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Detecting Majorana nonlocality using strongly coupled Majorana bound states

S. Rubbert and A. R. Akhmerov
Kavli Institute of Nanoscience, Delft University of Technology, P.O. Box 4056, 2600 GA Delft, The Netherlands

(Received 3 March 2016; revised manuscript received 27 May 2016; published 22 September 2016)

Majorana bound states (MBS) differ from the regular zero energy Andreev bound states in their nonlocal
properties, since two MBS form a single fermion. We design strategies for detection of this nonlocality by using
the phenomenon of Coulomb-mediated Majorana coupling in a setting which still retains falsifiability and does
not require locally separated MBS. Focusing on the implementation of MBS based on the quantum spin Hall
effect, we also design a way to probe Majoranas without the need to open a magnetic gap in the helical edge
states. In the setup that we analyze, long range MBS coupling manifests in the h/e magnetic flux periodicity
of tunneling conductance and supercurrent. While h/e is also the periodicity of Aharonov-Bohm effect and
persistent current, we show how to ensure its Majorana origin by verifying that switching off the charging energy
restores h/2e periodicity conventional for superconducting systems.

DOI: 10.1103/PhysRevB.94.115430

I. INTRODUCTION

The ability to create, detect, and manipulate Majorana
bound states (MBS) is one of the current research goals of
condensed matter physics. MBS are the simplest non-Abelian
anyons, and a potential building block of a noise-tolerant
quantum computer [1–3]. The experiments so far focus on
identifying local properties of MBS, such as the zero bias
peak in conductance [4], the 4π -periodic Josephson effect
[5,6], or the local maximum in the zero energy density of
states [7]. Observing the local signatures of MBS cleanly is
an important milestone, but it has its limitations since known
local signatures of MBS can be mimicked by regular Andreev
bound states subjected to sufficient fine-tuning. For instance,
a topologically protected level crossing responsible for the
4π -periodic Josephson effect can be indistinguishable from
an unprotected avoided level crossing [8], and a zero bias peak
may have nontopological origins [9,10].

Therefore, an unambiguous detection of Majorana fermions
requires detecting their nonlocal properties in a falsifiable
manner. Braiding statistics of MBS can serve as one such
experiment, but even a minimal braiding setup [11] requires
time domain manipulation of a complicated superconducting
circuit hosting six MBS, or of a large array of gate voltages
[12].

Another consequence of the nonlocal nature of MBS is
their transport property called electron teleportation [13],
discovered by Fu. It occurs in superconducting islands hosting
MBS and having a finite charging energy. If there are leads
coupled to the MBS, Majorana teleportation provides coherent
transport of single fermionic excitations between the leads.
The direct signatures of electron teleportation include the
period doubling of a Fabry-Pérot interferometer [13,14] and
the periodicity change of the ground state energy of a ring
made out of a topological superconductor [15]. More advanced
consequences of electron teleportation are the appearance of a
high symmetry Kondo problem in multilead scattering off an
island hosting MBS [16] and exotic many-body phases of a
network of such islands.

A simple physical interpretation of the electron teleporta-
tion is the appearance of an extra term in the Hamiltonian
proportional to in/2 ∏n

0 γi in the presence of charging energy

[17]. In other words, the charging energy couples all the MBS
γi belonging to the island. If there are only two MBS present,
this coupling becomes identical to a direct overlap of low
energy quasiparticle wave functions in a superconductor due to
finite size effects. In other words, charging energy coherently
transports a single fermion from one MBS to another. Since it
does not require a direct wave function overlap, it is nonlocal.
A falsifiable detection of this nonlocal coupling therefore
requires verification that it is coherent, that it is single fermion
transport, and that it is not arising due to an actual wave
function overlap.

The aim of our work is to present and analyze a setup
that allows one to detect this coupling while not having any
unnecessary ingredients. Our proposed setup has an additional
counterintuitive benefit of not requiring creation of decoupled
MBS, unlike required in the previous proposals [13,14].
This makes our setup perfectly suited for quantum spin Hall
insulator (QSHE)–superconductor hybrid structure [5], where
isolation of MBS requires creation of magnetic tunnel barriers
and remains an open experimental challenge. In addition our
setup allows one to distinguish the electron teleportation from
local coupling through the superconductor, therefore providing
the falsifiability of the effect.

