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a b s t r a c t

Renewable energies and electrical loads usually show short-term variations in their energy profiles and
they need to be precisely modeled in terms of time-scale and uncertainty. Correlation of time-scale,
uncertainty, and simulation time must be studied to make an optimal tradeoff between these parame-
ters. This paper aims to deal with this issue and it studies the correlation of time-scale and uncertainty in
the renewable energy simulation. The different time scales including 15, 30, and 60min are modeled and
simulated. Uncertainty of electrical loads and wind energy are also incorporated. The introduced model is
simulated and investigated on a typical building for energy management. Energy management tool is
simulated under multiple time-scale patterns and wind-load uncertainty. The model is expressed as
mixed integer stochastic programming and results confirm that considering shorter time-scale results in
more precise outputs. It is demonstrated that 30, 15, and 5-min time-scale reduce the cost about 5, 3, and
0.8%, respectively. But they increase the simulation time about 100, 200, and 300%, respectively. As a
result, 15-min time-scale is considered as the best case because it keeps both simulation time and model
accuracy on the acceptable level. It is also shown that uncertainty in model increases the cost about 22%
and reduces load by 10% and decreases the cost about 38%.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy resources (RESs) are cost effective and have
been studied in different problems of electrical systems. The power
flow (Morales et al., 2010), electricity market (Zhechong and Lei,
2014), network stability (Remon et al., 2017), microgrids (Wang
et al., 2018), home energy systems (Keskin Arabul et al., 2017),
network expansion planning (Villumsen et al., 2013), unit
commitment (Wang et al., 2017), economic dispatch (Azizipanah-
Abarghooee et al., 2016) are the well-known problems that have
been addressed including RESs. The autonomous and off-grid sys-
tems (Yi et al., 2017) often installs RESs to supply their load demand
(Maleki, 2018).

Together with developing penetration level of RESs, the demand
for short-scale forecasting and modelling of RESs is increased. In
this regard, the minute-scale operation is presented as an efficient
ngineering, Qatar University,

. Mehrjerdi), E.rakhshani@
technique to model wind energy (Würth et al., 2019). The multiple
time scale simulation of solar system is addressed by
(Chirapongsananurak and Santoso, 2017), where the steady-state,
electro-mechanical transient, and electro-magnetic transient are
simulated. The short term wind energy forecast is often addressed
by optimization methods or neural networks (Li et al., 2018). The
solar energy is forecasted by application of statistical methods or
artificial neural networks (Sheng et al., 2018). The forecasting not
only is applied for RESs but also is used for the other parameters
such as electricity prices and loads (Bento et al., 2018).

However, forecasting methods always come with an error and
their forecasted data may not match exactly the real data. Such
systematic error must be modeled and considered in the problems.
This error is known as renewable uncertainty and it is modeled by
probability methods (Salkuti, 2019). There are various methods to
deal with renewable uncertainty such as stochastic programming,
robust programming, point estimated method, chance constrained
programming, and fuzzy theory (Peng et al., 2015).

The typical time-scale for simulating electrical energy systems is
one hour (60-min). This time-scale is widely adopted to model
electrical loading (Mehrjerdi, 2019b), solar energy (Liu et al., 2019),
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Nomenclature

Cy;t
E Energy cost ($/kWh)

f ðVr;y;t
s Þ Function showing the relationship of wind speed

and wind turbine output power
It Duration of time interval (Minute)
Iy Duration of season (Day)
Pr;y;tL Power of load (kW)
Pr;y;tN Traded power between building and grid (kW)
PLimit
N Thermal limit of line power (kW)

Pr;y;tW Power of wind turbine (kW)
Pmax
W Wind turbine maximum power (kW)

Qr Probability of scenario
r;R Index of scenarios, Set of scenarios
t;T Index of time intervals, Set of time intervals
Vr;y;t
s Wind speed (m/s)

Vci
s Cut-in speed of wind turbine (m/s)

Vr
s Rate speed of wind turbine (m/s)

