in all scenarios.

-20

0

20

40

-20

0

20

40

-3

-2

-1

0

1

-6

-4

-2

0

2

Figure 9. Box and Whisker plots for relative bias of discrete-time parameters in BJ model with 𝒎∗ = 1.

10
0

-450

-360

-270

-180

-90

0

90

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2
10

-1
10

0
10

1
10

2
10

-1
10

0
10

1
10

2

Figure 10. Bode plots for ARX and BJ models with model time-delay 𝒏∗
𝒌
= 𝒏0

𝒌
= 29 and remnant filter order 𝒎∗ = 1. Reference ZOH

discretization (black, dashed line).

B. Recursive Estimation
To estimate ARX and BJ models recursively, RLS and RPEM algorithms with a forgetting factor 𝜆 = 0.996609 are

employed, respectively. The covariance matrix is initialized as shown in Equation 38 in both methods. Two batch-fitting

14

estimations are performed for time intervals [0, 30.72] s and [51.20, 81.92] s to capture 𝑠1 and 𝑠2 dynamics, based
on [10]. The first OLS batch-fitting outcome is utilized to initialize the RLS algorithm (i.e. OLS→RLS). Also, OLS
estimations are used as initial conditions for the PEM algorithm, afterwards, these converged batch-fitting coefficients
are employed in the RPEM initialization (i.e. OLS→PEM→RPEM). Through this strategy, the recursive BJ algorithm
is independent of initial conditions set by the user.

Figure 11 depicts the estimation of the discrete-time parameters from RLS and RPEM for multiple remnant orders
and noise levels. In the 𝑚0 = 1 case, ARX models lead to significant relative bias while BJ provides a much more
precise estimation with almost null bias after full convergence, similar to what is shown previously in Figures 5 and 9.
For remnant orders 𝑚0 ≥ 2, ARX improves its results, but it still shows a considerable bias with respect to BJ outcome.
Therefore, batch-fitting results observed in previous figures also represent the real functioning of RLS and RPEM
algorithms in recursive estimation.

Nonetheless, the recursive BJ estimator presents more difficulties in achieving convergence for high noise levels.
While the RLS algorithm adapts quite fast to changes in simulation parameters, and provides a stable estimation once
those parameters are fixed, the BJ structure needs 500% more time to process, which may turn into divergence problems
due to excessive oscillations in some cases. The RPEM algorithm denotes a slower adaptation capacity, making it more
difficult for the recursive estimation to converge to each sub-batch-fitting result.

Figure 11. Simulation results of recursive ARX(𝒏∗
𝒌
= 29) and BJ(𝒏∗

𝒌
= 29, 𝒎∗ = 1) algorithms in discrete-time parameters. ARX estimations:

OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line).

Figure 12 shows the identified HO coefficients by ARX and BJ model structures. The RLS algorithm presents
considerable errors in the NMS coefficients for remnant order 𝑚0 = 1 simulations, which are mainly produced by highly
biased discrete-time estimations. When the discrete-time coefficients are obtained, the discrete-time state-space system
form is calculated for the transfer function 𝐵(𝑧−1)/𝐴(𝑧−1). Then, Gajic’s procedure [46] is used reversely to get the
continuous-time state-space system by means of the logarithm of its extended matrix. To obtain a successful conversion
of the state-space system, its associated extended matrix must be invertible and with no negative real eigenvalues [46].
Hence, the following discrete-time parameter constraints must be respected to ensure a proper state-space conversion:{
𝑎𝑑1 < 0, 𝑎𝑑2 > 0

}
.

When simulations with 𝑚0 ≥ 2 are conducted, the bias in ARX estimations is reduced by almost 10 times, although
it is still persistent in NMS coefficients. However, ARX offers more stable, precise results than BJ in 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒,
while the BJ model provides a more adequate outcome in NMS parameters. Particularly, great oscillations are given in
𝑇𝐿 estimations from BJ structures. Thus, ARX is able to modify its discrete-time estimations to focus on gain and zero
estimation mainly, at the cost of permanent NMS bias. On the other hand, BJ gives the same priority to all coefficients,
based on its non-linear optimization process. In addition, an additional error is produced when 𝑚0 = 2 in BJ estimations

15

since coupling can occur in poles of 𝐻𝐻𝑂𝑒 (𝑠, 𝑡) and 𝐻𝑚
𝑛 (𝑠, 𝑡).

Figure 12. Simulation results of recursive ARX(𝒏∗
𝒌
= 29) and BJ(𝒏∗

𝒌
= 29, 𝒎∗ = 1) algorithms in HO coefficients. ARX estimations: OLS

(dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line).

VI. Experimental Results
Experimental results obtained in an experiment in the SIMONA Research Simulator at Delft University of Technology

by Van Grootheest et al. [10] are analyzed in this section, following a similar estimation strategy explained in Section
V.B. Three subjects conducted the single-axis compensatory tracking task detailed in Figure 1. The run-in time is
𝑡0 = 8.08 𝑠, while the measurement time 𝑇𝑚 = 81.92 𝑠. A total of 7 runs were performed, from which the last 5 ones
are evaluated. The sample time is 𝑇𝑠 = 0.01 𝑠. Only the simulation condition C4 results are studied below, in which a
fast transition from state 𝑠1 to 𝑠2 is given (see Section IV.C).

A model remnant order 𝑚∗ = 1 is employed, while the model time delay 𝑛∗𝑘 and remnant time constant 𝑇𝑛 are
computed a priori by means of the average between the best two sub-batch-fitting estimations made. Thus, specific 𝑛∗𝑘
and 𝑇∗

𝑛 are used in each run and model structure, which are shown in Table 3.

Table 3. Model parameters 𝒏∗
𝒌

and 𝑻 ∗
𝒏 used in each run and model structure.

Model
Parameters

Subject 1 Subject 2 Subject 3
N1 N2 N3 N4 N5 N1 N2 N3 N4 N5 N1 N2 N3 N4 N5

ARX: 𝑛∗𝑘 ,− 21 24 22 28 20 24 22 20 25 24 25 24 24 24 26
BJ: 𝑛∗𝑘 ,− 30 30 31 32 31 26 28 26 29 27 28 30 26 27 27
BJ: 𝑇∗

𝑛 , 𝑠 0.16 0.13 0.16 0.13 0.11 0.17 0.11 0.13 0.06 0.14 0.10 0.05 0.08 0.15 0.05

Figures 13 and 14 show the discrete-time and HO model coefficients estimation results for ARX and BJ, respectively.
In all subjects, both recursive algorithms are capable of detecting HO adaptation, although subject 1 does not seem to
generate as much lead in the state 𝑠2 as subjects 2 and 3. As explained in Section V, the RPEM algorithm requires more

16

time to achieve convergence when facing changes in HO parameters, hence, this fact has a strong impact on the BJ
performance in real life, seeing that the human operator is not a steady, perfect controller.

Figure 13. Experimental results of recursive ARX and BJ algorithms in discrete-time parameters.

Figure 14. Experimental results of recursive ARX and BJ algorithms in HO coefficients.

Magnitudes of discrete-time parameter estimations are different for ARX and BJ, as can be observed in Figure 13.
This fact can be due to the effort of ARX structures in focusing more on HO gain and zero estimation, while RPEM

17

follows an optimization for all model coefficients equally. Modifications in 𝑎𝑑1 and 𝑎𝑑2 coefficients magnitudes directly
imply an adjustment in 𝑏𝑑0 and 𝑏𝑑1 , and vice versa. Additionally, incorrect estimations in 𝑛∗𝑘 in ARX and BJ models also
affect the discrete-time parameter magnitudes.

Oscillations in estimated parameters are more noticeable in BJ than ARX. Since the RPEM algorithm follows a
non-linear optimization process, more noise is found in BJ estimations than whether the RLS was used, particularly in
the 𝑇𝐿 coefficient. BJ model covariance matrix starts to increase from the start of estimation, since more uncertainty
is given about the accuracy of predicted parameters, which turns into convergence issues when the state 𝑠2 is being
evaluated.

In addition, estimated NMS coefficients are supposed not to show high oscillations during the entire simulation
(relatively small changes are given in real life), but the RPEM algorithm provides an outcome with greater fluctuations.
Nevertheless, the average NMS estimations in BJ structures show higher values than in ARX models, which denotes
that a considerable bias may be generated by the RLS algorithm.

VII. Discussion
A novel time-varying HO identification method based on recursive BJ model structures is developed, which tries

to make a precise fit of the HO coefficients that define its dynamics in single-axis manual-control tasks. An optimal
version of the algorithm is found for a structure with a model remnant order 𝑚∗ = 1, based on batch-fitting results.
The RPEM algorithm, implemented with a constant forgetting factor 𝜆, shows acceptable results when being tested on
simulation data, since it is able to correctly track HO adaptations to CE dynamics transitions proposed by Zaal [11].
Through testing on experimental data, the recursive BJ is capable of detecting adaptation in subjects, while providing
HO coefficient estimations whose magnitudes appear feasible. BJ results in batch and recursive fitting are compared to
ARX ones in order to analyze the advantages and drawbacks of estimating HO coefficients by PEM or RPEM algorithms
instead of OLS and RLS.

BJ structures have great potential as identification method, however, they present several problems that can affect
their applicability. Firstly, the PEM algorithm is dependent on initial conditions, and although it offers adequate
flexibility, initial conditions with high deviations from real values may lead to convergence failure. This fact is quite
relevant regarding PEM initialization by a prior OLS estimation, since it is proven that ARX batch-fitting could provide a
highly biased output. Furthermore, despite the BJ capability of detecting HO adaptation, the convergence time required
can be even 5 times higher due to the non-linear optimization procedure it follows, which can cause identification
problems in real life due to the fast changes in HO dynamics. Noticeable fluctuations can be found in recursive BJ
estimations, mainly in the parameter 𝑇𝐿 , and in NMS coefficients that should be steady during the entire test.

When comparing ARX and BJ model structures, BJ offers a 5000% more accurate estimation when the remnant
order is 𝑚∗ = 1, owing to the mismatch of the ARX model in the remnant filter poles. The BJ model can also prevent
the persistent bias found in ARX estimations, because of the versatility of BJ structures when facing different remnant
dynamics. Thus, RPEM can provide accurate results in NMS coefficients once the algorithm is converged, while RLS
reaches its final estimation fast, but it will always have a bias. Nevertheless, ARX is able to modify the discrete-time
parameters in order to still reliably estimate 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒, achieving a more adequate, steady fit than BJ for considerably
high noise levels.

Definitely, there is room for improvement in the RPEM algorithm implementation. For instance, the covariance
matrix could be updated based on 𝑉𝐴𝐹 from a validation data set, in order to reduce the strong oscillations that are
given in state 𝑠2. A forgetting matrix RPEM algorithm could also be implemented, although no MATLAB functions
are available for this setup, so that the algorithm should be built based on the theory explained in Section III. Such a
forgetting matrix could weigh all samples in discrete-time poles estimation, while applying a certain time horizon for 𝑏𝑑0
and 𝑏𝑑1 , as conducted in [10]. Another strategy would consist of applying the PEM algorithm to sub-batches of data
recursively, since this method has shown really high accuracy in all HO coefficient estimations. However, divergence
problems may occur due to wrong initialization, or whether the sub-batches are too small. Additionally, other recursive
BJ algorithms could be explored, such as the RRIV, which can be implemented through the Captain Toolbox [41]. In
particular, this could solve the issues of dependency on initial conditions and convergence rate.

Once the recursive BJ algorithm is refined, conducting a decimation analysis is important to verify the BJ applicability
when different sample times are used, as shown by Van Grootheest et al. [10]. When 𝑛𝑘 can not be a multiple of the
sample time 𝑇𝑠 , or a time-varying delay is given, it is necessary to implement a Padé approximation [47] that represents
the effect of time delay by a transfer function. This approximation increases the number of discrete-time parameters to
be estimated, thus, it may affect the accuracy and convergence of recursive BJ algorithms. Moreover, other models for

18

remnant dynamics should be evaluated to test the performance of the RPEM algorithm in a real-life scenario.
Experimental results are also affected by the time delay estimation, which may not be optimal in the calculations

performed in this article. It is more convenient to have an independent time delay estimation algorithm [12, 22] that
provides an acceptable recursive identification for each subject. This way, the predicted time delay can be introduced
into the BJ structure in the RPEM algorithm. In addition, the model remnant time constant 𝑇𝑛 could be predicted by
means of other methods, although it does not have much effect on the estimation accuracy.

Based on the comparison of RLS and RPEM performance as shown in this paper, an ‘identification method fusion’
could be an interesting alternative. ARX has been proven to give adequate results for the HO gain and lead contribution,
while BJ can remove the bias in NMS coefficients. An ideal identification technique should have the precision of BJ,
but also the adaptation velocity of ARX. Therefore, RPEM could be implemented with a forgetting matrix, so NMS
estimations performed by RLS can be adjusted based on recursive BJ calculations, diminishing the persistent bias in
these coefficients.

Moreover, since high oscillations are frequently given in the identified coefficients, the utilization of a moving average
would be advisable, and particularly, when the RPEM is applied to experimental data. Thus, important fluctuations that
affect the stability of the estimation could be filtered out. This method could be quite useful in the time constant 𝑇𝐿
specially.

VIII. Conclusion
This article lays the foundation for the development of an identification method based on Box-Jenkins structures

that is able to provide an adequate estimation of the time-varying adaptation of a human operator in compensatory
tracking tasks. A Monte Carlo simulation, based on the conditions presented by Zaal [11], is conducted to evaluate the
performance of the Prediction Error Method (PEM) algorithm, in batch-fitting estimation, and the Recursive Prediction
Error Minimization (RPEM) in recursive. The recursive Box-Jenkins (BJ) estimator employs a constant forgetting
factor 𝜆 = 0.99609, based on Van Grootheest’s research [10], and a model remnant order 𝑚∗ = 1. Both Recursive Least
Squares (RLS) and RPEM are tested with experimental data from three subjects. All results are compared to ARX
outcome.

In batch-fitting, BJ fixes the bias problem in all parameters found in ARX results. The remnant filter order no longer
meaningfully affects the bias and accuracy in BJ estimation, while it clearly does for ARX. Furthermore, the use of a
fixed model remnant order 𝑚∗ = 1 does not change the bias obtained by BJ, which makes it a suitable model structure
configuration. Additionally, BJ presents more robustness than ARX when facing high noise levels.

Regarding recursive estimation, BJ offers a reduction in persistent bias found in identified coefficients, while ARX
converges to its final estimation 5 times faster, reaching a quicker adaptation to changes in HO parameters. Except for a
first-order remnant, the RLS algorithm usually captures the HO gain and zero with 0-5% less bias, but BJ is able to
approximate the real Neuro-Muscular (NMS) dynamics with 25% less error. When a 𝑚0 = 1 simulation is conducted,
the BJ model clearly outperforms ARX. Through experimental testing, it is proven that the slow adaptation of the
recursive BJ can lead to excessive fluctuations in the identified HO coefficients. In addition, BJ shows the expected
adaptation of 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒 less clearly than the ARX outcomes.

The RPEM algorithm contributes to the human-machine systems research field of study by providing novel non-linear
procedures that can improve the current estimation methodologies in certain aspects, such as batch-fitting or recursive
estimation in first-order remnant scenarios. For instance, an advanced identification technique could be based on an
RLS algorithm powered by an improved version (i.e. with optimized convergence) of the recursive BJ method, which
provides a more accurate, stable NMS estimation.

References
[1] McRuer, D. T., “Human Pilot Dynamics in Compensatory Systems,” Air Force Flight Dynamics Laboratory, Wright-Patterson

Air Force Base, OH, 1965. https://doi.org/10.21236/ad0470337.
[2] McRuer, D. T., and Weir, D. H., “Theory of Manual Vehicular Control,” IEEE Transactions on Man-Machine Systems, Vol. 10,

No. 4, 1969, pp. 257–291. https://doi.org/10.1109/TMMS.1969.299930.
[3] McRuer, D. T., and Jex, H., “A Review of Quasi-Linear Pilot Models,” IEEE Transactions on Human Factors in Electronics,

Vol. HFE-8, No. 3, 1967, pp. 231–249. https://doi.org/10.1109/THFE.1967.234304.
[4] McRuer, D. T., Graham, D., and Krendel, E. S., “Manual control of single-loop systems: Part I,” Journal of the Franklin

Institute, Vol. 283, No. 1, 1967, pp. 1–29. https://doi.org/10.1016/0016-0032(67)90112-3.

19

[5] McRuer, D. T., Graham, D., and Krendel, E. S., “Manual control of single-loop systems: Part II,” Journal of the Franklin
Institute, Vol. 283, No. 2, 1967, pp. 145–168. https://doi.org/10.1016/0016-0032(67)90231-1.

[6] Nieuwenhuizen, F. M., Zaal Pmt, M., Mulder, Zaal, P. M. T., Mulder, M., van Paassen, M., and Mulder, J., “Modeling Human
Multichannel Perception and Control Using Linear Time-Invariant Models,” Journal of Guidance Control and Dynamics, 2008.
https://doi.org/10.2514/1.32307.

[7] van Paassen, M., and Mulder, M., “Identification of Human Operator Control Behaviour in Multiple-Loop Tracking Tasks,”
IFAC Proceedings Volumes, Vol. 31, No. 26, 1998, pp. 455–460. https://doi.org/10.1016/S1474-6670(17)40135-2, 7th IFAC
Symposium on Analysis, Design and Evaluation of Man-Machine Systems (MMS’98), Kyoto, Japan, 16-18 September 1998.

[8] Stapleford, R., McRuer, D., and Magdaleno, R., “Pilot Describing Function Measurements in a Multiloop Task,” IEEE
Transactions on Human Factors in Electronics, Vol. HFE-8, No. 2, 1967, pp. 113–125. https://doi.org/10.1109/THFE.1967.
233628.

[9] Young, L. R., “On Adaptive Manual Control,” Ergonomics, Vol. 12, No. 4, 1969, pp. 635–674. https://doi.org/10.1080/
00140136908931083.

[10] van Grootheest, A., Pool, D. M., van Paassen, M., and Mulder, M., “Identification of Time-Varying Manual-Control Adaptations
with Recursive ARX Models,” AIAA, 2018. https://doi.org/10.2514/6.2018-0118.

[11] Zaal, P. M., “Manual Control Adaptation to Changing Vehicle Dynamics in Roll-Pitch Control Tasks,” Journal of Guidance
Control and Dynamics, 2016. https://doi.org/10.2514/1.g001592.

[12] Plaetinck, W., Pool, D. M., van Paassen, M., and Mulder, M., “Online Identification of Pilot Adaptation to Sudden Degradations
in Vehicle Stability,” IFAC-PapersOnLine, Vol. 51, No. 34, 2019, pp. 347–352. https://doi.org/10.1016/j.ifacol.2019.01.020,
2nd IFAC Conference on Cyber-Physical and Human Systems CPHS 2018.

[13] Hess, R. A., “Modeling Human Pilot Adaptation to Flight Control Anomalies and Changing Task Demands,” Journal of
Guidance Control and Dynamics, 2016. https://doi.org/10.2514/1.g001303.

[14] Hess, R. A., “Modeling Pilot Control Behavior with Sudden Changes in Vehicle Dynamics,” Journal of Aircraft, 2009.
https://doi.org/10.2514/1.41215.

[15] Mulder, M., Pool, D. M., Abbink, D. A., Boer, E. R., Zaal, P. M. T., Drop, F. M., van der El, K., and van Paassen, M. M.,
“Manual Control Cybernetics: State-of-the-Art and Current Trends,” IEEE Transactions on Human-Machine Systems, Vol. 48,
No. 5, 2018, pp. 468–485. https://doi.org/10.1109/THMS.2017.2761342.

[16] Popovici, A., Zaal, P. M. T., and Pool, D. M., “Dual Extended Kalman Filter for the Identification of Time-Varying Human
Manual Control Behavior,” AIAA, 2017. https://doi.org/10.2514/6.2017-3666.

[17] Ameyoe, A., Chevrel, P., Le-Carpentier, E., Mars, F., and Illy, H., “Identification of a Linear Parameter Varying Driver Model for
the Detection of Distraction,” IFAC-PapersOnLine, Vol. 48, No. 26, 2015, pp. 37–42. https://doi.org/10.1016/j.ifacol.2015.11.110,
1st IFAC Workshop on Linear Parameter Varying Systems LPVS 2015.

[18] Olivari, M., Nieuwenhuizen, F. M., Bülthoff, H. H., and Pollini, L., “Identifying time-varying neuromuscular system with a
recursive least-squares algorithm: a Monte-Carlo simulation study,” 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2014, pp. 3573–3578. https://doi.org/10.1109/SMC.2014.6974484.

[19] Zaal, P. M. T., and Sweet, B. T., “Estimation of Time-Varying Pilot Model Parameters,” AIAA, 2011. https://doi.org/10.2514/6.
2011-6474.

[20] Zaal, P. M. T., Pool, D. M., Chu, Q., van Paassen, M., Mulder, M., and Mulder, J., “Modeling Human Multimodal
Perception and Control Using Genetic Maximum Likelihood Estimation,” Journal of Guidance Control and Dynamics, 2009.
https://doi.org/10.2514/1.42843.

[21] Duarte, R., Pool, D. M., van Paassen, M., and Mulder, M., “Experimental Scheduling Functions for Global LPV Human Controller
Modeling,” IFAC-PapersOnLine, Vol. 50, No. 1, 2017, pp. 15853–15858. https://doi.org/10.1016/j.ifacol.2017.08.2329.

[22] Boer, E., and Kenyon, R., “Estimation of time-varying delay time in nonstationary linear systems: an approach to monitor
human operator adaptation in manual tracking tasks,” IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems
and Humans, Vol. 28, No. 1, 1998, pp. 89–99. https://doi.org/10.1109/3468.650325.

[23] Jiao, J., Sun, L., Tan, W., Xu, S., and Liu, X., “Identifying Pilot Control Adaptations to Sudden Changes in Aircraft Dynamics,”
Journal of Guidance Control and Dynamics, 2023. https://doi.org/10.2514/1.g007358.

[24] Drop, F. M., Pool, D. M., Mulder, M., and Bulthoff, H. H., “Constraints in Identification of Multi-Loop Feedforward Human
Control Models,” IFAC-PapersOnLine, Vol. 49, No. 19, 2016, pp. 7–12. https://doi.org/10.1016/j.ifacol.2016.10.444, 13th
IFAC Symposium on Analysis, Design, and Evaluation of Human-Machine Systems HMS 2016.

[25] Linssen, M., Identifying Time-Varying Multimodal Manual Control Using Recursive ARX Model Techniques, TU Delft Library,
2020. URL http://resolver.tudelft.nl/uuid:442f4308-0ea2-41a5-b38c-ee6b1a289f78.

[26] Pool, D. M., Pais, A. V., Vroome, A. D., van Paassen, M., and Mulder, M., “Identification of Nonlinear Motion Perception
Dynamics Using Time-Domain Pilot Modeling,” Journal of Guidance Control and Dynamics, 2012. https://doi.org/10.2514/1.
56236.

[27] Lone, M., and Cooke, A., “Review of pilot models used in aircraft flight dynamics,” Aerospace Science and Technology, Vol. 34,
2014, pp. 55–74. https://doi.org/10.1016/j.ast.2014.02.003.

[28] Metz, L. D., “A Time-Varying Approach to the Modeling of Human Control Remnant,” IEEE Transactions on Systems, Man,
and Cybernetics, Vol. 12, No. 1, 1982, pp. 24–35. https://doi.org/10.1109/TSMC.1982.4308772.

20

[29] Levison, W. H., Baron, S., and Kleinman, D. L., “A Model for Human Controller Remnant,” IEEE Transactions on Man-Machine
Systems, Vol. 10, No. 4, 1969, pp. 101–108. https://doi.org/10.1109/TMMS.1969.299906.

[30] van der El, K., Pool, D. M., and Mulder, M., “Analysis of Human Remnant in Pursuit and Preview Tracking Tasks,” IFAC-
PapersOnLine, Vol. 52, No. 19, 2019, pp. 145–150. https://doi.org/10.1016/j.ifacol.2019.12.165, 14th IFAC Symposium on
Analysis, Design, and Evaluation of Human Machine Systems HMS 2019.

[31] Olivari, M., Venrooĳ, J., Nieuwenhuizen, F. M., Pollini, L., and Bulthoff, H. H., “Identifying Time-Varying Pilot Responses: A
Regularized Recursive Least-Squares Algorithm,” AIAA, 2016. https://doi.org/10.2514/6.2016-1182.

[32] Klyde, D. H., Brenner, M. J., and Thompson, P., “Wavelet-based time-varying human operator models.” AIAA, 2001.
https://doi.org/10.2514/6.2001-4009.

[33] Mandal, T., and Gu, Y., “Online Pilot Model Parameter Estimation Using Sub-Scale Aircraft Flight Data,” AIAA, 2016.
https://doi.org/10.2514/6.2016-0636.

[34] Ljung, L., System Identification: Theory for the User, 2nd Edition, Prentice Hall Information and System Sciences Series, 2012.
https://doi.org/10.1109/MRA.2012.2192817.

[35] Islam, S. A. U., and Bernstein, D. S., “Recursive Least Squares for Real-Time Implementation [Lecture Notes],” IEEE Control
Systems Magazine, Vol. 39, No. 3, 2019, pp. 82–85. https://doi.org/10.1109/MCS.2019.2900788.

[36] Franklin, G. F., Powell, J., and Workman, M. L., Digital Control Of Dynamic Systems 3rd Edition, Ellis-Kagle Press, 1998.
[37] Butcher, J. C., Numerical methods for ordinary differential equations, John Wiley & Sons, Ltd, 2003. https://doi.org/10.1002/

9781119121534.
[38] Tangirala, A. K., Principles of System Identification: Theory and Practice, Taylor & Francis Group, 2017. https://doi.org/10.