II. SETUP

A. System layout and qualitative arguments

We begin by considering each requirement for detection
of the nonlocal coupling and arguing how to achieve it in the
simplest fashion. Once again: we aim to design a setup that
has to detect coherent transport of single fermions through a
topological superconductor. Additionally it has to ensure that
the origin of this transport is not due to quasiparticle current
caused by a normal conduction channel.

Coherence of quasiparticle transport is most directly
checked by a two-path interferometer. In order to test the
electron teleportation, one arm must include the topological
superconductor hosting MBS, while the other reference arm
should be a normal region. The coherence of quasiparticle
transport through such an interferometer manifests in periodic

2469-9950/2016/94(11)/115430(5) 115430-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.115430


S. RUBBERT AND A. R. AKHMEROV PHYSICAL REVIEW B 94, 115430 (2016)

dependence of observed properties on the magnetic flux
threaded through it.

The charge of the interfering particle manifests in the flux
periodicity of the interferometer’s conductance and spectrum.
Therefore, in the presence of a conduction channel for single
fermionic quasiparticles we expect an h/e periodicity of the
observed signal, or Aharonov-Bohm effect. This allows us to
distinguish fermion transport from Cooper pair transport flux
dependence with period h/2e that corresponds to Josephson
effect [18–20].

The 4π -periodic Josephson effect arising from a fermion
parity anomaly [5] may obscure the nonlocal coupling by
creating a signal with the same periodicity. To suppress this
effect, the interferometer must be coupled to a normal metallic
reservoir draining out of equilibrium fermionic excitations.
On the other hand, the coupling of the superconductor to
an external reservoir cannot have high transparency, since
then a low RC-time suppresses the Coulomb blockade and
the nonlocal coupling. These two requirements are satisfied
if a tunnel junction is present between the superconductor
and the normal reservoir. In the setups of Refs. [13,14]
the tunnel barrier separates the two interferometer arms and
suppresses the coupling strength EM through the reference
arm. Locating the tunnel barrier directly between the normal
interferometer arm and the metallic lead avoids the coupling
strength suppression and simplifies the setup [21].

The final requirement our setup should satisfy is the need
to rule out the conventional quasiparticle transport through the
nontrivial part of the interferometer. Since the quasiparticle
transport appears also without Coulomb energy, suppressing
the latter and observing disappearance of the h/e interference
signal allows one to conclude that the interference is of
nonlocal origin. We propose to use a standard technique [22]
to controllably suppress the Coulomb energy EC by adding a
flux- or gate-tunable [23] Josephson coupling EJ between the
nontrivial interferometer arm and a superconducting reservoir.
This leads to a renormalization [22] of the effective charging
energy ẼC ∝ exp(−√

8EJ/EC) when EJ � EC .
We arrive at the setup shown in Fig. 1, that consists of an

interferometer coupled to a normal lead by a tunnel junction
and a superconducting lead by a tunable Josephson junction,

FIG. 1. Setup consists of a QSHE insulator (dark gray) with
its edge (dashed line) partially covered by a superconducting ring.
The proximity-induced gap in the QSHE edge forms two hybridized
MBS at the part of the edge not covered by the superconductor. A
tunable Josephson junction couples the superconducting ring to the
superconducting lead. Finally, the normal lead weakly couples to the
quantum spin Hall edge in the junction region.

for example a dc-SQUID. Every element in this system may
only be replaced and not removed because all of them have a
separate role in detection of nonlocal signatures of MBS. The
effective low energy Hamiltonian of this system is

Heff = iγ1γ2[EM cos(π�/�0) + ẼC cos(πnI )]

≡ iγ1γ2�E, (1)

with γ1,γ2 the Majorana operators, nI the induced charge
of the interferometer, � the flux through it, and �0 = h/2e

the superconducting flux quantum. When ẼC is finite, the
spectrum of this Hamiltonian is h/e-periodic in �, but it
becomes h/2e-periodic when ẼC is suppressed by increasing
EJ. A corresponding Hamiltonian of a trivial Josephson
junction containing a single Andreev bound state has a form
H = [EJ (�) + EC]a†a, where EJ is a h/2e-periodic function
of � and a is the annihilation operator of the Andreev bound
state, so that its periodicity is always constant. Quasiparticles
tunneling through the superconductor give rise to a term
itSCγ1γ2 with tSC the tunneling amplitude, and keep the
spectrum h/e-periodic regardless of ẼC . As we will show
in more detail, measuring either the supercurrent circulating
in the interferometer or the conductance between the normal
and the superconducting leads as a function of flux reveals
the periodicity of the spectrum and provides an observable
signature of the nonlocal properties of Majorana fermions.

