
 
 

Delft University of Technology

Estimation of the full-field dynamic response of a floating bridge using Kalman-type
filtering algorithms

Petersen, Oyvind W.; Øiseth, Ole; Nord, Torodd S.; Lourens, E.

DOI
10.1016/j.ymssp.2018.01.022
Publication date
2018
Document Version
Accepted author manuscript
Published in
Mechanical Systems and Signal Processing

Citation (APA)
Petersen, O. W., Øiseth, O., Nord, T. S., & Lourens, E. (2018). Estimation of the full-field dynamic response
of a floating bridge using Kalman-type filtering algorithms. Mechanical Systems and Signal Processing, 107,
12-28. https://doi.org/10.1016/j.ymssp.2018.01.022

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ymssp.2018.01.022
https://doi.org/10.1016/j.ymssp.2018.01.022


Estimation of the full-field dynamic response of a floating bridge using Kalman-type
filtering algorithms

Ø.W. Petersena,∗, O. Øisetha, T. Norda, E. Lourensb

aNTNU, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
bDelft University of Technology, 2628 CN Delft, The Netherlands

Abstract

Numerical predictions of the dynamic response of complex structures are often uncertain due to uncertainties inherited from

the assumed load effects. Inverse methods can estimate the true dynamic response of a structure through system inversion,

combining measured acceleration data with a system model. This article presents a case study of the full-field dynamic response

estimation of a long-span floating bridge: the Bergøysund Bridge in Norway. This bridge is instrumented with a network of

14 triaxial accelerometers. The system model consists of 27 vibration modes with natural frequencies below 2 Hz, which is

solved using a tuned finite element model that takes the fluid-structure interaction with the surrounding water into account. Two

methods, a joint input-state estimation algorithm and a dual Kalman filter, are applied to estimate the full-field response of the

bridge. The results demonstrate that the displacements and the accelerations can be estimated at unmeasured locations with

reasonable accuracy when the wave loads are the dominant source of excitation.

Keywords: structural monitoring; floating bridge; response estimation; Kalman filter

1. Introduction1

In many civil engineering structures, the dynamic response is an important variable for determining sufficient structural2

safety and design. In the design phase, the dynamic response is traditionally obtained using a numerical model of the structure3

and combinations of load states as dictated by design codes. However, there are uncertainties associated with the load effects and4

with the how the structure responds to the loads. Consequently, the numerically predicted response has inherited uncertainties,5

meaning that the design limit states, such as structural failure, instability, fatigue or serviceability, must also be treated as having6

uncertainties.7

Monitoring systems installed on existing structures enable the structural behaviour to be studied under the true operating8

conditions. The collected data may be used for long-term statistics, model parameter identification, operational modal analysis9

(OMA) or structural health monitoring (SHM). A shortcoming of full-scale measurements is that only output data are typically10

available since inputs are often impractical to measure directly on a large scale. In addition, the dynamic response can only be11

measured at a limited number of points because of cost limitations and/or due to practical restrictions on sensor locations.12

In recent years, researchers have explored techniques for using incomplete measurement data to estimate the response at13

unmeasured locations in structural or mechanical systems. One example of this approach is modal expansion techniques, which14
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can use strain or stress predictions as an indicator of the local utilization of the structural capacity. Modal expansion algorithms15

have been shown to perform well on offshore wind turbines [1, 2] and platforms [3, 4], estimating strain histories as a tool for16

monitoring the fatigue service life. Another class of methods consists of filtering techniques for coupled input and state esti-17

mation, and these techniques are commonly based on Kalman-type filters. Multiple methods have been proposed in the recent18

literature [5–15]. Among the popular contributions are the algorithm for joint input-state estimation (JIS) [9]. This methodol-19

ogy has also been developed further [10] and tested in situ [11]. In the proposed dual Kalman filter (DKF) [12], the inputs and20

states are estimated from two Kalman filters working in conjunction. Experimental testing and verification of the DKF can be21

found in [13]. The assumptions and structure of the different Kalman-type filters lead to advantages and disadvantages, which22

means that the applicability of the different methods can vary from one case study to another. The experimental comparison in23

[14] focuses on the stability in the real-time application of some filter variants. Practical applications of the techniques include24

strain prediction for fatigue [16] and studies of ice-structure interaction [17, 18]. Other Kalman filter approaches have been25

used to estimate the responses of tall buildings due to wind loads using acceleration data [19, 20].26

