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Abstract
Modern businesses increasingly rely on software-
driven operations, making system reliability a crit-
ical concern. Despite advances in automated op-
erations, gaps remain in understanding how the pri-
mary causes of system failures manifest, impact op-
erational severity, and evolve in cloud-native envi-
ronments. This study analyzes 7,804 publicly avail-
able incident reports spanning 2014–2022 to exam-
ine trends in operational fault types across modern
IT systems. A state-of-the-art large language model
was employed to classify incidents into a consoli-
dated fault taxonomy with an overall accuracy of
92% and a macro-averaged F1-score of 0.89. The
results reveal that Misconfigurations and Deploy-
ment Failures (32.3%), External Dependency Fail-
ures (30.0%), and Capacity Issues (16.1%) are the
most frequent fault types. Significant correlations
were found between fault types and incident dura-
tion, with Security Incidents exhibiting particularly
long resolution times. Temporal analysis shows a
rising prevalence of Misconfigurations/Deployment
Failures and Software Bugs, alongside a decline
in Infrastructure Failures, reflecting the growing
complexity and automation of modern IT environ-
ments. These findings contribute to a deeper un-
derstanding of evolving digital fragility, reveal how
different fault types impact operational resilience,
and offer actionable insights for improving incident
management and system reliability.

1 Introduction
Modern businesses have become ”software-defined busi-
nesses” [1], adopting agile methodologies that prioritize rapid
development and deployment cycles [2]. These method-
ologies introduce risks leading to operational incidents —
unplanned interruptions to services or reductions in service
quality [2]. Approximately 70% of system outages are
caused by changes to live systems [3]. Artificial Intelligence
for IT Operations (AIOps) has emerged as a potential solu-
tion, leveraging big data and machine learning to improve
IT operations [4]. However, AIOps effectiveness depends on
data quality, often compromised by manual reporting and in-
consistent analysis practices [5].

While studies have examined incident management within
specific companies [6] and incident-inducing changes [7],
broader cross-organizational analysis remains necessary. Op-
penheimer et al. [8] proposed a taxonomy of internet ser-
vice failures, but cloud-native architectures and distributed
systems have since transformed the landscape.

Three knowledge gaps exist: limited visibility into preva-
lent fault types in contemporary IT systems, a poor under-
standing of the operational impact of different fault types on
incident duration, and a lack of systematic study of fault pat-
tern shifts over the past decade.

This study addresses these gaps through large-scale anal-
ysis of operational incidents in modern IT environments, an-
swering: “What are the most common primary fault types

causing operational incidents in modern IT systems, how
do they relate to incident severity, and how have these pat-
terns evolved?” The research question breaks down into four
subquestions:

1. RQ1: What taxonomy of primary fault types can be es-
tablished for modern IT incidents, and how reliable is
automated classification of these categories?

2. RQ2: What is the relative frequency of different primary
fault types across incident reports?

3. RQ3: Are there correlations between specific primary
fault types and the duration of incidents?

4. RQ4: Has the frequency of specific fault types changed
over time, particularly with the adoption of cloud-native
architectures?

We analyze 7,804 publicly available incident reports using
a large language model (LLM) to classify fault types. Results
show that Misconfigurations/Deployment Failures, External
Dependency Failures, and Capacity Issues are the most com-
mon fault categories, with significant differences in incident
duration and temporal frequency shifts reflecting the growing
complexity of the IT ecosystem.

This study contributes empirical evidence on digital system
failures and demonstrates the value of LLM-based classifica-
tion in understanding system fragility and supporting opera-
tional resilience strategies.

2 Related Literature and Background
Oppenheimer et al. [8] introduced one of the first empirical
taxonomies of large-scale service failures, identifying config-
uration errors, software bugs, and operator mistakes as pri-
mary causes. Their work highlighted the complexity of di-
agnosing faults in distributed systems and offered a practi-
cal perspective on real-world outages. However, it reflects
the technological landscape of its time, before the rise of
cloud-native architectures, infrastructure-as-code, and con-
tinuous deployment. Huang [9] extends this perspective with
a comprehensive study of real-world cloud outages, empha-
sizing misconfiguration, hidden dependencies, and fault prop-
agation across microservice architectures. Our study builds
upon this foundational work by establishing a contemporary
taxonomy that captures fault types specific to modern dis-
tributed systems, including automated operations, third-party
service dependencies, security vulnerabilities, and environ-
mental factors, enabling a more accurate representation of
failure causes in today’s complex infrastructure landscape.