Vco
s Cut-out speed of wind turbine (m/s)

y;Y Index of seasons, Set of seasons
F Annualized energy cost ($/year)
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Fig. 1. Various time-scale modelling for simulation of loads and energy systems.
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hydro energy (Norouzi et al., 2014), wind energy (Abbey and Jo�os,
2009), and energy storage systems (Moradi et al., 2017). However,
some parameters such as thermal loads needs shorter time-scale
modelling. The thermal systems may be modeled with minute-
scale models (Pan et al., 2016). The fast-ramping generation sys-
tem similarly needs time-scalemodelling about minutes (Kargarian
et al., 2016). The power system operation under such fast ramping
RESs are the other systems that models short time scales (Cui et al.,
2017). Electric vehicles operation is one of the models that needs
short time-scales, e.g., 15-min (Luo et al., 2018; Mehrjerdi and
Rakhshani, 2019). The electric vehicle charging stations also oper-
ate based on short time-scale models (Mehrjerdi, 2019b).

Considering different time scales for simulating may make im-
pacts on electrical energy systems such as operation of networks,
micro-grids (Firouzmakan et al., 2019), home energy management,
planning of networks, renewable and energy storage operation,
distributed energy storage systems, and mobile modeling of energy
resources (Saber et al., 2018).

Energy management system in the buildings is an optimization
programming that is thoroughly associated with time-scale
modeling of the loads and energy systems (Yang et al., 2019). This
tool deals with energy generation and consumption in the building
in order to minimizing the energy cost or maximizing efficiency of
the available energy resources (Mehrjerdi, 2019a). There are
various models and methods to deal with such issues that are
presented through home energy management system. The home
energy management system has been investigated considering
various energy resources (Yang et al., 2018), loads (Beaudin and
Zareipour, 2015), uncertainty management methods (Huang et al.,
2016), demand response programs (Shirazi and Jadid, 2017) and
energy storage systems (Mehrjerdi, 2019c).

1.1. The knowledge gap and contributions of the paper

Time-scale and uncertainty are the inseparable and key pa-
rameters in the modelling and simulation of RESs and electrical
loads. RESs have short-term fluctuations and their performance
must be accurately modeled in terms of time-scale and uncertainty.
The optimal tradeoff needs to be performed between time-scale,
uncertainty, and simulation time. The simulation results without
considering such correlations may not match the realistic. In order
to address these issues, this paper presents and analyses the mul-
tiple time-scale models for simulation of electrical energy systems.
The purpose is to demonstrate the impacts of time-scale modelling
on simulation of the energy systems. A building equipped with
electrical load and wind turbine is developed as test case. The daily
profile for electrical load, wind energy, and electricity price is
modeled based on 24-h period. Three different time scales are
adopted and simulated including 15, 30, and 60-min. The un-
certainties of the loads and wind energy are incorporated in the
model through stochastic programming. The annualized energy
cost of the building is minimized considering the proposed time-
scale patterns and uncertainties. The model is expressed as mixed
integer stochastic programming and solved by GAMS software. The
numerical results verify that the time-scale is an efficient param-
eter to model the energy-load profiles and considering shorter
time-scale provides more precise results. The correlation between
time-scale and uncertainty is also investigated.

The main contributions of the paper are highlighted as follows;

✓ Investigating the correlations of time-scale, uncertainty, and
simulation time.

✓ Finding optimal model to keep both time-scale and simulation
time on the acceptable levels.

✓ Simulating the RESs and electrical loads by the given mode.
✓ Simulating the derived model on a typical test system.
2. Multiple time-scale model

The proposed concept presents the flexible time-scale model-
ling for energy and load profiles. As shown in Fig. 1, there are three
different time-scales to model the daily profile. The first time-scale
uses 60-min time intervals. In this model, the system is not flexible
and it is not possible to model the short term alterations of the
loads and energy systems. The second approach uses 30-min time
intervals and brings more flexibility to the model. The last item
models the daily profile by 15-min time intervals. All the intro-
duced paradigms have been used in the electrical systems to model
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the loads and energy profiles. Their accuracy is simulated and
studied in the current paper through proper comparison (Würth
et al., 2019).

