
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2009

MSc THESIS

Development of a workload set for
multi-core architectures

Erick Martijn van Rijk

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2009-05

With the rise of multi-core chips in commodity hardware, the need
for specialized workloads to evaluate the performance of multi-core
systems has become apparent. The current generation of workloads
used for evaluating multi-core systems often consist of sequential
programs not capable of running on multiple processors and are
therefore of limited use for evaluating multi-core hardware. Such
sequential programs fail to show the benefits of adding additional
cores to a system, since the programs are not capable of using all of
the available resources concurrently.
Apple Inc. requested the development of a workload suite that would
clearly show the benefits of increasing the number of cores, while
stressing the main parts of the system. Key requirements for the
workload are: Scalability, Reproducibility and Verifiability. In this
thesis report, we present the whole process of workload development
for multi-core systems, starting from selecting the programs to be
included in the workload, till the application of the workload to ac-
tual hardware. In addition, this report discusses the classification
of different programs based on fundamental algorithm classes called
Dwarfs, which is the basis for selecting possible workload compo-
nents. The thesis also presents the relevant technologies used for the

parallelization of selected workload components. Finally, a case study is discussed showing how to use the
developed workload in practice.

Development of a workload set for
multi-core architectures

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Erick Martijn van Rijk
born in Utrecht, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Development of a workload set for
multi-core architectures

by Erick Martijn van Rijk

Abstract

W
ith the rise of multi-core chips in commodity hardware, the need for specialized workloads
to evaluate the performance of multi-core systems has become apparent. The current
generation of workloads used for evaluating multi-core systems often consist of sequential

programs not capable of running on multiple processors and are therefore of limited use for
evaluating multi-core hardware. Such sequential programs fail to show the benefits of adding
additional cores to a system, since the programs are not capable of using all of the available
resources concurrently.
Apple Inc. requested the development of a workload suite that would clearly show the benefits of
increasing the number of cores, while stressing the main parts of the system. Key requirements for
the workload are: Scalability, Reproducibility and Verifiability. In this thesis report, we present
the whole process of workload development for multi-core systems, starting from selecting the
programs to be included in the workload, till the application of the workload to actual hardware.
In addition, this report discusses the classification of different programs based on fundamental
algorithm classes called Dwarfs, which is the basis for selecting possible workload components.
The thesis also presents the relevant technologies used for the parallelization of selected workload
components. Finally, a case study is discussed showing how to use the developed workload in
practice.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-05

Committee Members :

Advisor: Zaid Al-Ars, CE, TU Delft

Chairperson: Koen Bertels, CE, TU Delft

Member: Georgi Gaydadjiev, CE, TU Delft

Member: Henk Sips, PDS, TU Delft

i

ii

To Connor,
your smile can brighten the darkest day

iii

iv

Contents

List of Figures x

List of Tables xi

Acknowledgements xiii

1 Workload set development 1
1.1 Problem description . 1
1.2 The project and the objectives . 2
1.3 Component selection procedure . 3
1.4 Document overview . 4

2 Workload characteristics 5
2.1 Workload classification: the 13 Dwarfs . 5
2.2 Targeted Hardware Parts . 7
2.3 Criteria of the workload . 7

2.3.1 Scalability . 8
2.3.2 Reproducibility . 10
2.3.3 Torque: example workload application 11
2.3.4 Reproducibility Analysis . 12

3 Workload evaluation environment 15
3.1 Baseline system setup . 15
3.2 Parallelization methodologies . 15

3.2.1 Message Passing Interface (MPI) 17
3.2.2 POSIX Threads (Pthreads) . 17
3.2.3 OpenMP . 17

3.3 Application profiling tools . 18
3.3.1 Apple Shark . 18
3.3.2 Intel Pin Tools . 21
3.3.3 Summary . 21

3.4 Influence of analysis on results . 21
3.4.1 L2 cache miss profile . 22
3.4.2 Time Profile . 23
3.4.3 Time Profile (All Thread States) 23
3.4.4 Processor Bandwidth . 24
3.4.5 System Trace . 24

v

4 Scientific Benchmarks 25
4.1 Linpack . 25

4.1.1 Scalability . 25
4.1.2 Validation . 28
4.1.3 Criteria overview . 28

4.2 NASA Parallel Benchmark . 28
4.2.1 Simulated Computational Fluid Dynamic applications: BT, SP

and LU . 29
4.2.2 FT: Fourier Transform . 36
4.2.3 IS: Integer Sort . 38
4.2.4 MG: MultiGrid . 42
4.2.5 CG: Conjugate Gradient . 45
4.2.6 EP: Embarrassingly Parallel . 47
4.2.7 UA: Unstructured Adaptive . 49
4.2.8 Dwarf overview for NPB . 50

4.3 WRF . 52
4.3.1 Scalability . 52
4.3.2 Validation . 53

5 Media Benchmarks 55
5.1 Yaf(a)Ray Raytracer . 55

5.1.1 Scalability . 55
5.1.2 Validation . 58
5.1.3 Types of dwarfs used . 58

5.2 x264 encoder . 59
5.2.1 x264 encoder . 59
5.2.2 Scalability . 61
5.2.3 Validation . 65
5.2.4 Types of dwarfs used . 65

5.3 Selection and characterization of workload 65

6 Case study 67
6.1 Performing the workload runs . 67
6.2 Analyzing the results . 67
6.3 Case study results . 70

7 Summary, Conclusions and Recommendations 71
7.1 Summary . 71

7.1.1 Workload set development summary 71
7.1.2 Workload characteristics . 71
7.1.3 Workload evaluation environment summary 72
7.1.4 Scientific benchmarks summary . 73
7.1.5 Media benchmarks summary . 74

7.2 Conclusions . 74
7.3 Recommendations . 75

vi

Bibliography 79

A Torque detailed study 81

B Leviathan test harness 83
B.1 Linpack . 84

B.1.1 Where to get . 84
B.1.2 How to build . 84
B.1.3 How to run . 84

B.2 NPB . 85
B.2.1 Where to get . 85
B.2.2 How to build . 85
B.2.3 How to run . 85

B.3 x264 . 85
B.3.1 Where to get . 85
B.3.2 How to build . 86
B.3.3 How to run . 86

B.4 Yaf(a)ray . 87
B.4.1 Where to get . 87
B.4.2 How to build . 87
B.4.3 How to run . 88

B.5 WRF . 88
B.5.1 Where to get . 88
B.5.2 How to build . 88
B.5.3 How to run . 88

vii

viii

List of Figures

1.1 Candidate application domains for the workload 2

2.1 Ideal content of the workload covering all possible Dwarfs 5
2.2 Torque histogram of memory access patterns 12
2.3 Flowchart of the reproducibility analysis 13
2.4 Histogram of CG runtime variance . 14

3.1 Mac Pro 8-core architecture layout . 15
3.2 Divide and conquer . 16
3.3 Pipelining . 16
3.4 Synchronization behavior viewed in System Trace 19
3.5 Bandwidth profile with different Torque memory access patterns 20

4.1 Scaling of Linpack depending on number of cores 26
4.2 Processor Bandwidth profile with a sample rate of 10ms 27
4.3 Processor Bandwidth profile of NPB BT 30
4.4 Zoomed in Processor Bandwidth profile of BT 30
4.5 Scaling of BT depending on number of cores 31
4.6 Processor Bandwidth profile of NPB SP 32
4.7 Zoomed in Processor Bandwidth profile of SP 32
4.8 Scaling of SP depending on number of cores 33
4.9 Processor Bandwidth profile of NPB LU 34
4.10 Zoomed in Processor Bandwidth profile of LU 35
4.11 Scaling of LU depending on number of cores 35
4.12 Processor Bandwidth profile of NPB FT 38
4.13 Zoomed in Processor Bandwidth profile of FT 38
4.14 Scaling of FT depending on number of cores 39
4.15 Processor Bandwidth profile of NPB IS 40
4.16 System Trace profile of NPB IS . 41
4.17 Scaling of IS depending on number of cores 41
4.18 Processor Bandwidth profile of NPB MG 43
4.19 Zoomed in Processor Bandwidth profile of MG 43
4.20 Scaling of MG depending on number of cores 44
4.21 Processor Bandwidth profile of NPB CG 45
4.22 Scaling of CG depending on number of cores 46
4.23 Processor Bandwidth profile of NPB EP 47
4.24 Scaling of EP depending on number of cores 48
4.25 Processor Bandwidth profile of NPB UA 50
4.26 Zoomed in Processor Bandwidth profile of UA 50
4.27 Scaling of UA depending on number of cores 51
4.28 Processor Bandwidth profile of WRF . 53
4.29 Scaling of WRF depending on number of cores 54

ix

5.1 Scaling of Yaf(a)ray depending on number of cores 56
5.2 Processor Bandwidth profile of Yaf(a)ray 57
5.3 Final raytraced image produced by Yaf(a)ray 58
5.4 Camera and display order . 60
5.5 Reordering the frames for encoding . 60
5.6 Row dependency for frames N to N+2. 61
5.7 Processor Bandwidth profile of x264 encoder 62
5.8 Scaling of x264 encoder depending on number of cores 64
5.9 Frame from Big Buck Bunny . 64
5.10 Total number of Dwarfs in workload . 66

6.1 Comparing different processor models using the workload results 68

A.1 Torque bandwidth usage . 82

x

List of Tables

2.1 Datapoint validation of multiple iterations of NPB CG 13

4.1 Calculating the scalability of NPB BT . 30
4.2 Calculating the scalability of NPB SP . 33
4.3 Calculating the scalability of NPB LU . 36
4.4 Calculating the scalability of NPB FT . 39
4.5 Calculating the scalability of NPB IS . 42
4.6 Calculating the scalability of NPB MG . 44
4.7 Calculating the scalability of NPB CG . 46
4.8 Calculating the scalability of NPB EP . 48
4.9 Calculating the scalability of NPB UA . 51
4.10 Dwarf distribution in NPB . 51
4.11 Calculating the scalability of WRF . 53

5.1 Calculating the scalability of Yaf(a)ray . 56
5.2 Calculating the scalability of the x264 codec 63

6.1 Reported runtimes for different processor models 67
6.2 Reported runtimes for the 2007 model with 8 active cores 69

xi

xii

Acknowledgements

During the 18 months I was working on this MSc. thesis at Apple Inc. in Cupertino,
I have met an incredible amount of bright engineers and friendly people and in this
section I would like to thank them for their efforts and support.

I would like to thank Myke Smith from Apple Inc. for giving me the opportunity
to do my Master thesis in his group. He went above and beyond what I would have
expected from a manager to provide assistance and advice when I needed it most,
providing encouragement and good company. I would have been lost without him.

I would like to thank the people in the Architecture and Performance Group at
Apple Inc. for supporting me during the work on the thesis as well as proving a fun
environment to work in. I would have never imagined hard work and fun could have
been combined until I worked in this group.

It is difficult to put into writing the appreciation I have for my advisor Dr. Ir. Zaid
Al-Ars, with his solid advise during and especially his help at the end of my thesis.
Without him it would have been a greater challenge to put my thoughts into writing.
His enthusiasm, good teaching and willingness to discuss for long periods of time makes
him a great teacher and wonderful addition to the faculty.

I am grateful to my friends and student colleagues for their camaraderie, allowing
me to learn and grow and become a better person.

I would like to thank Pamela Smith for keeping me sane during insane times, always
willing to have a cheerful chat and allowing me to be part of her family during the time
I was away from my own.

A special thanks to my extended family for providing me with a loving and caring
environment. My parents who raised me, my sister who played with me and my in-laws
who are always up for a laugh.

And finally, but most importantly, I would like to thank my wife Petra and my son
Connor for their love and understanding during the periods I have spend separated from
them. To them I dedicate this thesis.

Erick Martijn van Rijk
Delft, The Netherlands
July 27, 2009

xiii

xiv

Workload set development 1
With the arrival of more complex architectural designs for computer hardware, compar-
ing them by just looking at specifications such as clock frequency and memory bandwidth
is no longer feasible. Instead one must execute a variety of programs on the different
hardware architectures, and then compare actual execution times for these programs on
each architecture, a process called workload testing. The major challenge in workload
development is choosing the selection of programs that must be:

Realistic Be representative of typical software run on the systems

Exhaustive Exercise all possible hardware bottlenecks

Efficient Execute in a reasonable amount of time

Verifiable Verify the computed results to ensure their correctness

Balancing these factors can be tricky. To date several groups have made audited and
verifiable workloads for industry use. One of the most well known groups is the Standard
Performance Evaluation Corporation (SPEC) founded in 1988 [31]. SPEC tries to use
real world applications and intentionally emphasizes the second challenge over the first.
The primary focus of workloads like SPEC CPU2006 [32] is exploring the corner cases
of hardware architecture.

1.1 Problem description

The computational resources available in multi-core hardware are not fully utilized by
current software applications. Special software is needed to fully stress current and
future scalable multi-core architectures. This thesis looks into the process of finding and
selecting suitable applications for inclusion into a multi-core workload.

Creating a suitable workload that is capable of fully stressing a multi-core system
requires taking a look at the different kinds of software applications available. To fully
utilize the available computational resources provided by multi-core architectures, use of
all the available cores is necessary during computation. This means that the applications
must be divided into sections that can be run in parallel. The algorithms used in these
applications can be divided into three categories:

• Embarrassingly Parallel: The most suitable algorithms are the embarrassingly par-
allel algorithms, ones that can be easily divided into parallel regions without any
adverse effects on the outcome of the algorithm [16]. Embarrassingly parallel algo-
rithms are primarily found in scientific applications that work with large datasets
and are specifically designed to be run on multi-core machines.

1

2 CHAPTER 1. WORKLOAD SET DEVELOPMENT

• Partially Parallel: The partially parallel algorithms can be suitable if the parallel
parts of the algorithm are the most computationally intensive part and the serial
parts have minimal computational requirements.

• Sequential: A sequential algorithm is often not suitable for parallelization, because
each stage of computation may depend on the previous set of values [16].

To develop our scalable workload, we decided to look for real world applications in
the domain of scientific computing, consisting of High Performance Computing (HPC),
BioInformatics and an area what Intel calls “Recognition, Mining and Synthesis (RMS)”
[12], as shown by Figure 1.1. We also decided to look at the media domain since modern
media requires significant computation for content generation. During our initial study
we decided that the Bioinformatics and Intel RMS applications are so complex that any
proper evaluation falls outside the scope of this thesis. We will discuss the Scientific
benchmarks in detail in chapter 4 and the Media benchmarks in chapter 5

Figure 1.1: Candidate application domains for the workload

1.2 The project and the objectives

The project goal is to create a workload set for use by Apple Inc. It will be a verifiable
workload that can be checked for correctness and will run in both 32 and 64-bit mode.
The workload set should simulate high-end user behavior but be executable within a
limited timeframe, such as 12-24 hours. This is much shorter than the a full run of
the SPEC CPU2006 benchmark, which takes up to 3 days to complete. Because of our
focus on multi-core architectures, specific attention should be given to how threading
can be used to enhance performance of the applications. For each component in the
workload, the following procedure will be used. First, we will look at several types of
HPC, encoding and rendering benchmarks and select suitable programs from each to
be analyzed. The analysis phase will then test each selected program and select the
most interesting programs based on the presence of bottlenecks or high computational
intensity, if possible. If the program is not suitable for workload testing, based on specific
requirements (specified in section 2.3), the process of selecting begins again. When a
component passes these requirements, it will be added to the workload set. Finally, a

1.3. COMPONENT SELECTION PROCEDURE 3

report generation and verification elements will be added to the component to ensure
that it adheres to the workload set requirements.