While the above studies focus on causes, Menges and
Pernul [10] address how incidents are captured and re-
ported. They demonstrate that inconsistent formats and lim-
ited semantic expressiveness hinder comparative analysis and
shared understanding across organizations. Kapel et al. [7]
highlight the challenges of accurately linking incidents to the
changes that induced them, citing data quality issues and con-
textual variability.

To address these limitations in incident reporting and anal-
ysis, Natural Language Processing (NLP) techniques have
emerged as a promising solution for extracting structured in-
sights from unstructured incident data. Young et al. [11]



systematically reviewed the use of NLP in healthcare for
classifying incident reports, emphasizing that NLP enables
the extraction of structured insights from unstructured data
like free text descriptions. Saha and Hoi [12] take a dif-
ferent approach by mining root cause knowledge from inci-
dent reports using neural NLP methods. Their Incident Cau-
sation Analysis framework constructs a Causal Knowledge
Graph from thousands of historical investigations, enabling
retrieval-based root cause analysis (RCA) by mapping new
incident symptoms to previously resolved cases. Further ex-
tending NLP’s reach, Chen et al. [13] propose RCACopi-
lot, an end-to-end system that leverages LLMs for automated
RCA of cloud incidents. Their work emphasizes the integra-
tion of multi-source data (logs, metrics, traces) and combines
it with an LLM-based reasoning component, demonstrating
both accuracy and real-world utility in Microsoft’s produc-
tion environment. Ahmed et al. [14] investigated the use of
large LLMs to automate root cause identification for cloud
incidents at Microsoft. Their large-scale study, spanning over
40,000 incidents, demonstrated that LLMs significantly out-
performed traditional models. The study revealed not only
the feasibility of using LLMs for these complex tasks but also
the potential for reducing manual toil and improving response
times in incident management.

Adding another dimension, Anandayuvaraj et al. [15] in-
troduced the FAIL system, leveraging LLMs to analyze soft-
ware failures reported in the news. This innovative approach
bridges the gap where private postmortem reports are inac-
cessible, automating the collection, grouping, and analysis
of publicly available data. Their findings revealed high re-
currence rates of similar failures across organizations and
an increasing severity of failure consequences over the past
decade. This highlights the growing need for cross-sector
learning and proactive fault analysis, using accessible and
scalable data sources.

Our study builds upon prior work by leveraging a large,
cross-organizational dataset of postmortems, providing more
reliable insights than news-based sources, and by utilizing
LLMs to extract fault information from unstructured incident
descriptions at scale. This enables a systematic analysis of
fault types, their severity, and their evolution, addressing core
knowledge gaps in contemporary IT operations research.

3 Methodology
This section outlines our research approach to identifying the
primary fault types underlying operational incidents in mod-
ern IT systems, which combines data from public incident
repositories, LLM-based fault classification, and statistical
analysis with visualizations.

3.1 Data Collection
Incident data were collected from the publicly available Ver-
ica Open Incident Database (VOID) API [16], which com-
piles postmortem reports from organizations across various
sectors, enabling cross-industry analysis.

The collection was performed using a custom Python
scraper [17] developed in collaboration with other researchers
to interface with the API. The scraper retrieved structured

metadata (e.g., date, organization, duration) and full-text de-
scriptions when available. At the time of access, 10,328 re-
ports were available.

To ensure data quality and analytical utility, the following
filters were applied:

1. Reports without a description were excluded.

2. Descriptions shorter than 100 characters were removed.

3. Reports missing duration metadata were discarded.

4. Years with fewer than 50 reports were excluded.

After filtering, 7,804 reports remained, spanning an 8-
year period from 2014 to 2022. The reduction process is
visualized in Figure 1. Organizations publicly disclosed all
data as part of transparency or learning-focused initiatives.
Use of the official API ensured reliable and compliant access.

Figure 1: Filtering pipeline for the VOID incident report dataset.

3.2 Incident Classification Using LLMs
Incident report classification used the Athene V2 model, a
fine-tuned variant of Qwen 2.5 72B developed by Nexus-
flow and optimized for long-form log extraction [18]. Infer-
ence was performed on the Delft Blue supercomputing infras-
tructure [19].

Among 70B-class language models, Qwen 2.5 and Llama
3.3 represent state-of-the-art systems, with Qwen 2.5
consistently outperforming peers across benchmarks [20].
Athene V2 extends Qwen 2.5’s capabilities with fine-tuning
for structured classification.