Although many full-scale measurement campaigns have been conducted on long-span bridges (see, e.g. [21] for a brief27

overview), the methodologies for full-field response estimation have seen little exploration on these types of structures. This28

may be explained by several reasons. First, most of the relevant methodologies have been developed quite recently, and the29

research field is still in active development. Second, long-span bridges typically exhibit a highly complex dynamic behaviour30

since many modes contribute to the total response. Finally, (non-linear) fluid-structure interaction phenomena can occur, which31

may be difficult to implement in a model. The implication of the complex dynamics is that accurate system models and32

dense sensor networks are required for many of the current prevailing methodologies to be applicable. If a system for full-33

field response monitoring is successfully implemented, then the reward is robust control over the condition of important civil34

infrastructure.35

This article focuses on applying filtering techniques to estimate the full-field dynamic response of very large bridges, making36

use of measured acceleration data together with a numerical model of the structure. We present a case study of a long-span37

floating bridge, the Bergsøysund Bridge, and assess how well two of the aforementioned filter algorithms, JIS and DKF, are able38

to reconstruct the global response. Herein, the methodology is tested in full scale on a structure that is in operation using three39

recorded data sets with different ambient wave and wind conditions. The presented work is a continuation of previous studies40

[22]; in the current paper, the studies are extended in the use of the methodology and the results are improved. The remainder41

of this paper is organized as follows: section 2 presents the Bergsøysund bridge and relevant mathematical formulations for42

floating bridge dynamics. Section 3 is devoted to the response estimation methodology and system model. In section 4, the43

dynamic response estimation from several time series are shown and the results are discussed. Conclusions are drawn in section44

5.45

2. Floating bridges46

2.1. The Bergsøysund Bridge47

The Bergsøysund Bridge (Fig. 1) is located on the midwestern Norwegian coast as a part of the E39 Coastal Highway48

Route. This bridge opened in 1992 and is a unique type of structure since it is one of a few long-span floating bridges with49

end support only. The bridge consists of a trusswork of steel tubes and is supported by seven pontoons. The pontoons are shell50
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Figure 1: Left: The Bergsøysund Bridge viewed from the north end; right: the truss structure as viewed from below the bridge deck. Photo: K.A. Kvåle.
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Figure 2: Overhead view of the Bergsøysund Bridge and the locations of the accelerometers (1S-7S, 1N-7N), wave height sensors (W1-W6), anemometers

(A1-A5) and GNSS. The axes of the global coordinate system coincide with the major axes of the middle pontoon, which lies on the symmetry line of the

bridge.

structures that are made from lightweight aggregate concrete. The floating span of the bridge is 840 m long, with free spans of51

105 m between the pontoons. Since the bridge has no anchoring, it is susceptible to dynamic excitation, particularly from wave52

actions. The construction of similar but longer bridges is planned in the upgrade of the E39 Coastal Highway Route, making53

the Bergsøysund Bridge a highly relevant case study for the implementation of monitoring systems on modern infrastructure.54

The bridge is instrumented with an extensive monitoring system, as shown in Fig. 2. Two triaxial accelerometers are located55

at each of the seven pontoons (Fig. 3). The Global Navigation Satellite System (GNSS) station consists of a stationary base56

unit at the bridge abutment and a rover unit located at the middle of the bridge (Fig. 3), tracking the displacements using RTK57

(Real Time Kinematic) technology. In addition to the vibration data, six wave height sensors and five anemometers collect data58

on the ambient conditions at the site. The system continuously monitors the structure, and data are automatically saved when59

the wind velocity exceeds a trigger value. For more information, we refer to the paper that describes the monitoring system in60

detail [23].61
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Figure 3: Left: accelerometer mounted on the truss; right: GNSS rover station at the middle of the bridge.

2.2. System equations for a floating bridge62

A floating bridge is a system where the structural vibrations are coupled with the fluid motion at the wetted part of the body.63

Consider a system discretized with nDOF degrees of freedom (DOFs). The governing equations of motion are first formulated64

in the frequency domain for convenience:65

−ω2M(ω)u(ω) + iωC(ω)u(ω) +K(ω)u(ω) = Sppw(ω) (1)

where the displacement vector u(ω) and the wave excitation forces pw(ω) are Fourier transforms of their time-domain66

equivalents u(t) ∈ RnDOF and pw(t) ∈ Rnp , respectively. The selection matrix Sp ∈ RnDOF×np assigns the wave forces to the DOF67

that has direct fluid contact. It is assumed that waves are the dominant source of excitation for the bridge. In the structural68

monitoring assessment by Kvåle and Øiseth [23], it was shown that the dynamic response of the Bergsøysund Bridge is largely69

dictated by the waves, whereas the direct load effects of the wind for most cases are small in the frequency range of the70

wave spectrum. The aforementioned study also found that the response to traffic is small compared to waves and is largely71

high-frequent (>2 Hz).72

The system matrices in Eq. 1 can be split into two parts according to their nature of origin:73

M(ω) =Ms +Mh(ω) (2)

C(ω) = Cs + Ch(ω) (3)

K = Ks +Kh (4)