One of the main issues related to the time scale modelling is
uncertainty. The load and energy profiles are forecasted based on
the historical data. But the forecasted data always include errors.
Considering shorter time scale profiles for forecasting often pro-
vides more errors but considering wider periods such as one-hour
time scale may provide less errors. This systematic error must be
modeled and considered in the problems. As a result, it is useful to
evaluate the impacts of time-scale modeling and uncertainty on
each other. In this respect, this paper models the correlation of
time-scale and uncertainty in simulation of RESs and loads. In order
to show the impacts of time-scale modeling on the problem, three
different time-scales are modeled and uncertainties of loads-wind
energy are incorporated.
Building energy
management tool

Elec trical
Grid

Load Demand

Wind Energy

Parametric Uncer tainty

Multiple Time-Scale Models

Fig. 2. Building powered by wind-grid under uncertainty and multiple time-scale
model.

Table 1
Seasonal profile for load power and wind energy.

Season 1 Season 2 Season 3 Season 4

Loading and wind energy (%) 100 125 90 80
3. Problem under multiple time-scale

The correlation of uncertainty and time-scale is modeled in the
building powered by wind energy. The annualized energy cost of
the building is calculated by (1). Both uncertainty and time-scale
are included in the model and they are influential parameters of
the system (Hemmati, 2017).

F ¼
X
r2R

X
y2Y

X
t2T

�
Pr;y;tN � It � Cy;t

E � Qr � Iy
�

(1)

The daily profiles are simulated under 24-h period. As a result,
sum of all time intervals during one day must be equal to 24 h as
indicated in (2).

X
t2T

It ¼ 24

cy2Y
(2)

The building is connected to the electrical network by tie-line.
The traded power between the building and electrical network is
modeled in (3); where, the wind and load powers are positive
variables as shown through (4) and (5) (Hemmati and Saboori,
2017).

Pr;y;tN ¼ Pr;y;tL � Pr;y;tW
cr2R; y2Y ; t2T

(3)

Pr;y;tW � 0
cr2R; y2Y ; t2T

(4)

Pr;y;tL � 0
cr2R; y2Y ; t2T

(5)

Power between building and grid can be positive or negative as
shown in (6). The negative values mean that the building sends
energy to the network (Hemmati and Saboori, 2017).

�PLimit
N � Pr;y;tN � þPLimit

N
cr2R; y2Y ; t2T

(6)

The probability of all scenarios in the model must be equal to
one as specified by (7) and the wind power is modeled as (8).

X
r2R

Qr ¼ 1 (7)
Pr;y;tW ¼

8>>>>>><
>>>>>>:

0 Vr;y;t
s � Vci

s

f
�
Vr;y;t
s

�
Vci
s � Vr;y;t

s � Vr
s

Pmax
W Vr

s � Vr;y;t
s � Vco

s
0 Vr;y;t

s � Vco
s

cr2R; y2Y ; t2T

(8)

4. Test system and input data

The proposed model is simulated on the building shown in
Fig. 2. The building is powered by electrical grid and wind turbine
(Hemmati, 2017). The rated power of wind turbine is 100 kW and
the peak load is 150 kW (Hemmati and Saboori, 2017). The building
is also incorporated with energy management tool, uncertainty,
and multiple time scale modelling (Hemmati and Saboori, 2017).

The seasonal profiles for load power and wind energy are
considered as listed in Table 1 (Hemmati, 2017; Mehrjerdi, 2019d).
Daily profiles for load and wind powers are also listed in Table 2
(Hemmati, 2017; Mehrjerdi et al., 2019). Three different time
scales are modeled for wind and load profiles including 15, 30, and
60-min Table 3 also shows the time of electricity pricing scheme
(Kamyab and Bahrami, 2016).

Uncertainty of wind power is modeled by Weibull distribution
and load uncertainty is modeled by Gaussian distribution
(Soulouknga et al., 2018). A large set of scenarios is generated by
sampling from the uncertain parameters and model is expressed as
stochastic programming.