1201/9781315222509.
[39] Hess, R. A., and Mnich, M. A., “Identification of pilot-vehicle dynamics from in-flight tracking data,” Journal of Guidance

Control and Dynamics, 1986. https://doi.org/10.2514/3.20129.
[40] Young, P. C., Recursive Estimation and Time-Series Analysis, 2nd Edition, Springer, 2011. https://doi.org/10.1007/978-3-642-

21981-8.
[41] Young, P. C., “Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box–Jenkins model,”

Automatica, Vol. 52, 2015, pp. 35–46. https://doi.org/10.1016/j.automatica.2014.10.126.
[42] Box, G. E. P., and Jenkins, G. M., Time series analysis forecasting and control, 5th ed., John Wiley & Sons, Inc., 1970.
[43] Ljung, L., System Identification Toolbox: User’s Guide, Mathworks, 2023.
[44] Brabenec, R. L., Resources for the Study of Real Analysis, Mathematical Association of America, 2004.
[45] Verhaegen, M., and Verdult, V., Filtering and System Identification: A Least Squares Approach, Cambridge University Press,

2007.
[46] Gajic, Z., Linear Dynamic Systems and Signals, Prentice Hall, 2003.
[47] Vajta, M., Some remarks on Padé-approximations, 2000, pp. 53–58. 3rd TEMPUS-INTCOM Symposium on Intelligent Systems

in Control and Measurements 2000 ; Conference date: 09-09-2000 Through 14-09-2000.

21

Part II

Preliminary Report

23

Summary
The identification of time-varying, adaptive behaviour of a human operator (HO) in basic manual control tasks

is undoubtedly under development since most methodologies only account for time-invariant systems. Previous

authors have proved that estimation techniques based on Auto-Regressive-eXogeneous (ARX) structures can

generally identify the HO model parameters. Nonetheless, ARX methods present several problems, such as the

permanent bias in estimates that may increase depending on the HO model. Therefore, a novel identification

technique based on Box-Jenkins (BJ) models is proposed to solve the issues found in ARX results, by achieving a

more adequate match between the estimator structure and the HO model. BJ estimators not only offer the possibility

of creating different poles for the linear and remnant components of the HO model, but also the adaptation to the

remnant filter order found in the human. The identification process can be conducted offline by means of Prediction

Error Method (PEM) algorithms, applicable for both ARX and BJ structures, or online, when the Recursive Least

Squares (RLS) and the Recursive PEM (RPEM) are employed in ARX and BJ models, respectively. The BJ estimator

has excellent potential as an identification tool, although non-linear optimization processes are involved, which

increases the problem difficulty and the computational effort.

Keywords: ARX; Box-Jenkins; Equalization; Gaussian White Noise; Human Operator; Prediction Error Method;

Recursive Least Squares; Recursive Prediction Error Minimization; Remnant.

24

1
Introduction

Human manual-control behaviour naturally changes over time, in various contexts, and across operators. In

order to explain the dynamic features of human operators (HOs) in skill-based manual control tasks, identification

methods have been developed [22, 26, 25, 23, 24, 30, 34, 40]. However, they are often only applicable in situations

when the control behaviour is thought to be time-invariant [30]. The availability of control-theoretic models that

can capture both the adaptive and learning aspects of manual-control behaviour has long been a goal [45, 10, 50, 36,

11, 12]. Modern cybernetics is unable to fully explain how HOs modify their behaviour to deal with control-task

changes. The continued development of time-varying identification techniques is necessary to make rapid progress

in our knowledge of how people really interact with dynamic control systems [29].

The majority of research on identifying time-varying manual-control behaviour focuses on task variable changes

that are particularly caused by variations in the dynamics of the controlled element (CE) [25, 45, 11, 50, 38, 10, 36].

Numerous research begin by examining single-axis compensatory control tasks and are based on the well-known

crossover model [25], keeping in mind that the use of additional types of inputs to the HO or even extensions to

multiple axes of control should not provide any significant challenges [11].

Thus, the purpose of this report is to propose a research plan, whose ultimate goal is to identify real-time

(i.e. online) human control behaviour adaptation in a compensatory manual-control task. Real-time execution of

these processes offers new possibilities in addition to advancing the earlier study objectives. For instance, pilot

adaptation to anomalies in aircraft or controlled elements could be studied and modelled [50, 36, 11, 12]. On the

other hand, reduced attention or distraction in real-world control activities could be identified by continuously

monitoring the operator through an update of a human operator model [1]. Additionally, this might allow for

adaptive haptic feedback that monitors the operator’s present behaviour [32]. Online identification can assist in

modifying experimental circumstances in real time to directly analyse adaptation behaviour or obtain desired

haptic feedback characteristics in research with humans-in-the-loop.

Multiple authors have attempted to apply different techniques to achieve a successful online identification [32,

34, 48, 49, 6, 2, 10, 14], nevertheless, most of the methodologies used are not able to provide ideal results due to the

high difficulty of the problem. For instance, strategies based on recursive estimation of Auto-Regressive-eXogeneous

(ARX) model structures [30, 5, 10, 36, 17] may fail in reducing the relative bias [10] of the predicted model, in spite

of their outstanding qualities in terms of low computational effort and straightforward estimation. Consequently, it

is necessary to find an optimal identification method that is truly capable of assuming this task, so that a novel

estimation technique based on Box-Jenkins (BJ) structures is proposed. Hence, this report lays the foundation for

the development of a recursive BJ algorithm, which aims to solve the previous issues in the human behaviour

identification process.

This preliminary report is structured as follows. A review of the literature on time-varying system identification

techniques for manual control is included in Section 2. The principal research goal and sub-questions are then

offered in Section 3. Afterwards, Section 4 discusses the required simulation conditions and their setup, while

Section 5 presents an overview of the identification methods to be employed and their application. An extensive

analysis of the results obtained is presented in Section 6. Finally, Section 7 provides conclusions and closing remarks

regarding the applicability and impact of the research project, together with an analysis of future works to do in the

BJ algorithm development.

25

2
Literature survey

A literature review is done to acquire an overview of the current state of time-varying system identification in

manual control. It addresses the various human operator models and related techniques for recognising them.

Pilot’s decisions are extremely complex to model in most control tasks, however, the Crossover theory allows

for the application of the quasi-linear HO model with acceptable accuracy. This model is mainly validated in

compensatory manual-control tasks, in which the tracking error is only introduced as an input to the human

operator.

In order to estimate the HO model parameters, multiple techniques have been employed. These can be divided

into parametric and non-parametric methodologies. Additionally, estimators can be evaluated offline (batch-fitting)

or recursively.

2.1. Compensatory manual-control task
In a control task, the human operator is typically a multichannel, adaptive, learning, non-linear controller

[30, 34, 40, 49, 5, 37, 17]. In the loop, the pilot makes decisions based on feedback and feedforward paths,

which provide information by means of visual and motion perception. The action generated is converted into a

control-output through the neuromuscular system of the pilot, applying a force on the control device. Then, the

final control-output is introduced into the controlled element dynamics. These mentioned paths can be adapted by

the mental representation of a learned task, updating such knowledge based on new experiences. Figure 2.1 shows

this pilot-vehicle loop [28]:

Compensatory

display

Pursuit & Preview

display

Controlled element

dynamics

Neuro-muscular

system

Internal representation

+

Learning/Adjustment

Feedback

controller

Feedforward

controller

Adaptive Human Control Model

Control

device

Visual

perception

Visual

perception

Motion

perception

Figure 2.1: The multi-channel, learning, adaptive human controller. Adapted from Mulder et al. [28].

Although a general control-theoretic model of the human controller has not yet been discovered, validated

models do exist for certain control tasks as shown in [20]. In particular, McRuer and Jex [25] proposed quasi-linear

human operator models that present a satisfactory performance in HO modelling. These models are based on the

Crossover theory, which is only applicable to simple cases, i.e., single-channel tracking tasks with only a feedback

path from visual perception (pure compensatory display). In addition, no adaptation is supposed to be given since

the learning process is finished. The Crossover model separates the additional unexplained behaviour by adding

noise called ’remnant’ 𝑛 and captures the linear behaviour of the human controller in a descriptive transfer function

𝐻𝑃(𝑗𝜔).
Figure 2.2 depicts the quasi-linear operator model embedded in a compensating tracking task [50]. The

HO, represented by the model 𝐻𝐻𝑂 (𝑠, 𝑡), monitors and responds to the error 𝑒(𝑡) between a goal 𝑓𝑡 (𝑡) and the

26

2.2. Human operator models 27

output 𝑥(𝑡) of the CE dynamics 𝐻𝐶𝐸(𝑠, 𝑡). The HO dynamics are composed of the remnant 𝑛(𝑡) and deterministic

responses from 𝐻𝐻𝑂𝑒
(𝑠, 𝑡) (i.e. 𝐻𝑃(𝑠, 𝑡)). Regarding the remnant 𝑛(𝑡), it is generated by feeding a signal 𝜀(𝑡) with a

determined statistical distribution through a remnant filter 𝐻𝑚
𝑛 (𝑠, 𝑡). Additionally, the HO must alter its control

strategy as the CE dynamics change over time (CE adaptation) [45].

Figure 2.2: Single-axis compensatory manual-control task with time-varying dynamics: (a) Compensatory display, where 𝑒(𝑡)
acts as stimulus, and (b) Block diagram.

2.2. Human operator models
In the Crossover model, McRuer and Jex [25] state that people modify their control behaviour to satisfy

𝐻𝑂𝐿(𝑗𝜔) = 𝐻𝑃(𝑗𝜔)𝐻𝐶𝐸(𝑗𝜔) =
𝜔𝑐
𝑗𝜔
𝑒−𝑗𝜔𝜏𝑒 , 𝜔 ≈ 𝜔𝑐 (2.1)

in the crossover zone when transitory behaviour is eliminated. Then adjustment rules define how the describing

function 𝐻𝐻𝑂𝑒
(𝑠, 𝑡) behaves in relation to the controlled element 𝐻𝐶𝐸(𝑠, 𝑡) and what impact it has on crossover

frequency 𝜔𝑐 and time delay 𝜏𝑒 in the frequency domain [25, 45]. By modelling the neuromuscular system (NMS)

as a second-order transfer function 𝐻𝑛𝑚(𝑗𝜔) and the operator equalization as a gain and a lead(L)/lag(l) [25, 23, 24],

while using the approach stated in [50, 10, 36], the general formulation of the describing function can be defined as

follows:

𝐻𝑃(𝑗𝜔) = 𝐾𝑝
1 + 𝜏𝐿 𝑗𝜔

1 + 𝜏𝑙 𝑗𝜔
𝑒−𝑗𝜔𝜏𝑒𝐻𝑛𝑚(𝑗𝜔) → 𝐻𝐻𝑂𝑒

(𝑠, 𝑡) = 𝐾𝑒 (𝑡) [𝑇𝐿(𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝜔2

𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚 𝑠 + 𝜔2

𝑛𝑚

. (2.2)

The equalization parameters, i.e. 𝐾𝑒 (𝑡) and 𝑇𝐿(𝑡), determine the action of the feedback controller in the pilot-vehicle

loop. On the other hand, 𝜔𝑛𝑚 and 𝜁𝑛𝑚 model the neuromuscular dynamics.

Regarding possible remnant signal models, the theoretical background is limited and there is no consensus

on how to model and take into account this remnant in Monte Carlo simulations [49, 50, 27, 16]. In most cases, a

remnant signal is obtained by passing zero-mean Gaussian white noise (GWN) through a filter.

The literature contains a variety of filter options, however, the most accepted one is the 𝑚th-order remnant-filter

proposed by Zaal [50] and later used in [10, 36]:

𝐻𝑚
𝑛 (𝑠, 𝑡) = 𝐾𝑛(𝑡)

(𝑇𝑛 𝑠 + 1)𝑚
. (2.3)

Additionally, the noise level 𝑃𝑛 has to be set during Monte Carlo simulations to give a certain value for the

remnant gain. The definition provided by Van der El. [43], 𝑃𝑛 = 𝜎2

𝑢𝑛/𝜎
2

𝑢 , compares the variance of 𝑢(𝑡) due to the

remnant to such variance 𝜎2

𝑢 . Other authors also use the definition 𝑃𝑛 = 𝜎2

𝑛/𝜎2

𝑢 [10, 36], directly measuring the

ratio between the variances of remnant and control-output.

2.3. Controlled-element dynamics
The following second-order CE dynamics were taken into consideration by several authors [50, 10, 36], which

serve as a general low-order approximation of typical vehicle dynamics [25]:

𝐻𝐶𝐸(𝑠, 𝑡) =
𝐾𝑐(𝑡)

𝑠(𝑠 + 𝜔𝑏(𝑡))
. (2.4)

The break frequency 𝜔𝑏(𝑡) and the control gain 𝐾𝑐(𝑡) can both change over time. The dynamics variation of the

controlled element from single- to double-integrator dynamics (i.e., 1/𝑠 ↔ 1/𝑠2) occurs at approximately 𝜔𝑏(𝑡).
Furthermore, a sigmoid function is used in [50, 10, 36] to define the time variation of the operator equalization

parameters in Equation 2.2 and CE coefficients in Equation 2.4:

𝑝(𝑡) = 𝑝𝑖 +
𝑝 𝑓 − 𝑝𝑖

1 + 𝑒−𝐺(𝑡−𝑡𝑀) , (2.5)

2.4. Identification of time-varying operator behaviour 28

where 𝑝(𝑡) is the time-varying parameter, 𝑝𝑖 and 𝑝 𝑓 are the initial and final parameter values, 𝐺 is the transition

rate, and 𝑡𝑀 is the time when states transition occurs.

2.4. Identification of time-varying operator behaviour
In system identification, there are two possible directions to take. The non-parametric method, only provides

direct estimations of frequency response, and the parametric one, assumes a HO model structure and requires

estimation of its parameters.

In relation to non-parametric methodologies, Olivari [32, 33] uses a Fourier Transform to convert a discrete

Finite Impulse Response (FIR) into frequency response. Paassen [34] employs the method of Fourier coefficients, in

which analytically generated transfer functions are only calculated at the forcing function frequency. In addition,

wavelet-based analysis has been used in [48, 15], which reveals the frequency components of signals, but it also

identifies where a certain frequency exists in the temporal or spatial domain.

Every other study taken into consideration employs a parametric strategy, which provides a more tangible

understanding of the human controller than non-parametric strategies. Five research lines are found: batch

fitting methods (maximum likelihood estimation, fitting Linear Parameter Variable (LPV) state space systems) and

recursive fitting methods (Kalman filter estimation, fitting recursive ARX models, identification of Artificial Neural

Networks (ANNs) structures).

In batch fitting strategies, the fitting is applied on the whole dataset at once, and typically, the operation

limitation parameters (neuromuscular dynamics and operator time delay) are deemed constant while only the

operator equalization parameters may vary. In [49, 50], a genetic maximum likelihood estimation is utilised as a

time-domain technique to estimate the model parameters by assuming that time variation in the operator model

has a sigmoid form that needs to be fitted. In [6], an LPV system is identified by applying the Predictor-Based

Subspace Identification (PBSID) technique from [44]. In order to reflect the human operator adaptability for the

LPV model, scheduling functions that have been derived analytically and experimentally are compared.

In recursive fitting methods, the operation equalization parameters can vary, but also, the NMS and HO time

delay can be set constant or assumed time-varying depending on the type of estimator used. Regarding Kalman

filters, a dual Extended Kalman Filter (EKF) [2, 38] and an Unscented Kalman Filter (UKF) [21] are used, in which a

state-space form of the describing transfer function is used in the observation equations with an 𝑛th order Padé

approximation for the time delay component. Also, settings are adjusted every time step based on forecasts and

measurements. The ARX model structure [19] is employed in [10, 36, 17] to estimate time-varying HO behaviour,

extending the work done in [30, 5]. ARX parameters are computed by the Recursive Least Squares (RLS) [13],

which minimises a weighted linear least squares cost function relating to the input signals. Lastly, Jiao [14] uses a

Single-Layer Linear Artificial Neural Network (SLLANN) model structure based on the discretized form of the

pilot model in order to identify the equalization parameters.

3
Research Objective and Questions

As shown in Section 2, several studies have attempted to apply recursive ARX model structures in manual-control

cybernetics [30, 5, 10, 36, 17]. This method allows parameter estimation by direct linear regression, which makes

the process more straightforward and reduces the computational effort, nevertheless, it leads to a relative bias [10]

in the estimated model due to the fact that the ARX structure imposes the existence of unrealistic NMS poles in the

remnant filter.

Therefore, different model structures should be addressed in order to achieve a more accurate parameter

estimation. Franklin et al. [7] propose some non-linear model architectures, such as the Output-Error (OE),

Box-Jenkins, or Auto-Regressive-Moving-Average-Exogenous (ARMAX). In particular, the BJ model perfectly

matches the selected HO discrete-time transfer functions, hence, this could be the most adequate option to reduce

the relative bias from recursive ARX methods and increase the robustness of the estimation process.

As a result, a new non-linear estimation process has to be defined accordingly for the time-varying human

behaviour problem. The primary research question is:

Is it possible to implement an online system identification method based on a recursive BJ algorithm for
detecting and modelling time-varying manual control behaviour without explicitly presuming how human
operator parameters would change over time?

In order to answer the main research question, several sub-questions are required:

1. In relation to implementing the estimator in simulation:

(a) How is the forcing function 𝑓𝑡 (𝑡) defined?

(b) What are the values used for the HO and CE parameters?

(c) What ranges of remnant filter 𝑚th-order, time constant 𝑇𝑛 and noise level 𝑃𝑛 should be simulated?

(d) What is the ideal remnant filter constant 𝐾𝑛(𝑡) for a required noise level 𝑃𝑛?

(e) How can the BJ coefficients be converted into the HO parameters after fitting? What estimations of

these coefficients might lead to problems during conversion?

2. In relation to testing the estimator in simulation:

(a) What quality-of-fit metrics can be employed to determine how well a BJ structure fits the model?

(b) What is the accuracy of the BJ estimation for each remnant filter?

(c) What is the influence of variations in BJ model time-delay and remnant filter on each HO parameter

estimation?

(d) How is the performance of the BJ estimator with simulation data in comparison with ARX results?

3. In relation to evaluating the estimator experimentally:

(a) What experiment will provide more information about the estimation performance and limitations of

the BJ method?

(b) Which experiment types require the human operator to modify the HO parameters significantly?

(c) What steps are necessary to integrate the selected methodology into the research simulator framework?

(d) How is the performance of the BJ estimator with experimental data in comparison with ARX results?

Since the development of an adequate, effective online identification algorithm based on BJ models can be quite

complex, an extensive analysis of possible settings of the offline estimation method is made in Section 6. In this way,

it is possible to know which is the best configuration for a BJ structure and how to properly tune the recursive

algorithm to improve estimation.

29

4
Human-controller simulation setup

In order to perform an adequate Monte Carlo simulation and evaluate the performance of new identification

techniques, it is necessary to define a proper simulation framework to address all possible scenarios in an efficient

and correct manner. Since Linear-Time Variant (LTV) models are used to define human behaviour, frequent tools

such as Simulink are not valid, so that the iterative method to be used for simulation must be analysed more

precisely, avoiding wrong results that may affect the veracity of the identification method’s performance.

The forcing function and remnant noise characteristics are defined in this section, together with all simulation

conditions to be employed in the Monte Carlo simulation, both for time-varying and constant HO model scenarios.

Finally, an explanation of the connection between the simulation and parameter identification loops is included.

4.1. Simulation iterative approach
A simulation of a single-axis, single-channel compensatory tracking task [50] is performed (see Figure 2.2).

The quasi-linear pilot behaviour is defined by the model shown in Equation 2.2, while the non-linear dynamics

is explained by the 𝑚th-order remnant filter, given by Equation 2.3. The unfiltered remnant noise signal can be

modelled as a GWN variable, so that zero mean and a unitary variance are chosen for simplicity, which can be

modified by means of the remnant gain 𝐾𝑛 . Hence, the final control-output from the pilot is computed as follows:

𝑢(𝑠) = 𝐾𝑒 (𝑡) [𝑇𝐿(𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝜔2

𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚 𝑠 + 𝜔2

𝑛𝑚

𝑒(𝑠) + 𝐾𝑛(𝑡)
(𝑇𝑛 𝑠 + 1)𝑚

𝜀(𝑠), 𝜀(𝑠) ∼ 𝑁(0, 𝜎𝜀 = 1). (4.1)

The controlled element dynamics, given by Equation 2.4, switch from a single integrator to a double integrator

by means of the sigmoid function (see Equation 2.5) in order to compel time-varying human operator behaviour,

giving as a result the corresponding change in human operator dynamics.

Discrete-time simulation is required owing to its time-varying nature. Thus, in order to simulate the control

loop, all continuous-time transfer functions presented in Section 2 (i.e., human operator model, 𝐻𝐻𝑂𝑒
(𝑠, 𝑡), remnant

filter, 𝐻𝑚
𝑛 (𝑠, 𝑡), and controlled element, 𝐻𝐶𝐸(𝑠, 𝑡)) must be converted into time-varying state-space systems [31],{

¤𝑥(𝑡) = 𝐴(𝑡)𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)
𝑦(𝑡) = 𝐶(𝑡)𝑥(𝑡) + 𝐷(𝑡)𝑢(𝑡)

, (4.2)

where 𝑥(𝑡), 𝑢(𝑡) and 𝑦(𝑡) are the state, input and output vectors, and 𝐴(𝑡), 𝐵(𝑡) and 𝐶(𝑡) are the state, input and

output matrices, respectively. The direct transmission matrix 𝐷(𝑡) will be null in all cases. These matrices will be

presented in controllable canonical form, as explained by Ogata [31]. Then, for each realisation, continuous-time

matrices are converted into discrete-time ones. To achieve such a goal, the transformation procedure detailed by

Gajic [8] is employed. This process is applied to the transfer functions of the human operator model, 𝐻𝐻𝑂𝑒
(𝑠, 𝑡),

remnant filter, 𝐻𝑚
𝑛 (𝑠, 𝑡), and controlled element, 𝐻𝐶𝐸(𝑠, 𝑡).

Once the discrete-time state-space systems are generated, the control-output signal 𝑢(𝑡) is delayed 𝜏𝑒 seconds

before using it in the CE dynamics block. This means that the index in the discrete-time 𝑢(𝑡𝑘) vector is shifted

𝑖𝑛𝑡(−𝜏𝑒/𝑇𝑠) positions.

If system dynamics are kept constant, the discrete-time data obtained from this process can be validated by a

continuous-time simulation in Simulink, so that the relative error is low enough for the given time step.

30

4.2. Forcing function 31

4.2. Forcing function
To accomplish adequate simulations, the forcing function needs to be defined properly. As proposed by Zaal

[50], a summation of 𝑁𝑡 sinusoids with different amplitudes 𝐴𝑘 , frequencies 𝜔𝑘 and phases 𝜙𝑘 ,

𝑓𝑡 (𝑡) =
𝑁𝑡∑
𝑘=1

𝐴𝑘 · sin

(
𝜔𝑘 · (𝑡 − 𝑡0) + 𝜙𝑘

)
, (4.3)

is an adequate option to excite the closed-loop system shown in Figure 2.2. To avoid the leakage phenomena in

simulations, the frequencies 𝜔𝑘 are multiples of the base frequency 𝜔𝑘,0 = 2𝜋/𝑇𝑚 , where 𝑇𝑚 is the total simulation

time. Thus, the integer 𝑛𝑡 is defined as 𝑛𝑡 = 𝜔𝑘/𝜔𝑘,0. In addition, a transient interval time is introduced in the

simulation, 𝑡
0
, in order that control loop variables are stabilised, consequently, the sinusoids are initialized at 𝑡 = 𝑡

0
.

Table 4.1 shows the coefficients of each sinusoid employed in simulations.

k
[
−

]
nt

[
−

]
ωk

[𝒓𝒂𝒅
𝒔

]
Ak

[
deg

]
ϕk

[
rad

]
1 3 0.230 1.186 -0.753

2 5 0.384 1.121 1.564

3 8 0.614 0.991 0.588

4 13 0.997 0.756 -0.546

5 22 1.687 0.447 0.674

6 34 2.608 0.245 -1.724

7 53 4.065 0.123 -1.963

8 86 6.596 0.061 -2.189

9 139 10.661 0.036 0.875

10 229 17.564 0.025 0.604

Table 4.1: Target function parameters for each component.

4.3. Remnant noise
Then, a remnant realisation is generated for every single simulation run by feeding the zero-mean GWN

with unit variance through a filter. Different 𝑚th-order filters, 𝑚 ∈ [1, 4] (see [10]), and time remnant constants,

𝑇𝑛 ∈ {0.06, 0.2} (see [50, 10]), can be simulated to address their influence on results. Additionally, it is possible to

introduce multiple noise levels 𝑃𝑛 ∈ [0.0, 0.99] in the system by modifying the remnant gain 𝐾𝑛 . Consequently, a

certain value for the 𝐾𝑛 parameter has to be selected to obtain a requested noise level at each simulation, for which

the stochastics theory presented by Ljung [19] can be employed, so that a suitable formula is developed.

Appendix A shows the derivation process to obtain such remnant gain definition and the theoretical background

used for this purpose. The 𝐾𝑛 formula found after the analysis depends on the forcing function 𝑓𝑡 , filtered GWN

characteristics, sampling frequency, transfer functions’ coefficients, and how the noise level is defined. Based on

previous works [43, 9], two possible definitions of 𝑃𝑛 are found, i.e., 𝑃𝑛 = 𝜎2

�̄�𝑛 �̄�𝑛
/𝜎2

�̄��̄� and 𝑃𝑛 = 𝜎2

�̄��̄�/𝜎
2

�̄��̄� , therefore,

the calculation of the remnant gain can follow two different formulas shown in Equations A.14 and A.17, respectively.

In this case, the first option is preferred due to its advantages, such as the higher clearness in the 𝑃𝑛 domain (is

always [0, 1)). Thus, Equation A.14 with unitary 𝜀(𝑡) variance,

𝐾𝑛 =

√√√√√√√√ 𝑃𝑛

(1 − 𝑃𝑛) · 𝑇𝑠

𝜋
2

∑𝑁𝑡
𝑘=1

𝐴2

𝑘

��� 𝐻𝐻𝑂 (𝑗𝜔𝑘)
1+𝐻𝐻𝑂 (𝑗𝜔𝑘)𝐻𝐶𝐸(𝑗𝜔𝑘)

���2∫ 𝜋/𝑇𝑠
0

1

|(𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂 (𝑗𝜔)𝐻𝐶𝐸(𝑗𝜔))|2
d𝜔

, (4.4)

is utilised to compute the remnant gain of each set of simulations (generation of new remnants do not require a

new 𝐾𝑛 , unless some simulation parameter is modified). Additionally, this formula is validated in Section A.4.

