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Abstract
We prove results on complex interpolation of vector-valued Sobolev spaces over the

half-line with Dirichlet boundary condition. Motivated by applications in evolution

equations, the results are presented for Banach space-valued Sobolev spaces with a

power weight. The proof is based on recent results on pointwise multipliers in Bessel

potential spaces, for which we present a new and simpler proof as well. We apply the

results to characterize the fractional domain spaces of the first derivative operator on

the half line.
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𝐴𝑝-weights, Bessel potential spaces, complex interpolation with boundary conditions, 𝐻∞-calculus, point-

wise multipliers, Sobolev spaces, UMD
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1 INTRODUCTION

The main result of the present paper is the following. Let 𝑊
1,𝑝
0 (ℝ+;𝑋) be the first order Sobolev space over the half line with

values in a UMD Banach space 𝑋 vanishing at 𝑡 = 0, where 𝑝 ∈ (1,∞). Then for complex interpolation we have[
𝐿𝑝(ℝ+;𝑋),𝑊 1,𝑝

0 (ℝ+;𝑋)
]
𝜃
= 𝐻

𝜃,𝑝

0 (ℝ+;𝑋), 𝜃 ∈ (0, 1), 𝜃 ≠ 1∕𝑝,

see Theorems 6.7 and (6.6). Here 𝐻
𝜃,𝑝

0 denotes the fractional order Bessel potential space with vanishing trace for 𝜃 > 1∕𝑝,

and 𝐻
𝜃,𝑝

0 = 𝐻𝜃,𝑝 for 𝜃 < 1∕𝑝. In more generality, we consider spaces with Muckenhoupt power weights 𝑤𝛾 (𝑡) = 𝑡𝛾 , where the

critical value 1∕𝑝 is shifted accordingly.

In the scalar-valued case 𝑋 = ℂ, the result is well-known and due to Seeley [43]. The vector-valued result was already used

several times in the literature without proof. Seeley also considers the case 𝜃 = 1∕𝑝, which we ignore throughout for simplicity,

and the case of domains Ω ⊆ ℝ𝑑 . The corresponding result for real interpolation is due to Grisvard [17] and more elementary

to prove.

At the heart of complex interpolation theory with boundary conditions is the pointwise multiplier property of the characteristic

function of the half-space 𝟏ℝ+
on 𝐻𝜃,𝑝(ℝ;𝑋) for 0 < 𝜃 < 1∕𝑝. It is due to Shamir [44] and Strichartz [45] in the scalar-valued

case. In [36] by the second and third author, a general theory of pointwise multiplication of weighted vector-valued functions was

developed. As a main application the multiplier result was extended to the vector-valued and weighted setting. An alternative

approach to this was found by the first author in [27] and is based on a new equivalent norm for vector-valued Bessel potential

spaces. In Section 4 we present a new and simpler proof of the multiplier property of 𝟏ℝ+
, which is based on the representation

of fractional powers of the negative Laplacian as a singular integral and the Hardy–Hilbert inequality.
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For future reference and as it is only a minimal extra effort, we will formulate and prove some elementary assertions for the

half space ℝ𝑑
+ for 𝑑 ≥ 1 or even domains, and general 𝐴𝑝 weights 𝑤. In order to make the presentation as self-contained as

possible, we further fully avoid the use of Triebel–Lizorkin spaces and Besov spaces, but we point out where they could be

used. We will only use the UMD property of 𝑋 through standard applications of the Mihlin multiplier theorem. Several results

will be presented in such a way that the UMD property is not used. A detailed explanation of the theory of UMD spaces and

their connection to harmonic analysis can be found in the monograph [20]. In their reflexive range, all standard function spaces

are UMD spaces.

The complex interpolation result has applications in the theory of evolution equations, as it yields a characterization of the

fractional power domains of the time derivative D
(
(𝑑∕𝑑𝑡)𝜃

)
and D

(
(−𝑑∕𝑑𝑡)𝜃

)
on ℝ+. Here the half line usually stands for the

time variable and 𝑋 is a suitable function space for the space variable. For instance such spaces can be used in the theory of

Volterra equations (see [38,48,49]), in evolution equations with form methods (see [9,12]), in stochastic evolution equations (see

[37]).

In order to deal with rough initial values it is useful to consider a power weights 𝑤𝛾 (𝑡) = 𝑡𝛾 in the time variable. Examples

of papers in evolution equation where such weights are used include [3,8,23,28,31,32,35,39,41]. The monographs [2,29,40] are

an excellent source for applications of weighted spaces to evolution equations. In order to make our results available to this part

of the literature as well, we present our interpolation results for weighted spaces. For the application to evolution equations it

suffices to consider interpolation of vector-valued Sobolev spaces over ℝ+ with Dirichlet boundary conditions and therefore we

focus on this particular case. In a future paper we extend the results of [17] and [43] to weighted function spaces on more general

domains Ω ⊆ ℝ𝑑 , in the scalar valued situation, where one of the advantages is that Bessel potential spaces have a simple square

function characterization.

Notation. ℝ𝑑
+ = (0,∞) ×ℝ𝑑−1 denotes the half space. We write 𝑥 = (𝑥1, �̃�) ∈ ℝ𝑑 with 𝑥1 ∈ ℝ and �̃� ∈ ℝ𝑑−1 and define the

weight𝑤𝛾 by𝑤𝛾 (𝑥1, �̃�) = |𝑥1|𝛾 . Sometimes it will be convenient to also write (𝑡, 𝑥) ∈ ℝ𝑑 with 𝑡 ∈ ℝ and 𝑥 ∈ ℝ𝑑−1. The operator

 denotes the Fourier transform. We write 𝐴 ≲𝑝 𝐵 whenever 𝐴 ≤ 𝐶𝑝𝐵 where 𝐶𝑝 is a constant which depends on the parameter

𝑝. Similarly, we write 𝐴 ≂𝑝 𝐵 if 𝐴 ≲𝑝 𝐵 and 𝐵 ≲𝑝 𝐴.

2 PRELIMINARIES

2.1 Weights
A locally integrable function 𝑤 ∶ ℝ𝑑 → (0,∞) will be called a weight function. Given a weight function 𝑤 and a Banach space

𝑋 we define 𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
as the space of all strongly measurable 𝑓 ∶ ℝ𝑑 → 𝑋 for which

‖𝑓‖
𝐿𝑝
(
ℝ𝑑 ,𝑤;𝑋

) ∶=
(
∫ ‖𝑓 (𝑥)‖𝑝𝑤(𝑥) 𝑑𝑥

) 1
𝑝

is finite. Here we identify functions which are a.e. equal.

Although we will be mainly interested in a special class of weights, it will be natural to formulate some of the result for the

class of Muckenhoupt 𝐴𝑝-weights. For 𝑝 ∈ (1,∞), we say that 𝑤 ∈ 𝐴𝑝 if

[𝑤]𝐴𝑝
= sup

𝑄

1|𝑄| ∫𝑄

𝑤(𝑥) 𝑑𝑥 ⋅
(

1|𝑄| ∫𝑄

𝑤(𝑥)−
1

𝑝−1 𝑑𝑥

)𝑝−1
< ∞.

Here the supremum is taken over all cubes 𝑄 ⊆ ℝ𝑑 with sides parallel to the coordinate axes. For 𝑝 ∈ (1,∞) and a weight 𝑤 ∶
ℝ𝑑 → (0,∞) one has 𝑤 ∈ 𝐴𝑝 if and only the Hardy–Littlewood maximal function is bounded on 𝐿𝑝

(
ℝ𝑑, 𝑤

)
. We refer the reader

to [16, Chapter 9] for standard properties of 𝐴𝑝-weights. For a fixed 𝑝 and a weight 𝑤 ∈ 𝐴𝑝, the weight 𝑤′ = 𝑤−1∕(𝑝−1) ∈ 𝐴𝑝′

is the 𝑝-dual weight. By Hölder's inequality one checks that

∫ |𝑓 (𝑥)||𝑔(𝑥)| 𝑑𝑥 ≤ ‖𝑓‖
𝐿𝑝
(
ℝ𝑑 ,𝑤

)‖𝑔‖𝐿𝑝′ (ℝ𝑑 ,𝑤′) (2.1)

for 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑, 𝑤

)
and 𝑔 ∈ 𝐿𝑝′

(
ℝ𝑑, 𝑤′). Using this, for each 𝑤 ∈ 𝐴𝑝 one can check that 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
⊆ 𝐿1

loc
(
ℝ𝑑 ;𝑋

)
.

The following will be our main example.
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Example 2.1. Let

𝑤𝛾 (𝑥1, �̃�) = |𝑥1|𝛾 , 𝑥1 ∈ ℝ, �̃� ∈ ℝ𝑑−1.

As in [16, Example 9.1.7]) one sees that 𝑤𝛾 ∈ 𝐴𝑝 if and only if 𝛾 ∈ (−1, 𝑝 − 1).

Lemma 2.2. Let 𝑝 ∈ (1,∞) and let𝑤 ∈ 𝐴𝑝. Assume𝜙 ∈ 𝐿1(ℝ𝑑
)

and ∫ 𝜙𝑑𝑥 = 1. Let𝜙𝑛(𝑥) = 𝑛𝑑𝜙(𝑛𝑥). Assume that𝜙 satisfies
any of the following conditions:

1. 𝜙 is bounded and compactly supported
2. There exists a radially decreasing function 𝜓 ∈ 𝐿1(ℝ𝑑

)
such that |𝜙| ≤ 𝜓 a.e.

Then for all 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑 ;𝑋

)
, 𝜙𝑛 ∗ 𝑓 → 𝑓 in 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
as 𝑛 → ∞. Moreover, there is a constant 𝐶 only depending on

𝜙 such that ‖𝜙𝑛 ∗ 𝑓‖ ≤ 𝐶𝑀𝑓 almost everywhere.

Proof. For convenience of the reader we include a short proof. By [20, Theorem 2.40 and Corollary 2.41] 𝜙𝑛 ∗ 𝑓 → 𝑓 almost

everywhere and ‖𝜙𝑛 ∗ 𝑓‖ ≤ ‖𝜓‖𝐿1(ℝ𝑑 )𝑀𝑓 almost everywhere, where 𝑀 denotes the Hardy–Littlewood maximal function.

Therefore, the result follows from the dominated convergence theorem. □

2.2 Fourier multipliers and UMD spaces
Let (ℝ𝑑 ;𝑋

)
be the space of 𝑋-valued Schwartz functions and let  ′(ℝ𝑑 ;𝑋

)
= ((ℝ𝑑

)
, 𝑋

)
be the space of 𝑋-valued

tempered distributions. For 𝑚 ∈ 𝐿∞(ℝ𝑑
)

let 𝑇𝑚 ∶ (ℝ𝑑 ;𝑋
)
→  ′(ℝ𝑑 ;𝑋

)
be the Fourier multiplier operator defined by

𝑇𝑚𝑓 = −1(𝑚𝑓 ).
There are many known conditions under which 𝑇𝑚 is a bounded linear operator on 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
. In the scalar-valued the set

of all Fourier multiplier symbols on 𝐿2(ℝ𝑑
)

for instance coincides with 𝐿∞(ℝ𝑑
)
. In the case 𝑝 ∈ (1,∞) ⧵ {2} a large set of

multipliers for which 𝑇𝑚 is bounded is given by Mihlin's multiplier theorem. In the vector-valued case difficulties arise and

geometric conditions on 𝑋 are needed already if 𝑑 = 1 and 𝑚(𝜉) = sign(𝜉); in fact, in [5,6] it was shown that in this specific

case the boundedness of 𝑇𝑚 on 𝐿𝑝(ℝ;𝑋) characterizes the UMD property of 𝑋. Since the work of [5,6,30] it is well-known

that the right class of Banach spaces for vector-valued harmonic analysis is the class of UMD Banach spaces, as many of the

classical results in harmonic analysis, such as the classical Mihlin multiplier theorem, have been extended to this setting. We

refer to [7,20,42] for details on UMD spaces and Fourier multiplier theorems.

All UMD spaces are reflexive. Conversely, all spaces in the reflexive range of the classical function spaces have UMD:

e.g.: 𝐿𝑝, Bessel potential spaces, Besov spaces, Triebel–Lizorkin spaces, Orlicz spaces.

The following result is a weighted version of the Mihlin multiplier theorem which can be found in [36, Proposition 3.1] and

is a simple consequence of [19].

Proposition 2.3. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞) and let 𝑤 ∈ 𝐴𝑝. Assume that 𝑚 ∈ 𝐶𝑑+2(ℝ𝑑 ⧵ {0}
)

satisfies

𝐶𝑚 ∶= sup|𝛼|≤𝑑+2 sup𝜉≠0
|𝜉||𝛼||𝜕𝛼𝑚(𝜉)| < ∞.

Then 𝑇𝑚 is bounded on 𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
and has an operator norm that only depends 𝐶𝑚, 𝑑, 𝑝,𝑋, [𝑤]𝐴𝑝

.

3 WEIGHTED FUNCTION SPACES

In this section we present several results on weighted function spaces, which do not require the UMD property of the underlying

Banach space (except in Proposition 3.2).

3.1 Definitions and basic properties
For an open set Ω ⊆ ℝ𝑑 let (Ω) denote the space compactly supported smooth functions on Ω equipped with its usual inductive

limit topology. For a Banach space 𝑋, let ′(Ω;𝑋) = ((Ω), 𝑋) be the space of 𝑋-valued distributions. For a distribution

𝑢 ∈ ′(Ω;𝑋) and an open subset Ω0 ⊆ Ω, we define the restriction 𝑢|Ω0
∈ ′(Ω0;𝑋

)
as 𝑢|Ω0

(𝑓 ) = 𝑢(𝑓 ) for 𝑓 ∈ (Ω0
)
.
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For 𝑝 ∈ (1,∞) and 𝑤 ∈ 𝐴𝑝 let 𝑊 𝑘,𝑝(Ω, 𝑤;𝑋) ⊆ ′(Ω;𝑋) be the Sobolev space of all 𝑓 ∈ 𝐿𝑝(Ω, 𝑤;𝑋) with 𝜕𝛼𝑓 ∈
𝐿𝑝(Ω, 𝑤;𝑋) for all |𝛼| ≤ 𝑘 and set

‖𝑓‖𝑊 𝑘,𝑝(Ω,𝑤;𝑋) =
∑
|𝛼|≤𝑘 ‖𝜕𝛼𝑓‖𝐿𝑝(Ω,𝑤;𝑋),

[𝑓 ]𝑊 𝑘,𝑝(Ω,𝑤;𝑋) =
∑
|𝛼|=𝑘 ‖𝜕𝛼𝑓‖𝐿𝑝(Ω,𝑤;𝑋).

Here for 𝛼 ∈ ℕ𝑑 , 𝜕𝛼 = 𝜕
𝛼1
1 … 𝜕

𝛼𝑑
𝑑

.

Let 𝑠 denote the Bessel potential operator of order 𝑠 ∈ ℝ defined by

𝑠𝑓 = (1 − Δ)𝑠∕2𝑓 ∶= −1(1 + | ⋅ |2)𝑠∕2𝑓,
where 𝑓 denotes the Fourier transform of 𝑓 and Δ =

∑𝑑
𝑗=1 𝜕

2
𝑗
. For 𝑝 ∈ (1,∞), 𝑠 ∈ ℝ and 𝑤 ∈ 𝐴𝑝 let 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
⊆

 ′(ℝ𝑑 ;𝑋
)

denote the Bessel potential space of all 𝑓 ∈  ′(ℝ𝑑 ;𝑋
)

for which 𝑠𝑓 ∈ 𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
and set

‖𝑓‖
𝐻𝑠,𝑝

(
ℝ𝑑 ,𝑤;𝑋

) = ‖𝑠𝑓‖𝐿𝑝
(
ℝ𝑑 ,𝑤;𝑋

).
In the following lemma we collect some properties of the operators 𝑠.