The subscript s denotes that the mass, damping and stiffness matrices Ms, Cs and Ks are related to the structure. Due to the74

fluid-structure interaction, the hydrodynamic mass Mh(ω) and damping Ch(ω) are functions of frequency. Kh is the hydrostatic75

restoring stiffness, which is assumed to not vary with frequency. When applying the inverse Fourier transform and rearranging76

terms, Eq. 1 can be written as follows:77

(Ms +Mh0)ü(t) + Csu̇(t) + (Ks +Kh)u(t) = Sppw(t) + Sppmi(t) = Spp(t) (5)
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where Mh0 = Mh(ω = 0). The term Sppmi(t) are considered as the motion-induced forces here. Using the convolution78

theorem, the following definition is obtained:79

Sppmi(t) = −F −1
[(

iω(Mh(ω) −Mh0) + Ch(ω)
)
u(ω)iω

]
=

∫ ∞

−∞

k̃(τ)u̇(t − τ) dτ (6)

The kernel k̃ can be viewed as a memory-type function and is defined as follows:80

k̃(t) =
1

2π

∫ ∞

−∞

(
iω(Mh(ω) −Mh0) + Ch(ω)

)
eiωt dω (7)

A choice is made to establish a time-invariant linear system model, which is required for using the algorithms presented81

in Section 3.1. The formulation in Eq. 5 is interpreted as follows: the terms on the left-hand side constitute a linear system,82

whereas those on the right-hand side are the input forces applied to the linear system. The wave excitation forces and motion-83

induced forces, which work in the same set of DOFs, are collected in the hydrodynamic force vector p(t) = pw(t) + pmi(t). In84

other words, p(t) is by definition the input forces as felt by the moving structure.85

For structures with many DOFs, it is favoured to work with a reduced-order model based on a limited set of vibration modes.86

A modal reduction of the system in Eq. 5 is performed by solving the following eigenvalue problem:87

[Ks +Kh − ω
2
j (Ms +Mh0)]φ j = 0 ( j = 1 . . . nm) (8)

The mass-normalized "wet" mode shape vectors of the nm selected modes are collected in the matrix Φ ∈ RnDOF×nm . Using88

the relation u(t) = Φz(t), the modal transform of Eq. 5 reads as follows:89

z̈(t) + Γż(t) +Ω2z(t) = ΦTSpp(t) (9)

where the structural damping Cs was assumed proportional. Γ ∈ Rnm×nm and Ω ∈ Rnm×nm are both diagonally populated90

with the natural frequencies ω j and modal damping ratios ξ j:91

Ω = diag(ω1, ω2, . . . , ωnm ), Γ = diag(2ω1ξ1, 2ω2ξ2, . . . , 2ωnmξnm ) (10)

We emphasize that the modal properties are inherited from the chosen linear system as defined in Eq. 5. In other words, the92

modal quantities do not correspond to solving the complex eigenvalue problem of the system in Eq. 1, which can be desired for93

frequency-domain studies of floating structures (see, e.g. [24]). A discrete-time state-space representation of Eq. 9 is formulated94

under the assumption of a zero-order hold on the force:95

xk+1 = Axk + Bpk (11)

where the sample rate is set to Fs = 1/∆t. xk is the modal state vector, and pk is the force vector at time instant tk = k∆t96

(k = 0, 1, . . . ,N):97

xk =

z(tk)

ż(tk)

 , pk = p(tk) (12)
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The state transition matrix A ∈ R2nm×2nm and input matrix B ∈ R2nm×np are given as follows:98

A = exp
(  0 I

−Ω2 −Γ

∆t
)
, B = (A − I)

 0 I

−Ω2 −Γ


−1  0

ΦTSp

 (13)

Next, acceleration and displacement measurements are considered. The output vector y ∈ Rnd reads as follows:99

yk = Sdu(tk) + Saü(tk) = Gxk + Jpk (14)

where the boolean matrices Sa ∈ Rnd×nDOF and Sd ∈ Rnd×nDOF select the measured DOFs. G ∈ Rnd×nm and J ∈ Rnd×np denote100

the output influence matrix and direct transmission matrix, respectively:101

G =
[
SdΦ − SaΦΩ

2 −SaΦΓ

]
, J =

[
SaΦΦ

TSp

]
(15)

Zero-mean white noise vectors are added to Eq. 11 and 14, which completes the stochastic state-space representation:

xk+1 = Axk + Bpk + wk (16)

yk = Gxk + Jpk + vk (17)

The following covariance relations describe the process noise wk and measurement noise vk:102

E[wkwT
l ] = Qδkl, E[vkvT

l ] = Rδkl, E[wkvT
l ] = Sδkl (18)

Finally, an additional equation is introduced for the DKF, in which the force evolution is modelled as a random walk:103

pk+1 = pk + ηk (19)

Additionally, ηk is a zero-mean white noise vector. Its prescribed covariance matrix E[ηkη
T
l ] = QPδkl can be viewed as a104

regularization parameter that controls the force magnitude.105

3. Application of filtering methodology106

3.1. Filtering algorithms107

Modelling of complex systems usually involves significant uncertainties on the state variables in addition to the measure-108

ment uncertainties. Deterministic-stochastic techniques are therefore in this study chosen over classic deterministic approaches109

to identification, where typically only measurement noise is considered. Two methods will be used for estimating the response.110