4.4. Simulation conditions
To create a time-varying simulation framework, two different states, 𝑠

1
and 𝑠

2
, are defined on the basis of the

CE dynamics variation and its effect on the human operator. Zaal [50] and van Grootheest [10] employ two sets of

parameters for the CE dynamics and the assumed HO dynamics. Furthermore, the corresponding remnant gain

𝐾𝑛 is defined for each state based on Equation A.14. These parameters are recorded in Table 4.2.

4.5. Identification process 32

State CE HO HO× CE
𝐾𝑐[−] 𝜔𝑏[𝑟𝑎𝑑/𝑠] 𝐾𝑒[−] 𝑇𝐿[𝑠] 𝐾 ¤𝑒[−] 𝜏𝑒[−] 𝜔𝑛𝑚[𝑟𝑎𝑑/𝑠] 𝜁𝑛𝑚[−] 𝜔𝑐[𝑟𝑎𝑑/𝑠] 𝜙𝑚[𝑑𝑒𝑔]

𝑠1 90 6.0 0.09 0.40 0.036 0.28 11.25 0.35 1.5 77.0

𝑠2 30 0.2 0.07 1.20 0.084 0.28 11.25 0.35 2.8 22.7

Table 4.2: CE, HO and HO×𝐶𝐸 parameters for states 𝑠1 and 𝑠2.

In addition, each state has its associated discrete-time parameters, which are obtained from the discrete-to-

continuous conversion of the HO transfer function (see Section 5). These values are presented in Table 4.3.

States a
𝒅,0
1

[
−

]
a
𝒅,0
2

[
−

]
b
𝒅,0
0

[
−

]
b
𝒅,0
1

[
−

]
n0

k

[
−

]
𝑠1 -1.9121 0.9243 0.0443 -0.0432 29

𝑠2 -1.9121 0.9243 0.1024 -0.1016 29

Table 4.3: Discrete-time parameters values for ZOH discretization: states 𝑠1 and 𝑠2.

In the change between states, a transition (performed by a sigmoid function in Equation 2.5) from single- to

double-integrator dynamics, or vice-versa, is evaluated. A total of six simulation conditions are proposed, where

the first two of them consider constant sets of parameters, and the remaining four propose a time-varying scenario

with a soft or aggressive state transition (determined by the parameter 𝐺). The HO time-delay and NMS parameters

are assumed to remain constant during the simulation [50, 9]. The conditions C1-C6 are recorded in Table 4.4.

Condition H𝑪𝑬
(
s
)

G
[
s−1]

C1 𝑠1 -

C2 𝑠2 -

C3 𝑠1 → 𝑠2 0.5

C4 𝑠1 → 𝑠2 100

C5 𝑠2 → 𝑠1 0.5

C6 𝑠2 → 𝑠1 100

Table 4.4: Simulation conditions.

4.5. Identification process
As explained in Section 5, offline and online identification approaches, based on ARX and BJ structures, are

proposed for the HO parameters estimation problem. In batch-fitting identification methods, the estimation is

performed once all simulation data is obtained, while new parameter predictions are conducted at each iteration

in the case of recursive methods. In addition, the run-in time data, which is created in the region 𝑡 ∈ [0, 𝑡
0
], is

discarded during estimation to remove the transients from the measured signals.

Since the goal of this project is to develop a possible identification method based on BJ models and compare

its performance in general terms with ARX results from previous works, no special datasets (or part of training

data) are used for validation or verification, so that the entire simulation data is only used for estimation purposes.

Therefore, the online estimation algorithms are applied directly to the simulation data and no revision of the

identification procedure (such as detection of overfitting) is possible, which offers a clearer comparison of the real

performance of techniques based on ARX or BJ.

The ARX and BJ models are set up by defining the order of its polynomials and the integer values for the

estimated HO time delay, 𝑛∗
𝑘
∈

[
𝑛∗
𝑘,𝑚𝑖𝑛

, 𝑛∗
𝑘,𝑚𝑎𝑥

]
, and the 𝑚th-order of the remnant filter, 𝑚∗ ∈ [𝑚𝑚𝑖𝑛 , 𝑚𝑚𝑎𝑥], in

the BJ scenario. Additionally, a time-invariant time-delay is assumed in ARX or BJ structures to be modelled, so

that the value of 𝑛∗
𝑘

is varied in Section 6 with the only purpose of analysing estimators’ performance for different

model time-delays.

Once the estimation process is finished, the discrete-time parameters of the estimated ARX and BJ models are

converted into continuous-time ones to obtain the identified human operator parameters.

ARX estimators can be easily implemented, however, identification procedures based on BJ structures involve a

more difficult optimization process due to its non-linear characteristics. Hence, the system identification library

in Matlab [18] can be used for the estimation and evaluation of batch and recursive BJ models. In particular, the

functions bj.m and recursiveBJ.m are utilised to achieve this goal.

5
Human-controller identification setup

In this section, two methods are proposed for the human-controller identification problem. The first one is

based on an Auto-Regressive-eXogeneous (ARX) structure and has been used in previous works [10, 36], while the

second one represents a novel estimation technique that consists of Box-Jenkins (BJ) models. The purpose of the

latter will be to solve the issues present in the ARX method, in which the parameter estimation is permanently

biased due to a mismatch in the remnant filter poles between the real model and the ARX structure. Appendix B

presents the derivation of the process to set up these two identification methods and the constraints to be fulfilled

to achieve an adequate HO parameter retrieval.

HO parameters can be estimated by means of batch-fitting and online identification. For the first scenario,

algorithms based on the Prediction Error Method (PEM) are applied for ARX and BJ structures. In the second

case, Recursive Least-Squares (RLS) or Recursive Prediction Error Minimization (RPEM) algorithms are employed.

Regarding the online ARX identification, the corresponding algorithms are tuned based on the solutions found by

[10].

Finally, a set of quality-of-fit metrics is proposed to evaluate the performance of the ARX and BJ estimators.

5.1. Transfer-function models
Ljung [19] presents a series of transfer-function models from a general family of model structures, which can be

employed to identify the discrete-time TF corresponding to the HO model. This family can be represented by the

expression adapted to the case study:

𝑢(𝑡𝑘) =
𝐵(𝑧−1)

𝐴(𝑧−1)𝐹(𝑧−1)
𝑧−𝑛𝑘 𝑒(𝑡𝑘) +

𝐶(𝑧−1)
𝐴(𝑧−1)𝐷(𝑧−1)

𝜀(𝑡𝑘), 𝜀′(𝑡𝑘) ∼ 𝑁(0, 𝜎𝜀), (5.1)

where 𝑢(𝑡) is the output signal associated with the control-output, 𝑒(𝑡) is the input signal corresponding to the

tracking error, and 𝜀(𝑡) is the Gaussian white noise with a standard deviation 𝜎𝜀. The general model structure

depends on a total of 5 polynomials {𝐴, 𝐵, 𝐶, 𝐷, 𝐹}:

𝐴(𝑧−1) = 1 + 𝑎𝑑
1
𝑧−1 + . . . + 𝑎𝑑𝑛 𝑓 𝑧

−𝑛𝑎
(5.2a)

𝐵(𝑧−1) = 𝑏𝑑
0
+ 𝑏𝑑

1
𝑧−1 + . . . + 𝑏𝑑𝑛𝑏 𝑧

−𝑛𝑏 , 𝐶(𝑧−1) = 1 + 𝑐𝑑
1
𝑧−1 + . . . + 𝑐𝑑𝑛𝑐 𝑧

−𝑛𝑐
(5.2b)

𝐷(𝑧−1) = 1 + 𝑑𝑑
1
𝑧−1 + . . . + 𝑑𝑑𝑛𝑑 𝑧

−𝑛𝑑 , 𝐹(𝑧−1) = 1 + 𝑓 𝑑
1
𝑧−1 + . . . + 𝑓 𝑑𝑛 𝑓 𝑧

−𝑛 𝑓 . (5.2c)

In addition, the predictor of the control-output signal, �̂�(𝑡), would present the following general expression [19]:

�̂�(𝑡𝑘 | 𝜃) = 𝐵(𝑧−1)𝐷(𝑧−1)
𝐶(𝑧−1)𝐹(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘) +
[
1 − 𝐷(𝑧−1)𝐴(𝑧−1)

𝐶(𝑧−1)

]
𝑢(𝑡𝑘), (5.3)

where 𝜃 is the adjustable parameters vector. By adjusting this previous expression, the prediction error is found:

𝜖(𝑡𝑘 , 𝜃) = 𝑢(𝑡𝑘) − �̂�(𝑡𝑘 | 𝜃) = 𝐷(𝑧−1)
𝐶(𝑧−1)

[
𝐴(𝑧−1)𝑢(𝑡𝑘) −

𝐵(𝑧−1)
𝐹(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘)
]
. (5.4)

From the general expression in Equation 5.1, a total of 32 models can be found based on [19], however, only 10

are the most commonly used in discrete-time estimation problems. These structures are shown in Table 5.1.

33

5.1. Transfer-function models 34

In this project, the ARX model is selected together with an additional structure able to solve the issues shown in

[10, 36]. Although ARX structures represent an adequate tool for HO identification, they include a permanent

bias in the control loop that cannot be removed due to the poles mismatch in the remnant filter TF. Therefore, a

Box-Jenkins model is the only alternative by which completely different poles can be introduced in the structure.

The ARX structure allows the application of linear regression, hence, the parameters vector 𝜃 can be estimated

by Ordinary Least-Squares (OLS) or Recursive Least-Squares (RLS) methods. On the other hand, the parameter

estimation of each BJ discrete-time polynomial requires the optimization of a non-linear problem, so that a Prediction

Error Method (PEM) algorithm has to be evaluated as explained in [41, 19, 46, 47]. When an online BJ estimation

is desired, a recursive PEM algorithm is implemented based on Young [46]. In an identification procedure, the

control-output and tracking error are known at each time step, however, the noise signal is unknown, so the density

function of a normal distribution is always assumed in the estimation process.

Name of model structure Polynomials used in Eq. 5.1 Model formula

Finite-Impulse-Response (FIR) B 𝑢(𝑡𝑘) = 𝐵(𝑧−1)𝑧−𝑛𝑘 𝑒(𝑡𝑘) + 𝜀(𝑡𝑘)
Auto-Regressive (AR) A 𝑢(𝑡𝑘) = 1

𝐴(𝑧−1) 𝜀(𝑡𝑘)
Moving-Average (MA) C 𝑢(𝑡𝑘) = 𝐶(𝑧−1)𝜀(𝑡𝑘)

Auto-Regressive-eXogeneous (ARX) A, B 𝑢(𝑡𝑘) = 𝐵(𝑧−1)
𝐴(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) + 1

𝐴(𝑧−1) 𝜀(𝑡𝑘)
Auto-Regressive-

Moving-Average (ARMA)

A, C 𝑢(𝑡𝑘) = 𝐶(𝑧−1)
𝐴(𝑧−1) 𝜀(𝑡𝑘)

Auto-Regressive-Moving-

Average-eXogeneous (ARMAX)

A, B, C 𝑢(𝑡𝑘) = 𝐵(𝑧−1)
𝐴(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) + 𝐶(𝑧−1)
𝐴(𝑧−1) 𝜀(𝑡𝑘)

ARARX A, B, D 𝑢(𝑡𝑘) = 𝐵(𝑧−1)
𝐴(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) + 1

𝐴(𝑧−1)𝐷(𝑧−1) 𝜀(𝑡𝑘)
ARARMAX A, B, C, D 𝑢(𝑡𝑘) = 𝐵(𝑧−1)

𝐴(𝑧−1) 𝑧
−𝑛𝑘 𝑒(𝑡𝑘) + 𝐶(𝑧−1)

𝐴(𝑧−1)𝐷(𝑧−1) 𝜀(𝑡𝑘)
Output-Error (OE) B, F 𝑢(𝑡𝑘) = 𝐵(𝑧−1)

𝐹(𝑧−1) 𝑧
−𝑛𝑘 𝑒(𝑡𝑘) + 𝜀(𝑡𝑘)

Box-Jenkins (BJ) B, C, D, F 𝑢(𝑡𝑘) = 𝐵(𝑧−1)
𝐹(𝑧−1) 𝑧

−𝑛𝑘 𝑒(𝑡𝑘) + 𝐶(𝑧−1)
𝐷(𝑧−1) 𝜀(𝑡𝑘)

Table 5.1: Principal model structures based on general family of discrete-time transfer functions.

Before estimating the ARX or BJ models online or offline, it is necessary to make sure those structures match the

discretized HO and remnant filter models. Franklin et al. [7] present a variety of discretization techniques that

can be applied to the continuous-time transfer function, and can follow a numerical integration, a Z-transform

mapping strategy or try to model the sampled system. The discrete equivalents via numerical integration are based

on the numerical method [4] used to find a solution of the differential equation associated to the continuous-time

TF to be discretized. The principal methods are: Forward-Euler, Backward-Euler, Tustin (with/without pre-warp).

Then, the zero-pole matching equivalents are obtained by mapping the continuous-time TF’s poles and zeros from

the relationship between s- and z-planes. On the other hand, Tangirala [41] proposes model-sampling techniques,

based on the Zero-order hold (ZOH) or First-order hold (FOH), that reconstruct the measured signal and enable a

two-step continuous-to-discrete time TF conversion. Table 5.2 records the mentioned techniques.

Nevertheless, not all discretization methods are applicable to this case, since the order of each polynomial is

constrained by the number of continuous-time parameters to be estimated. Regarding the HO model, 𝐻𝐻𝑂𝑒
(𝑠, 𝑡),

Tangirala’s ZOH method is the best option for both ARX and BJ scenarios. Attending to the remnant filter,

𝐻𝑚
𝑛 (𝑠, 𝑡), which is only addressed in a BJ structure, the backward-Euler strategy is needed. Thus, the obtained

ARX model structure is defined by {𝑛𝑎 = 2, 𝑛𝑏 = 1, 𝑛𝑘 = 𝑖𝑛𝑡(𝜏𝑒/𝑇𝑠) + 1}, while the BJ one is represented by{
𝑛𝑏 = 1, 𝑛𝑐 = 0, 𝑛𝑑 = 𝑚, 𝑛 𝑓 = 2, 𝑛𝑘 = 𝑖𝑛𝑡(𝜏𝑒/𝑇𝑠) + 1

}
, where 𝑚 is the remnant filter order, 𝜏𝑒 is the HO time delay,

and 𝑇𝑠 is the time step. The discrete-time transfer functions of the HO model and remnant filter are shown in

Equations B.5 and B.11, respectively. Consequently, the ARX and BJ models will be defined by the following

structures:

𝐴𝑅𝑋 : 𝑢(𝑡𝑘) =
𝑏𝑑

0
+ 𝑏𝑑

1
𝑧−1

1 + 𝑎𝑑
1
𝑧−1 + 𝑎𝑑

2
𝑧−2

𝑧−𝑛𝑘 𝑒(𝑡𝑘) +
1

1 + 𝑎𝑑
1
𝑧−1 + 𝑎𝑑

2
𝑧−2

𝜀′(𝑡𝑘), 𝜀′(𝑡𝑘) ∼ 𝑁 (0, 𝐾𝑛 · 𝜎𝜀) (5.5a)

𝐵𝐽(𝑚) : 𝑢(𝑡𝑘) =
𝑏𝑑

0
+ 𝑏𝑑

1
𝑧−1

1 + 𝑎𝑑
1
𝑧−1 + 𝑎𝑑

2
𝑧−2

𝑧−𝑛𝑘 𝑒(𝑡𝑘)+
1

1 + 𝑑𝑑
1
𝑧−1 + . . . + 𝑑𝑑𝑚𝑧−𝑚

𝜀′(𝑡𝑘), 𝜀′(𝑡𝑘) ∼ 𝑁

(
0, 𝐾𝑛

(
𝑇𝑠

𝑇𝑛 + 𝑇𝑠

)𝑚
· 𝜎𝜀

)
,

(5.5b)

where 𝜀′(𝑡) is equivalent to a standard GWN signal 𝜀(𝑡) scaled with 𝐾𝑛 and parameters from the discretization

process. For the sake of simplicity, coefficients of the polynomial 𝐹(𝑧−1) are evaluated as if they were from 𝐴(𝑧−1),
hence, terms 𝑓 𝑑

𝑖
will be named as 𝑎𝑑

𝑖
from now on in BJ structures.

5.2. Prediction Error Method 35

Method Description

Forward-Euler

Based on an integration rule in which the amplitude of the integrated area (for a time-domain

[𝑘𝑇𝑠 − 𝑇𝑠 , 𝑘𝑇𝑠]) is equal to the integrand value at 𝑡 = 𝑘𝑇𝑠 − 𝑇𝑠 . The relationship obtained is: 𝑠 = 𝑧−1

𝑇𝑠
.

Backward-Euler

Based on an integration rule in which the amplitude of the integrated area (for a time-domain

[𝑘𝑇𝑠 − 𝑇𝑠 , 𝑘𝑇𝑠]) is equal to the integrand value at 𝑡 = 𝑘𝑇𝑠 . The relationship obtained is: 𝑠 = 1−𝑧−1

𝑇𝑠
.

Trapezoid, bilinear,

or Tustin

Based on an integration rule in which the amplitude of the integrated area (for a time-domain

[𝑘𝑇𝑠 − 𝑇𝑠 , 𝑘𝑇𝑠]) is equal to the average of integrand values at 𝑡 = 𝑘𝑇𝑠 and 𝑡 = 𝑘𝑇𝑠 − 𝑇𝑠 .
The relationship obtained is: 𝑠 =

2(𝑧−1)
𝑇𝑠 (𝑧+1) .

Bilinear transformation

with prewarping

Trapezoidal discretization that keeps relevant dynamics information

at the prewarp frequency, 𝜔𝑝 , obtaining a more accurate match.

The relationship obtained is: 𝑠 =
𝜔𝑝

tan 𝜔𝑝𝑇𝑠/2

(𝑧−1)
(𝑧+1) .

Zero-Order Hold (ZOH)

The control-output is defined as piecewise constant over the sample interval 𝑇𝑠 .
From a continuous-time TF, 𝐻𝑐(𝑠), its discrete-time TF, 𝐻𝑑(𝑧),

is obtained by: 𝐻𝑑(𝑧) = (1 − 𝑧−1)𝒵
{
ℒ−1

{
𝐻𝑐 (𝑠)
𝑠

} ���
𝑡=𝑘𝑇𝑠

}
.

First-Order Hold (FOH)

Based on a triangle approximation, the control-output is defined as piecewise linear over

the sample interval 𝑇𝑠 . From a continuous-time TF, 𝐻𝑐(𝑠), its discrete-time TF, 𝐻𝑑(𝑧),

is obtained by: 𝐻𝑑(𝑧) = (𝑧−1)2
𝑇𝑠 𝑧

𝒵
{
ℒ−1

{
𝐻𝑐 (𝑠)
𝑠2

} ���
𝑡=𝑘𝑇𝑠

}
.

Zero-Pole matching

Poles and zeros are found by extrapolation between the s- and z-planes according to the

relationship 𝑧 = 𝑒 𝑠𝑇𝑠 . This method consists of a set of heuristical rules (see [7])

for setting the gain of the z-transform and locating the poles and zeros that will define

an equivalent discrete-time TF, 𝐻𝑑(𝑧), of the continuous-time TF, 𝐻𝑐(𝑠).

Table 5.2: Discretization methods of continuous-time transfer functions.

Once the discrete-time coefficients are obtained, the discrete-time state-space system (in controllable canonical

[31]) form is calculated for the transfer function 𝐵(𝑧−1)/𝐴(𝑧−1), in ARX, or 𝐵(𝑧−1)/𝐹(𝑧−1), in BJ. Then, Gajic’s

procedure [8] is used reversely to get the continuous-time state-space system by means of the logarithm of its

extended matrix. To obtain a successful conversion of the state-space system, its associated extended matrix must

be invertible and with no negative real eigenvalues [8] (see Equations B.17, B.18 and B.19). After, the HO model

can be computed from the matrices realisation as �̂�𝐻𝑂𝑒
(𝑠, 𝑡𝑘) = 𝐶(𝑡𝑘)(𝑠𝐼 − 𝐴(𝑡𝑘))−1𝐵(𝑡𝑘). In relation to the transfer

function 𝐶(𝑧−1)/𝐷(𝑧−1) in BJ models, a direct discrete-to-continuous time conversion is possible (see Equations

B.14 and B.15). In Appendix B, Sections B.1 and B.2 show the mentioned procedures to obtain the continuous-time

HO parameters and identified coefficients in the remnant filter, while Section B.3 presents the derivation process to

define the discrete-time parameters constraints (i.e.,

{
𝑎𝑑

1
< 0, 𝑎𝑑

2
> 0

}
) that ensure a proper discrete-to-continuous

time conversion.

Thus, from the estimated continuous-time transfer function of the HO model, �̂�𝐻𝑂𝑒
(𝑠, 𝑡𝑘), whose parameters

are defined in Equations B.9 and B.10, the identified human operator coefficients are:

�̂�𝐻𝑂𝑒
(𝑠, 𝑡𝑘) =

𝑏𝑐
0
𝑠 + 𝑏𝑐

1

𝑠2 + 𝑎𝑐
1
𝑠 + 𝑎𝑐

2

⇒

�̂�𝑒 =

𝑏𝑐
1

𝑎𝑐
2

, �̂�𝐿 =
𝑏𝑐

0

𝑏𝑐
1

, �̂�𝑛𝑚 =

√
𝑎𝑐

2
, �̂�𝑛𝑚 =

𝑎𝑐
1

2

√
𝑎𝑐

2

. (5.6)

Based on previous experience [10, 36, 50], these discretization methods and posterior discrete-to-continuous

time conversion should not lose any system identification information, providing acceptable estimations.

5.2. Prediction Error Method
In order to estimate the set of model parameters offline, PEM techniques represent an adequate option for all

structures, both linear and non-linear. The PEM procedure consists of initial states estimation, definition of the

optimization model, and variance estimation.

Other methods can also be applied to the discrete-time transfer function estimation problem, such as the

Maximum Likelihood (ML) or the Refined Instrumental Variable (RIV) [19, 46, 47]. The ML technique finds the

full optimization model from a log-likelihood function, which is based on a Gaussian distribution of the noise 𝜀.

The RIV method is a pseudo-linear regression approach to ML estimation. Both methods could be in ARX and BJ

structures, but they are only applicable to systems with Gaussian noise, hence, the PEM algorithm presents a more

generalist alternative. The ML model is only used to find an expression to estimate the noise variance.

5.2. Prediction Error Method 36

5.2.1. The PEM algorithm
Prediction error methods are based on the idea of minimising a cost function, 𝑉𝑁 , that measures the level of

prediction error, 𝜖(𝑡𝑘 , 𝜃), to find a solution for �̂� [19, 46]. Thus, from a batch of data 𝑍𝑁 ,

𝑍𝑁 = [𝑢(𝑡1), 𝑒(𝑡1), 𝑢(𝑡2), 𝑒(𝑡2), . . . , 𝑢(𝑡𝑁), 𝑒(𝑡𝑁)] , (5.7)

and the prediction error formula (see Equation 5.4), the cost function can be defined as follows:

𝑉𝑁 (𝜃, 𝑍𝑁) =
1

𝑁

𝑖=𝑁∑
𝑖=1

𝑙(𝜖(𝑡𝑖 , 𝜃)). (5.8)

In 𝑉𝑁 (𝜃, 𝑍𝑁), 𝑙(·) is a scalar-valued (typically positive) function. The quadratic norm is the most common in

optimization problems:

𝑙(𝜖) = 1

2

𝜖2. (5.9)

In order to reduce equation sizes, the HO time delay can be integrated into the 𝐵(𝑧−1) polynomial, such that

𝐵(𝑧−1) = 𝐵(𝑧−1)𝑧−𝑛𝑘 . (5.10)

Therefore, the goal of a PEM algorithm is to find the vector of parameters �̂� that minimizes the cost function:

�̂� = arg min

𝜃
𝑉𝑁 (𝜃, 𝑍𝑁) = arg min

𝜃

1

2𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]

2

. (5.11)

In order to optimize such cost function, the partial differentiation of𝑉𝑁 (𝜃, 𝑍𝑁) with respect to all the parameters

is made, i.e.:

∇𝜃

[
𝑉𝑁 (𝜃, 𝑍𝑁)

]
=

1

𝑁

𝑖=𝑁∑
𝑖=1

𝜖(𝑡𝑖 , 𝜃)∇𝜃 [𝜖(𝑡𝑖 , 𝜃)] . (5.12)

Hence, the derivative of the prediction error for each model parameter needs to be computed before defining the

complete optimization problem:

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕𝑎𝑑

𝑗

=
𝐷(𝑧−1)
𝐶(𝑧−1)

𝑧−𝑗𝑢(𝑡𝑘), 𝑗 = 1, 2, . . . , 𝑛𝑎 , (5.13a)

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕𝑏𝑑

𝑗

= − 𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑧−𝑗−𝑛𝑘 𝑒(𝑡𝑘), 𝑗 = 0, 1, . . . , 𝑛𝑏 , (5.13b)

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕𝑐𝑑
𝑗

= − 𝐷(𝑧−1)
𝐶2(𝑧−1)

𝐴(𝑧−1)𝑧−𝑗𝑢(𝑡𝑘) +
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶2(𝑧−1)

𝑧−𝑗 𝑒(𝑡𝑘), 𝑗 = 1, 2, . . . , 𝑛𝑐 , (5.13c)

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕𝑑𝑑

𝑗

=
𝐴(𝑧−1)
𝐶(𝑧−1)

𝑧−𝑗𝑢(𝑡𝑘) −
𝐵(𝑧−1)

𝐹(𝑧−1)𝐶(𝑧−1)
𝑧−𝑗 𝑒(𝑡𝑘), 𝑗 = 1, 2, . . . , 𝑛𝑑 , (5.13d)

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕 𝑓 𝑑
𝑗

=
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹2(𝑧−1)𝐶(𝑧−1)

𝑧−𝑗 𝑒(𝑡𝑘), 𝑗 = 1, 2, . . . , 𝑛 𝑓 . (5.13e)

Consequently, the optimization model is defined by the following set of equations when equalled to zero:

𝜕𝑉𝑁

𝜕𝑎𝑑
𝑗=1,2,...,𝑛𝑎

=
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]
× 𝐷(𝑧−1)
𝐶(𝑧−1)

𝑧−𝑗𝑢(𝑡𝑖), (5.14a)

𝜕𝑉𝑁

𝜕𝑏𝑑
𝑗=0,1,...,𝑛𝑏

=
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]
× −𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑧−𝑗−𝑛𝑘 𝑒(𝑡𝑖), (5.14b)

𝜕𝑉𝑁

𝜕𝑐𝑑
𝑗=1,2,...,𝑛𝑐

=
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]
×𝑧−𝑗

[
− 𝐷(𝑧−1)
𝐶2(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) +
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶2(𝑧−1)

𝑒(𝑡𝑖)
]
,

(5.14c)

5.2. Prediction Error Method 37

𝜕𝑉𝑁

𝜕𝑑𝑑
𝑗=1,2,...,𝑛𝑑

=
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]
× 𝑧−𝑗

[
𝐴(𝑧−1)
𝐶(𝑧−1)

𝑢(𝑡𝑖) −
𝐵(𝑧−1)

𝐹(𝑧−1)𝐶(𝑧−1)
𝑒(𝑡𝑖)

]
,

(5.14d)

𝜕𝑉𝑁

𝜕 𝑓 𝑑
𝑗=1,2,...,𝑛 𝑓

=
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]
× 𝐵(𝑧−1)𝐷(𝑧−1)
𝐹2(𝑧−1)𝐶(𝑧−1)

𝑧−𝑗 𝑒(𝑡𝑖). (5.14e)

At this point, the PEM and ML optimization problems are identical [47], since Equations 5.14 match the ones

obtained in an ML scenario. In order to find the optimal solution to this minimization problem, a linear or non-linear

procedure has to be used in the function of the type of model to be estimated. In the case of ARX structures, the

estimation process is quite straightforward since linear regression can be applied [19], while BJ models require

non-linear optimization methods based on gradient-based schemes [3] or more innovative techniques [18].