5. Simulation results and discussions

The proposed multiple time-scale model is simulated on the
introduced test system. Table 4 shows the annualized cost under
multiple time-scale model. The results demonstrate that consid-
ering shorter time scale provides more accurate outputs. Further-
more, reducing the time-scale from 60 to 30-min, the cost will be
reduced about 5% and the time-scale from 30 to 15-min and cost
about 3%. The shorter time scales allow the model to operate under
flexible condition resulting in more accurate and reasonable
outputs.
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The traded power between the building and network is opti-
mized under multiple time-scale models and depicted through
Figs. 3e5. The power between the building and network under 15-
min time scale model is depicted in Fig. 3. The building sends excess
Table 2
Daily profiles for load power and wind energy.

Hour 60min
wind profile
(%)

30min
wind profile
(%)

15min
wind profile
(%)

60min load
profile (%)

30min load
profile (%)

15min load
profile (%)

H

1 0.8 0.8 0.8 0.15 0.15 0.15 49
2 0.8 0.8 0.81 0.15 0.15 0.13 50
3 0.8 0.83 0.83 0.15 0.12 0.12 51
4 0.8 0.83 0.84 0.15 0.12 0.11 52
5 0.85 0.85 0.85 0.1 0.1 0.1 53
6 0.85 0.85 0.86 0.1 0.1 0.09 54
7 0.85 0.87 0.87 0.1 0.1 0.08 55
8 0.85 0.87 0.88 0.1 0.1 0.07 56
9 0.9 0.9 0.9 0.1 0.08 0.06 57
10 0.9 0.9 0.91 0.1 0.08 0.05 58
11 0.9 0.92 0.92 0.1 0.08 0.05 59
12 0.9 0.92 0.93 0.1 0.08 0.06 60
13 0.95 0.95 0.95 0.05 0.05 0.06 61
14 0.95 0.95 0.96 0.05 0.05 0.07 62
15 0.95 0.93 0.93 0.05 0.07 0.06 63
16 0.95 0.93 0.91 0.05 0.07 0.07 64
17 0.9 0.9 0.9 0.1 0.1 0.1 65
18 0.9 0.9 0.88 0.1 0.1 0.11 66
19 0.9 0.87 0.87 0.1 0.12 0.12 67
20 0.9 0.87 0.86 0.1 0.12 0.13 68
21 0.85 0.85 0.85 0.15 0.15 0.15 69
22 0.85 0.85 0.83 0.15 0.15 0.16 70
23 0.85 0.82 0.82 0.15 0.17 0.17 71
24 0.85 0.82 0.81 0.15 0.17 0.18 72
25 0.8 0.8 0.8 0.2 0.2 0.2 73
26 0.8 0.8 0.78 0.2 0.2 0.21 74
27 0.8 0.77 0.77 0.2 0.23 0.23 75
28 0.8 0.77 0.76 0.2 0.23 0.24 76
29 0.75 0.75 0.75 0.25 0.25 0.25 77
30 0.75 0.75 0.73 0.25 0.25 0.26 78
31 0.75 0.72 0.72 0.25 0.3 0.3 79
32 0.75 0.72 0.71 0.25 0.3 0.32 80
33 0.7 0.7 0.7 0.35 0.35 0.35 81
34 0.7 0.7 0.71 0.35 0.35 0.39 82
35 0.7 0.75 0.75 0.35 0.45 0.45 83
36 0.7 0.75 0.77 0.35 0.45 0.5 84
37 0.8 0.8 0.8 0.55 0.55 0.55 85
38 0.8 0.8 0.78 0.55 0.55 0.57 86
39 0.8 0.77 0.77 0.55 0.6 0.6 87
40 0.8 0.77 0.76 0.55 0.6 0.65 88
41 0.75 0.75 0.75 0.7 0.7 0.7 89
42 0.75 0.75 0.74 0.7 0.7 0.72 90
43 0.75 0.66 0.66 0.7 0.75 0.75 91
44 0.75 0.66 0.64 0.7 0.75 0.77 92
45 0.6 0.6 0.6 0.8 0.8 0.8 93
46 0.6 0.6 0.58 0.8 0.8 0.81 94
47 0.6 0.55 0.55 0.8 0.82 0.82 95
48 0.6 0.55 0.52 0.8 0.82 0.83 96

Table 3
Time of electricity pricing pattern.

