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1 I INTRODUCTION

The main result of the present paper is the following. Let WO1 P(R.; X) be the first order Sobolev space over the half line with
values in a UMD Banach space X vanishing at t = 0, where p € (1, o0). Then for complex interpolation we have

L@ 0. W PR 00| = HP®RX). 0@, 041/,

see Theorems 6.7 and (6.6). Here Hg 7 denotes the fractional order Bessel potential space with vanishing trace for 6 > 1/p,

and H g ? = HYP for § < 1/p. In more generality, we consider spaces with Muckenhoupt power weights w,(t) = 17, where the
critical value 1/p is shifted accordingly.

In the scalar-valued case X = C, the result is well-known and due to Seeley [43]. The vector-valued result was already used
several times in the literature without proof. Seeley also considers the case 8 = 1/p, which we ignore throughout for simplicity,
and the case of domains Q C R?. The corresponding result for real interpolation is due to Grisvard [17] and more elementary
to prove.

At the heart of complex interpolation theory with boundary conditions is the pointwise multiplier property of the characteristic
function of the half-space 1R+ on HP(R; X) for0 < 6 < 1 /p. It is due to Shamir [44] and Strichartz [45] in the scalar-valued
case. In [36] by the second and third author, a general theory of pointwise multiplication of weighted vector-valued functions was
developed. As a main application the multiplier result was extended to the vector-valued and weighted setting. An alternative
approach to this was found by the first author in [27] and is based on a new equivalent norm for vector-valued Bessel potential
spaces. In Section 4 we present a new and simpler proof of the multiplier property of 1R+ , which is based on the representation
of fractional powers of the negative Laplacian as a singular integral and the Hardy—Hilbert inequality.
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For future reference and as it is only a minimal extra effort, we will formulate and prove some elementary assertions for the
half space Ri for d > 1 or even domains, and general A, weights w. In order to make the presentation as self-contained as
possible, we further fully avoid the use of Triebel-Lizorkin spaces and Besov spaces, but we point out where they could be
used. We will only use the UMD property of X through standard applications of the Mihlin multiplier theorem. Several results
will be presented in such a way that the UMD property is not used. A detailed explanation of the theory of UMD spaces and
their connection to harmonic analysis can be found in the monograph [20]. In their reflexive range, all standard function spaces
are UMD spaces.

The complex interpolation result has applications in the theory of evolution equations, as it yields a characterization of the
fractional power domains of the time derivative D((d /d1)?) and D((—d /d1)?) on R, . Here the half line usually stands for the
time variable and X is a suitable function space for the space variable. For instance such spaces can be used in the theory of
Volterra equations (see [38,48,49]), in evolution equations with form methods (see [9,12]), in stochastic evolution equations (see
[37D).

In order to deal with rough initial values it is useful to consider a power weights w, (r) = # in the time variable. Examples
of papers in evolution equation where such weights are used include [3,8,23,28,31,32,35,39,41]. The monographs [2,29,40] are
an excellent source for applications of weighted spaces to evolution equations. In order to make our results available to this part
of the literature as well, we present our interpolation results for weighted spaces. For the application to evolution equations it
suffices to consider interpolation of vector-valued Sobolev spaces over R with Dirichlet boundary conditions and therefore we
focus on this particular case. In a future paper we extend the results of [17] and [43] to weighted function spaces on more general
domains Q C R?, in the scalar valued situation, where one of the advantages is that Bessel potential spaces have a simple square
function characterization.

Notation. Ri = (0, c0) X R~ denotes the half space. We write x = (x;,%) € R? with x; e Rand X € R?-! and define the
weight w, by w, (x1, X) = [x;|”. Sometimes it will be convenient to also write (7, x) € R witht € R and x € RY~!. The operator
F denotes the Fourier transform. We write A 5, B whenever A < C,B where C, is a constant which depends on the parameter
p. Similarly, we write A ~p Bif A S,, B and B S,, A.

2 | PRELIMINARIES

2.1 | Weights

A locally integrable function w : RY — (0, co0) will be called a weight function. Given a weight function w and a Banach space
X we define L? ([R{d ,w; X ) as the space of all strongly measurable f : RY — X for which

1 ) = ( / ||f(X)||Pw(x)dx>p

is finite. Here we identify functions which are a.e. equal.
Although we will be mainly interested in a special class of weights, it will be natural to formulate some of the result for the
class of Muckenhoupt A -weights. For p € (1, o), we say that w € A, if

1 p=1
[wly, = sgplla/Qw(x)dx- (ﬁ/Qw(x)_ﬁ dx> < 0.

Here the supremum is taken over all cubes Q C R with sides parallel to the coordinate axes. For p € (1, c0) and a weight w :
RY - (0,c0)onehasw € A » if and only the Hardy—Littlewood maximal function is bounded on L? ( R4, w). We refer the reader
to [16, Chapter 9] for standard properties of A ,-weights. For a fixed p and a weight w € A, the weight w =w /=D ¢ Ay
is the p-dual weight. By Holder's inequality one checks that

/ BN dx U1 () 18117 @.1)

for f € L?(RY,w) and g € L¥(R?, w'). Using this, for each w € A, one can check that L” (R, w; X) C L (R%X).
The following will be our main example.
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Example 2.1. Let
w,(x;, %) = [x;]7, x, eR, %€ R

As in [16, Example 9.1.7]) one sees that w, €A, ifandonlyify € (—1,p— 1).

Lemma2.2. Letp € (1, 00) andlet w € A,. Assume ¢ € L! (Rd) andf ¢dx =1.Letp,(x) = n? p(nx). Assume that ¢ satisfies
any of the following conditions:

1. ¢ is bounded and compactly supported
2. There exists a radially decreasing function w € L' ([Rd) such that |p| < y a.e.

Then for all f € L”([Rd; X), ¢, x f—= fin LP(Rd, w; X) as n — oo. Moreover, there is a constant C only depending on
¢ such that ||, * f|| < CM f almost everywhere.

Proof. For convenience of the reader we include a short proof. By [20, Theorem 2.40 and Corollary 2.41] ¢, * f — f almost
everywhere and ||¢, * f|| < |lyllL1ge)M f almost everywhere, where M denotes the Hardy-Littlewood maximal function.
Therefore, the result follows from the dominated convergence theorem. O

2.2 | Fourier multipliers and UMD spaces

Let S(R?; X) be the space of X-valued Schwartz functions and let S'(R?; X) = £(S(R“), X) be the space of X-valued
tempered distributions. For m € L®(R?) let T,, : S(RY; X) — S'(R?; X) be the Fourier multiplier operator defined by

T,f=F ' (mf).

There are many known conditions under which 7,, is a bounded linear operator on L”(Rd X ) In the scalar-valued the set
of all Fourier multiplier symbols on L?(R“) for instance coincides with L®(R?). In the case p € (1, ) \ {2} a large set of
multipliers for which T, is bounded is given by Mihlin's multiplier theorem. In the vector-valued case difficulties arise and
geometric conditions on X are needed already if d = 1 and m(&) = sign(&); in fact, in [5,6] it was shown that in this specific
case the boundedness of T,, on LP(R; X) characterizes the UMD property of X. Since the work of [5,6,30] it is well-known
that the right class of Banach spaces for vector-valued harmonic analysis is the class of UMD Banach spaces, as many of the
classical results in harmonic analysis, such as the classical Mihlin multiplier theorem, have been extended to this setting. We
refer to [7,20,42] for details on UMD spaces and Fourier multiplier theorems.

All UMD spaces are reflexive. Conversely, all spaces in the reflexive range of the classical function spaces have UMD:
e.g.: L?, Bessel potential spaces, Besov spaces, Triebel-Lizorkin spaces, Orlicz spaces.

The following result is a weighted version of the Mihlin multiplier theorem which can be found in [36, Proposition 3.1] and
is a simple consequence of [19].

Proposition 2.3. Let X be a UMD space, let p € (1, 0) and let w € A,,. Assume thatm € C d+2( R4\ {0}) satisfies

Cp i= sup sup|él®o"m(&)| < oo,
la|<d+2 E£0

Then T,, is bounded on L? (Rd, w; X ) and has an operator norm that only depends C,,,d, p, X, [w] Ay

3 | WEIGHTED FUNCTION SPACES

In this section we present several results on weighted function spaces, which do not require the UMD property of the underlying
Banach space (except in Proposition 3.2).