Lemma 3.1. Fix 𝑠 > 0. There exists a function 𝐺𝑠 ∶ ℝ𝑑 → [0,∞) such that 𝐺𝑠 ∈ 𝐿1(ℝ𝑑
)

and −𝑠𝑓 = 𝐺𝑠 ∗ 𝑓 for all 𝑓 ∈
 ′(ℝ𝑑 ;𝑋

)
. Moreover, 𝐺𝑠 has the following properties:

1. For all |𝑦| ≥ 2, 𝐺𝑠(𝑦) ≲𝑠,𝑑 𝑒−
|𝑦|
2 .

2. For |𝑥| ≤ 2,

𝐺𝑠(𝑥) ≲𝑠,𝑑

⎧⎪⎨⎪⎩
|𝑥|𝑠−𝑑, 𝑠 ∈ (0, 𝑑),
1 + log

(
2|𝑥|
)
, 𝑠 = 𝑑,

1, 𝑠 > 𝑑.

3. For all 𝑠 > 𝑘 ≥ 0 and all |𝛼| ≤ 𝑘, there exists a radially decreasing function 𝜙 ∈ 𝐿1(ℝ𝑑
)

such that |𝜕𝛼𝐺𝑠| ≤ 𝜙 pointwise.

In particular, if 𝑑 = 1, 𝑝 ∈ (1,∞), 𝛾 ∈ (−1, 𝑝 − 1) and 𝑠 >
1+𝛾
𝑝

, then 𝐺𝑠 ∈ 𝐿𝑝′
(
ℝ, 𝑤′

𝛾

)
.

Proof. The fact that the positive function 𝐺𝑠 ∈ 𝐿1(ℝ𝑑
)

exists, together with (1) and (2), follows from [16, Section 6.1.b].

To prove (3), we use the following representation of 𝐺𝑠 (see [16, Section 6.1.b]):

𝐺𝑠(𝑥) = 𝐶𝑠,𝑑 ∫
∞

0
𝑒−𝑡𝑒−

|𝑥|2
4𝑡 𝑡

𝑠−𝑑
2

𝑑𝑡

𝑡
.

By induction one sees that 𝜕𝛼𝐺𝑠(𝑥) is a linear combination of functions of the form 𝐺𝑠−2𝑗(𝑥)|𝑥|𝛽 with |𝛽| ≤ 𝑗 ≤ 𝑘. Therefore,

by (2) for |𝑥| ≤ 2, |𝜕𝛼𝐺𝑠(𝑥)| ≲𝑠,𝑑,𝛼 |𝑥|𝜀−𝑑 for some 𝜀 ∈ (0, 𝑑). On the other hand for |𝑥| ≥ 2, |𝜕𝛼𝐺𝑠(𝑥)| ≲𝑠,𝑑,𝛼 |𝑥|𝛽𝑒− |𝑥|
2 ≲𝑑,𝑠,𝑘

𝑒−
|𝑥|
4 . Now the function 𝜙(𝑥) = 𝐶1|𝑥|𝜀−𝑑 for |𝑥| ≤ 2 and 𝜙(𝑥) = 𝐶2𝑒

− |𝑥|
4 for certain constants 𝐶1, 𝐶2 > 0. satisfies the required

conditions.

To prove the final assertion for 𝑑 = 1, note that the blow-up behaviour near 0 gets worse as 𝑠 decreases. Therefore, without

loss of generality we may assume that 𝑠 ∈
( 1+𝛾

𝑝
, 1
)
, in which case (2) yields

|𝐺𝑠(𝑥)|𝑝′𝑤′
𝛾 (𝑥) ≲𝑠,𝑝,𝛾 |𝑥| (𝑠−1)𝑝−𝛾𝑝−1 = |𝑥|−1+ 𝑝

𝑝−1 (𝑠−
1+𝛾
𝑝

)
for |𝑥| ≤ 2,

which is integrable. Integrability, for |𝑥| > 2, is clear from (1). □

The following result is proved in [36, Proposition 3.2 and 3.7] by a direct application of Proposition 2.3.

Proposition 3.2. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞), 𝑘 ∈ ℕ0, and let 𝑤 ∈ 𝐴𝑝. Then 𝐻𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
= 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
with norm equivalence only depending on 𝑑, 𝑋, 𝑝, 𝑘 and [𝑤]𝐴𝑝

.
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The UMD property is necessary in Proposition 3.2 (see [20, Theorem 5.6.12]). Sometimes it can be avoided by instead

using the following simple embedding result which holds for any Banach space. The sharper version 𝑊 𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
→

𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
if 𝑠 < 𝑘 and 𝑘 ∈ ℕ0. can be obtained from [33, Propositions 3.11 and 3.12] but is more complicated.

Lemma 3.3. Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞), 𝑘 ∈ ℕ0, 𝑠 ∈ (𝑘,∞) and let 𝑤 ∈ 𝐴𝑝. Then the following continuous
embeddings hold

𝑊 2𝑘,𝑝(ℝ𝑑, 𝑤;𝑋
)
→ 𝐻2𝑘,𝑝(ℝ𝑑, 𝑤;𝑋

)
, 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
→ 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
,

with embedding constants which only depend on 𝑑, 𝑠, 𝑘 and [𝑤]𝐴𝑝
.

Proof. The first embedding is immediate from 𝐽2𝑘𝑓 = (1 − Δ)𝑘𝑓 and Leibniz' rule. For the second embedding let 𝑓 ∈
𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
and write 𝑓𝑠 = 𝐽𝑠𝑓 ∈ 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
. By Lemma 3.1 (3) and Lemma 2.2, for all |𝛼| ≤ 𝑘,

‖𝜕𝛼𝑓‖𝑋 = ‖𝜕𝛼𝐺𝑠 ∗ 𝑓𝑠‖𝑋 ≤ 𝜙 ∗ ‖𝑓𝑠‖𝑋 ≤ 𝐶𝜙𝑀(‖𝑓𝑠‖𝑋),
where 𝜙 ∈ 𝐿1(ℝ𝑑

)
is a radially decreasing function depending on 𝛼, 𝑘 and 𝑠. Therefore, by the boundedness of the Hardy–

Littlewood maximal function, we have 𝜕𝛼𝑓 ∈ 𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
with

‖𝜕𝛼𝑓‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) ≲𝑝,[𝑤]𝐴𝑝
‖𝑓𝑠‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) = ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤;𝑋).

Now the result follows by summation over all 𝛼. □

We proceed with two density results.

Lemma 3.4. Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞), 𝑠 ∈ ℝ and let 𝑤 ∈ 𝐴𝑝. Then (ℝ𝑑 ;𝑋
)
→ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
→

 ′(ℝ𝑑 ;𝑋
)
. Moreover, 𝐶∞

𝑐

(
ℝ𝑑
)
⊗𝑋 is dense in 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
.

Proof. First we prove that (ℝ𝑑 ;𝑋
)
→ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
. It suffices to prove this in the case 𝑠 = 0 by continuity of 𝑠 =

(1 − Δ)𝑠∕2 on (ℝ𝑑 ;𝑋
)
. In the case 𝑠 = 0, the continuity of the embedding follows from

‖𝑓‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) ≤ ‖‖‖(1 + |𝑥|2)−𝑛‖‖‖𝐿𝑝(ℝ𝑑 ,𝑤)
‖‖‖(1 + |𝑥|2)𝑛𝑓‖‖‖𝐿∞(ℝ𝑑 ;𝑋) ≲𝑑,𝑛,𝑝,𝑤

∑
|𝛼|≤2𝑛 sup

𝑥∈ℝ𝑑

‖𝑥𝛼𝑓 (𝑥)‖
for 𝑛 ∈ ℕ with 𝑛 ≥ 𝑑𝑝 (see [33, Lemma 4.5]).

To prove the density assertion note that 𝐿𝑝
(
ℝ𝑑, 𝑤

)
⊗𝑋 is dense in 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
and (ℝ𝑑

)
is dense in 𝐿𝑝

(
ℝ𝑑, 𝑤

)
(see

[16, Exercise 9.4.1]) it follows that (ℝ𝑑
)
⊗𝑋 is dense in 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
. Since 𝐽−𝑠 leaves (ℝ𝑑

)
invariant, also (ℝ𝑑

)
⊗𝑋

is dense in 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
. Combining this with (ℝ𝑑 ;𝑋

)
→ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
and the fact that 𝐶∞

𝑐

(
ℝ𝑑
)

is dense in (ℝ𝑑
)

(see [10, Lemma 14.7]) we obtain the desired density assertion.

To prove the embedding 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
→  ′(ℝ𝑑 ;𝑋

)
it suffices again to consider 𝑠 = 0. In this case from (2.1) and

(ℝ𝑑
)
→𝐿𝑝′

(
ℝ𝑑, 𝑤′) densely, we deduce

𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
→ (𝐿𝑝′(ℝ𝑑, 𝑤′), 𝑋) → ((ℝ𝑑

)
, 𝑋

)
=  ′(ℝ𝑑 ;𝑋

)
. □

Lemma 3.5. Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞), 𝑘 ∈ ℕ and let 𝑤 ∈ 𝐴𝑝. Then (ℝ𝑑 ;𝑋
)
→ 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
→

 ′(ℝ𝑑 ;𝑋
)
. Moreover, 𝐶∞

𝑐

(
ℝ𝑑
)
⊗𝑋 is dense in 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
.

Proof. The case 𝑘 = 0 follows from Lemma 3.4 and the case 𝑘 ≥ 1 follow by differentiation.

Let 𝜙 ∈ 𝐶∞
𝑐

(
ℝ𝑑
)

be such that ∫ℝ𝑑 𝜙 𝑑𝑥 = 1 and define 𝜙𝑛 ∶= 𝑛𝑑𝜙(𝑛 ⋅ ) for every 𝑛 ∈ ℕ. Then, by Lemma 2.2 and

standard properties of convolutions, 𝑓𝑛 ∶= 𝜙𝑛 ∗ 𝑓 → 𝑓 in 𝑊 𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
as 𝑛 → ∞ with 𝜙𝑛 ∗ 𝑓 ∈ 𝑊 ∞,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
=⋂

𝑙∈ℕ 𝑊 𝑙,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
. In particular, 𝑊 2𝑘+2,𝑝(ℝ𝑑, 𝑤;𝑋

)
is dense in 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
. This yields 𝐻𝑘+1,𝑝(ℝ𝑑, 𝑤;𝑋

) 𝑑
→

𝑊 𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
by Lemma 3.3. The density of 𝐶∞

𝑐

(
ℝ𝑑
)
⊗𝑋 in 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
now follows from Lemma 3.4.

Lemma 3.6. Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞), 𝑠 ∈ ℝ and let 𝑤 ∈ 𝐴𝑝. Assume 𝜙 ∈ 𝐶∞
𝑐 (ℝ) with ∫ 𝜙𝑑𝑥 = 1. Let 𝜙𝑛(𝑥) =

𝑛𝑑𝜙(𝑛𝑥). Then, for all 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
,

‖𝜙𝑛 ∗ 𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤;𝑋) ≲𝑠,𝑝,[𝑤],𝑑 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤;𝑋)

with 𝜙𝑛 ∗ 𝑓 → 𝑓 in 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
as 𝑛 → ∞ with 𝜙𝑛 ∗ 𝑓 ∈ 𝐻∞,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
=
⋂

𝑡∈ℝ 𝐻𝑡,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
.



2440 LINDEMULDER ET AL.

Proof. The first part of the statement follows from Lemma 2.2 and 𝑠(𝜙𝑛 ∗ 𝑓 ) = 𝜙𝑛 ∗ 𝑠𝑓 . For the last part, note that 𝜙𝑛 ∗ 𝑓 =
−𝑠

[
𝜙𝑛 ∗ 𝑠𝑓

]
∈ 𝐻∞,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
by basic properties of convolutions in combination with Lemma 3.3. □

The following version of the Hardy inequality will be needed (see [33, Corolllary 1.4] for a related result). The result can be

deduced from [34, Theorem 1.3 and Proposition 4.3] but for convenience we include an elementary proof.

Lemma 3.7 (Hardy inequality with power weights). Let 𝛾 ∈ (−1, 𝑝 − 1) and 𝑠 ∈ (0, 1). Let 𝑤𝛾 (𝑡, 𝑥) = |𝑡|𝛾 for 𝑡 ∈ ℝ and
𝑥 ∈ ℝ𝑑−1. Then 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
→ 𝐿𝑝

(
ℝ𝑑, 𝑤𝛾−𝑠𝑝;𝑋

)
.

Proof. It suffices to prove ‖𝐺𝑠 ∗ 𝑓‖𝐿𝑝(𝑤𝛾−𝑠𝑝;𝑋) ≲𝑝,𝑠,𝑑,𝛾 ‖𝑓‖𝐿𝑝(𝑤𝛾 ;𝑋), where 𝐺𝑠 is as in Lemma 3.1 and 𝑓 ∈ 𝐿𝑝(𝑤𝛾 ;𝑋). Since

𝐺𝑠 ≥ 0, by the triangle inequality it suffices to consider the case of scalar functions 𝑓 with 𝑓 ≥ 0.

To prove the result we first apply Minkowski's and Young's inequality in ℝ𝑑−1:

‖𝐺𝑠 ∗ 𝑓 (𝑡, ⋅)‖𝐿𝑝(ℝ𝑑−1) ≤ ∫ℝ ‖𝐺𝑠(𝑡 − 𝜏, ⋅)‖𝐿1(ℝ𝑑−1)‖𝑓 (𝜏, ⋅)‖𝐿𝑝(ℝ𝑑−1)𝑑𝜏 = 𝑔𝑠 ∗ 𝜙(𝜏).

Here 𝑔𝑠(𝑡) = ‖𝐺𝑠(𝑡, ⋅)‖𝐿1(ℝ𝑑−1) and 𝜙(𝜏) = ‖𝑓 (𝜏, ⋅)‖𝐿𝑝(ℝ𝑑−1). Then for |𝑡| ≤ 2, by Lemma 3.1 (1) and (2),

𝑔𝑠(𝑡) ≲𝑠,𝑑 ∫ℝ𝑑−1
(|𝑡| + |𝑥|)𝑠−𝑑𝑑𝑥 = |𝑡|𝑠−1 ∫ℝ𝑑−1

(1 + |𝑥|)𝑠−𝑑𝑑𝑥 = 𝐶|𝑡|𝑠−1,
where we used 𝑠 < 1. For |𝑡| > 2, by Lemma 3.1 (2) and |(𝑡, 𝑥)| ≂ |𝑡| + |𝑥|, we find

𝑔𝑠(𝑡) ≲𝑠,𝑑 𝑒−
|𝑡|
2 ∫ℝ𝑑

𝑒−
|𝑥|
2 𝑑𝑥 ≂𝑑 𝑒−

|𝑡|
2 .