Hour 1 to 7

Electricity price ($/kWh) 0.12

Table 4
Annualized cost under multiple time-scale models.

Time scale 15min

Annualized cost ($/year) 35734
of its energy to the grid at time intervals 0 to 35 and 85 to 96 when
the energy demand is not much. On the other hand, the building
receives the energy from the grid at time intervals 36 to 84 when
the energy demand is high. The 15-min time-scale allows the
our 60min
wind profile
(%)

30min
wind profile
(%)

15min
wind profile
(%)

60min load
profile (%)

30min load
profile (%)

15min load
profile (%)

0.5 0.5 0.5 0.85 0.85 0.85
0.5 0.5 0.48 0.85 0.85 0.84
0.5 0.47 0.47 0.85 0.83 0.83
0.5 0.47 0.46 0.85 0.83 0.81
0.45 0.45 0.45 0.8 0.8 0.8
0.45 0.45 0.43 0.8 0.8 0.79
0.45 0.4 0.4 0.8 0.78 0.78
0.45 0.4 0.37 0.8 0.78 0.76
0.35 0.35 0.35 0.75 0.75 0.75
0.35 0.35 0.36 0.75 0.75 0.7
0.35 0.37 0.37 0.75 0.65 0.65
0.35 0.37 0.38 0.75 0.65 0.62
0.4 0.4 0.4 0.6 0.6 0.6
0.4 0.4 0.41 0.6 0.6 0.62
0.4 0.42 0.42 0.6 0.65 0.65
0.4 0.42 0.44 0.6 0.65 0.67
0.45 0.45 0.45 0.7 0.7 0.7
0.45 0.45 0.46 0.7 0.7 0.71
0.45 0.5 0.5 0.7 0.72 0.72
0.45 0.5 0.53 0.7 0.72 0.73
0.55 0.55 0.55 0.75 0.75 0.75
0.55 0.55 0.58 0.75 0.75 0.8
0.55 0.6 0.6 0.75 0.85 0.85
0.55 0.6 0.63 0.75 0.85 0.9
0.65 0.65 0.65 1 1 1
0.65 0.65 0.68 1 1 0.99
0.65 0.7 0.7 1 1 0.98
0.65 0.7 0.73 1 1 0.98
0.75 0.75 0.75 1 0.97 0.97
0.75 0.75 0.78 1 0.97 0.96
0.75 0.8 0.8 1 0.97 0.95
0.75 0.8 0.82 1 0.97 0.94
0.85 0.85 0.85 0.95 0.95 0.95
0.85 0.85 0.87 0.95 0.95 0.9
0.85 0.9 0.9 0.95 0.85 0.85
0.85 0.9 0.95 0.95 0.85 0.8
1 1 1 0.75 0.75 0.75
1 1 0.98 0.75 0.75 0.6
1 0.97 0.97 0.75 0.55 0.55
1 0.97 0.96 0.75 0.55 0.5
0.95 0.95 0.95 0.45 0.45 0.45
0.95 0.95 0.93 0.45 0.45 0.42
0.95 0.9 0.9 0.45 0.4 0.4
0.95 0.9 0.88 0.45 0.4 0.32
0.85 0.85 0.85 0.3 0.3 0.3
0.85 0.85 0.84 0.3 0.3 0.24
0.85 0.83 0.83 0.3 0.2 0.2
0.85 0.83 0.81 0.3 0.2 0.16

8 to 16 17 to 22 23 to 24

0.20 0.25 12

30min 60min

36988 38106
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Fig. 3. Traded power between building and network under 15-min time-scale and uncertainty modelling.
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Fig. 4. Power between building and network under 30-min time scale.
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building to change its operating condition under every time inter-
val resulting in the optimal performance for building. On-peak
loading of the system is seen at time interval 73.