Each report was classified using a single few-shot prompt,
which included the full incident text and annotated examples
illustrating the fault taxonomy to improve accuracy [21]. The
model assigned a single primary fault type based on incident
description, timeline, and root cause summary.

Two additional labels—Unknown and Scheduled Mainte-
nance—handled reports lacking diagnostic detail or describ-
ing routine maintenance. Prompt instructions explicitly en-
couraged selection of Unknown when appropriate.

3.3 Model Evaluation Approach
To assess the reliability of the automated classification
pipeline, the model’s predictions were evaluated against a



manually annotated ground truth sample selected using a
stratified sampling approach.

The evaluation assessed classification performance across
all fault categories using standard metrics, including accu-
racy and F1 scores. Detailed results of this validation are
presented in Section 5.1.

Ground Truth Sampling
The ground truth sample was selected using a statistically rig-
orous approach designed to provide reliable validation while
maintaining cost efficiency. The sample size was determined
using the binomial margin-of-error formula:

n =
z2p(1− p)

E2

Using the worst-case variance assumption p = 0.5, a 95%
confidence level (z = 1.96), and a desired half-width E =
0.08 (±8%), we calculated a required sample size of n =
151 incidents.

The 151 cases were drawn using a population-proportional
stratified sampling design that incorporates two safeguards
against skewed class coverage:

• Per-class minimum: Every fault category contributes
at least k = 5 incidents to the validation set (or its en-
tire population if the category contains fewer than 5 in-
cidents).

• Head-class cap: The majority category is limited to ≤
30% of the sample (45 incidents maximum), preventing
it from crowding out rarer but important classes.

The sampling procedure operates as follows: First, com-
pulsory minimum allocations and the head-class cap are ap-
plied. The remaining sample budget is then distributed pro-
portionally to the true class frequencies in the full dataset.
Any rounding residue is corrected to ensure the final sample
contains exactly 151 incidents. Sampling is performed with-
out replacement within each stratum using a fixed random
seed (42) to guarantee reproducibility.

The first author manually labeled the resulting stratified
sample of 151 reports according to the predefined fault tax-
onomy described in Section 5.1.

3.4 Statistical Analysis and Visualization
To analyze incident duration distributions across fault types,
the Kruskal-Wallis H test was employed as a non-parametric
alternative to ANOVA for data that is not normally dis-
tributed.

To evaluate changes in fault type distribution over time,
a chi-squared test for trend was used to assess overall shifts
from 2014 to 2022. For individual fault types, two methods
were employed:

• Generalized Linear Models (GLMs) to detect and quan-
tify linear trends in fault type frequencies, suitable for
proportional data with year-to-year sample imbalance.

• Mann–Kendall test as a robust non-parametric method to
detect monotonic trends without assuming specific dis-
tributions or functional forms.

Visualizations included boxplots for incident duration dis-
tributions, bar charts for fault type frequencies, line plots
for temporal changes, and confusion matrices for classifica-
tion evaluation. All analyses used Python with pandas [22],
NumPy [23], matplotlib [24], and seaborn [25]. The anal-
ysis pipeline was implemented in reproducible Jupyter note-
books under Git version control.

3.5 Experimental Setup
All classification tasks were performed on the Delft Blue
high-performance computing cluster (HPC) at TU Delft. The
Athene V2 model was executed on two NVIDIA A100
80GB GPUs using HuggingFace’s Transformers library
[26]. To optimize GPU memory usage and performance,
model weights were quantized to 8 bit precision using the
bitsandbytes library [27].

Before presenting the results, this section addresses the eth-
ical considerations and reproducibility aspects of the study.

4 Ethics of the Research
This section outlines the ethical considerations underlying the
study, focusing on responsible research practices, data sourc-
ing, and the use of artificial intelligence. Given the use of
publicly shared incident data and advanced AI models, care
was taken to ensure transparency, reproducibility, and com-
pliance with ethical standards. The subsections below detail
how these principles were applied throughout the research
process.