3.1 | Definitions and basic properties

For an open set Q C R let D(Q) denote the space compactly supported smooth functions on Q equipped with its usual inductive
limit topology. For a Banach space X, let D'(Q; X) = L(D(L2), X) be the space of X-valued distributions. For a distribution
u € D'(Q; X) and an open subset Q, C Q, we define the restriction u|QO (S D’(QO; X) as ”lQo(f) =u(f) for f € D(QO).
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For pe (I,00) and w € A, let WHhP(Q, w; X) C D'(Q; X) be the Sobolev space of all f € LP(Q,w;X) with 9°f €
LP(Q, w; X) for all |a| < k and set

1A oy = D 10°F Nl o@uwx):

la|<k

Uwiogwn = 2 10 g
la|=k

Here for « € N4, 0* = 9" ... 9.

Let J, denote the Bessel potential operator of order s € R defined by

s/2 ~

Jf=0=8"f =7 (1+]-1*)"f,

where f denotes the Fourier transform of f and A = Zjd.zl 6]2,. For pe(l,0), s€R and w € A, let H*?(R?,w; X) C
S'(R?; X) denote the Bessel potential space of all f € S’(R“; X) for which J, f € L?(R?, w; X)) and set

”f”H“*/’([Rd,W;X) = ”'jsf“L/’(Rd,W;X)'
In the following lemma we collect some properties of the operators J.

Lemma 3.1. Fix s > 0. There exists a function G, : R? — [0, 00) such that G; € L'(R?) and J_,f = G * [ for all f €
S’ ([Rd ;X ) Moreover, G has the following properties:

ly

1. Forall|y| > 2, Gy(y) Ssqe 2.

2. For|x| £ 2,
x|, s € (0,d),
Gy(xX) Sy 1+log<|—il>, s=d,
1, s>d.

3. Forall s > k > 0 and all |a| < k, there exists a radially decreasing function ¢ € L' (IRd) such that |0°G,| < ¢ pointwise.
In particular, ifd =1, pe (1,00), y €(—1l,p—1)and s > 1%, then G, € L”,(IR, w;)

Proof. The fact that the positive function G, € L' (Rd) exists, together with (1) and (2), follows from [16, Section 6.1.b].
To prove (3), we use the following representation of G (see [16, Section 6.1.b]):

® _, _Ik s gt
G(x)=Cyy e'e 4t2 PR
0

By induction one sees that 0”G(x) is a linear combination of functions of the form G,_,; (x)|x|# with || < j < k. Therefore,

Ix|
by (2) for |x| £2, [0°G(X)| Ss.4.a |x]¢=9 for some € € (0, d). On the other hand for |x| > 2, [0°G ()| Ss.4.a |x|fe” 2 Sdsk

] . I . . .
e~ 7 . Now the function ¢(x) = C;|x|¢~¢ for |x| <2 and ¢(x) = C,e” # for certain constants C;, C, > 0. satisfies the required
conditions.
To prove the final assertion for d = 1, note that the blow-up behaviour near O gets worse as s decreases. Therefore, without

loss of generality we may assume that s € (l%, 1), in which case (2) yields

(s=Dp—y

a —14-L (5= 121
G, W () S,y Ix] 7T = 1x 7T for x| <2,
which is integrable. Integrability, for |x| > 2, is clear from (1). [

The following result is proved in [36, Proposition 3.2 and 3.7] by a direct application of Proposition 2.3.

Proposition 3.2. Let X be a UMD space, let p € (1, ), k € Ny, and let w € Ap. Then Hk’P(IRd, w;X) = Wk'p([Rd, w; X)
with norm equivalence only depending on d, X, p, k and [w] Ay
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The UMD property is necessary in Proposition 3.2 (see [20, Theorem 5.6.12]). Sometimes it can be avoided by instead
using the following simple embedding result which holds for any Banach space. The sharper version Wk*p( R?, w; X ) —
H*P ([Rd, w; X ) if s < k and k € N;;. can be obtained from [33, Propositions 3.11 and 3.12] but is more complicated.

Lemma 3.3. Let X be a Banach space, let p € (1,0), k €N, s € (k,00) and let w € Ap. Then the following continuous
embeddings hold

WP (R, w; X) & H*P(RY, w; X), H*? (R, w; X) & W (R, w; X),
with embedding constants which only depend on d, s, k and [w] A

Proof. The first embedding is immediate from J,; f = (1 — A)f and Leibniz' rule. For the second embedding let f €
H5? (R, w; X) and write f, = J f € L?(R?, w; X ). By Lemma 3.1 (3) and Lemma 2.2, for all || < k,

0°Flix = 110°Gy * fillx <& I fsllx < CyMIfllx),

where ¢ € L! ([R{d) is a radially decreasing function depending on a, k and s. Therefore, by the boundedness of the Hardy—
Littlewood maximal function, we have 0% f € LP(IRd, w; X ) with

”aaf”Ll’(Rd,w;X) Sp,[w]Ap ”fs”Ll’(Rd,u,‘;X) = ”f”HSvP([Rd,w;X)'

Now the result follows by summation over all a. O
We proceed with two density results.

Lemma 3.4. Let X be a Banach space, let p € (1,0), s € R and let w € Ap. Then S(Rd;X) S HS’P(IRd,w;X) (S
S’(Rd;X). Moreover, Cf"(Rd) ® X is dense in H”’(IRd, w; X).

Proof. First we prove that S (Rd; X ) —~ H “"”(Rd ,w; X ) It suffices to prove this in the case s = 0 by continuity of J, =
(1- A)“'/ 2onS (Rd; X ) In the case s = 0, the continuity of the embedding follows from

Sd,n,p,w Z sup ”xaf(x)”

AN
1/ 1 2oy < || (14 1x12)
|a|<2n XERY

Lr(R9 w) H(l * |x|2)”fH

Lo(RA:X)
for n € N'with n > dp (see [33, Lemma 4.5]).

To prove the density assertion note that L? (Rd, w) ® X is dense in L? (Rd, w; X) and S(Rd) is dense in LP(Rd, w) (see
[16, Exercise 9.4.1]) it follows that S(Rd) ® X isdense in L? (Rd, w; X). Since J ¢ leaves S (Rd) invariant, also S(Rd) RX
is dense in H“"I’(Rd, w; X). Combining this with S(Rd; X) < H“"P([Rd, w; X) and the fact that C§° (Rd) is dense in S(Rd)
(see [10, Lemma 14.7]) we obtain the desired density assertion.

To prove the embedding H*?(R?, w; X) < S'(R?; X) it suffices again to consider s = 0. In this case from (2.1) and
S(R4 )L»LP/ (R, w') densely, we deduce

LR, w; X) & £(L (R, w'), X) < £(S(RY), X) = $'(RY; X). 0O
Lemma 3.5. Let X be a Banach space, let p € (1,0), k € N and let w € Ap. Then S(Rd;X) < Wk*p(Rd,w;X) <~
S'(Rd;X). Moreover, C;”([Rd) ® X is dense in Wk’P(IRd, w;X).

Proof. The case k = 0 follows from Lemma 3.4 and the case k > 1 follow by differentiation.
Let ¢ € C?(Rd) be such that /Rd ¢dx =1 and define ¢, :=n?¢(n-) for every n € N. Then, by Lemma 2.2 and
standard properties of convolutions, f, :=¢, * f = f in Wk’p([R{d,w;X) as n — oo with ¢, * f € W°°>p([R{d,w;X) =

d
Nieny W' (R?, w; X ). In particular, W2k+2’1’([R{d, w; X) is dense in WKP (R, w; X). This yields H**''?(RY, w; X) —
Wk’P(IRd, w; X) by Lemma 3.3. The density of Cc°° ([R{d) ® X in Wk’P(IRd, w; X) now follows from Lemma 3.4.

Lemma 3.6. Let X be a Banach space, let p € (1,0), s € Rand let w € A, Assume ¢ € CP(R) with / ¢pdx =1 Let ¢, (x) =
n? p(nx). Then, for all f € H“’(Rd, w; X),

”¢n * f”HSvP([Rd,w;X) Ss,p,[w],d ”f”HS»P([Rd,w;X)

with ¢, * f — [ in HS’P(IRd,w;X) asn— cowith, x f € HW’P(Rd,w;X) =(er H”P(Rd,w;X).
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Proof. The first part of the statement follows from Lemma 2.2 and J (¢, * f) = ¢,, * J f. For the last part, note that ¢, * f =
JI_g|b, = T, f] € H®?(R?, w; X) by basic properties of convolutions in combination with Lemma 3.3. O

The following version of the Hardy inequality will be needed (see [33, Corolllary 1.4] for a related result). The result can be
deduced from [34, Theorem 1.3 and Proposition 4.3] but for convenience we include an elementary proof.