Other options for cost function can be employed in the PEM algorithm, such as the regularised 𝑉𝑁 (𝜃, 𝑍𝑁)
[19], which also weighs the parameter vector values or its deviations with respect to a pre-estimated �̂�0

. However,

only a standard cost function is considered in this case. Additionally, other definitions of 𝜖(𝑡𝑘 , 𝜃) can be used,

since it can represent the one-step-ahead prediction error (Equation 5.4), or the simulation error. The type of error

to be employed in the cost function can be selected in the Matlab function pem.m by means of the option ’Focus’:
’prediction’ (prediction error) and ’simulation’ (simulation error) [18]. The first option is preferred.

When calculating each component of Equations 5.14, there might be some difficulties in evaluating fractions of

polynomials, such as 𝐷(𝑧−1)/𝐶(𝑧−1). To solve this issue, Maclaurin series can be used to convert the fraction into a

pure polynomial:

1

1 + 𝑥 = 1 − 𝑥 + 𝑥2 − 𝑥3 + . . . (5.15)

5.2.2. Initial states estimation
Matlab functions based on pem.m, such as arx.m or bj.m, use the whole data set 𝑍𝑁 to optimize the cost function.

Therefore, it is necessary to determine the values of pairs {𝑢(𝑡𝑘), 𝑒(𝑡𝑘)} when 𝑘 < 1. Two possible scenarios are given:

setting all {𝑢(𝑡𝑘<1
), 𝑒(𝑡𝑘<1

)} to zero, or estimating all those pairs required in the 𝑉𝑁 minimization on the basis of

prediction error reduction. The first case can lead to inaccuracies in the estimation (especially, in remnant-free

cases) seeing that the actual signal may not be null, hence, a prediction of 𝑘 < 1 conditions is performed (Matlab

option ’InitialCondition’ is set to ’estimate’), analysing the initial states as independent estimation variables [18].

Since the prediction error does not depend on the Gaussian noise, this variable is not taken into account

during the initial state estimation. Only the control-output and tracking error are employed in the cost function

minimization to obtain the initial states. Initial values for the discrete-time parameters, 𝜃0
(i.e., 𝐴

0
(𝑧−1), 𝐵

0
(𝑧−1),

𝐶
0
(𝑧−1), 𝐷

0
(𝑧−1) and 𝐹

0
(𝑧−1)), are utilised in the optimization process. Thus, the initial conditions,

𝑍𝑁
0

= [. . . , 𝑢(𝑡−1
), 𝑒(𝑡−1

), 𝑢(𝑡
0
), 𝑒(𝑡

0
)] , (5.16)

can be predicted from the non-linear optimization of the function 𝑉0

𝑁
(𝜃0 , 𝑍𝑁

0
):

�̂�𝑁
0

= arg min

𝑍𝑁
0

𝑉0

𝑁
(𝜃0 , 𝑍𝑁

0
) = arg min

𝑍𝑁
0

{
1

2𝑁

∑
𝑖<1

[
𝐷

0
(𝑧−1)

𝐶
0
(𝑧−1)

𝐴
0
(𝑧−1)𝑢(𝑡𝑖) −

𝐵
0
(𝑧−1)𝐷

0
(𝑧−1)

𝐹
0
(𝑧−1)𝐶

0
(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

}
(5.17)

5.2.3. Variance estimation
Once, the optimization process is converged and a parameter vector solution is found, a partial differentiation

of the log-likelihood function for 𝑁 observations shown by Young [47],

ℒ(𝜃, 𝜎2

𝜀 , 𝑢(𝑡), 𝑒(𝑡)) = −𝑁
2

ln(2𝜋) − 𝑁

2

ln

(
𝜎2

𝜀

)
− 1

2𝜎2

𝜀

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]

2

(5.18)

is computed to find an estimation of the noise variance �̂�2

𝜀 (provided that the noise signal presents a Gaussian

distribution) based on the predicted parameter vector:

𝜕ℒ

𝜕𝜎2

𝜀

= − 𝑁
𝜎2

𝜀

+ 1

𝜎4

𝜀

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝐴(𝑧−1)𝑢(𝑡𝑖) −
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑖)
]

2

= 0. (5.19)

This partial derivative represents the difference between the PEM and ML algorithms, since the first one is only

focused on the polynomial coefficients. Therefore, the estimation of the noise variance is given by the following

equation:

�̂�2

𝜀 =
1

𝑁

𝑖=𝑁∑
𝑖=1

[
�̂�(𝑧−1)
�̂�(𝑧−1)

�̂�(𝑧−1)𝑢(𝑡𝑖) −
�̂�(𝑧−1)�̂�(𝑧−1)
�̂�(𝑧−1)�̂�(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

. (5.20)

5.3. Recursive Least-Squares 38

5.2.4. Summary
Hence, the PEM algorithm consists of the following steps:

1. Define the initial batch of data 𝑍𝑁
0

to be estimated based on the pairs {𝑢(𝑡𝑘<1
), 𝑒(𝑡𝑘<1

)} needed in the partial

derivatives.

2. Minimize the initial cost function 𝑉0

𝑁
(𝜃0 , 𝑍𝑁

0
) to find an estimation of the initial pairs based on the starting

parameter vector values.

3. Define the partial derivatives of the cost function𝑉𝑁 (𝜃, �̂�𝑁
0
∪𝑍𝑁) with respect to the polynomial coefficients.

4. Equal such derivatives to zero to set the optimization model equations (Eqs. 5.14). Find the parameter vector

that minimizes the cost function through the search method selected.

5. Compute the estimation of the system noise variance based on the log-likelihood partial derivation (Equation

5.20).

5.3. Recursive Least-Squares
RLS techniques are quite useful methods for online estimation, by which acceptable predictions of the model

parameter values can be achieved for different system dynamics. The Recursive Least-Squares algorithm is

applicable for linear structures, although it can be extended to non-linear scenarios as explained by Young [46].

5.3.1. The deterministic RLS algorithm
Depending on the assumptions about the statistical nature of the signals or the remnant noise, and statistical

information about the estimates, two types of algorithms can be found: deterministic or stochastic [46]. In this case,

the deterministic RLS methodology is considered due to the lower number of assumptions it makes.

The RLS algorithm is an online estimation method that consists of 3 steps, in which the parameter vector 𝜃(𝑡𝑘)
is adjusted online by means of the gain vector 𝑔(𝑡𝑘) and the prediction error of 𝑢(𝑡𝑘) [19, 46]. The gain vector is also

tuned based on the scaled covariance matrix 𝑃(𝑡𝑘), which accounts for the certainty in the estimation conducted of

each model parameter. Equations 5.21 present the formulas used in this iterative process:

�̂�(𝑡𝑘) = �̂�(𝑡𝑘−1
) + 𝑔(𝑡𝑘)𝜖(𝑡𝑘), 𝑜𝑟, �̂�(𝑡𝑘) = �̂�(𝑡𝑘−1

) + 𝑃(𝑡𝑘)𝜋(𝑡𝑘)𝜖(𝑡𝑘), (5.21a)

𝑔(𝑡𝑘) =
𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
1 + 𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
, (5.21b)

𝑃(𝑡𝑘) = 𝑃(𝑡𝑘−1
) − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1

). (5.21c)

Equation 5.21a can be evaluated in two ways due to the relationship 𝑔(𝑡𝑘) = 𝑃(𝑡𝑘)𝜋(𝑡𝑘), although the first option is

usually preferred since it is more computationally efficient [46].

The definition of vector 𝜋(𝑡𝑘) is based on the minimization of the instantaneous part of the cost function in

Equation 5.8, in which the one-step-ahead prediction error can be approximated by the employment of the model

parameters estimation at the previous (𝑘 − 1)𝑡ℎ instant:

𝑉𝑘(𝜃(𝑡𝑘)) =
1

2

[
𝜖2(𝑡𝑘 , 𝜃(𝑡𝑘))

]
≈ 𝑉𝑘(�̂�(𝑡𝑘−1

)) = 1

2

[
𝜖2(𝑡𝑘 , �̂�(𝑡𝑘−1

))
]
. (5.22)

As a result, the gain 𝜋(𝑡𝑘) is computed as the negative gradient of the prediction error [46]:

𝜋(𝑡𝑘) = −𝜕𝜖(𝑡𝑘 , �̂�(𝑡𝑘−1
))

𝜕�̂�(𝑡𝑘−1
))

. (5.23)

5.3.2. Forgetting factor
In the deterministic RLS algorithm shown in Eqs. 5.21, all data until the 𝑘𝑡ℎ instant, 𝑍𝑘 , are equally weighted

over the observation time, which contributes to the implicit assumption that the model parameters remain constant.

To solve this issue, the memory of the estimator can be shaped by using rectangular or exponential data weighting

[46]. In the moving Rectangular Window (RW) RLS algorithm, a certain number of samples within an observation

period are weighted equally, while in an Exponential-Weighting-into-the-Past (EWP) window each prediction error

is taken into account by an exponential forgetting factor, 𝜆(𝑡𝑘) ∈ [0, 1], in the cost function,

𝑉𝐸𝑊𝑃(�̂�(𝑡𝑘−1
)) = 1

2𝑘

𝑖=𝑘∑
𝑖=1

[
𝜖2(𝑡𝑖 , �̂�(𝑡𝑖−1

))𝜆(𝑡𝑘−𝑖)
]
. (5.24)

This forgetting factor is given by the expression 𝜆 = 𝑒𝑥𝑝(−𝑇𝑠/𝑇𝑒), where 𝑇𝑠 is the sampling time and 𝑇𝑒 is the

memory horizon. The parameter 𝜆 can be modified during the estimation process, or be maintained constant.

5.4. ARX model estimation 39

The EWP-RLS algorithm is more adequate in cases when model parameters change fast, and therefore, more

recent data are more relevant for prediction. In addition, the forgetting factor offers the possibility of selecting a

suitable value that works better for the system dynamics, which is not possible when a Rectangular Window is

used. For a constant 𝜆 parameter, these new RLS equations are defined as follows [19, 46]:

�̂�(𝑡𝑘) = �̂�(𝑡𝑘−1
) + 𝑔(𝑡𝑘)𝜖(𝑡𝑘), (5.25a)

𝑔(𝑡𝑘) =
𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
𝜆 + 𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
, (5.25b)

𝑃(𝑡𝑘) =
1

𝜆

[
𝑃(𝑡𝑘−1

) − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1
)
]
. (5.25c)

5.3.3. Forgetting matrix
The gain vector is tuned based on the scaled covariance matrix 𝑃(𝑡𝑘) and a factor 𝜆, which can be defined as a

real variable that affects all adjustable parameters equally, or as a diagonal matrix that imposes a different action on

each adjustable parameter (forgetting matrix, Λ). Equations 5.26 present the formulas used in this iterative process

[19, 46]:

�̂�(𝑡𝑘) = �̂�(𝑡𝑘−1
) + 𝑔(𝑡𝑘)𝜖(𝑡𝑘), (5.26a)

𝑔(𝑡𝑘) =
Λ𝑃(𝑡𝑘−1

)Λ𝜋(𝑡𝑘)
1 + 𝜋𝑇 (𝑡𝑘)Λ𝑃(𝑡𝑘−1

)Λ𝜋(𝑡𝑘)
, (5.26b)

𝑃(𝑡𝑘) = Λ𝑃(𝑡𝑘−1
)Λ − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)Λ𝑃(𝑡𝑘−1

)Λ. (5.26c)

Where the forgetting matrix Λ is a diagonal matrix composed of a sub-forgetting factor for each model parameter,

Λ = 𝑑𝑖𝑎𝑔
(
𝜆𝑎1

, . . . ,𝜆𝑎𝑛𝑎 ,𝜆𝑏0
, . . . ,𝜆𝑏𝑛𝑏

,𝜆𝑐1
, . . . ,𝜆𝑐𝑛𝑐 ,𝜆𝑑1

, . . . ,𝜆𝑑𝑛𝑑
,𝜆 𝑓1 , . . . ,𝜆 𝑓𝑛 𝑓

)−1/2

. (5.27)

Each element of the forgetting matrix must belong to the interval 𝐼 = [0, 1], where a 𝜆𝑖 near a null value provides

a negligible memory horizon, and values close to 1 increase this horizon significantly. Hence, for a forgetting

factor 𝜆𝑖 , a total number of 𝑁𝑖 = 1/(1 − 𝜆𝑖) samples are considered in the RLS algorithm for a time horizon of

𝑇𝑒 ,𝑖 = 𝑇𝑠/(1 − 𝜆𝑖).

5.4. ARX model estimation
ARX structures can be estimated by linear regression techniques [19], achieving a high computational efficiency.

From the general expression for ARX models in Equation 5.5a, the vector of adjustable parameters 𝜃𝐴𝑅𝑋 is defined

as follows:

𝜃𝐴𝑅𝑋 =

[
𝑎𝑑

1
, 𝑎𝑑

2
, . . . , 𝑎𝑑𝑛𝑎 , 𝑏

𝑑
0
, 𝑏𝑑

1
, . . . , 𝑏𝑑𝑛𝑏

]𝑇
=

[
𝑎𝑑

1
, 𝑎𝑑

2
, 𝑏𝑑

0
, 𝑏𝑑

1

]𝑇
. (5.28)

This vector 𝜃𝐴𝑅𝑋 can be found through two different estimation methods: Ordinary Least-Squares (OLS) and

Recursive Least-Squares (RLS). In the first one, a standard least-squares technique is employed for all samples in a

unique batch, obtaining a set of values of adjustable parameters for the entire simulation time. In the second one,

such LS technique is applied recursively, updating the parameter estimation for each new measurement sample,

giving as a result a different 𝜃𝐴𝑅𝑋 for each data point.

5.4.1. Ordinary Least-Squares
The derivatives (Eqs. 5.13) of the prediction error for an ARX model,

𝜖(𝑡𝑘 , 𝜃) = 𝐴(𝑧−1)𝑢(𝑡𝑘) − 𝐵(𝑧−1)𝑧−𝑛𝑘 𝑒(𝑡𝑘), (5.29)

are given by the following expressions:

𝜕𝜖(𝑡𝑘 , 𝜃)
𝜕𝑎𝑑

𝑗=1,2

=
𝐷(𝑧−1)
𝐶(𝑧−1)

𝑧−𝑗𝑢(𝑡𝑘) = 𝑢(𝑡𝑘−𝑗),
𝜕𝜖(𝑡𝑘 , 𝜃)

𝜕𝑏𝑑
𝑗=0,1,...,𝑛𝑏

= − 𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑧−𝑗−𝑛𝑘 𝑒(𝑡𝑘) = −𝑒(𝑡𝑘−𝑗−𝑛𝑘). (5.30)

Thus, the negative gradient of the prediction error would be equal to the regression vector 𝜑(𝑡𝑘):

𝜋(𝑡𝑘) = −𝜕𝜖(𝑡𝑘 , �̂�(𝑡𝑘−1
))

𝜕�̂�(𝑡𝑘−1
)

=
[
−𝑢(𝑡𝑘−1

),−𝑢(𝑡𝑘−2
), . . . ,−𝑢(𝑡𝑘−𝑛𝑎), 𝑒(𝑡𝑘−𝑛𝑘), 𝑒(𝑡𝑘−𝑛𝑘−1

), . . . , 𝑒(𝑡𝑘−𝑛𝑘−𝑛𝑏)
]𝑇

=

=
[
−𝑢(𝑡𝑘−1

),−𝑢(𝑡𝑘−2
), 𝑒(𝑡𝑘−𝑛𝑘), 𝑒(𝑡𝑘−𝑛𝑘−1

)
]𝑇

= 𝜑(𝑡𝑘).
(5.31)

5.4. ARX model estimation 40

Therefore, the cost function (Eq. 5.8) can be redefined by means of the regression vector after modifying the

expression:

�̂�𝐴𝑅𝑋 = arg min

𝜃𝐴𝑅𝑋

[
1

2𝑁

𝑖=𝑁∑
𝑖=1

𝜖2(𝑡𝑖 , 𝜃)
]
=

1

2𝑁
arg min

𝜃𝐴𝑅𝑋

[
𝑖=𝑁∑
𝑖=1

(
𝐴(𝑧−1)𝑢(𝑡𝑘) − 𝐵(𝑧−1)𝑧−𝑛𝑘 𝑒(𝑡𝑘)

)
2

]

=
1

2𝑁
arg min

𝜃𝐴𝑅𝑋

𝑖=𝑁∑
𝑖=𝑖0

(
𝑢(𝑡𝑖) − 𝜑𝑇 (𝑡𝑖)𝜃𝐴𝑅𝑋

)
2

(5.32)

This loss function matches the one used in the OLS estimator [19], which means that the OLS method can be

also considered as a type of prediction error method. Hence, ARX structures can be estimated by means of linear

regression since the PEM optimization problem has an analytical solution.

In Equation 5.32, 𝑖
0

represents the index related to the start of the dataset employed in the OLS estimation. It is

not necessary for all samples to be considered, since initial data points might be affected by transients, and then, it

would be recommendable to discard them. Nevertheless, a prediction of the initial pairs {𝑢(𝑡𝑘<1
), 𝑒(𝑡𝑘<1

)} (see Eq.

5.17) is usually required in order to employ the whole dataset (i.e., 𝑖
0
= 1). If such initial pairs estimation is not

performed, then the minimum 𝑖
0

allowed is:

𝑖
0
= 𝑚𝑎𝑥 {𝑛𝑎 + 1, 𝑛𝑏 + 𝑛𝑘 + 1} = 𝑚𝑎𝑥 {3, 𝑛𝑘 + 2} . (5.33)

Before finding the analytical solution to the minimization problem, the regression matrix and control-output

vector must be defined. For an input-output dataset that consists of 𝑁 samples, the regression matrix is built based

on the regression vector 𝜑(𝑡𝑘) and an integer 𝑖
0
:

Φ =

𝜑𝑇 (𝑡𝑖0)
𝜑𝑇 (𝑡𝑖0+1

)
...

𝜑𝑇 (𝑡𝑁)

=

−𝑢(𝑡𝑖0−1
) −𝑢(𝑡𝑖0−2

) 𝑒(𝑡𝑖0−𝑛𝑘) 𝑒(𝑡𝑖0−𝑛𝑘−1
)

−𝑢(𝑡𝑖0) −𝑢(𝑡𝑖0) 𝑒(𝑡𝑖0+1−𝑛𝑘) 𝑒(𝑡𝑖0−𝑛𝑘)
...

...
...

...

−𝑢(𝑡𝑁−1
) −𝑢(𝑡𝑁−2

) 𝑒(𝑡𝑁−𝑛𝑘) 𝑒(𝑡𝑁−𝑛𝑘−1
)

, (5.34)

while the control-output vector is:

𝑈 =
[
𝑢(𝑡𝑖0) 𝑢(𝑡𝑖0+1

) · · · 𝑢(𝑡𝑁)
]𝑇
. (5.35)

The parameter vector 𝜃𝐴𝑅𝑋 can be computed by means of a QR-factorization solver, provided that the regression

matrix is full rank. Hence, the final expression to calculate 𝜃𝐴𝑅𝑋 is:

�̂�𝐴𝑅𝑋 =

(
Φ𝑇Φ

)−1

Φ𝑇𝑈. (5.36)

After computing the model parameter estimation, the noise variance is calculated based on Equation 5.20:

�̂�2

𝜀 =
1

𝑁

𝑖=𝑁∑
𝑖=𝑖0

(
𝑢(𝑡𝑖) − 𝜑𝑇 (𝑡𝑖)�̂�𝐴𝑅𝑋

)
2

. (5.37)

5.4.2. RLS application
Based on results shown in [10], the selection of a forgetting matrix is more recommendable, thus, the RLS

algorithm to be employed in this report is configured accordingly. Therefore, Equations 5.26 are used in the online

ARX estimation process, where the forgetting matrix Λ is a diagonal matrix of 4 elements,

Λ = 𝑑𝑖𝑎𝑔
(
𝜆𝑎1

,𝜆𝑎2
, . . . ,𝜆𝑎𝑛𝑎 ,𝜆𝑏0

,𝜆𝑏1

, . . . ,𝜆𝑏𝑛𝑏

)−1/2

= 𝑑𝑖𝑎𝑔
(
𝜆𝑎1

,𝜆𝑎2
,𝜆𝑏0

,𝜆𝑏1

)−1/2

, (5.38)

and the term Λ𝑃(𝑡𝑘−1
)Λ is defined as follows:

Λ𝑃(𝑡𝑘−1
)Λ =

𝑃𝑎
1
(𝑡𝑘−1

)
𝜆𝑎

1

𝑃𝑎
1
,𝑎

2
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑎

2

𝑃𝑎
1
,𝑏

0
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑏

0

𝑃𝑎
1
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑏

1

𝑃𝑎
1
,𝑎

2
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑎

2

𝑃𝑎
2
(𝑡𝑘−1

)
𝜆𝑎

2

𝑃𝑎
2
,𝑏

0
(𝑡𝑘−1

)√
𝜆𝑎

2
𝜆𝑏

0

𝑃𝑎
2
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑎

2
𝜆𝑏

1

𝑃𝑎
1
,𝑏

0
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑏

0

𝑃𝑎
2
,𝑏

0
(𝑡𝑘−1

)√
𝜆𝑎

2
𝜆𝑏

0

𝑃𝑏
0
(𝑡𝑘−1

)
𝜆𝑏

0

𝑃𝑏
0
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑏

0
𝜆𝑏

1

𝑃𝑎
1
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑎

1
𝜆𝑏

1

𝑃𝑎
2
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑎

2
𝜆𝑏

1

𝑃𝑏
0
,𝑏

1
(𝑡𝑘−1

)√
𝜆𝑏

0
𝜆𝑏

1

𝑃𝑏
1
(𝑡𝑘−1

)
𝜆𝑏

1

. (5.39)

5.5. BJ model estimation 41

In this case, the optimal forgetting matrix found by van Grootheest [10] is chosen, in which an infinite memory

horizon is applied for poles (𝑎𝑑
1

and 𝑎𝑑
2
) and 𝑁𝑖 = 256 samples are taken into account for zeros estimation (𝑏𝑑

0
and

𝑏𝑑
1
). Elements in the forgetting matrix are kept constant during the entire simulation time, which gives as a result

an exponential discount of old measurements in the estimation of 𝑏𝑑
0

and 𝑏𝑑
1
. Therefore, the matrix used is:

Λ = 𝑑𝑖𝑎𝑔

(
1, 1,

𝑁𝑏0
− 1

𝑁𝑏0

,
𝑁𝑏1

− 1

𝑁𝑏1

)−1/2

= 𝑑𝑖𝑎𝑔(1, 1, 0.99609, 0.99609)−1/2. (5.40)

Also, the covariance matrix can be initialized as a diagonal matrix whose components are equal to 0.1, i.e.:

𝑃
0
= 𝑑𝑖𝑎𝑔 (0.1, 0.1, 0.1, 0.1) . (5.41)

5.5. BJ model estimation
BJ structures can not be estimated by linear regression techniques used in ARX models due to their non-linear

nature, thus, more adequate optimization methods are required to find the model parameters that minimize the

cost function. From the general expression for BJ models in Equation 5.5b, the vector of adjustable parameters 𝜃𝐵𝐽
is defined as follows:

𝜃𝐵𝐽 =
[
𝑎𝑑

1
, 𝑎𝑑

2
, . . . , 𝑎𝑑𝑛 𝑓 , 𝑏

𝑑
0
, 𝑏𝑑

1
, . . . , 𝑏𝑑𝑛𝑏 , 𝑐

𝑑
1
, 𝑐𝑑

2
, . . . , 𝑐𝑑𝑛𝑐 , 𝑑

𝑑
1
, 𝑑𝑑

2
, . . . , 𝑑𝑑𝑛𝑑

]𝑇
=

[
𝑎𝑑

1
, 𝑎𝑑

2
, 𝑏𝑑

0
, 𝑏𝑑

1
, 𝑑𝑑

1
, . . . , 𝑑𝑑𝑚

]𝑇
(5.42)

As mentioned before, discrete-time parameters 𝑓 𝑑
𝑖

are called 𝑎𝑑
𝑖

in BJ structures, so that the equations for the

polynomial 𝐹(𝑧−1) will be used under the name of 𝐴(𝑧−1). Additionally, one less equation is to be required since

the order of 𝐶(𝑧−1) is null. This vector 𝜃𝐵𝐽 can be found through two different algorithms: Prediction Error Method

and Recursive Prediction Error minimization.