B. Effective Hamiltonian

The effective Hamiltonian of the Coulomb Majorana
interferometer of Fig. 1 is

H = HCPB +
∑
k,σ

ε(k,σ )c†k,σ ck,σ + Hc. (2)

Here HCPB is the Cooper pair box Hamiltonian:

HCPB = EC(−2i∂φ + nI + p/2)2 − EJ cos φ

− EMp cos(π�/�0), (3)

and Hc is the coupling Hamiltonian between the Cooper pair
box and the normal lead

Hc =
∑
k,σ

[
ck,σ ei(1−p)φ/2(tσ,1γ1 + tσ,2γ2) + H.c.

]
. (4)

Here φ is the superconducting phase of the island, and p =
iγ1γ2 is the fermion parity of the interferometer. Finally, the
tunnel coupling between the lead modes and the MBS is tσ,i ,
and it may depend on φ.

Rewriting the Hamiltonian in the eigenbasis of the Cooper-
pair box yields:

HCPB = E�(p,b†b), (5a)

Hc =
∑
k,σ,n

[ck,σ (tσ,1γ1 + tσ,2γ2)[ξ+
n (p,b†b)(b†)n

+ ξ−
n (p,b†b)bn] + H.c.], (5b)

ξ±
n (p,m) ≡ 〈m ± n, − p|ei(1−p)φ/2|m,p〉. (5c)

Here we introduced the eigenenergies of the Cooper-pair
box E�(iγ1γ2,b

†b) and the ladder operators of the Cooper-
pair box b and b†. An electron/hole tunneling into the
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superconducting ring can create excitations in the Cooper-pair
box. In Eq. (5) this is expressed by the transition amplitudes ξ

between the states |n,p〉, with n the number of Cooper-pair
box excitations and p its fermion parity. In the following
we calculate ξ and E(iγ1γ2,b

†b) numerically (for details of
our numerical calculations see the Supplemental Material [24]
available with the manuscript).

III. READOUT

A. Zero bias conductance

The observable steady-state properties in this system, such
as conductance, in general have the same flux periodicity as
the spectrum, and therefore should exhibit signatures of the
nonlocal coupling. However, evaluating conductance at an
arbitrary bias is an involved task and to simplify the calculation
we focus on the zero bias. Since the quasiparticle lifetime
in the interferometer is bounded from above by the inverse
coupling to the lead, simultaneous tunneling events of multiple
quasiparticles are suppressed at voltages eV � |t |. Therefore,
in this regime we may project the Hamiltonian onto the Hilbert
space of a single fermionic excitation in order to simplify the
problem. The basis states of the single fermion Hilbert space
are

|k,σ,e〉 = c
†
k,σ |gslead〉 ⊗ |gsring〉, (6a)

|k,σ,h〉 = ck,σ |gslead〉 ⊗ |gsring〉, (6b)

|n〉 = (γ1 + pgsiγ2)(b†)n|gslead〉 ⊗ |gsring〉. (6c)

Here |gslead〉 and |gsring〉 are the ground states of the lead
and the superconducting ring and pgs = 〈gsring|p|gsring〉. The
indices e and h correspond to the electron and hole excitations.
Projecting the Hamiltonian of Eq. (5) on the basis states of
Eq. (6) we obtain

Hsqp =
∑
k,σ,τ

|k,σ,τ 〉τzε(k,σ )〈k,σ,τ |

+
∑

n

|n〉E�(−pgs,n)〈n|

+
∑

k,σ,τ,n

[|n〉χn(pgs,τ )〈k,σ,τ | + H.c.], (7)

with

χn(p,τ ) = 〈n|Hc|k,σ,τ 〉. (8)

Because of the doubling of degrees of freedom, χ also depends
on the particle-hole index τ , even though the previously
defined ξ does not.