1.3 Component selection procedure

For selecting components the following steps are taken to make sure the components
were suitable for inclusion in the workload:

1. Parallelization: There are multiple ways to parallelize applications that are capa-
ble of using multiple cores on the host machine. So we need to select the most
appropriate way to parallelize the application. There are several support libraries
for multi-core systems available (Pthreads, OpenMP and MPI, among others). The
preference goes to solutions that have shared memory support, so that threads all
have access to common memory and there is no need for a communication layer
(i.e. message passing, used with MPI). More information will be given in section
3.2.

2. Building: When a possible component has been selected, we first need to build it
for the OSX platform to generate a working binary. This is heavily dependent on
the application and source code type; some applications have been tested on OSX
before or are already native to the OS.

3. Scalability analysis: Once the Application is multi-threaded, then we can start to
look at the scalability of the application. We need to make sure that the application
can always use all of the available cores. Since the workload needs to be usable for at
least 2 years after completion, we need to make assumptions about future hardware
components and speedup based on available roadmap information and current
trends. Since our main target is consumer level machines ranging from simple
laptop/desktop computers to workstation/server systems, and not enterprise-level
mainframes, we can limit ourselves to machines that may contain 32 cores and can
execute 64 threads concurrently. We expect that the increase in CPUs will not
give a linear increase in performance. Various factors, like sharing of the memory
subsystem and blocking while we are waiting for data from other threads, will
usually limit us to sub-linear speedups. However, the application should not hit a
ceiling where cores do not provide any additional speedup.

4. Behavior profiling: When we have a scalable parallelized or also called a multi-
threaded application, we can start the in-depth profiling of the application and the
data each application uses (also called the dataset), to look for instruction mix,
branch and cache behavior, and bandwidth utilization of the application and our
data set. The items we need to look at are: instruction mix, branch behavior, cache
behavior, bandwidth utilization and memory latency. All of these items affect the
overall performance of an application on an architecture. The tools used to look
into these behavioral patterns are mentioned in section 3.3

4 CHAPTER 1. WORKLOAD SET DEVELOPMENT

1.4 Document overview

The layout of this thesis is as follows. Chapter 2 introduces the concept of Dwarfs which
are common scientic algorithms. We will target these specic algorithmic methods speci-
cally when selecting components for the workload. The relevant workload areas and the
criteria for the workload are also discussed in this chapter. Following this , Chapter 3
will discuss the workload environment and parallelization methodologies. The applica-
tion proling tools that were used are also discussed in this chapter. Chapter 4 will discuss
the various scientic applications we selected for the workload and an in depth analysis on
each application. After this, Chapter 5 will discuss the two media applications that we
selected for the workload and an in depth analysis on each application. In Chapter 6 a
case study of the finished workload will be presented. Finally, Chapter 7 summarizes all
the previous chapters and will present our conclusions and recommendations for further
research.

Workload characteristics 2
So what is a workload? A workload is a group of programs that test various hardware
parts of a computer architecture. The results of these programs (primarily runtime, but
also sometimes throughput, bandwidth, etc.) can be analyzed to give the architecture a
rating compared to other architectures that have run the same set of programs. One of
the most important criteria of a good workload is that the results are verifiable and are
not biased to a particular architecture.

2.1 Workload classification: the 13 Dwarfs

When looking for suitable applications to be included in a workload, we need to look
at the kind of numerical and algorithmic methods used to implement the application.
A good way to characterize an application is to subdivide the algorithms used in these
applications into fundamental algorithm classes called Dwarfs. An example of an ideal
workload would look like Figure 2.1, where all the types of Dwarfs are covered by the
applications contained in the workload. The concept of Dwarfs as common building
blocks of larger applications was originally proposed by P. Colella [10], who categorized
common scientific algorithm implementations into seven Dwarfs. A working group in
Berkeley [6] expanded this concept by adding an additional 6 Dwarfs to the original 7,
making the total of the following 13 Dwarf categories:

Figure 2.1: Ideal content of the workload covering all possible Dwarfs

1. Dense Linear Algebra: Matrix and vector operations on contiguous arrays of data
elements.

2. Sparse Linear Algebra: Similar to Dense Linear Algebra, but with a large number
of zero entries in the array. Compressed data structures are commonly used.

5

6 CHAPTER 2. WORKLOAD CHARACTERISTICS

3. Spectral Methods: Operations performed in the spectral domain often get their
input data from the temporal or spatial domains. Spectral algorithms usually use
multiple stages to process the data.

4. N-Body Methods: Algorithms based on N-Body methods are calculations that are
dependent on communication between many discrete points. Common algorithms
are Barnes-Hutt and Fast Multipole.

5. Structured Grids: Data is stored in a multi-dimensional structured grid where
grid-points are updated based on their neighboring values for each computational
iteration.

6. Unstructured Grids: Data is stored in an irregular manner, where each data element
is defined by the significance of its location within the global structure. Data
elements can be a point, edge, facet or volume. The grid-points are updated based
on their neighbors in the grid or mesh.

7. MapReduce: Originally called Monte Carlo, it is a repeated independent operation
with little or no communication between the operations. The results are collected
and stored or reduced at the end of each operation.

8. Combinational Logic: Performing simple operations on large volumes of data and
aggregating the result into a final solution. Examples are hashing functions or
on-the-fly processing of datastreams. High throughput is critical for this Dwarf.

9. Graph Traversal: Traversal of a collection of objects and analyzing the properties
of these objects. Search algorithms often use graph traversal.

10. Dynamic Programming: Dynamically sub-dividing the larger problem into smaller
sub-problems to find the optimal solution based on these smaller sub-problems.
Used in DNA sequence matching.

11. Back-track and Branch-and-Bound: Uses the divide and conquer principle to sub-
divide a huge search space. These sub-spaces (branches) will be analyzed and
processed independently; afterwards, they are processed by their higher level par-
ents (roots).

12. Graphical Models: Sets of nodes with variables that are connected by edges repre-
senting the probabilities. Examples are Bayesian networks, hidden Markov models,
and neural networks.

13. Finite State Machine: Comprised of interconnected sets of states, where a state
can transition from one to another state when a specific condition has been met.

Matching applications to certain Dwarf characteristics will give an idea of the be-
havior of said applications. For example, Linpack, a benchmark that computes a dense
linear system, would fit into Dwarf 1 (Dense Linear Algebra) with coarse grain paral-
lelism. The implementation of all the above mentioned dwarfs into the workload is our
goal, in this case our workload will provide a good insight on the behavioural patters of
a particular architecture.

2.2. TARGETED HARDWARE PARTS 7

2.2 Targeted Hardware Parts

Since the hardware parts used by possible workloads include CPU, memory, graphics,
I/O, memory interconnects we need to limit our selection of these hardware parts. There-
fore we confine our research to workloads that stress the following parts of the hardware,
and thereby limiting the scope of our research to the following targeted hardware parts:

• CPU

• Memory

• Memory interconnect (also referred to as North-Bridge or Front Side Bus (FSB))

We designed our workload so that the other hardware parts are not a bottleneck that
can hamper the targeted hardware. For example, I/O will be minimized from the core
of each benchmark.

Suitable areas where we can find applications that stress the CPU and/or the memory
interconnect are found in the scientific community and media tasks. High Performance
Computing (HPC) applications used by many areas of science push the computational
limits of current hardware. Creating or modifying media requires vast computational
power, and many algorithms are multi-threaded.

2.3 Criteria of the workload

The workload should be capable of fully stressing current and near-future high-end sys-
tems. Because the current roadmap of key hardware parts like the CPU and the memory
interconnect call for increasing performance according to Moore’s law [23], we can ex-
pect that in the next 18 months the performance of these sub-systems will approximately
double. The performance of the CPU will most likely increase because of the increased
number of cores on the same die, and not because of an increase in clock frequency [24].
With the numbers of cores increasing, parallelization of software is necessary to take full
advantage of the architecture. Hence our first requirement: The workload should have
full support for multi-core systems, meaning it should be able to take advantage of all of
the available cores.

The state of operating systems is in constant flux, with minor revisions every few
months and major revisions approximately every 2 years. Hence, a common use for the
workload will be to ensure that there is no regression in performance between revisions.
This brings us to our second requirement: Full support of Mac OS X by the workload.

Running workloads is a time consuming practice, with larger workloads running
continuously for days. While the workload needs to run long enough to collect enough
data to be analyzed, it still needs to be short enough to be practical to test with. That
leads us to our third requirement: The workload needs to complete and give results within
a reasonable time of 12-24 hours, so we can get the results the next day.

Getting results from the workload is a vital part of the performance analysis process.
The timing and performance results produced by a particular workload should not vary
when run repeatedly on the same platform (both hardware and software). When the

8 CHAPTER 2. WORKLOAD CHARACTERISTICS

results vary greatly, even with the same setup, the timing results become meaningless
and the workload ceases to be useful, since one cannot distinguish between random
workload variation and significant test measurement variation. This brings us to our
fourth requirement: Reproducible test results on the same platform.

Finally, the output of the benchmarks/applications in the workload should be
scientifically correct and should not differ between platforms. The results cannot vary
when run on different platforms because of rounding errors or calculation errors. This
brings us to our fifth and final requirement: The workload needs to produce verified
results that do not change when run on other platforms.

To summarize these requirements:

Scalability The workload should have full support for multi-core systems, meaning it
should take advantage of all of the available cores.

Compatibility Full support for Mac OS X systems

Duration The workload needs to complete and give results within a reasonable time of
12-24 hours, so you can start your test and get results the next day.

Reproducibility Reproducible test results on the same platform.

Verifiability The workload needs to produce verified results that do not change when
run on other platforms

In the following sections the issues of scalability and reproducibility are discussed in
more detail.

2.3.1 Scalability

An interesting issue is the scalability of the workload for the upcoming years. Any
useful workload will need to take into account the rapid increase of computational power
and threading capability in future hardware. It is a fair assumption that by 2010 we
will have workstation-level machines that will be able to process up to 128 threads
concurrently [9, 12, 18, 27, 28, 34]. To address this scaling problem there are 4 typical
application scaling methods [16]:

1. Constant Dataset (“Problem Constrained”), where the dataset is fixed and the
execution time decreases with more cores.

pro: The dataset remains the same so calculating speedup is easier.

con: The problem here is that the decomposition of the dataset used for the
problem across parallel processors could heavily influence the performance. If each
processor’s data partition becomes too small, the communication overhead can
become an issue. Processor caches can also have a dramatic effect on performance
if they enlarge enough to hold a key working set of the application

2.3. CRITERIA OF THE WORKLOAD 9

2. Scaled Dataset (“Memory Constrained”), where the dataset increases by multiples
of the number of cores.

pro: Multiplying the dataset size is easy for some applications.

con: Memory does not scale at the same rate as the number of processors in many
systems of interest. Runtime can increase significantly. Speedup calculations will
become more complex.

3. Constant Time (“Time Constrained”), where the execution time is constant and
the dataset is scaled accordingly.

pro: Computational runtime will be predefined.

con: Only easy for streaming data (video encoding etc). Otherwise, dataset needs
to be tweaked for each architecture, because aborting the computation midway will
influence the results. Requires a lot of work.

4. Constant Efficiency (“Isoefficient”), where the computational efficiency is kept con-
stant by increasing the dataset and the execution time to counter inefficiencies
caused by added communication and synchronization time required by larger num-
ber of cores.

pro: Efficiency can be decided by developer/user.

con: Dataset needs to be tweaked for each architecture. Requires a lot of work.

Changing the dataset has too many downsides when considering that the results need
to be compared between significantly different computational architectures. Therefore,
we chose to use the Constant Dataset method because of its ease of implementation and
simple comparison of results. We can define the dataset to be large enough so it will not
be influenced by the communication overhead in the designed lifetime of this workload.
When the dataset eventually becomes too small, it can be replaced with a new, larger
one. This is a methodology used by SPEC to periodically update their benchmark suites
with new datasets and applications [33].

Because we use the Constant Dataset method, we can calculate the total runtime
T(p) of an application taking into consideration the serial portion of the application.
This method is defined using Amdahl’s law [4]:

T (p) = Ts +
Tp
p

(2.1)

Where:

• T(p) is the total runtime required to execute on a p-processor system

• Ts is the time required for the serial part of the code to execute

• Tp is the time required for the parallel part of the code to execute on a single
processor

• p is the number of processors

10 CHAPTER 2. WORKLOAD CHARACTERISTICS

To calculate the speedup and efficiency, we use the Karp-Flatt metric [20] where we
derive the serial fraction from the experimentally obtained runtimes by changing the
numbers of active cores. Since the applications in the workload are too complex to
implement an optimal serial algorithm, we define the serial runtime T1 as the runtime
with one core active with the knowledge that possible overhead for parallelization might
be included in this T1. Based on the reworked equations 2.2 and 2.3 we can estimate
the serial fraction s that a particular application has. Based on this we can make an
estimate on how an application might scale on machines that have more cores than our
test system. This estimate we call the derived Amdahl’s scalability.

T (p) = T1 ∗ s+
T1 ∗ (1− s)

p

T (p) = s[T1 −
T1

p
] +

T1

p
(2.2)

s =
T (p)− T1

p

T1 − T1
p

=
T (p)
T1
− 1

p

1− 1
p

=
p ∗ (T (p)

T1
− 1

p)

(p− 1)
(2.3)

Another benefit of the Karp-Flatt metric is that the change in the serial fraction
s can give us an insight on certain hardware limitations we might come across during
scaling from 1 to 8 cores. Some examples are [20]:

• Irregularities in the serial fraction indicate load balancing issues and cache inter-
ference.

• Decreasing speedup with a smooth increase of the serial fraction can point to
increasing overhead in synchronization.

• Constant serial fraction while the efficiency is dropping points to a limited parallel
code portion.

• Decreasing serial fraction and the efficiency is dropping means the overhead is
increasing.

2.3.2 Reproducibility

Another issue is the reproducibility of the tests done by the workload. So that small but
real performance differences between systems can be measured, there can be only a min-
imal random performance variance. The industry considers a random difference between

2.3. CRITERIA OF THE WORKLOAD 11

the min and max performance results below 5% among multiple iterations performed on
the same system to be acceptable. However, this approach is rather ad hoc. A more
systematic approach is given in section 2.3.4. The workload needs to include checks for
any variations that may occur, to make sure they are within the specified tolerances.
Variances in runtime and performance become more significant when we are completely
saturating limited system resources such as CPU time and memory bandwidth. Since
modern operating systems have multiple background processes for maintenance tasks,
network services, etc., when background processes are scheduled instead of the target
application they will affect the machine performance and produce variations in the final
results. Even the scheduling of the processes on different CPUs can play an impor-
tant role in performance, because cache sharing and resulting data locality can impact
the performance significantly. To demonstrate the influences that the operating system
and cache locality can have, the following section discusses variations we observed using
Torque, a simple bandwidth-testing application.

2.3.3 Torque: example workload application

The application Torque tries to saturate the memory subsystems by loading or copying
blocks of memory as fast as possible. Torque has an option to create multiple processes
in order to exercise multiple processors simultaneously. Every process is capable of
saturating the memory subsystem by itself, but when we run, for example, 8 processes
concurrently on an 8 core machine, the effects of cache locality and scheduling become
apparent. For this test, we ran 4 load processes and 4 copy processes in parallel. Torque
was set to do 100 internal iterations of bandwidth usage and the average result was
logged to an output file. This process was repeated 1000 times and these statistics were
analyzed to detect variations caused by cache locality and scheduling.