Lemma 3.7 (Hardy inequality with power weights). Let y € (=1,p—1) and s € (0,1). Let w,(1,x) = [1|” for t € R and

x € RY"L. Then H‘”’(Rd, w,; X) — LP(Rd, Wy_sp} X).

Proof. 1t suffices to prove |G, * f||L,,(wy_w;X) Spsdyy ||f||Lp(wy;X), where G is as in Lemma 3.1 and f € L”(w,; X). Since
G, > 0, by the triangle inequality it suffices to consider the case of scalar functions f with f > 0.
To prove the result we first apply Minkowski's and Young's inequality in R9~!:

NG = f(t ) poga-1) < / NG = 7, )M L1 wa-1) L f (7, I Loma-1)d T = g5 * P(7).
R

Here (1) = |G, )l L1 (ga-1) and ¢(7) = || f (7, )|l Lpra-1)- Then for [7| < 2, by Lemma 3.1 (1) and (2),

g,(t) ss,d/ (t] + |xD*~dx = |t|s—1/ (1+ |x])dx = Clt|*!,
Rd—l Rd—l

where we used s < 1. For |t| > 2, by Lemma 3.1 (2) and |(¢, x)| = |t| + |x|, we find

] x| ]
g Ssae 2 / e 2dxm e 2.
. nd
Finally by the weighted version of Young's inequality (see and [22, Theorem 3.4(3.7)]) in dimension one, we find that
1G, * fll oo, ) <180 % Bllisgie, ) < Clbllo) = CIF o (as )

where C = sup,p |t]'*g,(t) < co. O
We end this section with a weighted version of the classical Hardy—Hilbert inequality.
Lemma 3.8 (Hardy-Hilbert inequality with power weights). Let p € (1,00) andy € (—1,p—1). Let w,(x;, %) = |x;|" and

_ 1
koY) = e

where x = (x;,X) and y = (y;, §). Then the formula

L) := / kCx, DO dy
Rd

yields a well-defined bounded linear operator I, on LP(Rd, wy).

Proof. 1t suffices to consider A > 0. Moreover, by symmetry it is enough to consider x;, y; > 0. Thus we need to show that

X / k(x, »)h(y) dy
Rd

+

d
., Sp,d,y ”h”LP(Ri’wy)’ he LP(R+5 wy)’hZO
LF(RJr’wr)

Step 1. The case d = 1. Replacing k by

w, () /7w, )7V x| P
(xl+1yD X+l

kﬂ(x’ y) =

with # = y/p, it suffices to consider the unweighted case.
-1
To prove the required result we apply Schur's test in the same way as in [14, Theorem 5.10.1]. Let s(x) = #(x) = x #»'. Then

since—1</3—1%<0

) 0 ﬂ—L, ] s ﬂ_l
x Py z P
s(xX)Pkp(x,y)dx = ——dx =t(y)* dz =C, 4t(y)°.
/0 () kp(x, ) /0 Xty (y)/o o .pt(Y)
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Similarly, since -1 < —f — % <0

1 1

00 , © _f —p—- , o —f—- ,

/ 1) ky(x, y) dy = / = dy =ty / 2L 4z=Cppsx).
0 o Xxty 0 z ’

Step II. The general case. By Minkowski's inequality we find

= fO1.9) NN
Wt (xl")”“’(R"'”S/o (/R</R (G + )2 + [% = 572 dy) dx) o

Fix y; > O and let g,(3)) = f(y;,r¥). Setting r = x| + y; and substituting u := X/r and v := j/r we can write

/ (/ S,y d~>p -
y) dx
ri-1 \Jra-1 (|x) +y; |2 + |X = 2)4/2

p
= pprd=l / / _ &0 dv | du
Rd-1 Rd-1 (1 + |bl _ UlZ)d/z

2\~d/2||? _ - p
L1 )y = Canr il

< r‘p+d—1 ||gr“ip(Rd—]) “(

where we applied Young's inequality for convolutions. Therefore,

N f s M Lrwa-1y

e f Gy M s scd/ DO v
PHRED ? Jo X+

Taking LP((0, o), w, )-norms in x; and applying Step I yields the required result. |

Remark 3.9. Actually, the kernel k of Lemma 3.8 is a standard Calderén—Zygmund kernel, because k is a.e. differentiable and
IV ke )+ 1V k(e )] < lx =y 77 x # .

Although we will not need it below let us note that [19, Corollary 2.10] implies that I, is bounded on L? ( RY, w) foranyw € A,

4 | POINTWISE MULTIPLICATION WITH 1.

In this section we prove the pointwise multiplier result, which is central in the characterization of the complex interpolation
spaces of Sobolev spaces with boundary conditions in Section 6. Let w, (x;, X) = [x;|”, where x; € R and X € R4-1.

Theorem 4.1. Let X be a UMD space, let p € (1,00), y € (=1,p—1), y' = —y/(p — 1), and assume —”;}—H <s< %1. Then

/
forall f € H*?(R?,w,; X) n LP(R, w,; X), we have 1Rd+f € H" (R, w,; X) and

HlRif”HW(Rd,wy;X) Sxprs M om0,

and therefore, pointwise multiplication by 1p4 extends to a bounded linear operator on H S"’(Rd swy s X )
+

To prove this the UMD property will only be used through the norm equivalence of Lemma 4.2 below.

Lemma 4.2. Let X be a UMD space, let p € (1,0), s ER, 6 >0, and let w € Ap. Then
(AP S(RYX) — S'(REX), £ F7H € 1219V

defines (by extension by density) a bounded linear operator from H't°-P (Rd, w; X ) to H"™P (IRd ,w; X ), independent of
r € R and w (in the sense of compatibility), which we still denote by (—A)°/2. Moreover, f € HS+"’1’([R", w; X) if and only if
[ (=072 f € HP(RY,w; X), in which case

— _A\O/2
0 Warso @) s pacorx W Nzs-engd ey + | RPF| o
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Proof. All assertions follow from the fact that the symbols

2/c

B [ AR
A+ (+ Y 1+ [E°

satisfy the conditions of Proposition 2.3. |

In the proof of Theorem 4.1 we will use the norm equivalence of the above lemma via (a variant of) a well known representation
for (—A)°/? as a singular integral. For f € H°”(RY) this representation reads as follows:

T, —
(_A)0/2f= lim Cdo-/ Mdh’
L d,
r—0 R4\ B(0,r) h

with limit in LP(IRd ) (see [26, Theorem 1.1(e)]); here T, denotes the left translation and C,, ,; is a constant only depending on
d and o.
In the proof we want to use a formula as above for f replaced by 14 f, which in general is an irregular function even if f
+

is smooth; in particular, a priori it is not clear that 14 f € H®? (Rd). We overcome this technical obstacle by Proposition 4.4
+

below, which provides a (non sharp) representation formula for (—A)°/? in spaces of distributions.
For the proof of Proposition 4.4 we need the following simple identity.

Lemma 4.3. For each o € (0, 1) there exists a constant ¢; , € (—00,0) such that

th-é _
|§|":cd,¢,/d = lyp,  cerd
R

|h|d+o
Moreover, for all ¢ € S(IRd)

elh

c . c _ elh§ -1 . — ‘-
[£ = 1E1°1(@) .—/Rd S &) dE = ¢, /R/R e b dsdn = ey, /R [: e ](qb)dh @.1)

Proof. Let & € RY\ {0} and choose R € O(n) with RE = |£|e;. Then h - & = Rh - RE = || Rh - e, and the substitution y =

|€] Rh yields
ehE1 / 1
= dy.
/Rd e 1V L e

Observing that the integral on the right is a number in (—o0, 0), the first identity follows.
Next we show (4.1). Given ¢ € S (Rd), the first identity gives

g Ifl“](¢)=/Rd 1§1°(&) dé = / / lhldﬁ Langede.