The first method is the aforementioned joint-input state estimation algorithm (JIS) [9, 10]. The second method is the dual111

Kalman filter (DKF) [12]. The equations of the filters are given in Appendix A; for a detailed explanation of the algorithms, we112

refer to the original works [9, 12]. Both methods are based on minimum-variance unbiased estimation of the states and input113

forces. The resulting uncertainty on the obtained estimates is also provided by the algorithms, provided that the (true) noise114

statistics (Q, R and S) are known.115

Some practical differences between the two methods can be mentioned. The DKF is distinguished for its ability to mitigate116

the instabilities that can occur when only acceleration data is available. This comes at the cost of having to specify an additional117
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Figure 4: The FE model of the bridge. The displayed pontoons are non-structural elements for visualization purposes only.

parameter, namely the covariance matrix QP. The JIS makes no prior assumption on the evolution of the forces, which is an118

advantage in the sense that less information on the problem at hand is required prior to filtering. It can however suffer from119

instabilities when only acceleration data is available, which can only be removed by also including displacement or strain data.120

When estimates of the system states (x̂) and forces (p̂) are available from these filtering algorithms, displacements or121

accelerations can be estimated in any DOF using Eq. 20 or 21, respectively:122

ŷk = S′du(tk) = S′d
[
Φ 0

]
x̂k (20)

ŷk = S′aü(tk) = G′x̂k + J′p̂k (21)

where S′d or S′a now selects the considered DOFs, and G′ and J′ can be determined using Eq. 15.123

3.2. System model and sensor network124

There are two triaxial accelerometers at each of the seven pontoons, which means that 42 acceleration outputs are available.125

However, not all the output signals are linearly independent due to the pairwise allocation of the sensors. Seven output signals126

(1N Y, 2N Y, 3N Y, 4N Y, 5N Y, 6N Y and 7N Y) are therefore discarded as redundant data (cf. Fig 2). In addition, the two127

output channels 2S Z and 5S Y are removed to serve as reference outputs. The remaining 33 acceleration channels are included128

in the sensor network. For the JIS, displacement data obtained from double integration of the accelerations are also included in129

the output vector. This means that there are nd=66 and nd=33 total outputs for the JIS and DKF, respectively.130

A finite element (FE) model of the bridge is created in the software ABAQUS; see Fig. 4. This model provides the structural131

mass and stiffness matrices (Ms and Ks). A panel model of the pontoons is created in DNV HydroD WADAM [25], a software132

capable of modelling fluid-structure interaction based on linearized potential theory. The hydrodynamic matrices M(ω), C(ω)133

and Kh are exported from this program. The system model is assembled in MATLAB, where system matrices from the FE134

and hydrodynamic submodels are joined. More details on how floating structures can be modelled in an FE framework are135

provided in [24]. The floating bridge model is updated in the following way: the model is tuned by adjusting mass and stiffness136

parameters, such as elastic moduli, densities and spring constants of the support bearings; see [26] for details. The updating137

objective is to match the natural frequencies and mode shapes of the system in Eq. 1 (i.e. the "full" wet system) to modal138

parameters from a system identification. Note that these modes are complex since the damping in this system is very high due139

to the contribution from C(ω), and also non-proportional. After the model is updated, the modes from Eq. 8 are constructed,140

which are the ones included in the state-space model. These modes are real-valued since proportional damping is assumed for141

the linear system in Eq. 5. Because steel structures are commonly lightly damped, the damping ratio ξ j = 0.5% is assigned to142
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Mode f j [Hz] Type

m1 0.098 H

m2 0.130 V

m3 0.135 V

m4 0.155 V

m5 0.177 H/T

m6 0.198 V

m7 0.223 H/T

m8 0.264 V

m9 0.296 H/T

Mode f j [Hz] Type

m10 0.340 V/H/T

m11 0.343 V/H/T

m12 0.354 H/T

m13 0.396 V

m14 0.474 H/T

m15 0.490 H/T

m16 0.573 H/T

m17 0.615 H/T

m18 0.637 H/T

Mode f j [Hz] Type

m19 0.825 H/T

m20 1.03 H/T

m21 1.14 H/T

m22 1.24 H/T

m23 1.32 V

m24 1.44 V

m25 1.57 V

m26 1.75 V

m27 1.90 V/A

Table 1: Modes of the system in Eq. 8. H=horizontal bending, V=vertical bending, T=torsion, A=axial.

m1

m5

m9

m2

m6

m10

m3

m7

m11

m4

mmm8

m12

Figure 5: Twelve of the mode shapes from the system model used for the input and state estimation.