Performance evaluation To examine the range of variation, a histogram of the per-
formance statistics was made in Figure 2.2. The x-axis shows the throughput of the
memory bus (Front Side Bus or FSB) in MB/second. The y-axis shows the frequency
of occurrence of a particular throughput score over the course of the 100000 iterations
run for the test. The histogram in Figure 2.2 shows that the majority of the perfor-
mance is indeed centered around the mean of 5754 and the standard deviation goes from
5707MB/second to 5792MB/second, which represents a variation of 2%. The total dif-
ference between the lowest and highest bandwidth measured was 13%. The ones that
are outside of the standard deviation perform either poorly or exceptionally well, as a
result of behavior caused by cache locality and by the scheduler. In the worst case, the
different processes are interfering with each other in the cache and on the FSB. They may
also have been pre-empted by the scheduler for a background process for a time. In the
optimal case, there was little to no interference between the different processes, and the
processes stayed on the same core during the entire run. Other real world applications
should have variances in performance similar to Torque’s.

The second peak in the histogram plot at 5800 MB/Second is caused by grouping of
specific processes on the cores. To find out what causes the better performance, further
investigation was done and explained in Appendix A.

12 CHAPTER 2. WORKLOAD CHARACTERISTICS

Figure 2.2: Torque histogram of memory access patterns

2.3.4 Reproducibility Analysis

To prevent possible outliers (a data point on a graph or in a set of results that is a
lot bigger or smaller than the next nearest data point) affecting the final results, we
will try and remove these outliers by analyzing the performance measurement results of
several iterations. As discussed in the previous section these outliers can be caused by
interruption of the application under test, due to the schedular or hardware behaviour
such as cache coherence. To satisfy the reproducibility requirement, we use the concept
of coefficient of variation (CV) which is defined as the ratio of the standard deviation σ
and the mean µ:

CV =
σ

µ
(2.4)

The key benefits of CV is that it is a dimensionless number, so different datasets can
be compared without problems. Based on the experimental data we have collected, we
concluded that the CV needs to be smaller than 2% to be certain that the final results
are valid. This means that the standard deviation is 2% of the mean of all the samples
taken.

The steps for the reproducibility analysis, the procedure we use to check if the results
are valid, are shown in Figure 2.3 and explained in the following paragraph.

Before we can begin the reproducibility analysis, we first need to run the iterations
and generate the performance results. When the required number of iterations is com-

2.3. CRITERIA OF THE WORKLOAD 13

Figure 2.3: Flowchart of the reproducibility analysis

plete, we collect the performance results for processing and calculate the coefficient of
variance (CV) for all collected performance number. Now we can start the reproducibil-
ity analysis by looking at the values of the CV. When the CV is not within the predefined
threshold of 2%, we will remove outliers further than σ from the mean and recalculate
the mean and standard deviation from the remaining values, and we will repeat the ver-
ification step. This process continues until the CV is below 2% or half of the returned
values are removed. If we have removed more than half the results, the whole batch is
considered bad and the user will need to manually check the state of the system. For all
of the components in the workload the same reproducibility analysis will be applied and
the final results will be based thereon.

The reproducibility analysis will be explained using one of our workload components
NASA Parallel Benchmark CG (NPB CG), discussed in section 4.2.5, as an example.

CG produces similar results across multiple runs with only a small variance in the
total runtime. However, CG has a large variation when comparing the minimum and
the maximum for a 100 iteration test. The difference between the shortest and longest
time was 16%, a considerable difference. To minimize the influence of these outliers we
remove them as described in the flowchart shown in Figure 2.3.

Iteration 1 2 3 4 5 6 7 8 9 10 CV

Pass 1 180s 194s 183s 182s 182s 184s 187s 180s 183s 205s 4.29%

Pass 2 180s Invalid 183s 182s 182s 184s 187s 180s 183s Invalid 1.34%

Table 2.1: Datapoint validation of multiple iterations of NPB CG

After processing the initial collected performance results, we will proceed and calcu-
late the CV of all the 10 iterations in our example. In our example the results, shown

14 CHAPTER 2. WORKLOAD CHARACTERISTICS

Figure 2.4: Histogram of CG runtime variance

in Table 2.1, the CV is 4.29%, too high to pass our reproducibility analysis. So the next
step is to find the outliers that fall outside the boundary defined by mean µ ± standard
deviation σ, highlighted in the Figure 2.4 where the x-axis shows the runtime required
to complete a single iteration of CG and the y-axis is the number of tests reporting a
particular duration. When we have removed the outliers we recalculate the CV of the re-
maining datapoints and test if we pass the reproducibility requirement. In our example,
shown in Table 2.1, the datapoints of iteration 2 and 10 (with a runtime of 194 seconds
and 205 seconds respectively) fell outside the boundary and were invalidated. Due to
the removal of these two datapoints the reproducibility requirement was passed at the
second pass of the CV check and now the results are validated. During this process,
every removal of additional datapoints will make the boundary smaller, resulting in a
more strict validation process.

Workload evaluation
environment 3
In this chapter we discuss the evaluation environment that we used for testing our ap-
plications. The profiling tools used to determine the suitably of the applications for the
workload are also discussed in this chapter, including the impact profiling has on the
actual metrics collected.

3.1 Baseline system setup

Our baseline system is a 3.0 GHz Mac Pro 8-core (with two Quad-Core Intel Xeon
processors) machine, stocked with 8GB of main memory. The baseline system ran Mac
OS X 10.5. This is a cache coherent Uniform Memory Access (ccUMA) architecture, with
the 8GB spread over 4 separate memory access lanes that can be accessed independently,
as is illustrated in Figure 3.1. A ccUMA architecture is an architecture where the main
memory is shared among the processors with equal access time and any write operation
to a processor’s cache will invalidate the other processor’s caches, keeping the caches
coherent in the process.

Figure 3.1: Mac Pro 8-core architecture layout

3.2 Parallelization methodologies

Because of the advent of multi-core processors, there needs to be a paradigm shift from
the current serial programming methodology to a new parallel programming methodol-

15

16 CHAPTER 3. WORKLOAD EVALUATION ENVIRONMENT

ogy. The current serial way to process work is to start a job in a single thread and wait
for it to complete before doing something else with the data. This was the only way to
do one’s work in a uniprocessor world, but now, with multi-core chips available to the
general public capable of running many threads concurrently, this method is a waste of
the available resources. There are three ways to parallelize applications:

• Splitting the data in separate parts, generally referred to as the divide and conquer
method. This is illustrated in Figure 3.2, where the dataset is chopped up into
four similarly-sized parts to be processed independently.

• Splitting program code into separate parts and pipelining, as is illustrated in Figure
3.3. In this case, each core performs a dedicated computational stage, and all the
data flows through all of the cores.

• Hybrid model where the process is pipelined, but data division is done in some
pipeline stages.

Figure 3.2: Divide and conquer

Figure 3.3: Pipelining

There are several libraries that supply a framework to control threading and commu-
nication in parallel applications: POSIX Threads (Pthreads), Message Passing Interface
(MPI) and OpenMP.

3.2. PARALLELIZATION METHODOLOGIES 17

During the process of selecting the applications to be included in the workload, we
also need to take a look at the methods used to parallelize the applications. Some
parallelization methods are more suitable than others, as we will explain in the following
sections.

3.2.1 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a communication protocol library that enables
the user to create scalable high performance parallel applications. The MPI library
supplies an API for various programming languages including Fortran, C and C++. The
way MPI works is that the application is written so that a new copy of the application
is started on every core. The MPI system keeps track of each copy and gives each copy
a tracking number. These marked applications are then placed on different cores to be
run in parallel without working in the same memory space, and explicitly package up
data into messages when communication among the parallel processes is required. The
memory footprint will increase with each process added with the rate of (datasetsize
+ application footprint) × nproc. The complex MPI API has a steep learning curve,
and is therefore mostly implemented for clusters, where separate memory spaces and
applications are necessary.

3.2.2 POSIX Threads (Pthreads)

POSIX Threads (Pthreads) is the standard programming interface for threads in UNIX
systems using the C language (IEEE standard 1003.1 [25]). By using threads, the pro-
gram can occupy multiple cores at the same time and sub-divide its work. Depending
on the data dependency of the chosen algorithm, the threads can be used for the divide-
and-conquer method or the pipeline method. Pthreads is considered a medium skill level
programming framework, where the developer needs to learn the basic concept of parallel
computation, but doesn’t need to explicitly manage all the communication. It is possible
to mix Pthreads with MPI to create a hybrid applications that can work in a shared
memory mode locally on a multi-core machine, and also use MPI for communication
with other machines in a cluster.

3.2.3 OpenMP

OpenMP is a framework for shared memory systems where the source code is marked
with compiler directives that allow the compiler and a run-time library to parallelize the
application. Because only a few keywords need to be added to parallelize loops, OpenMP
is easier to learn and to implement when going from serial code to parallel code. Using
environment variables in the run-time environment, the user can easily specify how many
threads are generated and how they are mapped to their system. Another advantage
OpenMP has is the capability to dynamically change the number of parallel tasks based
on the underlying hardware, to make optimal use of the system. Like Pthreads, it is
also possible to mix OpenMP code with MPI so that a single machine can run multiple
threads using OpenMP while executing an application across a cluster of machines using
MPI.

18 CHAPTER 3. WORKLOAD EVALUATION ENVIRONMENT

When looking at these methodologies, our preference is towards applications using
OpenMP, because the implementation has support for dynamic scaling and does not have
the memory usage overhead that MPI has. Also, our evaluation environment is a ccUMA
architecture, as described in section 3.1, so we can use shared memory parallelization
techniques.

3.3 Application profiling tools

During the characterization phase of the workload selection process, we looked at multiple
segments of both the hardware behavior and software behavior of each application. By
using the following applications during profiling, we got a good overview of the behavior
and possible bottlenecks generated by the target applications in the workload.

Apple Shark Software and hardware profiling tool made by Apple Inc.

Intel Pin Tools Software profiling tool made by Intel Inc.

3.3.1 Apple Shark

Shark [5] is Apple’s primary performance analysis tool. Shark is designed to make it
easy for a developer to profile applications to better understand their behavior. To
do so, Shark has various configurations to show performance characteristics of applica-
tions during runtime both from a hardware and software point of view. Shark also has
the ability to monitor hardware performance monitor counters (PMCs) of the under-
lying architectures, providing detailed information about the state of the system, such
as monitoring the L2 cache miss ratio or the memory bandwidth usage between the
memory controller and the processors. The following subsections describe the various
configurations of Shark.

3.3.1.1 Time Profile

We utilize Shark’s “Time Profile” to do statistical sampling of the target application
to see which functions the application executes most often. The application is halted
at evenly spaced time intervals and Shark records the function the CPU is currently
executing. Shark then gives an overview of where most of the computational time is
spent. A secondary configuration, “Time Profile (All Thread States),” profiles even
blocked or sleeping threads. Information about hot loops, blocking and spinlocks can be
determined from these profiles. These events tell you how an application performs on a
system, and where possible problems are located.

3.3.1.2 System Trace

The System Trace configuration records all user/kernel transitions that happen on the
entire system during the time the trace is recorded. Shark logs system calls, interrupts,
virtual memory faults, and thread scheduling decisions. By looking at this information,
we can understand how the target application interacts with OSX and see inter-thread

3.3. APPLICATION PROFILING TOOLS 19

synchronization behavior for multi-threaded applications. Understanding where block-
ing and synchronization occur can be done by looking in the timeline view of System
Trace, as shown in Figure 3.4. The phone icons are system calls that indicate special
events, in this case synchronization with the other threads. The example shows a barrier
synchronization event, where all the threads are waiting for the red colored thread to
complete before continuing.

Figure 3.4: Synchronization behavior viewed in System Trace

3.3.1.3 Processor bandwidth profile

With the Processor bandwidth profile, we can get an overview of how applications com-
municate between the CPUs and use main memory. When we know the practical band-
width limitations of the hardware, we can see if the application is regularly hitting this
hardware bandwidth ceiling, as is shown by Figure 3.5. This ceiling is mostly displayed
as occasional peaks if the application does burst accesses with high bandwidth require-
ments, or as plateaus if there is a continuous access pattern to the main memory or
between the CPUs. Since there are different types of memory operations, they may also
have different bandwidth ceilings. Typically a store operation has a higher bandwidth
ceiling because it does two memory operations, first a load of the old cache line and then
a store of the data, which can be done in parallel with subsequent CPU operations. A
load by itself has a lower bandwidth ceiling because it only fetches data from memory
and often has dependent operations immediately following that must be performed se-
quentially. In Figure 3.5, we show the bandwidth limits for the different memory access
patterns used by Torque (see section 2.3.3). The Load (reading a continuous portion
memory) test tops out around 5693 MB/second, while the Store (reading a continuous
portion of memory and writing it to another location) test has a higher bandwidth ceil-
ing of 7347 MB/second. The other two memory patterns, Bcopy (copying bytes from
one memory location to another) and Bzero (clearing a continuous portion of memory
with zeros), have a bandwidth limit similar to the Load test, 5702 MB/second and 5141
MB/second, respectively.

3.3.1.4 L2 cache miss profile

We used a special Shark configuration to profile the ratio of level 2 cache misses to the
number of level 2 cache requests to see if the application generates a lot of cache misses.
We set up the hardware performance counters in the Core 2 architecture to trigger
(generate a sample point) every 100 L2 cache misses. When the trigger is fired, that

20 CHAPTER 3. WORKLOAD EVALUATION ENVIRONMENT

Figure 3.5: Bandwidth profile with different Torque memory access patterns

processor halts and logs the current count of the total number of L2 requests between
the previous trigger and the current one. The trigger is then reset and that processor
continues executing the application again. Because the sampling is trigger based, the
various cores log datapoints at different times. The ratio of L2 cache misses / L2 cache
requests is the systemwide cache miss ratio. Unfortunately, these event counters are not
thread-based but core-based, so they count everything that the core does, whether or
not it is running our workload. Shark’s sampling interferes with the state of the L2 cache
and flushes the L2 Cache when it needs to write blocks of data out of the kernel. The
influence of this limitation on the statistics is discussed in section 3.4

When we combine the profiles collected using Shark, we are able to categorize the
applications to see if they will fulfill the criteria set for the workload. For example,
Time Profile and Time Profile (All thread states) allow us to see the behavior of the
applications during runtime and to see if we are actually stressing all the available cores.
Idle time cause by (spin)locks, blocking or sleeping threads will be visible in these pro-
files, along with a percentage of the total runtime that this happens. The hardware
performance profiles, L2 cache miss profile and processor bandwidth profile, give a low
level overview of the hardware bottlenecks. With an L2 cache miss profile, we can spot
how the caches are being utilized. From the processor bandwidth profile, we get a nice
overview of the bandwidth requirements for the memory subsystem caused by the target
application.

3.4. INFLUENCE OF ANALYSIS ON RESULTS 21

3.3.2 Intel Pin Tools

Intel’s Pin Tools [21] allow developers to dynamically instrument their applications,
modifying the actual behavior without modifying their source code. The Pin Tool does
not rewrite the original source code to enable profiling; instead it dynamically injects
instrumentation code at run time. This allows Pin Tools to profile already executing
applications. Pin Tools has several supplied configurations to give the user basic in-
formation about an executing process. An example is where the instruction count is
recorded during execution via tracing. While this will give an exact trace of the execu-
tion behavior of the target application, it is extremely slow compared to uninstrumented
execution. For small applications this is not a real problem, but for large workload sets,
running a full trace is not feasible.

Issues There are several issues with the Intel Pin Tools. The Intel Pin Tools currently
do not support 64-bit binaries for OS X. Additionally, several bugs have been found with
the way pin tools handle double precision floating point numbers. Possible workarounds
for 64-bit applications are to compile them for the Linux OS with the same compiler
(Intel ifort/icc) and see if there is a large difference between the two assembly traces. If
there is little difference, we can assume that the execution of the application code that
does not rely on OS support is roughly the same on both operating systems.