The traded power under 30-min time scale pattern is depicted
in Fig. 4. The general schematic of the power profile is similar to
Fig. 3. However, the 30-min time scale is less flexible and building
cannot efficiently manage the energy. The building trades energy
with the grid to balance the energy consumption-generation.

The power under 60-min time scale is given in Fig. 5. The output
has 24-h time period. The output is similar to the previous power
profiles but comprising less flexibility. The energy management
tool is only able to change the power at one-hour time intervals and
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Fig. 5. Power between building and network under 60-min time scale.

Table 5
Seasonal power between building and network under Off-On peak periods.

Season 1 Season 2 Season 3 Season 4

Time interval 73 (on-peak loading) 85.000 106.250 76.500 68
Time interval 14 (off-peak loading) �87.500 �109.375 �78.750 �70

78%

22%

Base cost Uncertainty cost

Fig. 6. The level of uncertainty cost in the model.
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such long time-interval modelling does not permit the energy
management tool to optimize the operation efficiently.

The loads and wind energy are dependent to the seasonal
conditions and it is useful to evaluate their operation under sea-
sonal profiles. Table 5 lists the seasonal traded power between the
building and network under off-peak time interval (i.e., time period
14) and on-peak time interval (i.e., time period 73). The results
specify that the building sends energy to the grid under off-peak
time interval and receives energy from the network under on-
peak time interval. As well, the traded energy is dependent to the
seasons. In season 2, the load is increased under on-peak time in-
terval and the building receives more energy from the grid under
on-peak condition. On the other hand, in season 2 the wind energy
is increased under off-peak time interval and the building sends
more energy to the grid under off-peak period. The highest levels of
energy trading are in season 2 and the lowest levels are in season 4.

The proposed model evaluates the impacts and correlation of
uncertainty and time-scale at the same time. The uncertainties of
the loads and energy similarly make significant impacts on the
costs. Fig. 6 presents the level of uncertainty cost in the model. It is
verified that the uncertainty of the loads and wind energy increases
the plan cost by 22%. The base cost of the plan without uncertainty
is 78% of the nominal cost.

Thewind power uncertainty is themain source of uncertainty in
the proposed stochasticmodel. In order to demonstrate the impacts
of wind power intermittency on the model, several wind power
scenarios are defined and simulated as given in Table 6. The outputs
verify that reducing the wind power increases the received power
from the grid under on-peak loading and decreases the transmitted
power to the grid under off-peak loading. The operation is vice
versa when wind energy is increased.

Table 7 lists the results for sensitivity analysis on the energy
price and loading. It is demonstrated that the loading is the key
parameter of the model. Reducing the loading by 10% decreases the
annualized cost about 38%. The influence of the energy price on the
model is less than the loading. Reducing the energy price by 10%
will decrease the annualized cost about 10%.

5.1. Time-scale modeling and simulation time

The shorter time-scales provide more accurate model but they
need longer simulation time. As a result, it is required to compro-
mise between the simulation time and accuracy of the model and
outputs. In order to address this issue, the simulation time under
various time-scale modeling is presented in Table 8. It is clear that
the shorter time scale yields longer simulation time and the
simulation time is almost unacceptable for very short time scales
(330Minute for 5min time-scale modelling). The cost is reduced by
5% when the time-scale is reduced from 60-min to 30-min. As a
result, the 30-min is more reasonable than 60-min because it in-
creases the accuracy and reduces the cost significantly. However it
increases the simulation time by about 100% but its longer simu-
lation time is acceptable because of its substantial influence on the
model. In the next item, decreasing the time-scale from 30-min to
15-min decreases the cost by 3%. As a result, the 15-min and its
longer simulation time are acceptable because of its significant
impact on the model cost and accuracy. The final item reduces the
time-scale from 15-min to 5-min that decreases the cost by 0.8%
and increases the simulation time by about 300%. The 5-min time
scale is not therefore proper because it needs very long simulation
time but its improvement on the model cost is not significant. As a
result, the optimal time-scale for current test system is 15-min.