all of the vibration modes in the linear model. OMA of the bridge shows that the structural damping is in the order of 0.5-1%,143

with a variation of 20-50% [27].144

Model validation is important since inverse problems can be sensitive to model errors. For the present case, the (real) modes145

in the state-space model cannot be directly compared to (complex) modes from a system identification, as the latter ones also146

include the contribution from the frequency dependent mass and damping. In the model updating the average frequency error147

is 2.5% and generally a good representation of the mode shapes is acquired. We therefore think the model errors are reasonable148

low, given the complexity of the structure in this case study.149

Since the wave loading is the main source of excitation, the response is dominated by frequency content below 2 Hz. To150

reconstruct the observed dynamic behaviour, it is therefore decided to include the lowermost nm = 27 modes in the reduced-151

order model. The natural frequencies and mode types are listed in Table 1; a selection of twelve shapes are shown in Fig. 5. All152

the modes are global and thus influence the output. The majority of the modes can be classified as either pure vertical bending153

or, due to the curvature of the bridge, a combination of horizontal bending and torsion.154

3.3. Unknown excitation forces and system invertibility155

Next, the locations of the unknown excitation forces are defined. Wave forces on pontoon bridges are commonly modelled156

in an FE format as three concentrated forces and three concentrated moments acting in the centre of each pontoon; see Fig. 6157
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for an illustration. In feasibility studies of force identification on the Bergsøysund Bridge, numerical simulations showed that158

not all six components have a significant influence on the output [28]. The forces Fy and Fz and the moment Mx govern the159

dynamics of the bridge; thus, the components Fx, My and Mz are neglected (np = 7 × 3 = 21).160

The use of the algorithms in Section 3.1 requires fulfilling fundamental conditions for instantaneous system inversion. The161

conditions are related to the system model and to the sensor network [29]. The requirements that are listed below are necessary162

to fulfil but do not guarantee a successful estimation; they only reflect the estimation feasibility from an algorithmic perspective.163

– System observability is necessary for state estimation and is fulfilled if and only if the matrix [SaΦ SdΦ] has no zero164

columns. Here, the observability condition is fulfilled since all the modes in the model are captured by at least one165

acceleration or displacement output.166

– Direct invertibility ensures that the system can be inverted without time delay, translating to the condition rank(J) = np,167

where J is the direct transmission matrix in Eq. 14. This condition implies that the number of acceleration outputs must168

be greater than or equal to the number of unknown forces (np ≤ nd,a) and that the number of forces cannot exceed the169

number of modes in the model (np ≤ nm). Here, it is readily found that rank(J) = 21 = np.170

– Stability concerns whether a unique system inversion is possible and is governed by the system transmission zeros λ j ∈ C,171

which are solutions of the following equation:172

A − λ jI B

G J


x0

p0

 =
00

 (22)

The presence of transmission zeros means that a unique system inversion is impossible since the force pk = p0λ
k
j (k =173

0, 1, . . . ,N) will not be distinguishable from the output. Here, the system model used for the JIS contains no transmission174

zeros, whereas the zero λ j = 1 occurs for the system model used for the DKF since now only acceleration data are175

included in the output vector. The latter is the case of so-called marginal stability.176

We conclude that response estimation is feasible, while keeping in mind the many practical aspects are not covered by the177

checked conditions (e.g. FE model errors, errors on the locations of the forces or coloured noise).178
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Recording no. 1 2 3

Recording start time Nov. 08 2015 19:56 Nov. 16 2015 05:37 Dec. 30 2015 03:20

Duration [min] 30 30 30

Mean wind velocity [m/s] 12.08, 10.37, 8.23 10.84, 9.11, 8.66 15.64, 14.54, 13.84

SWH [m] 0.61, 0.54, 0.43 0.35, 0.31, 0.26 0.92, 0.81, 0.73

Table 2: Statistics reported for 10 minute intervals for each of the recordings.
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Figure 7: Significant wave height versus standard deviation of the acceleration in the lateral direction (a), vertical direction (b) and torsion (c), measured at the

middle pontoon. The number in parentheses denotes the respective 10-minute interval of each recording.

4. Estimation of the dynamic response179

4.1. Data recordings180

Three recordings are chosen as data sets for the case study. The recordings, which are listed in Table 2, are selected on the181

basis of representing a variety of the ambient load conditions occurring at the site. The statistics in Table 2 are reported for 10182

minute intervals because the fjord areas have shorter periods of stationarity than, for instance, off-shore open waters. Here, the183

listed significant wave heights (SWHs) are approximated as four times the standard deviation of the wave elevation measured184

by the wave radars [30], and the mean wind velocities are reported for the midmost anemometer. The response excitation levels185

are also shown in Fig. 7. The responses should follow a linear trend with the SWH. The observed response is follows a slightly186

steeper than linear trend since the peak period tend to shift down with an increase in SWH. The power spectral densities (PSDs)187

in Fig. 8 show that the wave energy has its highest concentration in the range 0.3-0.5 Hz. For more information on the metocean188

characteristics at Bergsøysundet, see [23].189

All acceleration data are originally sampled at 200 Hz but are filtered below 0.07 Hz and above 1.95 Hz using a Chebyshev190

type II filter and resampled to Fs = 20 Hz (∆t = 0.05 s). The displacement data are generated by a double numerical integration191

of the accelerations and subsequent frequency-domain filtering (Chebyshev type II), removing spurious content below 0.07 Hz.192