We use the Mahaux-Weidenmüller formula to calculate the
scattering matrix:

S = 1 + iπW †( ∑
n |n〉E�(−pgs,n)〈n| − E

)−1
W

1 − iπW †
( ∑

n |n〉E�(−pgs,n)〈n| − E
)−1

W
. (9)

Here E is the quasiparticle energy, and W is the coupling to
the leads

W = √
ρ

∑
σ,τ,n

|n〉χn(pgs,τ )〈kE,σ,τ |, (10)

−1 −0.5 0 0.5 1
Φ/Φ0

0

2

G
/G

0 ẼC

2πEM

ẼC

2πEM

EJ = 0.5EC EJ = 10EC

FIG. 2. Conductance of the interferometer of Fig. 1 as a function
of magnetic flux through the superconducting ring. It has an h/e

periodicity if the effective charging energy ẼC is not suppressed.
This numerical calculation follows Appendix A, where more than
one excited state of the Cooper-pair box was taken into account.

with ρ = (dε/dk)−1 the density of states in the lead and kE

the momentum of excitations at energy E.
The differential conductance of the device is G =

2G0‖She‖2, with G0 = e2/h the conductance quantum. If the
tunneling amplitude is much smaller than the level spacing in
the ring, HS is well approximated by truncating it to the two
lowest energy states with opposite fermion parity. It yields the
conductance of a resonant Andreev level

G = 2G0

1 + �E2/(π2‖W‖4)
, (11)

with �E the splitting between the Majorana states, given
by Eq. (1). The resonant peaks appear when �E = 0, and
therefore they have h/2e periodicity in absence of the nonlocal
coupling ẼC that changes into h/e when ẼC � ‖W‖. Andreev
conductance calculated using the full excitation spectrum of
the ring (see Appendix A) is shown in Fig. 2, and it qualitatively
agrees with the behavior of the two-level system. Since the flux
dependence of the tunneling amplitudes has to have a period
of h/2e, it does not impact our result.

B. Supercurrent

Supercurrent carried by the interferometer in its ground
state is also sensitive to the h/e periodicity of the Hamiltonian.
It can be measured using SQUID magnetometry [25], and is
thus an alternative pathway to observe the nonlocal coupling of
Majoranas in the same interferometer. The current with h/e pe-
riodicity in the interferometer is an equilibrium phenomenon,
and therefore different from the 4π -periodic Josephson effect,
which is a nonequilibrium effect appearing due to a fermion
parity anomaly. Since the coupling to the normal lead breaks
the fermion parity conservation, it also suppresses the 4π -
periodic Josephson effect in the interferometer.

We calculate the supercurrent in the ring using the definition

I = ∂Egs

∂�
, (12)

with Egs the ground state energy of the interferometer
including the lead. We obtain Egs by integrating the density of
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−1 −0.5 0 0.5 1
Φ/Φ0

1

0

−1

I
h̄
/e

E
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ẼC

2πEM

ẼC

2πEM

EJ = 0.5EC EJ = 10EC

FIG. 3. Supercurrent response of the interferometer of Fig. 1 to
a magnetic flux through the superconducting ring. The current-flux
relationship has a period of h/e if the effective charging energy is
not negligible (black solid line). The Josephson h/2e periodicity is
restored when ẼC is suppressed by a large EJ. The supercurrent
vanishes near the level crossing of the even and odd parity ring states;
the low energy spectrum is symmetric around that flux.

states

∂n

∂E
= 1

2π
Im Tr

∂S
†
αβ

∂E
Sαβ (13)

over negative quasiparticle energies (see Appendix B for
details). The resulting current-flux relationship is shown in
Fig. 3, and in agreement with our expectations we observe
that a finite effective capacitive energy makes supercurrent
h/e-periodic.

C. Parameter value estimation

The Majorana coupling in a short junction is comparable to
the induced superconducting gap, EM ≈ � [5]. Maximizing
EM is unfavorable for the observation of nonlocal coupling
since the magnitude of the h/e-periodic component is pro-
portional to ẼC/EM. This argument together with the high
availability of Al make it the optimal superconductor for
observing the nonlocal coupling, and hence we use EM ≈
�Al ≈ 0.1 meV.

We assume that the capacitance is dominated by the cou-
pling between the superconductor and the backgate required to
tune the quantum spin Hall device into the insulating regime.

If the superconducting ring has a circumference L = 3 μm,
width w = 0.1 μm, the distance to the gate is d = 0.1 μm,
and the gate dielectric has εr = 10, then the capacitance C =
ε0εrLw/d ≈ 1.8 fF, or EC ≈ 0.1 meV. The bare Coulomb
energy is comparable to EM, and therefore the Josephson
energy should change within a range between Emax

J � 10EC

and Emin
J � EC .