Finally by the weighted version of Young's inequality (see and [22, Theorem 3.4(3.7)]) in dimension one, we find that

‖𝐺𝑠 ∗ 𝑓‖𝐿𝑝
(
ℝ𝑑 ,𝑤𝛾−𝑠𝑝

) ≤ ‖𝑔𝑠 ∗ 𝜙‖𝐿𝑝
(
ℝ,𝑤𝛾−𝑠𝑝

) ≤ 𝐶‖𝜙‖𝐿𝑝
(
ℝ,𝑤𝛾

) = 𝐶‖𝑓‖𝐿𝑝
(
ℝ𝑑 ,𝑤𝛾

),
where 𝐶 = sup𝑡∈ℝ |𝑡|1−𝑠𝑔𝑠(𝑡) < ∞. □

We end this section with a weighted version of the classical Hardy–Hilbert inequality.

Lemma 3.8 (Hardy–Hilbert inequality with power weights). Let 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1). Let 𝑤𝛾 (𝑥1, �̃�) = |𝑥1|𝛾 and
𝑘(𝑥, 𝑦) = 1

((|𝑥1|+|𝑦1|)2+|�̃�−�̃�|2)𝑑∕2 , where 𝑥 = (𝑥1, �̃�) and 𝑦 = (𝑦1, �̃�). Then the formula

𝐼𝑘ℎ(𝑥) ∶= ∫ℝ𝑑

𝑘(𝑥, 𝑦)ℎ(𝑦) 𝑑𝑦

yields a well-defined bounded linear operator 𝐼𝑘 on 𝐿𝑝
(
ℝ𝑑, 𝑤𝛾

)
.

Proof. It suffices to consider ℎ ≥ 0. Moreover, by symmetry it is enough to consider 𝑥1, 𝑦1 > 0. Thus we need to show that‖‖‖‖‖𝑥 → ∫ℝ𝑑
+

𝑘(𝑥, 𝑦)ℎ(𝑦) 𝑑𝑦
‖‖‖‖‖𝐿𝑝

(
ℝ𝑑
+,𝑤𝛾

) ≲𝑝,𝑑,𝛾 ‖ℎ‖𝐿𝑝
(
ℝ𝑑
+,𝑤𝛾

), ℎ ∈ 𝐿𝑝
(
ℝ𝑑
+, 𝑤𝛾

)
, ℎ ≥ 0.

Step I. The case 𝑑 = 1. Replacing 𝑘 by

𝑘𝛽(𝑥, 𝑦) =
𝑤𝛾 (𝑥)1∕𝑝𝑤𝛾 (𝑦)−1∕𝑝

(|𝑥| + |𝑦|) = |𝑥|𝛽 |𝑦|−𝛽|𝑥| + |𝑦| ,
with 𝛽 = 𝛾∕𝑝, it suffices to consider the unweighted case.

To prove the required result we apply Schur's test in the same way as in [14, Theorem 5.10.1]. Let 𝑠(𝑥) = 𝑡(𝑥) = 𝑥
− 1

𝑝𝑝′ . Then

since −1 < 𝛽 − 1
𝑝′

< 0

∫
∞

0
𝑠(𝑥)𝑝𝑘𝛽(𝑥, 𝑦) 𝑑𝑥 = ∫

∞

0

𝑥
𝛽− 1

𝑝′ 𝑦−𝛽

𝑥 + 𝑦
𝑑𝑥 = 𝑡(𝑦)𝑝 ∫

∞

0

𝑧
𝛽−1

𝑝

𝑧 + 1
𝑑𝑧 = 𝐶𝑝,𝛽𝑡(𝑦)𝑝.
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Similarly, since −1 < −𝛽 − 1
𝑝
< 0

∫
∞

0
𝑡(𝑦)𝑝′𝑘𝛽(𝑥, 𝑦) 𝑑𝑦 = ∫

∞

0

𝑥𝛽𝑦
−𝛽−1

𝑝

𝑥 + 𝑦
𝑑𝑦 = 𝑠(𝑥)𝑝′ ∫

∞

0

𝑧
−𝛽−1

𝑝

1 + 𝑧
𝑑𝑧 = 𝐶𝑝,𝛽𝑠(𝑥)𝑝

′
.

Step II. The general case. By Minkowski's inequality we find

‖𝐼𝑘𝑓 (𝑥1, ⋅)‖𝐿𝑝(ℝ𝑑−1) ≤ ∫
∞

0

(
∫ℝ𝑑−1

(
∫ℝ𝑑−1

𝑓 (𝑦1, �̃�)
((𝑥1 + 𝑦1)2 + |�̃� − �̃�|2)𝑑∕2 𝑑�̃�

)𝑝

𝑑�̃�

)1∕𝑝
𝑑𝑦1.

Fix 𝑦1 > 0 and let 𝑔𝑟(�̃�) = 𝑓 (𝑦1, 𝑟�̃�). Setting 𝑟 = 𝑥1 + 𝑦1 and substituting 𝑢 ∶= �̃�∕𝑟 and 𝑣 ∶= �̃�∕𝑟 we can write

∫ℝ𝑑−1

(
∫ℝ𝑑−1

𝑓 (𝑦1, �̃�)
(|𝑥1 + 𝑦1|2 + |�̃� − �̃�|2)𝑑∕2 𝑑�̃�

)𝑝

𝑑�̃�

= 𝑟−𝑝+𝑑−1 ∫ℝ𝑑−1

(
∫ℝ𝑑−1

𝑔𝑟(𝑣)

(1 + |𝑢 − 𝑣|2)𝑑∕2 𝑑𝑣

)𝑝

𝑑𝑢

≤ 𝑟−𝑝+𝑑−1‖𝑔𝑟‖𝑝𝐿𝑝(ℝ𝑑−1)
‖‖‖(1 + | ⋅ |2)−𝑑∕2‖‖‖𝑝𝐿1(ℝ𝑑−1)

= 𝐶𝑑,𝑝𝑟
−𝑝‖𝑔1‖𝑝𝐿𝑝(ℝ𝑑−1)

,

where we applied Young's inequality for convolutions. Therefore,

‖𝐼𝑘𝑓 (𝑥1, ⋅)‖𝐿𝑝(ℝ𝑑−1) ≤ 𝐶𝑑,𝑝 ∫
∞

0

‖𝑓 (𝑦1, ⋅)‖𝐿𝑝(ℝ𝑑−1)

𝑥1 + 𝑦1
𝑑𝑦1.

Taking 𝐿𝑝((0,∞), 𝑤𝛾 )-norms in 𝑥1 and applying Step I yields the required result. □

Remark 3.9. Actually, the kernel 𝑘 of Lemma 3.8 is a standard Calderón–Zygmund kernel, because 𝑘 is a.e. differentiable and

|∇𝑥𝑘(𝑥, 𝑦)| + |∇𝑦𝑘(𝑥, 𝑦)| ≤ |𝑥 − 𝑦|−𝑑−1, 𝑥 ≠ 𝑦.

Although we will not need it below let us note that [19, Corollary 2.10] implies that 𝐼𝑘 is bounded on 𝐿𝑝
(
ℝ𝑑, 𝑤

)
for any 𝑤 ∈ 𝐴𝑝

4 POINTWISE MULTIPLICATION WITH 𝟏ℝ𝒅

+

In this section we prove the pointwise multiplier result, which is central in the characterization of the complex interpolation

spaces of Sobolev spaces with boundary conditions in Section 6. Let 𝑤𝛾 (𝑥1, �̃�) = |𝑥1|𝛾 , where 𝑥1 ∈ ℝ and �̃� ∈ ℝ𝑑−1.

Theorem 4.1. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞), 𝛾 ∈ (−1, 𝑝 − 1), 𝛾 ′ = −𝛾∕(𝑝 − 1), and assume − 𝛾′+1
𝑝′

< 𝑠 <
𝛾+1
𝑝

. Then
for all 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
∩ 𝐿𝑝

(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
, we have 𝟏ℝ𝑑

+
𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
and

‖‖‖𝟏ℝ𝑑
+
𝑓
‖‖‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋)

≲𝑋,𝑝,𝛾,𝑠 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋),

and therefore, pointwise multiplication by 𝟏ℝ𝑑
+

extends to a bounded linear operator on 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
.

To prove this the UMD property will only be used through the norm equivalence of Lemma 4.2 below.

Lemma 4.2. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞), 𝑠 ∈ ℝ, 𝜎 ≥ 0, and let 𝑤 ∈ 𝐴𝑝. Then

(−Δ)𝜎∕2 ∶ (ℝ𝑑 ;𝑋
)
←→  ′(ℝ𝑑 ;𝑋

)
, 𝑓 → ℱ−1

[
(𝜉 → |𝜉|𝜎)𝑓]

defines (by extension by density) a bounded linear operator from 𝐻𝑟+𝜎,𝑝(ℝ𝑑, 𝑤;𝑋
)

to 𝐻𝑟,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
, independent of

𝑟 ∈ ℝ and 𝑤 (in the sense of compatibility), which we still denote by (−Δ)𝜎∕2. Moreover, 𝑓 ∈ 𝐻𝑠+𝜎,𝑝(ℝ𝑑, 𝑤;𝑋
)

if and only if
𝑓, (−Δ)𝜎∕2𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
, in which case

‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤;𝑋) ≂𝑠,𝑝,𝑤,𝑑,𝜎,𝑋 ‖𝑓‖𝐻𝑠−𝜎,𝑝(ℝ𝑑 ,𝑤;𝑋) +
‖‖‖(−Δ)𝜎∕2𝑓‖‖‖𝐻𝑠−𝜎,𝑝(ℝ𝑑 ,𝑤;𝑋)

.
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Proof. All assertions follow from the fact that the symbols

𝜉 →
|𝜉|𝜎

(1 + |𝜉|2)2∕𝜎 , 𝜉 →
1

(1 + |𝜉|2)2∕𝜎 , 𝜉 →
(1 + |𝜉|2)2∕𝜎
1 + |𝜉|𝜎

satisfy the conditions of Proposition 2.3. □

In the proof of Theorem 4.1 we will use the norm equivalence of the above lemma via (a variant of) a well known representation

for (−Δ)𝜎∕2 as a singular integral. For 𝑓 ∈ 𝐻𝜎,𝑝
(
ℝ𝑑
)

this representation reads as follows:

(−Δ)𝜎∕2𝑓 = lim
𝑟→0+

𝐶𝑑,𝜎 ∫ℝ𝑑⧵𝐵(0,𝑟)

𝑇ℎ𝑓 − 𝑓

ℎ
𝑑ℎ,

with limit in 𝐿𝑝
(
ℝ𝑑
)

(see [26, Theorem 1.1(e)]); here 𝑇ℎ denotes the left translation and 𝐶𝑑,𝜎 is a constant only depending on

𝑑 and 𝜎.

In the proof we want to use a formula as above for 𝑓 replaced by 𝟏ℝ𝑑
+
𝑓 , which in general is an irregular function even if 𝑓

is smooth; in particular, a priori it is not clear that 𝟏ℝ𝑑
+
𝑓 ∈ 𝐻𝜎,𝑝

(
ℝ𝑑
)
. We overcome this technical obstacle by Proposition 4.4

below, which provides a (non sharp) representation formula for (−Δ)𝜎∕2 in spaces of distributions.

For the proof of Proposition 4.4 we need the following simple identity.

Lemma 4.3. For each 𝜎 ∈ (0, 1) there exists a constant 𝑐𝑑,𝜎 ∈ (−∞, 0) such that

|𝜉|𝜎 = 𝑐𝑑,𝜎 ∫ℝ𝑑

𝑒𝚤ℎ⋅𝜉 − 1|ℎ|𝑑+𝜎 𝑑ℎ, 𝜉 ∈ ℝ𝑑.

Moreover, for all 𝜙 ∈ (ℝ𝑑
)

[𝜉 → |𝜉|𝜎](𝜙) ∶= ∫ℝ𝑑

|𝜉|𝜎𝜙(𝜉) 𝑑𝜉 = 𝑐𝑑,𝜎 ∫ℝ𝑑 ∫ℝ
𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎 𝜙(𝜉) 𝑑𝜉 𝑑ℎ =∶ 𝑐𝑑,𝜎 ∫ℝ𝑑

[
𝜉 →

𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎
]
(𝜙) 𝑑ℎ. (4.1)

Proof. Let 𝜉 ∈ ℝ𝑑 ⧵ {0} and choose 𝑅 ∈ O(𝑛) with 𝑅𝜉 = |𝜉|𝑒1. Then ℎ ⋅ 𝜉 = 𝑅ℎ ⋅𝑅𝜉 = |𝜉|𝑅ℎ ⋅ 𝑒1 and the substitution 𝑦 =|𝜉|𝑅ℎ yields

∫ℝ𝑑

𝑒𝚤ℎ⋅𝜉 − 1|ℎ|𝑑+𝜎 = |𝜉|𝜎 ∫ℝ𝑑

𝑒𝚤𝑦1 − 1|𝑦|𝑑+𝜎 𝑑𝑦.

Observing that the integral on the right is a number in (−∞, 0), the first identity follows.

Next we show (4.1). Given 𝜙 ∈ (ℝ𝑑
)
, the first identity gives

[𝜉 → |𝜉|𝜎](𝜙) = ∫ℝ𝑑

|𝜉|𝜎𝜙(𝜉) 𝑑𝜉 = 𝑐𝑑,𝜎∫ℝ𝑑∫ℝ𝑑

𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎 𝑑ℎ𝜙(𝜉) 𝑑𝜉.

Since 𝜙 ∈ (ℝ𝑑
)

and

|𝑒𝚤ℎ𝜉 − 1||ℎ|𝑑+𝜎 ≤ 1|ℎ|≤1ℎ−(𝑑−1+𝜎)|𝜉| + 2 ⋅ 1|ℎ|>1|ℎ|−(𝑑+𝜎),
we may invoke Fubini's theorem in order to get

[𝜉 → |𝜉|𝜎](𝜙) = 𝑐𝑑,𝜎∫ℝ𝑑∫ℝ
𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎 𝜙(𝜉) 𝑑𝜉 𝑑ℎ = 𝑐𝑑,𝜎∫ℝ𝑑

[
𝜉 →

𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎
]
(𝜙) 𝑑ℎ,

as desired. □

For 𝑓 ∈  ′(ℝ𝑑 ;𝑋
)

let 𝛿ℎ𝑓 = 𝑇ℎ𝑓 − 𝑓 , where 𝑇ℎ denotes the left translation by ℎ. For 0 < 𝑟 < 𝑅 let 𝐴(𝑟, 𝑅) ∶=
{
𝑥 ∈ ℝ𝑑 ∶

𝑟 < |𝑥| < 𝑅
}

be an annulus.
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Proposition 4.4
(
Representation of (−Δ)

𝜎

2
)
. Let 𝑝 ∈ (1,∞) and 𝜎 ∈ (0, 1). For all 𝑠 ≥ 0 and 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑
)
⊗𝑋 ⊂

𝐿𝑝
(
ℝ𝑑 ;𝑋

)
we have

(−Δ)
𝜎

2 𝑓 = 1
𝑐𝑑,𝜎

lim
𝑟↘0,𝑅↗∞

[
𝑥 → ∫𝐴(𝑟,𝑅)

𝛿ℎ𝑓 (𝑥)|ℎ|𝑑+𝜎 𝑑ℎ

]
in 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

)
,

where 𝑐𝑑,𝜎 is the constant of Lemma 4.3.

The weights are left out on purpose, because translations are not well-behaved on weighted 𝐿𝑝-spaces. Moreover, no UMD

is required in the result above.