3.3.3 Summary

We chose to use the Shark toolset to do the profiling of the target applications because
of the ease of use and extensive flexibility of the tools. Along with in-house support from
the developers, we were able to profile all the needed information. The issues with the
Intel Pin Tools prevented us from fully using the capabilities of that tool set. Another
downside of the Intel Pin Tools is that the dynamic instrumentation is too slow to
do full workload analysis, while in Shark the support for hardware performance monitor
counters (PMCs) enabled us to do performance data collection at native execution speed.

3.4 Influence of analysis on results

When profiling an application with hardware performance monitor counters (PMCs), we
affect the performance of the application because we are interrupting the application to
gather information. This phenomenon is similar to the Heisenberg uncertainty principle
for quantum physics [17], where probing particles to take measurements changes what
you are measuring. To calculate the error created by sampling the application, we look
at the overhead the profiling causes and possible alterations in the environment on a
hardware level. To demonstrate possible worst case effects from overhead, we use the
Linpack benchmark discussed in section 4.1 to show the performance effects caused by
the different configurations that we use in Shark.

22 CHAPTER 3. WORKLOAD EVALUATION ENVIRONMENT

3.4.1 L2 cache miss profile

When profiling Linpack for L2 cache misses, we interrupt the application after every
100 cache misses to gather statistics on the total number of cache misses and requests.
Because Shark stores its data in the kernel and needs to write the data to user space
after every 2MB of samples, we come across the problem that every time the data needs
to be written from the kernel space to the user space, it flushes the entire 2MB L2 cache.
This fully flushed cache will cause otherwise unnecessary cache misses until the cache is
repopulated again with part of the application’s dataset. The frequency this will happen
is dependent on the fill-rate of the Shark’s 2MB buffer. To calculate the frequency of a
full cache flush we need to find out how many samples of statistical information will fit
into the 2MB kernel buffer. For Linpack we have the following equation (3.1) to calculate
the number of samples that will fit in the 2MB kernel buffer:

2MB

internal storage element size
=

2MB

chud header 56 byte+ 8 Byte ∗ PMCs+ 8 Byte ∗ average call depth
=

2MB

56 byte+ 8 byte ∗ 2 + 8 ∗ 1
=

2MB

80 Bytes
=

26214 samples per dump (3.1)

The chud header in this equation is added to each sample to describe the contents
of the sample. The PMCs can return up to 64-bit numbers and therefore are stored in 8
Byte segments. The call stack contains an actual backtrace of the functions called to get
to the currently executing call. In our case the call stack depth for Linpack is 1 because
of a single call to the Intel Math Library MKL to do the processing. This means that for
every 26214 samples the cache will be fully flushed, resulting in false cache miss counts
during this refill time. The number of 64 byte cache lines to be refilled per 2MB cache:

2MB

64 Byte cache line width
= 32768 lines (3.2)

Since we generate a sample for every 100 cache misses, this results into 328 false samples
per dump. Hence, the total number of faulty cache misses is calculated in the following
way:

(total number of samples29127 samples per dump) ∗ 328

total number of samples
(3.3)

For our Linpack example we collected 735401 L2 cache miss samples during the run of
our experiment, this will give us the following equation:

(735401 samples
29127 samples per dump) ∗ 328

735401 samples
= 9184 false samples (3.4)

3.4. INFLUENCE OF ANALYSIS ON RESULTS 23

This results into faulty miss rate of 1.25%, as shown by equation 3.5

9184 false samples
735401 samples

= 1.25% (3.5)

3.4.2 Time Profile

Time Profile overhead is calculated using a methodology similar to the L2 cache miss
profile calculation. The main difference is that Time Profile does not use PMCs for
measurements, so that value in the formula is 0. Another important difference is that
the cache misses we cause because of the flushing of the kernel space buffer do not affect
the metric we are looking for (in this case for Time Profile total run time) in the direct
way that L2 cache misses did for L2 cache miss profile. For Time Profile, we need to
calculate the overhead of the extra latency caused by access to main memory compared
to L2 cache. Equation (3.6) is similar to equation (3.1) for the same linpack application,
resulting in the following:

2MB

internal storage element size
=

2MB

chudheader 56 byte+ 8 Byte ∗ PMCs+ 8 Byte ∗ average call depth
=

2MB

56 byte+ 8 byte ∗ 0 + 8 ∗ 1
=

2MB

64 Bytes
=

32768 samples per dump (3.6)

It will take 32768 samples before the buffer needs to be flushed, resulting in a cleared
cache. Assuming the worst case for linpack, with the entire cache filled without any
prefetching by the memory controller, this will result in an increase of memory latency
from 5ns L2 cache accesses to 100ns main memory accesses. Knowing that we sample
every 1ms, it will take 32.8 seconds to fill up the kernel buffer before a flush. Also, to
fill the cache again after a flush we need to fill the 32768 cache lines with accesses from
main memory resulting in 32768 * 100ns = 3.2768ms overhead per flush. This results
into a total overhead of 3.2768 ms / 32.768 seconds = 0.01%, well into the background
noise caused by other effects. The actual time spent in processing inside the kernel and
Shark is subtracted from the profile, so this overhead is not visible.

3.4.3 Time Profile (All Thread States)

Time Profile (All Thread States) uses a different information gathering technique. It
requests information from the kernel about the current available threads (running, wait-
ing, sleeping etc.). This will cause the kernel to suspend all the threads from the target
application and log the call stacks for each thread out to user-space. For every sample
interval (1ms) the number of threads which are part of the target application times the
sample size are flushed. For our Linpack example, we can use the same formula as before:
64Byte sample size * 9 threads = 576 Bytes per ms. This translates to 9 cache lines to

24 CHAPTER 3. WORKLOAD EVALUATION ENVIRONMENT

be flushed out per sample when running on 8 cores, well within the noise of normal com-
putation. Like Time Profile, the overhead caused by running the kernel processing and
Shark is subtracted from the total time and does not show up in the final performance
analysis profile.

3.4.4 Processor Bandwidth

Processor Bandwidth uses the same system as the L2 cache miss profile to calculate
the memory traffic generated by the processors. It uses two PMCs to gather the data,
resulting in 26214 samples per dump of the kernel buffer. This will happen every 26214
* 1ms samples = 26.214 seconds. The difference is that for the Processor Bandwidth
profile, the total amount of traffic is important, and not just cache misses caused by the
flushing of the cache when the kernel buffer needs to be emptied. The resulting overhead
in traffic caused by this flushing is the number of cores * 2 MB cache per 26.214 seconds
= 8 * 2MB = 16MB of traffic overhead. We know that Linpack memory traffic runs into
the thousands of MB/second, as shown in figure 4.2, so this overhead is negligible.

3.4.5 System Trace

Since System Trace provides an exact trace of the events that happen in the entire system,
its buffer is limited to a fixed number of events. These events have no specific time-based
interval, so the sampling is considered non-deterministic and will occur randomly. The
sampling of events is handled by the kernel and when call stack tracing is disabled, no
execution overhead is present for the target application.

Scientific Benchmarks 4
One of the domains we chose to look at for finding suitable applications was the High Per-
formance computing domain. High Performance Computing applications are primarily
executed on supercomputers or clusters. The target applications for these large systems
are primarily scientific and make considerable use of large matrices. These matrices tend
to be very amenable to being sub-divided into smaller datasets that can be distributed
to different cores. Since these systems are built with multiple CPUs in one or multiple
systems, the codes used to run on these systems are generally designed to be highly
parallel.

4.1 Linpack

Linpack [11] is one of the most well-known floating-point benchmarks for high perfor-
mance systems. The application is designed to solve dense systems of linear algebra
problems either in single precision or double precision floating-point using various Basic
Linear Algebra Subprogram (BLAS) 1, 2 and 3 routines. This makes the Linpack a
perfect example of the Dense Linear Algebra Dwarf, Dwarf 1, explained in section 2.1.
Linpack is useful to calculate the practical peak floating-point performance of a specific
architecture. The main algorithm used is Gaussian Elimination with partial pivoting.

4.1.1 Scalability

Linpack was designed to be a computationally intense application. From the original se-
rial application, multi-core capable versions were created using both MPI and OpenMP.
Because the test machine has a cache coherent Uniform Memory Access (ccUMA) mem-
ory system, we chose to use the OpenMP version to take advantage of the shared memory
address space. Using OpenMP, we were easily able to scale from a single core to 8 cores,
as is shown by Figure 4.1. The time required for calculating the matrix is significantly
reduced by doubling the number of cores (respectively 186% faster for 2 cores, 329% for
4 cores and 540% for 8 cores compared to the use of a single core), while the average
GFLOPS/Second increased (respectively 193% more for 2 cores, 364% for 4 cores and
664% for 8 cores compared to the use of a single core).

When looking at the Shark Time Profile of our run on a 23k by 23k matrix, 73%
of the total wall clock time is spent in a single computational loop function called
N4 M4 LOOPgas 1. The Time Profile showed that there is an average of 15% over-
head in thread synchronization. This is due to the barriers implemented in the code to
periodically synchronize between the cores. Synchronization barriers can cause threads
to stop executing while waiting for all the other threads that are part of the barrier to
complete. In contrast synchronization does not exist in sequential code. This synchro-

25

26 CHAPTER 4. SCIENTIFIC BENCHMARKS

Figure 4.1: Scaling of Linpack depending on number of cores

nization time adds to the execution overhead that parallel code has over sequential code.
Synchronization overhead normally increases monotonically as a function on the number
of processors p.

The processor bandwidth profile showed that there were bursts of memory activity
reaching the bandwidth ceiling of the architecture and several distinct execution phases
that were limited by the CPU. Overall, the application is heavy on Front Side Bus
bandwidth, due to its large and hard-to-cache memory footprint. Using the Processor
Bandwidth profile, we can determine the separate phases of the application based on the
bandwidth required and the type of functions being executed at that time. These phases
are obvious in Figure 4.2.

Figure 4.2 identifies the following computational phases in the linpack benchmark:

1. Setup: During the first 8.9 seconds, the application only runs with the master
thread,where it generates the matrix.

2. (8.9 seconds to 21.5 seconds): The master thread spawns multiple worker threads
where about 88% of the time is spent doing computation and 9% of the time is
spent synchronizing between the threads.

4.1. LINPACK 27

Figure 4.2: Processor Bandwidth profile with a sample rate of 10ms

3. (21.5 seconds to 29.4 seconds): There is a large increase in bandwidth usage and
very little synchronization. 99% of the time is spent doing computation with large
dedicated data moves in the Y ADDR SET Agas 1 function. This function causes
a significant increase in bandwidth usage because it mostly just moves data around
and does little computation.

4. (from 29.4 seconds to 52.3 seconds): This is computation intensive (99.6%) and
does not have the dedicated data transfer requirements of Y ADDR SET Agas 1.
Therefore, the bandwidth usage is limited by time spent in computation functions.
At the end of this function, there is a sudden drop in bandwidth, which can be
explained by the presence of a barrier to synchronize the execution at the end of
this computational segment.

5. (from 52.3 seconds to 59.6 seconds): This is similar to the second segment. About
84% of the time spent is in computation, but the Y ADDR SET Agas 1 function
causes data bursts for 6% of the time and the drops in bandwidth are caused by
synchronization stalls for 8.4% of the total wall time in this segment.

6. (59.6 seconds to 63.1 seconds): This is like the third segment, with a peak caused by
use of Y ADDR SET Agas 1. There is little synchronization between the threads
in this segment and 97.5% of the time is spent in computational functions.

7. (63.1 seconds to 70.1 seconds): This is again similar to section four, but has peaks
and drops caused by 4.7% of the time spent in calls to Y ADDR SET Agas 1 for
data transfers and 5% synchronization overhead, while 87.6% of the time is spend
in computational functions.

28 CHAPTER 4. SCIENTIFIC BENCHMARKS

8. Reduction of results: Finally, this is where the master thread collects all the data
and generates the final result matrix.

4.1.2 Validation

4.1.2.1 Input validation

The matrix is pseudo randomly generated when the application runs, based on the
requested matrix size. The random numbers are generated by the DLARAN function,
which is part of the LAPACK package.

4.1.2.2 Output validation

The Linpack application has its own internal verification process based on computing
the residuals of its randomly generated matrixes. When there is a computational error,
the application will terminate and the results will be marked as invalid.

4.1.3 Criteria overview

• Multi-core: Because we use OpenMP to supply the multi-threading support, the
application is capable of using all the available cores.

• Scalable: Section 4.1.1 described that there is an average overhead of 15% due to
thread synchronization. Figure 4.1 also showed that Linpack is capable of scaling
when you increase the number of cores. Although the scaling is sub-linear, the
rate of decline is not significant enough to suspect poor scalability when used on
systems with up to about 32 cores.

• Reproducible: There is a variation in the results reported by Linpack. We remove
possible outliers using the technique discussed in Section 2.3.4. We make sure that
the coefficient of variation (CV) is minimal. A CV of 2% is acceptable to ensure
reproducible results.

• Verifiable: As discussed in Sections 2.3.4, the input is generated pseudo randomly
and should not differ when we change platforms. The output is verified by the
application itself and will produce an error if the result is faulty.

• Runtime: The runtime of this application will differ based on the speed of the
underlying machine. On our test 3.0 Ghz Mac Pro, the application ran for 83
seconds for single precision and 143 seconds for double precision floating point. To
get reproducible results, we run 10 iterations each to remove the outliers, resulting
in a reasonable runtime of under 40 minutes for both.

4.2 NASA Parallel Benchmark

The NASA Parallel Benchmark (NPB) is a collection of programs extracted from im-
portant aerospace applications and designed to mimic a class of computational fluid

4.2. NASA PARALLEL BENCHMARK 29

dynamics (CFD) applications. The NPB is based around 5 core CFD kernels and 3 sim-
ulated CFD applications commonly used by NASA to solve aero-physics problems. We
selected the NPB 3.3-OMP [19] with OpenMP support to run on our test system, since
OpenMP can use shared memory to communicate with other threads while the MPI
version cannot. NASA modified the original serial implementations to include compiler
directives around the data structures and loops so that the run-time library can easily
parallelize the applications while executing. For more information about the implemen-
tations and the algorithms used in these benchmarks we refer you to “The NAS Parallel
Benchmark Overview” [7].

4.2.1 Simulated Computational Fluid Dynamic applications: BT, SP
and LU

• BT Block-Tridiagonal: Simulated CFD application that solves 3D Navier-Stokes
equations, resulting in Block-Tridiagonal 5x5 blocks. Applicable Dwarf: 1.

• SP Scalar Pentadiagonal: Simulated CFD application that solves the finite dif-
ferences solution based on Beam-Warming approximate factorization, resulting in
Scalar Pentadiagonal bands of linear equations. Applicable Dwarf: 5.

• LU Lower Upper: Simulated CFD application that solves 3D Navier-Stokes equa-
tions using symmetric successive over-relaxation (SSOR), resulting in block Lower
and Upper triangular systems. Applicable Dwarf: 1.

4.2.1.1 Scalability

BT is a straightforward application that consists of 5 main functions: compute rhs
calculates the Right-Hand-Side of the equations and takes 49.6% of the total processing
time, while block-tridiagonal systems are solved for each direction, requiring 42.8% of the
total processing time (respectively x solve(13.5%), y solve(14.6%) and z solve(14.7%)).
Finally, the solution is updated by the add function, taking 4.2% of the total processing
time. We spend 2.6% of our time in the OpenMP synchronization methods and the
remaining time is spent in various system functions (0.8%). During the experiment BT
occupied 97.9% of all the available cpu time, with 1.6% spend it the system idle thread
mach idle and the remaining 0.5% distributed among the various background daemons.