5.5.1. PEM application
From the prediction error (Eq. 5.4),

𝜖(𝑡𝑘 , 𝜃𝐵𝐽) = 𝐷(𝑧−1)
[
𝑢(𝑡𝑘) −

𝐵(𝑧−1)
𝐹(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘)
]
, (5.43)

the minimization problem can be defined as follows:

�̂�𝐵𝐽 = arg min

𝜃𝐵𝐽

𝑉𝑁 (𝜃𝐵𝐽 , 𝑍𝑁) = arg min

𝜃𝐵𝐽

1

2𝑁

𝑖=𝑁∑
𝑖=𝑖0

[
𝐷(𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑖)
]

2

. (5.44)

Hence, the optimization model is represented by the following equations:

𝜕𝑉𝑁

𝜕𝑎𝑑
𝑗=1,2

=
1

𝑁

𝑖=𝑁∑
𝑖=𝑖0

[
𝐷(𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑖)
]
× 𝐵(𝑧−1)𝐷(𝑧−1)

𝐹2(𝑧−1)
𝑧−𝑗 𝑒(𝑡𝑖) = 0, (5.45a)

𝜕𝑉𝑁

𝜕𝑏𝑑
𝑗=0,1

=
1

𝑁

𝑖=𝑁∑
𝑖=𝑖0

[
𝐷(𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑖)
]
× 𝐷(𝑧−1)
𝐹(𝑧−1)

𝑧−𝑗−𝑛𝑘 𝑒(𝑡𝑖) = 0, (5.45b)

𝜕𝑉𝑁

𝜕𝑑𝑑
𝑗=1,2,...,𝑛𝑑

=
1

𝑁

𝑖=𝑁∑
𝑖=𝑖0

[
𝐷(𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑖)
]
×

[
𝑧−𝑗𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝑧−𝑗
𝐹(𝑧−1)

𝑒(𝑡𝑖)
]
= 0. (5.45c)

In BJ model estimation, the index 𝑖
0

should be always equal to 1 due to the higher relevance of the initial states in

the optimization process, so that the whole dataset is utilised in the PEM algorithm. In this scenario, an initial

model needs to be estimated beforehand to find the pairs {𝑢(𝑡𝑘<1
), 𝑒(𝑡𝑘<1

)} based on the initial conditions 𝜃0

𝐵𝐽
:

�̂�𝑁
0

= arg min

𝑍𝑁
0

𝑉0

𝑁
(𝜃0

𝐵𝐽
, 𝑍𝑁

0
) = arg min

𝑍𝑁
0

{
1

2𝑁

∑
𝑖<1

[
𝐷

0
(𝑧−1)𝑢(𝑡𝑖) −

𝐵
0
(𝑧−1)𝐷

0
(𝑧−1)

𝐹
0
(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

}
. (5.46)

Nevertheless, initial data can also be discarded (only if the Matlab function pem.m is not been employed), but the

minimum 𝑖
0

allowed must be defined based on the Maclaurin series of the most delayed term, i.e.,
𝐵(𝑧−1)𝐷(𝑧−1)
𝐹2(𝑧−1) 𝑧−𝑗 .

For instance, if a first-order series is assumed, the minimum index should be:

𝑖
0
= 𝑛𝑏 + 𝑛𝑑 + 3𝑛 𝑓 + 𝑛𝑘 + 1 = 𝑛𝑑 + 𝑛𝑘 + 8. (5.47)

5.5. BJ model estimation 42

In order to find the optimal solution to the non-linear problem shown in Equations 5.45, the most adequate and

computationally efficient approach is to use gradient-based schemes based on the ones initially employed by Box

and Jenkins [3], although many other useful methodologies are being used currently as well. For instance, Matlab

function pem.m offers the possibility of combining a set of line search algorithms (’gn’ - Subspace Gauss-Newton

Least-Squares, ’lm’ - Levenberg-Marquardt Least Squares, ’gna’ - Adaptive Subspace Gauss-Newton, and ’grad’ -

Steepest Descent Least-Squares) to make the estimation process more robust and efficient [18]. This option can be

selected by setting ’SearchMethod’ to ’auto’
Finally, the noise variance is computed from the model parameter estimates:

�̂�2

𝜀 =
1

𝑁

𝑖=𝑁∑
𝑖=1

[
𝐷(𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷(𝑧−1)
𝐹(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

. (5.48)

5.5.2. Recursive Prediction Error minimization
From Equations 5.13, the prediction errors derivatives can be defined as follows:

𝜕𝜖(𝑡𝑘)
𝜕𝑎𝑑

𝑖

=
𝐷(𝑧−1)

𝐹(𝑧−1)𝐶(𝑧−1)
𝐵(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘) =
𝐷(𝑧−1)

𝐹(𝑧−1)𝐶(𝑧−1)
𝑦(𝑡𝑘−𝑖−𝑛𝑘) = 𝑦 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘), (5.49a)

𝜕𝜖(𝑡𝑘)
𝜕𝑏𝑑
𝑖

= − 𝐷(𝑧−1)
𝐹(𝑧−1)𝐶(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘) = −𝑒 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘), (5.49b)

𝜕𝜖(𝑡𝑘)
𝜕𝑐𝑑
𝑖

=
1

𝐶(𝑧−1)

[
𝑢(𝑡𝑘−𝑖) −

𝐵(𝑧−1)
𝐹(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘)
]
=

1

𝐶(𝑧−1)
𝜉(𝑡𝑘−𝑖) = 𝜉 𝑓2 (𝑡𝑘−𝑖), (5.49c)

𝜕𝜖(𝑡𝑘)
𝜕𝑑𝑑

𝑖

= − 1

𝐶(𝑧−1)

[
𝐷(𝑧−1)
𝐶(𝑧−1)

𝑢(𝑡𝑘−𝑖) −
𝐷(𝑧−1)𝐵(𝑧−1)
𝐶(𝑧−1)𝐹(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘)
]
= −𝜖 𝑓2 (𝑡𝑘−𝑖). (5.49d)

Where the subscripts 𝑓
1

and 𝑓
2

denote that the variable is filtered by the transfer functions:

𝑓
1
=

𝐷(𝑧−1)
𝐶(𝑧−1)𝐹(𝑧−1)

, 𝑓
2
=

1

𝐶(𝑧−1)
. (5.50)

Therefore, the negative gradient 𝜋(𝑡𝑘) presents the following expression:

𝜋(𝑡𝑘) = − 𝜕𝜖

𝜕�̂�
=

[
−�̂�

𝑓1
(𝑡𝑘−1−𝑛𝑘), . . . ,−�̂� 𝑓1 (𝑡𝑘−𝑛 𝑓 −𝑛𝑘), 𝑒 𝑓1 (𝑡𝑘−𝑛𝑘), . . . , 𝑒 𝑓1 (𝑡𝑘−𝑛𝑏−𝑛𝑘),−�̂� 𝑓2 (𝑡𝑘−1

), . . . ,−�̂�
𝑓2
(𝑡𝑘−𝑛𝑐),

�̂�
𝑓2
(𝑡𝑘−1

), . . . , �̂�
𝑓2
(𝑡𝑘−𝑛𝑑)

]𝑇
=

[
−�̂�

𝑓1
(𝑡𝑘−1−𝑛𝑘),−�̂� 𝑓1 (𝑡𝑘−2−𝑛𝑘), 𝑒 𝑓1 (𝑡𝑘−𝑛𝑘), 𝑒 𝑓1 (𝑡𝑘−1−𝑛𝑘), �̂�(𝑡𝑘−1

), . . . , �̂�(𝑡𝑘−𝑛𝑑)
]𝑇
,

(5.51)

where the prefilters 𝑓
1

and 𝑓
2

are the latest estimated prefilters,

𝑓
1
=
�̂�(𝑧−1)
�̂�(𝑧−1)

, 𝑓
2
= 1, (5.52)

and variables �̂�(𝑡𝑘) are calculated from the latest estimated polynomials,

�̂�(𝑡𝑘) =
�̂�(𝑧−1)
�̂�(𝑧−1)

𝑒(𝑡𝑘−𝑛𝑘). (5.53)

A Recursive PEM algorithm [46] is built, by analogy with the RLS method defined in Equations 5.21 and

fulfilling the theoretical requirements to achieve convergence. Since recursive function rpem.m in Matlab only

admits a unique forgetting factor (there is no option for forgetting matrix), the RPEM algorithm to be used is given

by the following steps:

�̂�𝐵𝐽 (𝑡𝑘) = �̂�𝐵𝐽 (𝑡𝑘−1
) + 𝑃(𝑡𝑘)𝜋(𝑡𝑘)𝜖(𝑡𝑘), (5.54a)

𝑔(𝑡𝑘) =
𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
𝜆 + 𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1

)𝜋(𝑡𝑘)
, (5.54b)

𝑃(𝑡𝑘) =
1

𝜆

[
𝑃(𝑡𝑘−1

) − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1
)
]
. (5.54c)

Thus, the classical RLS algorithm is adapted to non-linear cases by means of converting 𝜋(𝑡𝑘) into a vector

composed of linear variables, as shown in Equation 5.51. A forgetting factor 𝜆 = 0.99609 is recommended for

5.6. Quality-of-fit metrics 43

the implementation of the recursive BJ method, based on previous results from Van Grootheest [10]. In addition,

following the RLS initialization in ARX estimation, the initial covariance matrix can be defined as:

𝑃
0
= 𝑑𝑖𝑎𝑔 (0.1, 0.1, 0.1, 0.1 × 𝑛𝑑) . (5.55)

In addition, other methods can be applied to the online BJ structure estimation problem, such as the Real-Time

Recursive Refined Instrumental Variable (RRIV) or the Extended Kalman Filter (EKF) [46]. The RRIV method is

probably the most similar to the RPEM algorithm, although it presents some differences in terms of the covariance

matrix definition (two sub-matrices with null off-diagonal blocks are used in RRIV), the robustness of the algorithm

(the Instrumental Variable modifications ensure a stable estimation process), or the steps required (while RPEM is

fully recursive, RRIV needs to iterate at each 𝑘𝑡ℎ period).

5.6. Quality-of-fit metrics
In order to verify the quality of the estimation performed, several metrics need to be used. These metrics have

to be relevant in terms of addressing how well the predicted model represents the dynamics of the real one. To

achieve such a goal, the prediction error in estimated model parameters has to be analysed, but the prediction

capabilities of such a model must be also studied.

Hence, two different quality-of-fit metrics are employed: the Variance Accounted For (VAF) and the relative

bias (𝐵𝑟,𝑖). Both have been employed in previous works to verify the ARX results [10, 36], thus, these ones should

be also applicable to the BJ results. The VAF metric,

𝑉𝐴𝐹𝑛
∗
𝑘
,𝑚∗

= 𝑚𝑎𝑥

0,
©
«
1 −

∑𝑁
𝑘=1

| �̃�(𝑡𝑘) − �̂�𝑛
∗
𝑘
,𝑚∗

(𝑡𝑘) |
2

∑𝑁
𝑘=1

| �̃�(𝑡𝑘) |2
ª®
¬
· 100%

, (5.56)

evaluates the correctness of a model, by comparing the real output, �̃�(𝑡𝑘), with the estimated output of the model,

�̂�𝑛
∗
𝑘
,𝑚∗

(𝑡𝑘), for a certain combination of time delay and remnant filter order in the model structure. The VAF of two

signals that are the same is 100%, while it will be lower if they differ. On the other hand, the relative bias can be

used to verify the accuracy of model parameter estimation,

𝐵𝑟,𝑖 =

(
�̂�𝑖 − 𝜃0

𝑖

𝜃0

𝑖

)
· 100%. (5.57)

This bias is applied to each coefficient in order that errors in estimation can be found more easily. In addition, the

absolute relative bias is addressed in special scenarios when the standard 𝐵𝑟,𝑖 does not offer enough clarity:

| 𝐵𝑟,𝑖 |=
�����
�̂�𝑖 − 𝜃0

𝑖

𝜃0

𝑖

����� · 100%. (5.58)

6
Preliminary simulation analysis

In this chapter, the different results obtained for ARX and BJ models are shown for batch-fitting estimation. In

addition, the results from the recursive ARX algorithm are shown, together with the future perspectives for the BJ

algorithm in online estimation.

Previous investigations [30, 49, 5] confirm that it is quite important to assess a novel identification method’s

accuracy using Monte Carlo simulations before applying it to real-world activities or laboratory tests. Therefore,

such a simulation is performed for 𝑀 = 100 realizations of the remnant noise, in which all possible scenarios are

covered for each case. Simulation conditions C1 and C2 are addressed in batch-fitting estimation, while condition

C3 is evaluated by the recursive algorithm. Remnant filter orders 𝑚0 ∈ {1, 2, 3, 4} are simulated, so that their effect

on the HO parameters estimation quality can be properly analysed. In addition, ARX and BJ models are built for

multiple HO time delays, 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}, and noise levels, 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Only a remnant

time constant 𝑇𝑛 = 0.06𝑠 is considered due to its low relevance in the estimators’ capabilities.

Since the configuration of BJ model structures and their optimization processes are more complex than ARX

ones, a more detailed study of the model remnant orders and initial conditions to be employed is required. In

relation to the model remnant filter structure, two possible strategies are analysed: the model 𝑚 − 𝑡ℎ order matches

the simulated one, or the model 𝑚 − 𝑡ℎ is always equal to 1. Attending to changes in initial conditions of the

estimated discrete-time BJ parameters, a total of 8 different cases are evaluated with respect to the reference I.C.

Moreover, no decimation analysis has been conducted in this report, since the goals of this research are only to

develop a novel estimator based on BJ model structures and compare its performance with results from the ARX

models. When a decimation analysis is performed, a Padé approximation [42] must be implemented whether 𝑛0

𝑘
is not an integer due to the variation in time step 𝑇𝑠 . This approximation introduces additional zeros and poles

in the discrete-time transfer function of the BJ model, which will interfere with the estimation of the rest of the

parameters. Thus, such an analysis is considered to be out of the scope of this MSc Thesis.

6.1. Batch-fitting
6.1.1. ARX results

For simulation condition C1, Figures C.1 and C.2 show the relative bias in discrete- and continuous-time

parameters estimated through ARX models, respectively. High errors are encountered for first order remnant filter,

and particularly in 𝑏𝑑
0

and 𝑏𝑑
1
, since the number of poles in the simulated filter is lower than the one corresponding

to the poles introduced by the ARX model. Thus, the ARX model sacrifices quality of fit in HO parameters to

explain the remnant noise dynamics more precisely, by means of a filter structure unable to model a first-order one.

On the other hand, acceptable relative bias results are found for remnant orders greater than 1 (due to the fact that

the remnant filter presents at least 2 poles), although significant errors can still be observed for discrete-time zeros.

Hence, no consistency in results is possible through ARX models whether the remnant filter order is modified in

the human operator.

Model time delay changes produce a linear trend in computed relative bias, however, these ones do not oscillate

around zero and no optimal results are found for actual HO time delay (i.e., 𝑛∗
𝑘
= 29). Only the HO gain 𝐾𝑒 results

in Figure C.2 achieve the ideal performance. Furthermore, null biases are achieved for remnant-free cases when the

model time delay is the correct one, which means that the ARX structure is adequately implemented.

Additionally, increments in noise level lead to a bigger bias in general, which affects the stability of the ARX

estimator. Since the model filter structure is wrong and fixed for changes in 𝑚0
, HO parameters results will be

affected by stronger remnant dynamics. Therefore, the ARX model can only be considered as a robust estimation

technique when really small noise level remnant noises are introduced in the system.

44

6.1. Batch-fitting 45

For simulation condition C2 (see Figures C.9 and C.10), similar results in discrete-time parameters can be

observed. In relation to the HO coefficients, 𝐾𝑒 and 𝑇𝐿 present a greater bias when compared to the results for C1,

while estimations of 𝜔𝑛𝑚 and 𝜂𝑛𝑚 are slightly improved. This can be explained by the fact that the location of the

zero for C2 is moved to a lower frequency, so that the estimation of HO parameters in the numerator is going to miss

a valuable part of the information from the HO dynamics generated by the forcing function (i.e., the frequencies of

some sinusoidals in the forcing function will be further from the frequency corresponding to the HO’s zero).

Figures D.1 to D.4 show the Bode plots of the computed discrete-time model for multiple simulation remnant

orders, HO time delays, and noise levels. For the remnant-free case, the computed discrete-time transfer functions

from ARX models offer satisfactory results for all remnant orders in terms of magnitude and phase, but also in the

location of the zero and poles. Nevertheless, in non-null remnant noise cases, poles are not correctly captured and

the heights of their associated peaks present a considerable error with respect to the reference value. Phase angle

deviations with respect to the reference case are relatively small, except for the frequency region near the peak at

poles, since ARX model fit is not accurate enough for discrete-time parameters 𝑎𝑑
1

and 𝑎𝑑
2
. Also, the correct location

of poles is completely missed when a first-order remnant filter is simulated, which leads to huge errors in phase

angle.

For higher remnant orders in simulation data, the location of poles moves towards the left of the graph. Seeing

that the HO transfer function and the remnant filter share poles in the ARX model, the optimal solution found by

the estimator to properly approximate the HO neuromuscular dynamics and remnant filter structure is to locate

such poles at lower frequencies. Additionally, this re-location towards the left of Bode plots produces higher peaks

at poles due to the weighting function in the bias minimization process, as shown by van Grootheest [10].

Regarding the modification in HO time delay, ARX estimators provide poles at lower frequencies when smaller

𝑛∗
𝑘

are chosen, and vice versa. Therefore, the ARX model ’generates lag’ to compensate for smaller model time

delays, while it ’creates lead’ for greater time delays, in order that the ARX model phase captures more precisely

the real delay in the system.

Figures D.10 to D.13 present the resultant Bode plots for simulation condition C2. In this case, a higher peak

is generated due to the location of the zero at a lower frequency, which creates lead earlier. Similar results are

obtained when compared to the previous simulation condition, however, the HO zero is captured by the ARX

model less accurately since it is in less direct contact with HO dynamics information coming from sinusoidals’

frequencies of the forcing function.

6.1.2. BJ results
For simulation condition C1, Figures C.3 and C.4 show the relative bias in discrete- and continuous-time HO

parameters, while results for remnant parameters can be appreciated in Figure C.5.

In this case, the high errors for first-order filter simulations are diminished, since the number of poles placed in

the BJ model filter matches the simulation scenario. In fact, results obtained for all model remnant orders are quite

consistent, so that the BJ estimator could be considered quite robust when facing different remnant orders.

Furthermore, relative bias results oscillate around zero when the model time delay is modified from the

reference value 𝑛∗
𝑘
= 𝑛0

𝑘
= 29. Previous ARX results showed that relative bias increased or decreased in a linear

tendency with respect to the reference time delay, but it did not fluctuate with respect to a zero value. Thus, the

optimization process of the BJ estimator is able to converge to solutions really close to the real HO parameters, while

the ARX estimator presents a clear bias in its results due to the unreal remnant filter model structure. Moreover,

relative biases can still be considerable for 𝑏𝑑
0

and 𝑏𝑑
1

in scenarios with model time delays far from the reference one,

but those ones are a bit smaller than in the ARX case.

An increase in the noise level does not lead to a greater relative bias in general, but results fluctuate around the

bias of the remnant-free case at each model time delay. Hence, the BJ estimator can adapt well enough to simulation

data in which the remnant dynamics are quite relevant.

Regarding the remnant parameters in Figure C.5, unsatisfactory results are found for remnant orders higher

than 1. Since the coefficient 𝑇𝑛 is obtained from the discrete-time remnant parameters such as 𝑑𝑑
1
, as explained in

Section B.2, its estimation is contingent upon a high variability and bias when model remnant orders greater than

1 are chosen. In this way, relative biases around 100% are obtained in the results. The modified remnant noise

variance 𝜎2

𝜖′ presents an important deviation with respect to the reference value as well, which increases for higher

remnant orders. This wrong prediction of the variance could be originated from the effort of the BJ estimator in

explaining the HO remnant dynamics by means of adjusting the discrete-time remnant parameters instead of fitting

𝜎2

𝜖′ more precisely. Finally, the estimation of the remnant gain also presents important errors for 𝑚 − 𝑡ℎ orders

greater than 1 since it depends on how accurately the parameters 𝑇𝑛 and 𝜎2

𝜖′ are predicted (see Equation B.15).

Figures C.11 to C.13 show the relative bias results for simulation condition C2. Similar results are obtained,

however, the parameters 𝐾𝑒 and 𝑇𝐿 associated with the HO zero present a less precise estimation, while the

neuromuscular dynamics are better captured. Attending to the remnant parameters, the results in the modified

noise variance (and the remnant gain in consequence) have improved, although the variability of the obtained

biases is much higher than for simulation condition C1.

6.1. Batch-fitting 46

Figures D.5 to D.8 present the plots from the obtained BJ discrete-time models. In remnant-free cases, BJ models

present higher deviations than ARX models with respect to the reference transfer function. The BJ estimator is

trying to explain a fictional filtered remnant noise with part of HO dynamics, which leads to errors in parameter

prediction when the correct model time delay is not selected. In particular, a remnant order equal to 2 produces

the highest deviations, since it matches the order of the neuromuscular dynamics (estimations of neuromuscular

and remnant poles overlap). Regarding non-null noise level scenarios, the results obtained are excellent since the

approximation of the HO poles and zero, together with the HO gain, are really accurate. In addition, a similar

effect in relation to lead/lag generation is given in the BJ estimator in comparison with the ARX one, seeing that BJ

poles are placed at lower frequencies for smaller model time delays to create additional lag, and vice versa.

In Figure D.9, the Bode plots from ARX and BJ models can be observed for different noise levels and remnant

orders, while fixing the model time delay as 𝑛∗
𝑘
= 𝑛0

𝑘
= 29, so that it matches the simulation one perfectly. Except

for the remnant-free case, in which ARX and BJ offer comparable results, the BJ model always outperforms the ARX

one, both in magnitude and phase estimation. When the ARX estimator has difficulties locating the system poles

and peak magnitudes, the estimation method based on BJ structures provides an accurate solution (no additional

lead/lag is required by the BJ estimator since the model time delay is the real one).

Figures D.14 to D.17 show the BJ Bode plots for simulation condition C2. Similar to the ARX case, the

placement of the zero is estimated less accurately than for simulation condition C1, since less information from HO

dynamics due to the forcing function is available for this issue. Also, the HO gain estimation is poorer than in the

previous simulation condition C1, which can be observed clearly in the initial magnitude values of the Bode plot.

Nevertheless, the pole estimation still remains acceptable.

In Figure D.18, the comparison between ARX and BJ Bode plots is shown for simulation condition C2. Almost

the same results are obtained as for simulation condition C1. The BJ estimator is capable of capturing the HO

dynamics perfectly when the model time delay chosen is the real one.

6.1.3. Implementation of m∗ = 1 in BJ model
When recursive algorithms based on BJ are applied, the model remnant order 𝑚∗

can be a variable to predict

based on simulation data, or can be fixed as long as it does not affect the quality of estimation results. The ideal

BJ structure should incorporate a model remnant order such that it is equal to the simulation one (i.e., 𝑚∗ = 𝑚0
),

however, this is not always possible in real cases when the estimator is applied online for pilot data, since the

implemented algorithm might not be capable of determining which remnant order is the real one (or even the

pilot’s remnant filter order could be in transition between two integer values). Therefore, fixing the model remnant

order may be a recommendable choice to simplify the complexity of the model parameters estimation problem,

which implies a decrease in computational cost that can be invested in a higher emphasis on the HO time delay

identification.

In order to verify whether a fixed model remnant order is an acceptable option, the VAF and relative bias

metrics 1 can be employed to analyse the performance of the BJ estimator for multiple combinations of model

remnant order 𝑚∗
and time delay 𝜏∗𝑒 . Hence, a set of colour contour maps (see Appendix E) has been generated for

simulation conditions C1 and C2 and simulation remnant orders 𝑚0 ∈ {1, 2, 3, 4}, while the model time delay and

remnant order are selected from the range 𝜏∗𝑒 ∈ {25, 26, 27, 28, 29, 30} and 𝑚∗ ∈ {1, 2, 3, 4} at each case, respectively.

For simulation condition C1, Figures E.1, E.3, E.5 and E.7 show the VAF metric results for 𝑚0 ∈ {1, 2, 3, 4} and

multiple noise levels 𝑃𝑛 ∈ {0.0, 0.1, 0.2, 0.3}. In all these graphs, the VAF is similar for each combination {𝑚∗ , 𝜏∗𝑒 },
although Figure E.1 reveals that a model remnant order equal to 4 (the simulation one is 1 for this case) provides

lower VAF results. For simulation condition C2, Figures E.9, E.11, E.13 and E.15, same metrics are obtained at each

combination of BJ model parameters, nevertheless, a more intense contrast can be observed in Figure E.9 when the

model remnant order does not match the real one. Hence, the VAF metrics could only be useful to find whether a

first-order remnant filter is present in the human operator, but no conclusions can be extracted from results when

𝑚0 > 1.

On the other hand, absolute bias results for the HO discrete-time,

{
𝑏𝑑

0
, 𝑏𝑑

1
, 𝑎𝑑

1
, 𝑎𝑑

2

}
, and remnant parameters,{

𝜎2

𝜖′ , 𝑑
𝑑
1

}
, are more informative about the estimated BJ model at each combination {𝑚∗ , 𝜏∗𝑒 }. For simulation condition

C1, Figures E.2, E.4, E.6 and E.8 show a clearer minimum relative bias in the area surrounding the simulation

configuration

{
𝑚0 , 𝜏0

𝑒

}
for HO discrete-time parameters results. However, as can be appreciated from these figures,

the time delay is a more determinant factor than the remnant order in terms of relative bias reduction. Only in the

case 𝑚0 = 1 (see E.2), there is clear evidence that a selection of a model remnant order that matches the simulation

one reduces the bias significantly.

In relation to the remnant parameters,

{
𝜎2

𝜖′ , 𝑑
𝑑
1

}
, the opposite conclusion can be drawn. The time delay becomes

irrelevant in terms of bias reduction, while the remnant order is fundamental. This is due to the fact that such

parameters are much more influenced by the remnant dynamics than the HO discrete-time parameters.