Since ¢ € S(R?) and

|eth§ _ ll

L —(d-1+0) . —(d+0)
ha+e < ljp<ih TN +2 - Loy [RIT,

we may invoke Fubini's theorem in order to get

ethrf

[£ = [£11(@) = //thlm ¢(§)d§dh—cdg/R [:H lhlm](cﬁ) h,

as desired. O

For f € S'(RY; X) let 6, f = T),f — f, where T}, denotes the left translation by h. For 0 < r < Rlet A(r, R) := {x € R :
r<lx| < R} be an annulus.
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Proposition 4.4 (Representation of (—A)%). Let p € (1,00) and o € (0,1). For all s>0 and f € H*?(RY) @ X C
L”(Rd; X) we have

(—A)5f = —— lim [x.—»/ 5hf(x)dh] in H7(R% X),
A

Cg.o ™NO.R 00 ol L ad

where c; , is the constant of Lemma 4.3.

The weights are left out on purpose, because translations are not well-behaved on weighted L?-spaces. Moreover, no UMD
is required in the result above.

Proof. We prove this proposition by proving the following three statements:

1. The linear operator

fl—)[hl—) éhf]

|h|d+6
is bounded from H 5P ([R{d; X ) to L! (Rd; Hs2p (Rd; X )) for all s € R and thus gives rise to a bounded linear operator

onf

d |h|d+o‘

1,: H (R, X) — H2P(RE X), f ._»/
R

2. For all s > 0 we have

1,/= _lim [xr—>/ 5hf(x)dh] in H2(RY; X)
A

"™O0.R /e Ry |h]4+e

forevery f € H‘”’(Rd;X) C LP(IRd;X).
3. Forall f € H*?(R?) ® X,

ILf=ci(-M)if in S'(RYX), (4.2)
where ¢, , is the constant of Lemma 4.3. Here H~ 7 (RY) = J . H*?(R?).

(1): To prove this it is enough to establish the boundedness from H”’(Rd; X) to L! (Rd; HS_2’1’([Rd; X)) As the Bessel
potential operator J; commutes with 6,, we may restrict ourselves to the case s = 2. Since by Lemma 3.3 H 2’1’([Rd; X ) —
WP (R?; X), we only need to estimate

6nf | o(ra:x)
fo ™

i fewh (R4 X). 4.3)

@ S 110 ()

To this end, let f € Wl'p(Rd;X). Then

onf —d— ! h _
e 1<t 1A 1+a)/0 T Vf'm dt + 1o A 7T, f = ),

where the integral is an LP(IRd; X )-Valued Bochner integral. It follows that

||5hf”LP(Rd;X)

1
—(d—1+0) —(d+0)
[+ < Lip<ilhl ’ /0 ||Tth||vf||xd||L,,(Rd) dt+ 15 |A 7 (”Thf”Ln(R;X) + ||f||Lp(R;X))

= 1|h|§1h_(d_1+6)”Vf”LP([R;X") +2- 1|h|>1|h|_(d+g)||f||Lp(R;X)~

Integrating over h gives (4.3).
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(2):Lets>0and f € H “’P(Rd; X ) crLr ([R{d; X ) By the first assertion and the Lebesgue dominated convergence theorem,

1
I,f= lim / g i H*P(RY; X), (4.4)
"™NO.R/ % J ¢ Ry [R|7H0

. s . . _ o
where the integrals fA(r’R) |h|hTf+‘7 dh are Bochner integrals in H*>/(RY;X). As f e LP(R);X), h IhlhT*" is in
L'(A(r, R); L”(IRd X)) for every 0 < r < R < 0. Since L?(R; X ), H*">P(R?; X) < S'(R9; X), it follows that the inte-
grals [ AR T hl d — dh in (4.4) can also be considered as Bochner integrals in L”(R?; X), implying that [ B |5”f dh =

h|d+o
[x o L) 2L dh] (see [20, Proposition 1.2.25]).

|h|d+rr
(3) By linearity it suffices to consider the scalar case f € H*?(R“) for some s € R. By the density of S(R?) ¢ H*"(R?)
(see Lemma 3.4) it suffices to consider / € S(R?). Indeed, this follows from the boundedness of I, and (—A)°/? (see (1). Now
(4.2) follows from well-known results (see [26, Theorem 1.1(e)]). For convenience we include a direct proof. Using Lemma 4.3,
for each f € S(RY; X) we find

ayPp =g fl=7" / dh
(a1 =F7 € e el ] g |h|d+<f L7
onf
—1 h
=C (G/: — dh,
d,g/Rd [é |h|d+ f(f)] / h|d+o
where all integrals are in S’([R{d;X). By (1), for every f € S(Rd;X) C H0>p(Rd;X) we have I, f = /Rd l:{’dic dh, where
the integral is taken in H~1?(R?; X ) — &’ (R?; X). This proves (4.2), as desired. O

Finally we are in position to prove the pointwise multiplier result.

Proof of Theorem 4.1. We only consider s > 0. The case s < 0 follows from a duality argument using [36, Proposition 3.5].

. . d
By Lemma 3.4 it is enough to prove HlRif”HW(Rd ) Sopdyx 1 Wisoma . x) for an arbitrary f € S(RY) ® X. Let

g:i=1lpaf € L”(Rd) ® X.By Lemma 4.2, we have
+

2
||g||Hs,p([Rd,wy;X) Sepdy.X ||g||Lp([Rd,wy;x) + ”(—A)S/ g

LPR w,:X)
Clearly, ||g||L,,(R,1’wy;X) < ||f||L,,(R,1’wy;X) from which we see that it suffices to show
—A)$/2
||( A)S 8 LP(Rd,wy;X) Ss,p,d,y ”f”H&P([Rd,wy;X)‘ (45)
By Proposition 4.4,
5hg(x) Jj—oo /2 . -2 d 1 (md
I,,8:=|xm ——dh| = (-0)g in HP(REX) < S'(RGX).
» A(f’j) |h|d+s

In order to finish the proof, it is thus enough to show that Z; ;g converges in LP(RY, w,; X )+ LP(RY; X) = S'(R% X) to
some G satisfying

||G||Lp(Rd,wy;x) SS,p,d,y,X ||f||HS-n(Rd,wy;X)~ (4.6)

Indeed, then (—A)*/2g = G and (4.5) holds.
Defining

S:={(2)€R?: [z<-yandy>0] or [z> —yand y < 0]}
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we have

. f&x+h)
1,,6=G;+G,; := IRiZs,jf"' lx|—> —sgn(xy) L 15(xy, hy) s dh|, 4.7
7

where T ; f is defined analogously to 7, ;g:

opf(x)
I,,f = x»—>/l hdﬂ dn| .
N |A|

We first consider {Gls/}jeN' Since I ;f = (-A)*2f in LP(R?;X) by Proposition 4.4, it follows that G, :=
14 (—A)“/zf = lim; G, j in LP(IR"; X). By Proposition Lemma 4.2,
4 .

J— 00

Gl oqeut ) < || (<2072

LP(RE 10, :X) Ss,p,d,y,x ”f”HS’p(Rd,wy;X)-
Wy

We next consider {G, ;} ;. Observing that
7 2 = 9\ 1/2
[l = (11 P+ 1RI2) 7 = (el + 1y + D+ 1RP2)

forall h = (h;,h) € RY and t € R with (¢, h)) € S, we find

+h +h
/ ls(x1,h1)”f(x Nx dhs/ Lf(x+ Al x dh
Al ||+ Rd NS
j ((xgl+ Thy +x1D2 + |R|?) 2
Lf Il x
= d+s dy

R 2 L 5—%12) 2
(Uxi ]+ 1y D+ 15— %?) 2

< /R keI I Dl d,

4
2.

where k(x, y) = ((le |+ Iy D>+ |7 - 5c|2) Applying Lemma 3.8 to the function ¢(y) = |y;|~°|| f ()|l x we thus obtain

lf G+ Ml

X'-’/A(%J) ls(xl’hl)|h|—d+sdh < Medll o o)

LPR4w,)
Spdy 1Pl Lo )
= ||f||Ln(Rd,wy_Sp;X)-
Sp,d,y ”f”HW’(Rd,wy;X)’
where in the last step we applied Lemma 3.7. It follows that the limit G, := lim i o0 G, j exists in L” (Rd s Wy X ) and, moreover,
1G2ll Lora ) Spay 1 M kso®a i, x)-

Finally, combining the just obtained results for {G ;};cn and {Gy ;} ey, We see that G 1= G + Gy =lim;, I, ;g in
L7 (R, w,; X) + LP(R?; X) — S'(R; X) and (4.6) holds as desired. O

S | INTERPOLATION THEORY WITHOUT BOUNDARY CONDITIONS

For details on interpolation theory we refer the reader to [4,46]. In this section we present some weighted and vector-valued
versions of known results.
The following extension operator will allow us to reduce the half space case IR‘i to the full space R?.
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Lemma 5.1 (Extension operator). Let X be a Banach space. Let p € (1, ), andm € N. Letw € A » be such that w(—x,X) =
w(x,X) forx;, € Rand X € RI~1. Then there exists an operator EJ’:’ : L”(R‘i, w; X) - L”([Rd, w; X) such that

1. Forall f € L”(R‘i,W;X), (&'ff)

RY =/

2. forallk € {0, ...,,m}, é'jr" : Wk’p(Rﬁ’r, w;X) - W"’p(Rd, w; X) is bounded.
Moreover, if f € LP (Ri, w; X) ncm (Ri; X), then Eff is m-times continuous differentiable on R4,
By a reflection argument the same holds for R?. The corresponding operator will be denoted by £”.