Proof. We prove this proposition by proving the following three statements:

1. The linear operator

𝑓 →

[
ℎ →

𝛿ℎ𝑓|ℎ|𝑑+𝜎
]

is bounded from 𝐻𝑠,𝑝
(
ℝ𝑑 ;𝑋

)
to 𝐿1(ℝ𝑑 ;𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

))
for all 𝑠 ∈ ℝ and thus gives rise to a bounded linear operator

𝜎 ∶ 𝐻𝑠,𝑝
(
ℝ𝑑 ;𝑋

)
←→ 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

)
, 𝑓 → ∫ℝ𝑑

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ.

2. For all 𝑠 ≥ 0 we have

𝜎𝑓 = lim
𝑟↘0,𝑅↗∞

[
𝑥 → ∫𝐴(𝑟,𝑅)

𝛿ℎ𝑓 (𝑥)|ℎ|𝑑+𝜎 𝑑ℎ

]
in 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

)
for every 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑 ;𝑋

)
⊂ 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
.

3. For all 𝑓 ∈ 𝐻−∞,𝑝
(
ℝ𝑑
)
⊗𝑋,

𝜎𝑓 = 𝑐𝑑,𝜎(−Δ)
𝜎

2 𝑓 in  ′(ℝ𝑑 ;𝑋
)
, (4.2)

where 𝑐𝑑,𝜎 is the constant of Lemma 4.3. Here 𝐻−∞,𝑝
(
ℝ𝑑
)
=
⋃

𝑠∈ℝ 𝐻𝑠,𝑝
(
ℝ𝑑
)
.

(1): To prove this it is enough to establish the boundedness from 𝐻𝑠,𝑝
(
ℝ𝑑 ;𝑋

)
to 𝐿1(ℝ𝑑 ;𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

))
. As the Bessel

potential operator 𝑠 commutes with 𝛿ℎ, we may restrict ourselves to the case 𝑠 = 2. Since by Lemma 3.3 𝐻2,𝑝(ℝ𝑑 ;𝑋
)
→

𝑊 1,𝑝(ℝ𝑑 ;𝑋
)
, we only need to estimate

∫ℝ𝑑

‖𝛿ℎ𝑓‖𝐿𝑝(ℝ𝑑 ;𝑋)|ℎ|𝑑+𝜎 𝑑ℎ ≲𝑑,𝜎,𝑝 ‖𝑓‖𝑊 1,𝑝
(
ℝ𝑑 ;𝑋

), 𝑓 ∈ 𝑊 1,𝑝 (ℝ𝑑 ;𝑋
)
. (4.3)

To this end, let 𝑓 ∈ 𝑊 1,𝑝(ℝ𝑑 ;𝑋
)
. Then

𝛿ℎ𝑓

ℎ1+𝜎
= 1|ℎ|≤1|ℎ|−(𝑑−1+𝜎)∫ 1

0
𝑇𝑡ℎ

[
∇𝑓 ⋅

ℎ|ℎ|
]
𝑑𝑡 + 1|ℎ|>1|ℎ|−(𝑑+𝜎)(𝑇ℎ𝑓 − 𝑓 ),

where the integral is an 𝐿𝑝
(
ℝ𝑑 ;𝑋

)
-valued Bochner integral. It follows that

‖𝛿ℎ𝑓‖𝐿𝑝
(
ℝ𝑑 ;𝑋

)
|ℎ|𝑑+𝜎 ≤ 1|ℎ|≤1|ℎ|−(𝑑−1+𝜎) ∫ 1

0
‖𝑇𝑡ℎ‖∇𝑓‖𝑋𝑑‖

𝐿𝑝
(
ℝ𝑑
) 𝑑𝑡 + 1|ℎ|>1|ℎ|−(𝑑+𝜎)(‖𝑇ℎ𝑓‖𝐿𝑝(ℝ;𝑋) + ‖𝑓‖𝐿𝑝(ℝ;𝑋)

)
= 1|ℎ|≤1ℎ−(𝑑−1+𝜎)‖∇𝑓‖𝐿𝑝(ℝ;𝑋𝑑 ) + 2 ⋅ 1|ℎ|>1|ℎ|−(𝑑+𝜎)‖𝑓‖𝐿𝑝(ℝ;𝑋).

Integrating over ℎ gives (4.3).
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(2): Let 𝑠 ≥ 0 and 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ𝑑 ;𝑋

)
⊂ 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
. By the first assertion and the Lebesgue dominated convergence theorem,

𝜎𝑓 = lim
𝑟↘0,𝑅↗∞∫𝐴(𝑟,𝑅)

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ in 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋
)
, (4.4)

where the integrals ∫
𝐴(𝑟,𝑅)

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ are Bochner integrals in 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋
)
. As 𝑓 ∈ 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
, ℎ →

𝛿ℎ𝑓|ℎ|𝑑+𝜎 is in

𝐿1(𝐴(𝑟, 𝑅);𝐿𝑝
(
ℝ𝑑 ;𝑋

))
for every 0 < 𝑟 < 𝑅 < ∞. Since 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
,𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

)
→  ′(ℝ𝑑 ;𝑋

)
, it follows that the inte-

grals ∫
𝐴(𝑟,𝑅)

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ in (4.4) can also be considered as Bochner integrals in 𝐿𝑝
(
ℝ𝑑 ;𝑋

)
, implying that ∫

𝐴(𝑟,𝑅)
𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ =[

𝑥 → ∫
𝐴(𝑟,𝑅)

𝛿ℎ𝑓 (𝑥)|ℎ|𝑑+𝜎 𝑑ℎ
]

(see [20, Proposition 1.2.25]).

(3) By linearity it suffices to consider the scalar case 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ𝑑
)

for some 𝑠 ∈ ℝ. By the density of (ℝ𝑑
)
⊆ 𝐻𝑠,𝑝

(
ℝ𝑑
)

(see Lemma 3.4) it suffices to consider 𝑓 ∈ (ℝ𝑑
)
. Indeed, this follows from the boundedness of 𝜎 and (−Δ)𝜎∕2 (see (1). Now

(4.2) follows from well-known results (see [26, Theorem 1.1(e)]). For convenience we include a direct proof. Using Lemma 4.3,

for each 𝑓 ∈ (ℝ𝑑 ;𝑋
)

we find

(−Δ)𝜎∕2𝑓 = ℱ−1
[
(𝜉 → |𝜉|𝜎)𝑓 ] = ℱ−1

[
𝑐𝑑,𝜎∫ℝ𝑑

[
𝜉 →

𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎 𝑓 (𝜉)
]
𝑑ℎ

]
= 𝑐𝑑,𝜎∫ℝ𝑑

ℱ−1
[
𝜉 →

𝑒𝚤ℎ𝜉 − 1|ℎ|𝑑+𝜎 𝑓 (𝜉)
]
𝑑ℎ = 𝑐𝑑,𝜎∫ℝ𝑑

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ,

where all integrals are in  ′(ℝ𝑑 ;𝑋
)
. By (1), for every 𝑓 ∈ (ℝ𝑑 ;𝑋

)
⊂ 𝐻0,𝑝(ℝ𝑑 ;𝑋

)
we have 𝜎𝑓 = ∫ℝ𝑑

𝛿ℎ𝑓|ℎ|𝑑+𝜎 𝑑ℎ, where

the integral is taken in 𝐻−1,𝑝(ℝ𝑑 ;𝑋
)
→  ′(ℝ𝑑 ;𝑋

)
. This proves (4.2), as desired. □

Finally we are in position to prove the pointwise multiplier result.

Proof of Theorem 4.1. We only consider 𝑠 ≥ 0. The case 𝑠 < 0 follows from a duality argument using [36, Proposition 3.5].

By Lemma 3.4 it is enough to prove
‖‖‖𝟏ℝ𝑑

+
𝑓
‖‖‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋)

≲𝑠,𝑝,𝑑,𝛾,𝑋 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) for an arbitrary 𝑓 ∈ (ℝ𝑑
)
⊗𝑋. Let

𝑔 ∶= 𝟏ℝ𝑑
+
𝑓 ∈ 𝐿𝑝

(
ℝ𝑑
)
⊗𝑋. By Lemma 4.2, we have

‖𝑔‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) ≲𝑠,𝑝,𝑑,𝛾,𝑋 ‖𝑔‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) +
‖‖‖(−Δ)𝑠∕2𝑔‖‖‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋)

.

Clearly, ‖𝑔‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) ≤ ‖𝑓‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) from which we see that it suffices to show

‖‖‖(−Δ)𝑠∕2𝑔‖‖‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋)
≲𝑠,𝑝,𝑑,𝛾 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋). (4.5)

By Proposition 4.4,

𝑠,𝑗𝑔 ∶=

[
𝑥 → ∫𝐴( 1

𝑗
,𝑗)

𝛿ℎ𝑔(𝑥)|ℎ|𝑑+𝑠 𝑑ℎ

]
𝑗→∞
←→ (−Δ)𝑠∕2𝑔 in 𝐻𝑠−2,𝑝(ℝ𝑑 ;𝑋

)
→  ′(ℝ𝑑 ;𝑋

)
.

In order to finish the proof, it is thus enough to show that 𝑠,𝑗𝑔 converges in 𝐿𝑝
(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
+ 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
→  ′(ℝ𝑑 ;𝑋

)
to

some 𝐺 satisfying

‖𝐺‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) ≲𝑠,𝑝,𝑑,𝛾,𝑋 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋). (4.6)

Indeed, then (−Δ)𝑠∕2𝑔 = 𝐺 and (4.5) holds.

Defining

𝑆 ∶=
{
(𝑦, 𝑧) ∈ ℝ2 ∶ [𝑧 < −𝑦 and 𝑦 > 0] or [𝑧 > −𝑦 and 𝑦 < 0]

}
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we have

𝑠,𝑗𝑔 = 𝐺1,𝑗 + 𝐺2,𝑗 ∶= 𝟏ℝ𝑑
+
𝑠,𝑗𝑓 +

[
𝑥 → −sgn(𝑥1)∫𝐴( 1

𝑗
,𝑗)
𝟏𝑆 (𝑥1, ℎ1)

𝑓 (𝑥 + ℎ)|ℎ|𝑑+𝑠 𝑑ℎ

]
, (4.7)

where 𝑠,𝑗𝑓 is defined analogously to 𝑠,𝑗𝑔:

𝑠,𝑗𝑓 ∶=

[
𝑥 → ∫𝐴( 1

𝑗
,𝑗)

𝛿ℎ𝑓 (𝑥)|ℎ|𝑑+𝑠 𝑑ℎ

]
.

We first consider
{
𝐺1,𝑗

}
𝑗∈ℕ. Since 𝑠,𝑗𝑓

𝑗→∞
←→ (−Δ)𝑠∕2𝑓 in 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
by Proposition 4.4, it follows that 𝐺1 ∶=

𝟏ℝ𝑑
+
(−Δ)𝑠∕2𝑓 = lim𝑗→∞ 𝐺1,𝑗 in 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
. By Proposition Lemma 4.2,

‖𝐺1‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) ≤ ‖‖‖(−Δ)𝑠∕2𝑓‖‖‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋)
≲𝑠,𝑝,𝑑,𝛾,𝑋 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋).

We next consider {𝐺2,𝑗}𝑗∈ℕ. Observing that

|ℎ| = (|ℎ1|2 + |ℎ̃|2)1∕2 = (
(|𝑡| + |ℎ1 + 𝑡|)2 + |ℎ̃|2)1∕2

for all ℎ =
(
ℎ1, ℎ̃

)
∈ ℝ𝑑 and 𝑡 ∈ ℝ with (𝑡, ℎ1) ∈ 𝑆, we find

∫𝐴( 1
𝑗
,𝑗)
𝟏𝑆 (𝑥1, ℎ1)

‖𝑓 (𝑥 + ℎ)‖𝑋|ℎ|𝑑+𝑠 𝑑ℎ ≤ ∫ℝ𝑑

‖𝑓 (𝑥 + ℎ)‖𝑋(
(|𝑥1| + |ℎ1 + 𝑥1|)2 + |ℎ̃|2) 𝑑+𝑠2 𝑑ℎ

= ∫ℝ𝑑

‖𝑓 (𝑦)‖𝑋(
(|𝑥1| + |𝑦1|)2 + |�̃� − �̃�|2) 𝑑+𝑠2 𝑑𝑦

≤ ∫ℝ𝑑

𝑘(𝑥, 𝑦)|𝑦1|−𝑠‖𝑓 (𝑦)‖𝑋 𝑑𝑦,

where 𝑘(𝑥, 𝑦) =
(
(|𝑥1| + |𝑦1|)2 + |�̃� − �̃�|2) 𝑑2 . Applying Lemma 3.8 to the function 𝜙(𝑦) = |𝑦1|−𝑠‖𝑓 (𝑦)‖𝑋 we thus obtain‖‖‖‖‖‖𝑥 → ∫𝐴

(
1
𝑗
,𝑗
) 𝟏𝑆 (𝑥1, ℎ1)‖𝑓 (𝑥 + ℎ)‖𝑋|ℎ|𝑑+𝑠 𝑑ℎ

‖‖‖‖‖‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 )

≤ ‖𝐼𝑘𝜙‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 )

≲𝑝,𝑑,𝛾 ‖𝜙‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 )

= ‖𝑓‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾−𝑠𝑝;𝑋).

≲𝑝,𝑑,𝛾 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋),

where in the last step we applied Lemma 3.7. It follows that the limit𝐺2 ∶= lim𝑗→∞ 𝐺2,𝑗 exists in𝐿𝑝
(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
and, moreover,

‖𝐺2‖𝐿𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋) ≲𝑝,𝑑,𝛾 ‖𝑓‖𝐻𝑠,𝑝(ℝ𝑑 ,𝑤𝛾 ;𝑋).

Finally, combining the just obtained results for {𝐺1,𝑗}𝑗∈ℕ and {𝐺2,𝑗}𝑗∈ℕ, we see that 𝐺 ∶= 𝐺1 + 𝐺2 = lim𝑗→∞ 𝑠,𝑗𝑔 in

𝐿𝑝
(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
+ 𝐿𝑝

(
ℝ𝑑 ;𝑋

)
→  ′(ℝ;𝑋) and (4.6) holds as desired. □

5 INTERPOLATION THEORY WITHOUT BOUNDARY CONDITIONS

For details on interpolation theory we refer the reader to [4,46]. In this section we present some weighted and vector-valued

versions of known results.

The following extension operator will allow us to reduce the half space case ℝ𝑑
+ to the full space ℝ𝑑 .
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Lemma 5.1 (Extension operator). Let 𝑋 be a Banach space. Let 𝑝 ∈ (1,∞), and 𝑚 ∈ ℕ0. Let 𝑤 ∈ 𝐴𝑝 be such that 𝑤(−𝑥1, �̃�) =
𝑤(𝑥1, �̃�) for 𝑥1 ∈ ℝ and �̃� ∈ ℝ𝑑−1. Then there exists an operator 𝑚

+ ∶ 𝐿𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
→ 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
such that

1. For all 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
,
(𝑚

+𝑓
)|||ℝ𝑑

+
= 𝑓 ;

2. for all 𝑘 ∈ {0,… , , 𝑚}, 𝑚
+ ∶ 𝑊 𝑘,𝑝

(
ℝ𝑑
+, 𝑤;𝑋

)
→ 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
is bounded.

Moreover, if 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
∩ 𝐶𝑚

(
ℝ𝑑
+;𝑋

)
, then 𝑚

+𝑓 is 𝑚-times continuous differentiable on ℝ𝑑 .