4.1 Responsible Research
Reproducibility: This study is designed to support repro-
ducibility by providing a transparent and detailed description
of the data collection, processing, classification, and analy-
sis procedures. All steps from querying the VOID API to
filtering incident reports, running LLM-based classification,
and generating visualizations are described and utilize open-
source tools. The configuration of the HPC environment
(Delft Blue cluster) is also documented to enable compara-
ble computational setups.
Replicability: To support replicability, a complete replica-
tion package is made available on Zenodo [17], [28]. This
package includes:

• All code used for data collection and filtering via the
VOID API,

• The cleaned and filtered dataset used in this study (7,804
reports),

• The ground truth sampling script implementing the strat-
ified sampling procedure

• The manually annotated ground truth sample (151 re-
ports) used for model evaluation,

• Prompt templates and inference scripts for running the
LLM-based classification,

• Jupyter notebooks for statistical analysis and visualiza-
tions,

• Detailed specifications of the Delft Blue HPC configu-
ration used,



• Environment and dependency specifications
(requirements.txt)

These resources enable any competent researcher to repro-
duce the study’s findings, from raw data acquisition to final
results, using publicly available tools and hardware of similar
capacity. While minor variations may occur due to model
nondeterminism or updates to the VOID dataset, the core
methodology remains stable and is fully documented.

Ethical Web Scraping: No unauthorized web scraping was
conducted in this research. All data were obtained via the
official VOID API, which is explicitly provided for public
and academic use. The study adheres to the terms of use of
the VOID platform, and all analyzed data consist of incident
reports and postmortems voluntarily shared by organizations
as part of their transparency and reliability initiatives. This
approach ensures compliance with ethical standards for web
data collection.

4.2 Use of Artificial Intelligence (AI):
An LLM was used to categorize incidents into predefined
fault types, leveraging its natural language understanding ca-
pabilities. However, the interpretation of the classification
outputs, including the identification of trends and drawing
conclusions, was carried out by the researcher with care-
ful consideration of context, potential biases, and limita-
tions. The AI-generated classifications were validated against
a manually annotated subset to ensure reliability. Prompt en-
gineering was used to explicitly encourage appropriate use
of the Unknown label, counteracting the model’s natural ten-
dency to prefer confident predictions even when incident de-
tails were insufficient. Thus, while AI contributed signifi-
cantly to data processing and pattern identification, human
oversight and domain knowledge were integral to the inter-
pretation of results and the formulation of conclusions.

With these ethical safeguards and methodological controls
in place, the following section presents the results of the anal-
ysis, structured around the study’s four main research sub-
questions.

5 Results
Results are presented in four parts addressing the research
questions from Section 1: (1) taxonomy development and
classification model performance, (2) fault type distribution
and frequency, (3) correlation with incident duration, and (4)
temporal evolution of fault types.

5.1 RQ1 - Fault Taxonomy Development and
Classification Model Performance

This subsection develops a fault taxonomy based on prior re-
search and evaluates the reliability of automated classification
for understanding factors that impact system reliability.

Taxonomy of Primary Fault Types
Studies classify information system failures into three cate-
gories: technical failures, human and organizational factors,
and external disruptions.

Technical causes include infrastructure failures, software
bugs, configuration and deployment errors, and capacity is-
sues. Oppenheimer et al. [8] show software bugs as primary
contributors to Internet service failures. Misconfigurations
and faulty deployments frequently cause incidents in complex
cloud environments, where automation can propagate errors
at scale.

Human and organizational factors encompass operator
mistakes, inadequate procedures, monitoring failures, insuffi-
cient training, and organizational culture issues. Dogga et al.
[29] found inadequate monitoring most common in Microsoft
Azure postmortems, while Saarelainen and Jäntti [30] deter-
mined many IT incidents stem from change planning failures
rather than technical faults.

External and environmental disruptions include third-
party service failures, cyberattacks, and physical infrastruc-
ture problems. Lawrence and Simon [31] identify power fail-
ures as the most significant cause of major data center out-
ages. Security incidents, including ransomware and DDoS
attacks, increasingly disrupt operations [32].

A consolidated taxonomy informed by these studies was
developed to facilitate automated LLM analysis. This tax-
onomy reduces redundancy by merging semantically similar
causes, resulting in eight categories that reflect the techni-
cal, human, and external factors affecting service reliability.
Table 1 presents the complete taxonomy organized by main
categories.

Table 1: Condensed Root Causes of IT Incidents

Category Causes

Technical (A) Infrastructure Failure
(B) Software Bug
(C) Misconfiguration/Deployment Failure
(D) Capacity Issue

Human/Organizational (E) Human/Process Error (operator
mistakes, inadequate procedures,
monitoring/alerting failures, etc.)

External/Environmental (F) External Dependency Failure
(G) Security Incident
(H) Environmental Hazard (power,
fire, fiber cut, etc.)