1In this subsection, absolute relative bias results are presented instead of standard bias, since an absolute value permits a

better visual finding of minimum bias region on the colour contour map.

6.1. Batch-fitting 47

For simulation condition C2, Figures E.10, E.12, E.14 and E.16 confirm the mentioned statements. Figure E.10

presents an even clearer contrast between results for model remnant orders closer to 1 and higher ones, while

Figures E.12, E.14 and E.16 show the great relevance of correct estimation of the HO time delay in the BJ model

structure.

When comparing relative bias results between BJ estimators with 𝑚∗ = 𝑚0
and 𝑚∗ = 1 (see Appendix C), it

can be concluded that the alternative of fixed model remnant order is a valid option. From Figures C.6 to C.8

for simulation condition C1, and Figures C.14 to C.16 for C2, show that similar relative bias values are achieved

through a BJ model structure with 𝑚∗ = 1. The medians of the computed biases in the discrete-time parameters are

almost the same as the values obtained by a BJ model with 𝑚∗ = 𝑚0
, however, the interquartile range may increase

slightly owing to the variability increment. Regarding the HO continuous-time parameters, very similar values are

achieved in the neuromuscular dynamics, although bias in 𝐾𝑒 and 𝑇𝐿 become noticeably higher when the model

time delay differs from the simulation one. Nevertheless, these increments in bias are still assumable and close to a

zero value for 𝜏∗𝑒 = 𝜏0

𝑒 . Finally, the remnant parameters are obviously wrongly estimated for the 𝑚∗ = 1 case, since

these ones are quite sensitive to a possible mismatch between the model remnant filter structure and the simulation

one.

Thus, based on the results shown in Appendix E, a fixed model remnant order 𝑚∗ = 1 would not only simplify

the BJ structure to be computed, but it would also improve the results obtained for 𝑚0 = 1 simulations when

high model remnant orders are chosen due to possible failures during the optimization process. However, the

implementation of such a BJ model structure could imply a small decrease in accuracy estimation for high simulation

remnant orders.

6.1.4. Modification of initial conditions in BJ model parameters
The optimization of the BJ model parameters is a non-linear process, and consequently, the initial conditions

(IC) of such parameters are quite relevant for the convergence and quality of the estimations. Optimizations from

non-ideal initial conditions can provide convergence to local minima of the cost function, but maybe not the global

one. Furthermore, ICs with important deviations from the reference parameters could even produce divergence in

the estimation process. Therefore, it is fundamental to have a proper understanding of the effects of changes in the

initial value of each HO parameter.

In Appendix F, Figures F.1 to F.8 show the differences (for simulation condition C1) between the computed

relative biases for the new IC (𝐵
𝐼𝐶𝑛𝑒𝑤
𝑟) and the values obtained from the base case in Appendix C (𝐵0

𝑟). The initial

conditions employed for this section are recorded in Table 6.1:

I.C. Number bd0
[
−

]
bd1

[
−

]
ad
1

[
−

]
ad
2

[
−

]
Base 0.075 −0.075 −1.912 0.924

𝐼𝐶1 0.075 −0.075 −1.812 0.824

𝐼𝐶2 0.075 −0.075 −1.962 0.974

𝐼𝐶3 0.050 −0.050 −1.912 0.924

𝐼𝐶4 0.050 −0.050 −1.812 0.824

𝐼𝐶5 0.050 −0.050 −1.962 0.974

𝐼𝐶6 0.100 −0.100 −1.912 0.924

𝐼𝐶7 0.100 −0.100 −1.812 0.824

𝐼𝐶8 0.100 −0.100 −1.962 0.974

Table 6.1: Initial conditions of discrete-time parameters in BJ models.

In general, the medians of relative bias differences are null or close to zero, which means that all ICs from Table

6.1 provide a similar output on average. However, the variability can be noticeable in some cases, while several

particular simulations can lead to considerable differences with respect to the base case. That is the effect of the

local minimum finding of the cost function instead of localising the global one. In addition, it can be observed

that for those ICs in which there is a higher deviation of the initial 𝑎𝑑
1

and 𝑎𝑑
2

values with respect to the reference

ones, there is a bigger difference in bias for 𝑏𝑑
0

and 𝑏𝑑
1
, while for greater deviations in 𝑏𝑑

0
and 𝑏𝑑

1
with respect to the

reference ones, less bias differences are encountered. This can be explained by the frequency range of the forcing

function, since it provides more information to the BJ estimator for zero prediction than for poles, as explained

previously. Therefore, the BJ model optimization is more sensitive to high initial deviations for the poles than for

the zero location, i.e., small initial errors in 𝑎𝑑
1

or 𝑎𝑑
2

can make a more negative impact on the estimation quality

than great initial deviations in 𝑏𝑑
0

and 𝑏𝑑
1
.

IC 3 (see Figure F.3) contains the set of initial discrete-time parameters closest to the reference ones. In this case,

since both the poles and the zero do not contain high initial deviations from the simulated data, relative bias results

are even improved when compared to the base case.

6.2. Recursive-fitting 48

6.2. Recursive-fitting
6.2.1. ARX results

For simulation condition C3, remnant orders 𝑚0 ∈ {1, 2, 3, 4} and noise levels 𝑃𝑛 ∈ {0.0, 0.1, 0.2, 0.3}, the

discrete- and continuous-time parameters of a human operator are estimated online by means of a recursive ARX

algorithm. Figures G.1 to G.4 present the predicted HO discrete-time parameters, while Figures G.5 to G.8 show

the continuous-time ones.

As explained before, first-order remnant simulations are quite difficult for an ARX estimator to model properly,

because a persistent bias is accumulated in the feedback loop due to the mismatch of the quasi-linear transfer

function and remnant filter poles. For instance, Figure G.1 depicts a huge bias in 𝑎𝑑
1

and 𝑎𝑑
2

parameters, which even

does not respect the relationship from Appendix B.3 in the coefficient 𝑎𝑑
2
, giving, as a result, many divergences

in the computation of HO continuous-time parameters. In the case of 𝑏𝑑
0

and 𝑏𝑑
1
, the estimation errors are more

intense, although the transition from first- to second-order dynamics is perceived by the recursive algorithm at least.

When the simulation remnant order is increased, the bias is heavily reduced, as shown in batch-fitting results.

In addition, an increment in noise level clearly produces a bigger error in 𝑏𝑑
0

and 𝑏𝑑
1

parameters with respect to their

reference values.

Regarding continuous-time results, the estimator provides a wrong prediction of the neuromuscular parameters

for a first-order remnant due to the huge biases in 𝑎𝑑
1

and 𝑎𝑑
2
, together with important divergences in the computation

of 𝑇𝐿 (condition 𝑎𝑑
2
> 0 is not fulfilled at multiple occasions). Nonetheless, the estimation of the HO gain is always

accurate. In relation to higher remnant orders, estimation biases decrease in all parameters, achieving a more

adequate parameter prediction.

6.2.2. Perspectives for BJ results
Based on the great advantages that the usage of BJ models has shown for batch-fitting, the recursive BJ estimator

is expected to:

• Diminish the huge bias encountered in recursive ARX results for a first-order remnant filter.

• Solve the instabilities in 𝑇𝐿 online estimation when the controlled element acts as a second-order integrator.

• Improve the stability of the transitions between estimations from controlled elements with first- to second-

order integrator dynamics.

• Provide online estimation results with a low error when high remnant filter orders are implemented in the

simulation.

• Be quite dependent on the initial conditions of the discrete-time parameters.

7
Conclusions and Future Works

It is been proved that estimators based on BJ structures can provide more adequate results than the ones based

on ARX models. BJ techniques are more robust when facing different remnant order filters, and particularly, for

first-order ones. The flexibility of BJ structures in introducing a certain number of poles in the remnant filter, which

also can differ from the NMS ones, allows a more accurate match between the real and estimated HO model.

In addition, more stable results are obtained for high noise level scenarios, since BJ biases are kept close to

the one achieved in the remnant-free case, while bias in ARX estimations presents greater oscillations. Therefore,

higher noise levels will lead to worse estimation results in ARX models, while BJ ones are still capable of reducing

the amount of bias produced.

Regarding the Bode plots of estimated models, BJ structures are also able to achieve a more satisfactory

identification of the real HO zeros and poles. The difference in the accuracy of pole identification can be observed

for both simulation conditions, while the effect of correct zeros estimation is especially noticeable for condition C21.

The errors in phase estimation are significantly improved with BJ structures, and also, BJ models are capable of

finding the magnitude peak more precisely. For the ideal model time delay (see Figures D.9 and D.18), ARX models

show a poorer identification at all remnant orders in comparison to BJ results (particularly in first-order scenarios).

Moreover, the analysis conducted in Section 6 shows that BJ structures with unitary remnant order can achieve

a similar performance than whether correct model remnant orders were used in each case. This implies that BJ

estimation procedures can be considerably simplified, because all the attention can be put on the HO time delay

estimation at real identification tasks while keeping a unitary remnant order. To determine such real HO time

delay, bigger intervals for 𝑛∗
𝑘

are recommended due to the limitations in the VAF metric to find the actual 𝑛0

𝑘
, since

BJ estimators still show quite acceptable converged results for model time delays close to 𝑛0

𝑘
.

Nevertheless, BJ models need to be initialised in order that the non-linear estimation process can converge.

ARX estimators present a greater advantage in this way since convergence is guaranteed as long as the regression

matrix is full rank. On the other hand, batch-fitting BJ estimators can accept inaccurate initial conditions, provided

that starting NMS pole values are relatively close to the real ones. Hence, it is true that BJ techniques are dependent

on ICs, but these estimators are flexible with the initial values of HO zeros.

In future works, a decimation analysis should be conducted in order to study the effect of additional model

parameters to be estimated due to the Padé approximation. The BJ algorithm performance does not have to

necessarily diminish in this case, since as observed for high remnant orders, the bias was still acceptable in spite of

the increase in model remnant parameters.

In addition, BJ estimators could be initialised with the model parameters obtained from a prior ARX computation

(OLS), above all when HO remnant orders are higher than one. This strategy could be quite interesting given the

sensitivity of BJ models to inaccurate initial conditions.

In the case of a recursive identification, BJ algorithms might face some instabilities due to unacceptable

discrete-time parameter estimations (the conditions 𝑎𝑑
1
< 0 and 𝑎𝑑

2
> 0 must be fulfilled), and could find difficulties

in achieving an optimal estimation of the HO time delay cause of the poor information provided by VAF. It is

crucial to explore different modifications of the main recursive BJ algorithm to avoid these possible issues in real-life

identification tasks.

1The human operator needs to generate lead at a lower frequency in C2, so the effect of a wrong zero identification is more

significative in HO magnitudes at higher frequencies.

49

References
[1] A. Ameyoe et al. “Identification of a Linear Parameter Varying Driver Model for the Detection of

Distraction”. In: IFAC-PapersOnLine 48.26 (2015). 1st IFAC Workshop on Linear Parameter Varying

Systems LPVS 2015, pp. 37–42. issn: 2405-8963. doi: 10.1016/j.ifacol.2015.11.110.

[2] E.R. Boer and R.V. Kenyon. “Estimation of time-varying delay time in nonstationary linear

systems: an approach to monitor human operator adaptation in manual tracking tasks”. In: IEEE
Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 28.1 (1998), pp. 89–99.

doi: 10.1109/3468.650325.

[3] G. E. P. Box and G. M. Jenkins. Time series analysis forecasting and control. 5th ed. John Wiley & Sons,

Inc., 1970.

[4] John C. Butcher. Numerical methods for ordinary differential equations. John Wiley & Sons, Ltd, 2003,

pp. 55–142. doi: 10.1002/9781119121534.

[5] Frank M. Drop et al. “Constraints in Identification of Multi-Loop Feedforward Human Control

Models”. In: IFAC-PapersOnLine 49.19 (2016). 13th IFAC Symposium on Analysis, Design, and

Evaluation of Human-Machine Systems HMS 2016, pp. 7–12. issn: 2405-8963. doi: 10.1016/j.
ifacol.2016.10.444.

[6] R.F.M. Duarte et al. “Experimental Scheduling Functions for Global LPV Human Controller

Modeling”. In: IFAC-PapersOnLine 50.1 (2017), pp. 15853–15858. issn: 2405-8963. doi: 10.1016/j.
ifacol.2017.08.2329.

[7] Gene F. Franklin, J.D. Powell, and Michael L. Workman. Digital Control Of Dynamic Systems 3rd
Edition. Ellis-Kagle Press, 1998, pp. 146–164.

[8] Z. Gajic. Linear Dynamic Systems and Signals. Prentice Hall, 2003, pp. 407–418.

[9] A. van Grootheest. “Human-Operator Identification with Time-Varying ARX Models”. 2017. url:

http://resolver.tudelft.nl/uuid:da69d1cf-3274-466f-bbc2-573f571d154e.

[10] A. van Grootheest et al. “Identification of Time-Varying Manual-Control Adaptations with

Recursive ARX Models”. In: AIAA (2018). doi: 10.2514/6.2018-0118.

[11] Ronald A. Hess. “Modeling Human Pilot Adaptation to Flight Control Anomalies and Changing

Task Demands”. In: Journal of Guidance Control and Dynamics (2016). doi: 10.2514/1.g001303.

[12] Ronald A. Hess. “Modeling Pilot Control Behavior with Sudden Changes in Vehicle Dynamics”.

In: Journal of Aircraft (2009). doi: 10.2514/1.41215.

[13] Syed Aseem Ul Islam and Dennis S. Bernstein. “Recursive Least Squares for Real-Time Im-

plementation [Lecture Notes]”. In: IEEE Control Systems Magazine 39.3 (2019), pp. 82–85. doi:

10.1109/MCS.2019.2900788.

[14] J. Jiao et al. “Identifying Pilot Control Adaptations to Sudden Changes in Aircraft Dynamics”. In:

Journal of Guidance Control and Dynamics (2023). doi: 10.2514/1.g007358.

[15] David H. Klyde, Martin J. Brenner, and P. Thompson. “Wavelet-based time-varying human

operator models.” In: AIAA (2001). doi: 10.2514/6.2001-4009.

[16] William H. Levison, S. Baron, and David L. Kleinman. “A Model for Human Controller Remnant”.

In: IEEE Transactions on Man-Machine Systems 10.4 (1969), pp. 101–108. doi: 10.1109/TMMS.1969.
299906.

[17] M. Linssen. “Identifying Time-Varying Multimodal Manual Control Using Recursive ARX Model

Techniques”. 2020. url: http://resolver.tudelft.nl/uuid:442f4308-0ea2-41a5-b38c-
ee6b1a289f78.

[18] L. Ljung. System Identification Toolbox: User’s Guide. Mathworks, 2023.

50

https://doi.org/10.1016/j.ifacol.2015.11.110
https://doi.org/10.1109/3468.650325
https://doi.org/10.1002/9781119121534
https://doi.org/10.1016/j.ifacol.2016.10.444
https://doi.org/10.1016/j.ifacol.2016.10.444
https://doi.org/10.1016/j.ifacol.2017.08.2329
https://doi.org/10.1016/j.ifacol.2017.08.2329
http://resolver.tudelft.nl/uuid:da69d1cf-3274-466f-bbc2-573f571d154e
https://doi.org/10.2514/6.2018-0118
https://doi.org/10.2514/1.g001303
https://doi.org/10.2514/1.41215
https://doi.org/10.1109/MCS.2019.2900788
https://doi.org/10.2514/1.g007358
https://doi.org/10.2514/6.2001-4009
https://doi.org/10.1109/TMMS.1969.299906
https://doi.org/10.1109/TMMS.1969.299906
http://resolver.tudelft.nl/uuid:442f4308-0ea2-41a5-b38c-ee6b1a289f78
http://resolver.tudelft.nl/uuid:442f4308-0ea2-41a5-b38c-ee6b1a289f78

References 51

[19] L. Ljung. System Identification: Theory for the User, 2nd Edition. Ed. by Thomas Kailath. Prentice Hall

Information and System Sciences Series, 2012.

[20] M. Lone and A. Cooke. “Review of pilot models used in aircraft flight dynamics”. In: Aerospace
Science and Technology 34 (2014), pp. 55–74. issn: 1270-9638. doi: 10.1016/j.ast.2014.02.003.

[21] T. Mandal and Y. Gu. “Online Pilot Model Parameter Estimation Using Sub-Scale Aircraft Flight

Data”. In: AIAA (2016). doi: 10.2514/6.2016-0636.

[22] Duane T. McRuer. “Human Pilot Dynamics in Compensatory Systems”. In: Air Force Flight
Dynamics Laboratory, Wright-Patterson Air Force Base, OH (1965). doi: 10.21236/ad0470337.

[23] Duane T. McRuer, Dunstan Graham, and Ezra S. Krendel. “Manual control of single-loop

systems: Part I”. In: Journal of the Franklin Institute 283.1 (1967), pp. 1–29. issn: 0016-0032. doi:

10.1016/0016-0032(67)90112-3.

[24] Duane T. McRuer, Dunstan Graham, and Ezra S. Krendel. “Manual control of single-loop

systems: Part II”. In: Journal of the Franklin Institute 283.2 (1967), pp. 145–168. issn: 0016-0032. doi:

10.1016/0016-0032(67)90231-1.

[25] Duane T. McRuer and H.R. Jex. “A Review of Quasi-Linear Pilot Models”. In: IEEE Transactions on
Human Factors in Electronics HFE-8.3 (1967), pp. 231–249. doi: 10.1109/THFE.1967.234304.

[26] Duane T. McRuer and D. H. Weir. “Theory of Manual Vehicular Control”. In: IEEE Transactions on
Man-Machine Systems 10.4 (1969), pp. 257–291. doi: 10.1109/TMMS.1969.299930.

[27] L. D. Metz. “A Time-Varying Approach to the Modeling of Human Control Remnant”. In: IEEE
Transactions on Systems, Man, and Cybernetics 12.1 (1982), pp. 24–35. doi: 10.1109/TSMC.1982.
4308772.

[28] M. Mulder et al. “Fundamental Issues in Manual Control Cybernetics”. In: IFAC-PapersOnLine
49.19 (2016). 13th IFAC Symposium on Analysis, Design, and Evaluation ofHuman-Machine

Systems HMS 2016, pp. 1–6. issn: 2405-8963. doi: 10.1016/j.ifacol.2016.10.429.

[29] M. Mulder et al. “Manual Control Cybernetics: State-of-the-Art and Current Trends”. In: IEEE
Transactions on Human-Machine Systems 48.5 (2018), pp. 468–485. doi: 10.1109/THMS.2017.2761342.

[30] Frank M. Nieuwenhuizen et al. “Modeling Human Multichannel Perception and Control Using

Linear Time-Invariant Models”. In: Journal of Guidance Control and Dynamics (2008). doi: 10.2514/
1.32307.

[31] K. Ogata. Discrete-time control systems, 2nd Edition. Prentice Hall International, 1995, pp. 293–377.

[32] M. Olivari et al. “Identifying time-varying neuromuscular system with a recursive least-squares

algorithm: a Monte-Carlo simulation study”. In: 2014 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). 2014, pp. 3573–3578. doi: 10.1109/SMC.2014.6974484.

[33] M. Olivari et al. “Identifying Time-Varying Pilot Responses: A Regularized Recursive Least-Squares

Algorithm”. In: AIAA (2016). doi: 10.2514/6.2016-1182.

[34] M.M. van Paassen and M. Mulder. “Identification of Human Operator Control Behaviour in

Multiple-Loop Tracking Tasks”. In: IFAC Proceedings Volumes 31.26 (1998). 7th IFAC Symposium

on Analysis, Design and Evaluation of Man-Machine Systems (MMS’98), Kyoto, Japan, 16-18

September 1998, pp. 455–460. issn: 1474-6670. doi: 10.1016/S1474-6670(17)40135-2.

[35] R. Pintelon, J. Schoukens, and P. Guillaume. “Continuous-Time Noise Modeling From Sampled

Data”. In: IEEE Transactions on Instrumentation and Measurement 55.6 (2006), pp. 2253–2258. doi:

10.1109/TIM.2006.884131.

[36] W. Plaetinck et al. “Online Identification of Pilot Adaptation to Sudden Degradations in Vehicle

Stability”. In: IFAC-PapersOnLine 51.34 (2019). 2nd IFAC Conference on Cyber-Physical and Human

Systems CPHS 2018, pp. 347–352. issn: 2405-8963. doi: 10.1016/j.ifacol.2019.01.020.

[37] Daan M. Pool et al. “Identification of Nonlinear Motion Perception Dynamics Using Time-Domain

Pilot Modeling”. In: Journal of Guidance Control and Dynamics (2012). doi: 10.2514/1.56236.

[38] A. Popovici, Peter M. T. Zaal, and Daan M. Pool. “Dual Extended Kalman Filter for the Identification

of Time-Varying Human Manual Control Behavior”. In: AIAA (2017). doi: 10.2514/6.2017-3666.

https://doi.org/10.1016/j.ast.2014.02.003
https://doi.org/10.2514/6.2016-0636
https://doi.org/10.21236/ad0470337
https://doi.org/10.1016/0016-0032(67)90112-3
https://doi.org/10.1016/0016-0032(67)90231-1
https://doi.org/10.1109/THFE.1967.234304
https://doi.org/10.1109/TMMS.1969.299930
https://doi.org/10.1109/TSMC.1982.4308772
https://doi.org/10.1109/TSMC.1982.4308772
https://doi.org/10.1016/j.ifacol.2016.10.429
https://doi.org/10.1109/THMS.2017.2761342
https://doi.org/10.2514/1.32307
https://doi.org/10.2514/1.32307
https://doi.org/10.1109/SMC.2014.6974484
https://doi.org/10.2514/6.2016-1182
https://doi.org/10.1016/S1474-6670(17)40135-2
https://doi.org/10.1109/TIM.2006.884131
https://doi.org/10.1016/j.ifacol.2019.01.020
https://doi.org/10.2514/1.56236
https://doi.org/10.2514/6.2017-3666

References 52

[39] Mark R. What are the Different Types of Pilot Licenses? 2021. url: https://www.flyingmag.com/
types-of-pilot-licenses/ (visited on 11/06/2023).

[40] R.L. Stapleford, D.T. McRuer, and R.E. Magdaleno. “Pilot Describing Function Measurements in a

Multiloop Task”. In: IEEE Transactions on Human Factors in Electronics HFE-8.2 (1967), pp. 113–125.

doi: 10.1109/THFE.1967.233628.

[41] Arun K. Tangirala. Principles of System Identification: Theory and Practice. Taylor & Francis Group,

2017, pp. 129–147. doi: 10.1201/9781315222509.

[42] M. Vajta. “Some remarks on Padé-approximations”. English. In: 3rd TEMPUS-INTCOM Sympo-

sium on Intelligent Systems in Control and Measurements 2000 ; Conference date: 09-09-2000

Through 14-09-2000. 2000, pp. 53–58.

[43] K. van der El, Daan M. Pool, and M. Mulder. “Analysis of Human Remnant in Pursuit and

Preview Tracking Tasks”. In: IFAC-PapersOnLine 52.19 (2019). 14th IFAC Symposium on Analysis,

Design, and Evaluation of Human Machine Systems HMS 2019, pp. 145–150. issn: 2405-8963. doi:

10.1016/j.ifacol.2019.12.165.

[44] J.W. van Wingerden and M. Verhaegen. “Subspace identification of Bilinear and LPV systems

for open- and closed-loop data”. In: Automatica 45.2 (2009), pp. 372–381. issn: 0005-1098. doi:

10.1016/j.automatica.2008.08.015.

[45] L. R. Young. “On Adaptive Manual Control”. In: Ergonomics 12.4 (1969), pp. 635–674. doi:

10.1080/00140136908931083.

[46] Peter C. Young. Recursive Estimation and Time-Series Analysis, 2nd Edition. Springer, 2011, pp. 289–

315. doi: 10.1007/978-3-642-21981-8.

[47] Peter C. Young. “Refined instrumental variable estimation: Maximum likelihood optimization of

a unified Box–Jenkins model”. In: Automatica 52 (2015), pp. 35–46. issn: 0005-1098. doi: 10.1016/j.
automatica.2014.10.126.

[48] Peter M. T. Zaal and Barbara T. Sweet. “Estimation of Time-Varying Pilot Model Parameters”. In:

AIAA (2011). doi: 10.2514/6.2011-6474.

[49] Peter M. T. Zaal et al. “Modeling Human Multimodal Perception and Control Using Genetic

Maximum Likelihood Estimation”. In: Journal of Guidance Control and Dynamics (2009). doi:

10.2514/1.42843.