It also should be noted that the tradeoff between the simulation
time and the model accuracy is mandatory sometimes. Because in
the practice, the system operators cannot wait several hours or one
day to get the outputs of their models. Some applications are also
real-time or short term operations and the operators need to know
the outputs after short time periods. As a result, it is useful to study
the correlation of time-scale modelling and accuracy of the outputs.
The outputs of the introduced test system demonstrate that



Table 6
Sensitivity analysis on wind power uncertainty.

Wind power scenarios Time interval 73 (on-peak loading) Time interval 14 (off-peak loading)

Nominal case (wind power by 100%) 85.0 �85.5
Reducing wind power by 10% 91.5 �75.9
Reducing wind power by 20% 98.0 �66.3
Reducing wind power by 30% 104.5 �56.7
Reducing wind power by 80% 137.0 �8.7
Increasing wind power by 10% 78.5 �95.1
Increasing wind power by 15% 75.2 �99.9

Table 7
Sensitivity analysis on energy price and loading.

Annualized cost ($/year)

Nominal case 142937
Reducing energy price by 10% 128644
Increasing energy price by 10% 157231
Reducing loading by 10% 88130
Increasing loading by 10% 197744

Table 8
The cost under multiple time-scale models.

Time scale 5min 15min 30min 60min

Simulation time (Minute) 330 108 55 29
Change of cost (%) 0.8% 3% 5% Base cost
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reducing the time-scale period less than 15-min is not required for
the given test system because the shorter time-scales do not
change the outputs considerably but result in very long simulation
times. The proposed methodology can be adapted to the other
systems to find optimal time-scale in order to keep both the ac-
curacy and simulation time on the acceptable level.

5.2. Comparing the model

In order to verify the viability of the introduced model, the re-
sults of the study are compared with other similar research studies.
Table 9 presents the results of comparison study. It is clear that all
the models can properly design the energy management system
but the proposed model comprises less operational cost. The given
model utilizes short time-scale modelling and comprises more
flexibility. As a result, it has less operational cost.

6. Conclusions

This paper addressed impacts of time-scale modelling and un-
certainty on the operation of RESs and electrical loads. It was
demonstrated that the RESs and especially wind energy have short-
term variations and their energy profiles are not accurately fore-
castable. Such error must be modeled and discussed in terms of
uncertainty. The proposed technique investigated the correlation of
time-scale and uncertainty in energy management systems. Three
different time scales including 15, 30, and 60-min were modeled.
The uncertainties of the loads and wind energy were also
Table 9
Comparing results with other similar research studies.

Time scale Operational cost ($/year)

The proposed model 35734
The model given by (Hemmati and Saboori, 2017) 37090
The model given by (Hemmati, 2017) 36831
incorporated. The energy management systemwas modeled on the
typical building to optimize the energy consumption. The simula-
tion results demonstrated that the shorter time scale results in
more accurate outputs but it comprises longer simulation time. The
30-min time-scale reduces the cost about 5% and 15-min time-scale
decreases the cost about 3%. On the other hand, 15-min time-scale
takes more simulation time. The building sends excess of energy to
the grid at time intervals 0 to 35 and 85 to 96 and receives energy
from the grid at time intervals 36 to 84. In season 2, the building
receives more energy from the grid under on-peak loading and
sends more energy to the grid under off-peak loading. It is also
demonstrated that the load-wind uncertainties increase the cost by
22%. Reducing the wind power increases the received power from
the grid under on-peak loading and decreases the outgoing power
to the grid under off-peak loading. It is also demonstrated that the
loading is the key parameter of the model and reducing the loading
by 10% decreases the annualized cost about 38%.

Further to this work, it is suggested to consider the other types
of RESs in the model, modelling the thermal loads and thermal
energies in the building, modelling the electric vehicles and their
operation in the building, and considering different probability
distribution functions to model uncertainty.
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