When looking at the Processor Bandwidth Profile, Figure 4.3, we can see that there
is a bursty pattern throughout the entire duration of the application. This consists of the
5 different stages of the application that constantly repeat. Figure 4.4 shows a enlarged
portion of the Processor Bandwidth profile for a single iteration. The main functions are
labeled in the following order:

1. compute rhs

2. x solve

3. y solve

4. z solve

30 CHAPTER 4. SCIENTIFIC BENCHMARKS

5. add

Figure 4.3: Processor Bandwidth profile of NPB BT

Figure 4.4: Zoomed in Processor Bandwidth profile of BT

When looking at the derived Amdahl scaling, shown in Figure 4.5, we can see that
the scaling efficiency drops off when we increase the number of cores. When looking at
the Karp-Flatt metric in Table 4.1, we can determine that the decrease in efficiency is
due to increasing synchronization overhead.

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 1336 1.00
2 687 1.95 0.97 0.02789
4 369 3.62 0.91 0.03471
8 192 6.97 0.87 0.02111

Table 4.1: Calculating the scalability of NPB BT

4.2. NASA PARALLEL BENCHMARK 31

*

Figure 4.5: Scaling of BT depending on number of cores

SP performs a computation very similar tor BP, but the method of approximate factor-
ization is different. SP has 9 main computational phases that make up the approximate
factorization algorithm: compute rhs calculates the Right-Hand-Side of the equations
and takes 33.9% of the total processing time, an approximate factorization solver for all
directions that requires 49.7% of the total processing time (respectively x solve(16.9%),
y solve(16.2%) and z solve(16.5%)), and the block diagonal matrix vector multiplica-
tion stages for each direction (10.4% of the total computational time; (txinvr(3.0%),
pinvr(1.7%), ninvr(1.7%) and tzetar(3.9%) respectively). The solution is updated by
the add function, which takes 2.8% of the total computational time, at the end of the
each cycle. The synchronization overhead for running with 8 cores is 2.5%, with the
remaining 0.7% used for system functions. During the experiment SP occupied 97.8% of
all the available cpu time, with 2.1% spend it the system idle thread mach idle and the
remaining 0.1% distributed among the various background daemons.

Looking at the Processor Bandwidth profile, Figure 4.6, we can see that SP manages
to saturate the available memory bandwidth completely over the entire duration of the
application. Figure 4.7 shows a enlarged portion of the Processor Bandwidth profile for
a single iteration. The main functions are labeled in the following order, with the block
diagonal stages left out because they are to small to plot separately:

1. compute rhs

32 CHAPTER 4. SCIENTIFIC BENCHMARKS

2. x solve

3. y solve

4. z solve

5. add

Figure 4.6: Processor Bandwidth profile of NPB SP

Figure 4.7: Zoomed in Processor Bandwidth profile of SP

When looking at the Amdahl scaling, shown in Figure 4.8, we can see that during
measurements going over 4 cores we reach a bottleneck and scaling beyond that does
not return significant performance enhancements. Time Profile did not show us any
significant increase in synchronization overhead for scaling to more cores. The scaling
numbers for 4 to 8 cores point to a bottleneck in either the memory bandwidth being
saturated at 4 cores or cache coherency issues. To verify this we ran the SP with a
significantly smaller dataset, and the performance did increase while the bandwidth still

4.2. NASA PARALLEL BENCHMARK 33

was being saturated pointing towards cache interference caused by the larger dataset.
The Karp-Flatt metric, Table 4.2, the rapidly increasing serial fraction agrees with what
we have seen for the scaling efficiency pointing to significant overhead, in this case due
to the cache interference.

*

Figure 4.8: Scaling of SP depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 845 1.00
2 433 1.95 0.98 0.02555
4 272 3.10 0.78 0.09618
6 272 3.10 0.52 0.18677
8 266 3.17 0.40 0.21722

Table 4.2: Calculating the scalability of NPB SP

LU has 5 main computational phases that make up the SSOR algorithm: compute rhs
calculates the Right-Hand-Side of the equations and takes 14.8% of the total processing

34 CHAPTER 4. SCIENTIFIC BENCHMARKS

time, the lower-triangular and diagonal systems are formed in the JACLD phase taking
20.1% of the total computational time, with the solver in the BLTS phase requires 13.2%
of the time. The upper-triangular system is created and solved by the JUCA and BUTS
phases, taking 25.4% and 13.7% of the total computational time respectively. The result
is finally updated burning 8.5% of the time. Thread synchronization requires 1.1% of the
computation time, and the remaining 0.3% is used for various system functions. During
the experiment LU occupied 98.7% of all the available cpu time, with 1.2% spend it
the system idle thread mach idle and the remaining 0.1% distributed among the various
background daemons.

The Processor Bandwidth Profile, Figure 4.9, shows us that there is a repetitive
high bandwidth pattern throughout the duration of the application. This matches the
computational phases the application goes through in an iterative manner. LU is capable
of pushing the memory traffic to the bandwidth ceiling of our experiment system. An
enlarged Processor Bandwidth profile is shown in Figure 4.10, where it shows a single
iteration of the main computational phases and labels in the following order:

1. compute rhs

2. JACLD / BLTS

3. JUCA / BUTS

4. add

Figure 4.9: Processor Bandwidth profile of NPB LU

The derived Amdahl scaling, shown in Figure 4.11, tells us that the efficiency declines
with more cores and the average efficiency is 89% per core added. The Karp-Flatt metric,
Table 4.3, reveals that we have a super-linear speedup going from 1 to two cores primarily
cause by the extra cache added when we went form 1 to 2 cores. The serial fraction is
increasing when we add more cores to the system while the efficiency is dropping, this
points to an increase in synchronization overhead.

4.2. NASA PARALLEL BENCHMARK 35

Figure 4.10: Zoomed in Processor Bandwidth profile of LU

*

Figure 4.11: Scaling of LU depending on number of cores

36 CHAPTER 4. SCIENTIFIC BENCHMARKS

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 1355 1.00
2 656 2.06 1.03 -0.03098
4 368 3.68 0.92 0.02873
6 270 5.03 0.84 0.03874
8 221 6.14 0.77 0.04325

Table 4.3: Calculating the scalability of NPB LU

4.2.1.2 Validation

Input validation: All of the benchmarks mentioned above (BT, SP and LU) use
different numerical approaches to calculate the solution of the system of differential
equations shown in Equation 4.1:

{I −∆τ [
∂(A)n

∂ξ
+
∂2(N)n

∂ξ2
+
∂(B)n

∂η
+
∂2(Q)n

∂η2
+
∂(C)n

∂ζ
+
∂2(S)n

∂ζ2
]}∆Un

= ∆τ [
∂(E + T)n

∂ξ
+
∂(F + V)n

∂η
+
∂(G+W)n

∂ζ
]

−∆τε[h4
ξ

∂4Un

∂ξ4
+ h4

η

∂4Un

∂η4
+ h4

ζ

∂4Un

∂ζ4
] + ∆τH∗ (4.1)

For more information about how this partial differential equation was derived we refer
you to “The NAS Parallel Benchmark Overview” [7].

Output validation: For all of the simulated CFD applications mentioned above, the
internal verification test calculates the Root Mean Square norms RMSR(m) of the resid-
ual vectors and the Root Mean Square norms RMSE(m) of the error vectors. If the ratio
between the computed value Xc and the reference value Xr is smaller then the maximum
allowable relative error ε, the results are valid.

4.2.2 FT: Fourier Transform

Computational kernel of a 3-D partial differential equation (PDE) using forward and
inverse Fast Fourier Transform (FFT) techniques known as Swarztrauber’s vectorization
of Stockham’s auto sorting algorithm. Applicable Dwarf: 3.

4.2.2.1 Scalability

FT has 3 main execution phases, the first phase is the setup where the pseudo-random
number generator generates the required 64-bit floating point numbers needed for the
initial input data. During the setup phase a warmup iteration is done to make sure all

4.2. NASA PARALLEL BENCHMARK 37

the data is touched, reducing variations in the startup cost. The setup stage takes 12.8%
of the total execution time. In this stage, the init ui function touches all the arrays, while
the compute initial conditions function fills the primary array with the pseudo-random
numbers in parallel. The second stage is the actual computational phase and takes up
the majority of the computational time where the original 3D-array is passed through the
initial Fast Fourier Transform, afterwards the result is passed to an iterative loop. In this
loop the exponent factors are calculated for the inverse Fast Fourier Transform and finally
checked by a checksum. This procedure takes up 87.1% of the total computational time,
divided into 57.5% for FFT computations and 23.3% for the calculation of the exponent
factors in the evolve function. The computational time for the checksum is small enough
to be discarded in the overal calculations. During the iteration loops the synchronization
overhead accounts for 6.3% of the total computational time caused by barriers in the
OpenMP library. The final phase is the verification stage where the computed checksums
are compared to the pre-calculated checksums. This verification step is very short and
requires little time to complete. The verification and remaining system functions take
up 0.01% of the computational time. During the experiment FT occupied 92.4% of all
the available cpu time, with 6.9% spend it the system idle thread mach idle and the
remaining 0.7% distributed among the various background daemons.

The Processor Bandwidth profile, Figure 4.12, shows us the three separate phases
outlined in the previous paragraph. The initial setup phase generates a steady amount
of memory traffic due to the generation of the pseudo-random numbers, with a warmup
routine at the end of this phase. The second phase shows a repetitive memory pattern
that conforms with the iterative nature of the Fast Fourier Transforms. The third and
final phase is shows a sharp drop in memory traffic due to that only the verification
of the pre-calculated checksums has to be done here. Measurements for scaling were
only done on the iteration loop of the actual FFT routine. This was done to exclude
the initialization phase and verification phase that are not required by real FFT imple-
mentations. An enlarged Processor Bandwidth profile is shown in Figure 4.13, where it
shows a multiple iterations of the main computational phases and labels in the following
order:

1. evolve

2. fft

The derived Amdahl scaling, shown in Figure 4.14, tells us that the measured data-
points follow our predicted curve but deviate when we reach 8 cores. When going form 6
to 8 cores the memory bandwidth ceiling is limiting us to reach optimal performance for
burst transfers, and therefore decreasing the efficiency for 8 cores. The overall efficiency
of FT is 71% when running our 8-core test machine. This efficiency tells us that there is
still room for adding more cores before the overhead becomes to great and adding more
cores will not increase our computational output.

4.2.2.2 Validation

Input validation: The FT benchmark dynamically generates a 3-D matrix with a
pseudo-random number-generator that uses π as initial seed value. Because of the

38 CHAPTER 4. SCIENTIFIC BENCHMARKS

Figure 4.12: Processor Bandwidth profile of NPB FT

Figure 4.13: Zoomed in Processor Bandwidth profile of FT

pseudo-random number generator, the matrix should always have the same arrangement
of values.

Output validation: The FT benchmark has an internal verification system that will
check if the complex checksums are the same as the reference values stored in the appli-
cation, within a margin of 10−10%.

4.2.3 IS: Integer Sort

Computational kernel that does a parallel sort over small integer keys based on the
bucket sort algorithm [30]. Applicable Dwarf: 11

4.2.3.1 Scalability

IS has 3 main execution phases. The first is the initial setup, where the integers are
generated by the key generation algorithm. This takes up 23.4% of the total execution
time. In this stage, the create seq function generates the keys and puts them in one
large array. The second phase is the actual sorting stage, and takes up the majority of
the computational time. The rank function takes up 67.4% of the total computational
time. In this rank function, there is a barrier to obtain the rank for each key, where
the application must add the individual keys before continuing. The synchronization

4.2. NASA PARALLEL BENCHMARK 39

*

Figure 4.14: Scaling of FT depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 302 1.00
2 151 2.00 1.00 0.00002
4 79 3.83 0.96 0.01458
6 58 5.20 0.87 0.03071
8 53 5.69 0.71 0.05801

Table 4.4: Calculating the scalability of NPB FT

overhead for these barriers is 2.8% of the total computation time. The final phase is the
verification, where the full verify function goes over the final sorted array and verifies
that the keys are sorted correctly. This final verification requires 6.2% of the computation
time. The remaining 0.2% is spend in various system functions. During the experiment
IS occupied 89.0% of all the available cpu time, with 10.2% spend it the system idle

40 CHAPTER 4. SCIENTIFIC BENCHMARKS

thread mach idle and the remaining 0.8% distributed among the various background
daemons.

The Processor Bandwidth profile, Figure 4.15, clearly shows us the separate phases
outlined in the previous paragraph. The initial setup (marked as 1) has lower bandwidth
requirements than the sorting stage, with an increase in memory traffic in the second
portion of the initialization. This increase in traffic is caused by the kernel failing to
allocate a page during a VM fault when its allotted time slice expires, due to locking.
This is shown in Figure 4.16, a System Profile of the second part of the initialization
phase. The sorting stage starts out with a warmup sort (marked as 2) by running rank
once, and then it loops through the rank routine (marked as 3) 10 more times before
going to the final verification phase (marked as 4). Measurements for scaling were only
done on the iterations of the actual sorting algorithm. This was done to exclude the serial
initialization and verification phase from the measurements. They are not scalable, but
are also not required by real sorting applications.

Figure 4.15: Processor Bandwidth profile of NPB IS

The derived Amdahl scaling, shown in Figure 4.17, shows us that IS has a nearly
perfectly linear scaling efficiency. The Karp-Flatt metric, Table 4.5, reveals that we have
a super-linear speedup for 1 to 4 cores, indicating that additional shared cache, gives
us a significant performance boost. The serial fraction is slowly increasing with more
cores, pointing to an increase in synchronization overhead at the barriers, but the overall
efficiency of IS is still 98.8% when running on our 8-core test machine. We expect IS to
perform exceptionally well with the addition of extra cores, with the assumption that
the relative cache size scales at the same rate as the number of cores.

4.2.3.2 Validation

Input Validation: IS generates the keys by using a key generation algorithm that
uniformly distributes the keys in memory. The ranking is determined by the index
location of the key inside the list. The distribution is dependent on the memory model
used. Since we use a shared memory model, the keys are stored in a continuous block of
addresses.

4.2. NASA PARALLEL BENCHMARK 41

Figure 4.16: System Trace profile of NPB IS

*

Figure 4.17: Scaling of IS depending on number of cores

Output validation: The IS benchmark has two internal testing systems. A partial
verification is performed after each ranking. This partial verification checks if a subset of
ranking is the same as the reference values known by the application. For the final and
full verification, we run through the list and make sure they have been sorted correctly.

42 CHAPTER 4. SCIENTIFIC BENCHMARKS

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 17.44 1.00
2 8.65 2.02 1.01 -0.00822
4 4.33 4.02 1.01 -0.00197
6 2.92 5.98 1.00 0.00072
8 2.23 7.83 0.98 0.00308

Table 4.5: Calculating the scalability of NPB IS

4.2.4 MG: MultiGrid

Computational kernel of a 3-D scalar Poisson equation using a V-cycle multigrid method.
Applicable Dwarf: 5. Parallelization is done by using OpenMP directives on the outer
most loops of every step in the V-Cycle algorithm.