[50] Peter M.T. Zaal. “Manual Control Adaptation to Changing Vehicle Dynamics in Roll-Pitch Control

Tasks”. In: Journal of Guidance Control and Dynamics (2016). doi: 10.2514/1.g001592.

https://www.flyingmag.com/types-of-pilot-licenses/
https://www.flyingmag.com/types-of-pilot-licenses/
https://doi.org/10.1109/THFE.1967.233628
https://doi.org/10.1201/9781315222509
https://doi.org/10.1016/j.ifacol.2019.12.165
https://doi.org/10.1016/j.automatica.2008.08.015
https://doi.org/10.1080/00140136908931083
https://doi.org/10.1007/978-3-642-21981-8
https://doi.org/10.1016/j.automatica.2014.10.126
https://doi.org/10.1016/j.automatica.2014.10.126
https://doi.org/10.2514/6.2011-6474
https://doi.org/10.2514/1.42843
https://doi.org/10.2514/1.g001592

A
Remnant gain definition

A.1. Theoretical background
In order to obtain a valid formula for the remnant filter gain 𝐾𝑛 in the function of the requested noise level, it is

necessary to first define the covariance function for two null-mean stochastic variables (SV) {�̄�(𝑡), �̄�(𝑡)},

𝐶�̄� �̄�(𝜏) = 𝐸 {�̄�(𝑡)�̄�(𝑡 + 𝜏)} = lim

𝑇→∞

(
1

2𝑇

∫ 𝑇

−𝑇
�̄�(𝑡)�̄�(𝑡 + 𝜏)d𝑡

)
, (A.1)

from which the Power Spectral Density (PSD) function can be obtained as its Fourier transform:

𝑆�̄� �̄�(𝜔) = ℱ
{
𝐶�̄� �̄�(𝜏)

}
=

∫ ∞

−∞
𝐶�̄� �̄�(𝜏)𝑒−𝑗𝜔𝜏

d𝜏. (A.2)

For two different stochastic processes, {�̄�(𝑡), �̄�(𝑡)}, the Power Spectral Density function is called cross-PSD, while

for the same stochastic process, �̄�(𝑡), it is named as auto-PSD:

𝑆�̄� �̄�(𝜔) = lim

𝑇→∞

(
1

2𝑇
�̄�(𝜔)�̄�(−𝜔)

)
, 𝑆�̄� �̄�(𝜔) = lim

𝑇→∞

(
1

2𝑇
�̄�(𝜔)�̄�(−𝜔)

)
= lim

𝑇→∞

(
1

2𝑇
| �̄�(𝜔) |2

)
. (A.3)

Furthermore, the variance of a SV �̄�(𝑡) can be computed by integrating its auto-PSD function:

𝜎2

�̄� �̄� = 𝐶�̄� �̄�(𝜏 = 0) = 1

2𝜋

∫ ∞

−∞
𝑆�̄� �̄�(𝜔)d𝜔. (A.4)

From the diagram in Figure 2.2, the control-output signal is defined by �̄�(𝑡) = �̄�𝑒 (𝑡) + �̄�(𝑡). The forcing function

𝑓𝑡 (𝑡) and unfiltered remnant noise 𝑛(𝑡) signals are assumed to be uncorrelated (i.e., 𝑆�̄� 𝑓𝑡 (𝜔) = 𝑆 𝑓𝑡 �̄�(𝜔) = 0). Hence,

applying Fourier transforms and arranging the expression to obtain the relation between auto-PSD functions:

ℱ {�̄�(𝑡)} = ℱ {�̄�𝑒 (𝑡)} + ℱ {�̄�(𝑡)} → �̄�(𝜔) = �̄�𝑒 (𝜔) + �̄�(𝜔) → �̄�(𝜔)�̄�(−𝜔) = (�̄�𝑒 (𝜔) + �̄�(𝜔))·

· (�̄�𝑒 (−𝜔) + �̄�(−𝜔)) → �̄�(𝜔)�̄�(−𝜔) =
(

𝐻𝐻𝑂 (𝜔)
1 + 𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

�̄�(𝜔) + 𝐻𝑛(𝜔)
1 + 𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

�̄�(𝜔)
)
·

·
(

𝐻𝐻𝑂 (−𝜔)
1 + 𝐻𝐻𝑂 (−𝜔)𝐻𝐶𝐸(−𝜔)

�̄�(−𝜔) + 𝐻𝑛(−𝜔)
1 + 𝐻𝐻𝑂 (−𝜔)𝐻𝐶𝐸(−𝜔)

�̄�(−𝜔)
)

→

→ 𝑆�̄��̄�(𝜔) =
���� 𝐻𝑛(𝜔)
1 + 𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

����
2

𝑆�̄��̄�(𝜔) +
���� 𝐻𝐻𝑂 (𝜔)
1 + 𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

����
2

𝑆 𝑓𝑡 𝑓𝑡 (𝜔) = 𝑆�̄�𝑛 �̄�𝑛 (𝜔) + 𝑆�̄� 𝑓 �̄� 𝑓 (𝜔).

(A.5)

In the final expression, there are two terms that contribute to the auto-PSD function of the control-output signal, the

first one (𝑆�̄�𝑛 �̄�𝑛 (𝜔)), which corresponds to the unfiltered remnant noise, and the second one (𝑆�̄� 𝑓 �̄� 𝑓 (𝜔)), owing to

the forcing function. When integrating the equation, the corresponding variances for each component are obtained:

1

2𝜋

∫ ∞

−∞
𝑆�̄��̄�(𝜔)d𝜔 =

1

2𝜋

∫ ∞

−∞
𝑆�̄�𝑛 �̄�𝑛 (𝜔)d𝜔 + 1

2𝜋

∫ ∞

−∞
𝑆�̄� 𝑓 �̄� 𝑓 (𝜔)d𝜔 → 𝜎2

�̄��̄� = 𝜎2

�̄�𝑛 �̄�𝑛
+ 𝜎2

�̄� 𝑓 �̄� 𝑓
. (A.6)

53

A.2. PSD function of the forcing function 54

A.2. PSD function of the forcing function
To compute an expression of 𝑆 𝑓𝑡 𝑓𝑡 (𝜔), the covariance function of the forcing function is obtained before:

𝐶 𝑓𝑡 𝑓𝑡 (𝜏) = 𝐸
{
𝑓𝑡 (𝑡) 𝑓𝑡 (𝑡 + 𝜏)

}
=

𝑁𝑡∑
𝑘=1

lim

𝑇→∞

(
𝐴2

𝑘

2𝑇

∫ 𝑇

−𝑇
sin

(
𝜔𝑘 𝑡 + 𝜙𝑘

)
sin

(
𝜔𝑘 𝑡 + 𝜔𝑘𝜏 + 𝜙𝑘

)
d𝑡

)
. (A.7)

The integrand can be decomposed in a sum of products of sines and cosines:

sin

(
𝜔𝑘 𝑡 + 𝜙𝑘

)
sin

(
𝜔𝑘 𝑡 + 𝜔𝑘𝜏 + 𝜙𝑘

)
=

1

2

sin(2𝜔𝑘 𝑡) sin

(
2𝜙𝑘 + 𝜔𝑘𝜏

)
+sin

(
𝜙𝑘

)
sin

(
𝜙𝑘 + 𝜔𝑘𝜏

)
+sin

2(𝜔𝑘 𝑡) cos

(
2𝜙𝑘 + 𝜔𝑘𝜏

)
.

(A.8)

Thus, when integrating on time-domain, applying the limits, and rearranging the trigonometrical expression:

𝐶 𝑓𝑡 𝑓𝑡 (𝜏) =
𝑁𝑡∑
𝑘=1

(
lim

𝑇→∞

𝐴2

𝑘

2𝑇

∫ 𝑇

−𝑇

1

2

sin(2𝜔𝑘 𝑡) sin

(
2𝜙𝑘 + 𝜔𝑘𝜏

)
d𝑡 + lim

𝑇→∞

𝐴2

𝑘

2𝑇

∫ 𝑇

−𝑇
sin

(
𝜙𝑘

)
sin

(
𝜙𝑘 + 𝜔𝑘𝜏

)
d𝑡+

+ lim

𝑇→∞

𝐴2

𝑘

2𝑇

∫ 𝑇

−𝑇
sin

2(𝜔𝑘 𝑡) cos

(
2𝜙𝑘 + 𝜔𝑘𝜏

)
d𝑡

)
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘

(
sin

(
𝜙𝑘

)
sin

(
𝜙𝑘 + 𝜔𝑘𝜏

)
+ 1

2

cos

(
2𝜙𝑘 + 𝜔𝑘𝜏

))
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘

(
sin

(
𝜙𝑘

)
sin

(
𝜙𝑘 + 𝜔𝑘𝜏

)
+ 1

2

cos

(
2𝜙𝑘 + 𝜔𝑘𝜏

))
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘

(
sin(𝜔𝑘𝜏)

(
sin

(
𝜙𝑘

)
cos

(
𝜙𝑘

)
− 1

2

sin

(
2𝜙𝑘

))
+

+ cos(𝜔𝑘𝜏)
(
sin

2(𝜙𝑘) +
1

2

cos

(
2𝜙𝑘

)))
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘

(
0 + cos(𝜔𝑘𝜏)

(
sin

2(𝜙𝑘) + cos
2(𝜙𝑘) −

1

2

))
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘
cos(𝜔𝑘𝜏)

2

.

(A.9)

Then, by integrating the covariance function, based on Equation A.2, the expression of 𝑆 𝑓𝑡 𝑓𝑡 (𝜔):

𝑆 𝑓𝑡 𝑓𝑡 (𝜔) = ℱ
{
𝐶 𝑓𝑡 𝑓𝑡 (𝜏)

}
=

𝑁𝑡∑
𝑘=1

𝐴2

𝑘

2

ℱ {cos(𝜔𝑘𝜏)} =
𝜋
2

𝑁𝑡∑
𝑘=1

𝐴2

𝑘
(𝛿(𝜔 − 𝜔𝑘) + 𝛿(𝜔 + 𝜔𝑘)) . (A.10)

A.3. Remnant gain definition
Based on the literature, the noise level is usually defined as 𝑃𝑛 = 𝜎2

�̄�𝑛 �̄�𝑛
/𝜎2

�̄��̄� (Van der El. [43]), or 𝑃𝑛 = 𝜎2

�̄��̄�/𝜎
2

�̄��̄�
(Van Grootheest [9]).

A.3.1. First option
By the definition of 𝑃𝑛 = 𝜎2

�̄�𝑛 �̄�𝑛
/𝜎2

�̄��̄� , all noise level values which belong to the interval [0, 1) can be achieved.

Hence, when the remnant gain tends to infinity, it will provide a noise level value that converges to 1. From the

final expression in Equation A.5:

𝑃𝑛 =
𝜎2

�̄�𝑛 �̄�𝑛

𝜎2

�̄��̄�

=

1

2𝜋

∫ ∞
−∞ 𝑆�̄�𝑛 �̄�𝑛 (𝜔)d𝜔

1

2𝜋

∫ ∞
−∞ 𝑆�̄��̄�(𝜔)d𝜔

=

1

2𝜋

∫ ∞
−∞

��� 𝐻𝑛 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆�̄��̄�(𝜔)d𝜔
1

2𝜋

∫ ∞
−∞

(��� 𝐻𝑛 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆�̄��̄�(𝜔) + ��� 𝐻𝐻𝑂 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆 𝑓𝑡 𝑓𝑡 (𝜔)
)

d𝜔

. (A.11)

Then, an expression of the remnant gain is obtained:

𝐾𝑛 =

√√√√√√√√ 𝑃𝑛

1 − 𝑃𝑛
·

∫ ∞
0

��� 𝐻𝐻𝑂 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆 𝑓𝑡 𝑓𝑡 (𝜔)d𝜔∫ ∞
0

𝑆�̄��̄�(𝜔)
|(𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔))|2

d𝜔
. (A.12)

The PSD function 𝑆�̄��̄�(𝜔) must be defined before obtaining the final expression of 𝐾𝑛 . When a White Gaussian

noise signal �̄�(𝑡) is created in discrete-time, a Band-Limited noise is actually generated in the frequency domain

[35], which is constrained by the sampling frequency 𝜔𝑠 . This implies that if the variance of �̄�(𝑡) is computed

by the Equation A.4, the final result would be 𝜎2

�̄��̄�/𝑇𝑠 , since the PSD function is only defined in the interval

𝐼 = [−𝜔𝑠/2, 𝜔𝑠/2]:

𝑆�̄��̄�(𝜔) =
{
𝜎2

�̄��̄� | 𝜔 |≤ 𝜋
𝑇𝑠

0 | 𝜔 |> 𝜋
𝑇𝑠

→ 1

2𝜋

∫ ∞

−∞
𝑆�̄��̄�(𝜔)d𝜔 =

𝜎2

�̄��̄�

𝑇𝑠
. (A.13)

A.4. Validation of the remnant gain formula 55

Therefore, the terms affected by 𝑆�̄��̄�(𝜔) must be multiplied by 𝑇𝑠 in order to scale them properly, so the real

analytical variance is achieved. Moreover, the integration limits of such terms will be modified as well, since the

PSD function is zero for frequency values out of the interval 𝐼 = [−𝜋/𝑇𝑠 ,𝜋/𝑇𝑠].
Finally, by means of the 𝑆�̄��̄�(𝜔) scaling and PSD function of 𝑓𝑡 (𝑡) (Eq. A.10), the final formula of the first-option

remnant gain is as follows:

𝐾𝑛 =

√√√√√√√√ 𝑃𝑛

(1 − 𝑃𝑛)𝜎2

�̄��̄� · 𝑇𝑠

𝜋
2

∑𝑁𝑡
𝑘=1

𝐴2

𝑘

��� 𝐻𝐻𝑂 (𝑗𝜔𝑘)
1+𝐻𝐻𝑂 (𝑗𝜔𝑘)𝐻𝐶𝐸(𝑗𝜔𝑘)

���2∫ 𝜋/𝑇𝑠
0

1

|(𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂 (𝑗𝜔)𝐻𝐶𝐸(𝑗𝜔))|2
d𝜔

. (A.14)

A.3.2. Second option
In the case of 𝑃𝑛 = 𝜎2

�̄��̄�/𝜎
2

�̄��̄� , not all values of noise level can be obtained since some of them are physically

impossible due to the dependency of �̄�(𝑡) on �̄�(𝑡). Thus, when the remnant gain tends to infinity, it will provide the

maximum possible noise level. From the final expression in Equation A.5:

𝑃𝑛 =
𝜎2

�̄��̄�

𝜎2

�̄��̄�

=

1

2𝜋

∫ ∞
−∞ 𝑆�̄��̄�(𝜔)d𝜔

1

2𝜋

∫ ∞
−∞ 𝑆�̄��̄�(𝜔)d𝜔

=

1

2𝜋

∫ ∞
−∞ |𝐻𝑛(𝜔)|2𝑆�̄��̄�(𝜔)d𝜔

1

2𝜋

∫ ∞
−∞

(��� 𝐻𝑛 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆�̄��̄�(𝜔) + ��� 𝐻𝐻𝑂 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆 𝑓𝑡 𝑓𝑡 (𝜔)
)

d𝜔

. (A.15)

Then, an expression of the remnant gain is obtained:

𝐾𝑛 =

√√√√√√√√ 𝑃𝑛 ·
∫ ∞
0

��� 𝐻𝐻𝑂 (𝜔)
1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔)

���2𝑆 𝑓𝑡 𝑓𝑡 (𝜔)d𝜔∫ ∞
0

𝑆�̄��̄�(𝜔)
|(𝑇𝑛 (𝑗𝜔)+1)𝑚 |2

d𝜔 − 𝑃𝑛 ·
∫ ∞
0

𝑆�̄��̄�(𝜔)
|(𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂 (𝜔)𝐻𝐶𝐸(𝜔))|2

d𝜔
. (A.16)

Finally, by means of the definitions for the Band-limited White Gaussian noise (Equation A.13) and PSD function of

𝑓𝑡 (𝑡) (Eq. A.10), the final formula of the second-option remnant gain is as follows:

𝐾𝑛 =

√√√√√√√√ 𝑃𝑛

𝜎2

�̄��̄� · 𝑇𝑠

𝜋
2

∑𝑁𝑡
𝑘=1

𝐴2

𝑘

��� 𝐻𝐻𝑂 (𝑗𝜔𝑘)
1+𝐻𝐻𝑂 (𝑗𝜔𝑘)𝐻𝐶𝐸(𝑗𝜔𝑘)

���2∫ 𝜋/𝑇𝑠
0

1

|(𝑇𝑛 (𝑗𝜔)+1)𝑚 |2
d𝜔 − 𝑃𝑛 ·

∫ 𝜋/𝑇𝑠
0

1

|(𝑇𝑛 (𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂 (𝑗𝜔)𝐻𝐶𝐸(𝑗𝜔))|2
d𝜔

. (A.17)

A.4. Validation of the remnant gain formula
The PSD function 𝑆�̄��̄�(𝜔) is not homogeneous at every realization, since it provides different results at each

frequency value in the range 𝐼 = [−𝜔𝑠/2, 𝜔𝑠/2], which interfere with the spectrum of the control-output �̄�(𝑡). Only

its integration on the frequency domain gives the same output. Hence, obtained noise levels will vary for each

realization, although these ones will present only small deviations with respect to the requested 𝑃𝑛 .

Consequently, the average and variance of the computed noise levels must be addressed in order to verify

whether the remnant gain formula is valid and offers consistent results. There are two possible methods to estimate

the calculated noise level depending on its definition:

• First option (𝑃𝑛 = 𝜎2

�̄�𝑛 �̄�𝑛
/𝜎2

�̄��̄�): since the variance component 𝜎2

�̄�𝑛 �̄�𝑛
is invariant for each realization and

requested noise level, its value can be computed from a null-𝑃𝑛 realization as 𝜎2

�̄� 𝑓 �̄� 𝑓
= 𝜎2

�̄��̄�(𝑃𝑛 = 0). Thus, the

resultant noise level can be calculated as 𝑃𝑛 = 𝜎2

�̄�𝑛 �̄�𝑛
/𝜎2

�̄��̄� =

(
𝜎2

�̄��̄� − 𝜎2

�̄��̄�(𝑃𝑛 = 0)
)
/𝜎2

�̄��̄� .

• Second option (𝑃𝑛 = 𝜎2

�̄��̄�/𝜎
2

�̄��̄�): in this case, the noise level can be easily computed, since both variances can

be calculated after storing the filtered White Gaussian noise and the control-output signals.

In Figure A.1, the obtained noise levels are shown for simulation condition C1. The variability of the resultant

𝑃𝑛 is reduced for the entire domain, while the average obtained noise level only presents small deviations with

respect to the demanded ones. Thus, the accuracy of the remnant gain formula is acceptable.

A.4. Validation of the remnant gain formula 56

Figure A.1: Obtained noise levels for simulation condition C1 and remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, averaged for 𝑀 = 100

realizations: demanded 𝑃𝑛 (red), obtained 𝜇𝑃𝑛 (blue), confidence interval 𝐼 = [𝜇𝑃𝑛 − 𝜎𝑃𝑛 , 𝜇𝑃𝑛 + 𝜎𝑃𝑛] (shaded area).

B
Continuous-time parameter retrieval

B.1. Human operator
From the cybernetics theory, the following human operator model is employed:

𝐻𝐻𝑂𝑒
(𝑗𝜔) = 𝐾𝑒 [𝑇𝐿 𝑗𝜔 + 1] 𝜔2

𝑛𝑚

(𝑗𝜔)2 + 2𝜁𝑛𝑚𝜔𝑛𝑚 𝑗𝜔 + 𝜔2

𝑛𝑚

𝑒−𝑠𝜏𝑒 . (B.1)

Without taking into account the time delay 𝜏𝑒 , the resultant model is:

𝐻(𝑗𝜔) = 𝜔2

𝑛𝑚𝐾𝑒𝑇𝐿 𝑗𝜔 + 𝜔2

𝑛𝑚𝐾𝑒

(𝑗𝜔)2 + 2𝜁𝑛𝑚𝜔𝑛𝑚 𝑗𝜔 + 𝜔2

𝑛𝑚

. (B.2)

In order to obtain the discrete-time transfer function of the human operator model, a zero-order hold (ZOH)

discretization is applied based on the method proposed by Tangirala [41]:

𝐻𝑑(𝑧) = (1 − 𝑧−1)𝒵
{
ℒ−1

{
𝐻𝑐(𝑠)
𝑠

} ����
𝑡=𝑘𝑇𝑠

}
. (B.3)

In this way, the obtained HO transfer function is defined by the discrete-time variable 𝑧, in ascending powers of 𝑧−1
:

𝐻(𝑧) = 𝑧−1

𝑏𝑑
0
+ 𝑏𝑑

1
𝑧−1

1 + 𝑎𝑑
1
𝑧−1 + 𝑎𝑑

2
𝑧−2

. (B.4)

As can be observed, a unit-sample input-output delay appears due to discretization. Finally, the term corresponding

to the time delay is introduced in the previous expression:

𝐻𝐻𝑂𝑒 ,𝑑𝑖𝑠
(𝑧) =

𝑏𝑑
0
+ 𝑏𝑑

1
𝑧−1

1 + 𝑎𝑑
1
𝑧−1 + 𝑎𝑑

2
𝑧−2

· 𝑧−𝑛𝑘 , (B.5)

where 𝑛𝑘 is an integer defined as 𝑛𝑘 = 𝑖𝑛𝑡(𝜏𝑒/𝑇𝑠) + 1. This number must always be an integer, so that a Padé

approximation [42] has to be used when this is no longer possible. Nevertheless, this is not needed for this project

since no decimation process has been conducted and the chosen measurement time and time delay have been

properly selected in order that 𝑖𝑛𝑡(𝜏𝑒/𝑇𝑠) is an integer.

Once the discrete-time HO parameters are estimated through ARX/BJ structures, the resultant transfer function

is converted into a state-space system in controllable canonical form [31]. The state-space matrices without time

delay defined by the HO parameters are:

𝐴𝑑 =

[
0 1

−𝑎𝑑
2

−𝑎𝑑
1

]
, 𝐵𝑑 =

[
0

1

]
, 𝐶𝑑 =

[
𝑏𝑑

1
𝑏𝑑

0

]
, 𝐷𝑑 =

[
0

]
. (B.6)

After, the discrete-time state-space system is converted into a continuous-time one as explained by Gajic [8].

The new states-space system is obtained from the logarithm of the extended matrix, while 𝐶𝑐 is equivalent to 𝐶𝑑 :[
𝐴𝑐 𝐵𝑐
0 0

]
=

1

𝑇𝑠
ln

([
𝐴𝑑 𝐵𝑑
0 𝐼

])
, 𝐶𝑐 = 𝐶𝑑 =

[
𝑏𝑑

1
𝑏𝑑

0

]
. (B.7)

57

B.2. Remnant filter and noise 58

The realization obtained for this continuous-time state-space system may not be in the controllable canonical form,

so the matrices are defined as

𝐴𝑐 =

[
𝑎′𝑐

11
𝑎′𝑐

12

𝑎′𝑐
21

𝑎′𝑐
22

]
, 𝐵𝑐 =

[
𝑏′𝑐

11

𝑏′𝑐
21

]
, 𝐶𝑐 =

[
𝑐′𝑐

11
𝑎′𝑐

12

]
, 𝐷𝑐 =

[
0

]
, (B.8)

and then, the estimated continuous-time transfer function is computed as

�̂�(𝑠) = 𝐶𝑐(𝑠𝐼 − 𝐴𝑐)−1𝐵𝑐 =
(𝑏′𝑐

11
𝑐′𝑐

11
+ 𝑏′𝑐

21
𝑐′𝑐

12
)𝑠 + (𝑎′𝑐

21
𝑏′𝑐

11
𝑐′𝑐

12
+ 𝑎′𝑐

12
𝑏′𝑐

21
𝑐′𝑐

11
− 𝑎′𝑐

22
𝑏′𝑐

11
𝑐′𝑐

11
− 𝑎′𝑐

11
𝑏′𝑐

21
𝑐′𝑐

12
)

𝑠2 + (−𝑎′𝑐
11

− 𝑎′𝑐
22
)𝑠 + (𝑎′𝑐

11
𝑎′𝑐

22
− 𝑎′𝑐

12
𝑎′𝑐

21
)

. (B.9)

From this last transfer function, the following continuous-time parameters can be extracted:

𝑏𝑐
0
= 𝑏′𝑐

11
𝑐′𝑐

11
+ 𝑏′𝑐

21
𝑐′𝑐

12
, 𝑏𝑐

1
= 𝑎′𝑐

21
𝑏′𝑐

11
𝑐′𝑐

12
+ 𝑎′𝑐

12
𝑏′𝑐

21
𝑐′𝑐

11
− 𝑎′𝑐

22
𝑏′𝑐

11
𝑐′𝑐

11
− 𝑎′𝑐

11
𝑏′𝑐

21
𝑐′𝑐

12
(B.10a)

𝑎𝑐
1
= −𝑎′𝑐

11
− 𝑎′𝑐

22
, 𝑎𝑐

2
= 𝑎′𝑐

11
𝑎′𝑐

22
− 𝑎′𝑐

12
𝑎′𝑐

21
. (B.10b)

From these estimated coefficients, the final HO parameters can be identified by means of Equation 5.6.

B.2. Remnant filter and noise
By the Backward Euler discretization, 𝑠 = (1 − 𝑧−1)/𝑇𝑠 , a proper discrete-time transfer function for the remnant

filter is achieved:

𝐻𝑚
𝑛 (𝑠) = 𝐾𝑛

(𝑇𝑛 𝑠 + 1)𝑚
→ 𝐻𝑚

𝑛,𝑑𝑖𝑠
(𝑧) = 𝐾𝑛

(𝑇𝑛 1−𝑧−1

𝑇𝑠
+ 1)𝑚

=

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)𝑚
(
1 − 𝑇𝑛

𝑇𝑛+𝑇𝑠 𝑧
−1

)𝑚 . (B.11)

Since the numerator of the estimated discrete-time remnant filter must be equal to 1, the resultant coefficient in the

numerator of 𝐻𝑚
𝑛,𝑑𝑖𝑠

(𝑧) will be incorporated into the unitary variance 𝜎2

𝜀 of the White Gaussian noise 𝜀, giving as a

result, a modified 𝜀′ with standard deviation 𝜎𝜀′ :

𝜎𝜀′ =
𝐾𝑛𝑇

𝑚
𝑠

(𝑇𝑛 + 𝑇𝑠)𝑚
𝜎𝜀 . (B.12)

Hence, the discrete-time model of the remnant noise signal would be the following one:

𝑛(𝑡𝑘) =
1(

1 − 𝑇𝑛
𝑇𝑛+𝑇𝑠 𝑧

−1

)𝑚 𝜀′(𝑡𝑘), 𝜀′(𝑡𝑘) ∼ 𝑁(0, 𝜎𝜀′). (B.13)

Depending on the 𝑚𝑡ℎ-order of the remnant filter, the number of discrete-time parameters, 𝑑𝑑
𝑖
, to be estimated

changes, while the time constant 𝑇𝑛 would need to be averaged from such parameters computed:

𝑑𝑑
𝑖
= 𝑓𝑖(𝑇𝑠 , 𝑇𝑛,𝑑𝑑

𝑖
) → 𝑇𝑛,𝑑𝑑

𝑖
→ �̂�𝑛 =

1

𝑚

𝑚∑
𝑖=1

𝑇𝑛,𝑑𝑑
𝑖
. (B.14)

Therefore, these are the possible combinations:

• Remnant order 𝑚 = 1: The remnant filter 𝐻1

𝑛,𝑑𝑖𝑠
(𝑧) =

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)
(
1− 𝑇𝑛

𝑇𝑛+𝑇𝑠 𝑧
−1

) can be estimated by the discrete-time

transfer function 𝐻𝑑(𝑧) = 1

1+𝑑𝑑
1
𝑧−1

. The time constant is computed as �̂�𝑛 = 𝑇𝑛,𝑑𝑑
1

.