Proof. The result is a simple extension of the classical construction given in [1, Theorem 5.19] to the weighted setting. The final
assertion is clear from the construction of £ 1’[’ |

To define Bessel potential spaces on domains, we proceed in an abstract way using factor spaces.

Definition 5.2. Let F < D’ (R?; X)) be a Banach space. Define the restricted space/factor space to an open set Q C R? as
FQ) :={feD(R:X):3g€F, f=glg}
and let
I/ lFe) = inf{”g“[F D glo = f}-
We say that € is an extension operator for F(Q) if

1. forall f € F(Q), (Ef)|a = f;
2. £ : F(Q) — F is bounded.

For p € (1,0), w € A, and an open set Q2 C R?, we define the Bessel potential space H*?(Q, w; X) as the factor space
H(Qw; X) 1= [H™ (R, w; X)]|(Q).
By Lemma 5.1 and for w as stated there, we find that W*? (R4, w; X) can be identified (up to an equivalent norm) with

the factor space [W5(RY, w; X )] (R%), where an extension operator can also be found. Indeed, let W/f];’cfor(Ri, w; X) =

FKV"*’(IR", w; X )] (R?) denote the factor space. For f € Mﬁﬁm(Rd’ w; X) let g € W5P(RY, w; X) be such that glRi = 7.
en

”f”ka”(Rf_,w;X) < ”g”kal’(Rd,w;X)'
Taking the infimum over all of the above g, we find

”f”WkA,P(Ri’w;X) S ||f”Wks1’ (R‘i,w;X)'

factor

Nextlet f € W*?(R4,w; X). Then &, f € WkP(RY, w; X) and
”f”I/I/t‘,:xﬁor(Ri’W;X) < ||€+f||Wk*p(Rd,w;X) < C”f”Wk-l’(leJr,w;X)'

Next we present two abstract lemmas to identify factor spaces in the complex interpolation scale. The result is a straightforward
consequence of [46, Theorem 1.2.4]. We include the short in order to be able to track the constants. For details on complex
interpolation theory we refer to [46, Section 1.9.3].

Lemma 5.3. Let (X, X;) and (Y,Y;) be interpolation couples and let X, =[X(, X1y and Yy =[Y,), Y11y for a given
0 €(0,1). Assume that R : Xo+ X, = Yy+Y, and S : Yo+ Y, - X, + X, are linear operators such that S € E(Yj,Xj),

Re £(Xj, Yj) and RS is the identity operator on Y; for j € {0, 1}. Then SR defines a projection on X, and R is an isomor-

phism from SR(X 9) onto Y, with inverse S. Moreover, the following estimates hold:

5 ISyllx, < Iylly, < CrllSyllx,, v € Yy,
||Rx||Y0 < CR||x||X9, X € Xy,

Ixllx, < CsliRxlly,. x € SR(X,),

where CR = maxje{o’l} ”RllC(Xl,Yj) and CS = maxje{O’” ||S||£(Xj’Yj)
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Proof. By complex interpolation we know

1SNy, x,) < Cs» and [IRllz(x,.v,) < Cr

and RS is the identity operator on Y. This proves the upper estimates for .S and R. To see that SR is a projection note that
(SR)(SR) = SR. The lower estimate for .S follows from

Iylly, = IRSYlly, < CrlISYllx,. ¥ €Y.

To prove the lower estimate for R note that for x := SRu € SR(X),)
lIxllx, = ISRSRullx, < CslIRSRully, = Cgl[Rx|lx,- O
Lemma 5.4. Let FO,F! D'(Rd; X) be two Banach spaces. For 8 € (0, 1), let
Fo = [F.F'],.

Let Q C RY be an open set, and define F?(Q) as in Definition 5.2, and assume there is an extension operator & for F*(Q) for
s € {0,1}. Then [FO(Q), F'(Q)] , = FY(Q) and

C I f llpocey < I oy ricay, < I/ ko)

where C only depends on the norms of the extension operator. Moreover, £ is an extension operator for F(Q).
Proof. Define R : F/ - F/(Q) by Rf = f|o and S : F/(Q) - [/ as S = €. Then |R|| < 1, ||S|| £ C and RS = I. From
Lemma 5.3 we conclude that for all f € [FO(Q), F}(Q)] )

CN S lgoy < CTHIES N < 1 Nipocyei @y -

Conversely, let f € F(Q). Choose, g € F? such that Rg = g|g = f. Since || R|| < 1, by complex interpolation we find

1/ liFo)rr @y, < Iglliogry, = lIgllFo-

Taking the infimum over all g as above, the result follows.
To show the final assertion, note that £ € E([F‘Q(Q), [Fg) by the above. Moreover, for f € FO(Q) nF'(Q), (£f)| o=/f.By
density (see [46, Theorem 1.9.3]) this extends to all £ € F?(Q). O

Proposition 5.5. Let X be a UMD space, let p € (1, ), k € N and assume that w € Ap is such that w(x,,X) = w(—x;,X)
forx; € Rand X € RI~!. Then Hk*P(IRi, w;X) = W’”’(Ri, w; X).

Proof. This is immediate from Proposition 3.2 and the fact that W*?(R9, w;X) coincides with the factor space
[WEP(RY, w; X )| (R). O

Next we identify the complex interpolation spaces of H*?(Q, w; X). Here the UMD property is needed to obtain bounded
imaginary powers of —A.

Proposition 5.6. Let X be a UMD space and let p € (1,00). Let w € A, be such that w(—x,, %) = w(x,, X) for all x; € R and
x e RIL

(1) Let 6 € [0,1] and let s, 51, s € R be such that s = sy(1 — 0) + s5,0. Then for Q = R orQ = IR"+ one has
[HP(Q, w; X), H'"P(Q, w; X)], = H*P(Q, w; X).

(2) For each m € N there exists an é'f € £(H_””1’(IR$, w; X), H"”*”(Rd, w; X)) such that
o forall|s| <m, & € L(H*?(R?,w; X), H*"(RY, w; X)),
o forall |s| <m, f > (E.f)|pa equals the identity operator on H*P(R ., w; X).
+

Moreover, if f € LP(Ri,w;X) N C’"(@;X), then Sff € C’"(Rd;X).
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By a reflection argument the same holds for R?. The corresponding operator will be denoted by £

Proof. (1): For Q = R4, the result follows from [36, Proposition 3.2 and 3.7] (see [20, Theorem 5.6.9] for the unweighed case).
(2): Fix m € N. We first construct £" € £L(H "™ (R“, w; X)) such that

() €7 e £(H> (R, w; X)) forall |s| < m;
(i) 5;"f|Ri :f)

(i) &7f =0 if flga = 0;

a°
RY

Given SN_’:' we can define é‘f : H"I’(R‘i,w;X) - H“"P(Rd,w;X) by €jr"f = g‘ff where fe H“"P(Rd,w;X) satisfies

| = f.This is well-defined by (iii).

R¢
In order to construct gf let0 < Ay < -+ < Aypyp < o0 andby,...,by,.» € Rbeasin[46,2.9.3]. For A € R\ {0} we write
T,f(x) = f(=2x,,%). Let E" € £(L”(R?,w; X)) and E™ € £(L”(R?,w’; X*)) be defined by

2m+2 2m+2
g:-nf = lRﬁf"'lRi 21 bjT/ljfv ES,"g = 1R1<g+ Zl bj/l;lTA;lg>.
Jj= Jj=
Then one can check that
<€~i"f,g> = <f, Ei"g>, fe (R, w;X), geL” (R, w'; X*). (5.1)
Moreover, by the special choice of by,...,b,, ., it is standard to check that gjr” € E(W”"p (Rd,w;X )) and E’f €

£(W’"’I’I(Rd, w'; X*) ) In view of (1) for @ = R and Proposition 3.2, complex interpolation gives £~J’r” € £(H”’(|Rd, w; X))
and E" € £(H* (R, w'; X*)) forall 0 < s < m.