Finally, the coupling strength of the normal lead to the MBS
needs to be smaller than the energy scales EM and ẼC , since
otherwise the ground and excited states are overlapping due to
level broadening.

IV. SUMMARY

Due to the experimental progress towards the controllable
creation of MBS, the planning of next steps in coherent
control of MBS becomes a timely and relevant question.
The currently existing proposals include braiding [11], a
simpler nontopological qubit rotation [26], or a Bell inequality
violation [27]. We have developed an alternative measurement
aiming to probe the nonlocal properties of MBS focusing
on simplicity and falsifiability. While being applicable to
any implementation of MBS, our proposal has an additional
advantage in quantum spin Hall devices, because it does not
require spatial separation of MBS or inducing a magnetic gap
in the edge states.

Our proposed setup is a Coulomb Majorana interferometer
that measures a known phenomenon of Majorana teleporta-
tion through appearance of Aharonov-Bohm periodicity of
conductance or supercurrent. According to our estimates such
an interferometer can be made using existing fabrication
techniques and provide a sufficiently strong nonlocal signal.
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APPENDIX A: MULTIPLE COOPER-PAIR BOX STATES

We relax the restriction of Sec. III A that only takes one
excited TSC ring state into account by considering the full
spectrum of the Cooper-pair box. This yields

∑
σ,σ ′

|Se,h,σ,σ ′ |2 =
∑
σ,σ ′

∣∣∣∣∣
∑
n,n′

4Wn,σ,eW
∗
n,σ ′,hWn′,σ,eW

∗
n′,σ ′,h(

i
π
Hn + ‖Wn‖2

)(−i
π

Hn′ + ‖Wn′ ‖2
)
∣∣∣∣∣, (A1)

with Hn = E�(−pgs,n) and Wn is the nth row of W . Since the relative phases between Wn,σ,τ and Wn,σ ′,τ ′ do not depend on n,
we interchange the absolute value and the sum, arriving at

∑
σ,σ ′

|Se,h,σ,σ ′ |2 =
∑
n,n′

4
∑

σ,σ ′ |Wn,σ,eWn,σ ′,hWn′,σ,eWn′,σ ′,h|√(
1
π2 E2 + ‖Wn‖4

)(
1
π2 H

2
n′ + ‖Wn′ ‖4

) =
∑
n,n′

‖Wn‖2‖Wn′ ‖2√(
1
π2 H 2

n + ‖Wn‖4
)(

1
π2 H

2
n′ + ‖Wn′ ‖4

) . (A2)

Each of the excited states of the ring yields a Lorentzian contribution to the conductivity. In addition there are interference
contributions for n �= n′ that are suppressed if |Hn − Hn′ | � ‖Wn‖2 or |Hn − Hn′ | � ‖Wn′ ‖2.
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APPENDIX B: MAGNETIC RESPONSE

In this section we calculate the interferometer magnetic response, shown in Fig. 3. The ground state energy E = E0 + E1

has contributions E0 and E1 from the lowest even and odd parity states (we neglect higher energy states). We find E0 and E1 by
calculating the local density of states in the ring using Eq. (13) and integrating over the energy of all occupied states

E0 =
∫ 0

−∞
(E + H0) Re

[
1 − 2πi‖W‖2(H1 − H0 − E + iπ‖W‖2)−1

‖W‖2(H1 − H0 − E − iπ‖W‖2)2

]
dE, (B1)

E1 =
∫ 0

−∞
(E + H1) Re

[
1 − 2πi‖W‖2(H0 − H1 − E + iπ‖W‖2)−1

‖W‖2(H0 − H1 − E − iπ‖W‖2)2

]
dE. (B2)

Here H0 and H1 are the energies of the ring without level broadening. The expressions are equivalent, except for interchanging
H0 and H1. We calculate the supercurrent using the definition I = (2e/�)∂�E, so we need to calculate

∂φE0 = ∂φ

∫ H0−H1

−∞
(E + H1)

[ ‖W‖2

E2 + π2‖W‖4

]
dE. (B3)

Evaluating this integral and summing the contributions of both states yields

∂φE = ‖W‖2(∂�H0 − ∂�H1)(H0 − H1)

(H0 − H1)2 + π2‖W‖4
+ (∂�H1 − ∂�H0)

1

π
arctan

(
H0 − H1

π‖W‖2

)
+ 1

2
(∂�H1 + ∂�H0). (B4)
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