Other (I) Scheduled Maintenance
(J) Unknown

Model Evaluation Results
The classification model achieved 92% accuracy with a
macro-averaged F1-score of 0.89, demonstrating strong per-
formance across fault types.

Performance varied by category: Security Incidents,
Scheduled Maintenance, and Human/Process Errors
achieved perfect classification (F1 = 1.00). External
Dependency Failures (F1 = 0.96) and Unknown cases
(F1 = 0.93) were also handled reliably. Misconfigu-
ration/Deployment Failures and Capacity Issues showed
good performance (F1 = 0.86), while Software Bugs
(F1 = 0.78) demonstrated reasonable accuracy despite some
misclassifications.



Infrastructure Failures proved most challenging (F1 =
0.73), likely due to semantic overlap with other technical cat-
egories. The model correctly abstained on Unknown cases in
87% of instances, though some concrete faults were misclas-
sified as Unknown due to vague reporting.

Figure 2 shows the confusion matrix, highlighting strong
diagonal performance with primary misclassifications occur-
ring between technical fault types and the Unknown category.
The labels A-J correspond to categories as shown in Table 1.

Figure 2: Confusion matrix of automated fault classification vs.
manual annotations (n = 151).

5.2 RQ2 - Distribution and Frequency of Primary
Fault Types

Using the taxonomy, each incident report in the dataset was
classified into one primary fault category (Section 3.2). For
subsequent statistical analyses, reports classified as Unknown
or Scheduled Maintenance were excluded, as they do not rep-
resent actionable fault types. The resulting analysis set con-
sisted of 2,323 reports. The distribution of these categories
across the whole dataset is shown in Figure 3.

5.3 RQ3 - Relationship Between Fault Types and
Incident Severity

To assess whether different primary fault types are associated
with varying levels of incident severity, this subsection ana-
lyzes incident duration as a proxy for severity. Incident dura-
tion distributions were examined across fault types, and sta-
tistical tests were performed to determine whether observed
differences were significant.

Distribution of Incident Duration per Fault Type
Figure 4 shows the distribution of incident durations across
primary fault types. Incident durations exhibit substan-
tial variation between fault categories. Environmental Haz-
ards display the longest median durations, while Miscon-
figuration/Deployment Failures are generally resolved more

Figure 3: Primary Fault Types – Absolute Frequency

quickly. Table 2 summarizes key statistics for incident dura-
tion by fault type.

Figure 4: Incident duration distribution per primary fault type (log
scale).

Statistical Analysis of Duration Differences
To assess whether differences in incident duration across
primary fault types were statistically significant, a Kruskal-
Wallis H test was performed. The test revealed significant dif-
ferences in duration distributions between fault types (H =
45.16, p < 0.00001). These findings suggest that fault type
is an important factor influencing the severity of incidents in
terms of time to resolution.

5.4 RQ4 - Temporal Evolution of Fault Type
Patterns

The distribution of primary fault types evolves as system ar-
chitectures and operational practices change. The adoption of
cloud-native architectures, container orchestration platforms,
and infrastructure-as-code introduced new sources of risk,
while automation reduced others. Analyzing temporal trends
in fault types offers insight into how these shifts impact sys-
tem reliability. This subsection examines changes in fault
type patterns over time within the incident dataset.



Table 2: Summary of incident duration statistics (in minutes) by
primary fault type, including median, mean, and 95th percentile du-
rations.

Primary Fault Type Median Mean 95th Percentile

Capacity Issue 164.0 539.9 1510.6
Environmental Hazard 390.0 518.8 1270.6
External Dep. Failure 157.0 722.8 1969.8
Human/Process Error 150.0 229.7 613.4
Infrastructure Failure 135.0 303.0 860.8
Misconfig/Deploy. Failure 116.0 514.1 1504.0
Security Incident 193.0 3761.0 15808.3
Software Bug 217.0 1421.2 4361.4

Temporal Evolution of Primary Fault Types
Figure 5 presents the temporal evolution of primary fault
types as a percentage of total incidents, based on raw rela-
tive frequencies.

Figure 5: Temporal evolution of primary fault types as a percentage
of total incidents (2014–2022).

Trend Analysis
A chi-squared test for trend was used to determine whether
the overall distribution of fault types changed significantly
across the study period. In addition, for each primary fault
type, both GLMs and the Mann–Kendall test were applied to
assess trends in their relative frequency.