4.2.4.1 Scalability

MG consists of 3 main phases during its full execution: The setup, consisting of 3 steps,
is where the work arrays are created. For the first step, the work arrays are zeroed and
filled with +1 and -1 at ten randomly chosen points. The second step calculates the
residual and evaluates the norm of the array. The third and final step in the setup is
to do a warmup iteration of the V-cycle. This process takes around 13 seconds on our
test machine and is not included in the scaling study. The Second phase is the actual
V-Cycle benchmark, where we measure how long it takes to do 20 iterations. The V-
cycle algorithm consists of 5 steps that are executed in sequence. The first step is the
function rprj3, that restricts the residual from a fine grid to a coarse and takes 8.3%
of the total computational time. The second step is the function psinv, that calculates
an approximate solution for the coarse grid, taking up 22.9% of the total computational
time. The third step is the function iterp, that extends the approximate solution from
the coarse grid to the fine grid and takes up 8.9% of the total computational time. The
fourth step is the where the residual is calculated, function resid, taking up 53.3% of
the total computational time. The final step is again the function psinv, used in this
case to smooth out the arrays after residual calculations. The last phase is the internal
verification, where the computed residual is compared to a reference residual matching
the class of the dataset computed. The synchronization overhead is 4.7% of the total
computational time. During the experiment MG occupied 93.7% of all the available
cpu time, with 5.7% spend it the system idle thread mach idle and the remaining 0.6%
distributed among the various background daemons.

The Processor Bandwidth profile, Figure 4.18, shows us the separate phases, The
setup phases (marked as 1), the warmup phase (marked as 2), the V-Cycle benchmark
(marked as 3) and the verification phase (marked as 4). It also tells us that MG is
operating at the bandwidth limit of our test machine. An enlarged Processor Bandwidth
profile is shown in Figure 4.19, where it shows a single iteration of the main computational

4.2. NASA PARALLEL BENCHMARK 43

phases and labels in the following order:

1. rprj3

2. psinv

3. iterp

4. resid

5. psinv

Figure 4.18: Processor Bandwidth profile of NPB MG

Figure 4.19: Zoomed in Processor Bandwidth profile of MG

When looking at the derived Amdahl scaling, shown in Figure 4.20, we can see that
our measured datapoints follow our plotted curve at first, but differentiate further after 4
cores. Running MG with only 2 cores required 4.2GB of bandwidth on the memory bus.
Increasing the number of active cores pushed these requirements even higher, eventually
reaching the bandwidth limit of the system. The Karp-Flatt metric, Table 4.6, has
an increasing serial fraction, pointing to an increase in synchronization overhead and
bandwidth requirements as we add more cores. The overall efficiency of MG is only 56%
when running our 8-core test machine.

44 CHAPTER 4. SCIENTIFIC BENCHMARKS

*

Figure 4.20: Scaling of MG depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 79 1.00
2 41 1.92 0.96 0.04292
4 25 3.14 0.78 0.09161
6 20 4.04 0.67 0.09739
8 18 4.52 0.56 0.11020

Table 4.6: Calculating the scalability of NPB MG

4.2.4.2 Validation

Input validation: The input for the MG benchmark is defined for the discrete Poisson
problem ∇2u = v for which v = 0 except for twenty points predefined where v = ±1.
These matrices will be used as initial input for the application.

Output validation: Depending on the class size used, internal verification is done by
looking at the residuals of the V-cycle multi-grid algorithm and comparing them to the
reference value of that class type. If the residuals are within the tolerance defined for

4.2. NASA PARALLEL BENCHMARK 45

that class type, the verification passes.

4.2.5 CG: Conjugate Gradient

Computational kernel that calculates the largest eigenvalue of a large sparse unstructured
matrix. Applicable Dwarf: 2.

4.2.5.1 Scalability

The CG benchmark has two main stages, the setup, where the generation of the sparse
matrix takes place, and the main conjugate gradient (CG) loop. The setup takes only
1.3% of the total runtime, while the CG loop takes up 94.1% of the total runtime. There
are several synchronization barriers in place to make sure the phases of do not overlap.
The first barrier is at the end of the setup, before the conjugate gradient loop iterations
can start. There are several barriers within the CG loop, around specific computation
blocks such as the sparse matrix vector multiplication and the two reduction sums. The
final barrier is where the norms are calculated via reduction. These barriers account
for 3.6% of the total runtime. The remaining 1% is distributed among various system
functions. During the experiment CG occupied 97.0% of all the available cpu time,
with 2.1% spent in the system idle thread mach idle and the remaining 0.9% distributed
among the various background daemons.

The Processor Bandwidth Profile, Figure 4.21, shows us the first phase (the setup)
for the duration of 4 seconds. For the second phase, the CG loop, we see that the CG
saturates the available bandwidth during the iterative procedure. The small drops in
bandwidth utilization are caused by the various barriers in the code.

Figure 4.21: Processor Bandwidth profile of NPB CG

When looking at the derived Amdahl scaling, shown in Figure 4.22, we can see that
our measured datapoints follow the optimal linear scaling up to 4 cores, after that point
the overhead of synchronization increases. The Karp-Flatt metric, shown in Table 4.7,
shows a super-linear speedup for 2 cores, caused by the addition of extra cache associated
with the second core. With more cores, we can see the serial fraction increasing, pointing
towards extra overhead caused by the communication and synchronization, as well as
increased pressure on the shared caches. The overall efficiency of CG is 81% when

46 CHAPTER 4. SCIENTIFIC BENCHMARKS

running on our 8-core test machine. We expect CG to perform well with the addition of
extra cores, assuming that the cache size scales with the number of cores.

*

Figure 4.22: Scaling of CG depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 342 1.00
2 166 2.06 1.03 -0.03125
4 86 3.99 1.00 0.00099
6 63 5.43 0.91 0.02084
8 53 6.47 0.81 0.03388

Table 4.7: Calculating the scalability of NPB CG

4.2.5.2 Validation

Input validation: The CG benchmark will generate real numbers for the symmetric
positive definite sparse matrix with a random pattern of non-zeros.

4.2. NASA PARALLEL BENCHMARK 47

Output validation: The CG benchmark has an internal verification system that
checks if the zeta (ζ) that was calculated is the same as the reference value ζREF .

4.2.6 EP: Embarrassingly Parallel

An Embarrassingly Parallel Benchmark. By generating pairs of Gaussian random de-
viates, this benchmark attempts to calculate peak performance of a platform. This
is typical behavior for Monte Carlo/Map Reduce simulation applications. Applicable
Dwarf: 7.

4.2.6.1 Scalability

The benchmark EP has only a few phases that are fully parallel. First it generates an
array of pseudo random numbers using the vranlc Fortran call, using 9.8% of the total
processing time. The second phase is the generation of Gaussian pairs based on the
previously generated pseudo random numbers, taking up 90.1% of the total computa-
tional time. This phase computes the Gaussian deviates Xk = xj

√
(−2 log tj)/tj and

Yk = yj
√

(−2 log tj)/tj [19], with a mean of 0 and a variance of 1. A whopping 24.1% of
the total computing time is required just for the logarithmic calculations. The only syn-
chronization barriers are at the end, where EP sums the gaussian pairs in parallel. This
gather operation is a fraction of the total runtime and does not account for any influence
in the scalability of EP. During the experiment EP occupied 97.9% of all the available
cpu time, with 1.9% spent in the system idle thread mach idle and the remaining 0.2%
distributed among the various background daemons.

When looking at the Processor Bandwidth profile, Figure 4.23, we see that there
is a minimal amount of traffic on the memory bus, pointing towards all local memory
accesses and no communication between the threads. This agrees with the type of work
EP is doing, calculating pseudo-random numbers and forming Gaussian pairs.

Figure 4.23: Processor Bandwidth profile of NPB EP

The derived Amdahl scaling, Figure 4.24, confirms our theory by showing perfect
linear scaling for this benchmark. The Karp-Flatt metric, Table 4.3, reveals that we
have a small super-linear speedup for every increase in the number of cores. This tells
us that the entire EP benchmark runs out of the caches and the little communication

48 CHAPTER 4. SCIENTIFIC BENCHMARKS

required for the Gaussian pairing is fetched from the neighboring caches. The slow
decrease in the Karp-Flatt metric does point to an decrease in efficiency concerning
cache coherency when increasing the number of cores, but EP is still expected to give
perfect linear scaling for high numbers of cores.

*

Figure 4.24: Scaling of EP depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 2540 1.00
2 1262 2.01 1.01 -0.00631
4 629 4.04 1.01 -0.00298
6 419 6.06 1.01 -0.00195
8 314 8.08 1.01 -0.00143

Table 4.8: Calculating the scalability of NPB EP

4.2. NASA PARALLEL BENCHMARK 49

4.2.6.2 Validation

Input validation: The application will generate floating point numbers pseudo-
randomly, therefore there is not an input requirement for this case.

Output validation: The EP benchmark has an internal verification system that
checks if the sums of the pairs are identical with certain reference values. If these results
differ, then the application will report an error.

4.2.7 UA: Unstructured Adaptive

Computational kernel that calculates solutions to unsteady partial differential equations
(PDEs) using Spectral Element Method with adaptive non-conforming meshes [13, 14].
Applicable Dwarf: 3,6.

4.2.7.1 Scalability

The UA benchmark has three main phases, the setup, where the initial grid is created
based on the input criteria, the main computational part where the adaptive mesh is
calculated and solved using a Conjugate Gradient loop and the final verification phase.
The setup and verification is not included in the time calculations since the internal
timing mechanisms only time the main computational part. The main computational
part is built around the grid calculations, transferring data between shared points and
computation of the conjugate gradient. This process is done repeatedly while the algo-
rithm refines or coarsens the grid up to a predefined maximum level of refinement. This
computational portion takes up a total of 65.5% of the total runtime. There is extensive
use of locks to transfer the data between adjacent elements in the unstructured grid.
These locks do cause significant overhead and consume 33.5% of the total runtime. The
remaining 1% is distributed among various system functions. During the experiment UA
occupied 98.3% of all the available cpu time, with 1.6% spent in the system idle thread
mach idle and the remaining 0.1% distributed among the various background daemons.

The Processor Bandwidth profile, Figure 4.25, shows us that the UA application is
pushing the memory bus to its limits even with the locks. The Setup phase is not visible
in the profile since it is relatively short compared to the duration of the application. The
iterative nature of this benchmark is shown in the enlarged Processor Bandwidth profile,
shown in Figure 4.26. The first segment, where the convection term (gathering the grid
points to the central collocation points) shows a drop in bandwidth traffic due to the
locking. The second stage the refinement steps are repeated until the maximum allowed
refinement is met.

When looking at the derived Amdahl scaling, shown in Figure 4.27, we can see
that our measured datapoints reveal the problems caused by the locking overhead. The
Karp-Flatt metric, shown in Table 4.9, shows an irregular serial fraction, caused by load-
balancing issues. Another determining factor of limited scalability is that from 4 active
cores on the bandwidth of our test machine is saturated. The overall efficiency of UA is
61% when running on our 8-core test machine. We expect UA to have limited scalability
beyond 8-cores if the locking and memory bandwidth bottlenecks are not solved.

50 CHAPTER 4. SCIENTIFIC BENCHMARKS

Figure 4.25: Processor Bandwidth profile of NPB UA

Figure 4.26: Zoomed in Processor Bandwidth profile of UA

4.2.7.2 Validation

Input validation: The application has one element [0, 1]3 that makes the entire do-
main with a predefined heat source, therefore there are no input requirements for this
case.

Output validation: The UA benchmark has an internal verification system that
checks the result of the integral with the verification value. If the difference between
the computed integral and the verification value, divided by the verification value, ex-
ceeds the preset threshold of 10−8, the application will return an error.

4.2.8 Dwarf overview for NPB

The NASA Parallel Benchmark (NPB) has a total of eight benchmarks, that fall under
a total of six dwarfs as shown in Table 4.10.

When looking at the collected data we can say the following about the NPB compo-
nents:

4.2. NASA PARALLEL BENCHMARK 51

*

Figure 4.27: Scaling of UA depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 1256 1.00
2 718 1.75 0.87 0.14386
4 410 3.07 0.77 0.10147
6 319 3.94 0.66 0.10449
8 258 4.87 0.61 0.09205

Table 4.9: Calculating the scalability of NPB UA

Dwarf: 1 2 3 4 5 6 7 8 9 10 11 12 13
NPB BT LU CG FT MG SP UA EP

Table 4.10: Dwarf distribution in NPB

52 CHAPTER 4. SCIENTIFIC BENCHMARKS

• BT has better scaling properties than LU, running LU is not necessary in this case.

• MG has better scaling properties than SP, running SP is not necessary in this case

We can safely discard LU and SP from the workload if we choose to do so. LU is
also covered primarily by the linpack component since both are in dense linear algebra
applications.

4.3 WRF

The Weather Research and Forecasting (WRF) Model is a mesoscale numerical weather
prediction system. Mesoscale weather prediction systems work on areas ranging from
a 5 km to several hundred km. In our workload, we use a model of the continental
US (CONUS) as our input. WRF uses a 2nd and 3rd order Runge-Kutta method for
time integration and the approximation of the differential equations required for the
computation of the weather models. The work is distributed by either generating multiple
threads using OpenMP or creation of processes with the MPI framework. The WRF
system partitions the input data into a structured grid that is distributed to the nodes.
The nodes then perform calculations on the smaller datasets using spectral algorithms
and the results are shared between neighboring nodes.

4.3.1 Scalability

The implementation of WRF we chose to use for our workload uses OpenMP for the
parallelization. OpenMP works in the same memory space so sharing of the dataset is
possible, unlike MPI where every process has its own memory space and duplicates the
dataset for every process created.

The Processor Bandwidth profile, Figure 4.18, shows us that WRF is capable of sat-
urating the available bandwidth of our test system, where each drop in bandwidth, at
time index 90/175/260/340/425/510, is a write of the processed data to disk. Since
WRF walks through the dataset on a per time step base, there are no distinct phases to
be detected from the Processor Bandwidth profile. The main computational function is
the solve em that controls the sub-functions that compute every time-step. The main
components of the solve em function are the main Runge-Kutta loop, with physics calcu-
lations and environment variables (e.g. temperature/moist/pressure) are updated within
that loop, and time-split physics where the calculation of the environment variables are
post processed my the micro-physics driver. The solve em and its sub-functions take up
88.9% of the total computational time. Other functions take up 6.4% of the computa-
tional time. The synchronization overhead is 4.3% of the total computation time. The
remaining 0.4% of the time is spend doing system calls.

When looking at the derived Amdahl scaling, shown in Figure 4.29, it becomes clear
that the scaling efficiency drops off when adding more cores. The cause of this limited
scalability is the requirement of cache coherence between the cores. Cache coherence
makes sure the integrity of the local caches is guaranteed. By invalidating its own cache

4.3. WRF 53

when the another shared memory block is being written by another cache (this process
is called cache snooping) it can make sure that the local value is always in sync with the
rest of the system. This reasoning is reinforced by the Karp-Flatt metric shown in Table
4.11, where the serial fraction is large and has a non-linear stepping when increasing the
numbers of cores. The efficiency of WRF when running 8-cores drops down to 53%. We
don’t expect the efficiency to improve when we add more cores to the system when if
the memory bandwidth available stays the same. During the experiment WRF occupied
91.3% of all the available cpu time, with 8.4% spend it the system idle thread mach idle
and the remaining 0.3% distributed among the various background daemons.

Figure 4.28: Processor Bandwidth profile of WRF

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 698 1.00
2 401 1.74 0.87 0.14790
4 271 2.58 0.64 0.18369
8 166 4.21 0.53 0.12834

Table 4.11: Calculating the scalability of WRF

4.3.2 Validation

4.3.2.1 Input validation

The weather model data used in this test was provided by Prof. R. Fovell from the
Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles
[15]. It is a simulation for a Continental U.S. (CONUS) weather model, with 15km data
point resolution.