By a reflection argument the same holds for ℝ𝑑
−. The corresponding operator will be denoted by 𝑚

− .

Proof. The result is a simple extension of the classical construction given in [1, Theorem 5.19] to the weighted setting. The final

assertion is clear from the construction of 𝑚
+ . □

To define Bessel potential spaces on domains, we proceed in an abstract way using factor spaces.

Definition 5.2. Let 𝔽 → ′(ℝ𝑑 ;𝑋
)

be a Banach space. Define the restricted space/factor space to an open set Ω ⊆ ℝ𝑑 as

𝔽 (Ω) ∶=
{
𝑓 ∈ ′(ℝ𝑑 ;𝑋

)
∶ ∃𝑔 ∈ 𝔽 , 𝑓 = 𝑔|Ω}

and let

‖𝑓‖𝔽 (Ω) = inf
{‖𝑔‖𝔽 ∶ 𝑔|Ω = 𝑓

}
.

We say that  is an extension operator for 𝔽 (Ω) if

1. for all 𝑓 ∈ 𝔽 (Ω), (𝑓 )|Ω = 𝑓 ;

2.  ∶ 𝔽 (Ω) → 𝔽 is bounded.

For 𝑝 ∈ (1,∞), 𝑤 ∈ 𝐴𝑝 and an open set Ω ⊂ ℝ𝑑 , we define the Bessel potential space 𝐻𝑠,𝑝(Ω, 𝑤;𝑋) as the factor space

𝐻𝑠,𝑝(Ω, 𝑤;𝑋) ∶=
[
𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)]
(Ω).

By Lemma 5.1 and for 𝑤 as stated there, we find that 𝑊 𝑘,𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
can be identified (up to an equivalent norm) with

the factor space
[
𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)](
ℝ𝑑
+
)
, where an extension operator can also be found. Indeed, let 𝑊

𝑘,𝑝

factor
(
ℝ𝑑
+, 𝑤;𝑋

)
=[

𝑊 𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)](
ℝ𝑑
+
)

denote the factor space. For 𝑓 ∈ 𝑊
𝑘,𝑝

factor
(
ℝ𝑑, 𝑤;𝑋

)
let 𝑔 ∈ 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
be such that 𝑔|ℝ𝑑

+
= 𝑓 .

Then

‖𝑓‖𝑊 𝑘,𝑝(ℝ𝑑
+,𝑤;𝑋) ≤ ‖𝑔‖

𝑊 𝑘,𝑝
(
ℝ𝑑 ,𝑤;𝑋

).
Taking the infimum over all of the above 𝑔, we find

‖𝑓‖𝑊 𝑘,𝑝(ℝ𝑑
+,𝑤;𝑋) ≤ ‖𝑓‖

𝑊
𝑘,𝑝

factor (ℝ
𝑑
+,𝑤;𝑋).

Next let 𝑓 ∈ 𝑊 𝑘,𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
. Then +𝑓 ∈ 𝑊 𝑘,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
and

‖𝑓‖
𝑊

𝑘,𝑝

factor (ℝ
𝑑
+,𝑤;𝑋) ≤ ‖+𝑓‖𝑊 𝑘,𝑝

(
ℝ𝑑 ,𝑤;𝑋

) ≤ 𝐶‖𝑓‖𝑊 𝑘,𝑝(ℝ𝑑
+,𝑤;𝑋).

Next we present two abstract lemmas to identify factor spaces in the complex interpolation scale. The result is a straightforward

consequence of [46, Theorem 1.2.4]. We include the short in order to be able to track the constants. For details on complex

interpolation theory we refer to [46, Section 1.9.3].

Lemma 5.3. Let (𝑋0, 𝑋1) and (𝑌0, 𝑌1) be interpolation couples and let 𝑋𝜃 = [𝑋0, 𝑋1]𝜃 and 𝑌𝜃 = [𝑌0, 𝑌1]𝜃 for a given
𝜃 ∈ (0, 1). Assume that 𝑅 ∶ 𝑋0 +𝑋1 → 𝑌0 + 𝑌1 and 𝑆 ∶ 𝑌0 + 𝑌1 → 𝑋0 +𝑋1 are linear operators such that 𝑆 ∈ (𝑌𝑗,𝑋𝑗

)
,

𝑅 ∈ (𝑋𝑗, 𝑌𝑗
)

and 𝑅𝑆 is the identity operator on 𝑌𝑗 for 𝑗 ∈ {0, 1}. Then 𝑆𝑅 defines a projection on 𝑋𝜃 and 𝑅 is an isomor-
phism from 𝑆𝑅

(
𝑋𝜃

)
onto 𝑌𝜃 with inverse 𝑆. Moreover, the following estimates hold:

𝐶−1
𝑆
‖𝑆𝑦‖𝑋𝜃

≤ ‖𝑦‖𝑌𝜃 ≤ 𝐶𝑅‖𝑆𝑦‖𝑋𝜃
, 𝑦 ∈ 𝑌𝜃,‖𝑅𝑥‖𝑌𝜃 ≤ 𝐶𝑅‖𝑥‖𝑋𝜃

, 𝑥 ∈ 𝑋𝜃,‖𝑥‖𝑋𝜃
≤ 𝐶𝑆‖𝑅𝑥‖𝑌𝜃 , 𝑥 ∈ 𝑆𝑅(𝑋𝜃),

where 𝐶𝑅 = max𝑗∈{0,1} ‖𝑅‖(𝑋𝑗,𝑌𝑗 ) and 𝐶𝑆 = max𝑗∈{0,1} ‖𝑆‖(𝑋𝑗,𝑌𝑗 ).
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Proof. By complex interpolation we know

‖𝑆‖(𝑌𝜃,𝑋𝜃) ≤ 𝐶𝑆, and ‖𝑅‖(𝑋𝜃,𝑌𝜃) ≤ 𝐶𝑅

and 𝑅𝑆 is the identity operator on 𝑌𝜃 . This proves the upper estimates for 𝑆 and 𝑅. To see that 𝑆𝑅 is a projection note that

(𝑆𝑅)(𝑆𝑅) = 𝑆𝑅. The lower estimate for 𝑆 follows from

‖𝑦‖𝑌𝜃 = ‖𝑅𝑆𝑦‖𝑌𝜃 ≤ 𝐶𝑅‖𝑆𝑦‖𝑋𝜃
, 𝑦 ∈ 𝑌𝜃.

To prove the lower estimate for 𝑅 note that for 𝑥 ∶= 𝑆𝑅𝑢 ∈ 𝑆𝑅(𝑋𝜃)

‖𝑥‖𝑋𝜃
= ‖𝑆𝑅𝑆𝑅𝑢‖𝑋𝜃

≤ 𝐶𝑆‖𝑅𝑆𝑅𝑢‖𝑌𝜃 = 𝐶𝑆‖𝑅𝑥‖𝑋𝜃
. □

Lemma 5.4. Let 𝔽 0, 𝔽 1 → ′(ℝ𝑑 ;𝑋
)

be two Banach spaces. For 𝜃 ∈ (0, 1), let

𝔽 𝜃 =
[
𝔽 0, 𝔽 1]

𝜃
.

Let Ω ⊆ ℝ𝑑 be an open set, and define 𝔽 𝜃(Ω) as in Definition 5.2, and assume there is an extension operator  for 𝔽 𝑠(Ω) for
𝑠 ∈ {0, 1}. Then

[
𝔽 0(Ω), 𝔽 1(Ω)

]
𝜃
= 𝔽 𝜃(Ω) and

𝐶−1‖𝑓‖𝔽 𝜃(Ω) ≤ ‖𝑓‖[𝔽 0(Ω),𝔽 1(Ω)]𝜃 ≤ ‖𝑓‖𝔽 𝜃(Ω)

where 𝐶 only depends on the norms of the extension operator. Moreover,  is an extension operator for 𝔽 𝜃(Ω).

Proof. Define 𝑅 ∶ 𝔽 𝑗 → 𝔽 𝑗(Ω) by 𝑅𝑓 = 𝑓 |Ω and 𝑆 ∶ 𝔽 𝑗(Ω) → 𝔽 𝑗 as 𝑆 =  . Then ‖𝑅‖ ≤ 1, ‖𝑆‖ ≤ 𝐶 and 𝑅𝑆 = 𝐼 . From

Lemma 5.3 we conclude that for all 𝑓 ∈
[
𝔽 0(Ω), 𝔽 1(Ω)

]
𝜃

𝐶−1‖𝑓‖𝔽 𝜃 (Ω) ≤ 𝐶−1‖𝑓‖𝔽 𝜃 ≤ ‖𝑓‖[𝔽 0(Ω),𝔽 1(Ω)]𝜃 .
Conversely, let 𝑓 ∈ 𝔽 𝜃(Ω). Choose, 𝑔 ∈ 𝔽 𝜃 such that 𝑅𝑔 = 𝑔|Ω = 𝑓 . Since ‖𝑅‖ ≤ 1, by complex interpolation we find

‖𝑓‖[𝔽 0(Ω),𝔽 1(Ω)]𝜃 ≤ ‖𝑔‖[𝔽 0,𝔽 1]𝜃 = ‖𝑔‖𝔽 𝜃 .

Taking the infimum over all 𝑔 as above, the result follows.

To show the final assertion, note that  ∈ (𝔽 𝜃(Ω), 𝔽 𝜃
)

by the above. Moreover, for 𝑓 ∈ 𝔽 0(Ω) ∩ 𝔽 1(Ω), (𝑓 )|Ω = 𝑓 . By

density (see [46, Theorem 1.9.3]) this extends to all 𝑓 ∈ 𝔽 𝜃(Ω). □

Proposition 5.5. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞), 𝑘 ∈ ℕ0 and assume that 𝑤 ∈ 𝐴𝑝 is such that 𝑤(𝑥1, �̃�) = 𝑤(−𝑥1, �̃�)
for 𝑥1 ∈ ℝ and �̃� ∈ ℝ𝑑−1. Then 𝐻𝑘,𝑝

(
ℝ𝑑
+, 𝑤;𝑋

)
= 𝑊 𝑘,𝑝

(
ℝ𝑑
+, 𝑤;𝑋

)
.

Proof. This is immediate from Proposition 3.2 and the fact that 𝑊 𝑘,𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
coincides with the factor space[

𝑊 𝑘,𝑝
(
ℝ𝑑, 𝑤;𝑋

)](
ℝ𝑑
+
)
. □

Next we identify the complex interpolation spaces of 𝐻𝑠,𝑝(Ω, 𝑤;𝑋). Here the UMD property is needed to obtain bounded

imaginary powers of −Δ.

Proposition 5.6. Let 𝑋 be a UMD space and let 𝑝 ∈ (1,∞). Let 𝑤 ∈ 𝐴𝑝 be such that 𝑤(−𝑥1, �̃�) = 𝑤(𝑥1, �̃�) for all 𝑥1 ∈ ℝ and
�̃� ∈ ℝ𝑑−1.

(1) Let 𝜃 ∈ [0, 1] and let 𝑠0, 𝑠1, 𝑠 ∈ ℝ be such that 𝑠 = 𝑠0(1 − 𝜃) + 𝑠1𝜃. Then for Ω = ℝ𝑑 or Ω = ℝ𝑑
+ one has[

𝐻𝑠0,𝑝(Ω, 𝑤;𝑋),𝐻𝑠1,𝑝(Ω, 𝑤;𝑋)
]
𝜃
= 𝐻𝑠,𝑝(Ω, 𝑤;𝑋).

(2) For each 𝑚 ∈ ℕ0 there exists an 𝑚
+ ∈ (𝐻−𝑚,𝑝(ℝ𝑑

+, 𝑤;𝑋
)
,𝐻−𝑚,𝑝(ℝ𝑑, 𝑤;𝑋

))
such that

• for all |𝑠| ≤ 𝑚, + ∈ (𝐻𝑠,𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
,𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

))
,

• for all |𝑠| ≤ 𝑚, 𝑓 → (+𝑓 )|ℝ𝑑
+

equals the identity operator on 𝐻𝑠,𝑝(ℝ+, 𝑤;𝑋).

Moreover, if 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
∩ 𝐶𝑚

(
ℝ𝑑
+;𝑋

)
, then 𝑚

+𝑓 ∈ 𝐶𝑚
(
ℝ𝑑 ;𝑋

)
.
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By a reflection argument the same holds for ℝ𝑑
−. The corresponding operator will be denoted by 𝑚

− .

Proof. (1): For Ω = ℝ𝑑 , the result follows from [36, Proposition 3.2 and 3.7] (see [20, Theorem 5.6.9] for the unweighed case).

(2): Fix 𝑚 ∈ ℕ. We first construct ̃𝑚
+ ∈ (𝐻−𝑚,𝑝(ℝ𝑑, 𝑤;𝑋

))
such that

(i) ̃𝑚
+ ∈ (𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

))
for all |𝑠| ≤ 𝑚;

(ii) ̃𝑚
+𝑓

|||ℝ𝑑
+
= 𝑓

|||ℝ𝑑
+

;

(iii) ̃𝑚
+𝑓 = 0 if 𝑓 |ℝ𝑑

+
= 0;

Given ̃𝑚
+ we can define 𝑚

+ ∶ 𝐻𝑠,𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
→ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
by 𝑚

+𝑓 = ̃𝑚
+𝑓 where 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
satisfies

𝑓
|||ℝ𝑑

+
= 𝑓 . This is well-defined by (iii).

In order to construct ̃𝑚
+ let 0 < 𝜆1 < ⋯ < 𝜆2𝑚+2 < ∞ and 𝑏1,… , 𝑏2𝑚+2 ∈ ℝ be as in [46, 2.9.3]. For 𝜆 ∈ ℝ ⧵ {0} we write

𝑇𝜆𝑓 (𝑥) = 𝑓 (−𝜆𝑥1, �̃�). Let ̃𝑚
+ ∈ (𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

))
and 𝐸𝑚

+ ∈ (𝐿𝑝′
(
ℝ𝑑, 𝑤′;𝑋∗)) be defined by

̃𝑚
+𝑓 = 𝟏ℝ𝑑

+
𝑓 + 𝟏ℝ𝑑

−

2𝑚+2∑
𝑗=1

𝑏𝑗𝑇𝜆𝑗 𝑓 , 𝐸𝑚
+𝑔 = 𝟏ℝ𝑑

+

(
𝑔 +

2𝑚+2∑
𝑗=1

𝑏𝑗𝜆
−1
𝑗 𝑇𝜆−1

𝑗
𝑔

)
.

Then one can check that ⟨̃𝑚
+𝑓, 𝑔

⟩
=
⟨
𝑓,𝐸𝑚

+𝑔
⟩
, 𝑓 ∈ 𝐿𝑝

(
ℝ𝑑, 𝑤;𝑋

)
, 𝑔 ∈ 𝐿𝑝′(ℝ𝑑, 𝑤′;𝑋∗). (5.1)

Moreover, by the special choice of 𝑏1,… , 𝑏2𝑚+2 it is standard to check that ̃𝑚
+ ∈ (𝑊 𝑚,𝑝

(
ℝ𝑑, 𝑤;𝑋

))
and 𝐸𝑚

+ ∈
(𝑊 𝑚,𝑝′

(
ℝ𝑑, 𝑤′;𝑋∗)). In view of (1) for Ω = ℝ𝑑 and Proposition 3.2, complex interpolation gives ̃𝑚

+ ∈ (𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

))
and 𝐸𝑚

+ ∈ (𝐻𝑠,𝑝′
(
ℝ𝑑, 𝑤′;𝑋∗)) for all 0 ≤ 𝑠 ≤ 𝑚.