Recall that H*?(RY, w; X ) = (H‘S’P'(Rd, w'; X*)) " (see [36, Proposition 3.5]), X being reflexive as a UMD space (see [20,
Theorem 4.3.3]). By the duality relation (5.1) we find that & "+ extends to a bounded linear operator on H*? (Rd, w; X ) for each
s € [-m, 0]. Therefore, (i) follows and moreover (ii) follows by a density argument. To check (iii) let f € H~"™? ([R{d, w; X )
with flRi = 0 be given. Let ¢ € C;"’(R‘i) be such that f ¢dx =1and set ¢, := n"?p(n-) for n € N. Then, by Lemma 3.6,

¢, % f— fin H™P(RY, w; X) and ¢, * f € LP(R?, w; X). Now since ¢, * f|ga = 0 it follows that
+
- s _
B oy = Jim E2n 7], =0
d

— —d —d
Finally, note that for f € LP(IR‘i,w;X) N C’"(R‘fr;X), Srjl'f € Cm([R{_;X) (43} C”’<IR+;X> with

2m+2

+ _ + —
€S|y =1 and 8mf|m‘ Z‘{bjn/_f
/:

and by the special choice of by, ..., by, 2, one can check that f € C™(R%; X).
Now (1) for Q = R‘i follows from Lemma 5.4 and (2). O

Eor anopensetQ C RY, and s € Rlet H, S‘;’p ([R{d, w,; X ) be the closed subspace of H*” ([R{d Wy X ) of functions with support
in Q.
Proposition 5.7. Let X be a UMD space, let p € (1,0), k € N, let w(—x,, %) = w(x,,X) for all x; € R and let X € RI~!, Let
0 €[0,1] and let s, 51, s € R be such that s = sy(1 — 0) + 5,0. Then the following identity

H”;E”(Rd,w;X),Hﬂlli”(Rd,w;X) = H[;z(le,w;X)

holds with equivalence of norms.
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Proof. To show this we consider the case of Ri. The other case can be proved in the same way. Let £” be the (reflected)
extension operator of Proposition 5.6 with m the least integer above max{|syl|,|s;|}. Define R : H%0"51-P ([Rd ,w; X ) -

HD;‘LMI P(R, w; X) by

Rf :=f—=E"(flpa)

and let .S : H{;‘if\sl’p(Rd, w; X) - HSO/\-S'1~P(Rd, w; X) be the inclusion operator. For each ¢ € [sy A s;,m], R and S restrict
+
to bounded linear operators R : H’J’(Rd,w;X) — Hut_\;{: ([Rd,w;X) and S : Hnt_\éﬁ (Rd,w;X) — H”I’(Rd,w;X) with the
+ +
property that SR(H"" (R, w; X)) = H" (R, w; X). Using Lemma 5.3 in combination with Proposition 5.6 we find that
RY

R restricts to an isomorphism fromH (Rd w; X) SR(H”’(R",LU;X)) to Hso’p(Rd,w;X),Hs"p(le,w;X) . Since
0

Rf = fforall f € H 5P (IR" w; X ) th1s proves the required identity for the 1nterpolat10n space. The norm equivalence follows

from the estimates in Lemma 5.3 as well. O

To end this section we present a variation of a classical interpolation inequality. The result can be deduced from the weighted
Gagliardo—Nirenberg type inequality [33, Proposition 5.1]. We provide a more direct proof which also yields additional infor-
mation. The unweighted and scalar-valued case can be found in [24, Theorem 1.5.1]. However, the proof given there does not
extend to the weighted setting. The lemma can also be deduced from Proposition 2.3, but this would require X to be a UMD
space (cf. the proof of [13, Corollary 5.3]).

Lemma 5.8 (Gagliardo-Nirenberg inequality). Let X be a Banach space and letk € N. Let Q = R? or Q =RY. Letw € A,
be such that w(—x,%) = w(x;,X) if Q = R‘fr. Then for all u € W""’(Q, w; X)and j € {1,...,k—1},
i
[U]W/,p(g,w;x) Sp,k,[ ]A ”u”Lp(Qw X)[ ]WkP(QwX)

Proof. By an iteration argument one sees that it suffices to consider j = 1 and k = 2 (see [24, Exercise 1.5.6]).
First consider the case Q = R?. For u € W>?(R?, w; X ), it follows from Lemma 3.3 that

[u]WLp(Rd’w;X) < ||u||W1,p(Rd,w;x) Sp,[w]Ap ||u||H2.p(Rd,w;x) < ”u”LP([R‘/,w;X) + [M]Wz-ﬂ(Rd,u:;X)'

For 4 > 0 let u,(x) = u(4Ax) and w,; = w(Ax) and note that [w] A, = [w,] 4, Then applying the estimate to u,; and the weight
w,, a substitution yields

-1
[u]WLP([Rd,W;X) SP’”’[W]AP A ”u“LP(Rd,w;X) + /l[u]wz,p(Rd,w;X).

Minimizing over 4 > 0 the result follows.

In the case Q = IRd we use a standard extension argument. Let £7 2 be the extension operator from Lemma 5.1. Then by [1,
Theorem 5.19], 82 has the following additional property: for all |«| < 2,07 2= = E,0% where E, is an extension operator for
W2 lal (Rd w; X ) Therefore, from the case Q = R¢ applied to & 2y and the boundedness of the extension operators we find
that

”8"””1/2 | [é‘fju]l/z

[u ]W]P(R wX) [8 u] Wle(R4,w;X) di LP(RY w3 X) W2P(R4,w;X)

Clearly, [|E}ull Lo(rd wix) < ||u||Lp(Ri’w;X) Moreover, since 07EZ = E0°%,

[Eiu]wlp(Rd,w;x) Z ”an u”Lp(Rd w:X) < [u]WZp( wX)
|a]=2

Therefore, the result follows if we combine the two estimates. |
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6 | APPLICATION TO INTERPOLATION THEORY AND THE FIRST
DERIVATIVE

For p € (1,00), s € R and a weight w € A, let Hé’p(R, w; X) denote the closure of CX(R \ {0}; X) in Hé’p([R, w; X). In this

section we characterize the interpolation space [LP(IR o Wy X ) ,H (; P (IR Wy X )] o Moreover, we use this to characterize the
domains of fractional powers of the first derivative.

6.1 | Results on the whole real line

For k € N let
Wit HR; X) 1= {f e W R X) 1 £(0) = - = f0(0) = o}.

Since f(y) — f(x) = /x Y £(t) dt, it follows that f has a version which is uniformly continuous on bounded intervals, and hence
F90) for j € {0, ..., k} is defined in a pointwise sense
We will need the following simple lemma.

Lemma 6.1. Let X be a Banach space and let k € Ny If f € W'\ (R; X) satisfies £(0) = - = f®0) = 0, then 15 f €
WL HR: X) with

loc

) o
(1a,£)” =1g f9.  je{li..k+1).

Proof. Using an inductive argument we may reduce to the case k = 0. So suppose f € VVI(I):(IRE; X) satisfies f(0) = 0. Then
fx) = [ /@) dt for all x € R, from which it follows that

1y, f(x) = /X 1y f'()d, x€R.
0

This shows 1 f € W, R: X) with (1, ) = 1g, f'. O
Proposition 6.2. Let X be a UMD Banach space, let p € (1, 00)andy € (—1,p — 1). Assume s > 1% —1and k € Ny are such

that 1% —14+k<s< 1% +k. Forall f € H"(R,w,: X) N W" 1 (R; X) we then have

HIRJrf”HS’”([R,wy;X) Ssprx M lsr@w, -
As a consequence, 1R+ is a pointwise multiplier on HS”’(IR, wy; X). Moreover, for all f € Hg’p(lR, wy; X) it holds that
) i .
(1, f)" =1, 19, je{0....k} ©.1)

Proof. As in [36, Proposition 3.4] one checks the following equivalence of extended norms on S’ (R; X):

k

— k _ .
“f”HJ-P(IR,wV;X) ~s,y.p. X ||f||H~Y_k¢P(R,wy;X) + ”a f”HA'_k-P(IR,wy;X) ~s,y.0. X Z”ajf”Hs_k»P(R,wy;X)' (62)
Jj=0