The first and last 60 s of the time series are removed to disregard transient filtering content.193

4.2. Tuning of the error covariance matrices194

Next, the choice of covariance parameters for tuning of the filters is discussed. For most practical cases, the errors (or noise)195

are not known a priori. However, a number of techniques or rules of thumb for establishing the covariances can be found in the196
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Figure 8: PSD of the wave elevation for the three recordings taken from the midmost wave radar.

literature. Strategies for filtering out stochastic excitation (e.g. wind) at unknown locations have been proposed [10]. In other197

cases, the covariances can be manually tuned to a level where the results (either state or input estimates) are deemed realistic.198

Here, the following measurement error covariance is assigned:199

R = αR diag(σ2
y,1, σ

2
y,2, . . . , σ

2
y,nd

) (23)

where the scale factor αR = 0.01 is used. Note that the description of the noise processes in Eq. 16-17 only covers white200

noise. In practice, the addition of errors on the FE model and the presence of excitation forces at other locations than the wave201

forces inherently results in coloured noise processes, which the filtering algorithms are not designed to account for. As is the202

case for many practical problems with an uncertain and complicated error picture, the chosen covariance in Eq. 23 can only203

be argued to be a "best practice" solution without a true basis from optimal theory. The following covariance matrix for the204

process noise is assigned:205

Q = I (24)

In comparison, the modal responses are expected to be in the order of 1 − 102 based on (forward) numerical simulations of206

the bridge to wave actions. Note that the presence of errors on the model also implies that in reality S , 0 [31]. However, since207

these errors (and their inherent correlations) are unknown, S is set equal to zero in this application.208

For the DKF, the force covariance is also an important control variable. The following simple force regularization model is209

adopted:210

QP = γP

I14×14 0

0 102 · I7×7

 (25)

where γP is a tuning variable, and a larger step value is assigned to the seven moments, which typically are an order of211

magnitude larger than the forces. L-curve-type approaches are often the go-to option for determining an appropriate amount of212

regularization (see, e.g. [32] for a mathematical description or [5, 12, 33] for practical use). The technique is, however, based on213

cases where the measurement errors are dominant [33]. A "derived L-curve" approach is nevertheless adopted here as a measure214

to determine the influence of the force covariance. Using real data, the DKF algorithm is run repeatedly with several values for215
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γP; Figs. 9a, 10a and 11a show the influence of the force covariance on the fitting of the data using the mean innovation error216

norm ( 1
N+1

∑N
k=0 ||yk −Gx̂k − Jp̂k ||

2
2) as a control metric. Since model errors cannot be neglected for the present case, the curves217

do not resemble the characteristic L-shape (Figs. 9b, 10b and 11b). However, a minimum is observed in the innovation error for218

a given γP value. In the following, the values for γP are respectively chosen as 107.75, 107.0, and 108.0 for the three recordings.219

Compared with the SWHs in the three recordings, the order of difference between the γP values is deemed realistic. Note that220

the filtering algorithms also allow time-varying noise covariance matrices. This can be relevant for cases with non-stationary221

excitation, where the optimal amount of regularization can vary throughout the time series. Although variations in the ambient222

conditions occur, constant covariance matrices are used for each recording in this study.223

4.3. Response prediction224

The accelerations are now reconstructed at the reference sensor DOFs (2S Z and 5S Y) using the algorithms in Section 3.1225

together with Eq. 21. The time series results are shown in Figs. 12, 14 and 16. Table 3 lists the normalized root mean square226

error (NRMSE) for the estimated accelerations, which is calculated using Eq. 26 for each of the two reference channels. From227

Figs. 9c, 10c and 11c, it is observed that the DKF is indeed sensitive to the force regularization but that the innovation error228

minimum generally also corresponds a low NRMSE for reference 5S Y but not for 2S Z. A trend for all the recordings is that229

2S Z experiences significantly higher errors than 5S Y. The effect of the errors can be observed in the PSDs in Figs. 13, 15 and230

17. Here, it is clear that the bridge dynamics is indeed highly complex, as a great amount of modes are observed to contribute231

to the total response. In general, the errors are the largest above 1 Hz, where the acceleration estimates appear to "blow up".232

The JIS is slightly more prone to this ill-conditioning than the DKF.233

The largest errors are observed for the second recording. This result may be explained by the low SWH compared to the234

wind velocity (cf. Table 2). If the wave forces are no longer the dominant source of excitation, this translates to a larger model235

and measurement error. In recordings 1 and 3, the errors are smaller.236

Traffic loading is a disturbance not accounted for in the description of the forces. We however find it unlikely that this is the237

cause of errors in the high frequency range since the errors generally occur through the entire time series. It is also expected238

that very few cars pass the bridge at night, when recording 2 and 3 was taken.239

Acceleration Recording 1 Recording 2 Recording 3

output reference JIS DKF JIS DKF JIS DKF

2S Z 0.703 0.662 1.095 0.820 0.596 0.562

5S Y 0.222 0.252 0.452 0.455 0.200 0.251

Table 3: NRMSE of the estimated accelerations of the two reference DOFs.