Recall that 𝐻𝑠,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
=
(
𝐻−𝑠,𝑝′(ℝ𝑑, 𝑤′;𝑋∗))∗ (see [36, Proposition 3.5]), 𝑋 being reflexive as a UMD space (see [20,

Theorem 4.3.3]). By the duality relation (5.1) we find that ̃𝑚
+ extends to a bounded linear operator on 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
for each

𝑠 ∈ [−𝑚, 0]. Therefore, (i) follows and moreover (ii) follows by a density argument. To check (iii) let 𝑓 ∈ 𝐻−𝑚,𝑝(ℝ𝑑, 𝑤;𝑋
)

with 𝑓 |ℝ𝑑
+
= 0 be given. Let 𝜙 ∈ 𝐶∞

𝑐

(
ℝ𝑑
−
)

be such that ∫ 𝜙𝑑𝑥 = 1 and set 𝜙𝑛 ∶= 𝑛−𝑑𝜙(𝑛⋅) for 𝑛 ∈ ℕ. Then, by Lemma 3.6,

𝜙𝑛 ∗ 𝑓 → 𝑓 in 𝐻−𝑚,𝑝(ℝ𝑑, 𝑤;𝑋
)

and 𝜙𝑛 ∗ 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑, 𝑤;𝑋

)
. Now since 𝜙𝑛 ∗ 𝑓 |ℝ𝑑

+
= 0 it follows that

̃𝑚
+𝑓

|||ℝ𝑑
+
= lim

𝑛→∞
̃𝑚
+𝜙𝑛 ∗ 𝑓

|||ℝ𝑑
+

= 0.

Finally, note that for 𝑓 ∈ 𝐿𝑝
(
ℝ𝑑
+, 𝑤;𝑋

)
∩ 𝐶𝑚

(
ℝ𝑑
+;𝑋

)
, +

𝑚𝑓 ∈ 𝐶𝑚
(
ℝ

𝑑

−;𝑋
)
⊕𝐶𝑚

(
ℝ

𝑑

+;𝑋
)

with

+
𝑚𝑓

|||ℝ𝑑
+
= 𝑓 and +

𝑚𝑓
|||ℝ𝑑

−
=

2𝑚+2∑
𝑗=1

𝑏𝑗𝑇𝜆𝑗 𝑓

and by the special choice of 𝑏1,… , 𝑏2𝑚+2, one can check that 𝑓 ∈ 𝐶𝑚
(
ℝ𝑑 ;𝑋

)
.

Now (1) for Ω = ℝ𝑑
+ follows from Lemma 5.4 and (2). □

For an open setΩ ⊆ ℝ𝑑 , and 𝑠 ∈ ℝ let 𝐻
𝑠,𝑝

Ω
(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
be the closed subspace of 𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤𝛾 ;𝑋

)
of functions with support

in Ω.

Proposition 5.7. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞), 𝑘 ∈ ℕ, let 𝑤(−𝑥1, �̃�) = 𝑤(𝑥1, �̃�) for all 𝑥1 ∈ ℝ and let �̃� ∈ ℝ𝑑−1. Let
𝜃 ∈ [0, 1] and let 𝑠0, 𝑠1, 𝑠 ∈ ℝ be such that 𝑠 = 𝑠0(1 − 𝜃) + 𝑠1𝜃. Then the following identity[

𝐻
𝑠0,𝑝

ℝ𝑑
±

(
ℝ𝑑, 𝑤;𝑋

)
,𝐻

𝑠1,𝑝

ℝ𝑑
±

(
ℝ𝑑, 𝑤;𝑋

)]
𝜃

= 𝐻
𝑠,𝑝

ℝ𝑑
±

(
ℝ𝑑, 𝑤;𝑋

)
holds with equivalence of norms.
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Proof. To show this we consider the case of ℝ𝑑
+. The other case can be proved in the same way. Let 𝑚

− be the (reflected)

extension operator of Proposition 5.6 with 𝑚 the least integer above max{|𝑠0|, |𝑠1|}. Define 𝑅 ∶ 𝐻𝑠0∧𝑠1,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
→

𝐻
𝑠0∧𝑠1,𝑝
ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
by

𝑅𝑓 ∶= 𝑓 − 𝑚
−
(
𝑓 |ℝ𝑑

−

)
and let 𝑆 ∶ 𝐻

𝑠0∧𝑠1,𝑝
ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
→ 𝐻𝑠0∧𝑠1,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
be the inclusion operator. For each 𝑡 ∈ [𝑠0 ∧ 𝑠1, 𝑚], 𝑅 and 𝑆 restrict

to bounded linear operators 𝑅 ∶ 𝐻𝑡,𝑝
(
ℝ𝑑, 𝑤;𝑋

)
→ 𝐻

𝑡,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
and 𝑆 ∶ 𝐻

𝑡,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
→ 𝐻𝑡,𝑝

(
ℝ𝑑, 𝑤;𝑋

)
with the

property that 𝑆𝑅
(
𝐻𝑡,𝑝

(
ℝ𝑑, 𝑤;𝑋

))
= 𝐻

𝑡,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
. Using Lemma 5.3 in combination with Proposition 5.6 we find that

𝑅 restricts to an isomorphism from 𝐻
𝑠,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
= 𝑆𝑅

(
𝐻𝑠,𝑝

(
ℝ𝑑, 𝑤;𝑋

))
to

[
𝐻

𝑠0,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
,𝐻

𝑠1,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)]
𝜃

. Since

𝑅𝑓 = 𝑓 for all 𝑓 ∈ 𝐻
𝑠,𝑝

ℝ𝑑
+

(
ℝ𝑑, 𝑤;𝑋

)
, this proves the required identity for the interpolation space. The norm equivalence follows

from the estimates in Lemma 5.3 as well. □

To end this section we present a variation of a classical interpolation inequality. The result can be deduced from the weighted

Gagliardo–Nirenberg type inequality [33, Proposition 5.1]. We provide a more direct proof which also yields additional infor-

mation. The unweighted and scalar-valued case can be found in [24, Theorem 1.5.1]. However, the proof given there does not

extend to the weighted setting. The lemma can also be deduced from Proposition 2.3, but this would require 𝑋 to be a UMD

space (cf. the proof of [13, Corollary 5.3]).

Lemma 5.8 (Gagliardo–Nirenberg inequality). Let 𝑋 be a Banach space and let 𝑘 ∈ ℕ. Let Ω = ℝ𝑑 or Ω = ℝ𝑑
+. Let 𝑤 ∈ 𝐴𝑝

be such that 𝑤(−𝑥1, �̃�) = 𝑤(𝑥1, �̃�) if Ω = ℝ𝑑
+. Then for all 𝑢 ∈ 𝑊 𝑘,𝑝(Ω, 𝑤;𝑋) and 𝑗 ∈ {1,… , 𝑘 − 1},

[𝑢]𝑊 𝑗,𝑝(Ω,𝑤;𝑋) ≲𝑝,𝑘,[𝑤]𝐴𝑝
‖𝑢‖1− 𝑗

𝑘

𝐿𝑝(Ω,𝑤;𝑋)[𝑢]
𝑗

𝑘

𝑊 𝑘,𝑝(Ω,𝑤;𝑋).

Proof. By an iteration argument one sees that it suffices to consider 𝑗 = 1 and 𝑘 = 2 (see [24, Exercise 1.5.6]).

First consider the case Ω = ℝ𝑑 . For 𝑢 ∈ 𝑊 2,𝑝(ℝ𝑑, 𝑤;𝑋
)
, it follows from Lemma 3.3 that

[𝑢]𝑊 1,𝑝(ℝ𝑑 ,𝑤;𝑋) ≤ ‖𝑢‖𝑊 1,𝑝(ℝ𝑑 ,𝑤;𝑋) ≲𝑝,[𝑤]𝐴𝑝
‖𝑢‖𝐻2,𝑝(ℝ𝑑 ,𝑤;𝑋) ≤ ‖𝑢‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) + [𝑢]𝑊 2,𝑝(ℝ𝑑 ,𝑤;𝑋).

For 𝜆 > 0 let 𝑢𝜆(𝑥) = 𝑢(𝜆𝑥) and 𝑤𝜆 = 𝑤(𝜆𝑥) and note that [𝑤]𝐴𝑝
= [𝑤𝜆]𝐴𝑝

. Then applying the estimate to 𝑢𝜆 and the weight

𝑤𝜆, a substitution yields

[𝑢]𝑊 1,𝑝(ℝ𝑑 ,𝑤;𝑋) ≲𝑝,𝑛,[𝑤]𝐴𝑝
𝜆−1‖𝑢‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) + 𝜆[𝑢]𝑊 2,𝑝(ℝ𝑑 ,𝑤;𝑋).

Minimizing over 𝜆 > 0 the result follows.

In the case Ω = ℝ𝑑
+ we use a standard extension argument. Let 2

+ be the extension operator from Lemma 5.1. Then by [1,

Theorem 5.19], 2
+ has the following additional property: for all |𝛼| ≤ 2, 𝜕𝛼2

+ = 𝐸𝛼𝜕
𝛼 , where 𝐸𝛼 is an extension operator for

𝑊 2−|𝛼|(ℝ𝑑
+, 𝑤;𝑋

)
. Therefore, from the case Ω = ℝ𝑑 applied to 2

+𝑢 and the boundedness of the extension operators we find

that

[𝑢]𝑊 1,𝑝(ℝ𝑑
+,𝑤;𝑋

) ≤ [𝑛
+𝑢
]
𝑊 1,𝑝(ℝ𝑑 ,𝑤;𝑋) ≲𝑝,𝑑,[𝑤]𝐴𝑝

‖𝑛
+𝑢‖1∕2𝐿𝑝(ℝ𝑑 ,𝑤;𝑋)

[𝑛
+𝑢
]1∕2
𝑊 2,𝑝(ℝ𝑑 ,𝑤;𝑋)

Clearly, ‖𝑛
+𝑢‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) ≤ ‖𝑢‖𝐿𝑝

(
ℝ𝑑
+,𝑤;𝑋

). Moreover, since 𝜕𝛼2
+ = 𝐸0𝜕

𝛼 ,

[𝑛
+𝑢]𝑊 2,𝑝(ℝ𝑑 ,𝑤;𝑋) =

∑
|𝛼|=2 ‖𝐸0𝜕

𝛼𝑢‖𝐿𝑝(ℝ𝑑 ,𝑤;𝑋) ≤ [𝑢]𝑊 2,𝑝(ℝ𝑑
+,𝑤;𝑋

).
Therefore, the result follows if we combine the two estimates. □
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6 APPLICATION TO INTERPOLATION THEORY AND THE FIRST
DERIVATIVE

For 𝑝 ∈ (1,∞), 𝑠 ∈ ℝ and a weight 𝑤 ∈ 𝐴𝑝, let 𝐻
𝑠,𝑝

0 (ℝ, 𝑤;𝑋) denote the closure of 𝐶∞
𝑐 (ℝ ⧵ {0};𝑋) in 𝐻

𝑠,𝑝

0 (ℝ, 𝑤;𝑋). In this

section we characterize the interpolation space
[
𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
,𝐻

1,𝑝
0
(
ℝ+, 𝑤𝛾 ;𝑋

)]
𝜃
. Moreover, we use this to characterize the

domains of fractional powers of the first derivative.

6.1 Results on the whole real line
For 𝑘 ∈ ℕ0 let

𝑊 𝑘+1,1
loc,0 (ℝ;𝑋) ∶=

{
𝑓 ∈ 𝑊 𝑘+1,1

loc (ℝ;𝑋) ∶ 𝑓 (0) = ⋯ = 𝑓 (𝑘)(0) = 0
}
.

Since 𝑓 (𝑦) − 𝑓 (𝑥) = ∫ 𝑦

𝑥
𝑓 ′(𝑡) 𝑑𝑡, it follows that 𝑓 has a version which is uniformly continuous on bounded intervals, and hence

𝑓 (𝑗)(0) for 𝑗 ∈ {0,… , 𝑘} is defined in a pointwise sense

We will need the following simple lemma.

Lemma 6.1. Let 𝑋 be a Banach space and let 𝑘 ∈ ℕ0. If 𝑓 ∈ 𝑊 𝑘+1,1
loc (ℝ;𝑋) satisfies 𝑓 (0) = ⋯ = 𝑓 (𝑘)(0) = 0, then 1ℝ+

𝑓 ∈
𝑊 𝑘+1,1

loc (ℝ;𝑋) with (
1ℝ+

𝑓
)(𝑗) = 1ℝ+

𝑓 (𝑗), 𝑗 ∈ {1,… , 𝑘 + 1}.

Proof. Using an inductive argument we may reduce to the case 𝑘 = 0. So suppose 𝑓 ∈ 𝑊 1,1
loc (ℝ;𝑋) satisfies 𝑓 (0) = 0. Then

𝑓 (𝑥) = ∫ 𝑥

0 𝑓 ′(𝑡) 𝑑𝑡 for all 𝑥 ∈ ℝ, from which it follows that

𝟏ℝ+
𝑓 (𝑥) = ∫

𝑥

0
𝟏ℝ+

𝑓 ′(𝑡) 𝑑𝑡, 𝑥 ∈ ℝ.

This shows 𝟏ℝ+
𝑓 ∈ 𝑊 1,1

loc (ℝ;𝑋) with
(
1ℝ+

𝑓
)′ = 1ℝ+

𝑓 ′. □

Proposition 6.2. Let 𝑋 be a UMD Banach space, let 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1). Assume 𝑠 >
1+𝛾
𝑝

− 1 and 𝑘 ∈ ℕ0 are such

that 1+𝛾
𝑝

− 1 + 𝑘 < 𝑠 <
1+𝛾
𝑝

+ 𝑘. For all 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
∩𝑊 𝑘+1,1

loc,0 (ℝ;𝑋) we then have

‖‖‖𝟏ℝ+
𝑓
‖‖‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋)

≲𝑠,𝑝,𝛾,𝑋 ‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋).

As a consequence, 𝟏ℝ+
is a pointwise multiplier on 𝐻

𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
. Moreover, for all 𝑓 ∈ 𝐻

𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
it holds that(

𝟏ℝ+
𝑓
)(𝑗) = 𝟏ℝ+

𝑓 (𝑗), 𝑗 ∈ {0,… 𝑘}. (6.1)

Proof. As in [36, Proposition 3.4] one checks the following equivalence of extended norms on  ′(ℝ;𝑋):

‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋) ≂𝑠,𝛾,𝑝,𝑋 ‖𝑓‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋) + ‖𝜕𝑘𝑓‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋) ≂𝑠,𝛾,𝑝,𝑋

𝑘∑
𝑗=0

‖𝜕𝑗𝑓‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋). (6.2)

Let 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
∩𝑊 𝑘+1,1

loc,0 (ℝ;𝑋). Using (6.2), Lemma 6.1 and Theorem 4.1 we find

‖‖‖𝟏ℝ+
𝑓
‖‖‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋)

≲𝑠,𝑝,𝛾,𝑋
‖‖‖𝟏ℝ+

𝑓
‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

+ ‖‖‖𝜕𝑘(𝟏ℝ+
𝑓
)‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

= ‖‖‖𝟏ℝ+
𝑓
‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

+ ‖‖‖𝟏ℝ+
𝜕𝑘𝑓

‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

≲𝑠,𝑝,𝛾,𝑋 ‖𝑓‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋) +
‖‖‖𝜕𝑘𝑓‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

≲𝑠,𝑝,𝛾,𝑋 ‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋).
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By a density argument we find that 𝟏ℝ+
is a pointwise multiplier on 𝐻

𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
.