Let f € H*?(R,w,: X) n W "!(R; X). Using (6.2), Lemma 6.1 and Theorem 4.1 we find

1| Sprx eS| + o ()|
” R,/ Ho»Rw,:X) ~5P7X R, H5~kP(Rw0,:X) (Ir, /) Ho=kP(Rw0,:X)

= s

+[te. 2]

HkrRouw,:x) IR+ f Ho~FP(R,10,:X)
K

o Vst

Ss,p,y,X ” f“HW(R,wy;X)'
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By a density argument we find that 1R+ is a pointwise multiplier on H, (‘;’p ([R{, w,; X )
Finally, to check that (6.1) holds for f € H, (‘;’p (R, wy; X ) observe that for 0 < j < k, by (6.2) and the above estimate

J
||a (1R+f)“HS—"~P(R,wy;X) < CHIR*'f”HW(R,w},;X) < Cl o @,

Therefore, if f € H,”(R,w,; X), then letting f, € C®(R \ {0}; X) be such that f, — f in HJ”(R,w,; X), we find that
01'(1R+fn) - 0/(1g, f) in H5(R,w,; X). Since ¢/ f, = o/ f in H"*P(R,w,; X), by Theorem 4.1 also 1z 0’ f, —
I 0/f in H*7%P(R,w,; X). The validity of (6.1) for functions from C®(R\ {0}) and uniqueness of limits in
H*7MP (R, w,; X) yields (6.1) for general f € Hy" (R, w,; X). O

14y

Proposition 6.3. Lety € (—1,p — 1) and s € R. Assume k € N satisfies k + e < s. Then the following assertions hold:

1) try : HS’P(IR, w,; X) N CKR; X) — X* given by tr) f = (f(O), 1, ..., f(k)(O)) uniquely extends to a bounded linear
mapping tr; : H? (R, w,; X) - Xk,

Q) Iff e H”’(R, w,; X) satisfies f o5 = 0 or fl_s0) = 0for some 6 > 0, then tr; f = 0.

(3) There exists a bounded mapping ext, : X1 — H“’p(IR, w,y; X) such that tr(ext,) is the identity on X**!.

Proof. We first prove (1). By Lemma 3.4, it is enough to establish boundedness of
try : (H”’(IR, w,; X) 0 CHR; X), || - ||Hs,,,(R,wy;X)) — Xk

Choosing x;? € X* with |
CK(R) with

x*
J

=1 and [ fPO) = (fV(0),x}) for each j € {0,...,k} we have (f,x}) € H*(R,w,) n

o] - o)

=‘<f,x;>(j)(o)" ||<f,xj>

So we may restrict ourselves to the case X = C. Recall from [36, Proposition 3.4] that d /dt is a bounded linear operator from
He°P (IR, wy) to Ho=1» ([R, wy) for every o € R. By differentiation it thus suffices to prove that, given 6 € (%, % + 1), the

following estimate holds

< X))
|HW’([R,LU7) - ”f”HS’p(Rv“’wX)

SO Soyp I lgor@u,y € H?(R,w) 0 CR).

Here we actually only need to consider f € H G’P(R, wy) N C.(R); indeed, given n € C°(R) with n(0) = 1, f + 5 f defines
by complex interpolation (see Proposition 5.6) a bounded linear operator on H%? (IR, wy) and we may consider # f instead of
f. Using Lemma 3.6 together with [15, Theorem 1.2.19] one can check that C®(R) is dense in H*?(R,w, ) n C,(R), where
C,(R) has been equipped with the supremum norm. It thus is enough to estimate

1F O So,pp 1/ 00 0, ): f €CIR).

To this end, let f € C*(R) C S(R) and put g := (1 — A)?/2 f € S(R). Then, letting G, € L'(R) be the kernel Lemma 3.1, we
find

FO)=1=8)72g(0) =G, *g(0) = /R Gy(x)g(—x) dx.

By Lemma 3.1 we find

170 < /[R 1GoGN 181 dx < NGl 5, N8N Lo(i,) St 1 s, )

To prove (2) consider the case that f = 0 on (0, §). Let ¢ € C*(R) be such that / ¢(x)dx =1 and ¢ is supported on (-2, —1)
and put ¢,(x) := ng(nx). By Lemma 3.6, ||¢, * f”HS»P(R,wy;X) Spy ”f”HW(R,wy;X) with ¢, * f — [ in H*"(R,w,; X).
Clearly, ¢, * f € C*(R;X) and by the support conditions one sees that ¢, % f(0) =0 for all n>25~!. Therefore,
tr (¢, * f) = 0 and the result follows by letting » — oo and using the continuity of tr,.
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To prove (3) choose ¢y, ..., ¢, € C°(R) such that ¢§")(0) =0;, forall 0 <j <k and 0 <n <k and let Cth(xj)le =

Zf:o ¢;x;. This clearly satisfies the required properties.
We can now give a characterization of H S’P (IR, w,; X ) in terms of traces. For it will be convenient to say that the statement
tr, f = 0for k < —1is empty.

Proposition 6.4. Let X be a Banach space, letp € (1, 00)andy € (—1,p — 1). Let s € R be suchthat k + 1% <s<k+1+ %
withk € Z,k > —1. Then

HP(Rw,; X) ={f € H?(Rw,; X) : tr, f =0}.
Note that tr; f is well defined by Proposition 6.3.

Proof. Clearly, tr; f = 0 for every f € C(R \ {0}; X). By continuity this extends to every f € H(‘;’p (IR, w,; X ) (see Propo-
sition 6.3) and hence “C” follows. To prove the converse, let f € H*? (IR, w,y; X) be such that tr f = 0. By Lemma 3.4 we can
find {g,},en C C°(R) ® X such that g, — f in H“’(R, w,; X) as n — oo. Let ext;, be as constructed in the proof of Proposi-
tion6.3 andputh, :=g, — extk(gflj)(O));;O foreachn € N.Then h, € {h €CXR) :tryh= 0} ® X and, by Proposition 6.3,
h, = f - extk(O);?zo = fin H?(R,w,; X) as n — co.

It remains to show that we can approximate a function 2 € C°(R) satisfying tr; a2 = 0 by a function in C*(R \ {0}) with
respect to the norm of HS”’(IR, wy). Writing A =1g h+1g h =: hy+ hy, it follows from Proposition 6.2 that hy, h; €
H S’P(R, w,; X ) and hence it suffices to approximate each of the terms A and h;. Fix ¢ € C*(R) with fR ¢dx =1 and
supp ¢ C [1, 00) and define ¢, := n¢p(n-) for each n € N. Then ¢, * hy € C(R \ {0}) with ¢, * hy — hg in HW(R, wy)
as n — oo by Lemma 3.6. A similar argument can be used for A;.

We can now prove the main result of this section:

Theorem 6.5. Let X be a UMD space and lety € (—1,p—1). Let 6 € (0,1) and sy, 51 > —1 + %. Let s = so(1 —0)+ s5,0. If

1
50, 51,8 & Ng + %, then

130 (. ). (Rt )], = B (o ). ©3)

Proof. Assume s, s;,s & Ny + V%l and let Egr’gd 1= H&f(R, w,; X) X H&’_”(R, w,; X), o € R, for shorthand notation.
Let o > —1 + 2 with o ¢ N, + Vpi By Proposition 6.3 tr, vanishes on H&f(R, w,; X) for integers k € [0,0 — YTH)

Thus, in view of Proposition 6.4, the map

. o.p o.p . . —
R:E — Hy (R,w,: X), R(g,h) :=g+h,

is a well-defined contraction. That the map
S HP (RwiX) = BTN Sf o= (e fodnef),
is well-defined and continuous follows from Propositions 6.2 and 6.4. Since R~! = .5, the result follows from Proposition 5.7.

6.2 | Results on the positive half line

Lety € (=1,p—1) and s € R. Assume k € N, satisfies k + lpﬂ < s. By Proposition 6.3, if £}, f, € H*"(R,w,; X) satisfy
Fir, = for, > then try fi = try f. Therefore, tr, : H* (R, w,; X ) — X**! gives rise to a well-defined bounded linear oper-

ator try . @ H'P(Ry,w,; X) — X**! given by try, f = tr, f whenever fir = f. After reducing to the scalar-valued case,
Proposition 5.6 shows that

try o f = (£, 1 ©0),..../PO), feH”R,w,;X)nCK0,00); X); (6.4)

in the case X = C we simply pick the least integer m > |s| and observe that tr; , = tr o&7".
Let HS"’(RJr, w,; X) denote the closure of C*((0, 0); X) in H*? (R, w,; X).
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Proposition 6.6. Let X be a Banach space, let p € (1,00), y € (=1,p—1) and s € R. Assume k € N satisfies k + 1% <s<

k+1+1%. Then

HyP(Ry,w,; X)={f € H"(R,,w,;X) :tr, ., f=0}.