NRMSE =

√√√
1

N + 1

N∑
k=0

(yk − ŷk)2

σ2
y

(26)

As discussed in Section 3.2, the model used is calibrated by FE model updating. This calibrated model has a 3-7% difference240

in natural frequencies compared to an uncalibrated one. It is also interesting to see the how an uncalibrated model performs,241

since model updating is not always feasible in all experimental studies. We have therefore also run the analysis with the242
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Figure 9: Influence of force covariance in the DKF for recording 1.
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Figure 10: Influence of force covariance in the DKF for recording 2.
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Figure 11: Influence of force covariance in the DKF for recording 3.
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Figure 12: Estimated acceleration response in recording 1 compared to reference measurements.
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Figure 13: PSDs of the estimated acceleration response in recording 1 compared to the measured reference.
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Figure 14: Estimated acceleration response in recording 2 compared to reference measurements.
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Figure 15: PSDs of the estimated acceleration response in recording 2 compared to the measured reference.
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Figure 16: Estimated acceleration response in recording 3 compared to reference measurements.
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Figure 17: PSDs of the estimated acceleration response in recording 3 compared to the measured reference.
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uncalibrated model as a check. This results in an increase of 1-5% for the errors in Table 3 , meaning that the updating is not243

always imperative for accurate results.244

Since displacement data is included in the output for the JIS, the covariance and gain matrices in the filter equations converge245

to a steady state. When these converged matrices are used for the entire time series the computational time is highly reduced,246

especially for large systems. The computations are performed in MATLAB on a laptop with a quad-core 2.1 GHz processor/16247

GB RAM. Here, each recording (30 minutes or 36000 time steps) is processed in approximately 1 s for the JIS. This means that248

for the present case the JIS can in theory be implemented in online processing of measurement data, where it is necessary that249

the calculation time for each time step in smaller than the sample time step. Even so, a conflict here is that the displacement250

data is obtained from integration of accelerations, which is an offline procedure. Due to the aforementioned transmission zero251

for the DKF (lambda=1), a steady state is not reached in this algorithm. Therefore, each recording requires approximately 10 s252

to process. In addition, if L-curves or other regularization plots are sought, multiple (offline) runs must be performed.253

4.4. Estimation of displacement response254

The displacement response of the bridge is highly important because it dictates, e.g. the dynamic cross-sectional forces and255

strain cycles. Although the bridge was designed to resist fatigue, steel components at the support have been replaced due to256

fatigue damage. Fatigue is known to be a challenging failure mode for marine structures due to the uncertainties related to the257

load environment and the difficulties of applying laboratory data to in-service structures.258

Using Eq. 20, the displacements are now estimated at the middle of the bridge where the GNSS sensor is located. As the259

displacement data are included in the output vector for the JIS, no further (frequency domain) filtering of the state estimates is260

required. Although the system inversion is marginally stable for the DKF (cf. Section 3.3), no spurious low-frequent instabilities261

("drift") in the state estimate are encountered.262

Recording 2 is discarded in this section since the excitation is too small for the GNSS sensor to provide meaningful data.263

Figs. 18 and 20 present comparisons of the displacement estimates to the independent GNSS measurements for recordings264

1 and 3. The GNSS signal contents below 0.07 Hz and above 1.95 Hz are also filtered out to isolate the modal dynamics.265

However, from the PSD plots in Figs. 19 and 21, it is clear that the GNSS data contain a substantial amount of noise throughout266

the frequency range of interest. For both considered recordings, the largest peak in the PSD is observed at 0.3-0.4 Hz, which267

corresponds well to the peak wave periods registered by the wave radars (Tp = 2.64 s and 3.15 s, cf. Fig. 8). For frequencies268

higher than 0.4 Hz, only a few peaks can be distinguished in the GNSS data (ca. 0.50 Hz and 0.85 Hz), and the response energy269

level is barely sufficient to penetrate the noise floor. In addition, satellite-based position data typically have less accuracy for270

the vertical (Z) component, which is why the lateral (Y) measurements generally have the highest signal-to-noise ratio (SNR).271

No quantification of the filter performance is presented here because the GNSS noise corrupts any meaningful error metric. In272

the time domain, a good correspondence between the GNSS measurements and displacement estimates can be observed for273

the lateral direction (Figs. 18d and 20d), but the SNR is generally too small in the axial and vertical components for the same274

conclusion to be drawn. However, both the JIS and DKF are able to capture the dynamics of the dominant frequency band at275