The chi-squared test confirmed a significant change in the
distribution of fault types over the 2014–2022 period (χ2 =
462.02, p < 0.00001, df = 56).

Table 3 summarizes the outcomes of the GLM and Mann-
Kendall analyses. Software Bugs, Infrastructure Failures,
Capacity Issues, Misconfiguration/Deployment Failures, and
Environmental Hazards exhibited significant and consistent
trends in both GLM and MK analyses. Of these, the first,
fourth, and fifth showed increasing trends, while the second
and third showed decreasing ones. Security Incidents and Hu-
man/Process Errors were significant only in GLM, while Ex-
ternal Dependency Failures showed no significant trend in
either method.

These results highlight key patterns in the types, severity,
and evolution of primary faults in modern IT systems. The

following discussion examines their implications for system
reliability and operational practices.

6 Discussion
This study analyzed 7,804 publicly available incident re-
ports spanning 2014–2022 to examine fault types, their op-
erational impact, and temporal evolution in modern IT sys-
tems. The findings provide empirical evidence that addresses
three critical knowledge gaps in understanding digital sys-
tem fragility, offering actionable insights for improving op-
erational resilience.

6.1 Fault Type Analysis: Prevalence, Impact, and
Evolution

Misconfigurations and Deployment Failures (32.3%)
Misconfigurations and Deployment Failures emerge as the
dominant cause of modern IT incidents, representing nearly
one-third of all reported failures. This finding highlights
the significant challenges associated with managing complex,
automated deployment pipelines and system configurations.
The high prevalence likely reflects the trade-offs between de-
ployment speed and reliability that characterize modern De-
vOps practices, where pressure for rapid deployment cycles
can compromise thorough configuration validation.

Despite their high frequency, these incidents show rela-
tively manageable resolution times (median: 116min, mean:
514min), likely due to the availability of established rollback
procedures and the straightforward nature of reverting con-
figuration changes. However, the temporal analysis reveals a
concerning upward trend (GLM slope = 0.0457, p < 0.0001;
MK τ = 0.6111, p = 0.0286), presenting a paradox where
automation intended to reduce human error may actually be
creating new categories of systematic failures. As organiza-
tions adopt infrastructure-as-code and automated deployment
pipelines, individual configuration errors can be propagated
at scale, potentially affecting multiple environments simulta-
neously [9].

External Dependency Failures (30%)
External Dependency Failures represent the second most
common incident type, aligning with the increasing intercon-
nectedness of modern systems and widespread adoption of
microservices architectures and third-party integrations. This
finding echoes observations of Beyer et al. [3] regarding the
complexity of distributed systems, where cascading failures
from external dependencies can rapidly propagate across ser-
vice boundaries.

These incidents demonstrate considerable variability in
resolution complexity, with a mean duration of 723min but
a median of only 157min, indicating a highly skewed distri-
bution. The 95th percentile of 1,970min suggests that while
many external dependency issues can be resolved relatively
quickly, some require extensive coordination with third-party
providers or complex workaround implementations. Notably,
the temporal analysis reveals no significant trend, suggesting
that organizations may have reached a steady state in terms of
dependency complexity or that improved dependency man-
agement practices are offsetting the increasing system inter-
connectedness.



Table 3: Summary of trend analysis for all primary fault types.

Fault Type GLM Slope GLM p-value GLM Trend MK Trend MK Tau MK p-value

Software Bug 0.0141 0.0002 increasing increasing 0.5556 0.0476
Infrastructure Failure -0.0209 0.0000 decreasing decreasing -0.7778 0.0049
Capacity Issue -0.0232 0.0038 decreasing decreasing -0.5556 0.0476
External Dependency Failure -0.0111 0.1457 no trend no trend -0.3333 0.2515
Security Incident -0.0074 0.0043 decreasing no trend -0.4167 0.1363
Misconfiguration/Deployment Failure 0.0457 0.0000 increasing increasing 0.6111 0.0286
Human/Process Error 0.0013 0.0067 increasing no trend 0.5000 0.0763
Environmental Hazard 0.0016 0.0094 increasing increasing 0.6111 0.0155

Capacity Issues (16.1%)
Capacity Issues account for a substantial portion of incidents
and they exhibit considerable resolution complexity (median:
164min, mean: 540min), likely reflecting the time required
to provision additional resources, optimize system perfor-
mance, or implement architectural changes to address capac-
ity constraints.