Proof. Clearly, C holds. To prove the converse let f € HS’P(R+, w,; X) be such that tr; , f = 0. Pick f € H”’(IR, w,; X)
with fIR+ = f. Then trkf = try . f = 0. By Proposition 6.4 we thus get f= lim,_, fn in H“’([R{, Wy X) for some sequence
(f,,)neN from C®(R \ {0}; X). Now f, := “n|R+ € C>((0,); X) with f, — fin H*?(R,,w,; X) as n — co. O
Theorem 6.7. Let X be a UMD space, let p € (1,0) and y € (—1,p—1). Let 8 € (0,1) and let sy, 51 > —1 + y’%l. Let s =
so(1 = 6)+ 510. If 59, 51,8 & Ny + %1, then

[H(joyp(Rw Wy; X)’ H(A;I’p(Rw Wy; X)]e = H(;p <R+’ Wy; X) : 6.5

Proof. Let m be the least integer such that m > max{|sg|, |s;|}. Foreach o > —1 + y%l with |[o| <mand o & Ny + 7’%1,
. o,p . o.p . [
S HJP (R, w,; X) - HJP(R,w,; X),  Sf:=€f,

is a well-defined bounded linear operator thanks to Propositions 6.4 and 6.6. For each ¢ € R, let R : Hg P (IR, wy; X ) -

Hg P (IR WX ) denote the restriction operator. Using Theorem 6.5, the proof can now be completed as in
Proposition 5.7 (2). O

6.3 | Fractional domain spaces
Forpe (l,0)andy € (—1,p—1) let
Wyl (Rywy: X) = {f € WH (R w,: X) 1 £0) = 1) = - = f47D0) =0}
If X is a UMD space, then it follows from Propositions 5.5, 6.6 and (6.4) that
k, . k, .
WP (R, w,; X) = HyP Ry, w,; X). (6.6)

Let us now briefly recall the H *°-calculus for sectorial operators, for which there are several conventions in the literature. For
a survey and an extensive treatment of the subject we refer the reader to [47] and [18,21,25], respectively.
For each 6 € (0, x) we define the sector

Y, :={A€C\ {0} : |arg(Q)] < 6}.

A closed densely defined linear operator (A, D(A)) on X is said to be sectorial of type o € (0, x) if it is injective and has dense
range, £, C p(—A), and for all ¢/ € (o, x)

sup { HA(A + A)—1” e EH,} < .

The infimum of all 6 € (0, 7) such that A is sectorial of type o is called the sectoriality angle of A and is denoted by ¢ 4.
Let H® (29) denote the Banach space of all bounded analytic functions f : 2, — C, endowed with the supremum norm.
Let H® (Z4) denote its linear subspace of all f for which there exists € > 0 and C > 0 such that

Clz|®

| f(2)| < W,

zZ e 20.
If A is sectorial of type o € (0, z), then for all ¢ € (6, 7) and f € H (‘)"’ (ZG) we define the bounded linear operator f(A) by

f(A) = L/ f@)z+ A dz
2m Jos,
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A sectorial operator A of type o € (0, 7) is said to have a bounded H* (X )-calculus for o € (o, n) if there exists a C €
[0, o) such that

IfDI <,y  f€HT(Z,)

In this case the mapping f — f(A) extends to a bounded algebra homomorphism from H* (Zg) to B(X) of norm < C. The
H*-angle of A is defined as the infimum of all ¢ for which A has a bounded H* (ZG)-calculus and is denoted by ¢ .

Below we will make use of the following fact. Let A be an operator on a reflexive Banach space X . If A is a sectorial operator
having a bounded H *°-calculus, then so is A* with (l);" = quf*.

Theorem 6.8. Let X be a UMD space, let p € (1,00) andy € (—1,p—1).

(1) The realization of 9, on LP(R+, w,; X) with domain Wol’p([RJr, w,; X) has a bounded H®-calculus of angle x /2 with
D(df) = HS’P(R+, wy;X)for every s > Q0 with s & 1:—}' + Ny,

(2) The realization of —0, on LP(R+, w,; X) with domain WI’P(R+, wy; X) has a bounded H®-calculus of angle z /2 with
D((—dt)s) = H“’P(R+, wy;X)for every s > 0.

For y € [0, p — 1) the case % follows from [39, Theorem 4.5]. For y € [0, p — 1) the case —% follows from [31, Theorem
2.7]. Below we present a proof that works for all y € (—1, p — 1), in which (1) is derived from (2) by a simple duality argument.

Proof. Let us first establish the assertions regarding the H *-calculus. We start with (2), from which we will derive (1) by
duality.

For (2) we denote by A the realization of —9, on L”(R,, w,; X ) with domain W'» (R, w,; X ) and by A the realization of
-0, on L”(R, w,; X) with domain W17 (R, w,; X). As in [25, Example 10.2], using Proposition 2.3, one can show that A has
a bounded H *-calculus of angle 7 /2. So it is enough to show that C, C p(—A) with

(+ A7 f=R(A+A)Ef =: SWf, Ae€C,fel’(R,w,;X),

where E € B(Lp (IR 4o Wy X ) R L”(IR, Ww,; X )) is the extension by zero operator, and R denotes the operator of restriction from
R to R,. For each 1 € C,, S(4) defines a linear operator from LP([R+, w,; X) to WI*P([R+, wy; X) with the property that
(A+ A)S(A) = 1. S0, fixing A € C, we only need to show that ker(4 + A) = {0}. To thisend, letu € WI’P(R+, w,; X) satisfy
(A = 0,)u = 0. By basic distribution theory (cf. [10, Theorem 9.4]) we find that u is a classical solution in the sense that u €
C®(R,; X) with ' = Au, implying that u = c exp(4 - ) for some ¢ € X. Since exp(A-) & LP(R+, wy), it follows that u = 0.

For (1) we denote by A the realization of 9, on L”(R,, w,; X ) with domain Wol’p (R,,w,: X) and by B the realization of
—0, on L”,([R+, w,; X*) with domain WI’P/(IRJr, W, X*). Recall that [L? (R, w,; X)]* =L (R,, w,; X*) with respect to
the natural pairing (see [36, Proposition 3.5]), X being reflexive as a UMD space (see [20, Theorem 4.3.3]). Integration by parts
(see Lemma 6.9 below) yields A C B*. By (2) (and the fact that duals of UMD spaces are again UMD) it is enough to establish
the reverse. By [11, Exercise 1.21(4)], for the latter it suffices that A + A is surjective and A + B* is injective for some A € C.
To this end, let us establish this for some fixed A € C,. Then A € p(—B) = p(—B*) by (2); in particular, A + B* is injective. As
in (2) we can find a linear operator S(4) : LP(R,,w,; X) - WP(R,w,; X) such that (4 + A)S(4) = I. Then the operator
T(A) : LI’([R{+, w,; X) - Wol’p([R+, w,; X) given by

TS :=SAf = [SADfI0)exp(=1-),

satisfies (A + A)T' (A1) = I, which shows that A + A is surjective.

Finally we will identify the fractional domain spaces. From the definitions one deduces that D(0f) = Wok’p (Ry,w,: X)
and D((—@,)k) = whr (IR WX ) as sets for every k € N. Moreover, it follows from Lemma 5.8 and Young's inequality for
products that there is also an equivalence of norms. The assertions concerning the fractional domain spaces subsequently follow
from [18, Theorem 6.6.9], Proposition 5.5 and Theorem 6.7. O

Lemma 6.9 (Integration by parts). Let X be a Banach space, let p € (1, 00) and let w € A,,. Forallu € Wl’p([R+, w; X) and
’ S
vewhr (IR+, w'; X*), where w' = w -1 is the p-dual weight of w, there holds the integration by parts identity

' _ ’
W 0) L@, o). 17 @) = ~UOWO) = (U, 0 o, oo 1 @)
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Proof. By the remark preceding this lemma and Lemma 3.5, C® (R, ) ® X is dense in W'#(R_,w; X) and C®(R, ) ® X*
is dense in W ¥ (R, w'; X*). The desired result thus follows from integration by parts for functions from C°(R_.). O
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