0.3-0.4 Hz. Although both filter estimates are similar below 0.4 Hz, for higher frequencies, discrepancies are found. This result276

can be traced to the higher-order modal dynamics contained within the state estimates, which is generally more sensitive than277

the lower modes to the chosen covariance matrices. Therefore, the discrepancy should not be given too much emphasis. The278
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Figure 18: Estimated displacement history in recording 1 compared to GNSS measurements.
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Figure 19: PSDs of the estimated displacements in recording 1 compared to GNSS measurements.
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Figure 20: Estimated displacement history in recording 3 compared to GNSS measurements.
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Figure 21: PSDs of the estimated displacements in recording 3 compared to GNSS measurements.
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response magnitude in the high-frequency range is however very small compared to the overall peak magnitude; thus, the two279

filters yield very similar temporal results.280

The results presented here generally agree with previous assessments of the performance of the GNSS sensor [23], where281

it was concluded that the satellite-based data have a significant noise floor. Large amplitude excitation is therefore required282

for a high SNR. This can be observed in the first ten minutes of recording 1 or throughout recording 3, for example. In these283

time periods, the best match of the peaks and valleys is acquired. Note that these levels of response, i.e. amplitudes above284

10 cm, are among the largest observed over the course of one year of monitoring [23]. Certainly, the results indicate that285

the implementation of dynamic GNSS measurements as a validation tool can be suitable for more flexible structures, such as286

long-span suspension bridges.287

5. Conclusion288

This paper presented a case study of full-field response estimation on the Bergsøysund Bridge, which is a long-span pontoon289

bridge that is excited mainly by wave forces. The dynamic response was estimated using two well-established filter algorithms290

for state and input estimation, which utilize a reduced-order system model and measured acceleration data. Three different data291

recordings with varying ambient conditions were used in the analysis. It was found that the accelerations can be reconstructed292

at unmeasured locations with moderate errors. The errors generally increase when the wave forces on the pontoons are not the293

dominant source of excitation. In the validation of the displacement estimate, it was shown that for large amplitude excitation,294

the filter estimates agree well with the motion measured by an independent GNSS sensor. For small excitation levels, the sensor295

noise in the GNSS inhibits proper validation.296

Overall, the results confirm that the presented methodology is applicable to large-scale structures with a highly complex297

dynamic behaviour. However, the studies indicate that the use of inverse methods on these structures still has many practical298

challenges. In particular, model errors and stochastic excitation at unknown locations remain as adverse sources of error for the299

estimated response.300
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Appendix A303

Joint input-state estimation:304

Initial quantities:

State estimate: x̂0|−1 (A.1)

State error covariance: P0|−1 (A.2)
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Input estimation:

R̃k = GPk|k−1GT + R (A.3)

Mk = (JTR̃−1
k J)−1JTR̃−1

k (A.4)

p̂k|k =Mk(yk −Gx̂k|k−1) (A.4)

Pp[k|k] = (JTR̃−1
k J)−1 (A.5)

Measurement update:

Lk = Pk|k−1GTR̃−1
k (A.6)

x̂k|k = x̂k|k−1 + Lk(yk −Gx̂k|k−1 − Jp̂k|k) (A.7)

Pk|k = Pk|k−1 − Lk(R̃k − JPp[k|k]J
T)LT

k (A.8)

Pxp[k|k] = Ppx
T
[k|k] = −LkJPp[k|k] (A.9)

Time update:

x̂k+1|k = Ax̂k|k + Bp̂k|k (A.10)

Nk = ALk(I − JMk) + BMk (A.11)

Pk+1|k =

[
A B

]  Pk|k Pxp[k|k]

Ppx[k|k] Pp[k|k]


AT

BT

 +Q − NkST − SNT
k (A.12)

Dual Kalman filter:305

Initial quantities:

Force estimate: p̂0 (A.13)

Force error covariance: Pp
0 (A.14)

State estimate: x̂0 (A.15)

State error covariance: P0 (A.16)

Prediction of the input:

p−k = pk−1 (A.17)

Pp−
k = Pp

k−1 +QP (A.18)

Kalman gain and filter estimate for the input:

Gp
k = Pp−

k JT(JPp−
k JT + R)−1 (A.19)

p̂k = p−k +Gp
k (yk −Gx̂k−1 − Jp−k ) (A.20)

Pp
k = Pp−

k −Gp
k JPp−

k (A.21)
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Prediction of the state:

x−k = Ax̂k−1 + Bp̂k (A.22)

P−k = APk−1AT +Q (A.23)

Kalman gain and filter estimate for the state:

Gx
k = P−k GT(GP−k GT + R)−1 (A.24)

x̂k = x−k +Gx
k(yk −Gx−k − Jp̂k) (A.25)

Pk = P−k −Gx
kGP−k (A.26)
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