• Remnant order 𝑚 = 2: The remnant filter 𝐻2

𝑛,𝑑𝑖𝑠
(𝑧) =

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)
2

1− 2𝑇𝑛
𝑇𝑛+𝑇𝑠 𝑧

−1+ 𝑇2

𝑛

(𝑇𝑛+𝑇𝑠)2
𝑧−2

can be estimated by the discrete-

time transfer function 𝐻𝑑(𝑧) = 1

1+𝑑𝑑
1
𝑧−1+𝑑𝑑

2
𝑧−2

. The time constant is computed as �̂�𝑛 = 1

2

(
𝑇𝑛,𝑑𝑑

1

+ 𝑇𝑛,𝑑𝑑
2

)
.

• Remnant order 𝑚 = 3: The remnant filter 𝐻3

𝑛,𝑑𝑖𝑠
(𝑧) =

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)
3

1− 3𝑇𝑛
𝑇𝑛+𝑇𝑠 𝑧

−1+ 3𝑇2

𝑛

(𝑇𝑛+𝑇𝑠)2
𝑧−2− 𝑇3

𝑛

(𝑇𝑛+𝑇𝑠)3
𝑧−3

can be estimated

by the discrete-time transfer function 𝐻𝑑(𝑧) = 1

1+𝑑𝑑
1
𝑧−1+𝑑𝑑

2
𝑧−2+𝑑𝑑

3
𝑧−3

. The time constant is computed as

�̂�𝑛 = 1

3

(
𝑇𝑛,𝑑𝑑

1

+ 𝑇𝑛,𝑑𝑑
2

+ 𝑇𝑛,𝑑𝑑
3

)
.

B.3. Requirements for discrete-time parameters 59

• Remnant order 𝑚 = 4: The remnant filter 𝐻4

𝑛,𝑑𝑖𝑠
(𝑧) =

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)
4

1− 4𝑇𝑛
𝑇𝑛+𝑇𝑠 𝑧

−1+ 6𝑇2

𝑛

(𝑇𝑛+𝑇𝑠)2
𝑧−2− 4𝑇3

𝑛

(𝑇𝑛+𝑇𝑠)3
𝑧−3+ 𝑇4

𝑛

(𝑇𝑛+𝑇𝑠)4
𝑧−4

can be

estimated by the discrete-time transfer function 𝐻𝑑(𝑧) = 1

1+𝑑𝑑
1
𝑧−1+𝑑𝑑

2
𝑧−2+𝑑𝑑

3
𝑧−3+𝑑𝑑

4
𝑧−4

. The time constant is

computed as �̂�𝑛 = 1

4

(
𝑇𝑛,𝑑𝑑

1

+ 𝑇𝑛,𝑑𝑑
2

+ 𝑇𝑛,𝑑𝑑
3

+ 𝑇𝑛,𝑑𝑑
4

)
.

Finally, after obtaining �̂�𝜀′ from the discrete-time model and calculating �̂�𝑛 , the remnant gain 𝐾𝑛 is estimated

based on the formula in Equation B.12:

�̂�𝑛 =
(�̂�𝑛 + 𝑇𝑠)

𝑚

𝑇𝑚𝑠

�̂�𝜀′

𝜎𝜀
. (B.15)

And considering a unitary variance of the original remnant noise:

�̂�𝑛 =
(�̂�𝑛 + 𝑇𝑠)

𝑚

𝑇𝑚𝑠
�̂�𝜀′ . (B.16)

B.3. Requirements for discrete-time parameters
In order to ensure the convertibility of the discrete-time state-space system shown in Equation B.6 into a

continuous-time one, the logarithm of the extended matrix must provide a unique solution. Gajic [8] makes two

statements:

• The logarithm of a matrix exists if and only if such a matrix is invertible.

• If a matrix has no negative real eigenvalues, then there is a unique logarithm of such a matrix. This logarithm

is known as the principal logarithm.

Therefore, the eigenvalues of the discrete-time extended matrix are computed to check whether both statements

are fulfilled:

𝐴𝐸,𝑑 =

[
𝐴𝑑 𝐵𝑑
0 𝐼

]
=

0 1 0

−𝑎𝑑
2

−𝑎𝑑
1

1

0 0 1

→ | 𝐴𝐸,𝑑 − 𝜆𝐼 |=

������
−𝜆 1 0

−𝑎𝑑
2

−𝑎𝑑
1
− 𝜆 1

0 0 1 − 𝜆

������ = (1 − 𝜆)
���� −𝜆 1

−𝑎𝑑
2

−𝑎𝑑
1
− 𝜆

���� =
= (1 − 𝜆)(𝜆2 + 𝑎𝑑

1
𝜆 + 𝑎𝑑

2
).

(B.17)

Three eigenvalues are obtained from this determinant:

𝜆
1
= 1, 𝜆

2
=

−𝑎𝑑
1
+

√
(𝑎𝑑

1
)2 − 4𝑎𝑑

2

2

, 𝜆
3
=

−𝑎𝑑
1
−

√
(𝑎𝑑

1
)2 − 4𝑎𝑑

2

2

. (B.18)

To avoid any negative real eigenvalue, two inequalities can be extracted from the previous expressions:

{
𝑎𝑑

1
< 0

𝑎𝑑
1
<

√
(𝑎𝑑

1
)2 − 4𝑎𝑑

2
→ (𝑎𝑑

1
)2 > (𝑎𝑑

1
)2 − 4𝑎𝑑

2
→ 𝑎𝑑

2
> 0

(B.19)

Thus, it can be concluded that the extended matrix is invertible, so its logarithm exists, and also it would be

unique if the conditions

{
𝑎𝑑

1
< 0, 𝑎𝑑

2
> 0

}
are satisfied.

C
Relative Bias Results

C.1. Simulation Condition C1
C.1.1. ARX

0

200

400

600

800

1000

1200

-50

0

50

100

0

200

400

600

800

1000

1200

-50

0

50

100

-50

-40

-30

-20

-10

0

-4

-3

-2

-1

0

1

2

3

-100

-80

-60

-40

-20

0

-8

-6

-4

-2

0

2

4

6

Figure C.1: Relative bias results in discrete-time parameters for ARX model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations.

60

C.1. Simulation Condition C1 61

-10

-5

0

5

10

15

-30

-20

-10

0

10

20

30

0

200

400

600

800

-30

-20

-10

0

10

20

30

0

200

400

600

800

1000

1200

1400

-60

-40

-20

0

20

40

60

Figure C.2: Relative bias results in continuous-time parameters for ARX model: simulation condition C1, simulation remnant

filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations.

C.1.2. BJ: m∗ ∈ {1, 2, 3, 4}

-40

-20

0

20

40

-40

-20

0

20

40

-3

-2

-1

0

1

-6

-4

-2

0

2

Figure C.3: Relative bias results in discrete-time parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.1. Simulation Condition C1 62

-30

-20

-10

0

10

20

30

40

-20

0

20

40

60

80

-20

-15

-10

-5

0

5

10

15

-40

-20

0

20

40

60

Figure C.4: Relative bias results in continuous-time parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

-3

-2

-1

0

6

6.5

7

7.5

-20

-15

-10

-5

0

80

90

100

110

120

130

140

12

14

16

18

20

22

30

32

34

36

38

40

50

100

150

200

250

300

350

400

1

2

3

4

5

10
4

-10

-5

0

5

10

140

160

180

200

220

400

600

800

1000

1200

1

2

3

4

10
4

Figure C.5: Relative bias results in remnant filter parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.1. Simulation Condition C1 63

C.1.3. BJ: m∗ = 1

-20

0

20

40

-20

0

20

40

-3

-2

-1

0

1

-6

-4

-2

0

2

Figure C.6: Relative bias results in discrete-time parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

-20

-10

0

10

20

30

40

50

-40

-20

0

20

40

60

-15

-10

-5

0

5

10

15

-40

-20

0

20

40

60

Figure C.7: Relative bias results in continuous-time parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2 64

-3

-2

-1

0

-70

-65

-60

-55

-50

-45

-20

-15

-10

-5

0

2000

4000

6000

8000

10000

12

14

16

18

20

22

120

130

140

150

160

170

180

3200

3400

3600

3800

4000

4200

4400

4600

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10
5

-10

-5

0

5

10

150

200

250

300

350

300

400

500

600

700

300

400

500

600

700

800

Figure C.8: Relative bias results in remnant filter parameters for BJ model: simulation condition C1, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2
C.2.1. ARX

0

200

400

600

800

1000

-40

-20

0

20

40

60

80

0

200

400

600

800

1000

-40

-20

0

20

40

60

80

-50

-40

-30

-20

-10

0

-4

-3

-2

-1

0

1

2

-100

-80

-60

-40

-20

0

-6

-4

-2

0

2

4

Figure C.9: Relative bias results in discrete-time parameters for ARX model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2 65

-40

-20

0

20

40

-40

-20

0

20

40

60

80

100

0

200

400

600

800

-20

-10

0

10

20

30

0

500

1000

1500

-40

-20

0

20

40

60

Figure C.10: Relative bias results in continuous-time parameters for ARX model: simulation condition C2, simulation remnant

filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from 𝑀 = 100 realizations.

C.2.2. BJ: m∗ ∈ {1, 2, 3, 4}

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

-1.5

-1

-0.5

0

0.5

1

1.5

-3

-2

-1

0

1

2

3

Figure C.11: Relative bias results in discrete-time parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2 66

-20

0

20

40

-40

-20

0

20

40

60

-15

-10

-5

0

5

10

-30

-20

-10

0

10

20

30

40

Figure C.12: Relative bias results in continuous-time parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

-3

-2

-1

0

1

6

6.5

7

7.5

8

-15

-10

-5

0

5

10

80

90

100

110

120

130

140

12

14

16

18

20

33

34

35

36

37

38

39

100

200

300

400

500

2

4

6

8

10
4

-5

0

5

10

15

120

140

160

180

200

220

240

400

600

800

1000

1200

1400

1

2

3

4

5

10
4

Figure C.13: Relative bias results in remnant filter parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 𝑚0

. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2 67

C.2.3. BJ: m∗ = 1

-30

-20

-10

0

10

20

30

-30

-20

-10

0

10

20

30

-2

-1.5

-1

-0.5

0

0.5

1

1.5

-4

-3

-2

-1

0

1

2

3

Figure C.14: Relative bias results in discrete-time parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

-40

-20

0

20

40

60

80

-40

-20

0

20

40

60

80

100

-15

-10

-5

0

5

10

-30

-20

-10

0

10

20

30

40

Figure C.15: Relative bias results in continuous-time parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

C.2. Simulation Condition C2 68

-3

-2

-1

0

1

-70

-65

-60

-55

-50

-45

-15

-10

-5

0

5

10

2000

3000

4000

5000

6000

7000

8000

9000

12

14

16

18

20

110

120

130

140

150

160

3000

3500

4000

4500

5000

0.8

1

1.2

1.4

1.6

1.8

10
5

-5

0

5

10

15

140

160

180

200

220

240

260

280

250

300

350

400

450

300

400

500

600

Figure C.16: Relative bias results in remnant filter parameters for BJ model: simulation condition C2, simulation remnant filter

orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}, model remnant filter orders 𝑚∗ = 1. Box and Whisker plots

made from 𝑀 = 100 realizations.

D
Bode Plots

D.1. Simulation Condition C1
D.1.1. ARX: n∗

k
∈ {26, 27, 28, 29, 30}

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.1: Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.0, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.2: Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.10, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

69

D.1. Simulation Condition C1 70

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.3: Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.20, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.4: Bode plots for ARX model: simulation condition C1, noise level 𝑃𝑛 = 0.30, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.1.2. BJ: n∗

k
∈ {26, 27, 28, 29, 30}

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.5: Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.0, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.1. Simulation Condition C1 71

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.6: Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.10, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.7: Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.20, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.8: Bode plots for BJ model: simulation condition C1, noise level 𝑃𝑛 = 0.30, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2. Simulation Condition C2 72

D.1.3. ARX vs. BJ: n∗

k
= 29

10
0

-450

-360

-270

-180

-90

0

90

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2
10

-1
10

0
10

1
10

2
10

-1
10

0
10

1
10

2

Figure D.9: Bode plots for ARX and BJ models: simulation condition C1, noise level 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delay 𝑛∗

𝑘
= 29. Simulated HO model

(black, dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2. Simulation Condition C2
D.2.1. ARX: n∗

k
∈ {26, 27, 28, 29, 30}

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.10: Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.0, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2. Simulation Condition C2 73

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.11: Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.10, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.12: Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.20, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.13: Bode plots for ARX model: simulation condition C2, noise level 𝑃𝑛 = 0.30, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2. Simulation Condition C2 74

D.2.2. BJ: n∗

k
∈ {26, 27, 28, 29, 30}

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.14: Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.0, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.15: Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.10, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.16: Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.20, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2. Simulation Condition C2 75

10
-1

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

10
-1

10
0

10
1

10
2

Figure D.17: Bode plots for BJ model: simulation condition C2, noise level 𝑃𝑛 = 0.30, simulation remnant filter orders

𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delays 𝑛∗

𝑘
∈ {26, 27, 28, 29, 30}. Simulated HO model (black,

dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

D.2.3. ARX vs. BJ: n∗

k
= 29

10
0

-450

-360

-270

-180

-90

0

90

10
0

10
-1

10
0

10
1

10
2

-450

-360

-270

-180

-90

0

90

10
-1

10
0

10
1

10
2
10

-1
10

0
10

1
10

2
10

-1
10

0
10

1
10

2

Figure D.18: Bode plots for ARX and BJ models: simulation condition C2, noise level 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, simulation

remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model remnant filter order 𝑚∗ = 𝑚0
, model time-delay 𝑛∗

𝑘
= 29. Simulated HO model

(black, dashed line): ZOH discretization. Discrete-time parameters in transfer functions averaged from 𝑀 = 100 realizations.

E
VAF and Relative Bias for Multiple

Remnant Orders in BJ structure

E.1. Simulation Condition C1
E.1.1. Simulation data from m0 = 1

Figure E.1: VAF results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.2: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter

orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

76

E.1. Simulation Condition C1 77

E.1.2. Simulation data from m0 = 2

Figure E.3: VAF results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.4: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter

orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.1.3. Simulation data from m0 = 3

Figure E.5: VAF results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.1. Simulation Condition C1 78

Figure E.6: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter

orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.1.4. Simulation data from m0 = 4

Figure E.7: VAF results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.8: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C1, model remnant filter

orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.2. Simulation Condition C2 79

E.2. Simulation Condition C2
E.2.1. Simulation data from m0 = 1

Figure E.9: VAF results of discrete-time parameters for BJ model: simulation condition C2, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.10: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C2, model remnant

filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 1 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.2.2. Simulation data from m0 = 2

Figure E.11: VAF results of discrete-time parameters for BJ model: simulation condition C2, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.2. Simulation Condition C2 80

Figure E.12: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C2, model remnant

filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 2 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.2.3. Simulation data from m0 = 3

Figure E.13: VAF results of discrete-time parameters for BJ model: simulation condition C2, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.14: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C2, model remnant

filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 3 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

E.2. Simulation Condition C2 81

E.2.4. Simulation data from m0 = 4

Figure E.15: VAF results of discrete-time parameters for BJ model: simulation condition C2, model remnant filter orders

𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol ×), noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}, model

time-delays 𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

Figure E.16: Absolute relative bias results of discrete-time parameters for BJ model: simulation condition C2, model remnant

filter orders 𝑚∗ ∈ {1, 2, 3, 4}, simulation remnant filter order 𝑚0 = 4 (black, symbol ×), noise levels 𝑃𝑛 = 0.30, model time-delays

𝑛∗
𝑘
∈ {25, 26, 27, 28, 29, 30}. Obtained values averaged from 𝑀 = 100 realizations.

F
Multiple Initial Conditions in BJ

structure

-4

-2

0

2

4

6

8

-4

-2

0

2

4

6

8

-1

-0.5

0

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure F.1: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 1: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

82

83

-4

-2

0

2

-4

-2

0

2

0

0.5

1

1.5

0

1

2

3

4

Figure F.2: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 2: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-1

-0.5

0

-3

-2.5

-2

-1.5

-1

-0.5

0

Figure F.3: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 3: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

84

-4

-2

0

2

4

6

8

-4

-2

0

2

4

6

8

-1

-0.5

0

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure F.4: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 4: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

-4

-2

0

2

4

-4

-2

0

2

4

0

0.5

1

1.5

2

0

1

2

3

4

Figure F.5: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 5: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

85

-3

-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3

-1

-0.5

0

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure F.6: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 6: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

-2

0

2

4

6

-4

-2

0

2

4

6

-1

-0.5

0

0.5

-3

-2

-1

0

1

Figure F.7: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 7: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

86

-4

-3

-2

-1

0

1

2

3

-4

-3

-2

-1

0

1

2

3

0

0.5

1

1.5

0

1

2

3

4

Figure F.8: Deviation from reference bias (𝐵0

𝑟) in discrete-time parameters for BJ model with I.C. 8: simulation condition C1,

simulation remnant filter orders 𝑚0 ∈ {1, 2, 3, 4}, model time-delays 𝑛∗
𝑘
∈ {26, 27, 28, 29, 30}. Box and Whisker plots made from

𝑀 = 100 realizations.

G
Recursive ARX Results

G.1. Discrete-time parameters

Figure G.1: Online estimation results in discrete-time parameters for recursive ARX model: simulation condition C3, simulation

remnant filter order 𝑚0 = 1, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from

𝑀 = 100 realizations.

Figure G.2: Online estimation results in discrete-time parameters for recursive ARX model: simulation condition C3, simulation

remnant filter order 𝑚0 = 2, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from

𝑀 = 100 realizations.

87

G.1. Discrete-time parameters 88

Figure G.3: Online estimation results in discrete-time parameters for recursive ARX model: simulation condition C3, simulation

remnant filter order 𝑚0 = 3, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from

𝑀 = 100 realizations.

Figure G.4: Online estimation results in discrete-time parameters for recursive ARX model: simulation condition C3, simulation

remnant filter order 𝑚0 = 4, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values averaged from

𝑀 = 100 realizations.

G.2. Continuous-time parameters 89

G.2. Continuous-time parameters

Figure G.5: Online estimation results in continuous-time parameters for recursive ARX model: simulation condition C3,

simulation remnant filter order 𝑚0 = 1, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values

averaged from 𝑀 = 100 realizations.

Figure G.6: Online estimation results in continuous-time parameters for recursive ARX model: simulation condition C3,

simulation remnant filter order 𝑚0 = 2, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values

averaged from 𝑀 = 100 realizations.

Figure G.7: Online estimation results in continuous-time parameters for recursive ARX model: simulation condition C3,

simulation remnant filter order 𝑚0 = 3, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values

averaged from 𝑀 = 100 realizations.

Figure G.8: Online estimation results in continuous-time parameters for recursive ARX model: simulation condition C3,

simulation remnant filter order 𝑚0 = 4, model time-delay 𝑛∗
𝑘
= 29, noise levels 𝑃𝑛 ∈ {0.0, 0.10, 0.20, 0.30}. Obtained values

averaged from 𝑀 = 100 realizations.

90

Part III

Final Report Appendices

91

H
General Simulation Results for

Recursive Estimation

H.1. Simulation Condition C1

Figure H.1: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C1, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

92

H.2. Simulation Condition C2 93

Figure H.2: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX estimations:

OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C1,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from 𝑀 = 100

realizations.

H.2. Simulation Condition C2

Figure H.3: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C2, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.3. Simulation Condition C3 94

Figure H.4: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX estimations:

OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C2,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from 𝑀 = 100

realizations.

H.3. Simulation Condition C3

Figure H.5: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C3, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.4. Simulation Condition C4 95

Figure H.6: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX estimations:

OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C3,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from 𝑀 = 100

realizations.

H.4. Simulation Condition C4

Figure H.7: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C4, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.5. Simulation Condition C5 96

Figure H.8: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX estimations:

OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation condition C4,

simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from 𝑀 = 100

realizations.

H.5. Simulation Condition C5

Figure H.9: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C5, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.6. Simulation Condition C6 97

Figure H.10: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C5, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.6. Simulation Condition C6

Figure H.11: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in discrete-time parameters. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C6, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

H.6. Simulation Condition C6 98

Figure H.12: Simulation results of recursive ARX(𝑛∗
𝑘
= 29) and BJ(𝑛∗

𝑘
= 29, 𝑚∗ = 1) algorithms in HO coefficients. ARX

estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM (continuous line). simulation

condition C6, simulation remnant filter order 𝑚0 ∈ {1, 2, 3, 4}, noise levels 𝑃𝑛 ∈ {0.01, 0.10, 0.20}. Obtained values averaged from

𝑀 = 100 realizations.

I
Experimental Results for Recursive

Estimation

I.1. Simulation Condition C1

Figure I.1: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1 and 2.

Simulation condition C1. Obtained values averaged from 5 runs.

99

I.1. Simulation Condition C1 100

Figure I.2: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1 and 2. Simulation

condition C1. Obtained values averaged from 5 runs.

Figure I.3: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1 and 2.

Simulation condition C1. Obtained values averaged from 5 runs.

I.2. Simulation Condition C2 101

I.2. Simulation Condition C2

Figure I.4: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1 and 2.

Simulation condition C2. Obtained values averaged from 5 runs.

Figure I.5: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1 and 2. Simulation

condition C2. Obtained values averaged from 5 runs.

I.3. Simulation Condition C3 102

Figure I.6: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1 and 2.

Simulation condition C2. Obtained values averaged from 5 runs.

I.3. Simulation Condition C3

Figure I.7: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1, 2 and 3.

Simulation condition C3. Obtained values averaged from 5 runs.

I.3. Simulation Condition C3 103

Figure I.8: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1, 2 and 3. Simulation

condition C3. Obtained values averaged from 5 runs.

Figure I.9: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1, 2 and

3. Simulation condition C3. Obtained values averaged from 5 runs.

I.4. Simulation Condition C4 104

I.4. Simulation Condition C4

Figure I.10: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1, 2 and 3.

Simulation condition C4. Obtained values averaged from 5 runs.

Figure I.11: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1, 2 and 3.

Simulation condition C4. Obtained values averaged from 5 runs.

I.5. Simulation Condition C5 105

Figure I.12: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1, 2 and

3. Simulation condition C4. Obtained values averaged from 5 runs.

I.5. Simulation Condition C5

Figure I.13: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1, 2 and 3.

Simulation condition C5. Obtained values averaged from 5 runs.

I.5. Simulation Condition C5 106

Figure I.14: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1, 2 and 3.

Simulation condition C5. Obtained values averaged from 5 runs.

Figure I.15: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1, 2 and

3. Simulation condition C5. Obtained values averaged from 5 runs.

I.6. Simulation Condition C6 107

I.6. Simulation Condition C6

Figure I.16: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in discrete-time parameters for subjects 1, 2 and 3.

Simulation condition C6. Obtained values averaged from 5 runs.

Figure I.17: Experimental results of recursive ARX and BJ(𝑚∗ = 1) algorithms in HO coefficients for subjects 1, 2 and 3.

Simulation condition C6. Obtained values averaged from 5 runs.

I.6. Simulation Condition C6 108

Figure I.18: Experimental covariance matrix of RPEM algorithm with BJ(𝑚∗ = 1) for discrete-time parameters for subjects 1, 2 and

3. Simulation condition C6. Obtained values averaged from 5 runs.

	List of figures
	List of tables
	List of Abbreviations and Symbols
	I Scientific Article
	II Preliminary Report
	Summary
	Introduction
	Literature survey
	Compensatory manual-control task
	Human operator models
	Controlled-element dynamics
	Identification of time-varying operator behaviour

	Research Objective and Questions
	Human-controller simulation setup
	Simulation iterative approach
	Forcing function
	Remnant noise
	Simulation conditions
	Identification process

	Human-controller identification setup
	Transfer-function models
	Prediction Error Method
	The PEM algorithm
	Initial states estimation
	Variance estimation
	Summary

	Recursive Least-Squares
	The deterministic RLS algorithm
	Forgetting factor
	Forgetting matrix

	ARX model estimation
	Ordinary Least-Squares
	RLS application

	BJ model estimation
	PEM application
	Recursive Prediction Error minimization

	Quality-of-fit metrics

	Preliminary simulation analysis
	Batch-fitting
	ARX results
	BJ results
	Implementation of Lg in BJ model
	Modification of initial conditions in BJ model parameters

	Recursive-fitting
	ARX results
	Perspectives for BJ results

	Conclusions and Future Works
	References
	Remnant gain definition
	Theoretical background
	PSD function of the forcing function
	Remnant gain definition
	First option
	Second option

	Validation of the remnant gain formula

	Continuous-time parameter retrieval
	Human operator
	Remnant filter and noise
	Requirements for discrete-time parameters

	Relative Bias Results
	Simulation Condition C1
	ARX
	BJ: Lg
	BJ: Lg

	Simulation Condition C2
	ARX
	BJ: Lg
	BJ: Lg

	Bode Plots
	Simulation Condition C1
	ARX: Lg
	BJ: Lg
	ARX vs. BJ: Lg

	Simulation Condition C2
	ARX: Lg
	BJ: Lg
	ARX vs. BJ: Lg

	VAF and Relative Bias for Multiple Remnant Orders in BJ structure
	Simulation Condition C1
	Simulation data from Lg
	Simulation data from Lg
	Simulation data from Lg
	Simulation data from Lg

	Simulation Condition C2
	Simulation data from Lg
	Simulation data from Lg
	Simulation data from Lg
	Simulation data from Lg

	Multiple Initial Conditions in BJ structure
	Recursive ARX Results
	Discrete-time parameters
	Continuous-time parameters

	III Final Report Appendices
	General Simulation Results for Recursive Estimation
	Simulation Condition C1
	Simulation Condition C2
	Simulation Condition C3
	Simulation Condition C4
	Simulation Condition C5
	Simulation Condition C6

	Experimental Results for Recursive Estimation
	Simulation Condition C1
	Simulation Condition C2
	Simulation Condition C3
	Simulation Condition C4
	Simulation Condition C5
	Simulation Condition C6