Finally, to check that (6.1) holds for 𝑓 ∈ 𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
, observe that for 0 ≤ 𝑗 ≤ 𝑘, by (6.2) and the above estimate

‖‖‖𝜕𝑗(𝟏ℝ+
𝑓
)‖‖‖𝐻𝑠−𝑘,𝑝(ℝ,𝑤𝛾 ;𝑋)

≤ 𝐶
‖‖‖𝟏ℝ+

𝑓
‖‖‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋)

≤ 𝐶‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋).

Therefore, if 𝑓 ∈ 𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
, then letting 𝑓𝑛 ∈ 𝐶∞

𝑐 (ℝ ⧵ {0};𝑋) be such that 𝑓𝑛 → 𝑓 in 𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
, we find that

𝜕𝑗
(
𝟏ℝ+

𝑓𝑛
)
→ 𝜕𝑗

(
𝟏ℝ+

𝑓
)

in 𝐻𝑠−𝑘,𝑝(ℝ, 𝑤𝛾 ;𝑋
)
. Since 𝜕𝑗𝑓𝑛 → 𝜕𝑗𝑓 in 𝐻𝑠−𝑘,𝑝(ℝ, 𝑤𝛾 ;𝑋

)
, by Theorem 4.1 also 𝟏ℝ+

𝜕𝑗𝑓𝑛 →

𝟏ℝ+
𝜕𝑗𝑓 in 𝐻𝑠−𝑘,𝑝(ℝ, 𝑤𝛾 ;𝑋

)
. The validity of (6.1) for functions from 𝐶∞

𝑐 (ℝ ⧵ {0}) and uniqueness of limits in

𝐻𝑠−𝑘,𝑝(ℝ, 𝑤𝛾 ;𝑋
)

yields (6.1) for general 𝑓 ∈ 𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
. □

Proposition 6.3. Let 𝛾 ∈ (−1, 𝑝 − 1) and 𝑠 ∈ ℝ. Assume 𝑘 ∈ ℕ0 satisfies 𝑘 + 1+𝛾
𝑝

< 𝑠. Then the following assertions hold:

(1) tr𝑘 ∶ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
∩ 𝐶𝑘(ℝ;𝑋) → 𝑋𝑘 given by tr𝑘𝑓 =

(
𝑓 (0), 𝑓 ′(0),… , 𝑓 (𝑘)(0)

)
uniquely extends to a bounded linear

mapping tr𝑘 ∶ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
→ 𝑋𝑘+1.

(2) If 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
satisfies 𝑓 |(0,𝛿) = 0 or 𝑓 |(−𝛿,0) = 0 for some 𝛿 > 0, then tr𝑘𝑓 = 0.

(3) There exists a bounded mapping ext𝑘 ∶ 𝑋𝑘+1 → 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
such that tr𝑘(ext𝑘) is the identity on 𝑋𝑘+1.

Proof. We first prove (1). By Lemma 3.4, it is enough to establish boundedness of

tr𝑘 ∶
(
𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾 ;𝑋

)
∩ 𝐶𝑘(ℝ;𝑋), ‖ ⋅ ‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋)

)
→ 𝑋𝑘+1.

Choosing 𝑥∗
𝑗
∈ 𝑋∗ with

‖‖‖𝑥∗𝑗‖‖‖ = 1 and ‖𝑓 (𝑗)(0)‖ =
⟨
𝑓 (𝑗)(0), 𝑥∗

𝑗

⟩
for each 𝑗 ∈ {0,… , 𝑘} we have

⟨
𝑓, 𝑥∗

𝑗

⟩
∈ 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾

)
∩

𝐶𝑘(ℝ) with

‖‖‖𝑓 (𝑗)(0)‖‖‖ =
||||⟨𝑓 (𝑗)(0), 𝑥∗𝑗

⟩|||| = ||||⟨𝑓, 𝑥∗𝑗⟩(𝑗)(0)|||| , ‖‖‖⟨𝑓, 𝑥∗𝑗⟩‖‖‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 )
≤ ‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋).

So we may restrict ourselves to the case 𝑋 = ℂ. Recall from [36, Proposition 3.4] that 𝑑∕𝑑𝑡 is a bounded linear operator from

𝐻𝜎,𝑝
(
ℝ, 𝑤𝛾

)
to 𝐻𝜎−1,𝑝(ℝ, 𝑤𝛾

)
for every 𝜎 ∈ ℝ. By differentiation it thus suffices to prove that, given 𝜃 ∈

(
1+𝛾
𝑝
,
1+𝛾
𝑝

+ 1
)

, the

following estimate holds

|𝑓 (0)| ≲𝜃,𝛾,𝑝 ‖𝑓‖𝐻𝜃,𝑝(ℝ,𝑤𝛾 ), 𝑓 ∈ 𝐻𝜃,𝑝(ℝ, 𝑤𝛾 ) ∩ 𝐶(ℝ).

Here we actually only need to consider 𝑓 ∈ 𝐻𝜃,𝑝
(
ℝ, 𝑤𝛾

)
∩ 𝐶𝑐(ℝ); indeed, given 𝜂 ∈ 𝐶∞

𝑐 (ℝ) with 𝜂(0) = 1, 𝑓 → 𝜂𝑓 defines

by complex interpolation (see Proposition 5.6) a bounded linear operator on 𝐻𝜃,𝑝
(
ℝ, 𝑤𝛾

)
and we may consider 𝜂𝑓 instead of

𝑓 . Using Lemma 3.6 together with [15, Theorem 1.2.19] one can check that 𝐶∞
𝑐 (ℝ) is dense in 𝐻𝜃,𝑝

(
ℝ, 𝑤𝛾

)
∩ 𝐶𝑐(ℝ), where

𝐶𝑐(ℝ) has been equipped with the supremum norm. It thus is enough to estimate

|𝑓 (0)| ≲𝜃,𝛾,𝑝 ‖𝑓‖𝐻𝜃,𝑝(ℝ,𝑤𝛾 ;𝑋), 𝑓 ∈ 𝐶∞
𝑐 (ℝ).

To this end, let 𝑓 ∈ 𝐶∞
𝑐 (ℝ) ⊂ (ℝ) and put 𝑔 ∶= (1 − Δ)𝜃∕2𝑓 ∈ (ℝ). Then, letting 𝐺𝜃 ∈ 𝐿1(ℝ) be the kernel Lemma 3.1, we

find

𝑓 (0) = (1 − Δ)−𝜃∕2𝑔 (0) = 𝐺𝜃 ∗ 𝑔 (0) = ∫ℝ 𝐺𝜃(𝑥)𝑔(−𝑥) 𝑑𝑥.

By Lemma 3.1 we find

|𝑓 (0)| ≤ ∫ℝ |𝐺𝜃(𝑥)| |𝑔(−𝑥)| 𝑑𝑥 ≤ ‖𝐺𝜃‖𝐿𝑝′
(
ℝ,𝑤′

𝛾

)‖𝑔‖𝐿𝑝
(
ℝ,𝑤𝛾

) ≲𝜃,𝛾,𝑝 ‖𝑓‖𝐻𝜃,𝑝
(
ℝ,𝑤𝛾

).
To prove (2) consider the case that 𝑓 = 0 on (0, 𝛿). Let 𝜙 ∈ 𝐶∞(ℝ) be such that ∫ 𝜙(𝑥) 𝑑𝑥 = 1 and 𝜙 is supported on (−2,−1)

and put 𝜙𝑛(𝑥) ∶= 𝑛𝜙(𝑛𝑥). By Lemma 3.6, ‖𝜙𝑛 ∗ 𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋) ≲𝑝,𝛾 ‖𝑓‖𝐻𝑠,𝑝(ℝ,𝑤𝛾 ;𝑋) with 𝜙𝑛 ∗ 𝑓 → 𝑓 in 𝐻𝑠,𝑝(ℝ, 𝑤𝛾 ;𝑋).
Clearly, 𝜙𝑛 ∗ 𝑓 ∈ 𝐶∞(ℝ;𝑋) and by the support conditions one sees that 𝜙𝑛 ∗ 𝑓 (0) = 0 for all 𝑛 > 2𝛿−1. Therefore,

tr𝑘(𝜙𝑛 ∗ 𝑓 ) = 0 and the result follows by letting 𝑛 → ∞ and using the continuity of tr𝑘.
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To prove (3) choose 𝜙0,… , 𝜙𝑘 ∈ 𝐶∞
𝑐 (ℝ) such that 𝜙

(𝑛)
𝑗
(0) = 𝛿𝑗𝑛 for all 0 ≤ 𝑗 ≤ 𝑘 and 0 ≤ 𝑛 ≤ 𝑘 and let ext𝑘

(
𝑥𝑗
)𝑘
𝑗=1 =∑𝑘

𝑗=0 𝜙𝑗𝑥𝑗 . This clearly satisfies the required properties.

We can now give a characterization of 𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
in terms of traces. For it will be convenient to say that the statement

tr𝑘𝑓 = 0 for 𝑘 ≤ −1 is empty.

Proposition 6.4. Let𝑋 be a Banach space, let 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1). Let 𝑠 ∈ ℝ be such that 𝑘 + 1+𝛾
𝑝

< 𝑠 < 𝑘 + 1 + 1+𝛾
𝑝

with 𝑘 ∈ ℤ, 𝑘 ≥ −1. Then

𝐻
𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
=
{
𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾 ;𝑋

)
∶ tr𝑘𝑓 = 0

}
.

Note that tr𝑘𝑓 is well defined by Proposition 6.3.

Proof. Clearly, tr𝑘𝑓 = 0 for every 𝑓 ∈ 𝐶∞
𝑐 (ℝ ⧵ {0};𝑋). By continuity this extends to every 𝑓 ∈ 𝐻

𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
(see Propo-

sition 6.3) and hence “⊆” follows. To prove the converse, let 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
be such that tr𝑘𝑓 = 0. By Lemma 3.4 we can

find {𝑔𝑛}𝑛∈ℕ ⊂ 𝐶∞
𝑐 (ℝ)⊗𝑋 such that 𝑔𝑛 → 𝑓 in 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾 ;𝑋

)
as 𝑛 → ∞. Let ext𝑘 be as constructed in the proof of Proposi-

tion 6.3 and put ℎ𝑛 ∶= 𝑔𝑛 − ext𝑘
(
𝑔
(𝑗)
𝑛 (0)

)𝑘
𝑗=0 for each 𝑛 ∈ ℕ. Then ℎ𝑛 ∈

{
ℎ ∈ 𝐶∞

𝑐 (ℝ) ∶ tr𝑘ℎ = 0
}
⊗𝑋 and, by Proposition 6.3,

ℎ𝑛 → 𝑓 − ext𝑘(0)𝑘𝑗=0 = 𝑓 in 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
as 𝑛 → ∞.

It remains to show that we can approximate a function ℎ ∈ 𝐶∞
𝑐 (ℝ) satisfying tr𝑘ℎ = 0 by a function in 𝐶∞

𝑐 (ℝ ⧵ {0}) with

respect to the norm of 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾

)
. Writing ℎ = 𝟏ℝ+

ℎ + 𝟏ℝ−
ℎ =∶ ℎ0 + ℎ1, it follows from Proposition 6.2 that ℎ0, ℎ1 ∈

𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
and hence it suffices to approximate each of the terms ℎ0 and ℎ1. Fix 𝜙 ∈ 𝐶∞

𝑐 (ℝ) with ∫ℝ 𝜙𝑑𝑥 = 1 and

supp𝜙 ⊆ [1,∞) and define 𝜙𝑛 ∶= 𝑛𝜙(𝑛⋅) for each 𝑛 ∈ ℕ. Then 𝜙𝑛 ∗ ℎ0 ∈ 𝐶∞
𝑐 (ℝ ⧵ {0}) with 𝜙𝑛 ∗ ℎ0 → ℎ0 in 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾

)
as 𝑛 → ∞ by Lemma 3.6. A similar argument can be used for ℎ1.

We can now prove the main result of this section:

Theorem 6.5. Let 𝑋 be a UMD space and let 𝛾 ∈ (−1, 𝑝 − 1). Let 𝜃 ∈ (0, 1) and 𝑠0, 𝑠1 > −1 + 𝛾+1
𝑝

. Let 𝑠 = 𝑠0(1 − 𝜃) + 𝑠1𝜃. If

𝑠0, 𝑠1, 𝑠 ∉ ℕ0 +
𝛾+1
𝑝

, then [
𝐻

𝑠0,𝑝
0

(
ℝ, 𝑤𝛾 ;𝑋

)
,𝐻

𝑠1,𝑝
0

(
ℝ, 𝑤𝛾 ;𝑋

)]
𝜃
= 𝐻

𝑠,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
. (6.3)

Proof. Assume 𝑠0, 𝑠1, 𝑠 ∉ ℕ0 +
𝛾+1
𝑝

and let 𝐸
𝜎,𝑝

prod ∶= 𝐻
𝜎,𝑝

ℝ+

(
ℝ, 𝑤𝛾 ;𝑋

)
×𝐻

𝜎,𝑝

ℝ−

(
ℝ, 𝑤𝛾 ;𝑋

)
, 𝜎 ∈ ℝ, for shorthand notation.

Let 𝜎 > −1 + 𝛾+1
𝑝

with 𝜎 ∉ ℕ0 +
𝛾+1
𝑝

. By Proposition 6.3 tr𝑘 vanishes on 𝐻
𝜎,𝑝

ℝ±

(
ℝ, 𝑤𝛾 ;𝑋

)
for integers 𝑘 ∈

[
0, 𝜎 − 𝛾+1

𝑝

)
.

Thus, in view of Proposition 6.4, the map

𝑅 ∶ 𝐸
𝜎,𝑝

prod → 𝐻
𝜎,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
, 𝑅(𝑔, ℎ) ∶= 𝑔 + ℎ,

is a well-defined contraction. That the map

𝑆 ∶ 𝐻
𝜎,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
→ 𝐸

𝜎,𝑝

prod, 𝑆𝑓 ∶=
(
𝟏ℝ𝑑

+
𝑓, 𝟏ℝ𝑑

−
𝑓
)
,

is well-defined and continuous follows from Propositions 6.2 and 6.4. Since 𝑅−1 = 𝑆, the result follows from Proposition 5.7.

6.2 Results on the positive half line
Let 𝛾 ∈ (−1, 𝑝 − 1) and 𝑠 ∈ ℝ. Assume 𝑘 ∈ ℕ0 satisfies 𝑘 + 1+𝛾

𝑝
< 𝑠. By Proposition 6.3, if 𝑓1, 𝑓2 ∈ 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾 ;𝑋

)
satisfy

𝑓1|ℝ+
= 𝑓2|ℝ+

, then tr𝑘𝑓1 = tr𝑘𝑓2. Therefore, tr𝑘 ∶ 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
→ 𝑋𝑘+1 gives rise to a well-defined bounded linear oper-

ator tr𝑘,+ ∶ 𝐻𝑠,𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
→ 𝑋𝑘+1 given by tr𝑘,+𝑓 = tr𝑘𝑓 whenever 𝑓|ℝ+

= 𝑓 . After reducing to the scalar-valued case,

Proposition 5.6 shows that

tr𝑘,+𝑓 =
(
𝑓 (0), 𝑓 ′(0),… , 𝑓 (𝑘)(0)

)
, 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
∩ 𝐶𝑘([0,∞);𝑋); (6.4)

in the case 𝑋 = ℂ we simply pick the least integer 𝑚 ≥ |𝑠| and observe that tr𝑘,+ = tr𝑘◦𝑚
+ .