54 CHAPTER 4. SCIENTIFIC BENCHMARKS

Figure 4.29: Scaling of WRF depending on number of cores

4.3.2.2 Output validation

The output produced by WRF can be verified by comparing it with a reference out-
put. The application diffwrf provides an overview of the variation between the reference
output and the computed output. Since weather modeling is not an exact science, the
results are expected to vary between the runs, but the WRF user community will only
accept results that are the same to within the 3rd correct decimal [15].

Media Benchmarks 5
Another domain we chose to look at for finding suitable applications was content creation.
Content creation has ever increasing computational requirements, ranging from creating
high quality digital 3D renders that are almost impossible to differentiate between an
actual photo or converting raw High Definition video footage to high compression video
playback formats, all demand a lot from modern hardware. Various applications in this
domain are multi-core aware and tend to be highly parallel in their computational tasks.

5.1 Yaf(a)Ray Raytracer

Yaf(a)Ray is an open-source raytracer that is capable of rendering complex models with-
out the scaling limitations of the original YafRay raytracer. YafRay is part of the popular
Blender3D [2] open-source rendering/modeling package. Yaf(a)Ray renders with mul-
tiple threads, with each thread rendering a 64x64 pixel block. Because Yaf(a)Ray is a
raytracer, it uses light particles to calculate the visual representation of the models. As
every light particle travels through an imaginary path from the point of the camera it will
bounce off objects, creating soft shadows and reflections. This process is computationally
expensive, since a complex scene can have millions of particles bouncing around. The
first modern raytracing algorithm was designed by Steven Rubin and Turner Whitted in
1979 at Bell Laboratories [29].

5.1.1 Scalability

Yaf(a)ray is designed to be scalable, with each thread capable of rendering raytraced
blocks independently of the other threads. Yaf(a)ray uses pthreads, discussed in sec-
tion 3.2.2, to partition the work among the available cores. Because the threads are
internally independent, there is no communication between the threads and no synchro-
nization barriers, resulting in excellent scalability when we introduce more processing
units. When looking at the derived Amdahl scaling, shown in Figure 5.1, we can see
that the scaling of Yaf(a)ray is close to linear and the measured datapoints follow the
plotted Amdahl’s law curve. There is no optimized serial version of the Yaf(a)ray code,
so we run Yaf(a)ray with 1 processor to determine the Serial runtime Ts resulting in
T(1). Table 5.1 shows us that the efficiency from 1 core to 8 cores is close to linear.
However, we can see that there is a minute drop in efficiency going from 4 to 8 cores.
This drop is explained by looking at the Karp-Flatt metric [20] where a steady increase
in the serial fraction Serialfrac points towards increasing overhead. This extra overhead
is caused by the creation and destruction of extra threads for each block that is rendered.
It is interesting to note that going from 1 core to 2 cores, we get a super-linear speedup
primarily due to the extra cache that becomes available when adding a second core.

55

56 CHAPTER 5. MEDIA BENCHMARKS

Figure 5.1: Scaling of Yaf(a)ray depending on number of cores

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 1732 1.00
2 865 2.00 1.00 -0.00144
4 434 3.99 1.00 0.00068
8 222 7.81 0.98 0.00354

Table 5.1: Calculating the scalability of Yaf(a)ray

By analyzing the Time Profile of Yaf(a)ray, we confirm that there is no interpro-
cess communication and no synchronization between the threads. There are 4 pri-
mary methods that are called by Yaf(a)ray during raytracing: triangle t :: intersect,
triKdTree t :: intersect, triKdTree t :: intersectTS and pathIntegrator t :: integrate.
The first three methods are primarily used to compute the crosspoints of the objects and
the light particles for rendering. PathIntegrator t :: integrate calculates the path that
the light particles take when they bounce off of the objects to light other portions of the

5.1. YAF(A)RAY RAYTRACER 57

scene. These 4 methods take 77% of the execution time.

Figure 5.2: Processor Bandwidth profile of Yaf(a)ray

The Processor Bandwidth profile showed that there was considerable traffic on the
Front Side Bus, but not enough to fully saturate the bus continuously. Over the duration
of the application, fewer image blocks need to be updated, and therefore the amount of
memory traffic also decreases over time. Using the processor bandwidth profile, we can
determine 5 separate stages of the application based on the bandwidth required and the
type of functions being executed at that time.

Figure 5.2 identifies the following computational stages in the Yaf(a)ray application:

1. Setup: During the first 12 seconds, the application only runs with the master
thread, where it will do initial setup of the environment and load the plugins
needed for the render.

2. (12 seconds to 186 seconds): The master thread spawns multiple worker threads
which will calculate separate image blocks. The calculation is primarily done using
the 4 main functions mentioned before, using about 79% of the time. The remaining
time is is spread across support functions. There is no inter-thread synchronization.

3. (186 seconds to 208 seconds): Similarly to the second stage, this stage spends 77%
of its execution time in the 4 main functions. The duration in this case is shorter
because we do not have to calculate the entire block from scratch. This stage
refines the image blocks and updates the photon maps so that the lighting and
reflections can be calculated more precisely during the next pass.

4. (from 208 seconds to 228 seconds): This pass is identical to the previous pass,
spending 77% of its time in the 4 main functions as it refines the final image and
updates the photon maps.

5. (from 228 seconds to 248 seconds): This final stage, where the image is updated
for the last time, is identical to the previous 2 stages except that it produces the
final render.

We can see that the initial setup generates almost no memory bandwidth. The first
render runs for 68% of the total runtime and generates the most memory traffic due to

58 CHAPTER 5. MEDIA BENCHMARKS

the generation of the base image, where each image block needs to be rendered. The
remaining “refining” render passes require a total of 26% of the total render time. The
resulting image is a render with soft shadows and proper light refraction of transparent
objects. The final render of the test image is shown in Figure 5.3.

Figure 5.3: Final raytraced image produced by Yaf(a)ray

5.1.2 Validation

5.1.2.1 Input validation

As an input we use an xml file containing a model description provided by a third
party [35] that is processed by the raytrace renderer. The xml file is pre-processed every
time to correctly set the thread count to the number of available cores in the system.

5.1.2.2 Output validation

We collect every render for each iteration we run and calculate the Peak Signal to Noise
Ratio (PSNR) on the difference between the output file and the reference render image.
The higher the PSNR number, the closer the images are. Any variations in the output
image and the reference render will be spotted by the PSNR calculations, and when
the result falls below the PSNR value of 40 dB, artifacts will probably be visible to the
human eye [26]. If this occurs, the result is declared invalid and discarded.

5.1.3 Types of dwarfs used

Yaf(a)ray contains a variety of algorithms that match our list of dwarfs.

1. Graph traversal: Graph traversal is used to traverse the kd-tree data structure.

5.2. X264 ENCODER 59

2. MapReduce: Monte Carlo is used for sampling in the light particle path-tracing
algorithm.

5.2 x264 encoder

The x264 encoder [3] is a open source library that implements the H.264/MPEG-4 part
10 (AVC) codec. H.264 is the current generation block-oriented codec with support for
the following features:

• Motion estimation between frames
This computes the change of location of objects within a frame compared to another
frame and calculates the represents the difference in vector format.

• Intra frame coding (16x16, 8x8, and 4x4 macro blocks with predictions)
Also called I-frames, these are frames that have no reference to any other frame
except themselves and are used as a base reference point for P- and B-frames.
These base frames are commonly called key-frames because they provide the key
information to recreate the original images.

• Predicted frame coding (16x16, 8x8 and 4x4 macro blocks)
Also called P-frames, are frames that contain references (motion vectors and macro
blocks) to the previous I-frames. P-frames require less space then I-frames because
part of the data is referenced from the previous reference frames.

• Bi-directional frame coding (16x16 and 8x8 macro blocks, including skip/direct)
Also called B-frames, are frames that contain references (motion vectors and macro
blocks) to other encoded frames either before or after the current frame location
in the movie stream. B-frames require less space than either I- or P-frames.

• Context-adaptive variable-length coding (CAVLC)
Is a lossless data compression scheme used in the H.264 codec.

• Context-adaptive binary arithmetic coding (CABAC)
Is a lossless data compression scheme used in the H.264 codec with a higher com-
pression ratio than CAVLC, but requires more processing to decode a frame.

• Adaptive B-frame placement
Allows variation in the number of B-frames that can follow other B-frames. This
improves encoding efficiency.

5.2.1 x264 encoder

The x264 encoder processes individual frames in parallel. When encoding a source movie,
each thread processes one frame from the beginning to the end, while calculating the
data (macro blocks and motion vectors) for the P-, B- and I-frames required to encode its
frame. Because the contents of some frames are recreated using the encoded data from
other frames, some dependancies between frames will occur, as we illustrate in Figure
5.4. I-frames, such as N and N+8, are not dependant upon any other frame. P-frames

60 CHAPTER 5. MEDIA BENCHMARKS

are dependant on the previous I-frame, and B-frames are dependant upon previous and
subsequent I- and B-frames. This has the effect of creating dependancy groups of each
I-frame and all P- and B-frames after it, like N to N+7 and N+8 to N to N+15 in Figure
5.4.

Figure 5.4: Camera and display order

To encode the B-frames with their forward and backward references, x264 reorders
the frames and their corresponding threads so that the P-frames are encoded before the
B-frames that precedes them, as shown in Figure 5.5. Because each thread works on one
frame, encoding the frames using this method does cause some synchronization to occur
due to the fact that the newer threads can only encode up to the point, on a macroblock
row by macroblock row basis, where the previous thread has completed encoding. For
example, if thread N is 75% done, then the following threads N+1 to N+7 (assuming no
keyframes) can only encode their frame up to this point. At the beginning of each row

Figure 5.5: Reordering the frames for encoding

in the frame, the thread checks the progress of all its threads it depends upon. If one
of the preceding threads has not yet completed that macroblock row, the thread sleeps
and waits to be woken up by the thread it is dependant upon. Figure 5.6 show the row
dependency for frames N to N+2.

When thread N completes its encoding, it terminates and N+1 becomes the oldest
thread. A new thread is then created for the next frame in the sequence. A sliding
window of frames, are “active” on the system at once and can be processed in parallel.
Because one new thread is created to replace every one that completes, the “window” of
active frames always stays the same size for the duration of the encoding. Choosing the
size of this window is important, because a large window can expose more parallelism,

5.2. X264 ENCODER 61

Figure 5.6: Row dependency for frames N to N+2.

but requires more memory to hold the key frame data structures.
In our workload the x264 encoder processes the input 1080p HD movie on our baseline

system in 200 seconds; with 10 iterations the total runtime will be roughly 33 minutes.

5.2.2 Scalability

The x264 application uses pthreads, discussed in section 3.2.2, to coordinate multithread-
ing. As we explained in the previous section, a thread is created and destroyed for each
frame encoded, and each thread stays alive until it has completed and is the oldest
thread in the reference dependency chain. Thread creation and destruction has minimal
overhead because of the low frame rate, under 25 frames per second for an encode of an
HD source. Due to the synchronization overhead, we can see drops in performance when
many dependent threads are waiting for older threads to complete encoding, primarily
cause of the delays are caused by fast upward motion [8]. One way to minimize the
performance hit of sleeping threads is to increase the number of spawned threads to an
amount greater than then number of available cores, a process called over-subscribing,
because this creates a larger “window” of available threads and hence increases the
amount of exploitable parallelism. When setting the threading model to automatic, the
number of threads is set to 1.5 times the number of the available cores. We discovered
that for an 8-core machine setting the number of threads to 2 times the number of cores
performs better and there is less system idle time, so we set our thread count to 16 for
our experiments.

The application x264 has 4 distinct stages [22] when processing a frame:

1. Frame type decision: The main thread decides what kind (I/P/B) frame the next
thread will be encoding. This is done by a fast heuristic motion estimation pass
on the next two frames. It compares different encoding strategies for the next two
frames. First, it determines if the second frame contains more than 50% of the
previous I-frame, which prevents the use of B-frames. The second step is to see
what order is more efficient, PP-frames or BP-frames. In the case where the P-
frame following the B-frame is more efficient, another B-frame will be added before
the last P-frame until a certain intra block threshold is reached in the P-frame.
When this process is complete, worker threads will be created to do the next 3
stages

62 CHAPTER 5. MEDIA BENCHMARKS

2. Macroblock analyze: Macroblock analyze is the second stage in the encoding pro-
cess. The worker thread will do motion estimation (in our example we use trans-
formed exhaustive search algorithm or TESA). This is the complex and time con-
suming step. Next come the intra-predictions that allow different macroblock sizes
to be encoded, improving the efficiency. When the macroblock type and motion
vectors are selected, we proceed to the encoding stage.

3. Macroblock encode: The Macroblock encoding we selected is context-based adap-
tive binary arithmetic coding (CABAC) with Trellis quantization. The trellis algo-
rithm searches for the lowest cost for encoding a macroblock, by looking at several
encoding paths and choosing the one with the shortest path/cost.

4. Macroblock write: The final stage is collecting the encoded frames and converting
them to a bitstream that can be written to file.

Figure 5.7: Processor Bandwidth profile of x264 encoder

The Processor Bandwidth profile, Figure 5.7, shows us that there are fluctuations
in the memory bandwidth, with arrows pointing to a drop in memory traffic in some
points. These drops are caused by fast vertical motion in parts of the stream. A fast
motion vector requires more calculations for the frame being encoded. Due to the way
the dependency chain is built, the following frames have to wait until the first frame has
encoded a row before they can encode the same row or reference the previous frame.
This in turn causes the waiting thread(s) to go to sleep, and in the worse case all the
threads are waiting on the oldest thread, assuming there is no keyframe to break the
dependency chain. Other fluctuations in bandwidth utilization are areas in the stream
where the scene has minimal changes and B-frames can be used to reference previous or
future frames without encoding much data, which results in less memory traffic as well.

Using the Processor Bandwidth profile, we can determine where these drops in per-
formance occur and then correlate them with events in the movie stream. The sample
movie we selected consists of a side scrolling scene from the Creative Commons movie
Big Buck Bunny [1]. At the time index of 90 seconds, we can see a drop in bandwidth
caused by the thread synchronization required for the large motion vectors starting at
frame 290 of our sample movie. The initial thread will spend more time calculating the
frame and will cause the following threads to sleep while they are waiting on the initial

5.2. X264 ENCODER 63

thread to finish encoding a sufficient number of macroblock rows. Another point in the
chart is around the time index of 140 seconds, where a similar situation occurs, this time
caused by the large motion vectors starting at frame 370.

When looking at the derived Amdahl scaling, shown in Figure 5.8, we can see that
the measurements begin close to the linear line but start to drop off when we add
more cores. When running the x264 encoder with a single thread, it does not do any
synchronization blocking and does not need over-subscription. When we do use multiple
cores, the synchronization and over-subscribing functions are enabled. As shown by
the Karp-Flatt metric in Table 5.2, the serial-fraction for 2 cores is 4%, a high number
compared to the other values. These irregularities in the serial fraction point towards
load-balancing problems, something to expect when parallelizing by over-subscribing the
cores. The more cores we enable on our test system, the higher the number of “extra”
inflight threads will be. Since these “extra” threads give the scheduler more choices
when trying to allocate waiting threads to an idle core, they are an effective means of
addressing load imbalance. When we correct the Amdahl scaling graph, by removing
the obvious irregularity of 4%, we can see that the x264 encoder is expected to scale
very well with a core count greater than 8. We can also see that the average efficiency
is around 95% per core added, which is considerable for this type of application.