Encouragingly, the temporal analysis reveals a significant
decreasing trend (GLM slope = −0.0232, p = 0.0038; MK
τ = −0.5556, p = 0.0476), likely reflecting improvements
in cloud elasticity and automated scaling capabilities. Mod-
ern cloud platforms provide sophisticated auto-scaling mech-
anisms that can respond to demand fluctuations more effec-
tively than traditional capacity planning approaches.

Infrastructure Failures (10.8%)
Infrastructure Failures show moderate frequency compared
to configuration and external dependency issues, suggesting
that cloud providers have achieved reasonable success in ab-
stracting infrastructure complexity away from application de-
velopers.

These incidents typically require moderate resolution times
(median: 135min, mean: 303min). The temporal analysis
shows a significant decreasing trend (GLM slope = −0.0209,
p < 0.0001; MK τ = −0.7778, p = 0.0049), align-
ing with the maturation of cloud computing platforms and
improved infrastructure automation. Cloud providers have
invested heavily in redundant systems, automated failover
mechanisms, and predictive maintenance, reducing the fre-
quency of infrastructure-related incidents.

Software Bugs (8%)
Software Bugs represent a smaller but operationally signifi-
cant category, characterized by notably long resolution times
(median: 217min, mean: 1,421min). The extended tail of
the distribution (95th percentile: 4,361min) reflects the com-
plexity of diagnosing and fixing code-level issues in produc-
tion environments. While some software bugs can be re-
solved quickly through rollbacks or hotfixes, others require
extensive investigation and development efforts.

The temporal analysis reveals a significant increasing trend
(GLM slope = 0.0141, p = 0.0002; MK τ = 0.5556,
p = 0.0476), likely reflecting several interconnected factors.
The acceleration of development cycles associated with ag-
ile methodologies and continuous deployment practices may
reduce time available for comprehensive testing, leading to

more bugs reaching production environments. Additionally,
the increasing complexity of distributed systems and the pro-
liferation of programming languages and frameworks may in-
crease the likelihood of code-level failures.

Security Incidents (1.3%)
Security Incidents, while relatively infrequent, represent the
most operationally disruptive fault type, exhibiting excep-
tionally long resolution times (median: 193min, mean:
3,761min, 95th percentile: 15,808min). This finding aligns
with established understanding of security incident complex-
ity, where forensic analysis, containment, and remediation of-
ten require extensive coordination across multiple teams and
external stakeholders.

The temporal analysis reveals a decreasing trend in fre-
quency (GLM slope = −0.0074, p = 0.0043), although this
may reflect reporting biases rather than actual security im-
provements, as organizations may be reluctant to disclose se-
curity breaches due to reputational concerns.

Human/Process Errors and Environmental Hazards
Human/Process Errors (0.9%) and Environmental Hazards
(0.6%) represent the least frequent categories. The low Hu-
man/Process Error contradicts literature emphasizing human
factors in system failures [29]. This may reflect reporting bi-
ases against attributing public incidents to human error, or
indicate that while direct human errors have decreased, they
have been transformed into systematic configuration and de-
ployment errors.

Environmental hazards show an increasing trend (GLM
slope = 0.0016, p = 0.0094; MK τ = 0.6111, p = 0.0155),
though this should be interpreted cautiously given the small
absolute numbers involved.

6.2 Implications for Practitioners and Researchers
The dominance of Misconfiguration/Deployment Failures
suggests that organizations should prioritize investment in
configuration management, automated testing of deployment
processes, and robust rollback capabilities. The substantial
presence of External Dependency Failures reinforces that tra-
ditional approaches focusing primarily on internal system re-
liability may be insufficient in today’s interconnected ecosys-
tem. Organizations should prioritize dependency manage-
ment through service-level monitoring, circuit breakers, and
graceful degradation strategies.



The correlation between fault types and resolution times
suggests that resource allocation should consider both the fre-
quency and complexity of faults. Security Incidents require
specialized capabilities and extended response times despite
being relatively rare, while rising Software Bugs highlight the
need for strengthened testing, particularly in distributed sce-
narios.

The findings challenge the assumption that automation
necessarily improves system reliability, suggesting the need
for theoretical frameworks that account for the complexity
trade-offs of DevOps. The methodology demonstrates repli-
cable LLM-based incident classification, while the significant
within-category variability in resolution times suggests that
current taxonomies may be insufficient for capturing the com-
plexity of modern system failures.

While these findings offer valuable insights, it is essential
to consider the study’s limitations, which are discussed in the
following section.