Let 𝐻
𝑠,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
denote the closure of 𝐶∞

𝑐 ((0,∞);𝑋) in 𝐻𝑠,𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
.
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Proposition 6.6. Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞), 𝛾 ∈ (−1, 𝑝 − 1) and 𝑠 ∈ ℝ. Assume 𝑘 ∈ ℕ0 satisfies 𝑘 + 1+𝛾
𝑝

< 𝑠 <

𝑘 + 1 + 1+𝛾
𝑝

. Then

𝐻
𝑠,𝑝

0 (ℝ+, 𝑤𝛾 ;𝑋) =
{
𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
∶ tr𝑘,+𝑓 = 0

}
.

Proof. Clearly, ⊆ holds. To prove the converse let 𝑓 ∈ 𝐻𝑠,𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
be such that tr𝑘,+𝑓 = 0. Pick 𝑓 ∈ 𝐻𝑠,𝑝

(
ℝ, 𝑤𝛾 ;𝑋

)
with 𝑓|ℝ+

= 𝑓 . Then tr𝑘𝑓 = tr𝑘,+𝑓 = 0. By Proposition 6.4 we thus get 𝑓 = lim𝑛→∞ 𝑓𝑛 in 𝐻𝑠,𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
for some sequence(

𝑓𝑛
)
𝑛∈ℕ from 𝐶∞

𝑐 (ℝ ⧵ {0};𝑋). Now 𝑓𝑛 ∶= 𝑓𝑛|ℝ+
∈ 𝐶∞

𝑐 ((0,∞);𝑋) with 𝑓𝑛 → 𝑓 in 𝐻𝑠,𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
as 𝑛 → ∞. □

Theorem 6.7. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1). Let 𝜃 ∈ (0, 1) and let 𝑠0, 𝑠1 > −1 + 𝛾+1
𝑝

. Let 𝑠 =

𝑠0(1 − 𝜃) + 𝑠1𝜃. If 𝑠0, 𝑠1, 𝑠 ∉ ℕ0 +
𝛾+1
𝑝

, then[
𝐻

𝑠0,𝑝
0

(
ℝ+, 𝑤𝛾 ;𝑋

)
,𝐻

𝑠1,𝑝
0

(
ℝ+, 𝑤𝛾 ;𝑋

)]
𝜃
= 𝐻

𝑠,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
. (6.5)

Proof. Let 𝑚 be the least integer such that 𝑚 ≥ max{|𝑠0|, |𝑠1|}. For each 𝜎 > −1 + 𝛾+1
𝑝

with |𝜎| ≤ 𝑚 and 𝜎 ∉ ℕ0 +
𝛾+1
𝑝

,

𝑆 ∶ 𝐻
𝜎,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
→ 𝐻

𝜎,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
, 𝑆𝑓 ∶= 𝑚

+𝑓,

is a well-defined bounded linear operator thanks to Propositions 6.4 and 6.6. For each 𝜎 ∈ ℝ, let 𝑅 ∶ 𝐻
𝜎,𝑝

0
(
ℝ, 𝑤𝛾 ;𝑋

)
→

𝐻
𝜎,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
denote the restriction operator. Using Theorem 6.5, the proof can now be completed as in

Proposition 5.7 (2). □

6.3 Fractional domain spaces
For 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1) let

𝑊
𝑘,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
=
{
𝑓 ∈ 𝑊 𝑘,𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
∶ 𝑓 (0) = 𝑓 (1)(0) = ⋯ = 𝑓 (𝑘−1)(0) = 0

}
.

If 𝑋 is a UMD space, then it follows from Propositions 5.5, 6.6 and (6.4) that

𝑊
𝑘,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
= 𝐻

𝑘,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
. (6.6)

Let us now briefly recall the 𝐻∞-calculus for sectorial operators, for which there are several conventions in the literature. For

a survey and an extensive treatment of the subject we refer the reader to [47] and [18,21,25], respectively.

For each 𝜃 ∈ (0, 𝜋) we define the sector

Σ𝜃 ∶= {𝜆 ∈ ℂ ⧵ {0} ∶ | arg(𝜆)| < 𝜃}.

A closed densely defined linear operator (𝐴,𝐷(𝐴)) on 𝑋 is said to be sectorial of type 𝜎 ∈ (0, 𝜋) if it is injective and has dense

range, Σ𝜋−𝜎 ⊂ 𝜌(−𝐴), and for all 𝜎′ ∈ (𝜎, 𝜋)

sup
{‖‖‖𝜆(𝜆 + 𝐴)−1‖‖‖ ∶ 𝜆 ∈ Σ𝜋−𝜎′

}
< ∞.

The infimum of all 𝜎 ∈ (0, 𝜋) such that 𝐴 is sectorial of type 𝜎 is called the sectoriality angle of 𝐴 and is denoted by 𝜙𝐴.

Let 𝐻∞(Σ𝜃

)
denote the Banach space of all bounded analytic functions 𝑓 ∶ Σ𝜃 → ℂ, endowed with the supremum norm.

Let 𝐻∞
0
(
Σ𝜃

)
denote its linear subspace of all 𝑓 for which there exists 𝜖 > 0 and 𝐶 ≥ 0 such that

|𝑓 (𝑧)| ≤ 𝐶|𝑧|𝜀
(1 + |𝑧|)2𝜀 , 𝑧 ∈ Σ𝜃.

If 𝐴 is sectorial of type 𝜎0 ∈ (0, 𝜋), then for all 𝜎 ∈ (𝜎0, 𝜋) and 𝑓 ∈ 𝐻∞
0
(
Σ𝜎

)
we define the bounded linear operator 𝑓 (𝐴) by

𝑓 (𝐴) ∶= 1
2𝜋𝚤 ∫𝜕Σ𝜎

𝑓 (𝑧)(𝑧 + 𝐴)−1 𝑑𝑧.
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A sectorial operator 𝐴 of type 𝜎0 ∈ (0, 𝜋) is said to have a bounded 𝐻∞(Σ𝜎)-calculus for 𝜎 ∈ (𝜎0, 𝜋) if there exists a 𝐶 ∈
[0,∞) such that

‖𝑓 (𝐴)‖ ≤ ‖𝑓‖𝐻∞(Σ𝜎 ), 𝑓 ∈ 𝐻∞
0
(
Σ𝜎

)
.

In this case the mapping 𝑓 → 𝑓 (𝐴) extends to a bounded algebra homomorphism from 𝐻∞(Σ𝜎

)
to (𝑋) of norm ≤ 𝐶 . The

𝐻∞-angle of 𝐴 is defined as the infimum of all 𝜎 for which 𝐴 has a bounded 𝐻∞(Σ𝜎

)
-calculus and is denoted by 𝜙∞

𝐴
.

Below we will make use of the following fact. Let 𝐴 be an operator on a reflexive Banach space 𝑋. If 𝐴 is a sectorial operator

having a bounded 𝐻∞-calculus, then so is 𝐴∗ with 𝜙∞
𝐴

= 𝜙∞
𝐴∗ .

Theorem 6.8. Let 𝑋 be a UMD space, let 𝑝 ∈ (1,∞) and 𝛾 ∈ (−1, 𝑝 − 1).

(1) The realization of 𝜕𝑡 on 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
with domain 𝑊

1,𝑝
0
(
ℝ+, 𝑤𝛾 ;𝑋

)
has a bounded 𝐻∞-calculus of angle 𝜋∕2 with

D
(
𝜕𝑠𝑡
)
= 𝐻

𝑠,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
for every 𝑠 > 0 with 𝑠 ∉ 1+𝛾

𝑝
+ ℕ0.

(2) The realization of −𝜕𝑡 on 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
with domain 𝑊 1,𝑝(ℝ+, 𝑤𝛾 ;𝑋

)
has a bounded 𝐻∞-calculus of angle 𝜋∕2 with

D
(
(−𝜕𝑡)𝑠

)
= 𝐻𝑠,𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
for every 𝑠 > 0.

For 𝛾 ∈ [0, 𝑝 − 1) the case
𝑑

𝑑𝑡
follows from [39, Theorem 4.5]. For 𝛾 ∈ [0, 𝑝 − 1) the case − 𝑑

𝑑𝑡
follows from [31, Theorem

2.7]. Below we present a proof that works for all 𝛾 ∈ (−1, 𝑝 − 1), in which (1) is derived from (2) by a simple duality argument.

Proof. Let us first establish the assertions regarding the 𝐻∞-calculus. We start with (2), from which we will derive (1) by

duality.

For (2) we denote by 𝐴 the realization of −𝜕𝑡 on 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
with domain 𝑊 1,𝑝(ℝ+, 𝑤𝛾 ;𝑋

)
and by �̃� the realization of

−𝜕𝑡 on 𝐿𝑝
(
ℝ, 𝑤𝛾 ;𝑋

)
with domain 𝑊 1,𝑝(ℝ, 𝑤𝛾 ;𝑋

)
. As in [25, Example 10.2], using Proposition 2.3, one can show that �̃� has

a bounded 𝐻∞-calculus of angle 𝜋∕2. So it is enough to show that ℂ+ ⊂ 𝜌(−𝐴) with

(𝜆 + 𝐴)−1𝑓 = 𝑅
(
𝜆 + �̃�

)−1
𝐸𝑓 =∶ 𝑆(𝜆)𝑓, 𝜆 ∈ ℂ+, 𝑓 ∈ 𝐿𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
,

where 𝐸 ∈ (𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
, 𝐿𝑝

(
ℝ, 𝑤𝛾 ;𝑋

))
is the extension by zero operator, and 𝑅 denotes the operator of restriction from

ℝ to ℝ+. For each 𝜆 ∈ ℂ+, 𝑆(𝜆) defines a linear operator from 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
to 𝑊 1,𝑝(ℝ+, 𝑤𝛾 ;𝑋

)
with the property that

(𝜆 + 𝐴)𝑆(𝜆) = 𝐼 . So, fixing 𝜆 ∈ ℂ+, we only need to show that ker(𝜆 + 𝐴) = {0}. To this end, let 𝑢 ∈ 𝑊 1,𝑝(ℝ+, 𝑤𝛾 ;𝑋
)

satisfy

(𝜆 − 𝜕𝑡)𝑢 = 0. By basic distribution theory (cf. [10, Theorem 9.4]) we find that 𝑢 is a classical solution in the sense that 𝑢 ∈
𝐶∞(ℝ+;𝑋) with 𝑢′ = 𝜆𝑢, implying that 𝑢 = 𝑐 exp(𝜆 ⋅ ) for some 𝑐 ∈ 𝑋. Since exp(𝜆 ⋅ ) ∉ 𝐿𝑝

(
ℝ+, 𝑤𝛾

)
, it follows that 𝑢 = 0.

For (1) we denote by 𝐴 the realization of 𝜕𝑡 on 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
with domain 𝑊

1,𝑝
0
(
ℝ+, 𝑤𝛾 ;𝑋

)
and by 𝐵 the realization of

−𝜕𝑡 on 𝐿𝑝′
(
ℝ+, 𝑤𝛾′ ;𝑋∗) with domain 𝑊 1,𝑝′(ℝ+, 𝑤𝛾′ ;𝑋∗). Recall that

[
𝐿𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)]∗ = 𝐿𝑝′
(
ℝ+, 𝑤𝛾′ ;𝑋∗) with respect to

the natural pairing (see [36, Proposition 3.5]), 𝑋 being reflexive as a UMD space (see [20, Theorem 4.3.3]). Integration by parts

(see Lemma 6.9 below) yields 𝐴 ⊂ 𝐵∗. By (2) (and the fact that duals of UMD spaces are again UMD) it is enough to establish

the reverse. By [11, Exercise 1.21(4)], for the latter it suffices that 𝜆 + 𝐴 is surjective and 𝜆 + 𝐵∗ is injective for some 𝜆 ∈ ℂ.

To this end, let us establish this for some fixed 𝜆 ∈ ℂ+. Then 𝜆 ∈ 𝜌(−𝐵) = 𝜌(−𝐵∗) by (2); in particular, 𝜆 + 𝐵∗ is injective. As

in (2) we can find a linear operator 𝑆(𝜆) ∶ 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
→ 𝑊 1,𝑝(ℝ+, 𝑤𝛾 ;𝑋

)
such that (𝜆 + 𝐴)𝑆(𝜆) = 𝐼 . Then the operator

𝑇 (𝜆) ∶ 𝐿𝑝
(
ℝ+, 𝑤𝛾 ;𝑋

)
→ 𝑊

1,𝑝
0
(
ℝ+, 𝑤𝛾 ;𝑋

)
given by

𝑇 (𝜆)𝑓 ∶= 𝑆(𝜆)𝑓 − [𝑆(𝜆)𝑓 ](0) exp(−𝜆 ⋅ ),

satisfies (𝜆 + 𝐴)𝑇 (𝜆) = 𝐼 , which shows that 𝜆 + 𝐴 is surjective.

Finally we will identify the fractional domain spaces. From the definitions one deduces that D
(
𝜕𝑘𝑡
)
= 𝑊

𝑘,𝑝

0
(
ℝ+, 𝑤𝛾 ;𝑋

)
and D

(
(−𝜕𝑡)𝑘

)
= 𝑊 𝑘,𝑝

(
ℝ+, 𝑤𝛾 ;𝑋

)
as sets for every 𝑘 ∈ ℕ. Moreover, it follows from Lemma 5.8 and Young's inequality for

products that there is also an equivalence of norms. The assertions concerning the fractional domain spaces subsequently follow

from [18, Theorem 6.6.9], Proposition 5.5 and Theorem 6.7. □

Lemma 6.9 (Integration by parts). Let 𝑋 be a Banach space, let 𝑝 ∈ (1,∞) and let 𝑤 ∈ 𝐴𝑝. For all 𝑢 ∈ 𝑊 1,𝑝(ℝ+, 𝑤;𝑋) and

𝑣 ∈ 𝑊 1,𝑝′(ℝ+, 𝑤
′;𝑋∗), where 𝑤′ = 𝑤

− 1
𝑝−1 is the 𝑝-dual weight of 𝑤, there holds the integration by parts identity

⟨𝑢′, 𝑣⟩⟨𝐿𝑝(ℝ+,𝑤;𝑋),𝐿𝑝′ (ℝ+,𝑤′;𝑋)⟩ = −𝑢(0)𝑣(0) − ⟨𝑢, 𝑣′⟩⟨𝐿𝑝(ℝ+,𝑤;𝑋),𝐿𝑝′ (ℝ+,𝑤′;𝑋)⟩.
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Proof. By the remark preceding this lemma and Lemma 3.5, 𝐶∞
𝑐

(
ℝ+

)
⊗𝑋 is dense in 𝑊 1,𝑝(ℝ+, 𝑤;𝑋

)
and 𝐶∞

𝑐

(
ℝ+

)
⊗𝑋∗

is dense in 𝑊 1,𝑝′(ℝ+, 𝑤
′;𝑋∗). The desired result thus follows from integration by parts for functions from 𝐶∞

𝑐

(
ℝ+

)
. □
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