7 Limitations
This research relies significantly on publicly available inci-
dent reports, introducing potential selection bias. Organiza-
tions may selectively disclose incidents, particularly avoiding
those that are highly sensitive or damaging to their reputation.
Consequently, the data may disproportionately represent less
severe or better-managed incidents.

The incident classification used the Athene V2 LLM with
manual validation on 151 examples. However, classifica-
tion accuracy is limited by LLM interpretability constraints
and the small ground truth dataset, which should be cross-
validated with additional annotators. Very small sample sizes
in specific categories prevented achieving statistical signifi-
cance. Ambiguous incident descriptions may cause misclas-
sifications, and despite prompt engineering, the model may
under-select the Unknown label when details are incomplete.

The Athene V2 model was quantized to 8-bit precision for
efficient inference on available HPC resources. At the same
time, this is unlikely to affect high-level classification trends;
it may introduce minor differences in individual prediction
confidence compared to full-precision inference [33].

Temporal analysis assumes continuous and consistent re-
porting practices and technological contexts over the study
period. However, industry practices rapidly evolve, and vari-
ations in reporting standards or organizational transparency
over time could undermine the longitudinal reliability of the
observed trends.

Addressing these limitations offers opportunities for future
research, as outlined in the next section.

8 Future Work
To strengthen the quality and applicability of future research
in this area, three key improvements could be made:

Broaden the data sources used for analysis: While
this study utilized publicly available reports, collaborating
with industry partners to access anonymized internal post-
mortems could capture more severe or complex incidents
that organizations don’t publicly disclose, thereby making the
dataset more comprehensive and reducing potential biases.

Expand the manually annotated dataset used for train-
ing and validating the classification model: By increasing
the number and diversity of labeled incidents, ensuring they
cover a wider range of incident types and descriptions, and
cross-validating annotations with multiple expert annotators
to improve labeling reliability, the model’s performance could
be more accurately assessed.

Fine-tune the LLM used for incident classification:
Fine-tuning the model on expert-labeled incident reports
could improve classification accuracy by adapting it to the
specific terminology and patterns in incident descriptions
[14]. This supervised learning approach would adjust the
model’s parameters to handle nuanced or ambiguous cases
better, thereby enhancing performance beyond what general
pre-trained models can achieve.

The final section summarizes the key findings of this study
and their implications for both research and practice.

9 Conclusions
In conclusion, this study analyzed 7,804 publicly available
incident reports from 2014–2022 to investigate the dominant
fault types in modern IT systems, their relationship to inci-
dent severity, and their evolution over time.

Our analysis reveals that Misconfiguration/Deployment
Failures (32.3%) and External Dependency Failures (30%)
have emerged as the primary sources of operational incidents,
fundamentally shifting the reliability landscape from tradi-
tional infrastructure concerns. This finding challenges con-
ventional approaches to system reliability and highlights the
unintended consequences of automation, as well as the com-
plexity of distributed systems.

Statistical analysis revealed significant differences in inci-
dent duration across fault types. Notably, Security Incidents,
though infrequent, exhibited the longest resolution times, in-
dicating their disproportionate operational impact. On the
other hand, Misconfiguration/Deployment Failures, despite
their high frequency, were resolved the quickest, suggesting
effective rollback procedures.

The temporal analysis reveals a significant shift in failure
patterns, coinciding with the adoption of cloud-native tech-
nologies. While Misconfiguration/Deployment Failures and
Software Bugs increased substantially over the study period,
Infrastructure Failures and Capacity Issues declined, reflect-
ing the success of cloud abstraction and auto-scaling tech-
nologies.

These findings have important implications for practition-
ers. Organizations should prioritize investment in configura-
tion management and deployment validation. The prevalence
of external dependency failures necessitates new approaches
to resilience that extend beyond organizational boundaries,
emphasizing circuit breakers, graceful degradation, and com-
prehensive dependency monitoring.

The study contributes the first large-scale, cross-
organizational analysis of IT incident patterns in the cloud-
native era, updating foundational reliability taxonomies with
empirical evidence. The LLM-based classification approach
achieved 91% accuracy, demonstrating the viability of auto-
mated analysis for large-scale incident data.



Future work should address the limitations of publicly
available data through industry partnerships and investigate
domain-specific models for incident classification. The re-
liability challenges of modern IT systems require continued
empirical investigation as automation and system complexity
continue to evolve.
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