Speedup and Efficiency Karp-Flatt metric

Cores T(1) T(p) S = T(1)

T(p)
E = S

p Serialfrac

1 1564 1.00
2 813 1.92 0.96 0.04035
4 410 3.81 0.95 0.01623
6 273 5.73 0.96 0.00937
8 209 7.47 0.93 0.01010

Table 5.2: Calculating the scalability of the x264 codec

By analyzing the Time Profile, we can see that the x264 encoder spends its time
primarily (68%) calculating the motion estimation in the macroblock analyze function.
The remaining time is spent on encoding the frames (24%) in the macroblock encode
function and creating the bitstream (4%) in the macroblock write and other various
functions. Even with over-subscription of the cores, 6.2% of the time is still spent in
mach idle, the system idle thread. This is primarily caused by the cost of creation and
destruction of the threads, which is an expensive operation in OS X.

Due to the way x264 divides its work, there are no specific changes in the compu-
tational stages over time and the statistical average collected by Time Profile over the
duration of the entire application gives a good overview of what happens for each frame.

64 CHAPTER 5. MEDIA BENCHMARKS

*

Figure 5.8: Scaling of x264 encoder depending on number of cores

Figure 5.9: Frame from Big Buck Bunny

5.3. SELECTION AND CHARACTERIZATION OF WORKLOAD 65

5.2.3 Validation

5.2.3.1 Input validation

For the input reference we use an uncompressed Y4M HDTV (1920x1080) movie clip of
512 frames from the Creative Commons project Big Buck Bunny [1]. We encode this
with a complex encoding profile that will result in a highly compressed file with near
lossless video quality. For more information about the encoding profile see Appendix B.3

5.2.3.2 Output validation

The x264 encoding has internal mechanisms to verify the output quality after encoding.
It uses the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) to
verify the encoded image against the source frame after encoding, to see if the degradation
is within acceptable limits. These two values are tracked during the entire encoding
process and averaged at the end. There are small non-determinisms when encoding with
multiple threads, but these are not significant enough to alter the values of PSNR and
SSIM to an serious extent. Like in the Yaf(a)ray section, we will accept a PSNR [26]
with a value of 40 dB or higher, since the human eye cannot determine a difference
between the source and result frame below that threshold. For SSIM [36], a value of 0.90
or higher is acceptable for near lossless encoding algorithms.

5.2.4 Types of dwarfs used

The x264 encoded contains a variety of algorithms that match our list of dwarfs.

1. Finite State Machines: The trellis and CABAC residual encoding components of
the x264 encoder use transition tables to calculate their target values.

2. Graph traversal: Graph traversal is used for trellis quantization to optimize the
cost of each block encoded [22].

3. Branch-and-Bound: The TESA motion search algorithm uses branch-and-bound
for the best encoding value.

4. Dynamic programming: Viterbi is used to choose the absolute optimal distribution
of B-frames for the adaptive B-frame placement.

5.3 Selection and characterization of workload

Figure 5.10 shows the Dwarf components of the profiled applications. Because there are
overlapping dwarfs, we can discard certain applications from the final workload. Selection
will be based on the profile information collected in the previous stages regarding the
requirements of scaling and reproducibility.

As mentioned before in section 4.2.8, we can safely discard the LU and SP bench-
marks. WRF also was a possible candidate since it has considerable overlap with NPB

66 CHAPTER 5. MEDIA BENCHMARKS

Figure 5.10: Total number of Dwarfs in workload

UA and MG but we choose not do discard this application because it performs the struc-
tured gird and spectral methods within the same application, therefore it is an interesting
test case for mixed algorithmic patterns.

We are still missing three essential dwarfs: N-Body Methods, Combinational Logic
and Graphical Models. For future work these dwarfs are ideal candidates to be added
to the workload.

Case study 6
In this chapter we provide a case study on how to compare multiple hardware configu-
rations and we take a look at how to interpret these results. For our case study we run
the workload on different hardware configurations and compare the results to see what
kind of scaling occurs. We will take a 2007 4-core Mac Pro as baseline and compare it
to two 2007/2008 8-core Mac Pro machines running at the same clock frequency. The
major differences between the 2007 and 2008 models are the increase in cache size (from
4MB per socket to 12MB per processor), a faster memory interconnect (from 1.3GHz to
1.6GHz) and the memory speed (667MHz to 800MHz).

6.1 Performing the workload runs

We ran the default workload configuration by calling the workload using the following
command: ./leviathan -l modelname -a where modelname was the configuration of the
machine we were testing. This resulted into 3 complete runs of the workload each with a
different configuration. The total runtime of the entire workload is shown in Table 6.1,
where we can see that there is indeed a significant decrease in the total time required
to run the workload when doubling the number of cores. We can also see that the 2008
model performs its tasks faster, presumably because of the more modern hardware.

Model Total Runtime
2007 4-core 22h20m
2007 8-core 12h51m
2008 8-core 9h23m

Table 6.1: Reported runtimes for different processor models

In the next section we will take a look at the collected data and see how the different
workload runs compare to each other.

6.2 Analyzing the results

The output of each workload run is put into a comma separated value list (csv list) for
easy post processing. After gathering the three output files and after post processing
them, based on the reproducibility requirements specified in section 2.3.4, we can get an
insight on the behaviour of each separate hardware configuration as well as comparing
the separate runs with each other.

67

68 CHAPTER 6. CASE STUDY

In Table 6.2 we can see a typical output of the workload, in this case running the 2007
model with 8 active cores. Each workload component returns its total runtime in seconds
for each iteration. There are 10 iterations for every workload component and the result
of the reproducibility analysis can be seen. We marked the CV scores in bold face(shown
in column CV 1) that are higher than 2% as well as the outliers that caused the CV check
to fail. By removing these marked iterations and recalculating the CV values (shown in
column CV 2), the reproducibility analysis will pass the verification step. When we take
all three post processed output files that complete the reproducibility analysis, we can
take the average scores of each workload component and plot them in a chart.

Figure 6.1: Comparing different processor models using the workload results

Figure 6.1 shows an example of a chart that plots the scalability of each configuration
compared to a baseline configuration (in this case the 2007 4-core model). By looking
at the chart we can see that some applications scale better than others going from 4
to 8-cores. A nice example would be NPB EP, where we have a close to linear scaling
making it ideally suitable to measure scalability. As discussed in section 4.2.6, NPB EP
runs almost completely locally in the caches and therefor will have little to no bandwidth
bottlenecks, making the scalability dependant only on the amount of active cores. We
do see that the newer 2008 model is faster than the 2007 8-core model, most likely due to
the larger cache and possibly some optimizations in the processing hardware. However
NPB EP does not tell us anything about the memory interconnects, since it barely uses
them. So we will need to look at the other benchmarks to get an idea what will happen
if we saturate another hardware bottleneck. NPB SP, discussed in section 4.2.1, showed
that it is capable of saturating the available memory interconnect bandwidth. However,
the chart does reveal that there is an increase in speedup when we go from 4 to 8-cores
when comparing the two 2007 models with each other. While we double the amount of
processing power by adding the additional cores the speedup does not double but stops

6.2. ANALYZING THE RESULTS 69

ru
n
ti

m
e

in
se

co
n
d
s

av
r

C
V

1
C

V
2

It
er

a
ti

o
n

1
2

3
4

5
6

7
8

9
1
0

li
n
p
a
ck

S
P

1
5
3
.6

1
1
5
3
.8

2
1
5
3
.3

6
1
5
5
.5

7
1
5
4
.2

9
1
5
3
.5

6
1
5
3
.1

8
1
5
3
.0

6
1
5
2
.7

9
1
5
3
.8

4
1
5
3
.7

1
0
.5

1
%

0
.5

1
%

li
n
p
a
ck

D
P

9
2
.2

6
9
2
.4

7
9
2
.2

4
9
2
.6

4
9
2
.4

1
9
2
.3

1
9
2
.4

5
9
1
.9

4
9
2
.3

8
9
2
.5

2
9
2
.3

6
0
.2

1
%

0
.2

1
%

N
P

B
B

T
3
6
1
.0

5
3
5
8
.5

3
5
9
.5

1
3
5
8
.8

8
3
6
0
.0

9
3
5
9
.9

6
3
5
8
.9

3
3
5
9
.9

2
3
6
1
.6

2
3
5
8
.7

9
3
5
9
.7

3
0
.2

8
%

0
.2

8
%

N
P

B
C

G
1
6
7
.7

8
1
5
8
.5

3
1
5
5
.5

5
1
5
5
.5

1
5
5
.4

5
1
5
9
.3

1
1
5
9
.3

1
1
5
7
.7

1
5
8
.3

4
1
7
1
.9

8
1
5
9
.9

5
3
.4

6
%

1
.0

8
%

N
P

B
E

P
4
7
6
.3

5
4
8
4
.2

9
4
7
9
.3

4
8
1
.5

1
4
8
1
.3

4
4
7
9
.0

4
4
8
7
.9

9
4
8
8
.4

9
4
7
9
.3

1
4
7
7
.6

8
4
8
1
.5

3
0
.8

6
%

0
.8

6
%

N
P

B
F
T

1
0
8
.0

4
1
0
7
.9

2
1
0
6
.1

5
1
0
7
.8

1
1
0
9
.4

6
1
0
8
.8

8
1
0
7
.6

1
0
9
.1

1
0
7
.5

9
1
0
7
.6

5
1
0
8
.0

2
0
.8

7
%

0
.8

7
%

N
P

B
IS

4
.9

3
4
.7

2
5
.1

2
4
.8

1
4
.7

4
.7

1
4
.7

1
4
.7

1
4
.8

6
4
.7

2
4
.8

0
2
.8

6
%

1
.7

5
%

N
P

B
L
U

6
7
2
.3

4
6
6
6
.6

5
6
6
9
.6

8
6
6
5
.5

2
6
7
3
.6

7
6
7
1
.2

3
6
6
8
.6

8
6
7
1
.2

6
6
9
.9

2
6
6
9
.1

4
6
6
9
.8

0
0
.3

7
%

0
.3

7
%

N
P

B
M

G
7
7
.0

8
7
7
.4

6
7
7
.2

9
7
8
.2

7
8
.2

8
7
7
.0

3
7
7
.3

2
7
7
.2

1
7
7
.9

9
7
7
.5

2
7
7
.5

4
0
.5

9
%

0
.5

9
%

N
P

B
S
P

9
9
1
.2

3
9
9
1
.2

2
9
9
0
.2

9
9
0
.5

2
9
9
2
.0

1
9
9
1
.5

9
9
9
3
.5

9
9
0
.7

9
9
3
.1

5
9
9
1
.1

9
9
9
1
.5

3
0
.1

1
%

0
.1

1
%

N
P

B
U

A
6
0
8
.3

4
6
0
8
.1

9
6
1
0
.2

4
6
1
0
.3

9
6
0
8
.5

6
0
9
.8

9
6
0
8
.7

2
6
0
9
.5

3
6
1
1
.8

4
6
0
9
.7

5
6
0
9
.5

4
0
.1

9
%

0
.1

9
%

W
R

F
4
9
5
.0

4
4
9
2
.1

5
4
9
3
.6

3
4
9
3

4
9
4
.3

6
4
9
5
.5

9
4
9
4
.6

3
4
9
4
.2

7
4
9
4
.6

4
4
9
4
.1

4
4
9
4
.1

5
0
.2

0
%

0
.2

0
%

X
2
6
4

2
2
8
.0

2
2
2
7
.0

5
2
2
7
.3

7
2
2
6
.9

1
2
2
7
.4

1
2
2
6
.7

9
2
2
7
.1

3
2
2
6
.0

3
2
2
6
.4

3
2
2
7
.3

4
2
2
7
.0

5
0
.2

4
%

0
.2

4
%

Y
a
f(

a
)r

ay
2
3
2
.6

9
1

2
3
1
.2

3
6

2
3
2
.3

2
2

2
3
1
.4

1
2
3
1
.0

9
2

2
3
2
.3

5
3

2
3
1
.3

7
8

2
3
0
.9

3
3

2
3
2
.0

2
2
3
1
.5

6
5

2
3
1
.7

0
0
.2

6
%

0
.2

6
%

T
ab

le
6.

2:
R

ep
or

te
d

ru
nt

im
es

fo
r

th
e

20
07

m
od

el
w

it
h

8
ac

ti
ve

co
re

s

70 CHAPTER 6. CASE STUDY

at 158% compared to the 4-core configuration. The limiting factor in this case is the
memory interconnect being saturated completely and the processors are data starved.
This suspicion is confirmed by looking at the results for the 2008 8-core model, which
performs considerably faster. Here the increase in cache size and faster memory inter-
connect allows the processors to do more calculations without becoming data starved,
giving a 279% improvement compared to the baseline configuration. Another interesting
point in the chart is NPB LU, that shows a nice scaling from 4 to 8 cores but jumps
significantly when comparing the 2007 and 2008 8-core models. The 2008 model more
than doubles the performance for this application, likely due to the increase of avail-
able bandwidth by the better memory interconnect but more importantly the cache size
plays an important role here. Large improvements like these, when running at the same
clock frequency, often depend on the way the caches are being used. For the 2008 model
the caches were likely large enough to fit the entire dataset while the 2007 models were
not. When the entire dataset fits into the cache all the required data is local and little
communication is needed to be fetched from memory (similar to NPB EP) allowing the
processors to calculate at maximum efficiency. Some applications, like Yaf(a)ray, do not
show improvements when comparing the 2007 and 2008 8-core models. What this tells
us is that the execution times of these applications are not limited by either the cache
size or memory(interconnect) speed, but only by frequency of computations done by the
processor (since the clock frequency is the same for our test, these computations would
complete at a same rate).

By interpreting these kind of charts, we can determine how a particular configuration
change affects the overall performance, telling us the benefit of having an 8-core machine
versus 4-core machine as well as how different hardware components influence the results.

6.3 Case study results

By repeatedly running the workload during a design process of either the system hard-
ware or the operating system, we can find out if any changes positively/negatively influ-
ence the performance of the machine under test. We selected the workload components
in such a way that various kinds of algorithmic stresses will be placed on the machine
generating a broader testing field than one would get with only a single synthetic test.

We have shown that the workload can produce valid performance data even with
outliers, by removing these from the scoring process, making it more robust.

Summary, Conclusions and
Recommendations 7
This thesis project discussed the creation of a workload capable of evaluating multi-
core systems. This workload is being used by Apple Inc. to examine the capabilities of
current and next generation multi-core systems. The first chapter gives some background
information about workload set development and the application domains suitable for
multi-core workload components. The component selection procedure is also explained
in this chapter. The second chapter introduces the concept of Dwarfs which are common
scientific algorithms. We will target these specific algorithmic methods specifically when
selecting components for the workload. The relevant workload areas and the criteria
for the workload are also discussed in this chapter. The third chapter will discuss the
workload environment and parallelization methodologies. The application profiling tools
that were used are also discussed in this chapter. The fourth chapter will discuss the
various scientific applications we selected for the workload and an in depth analysis
on each application. The fifth chapter will discuss the two media applications that
we selected for the workload and an in depth analysis on each application. In the
following sections we will give a summary of these chapters and our conclusion and
recommendation for future work.

7.1 Summary

In this section we present a summary of our findings for each chapter in this thesis.

7.1.1 Workload set development summary

The objective of this project is to create a workload that is capable of giving the user
insight into the capabilities of a particular multi-core system. Creating a workload set is
a multifaceted task where the designer has to define what the workload will test and what
kind of criteria it needs to follow. A multi-core capable workload requires applications
that are parallel and are capable of scaling. To select these real world applications we
looked at several candidate domains, consisting of scientific and media applications. We
then narrowed our domain to the high performance computing sub-domain that is part
of scientific domain and the rendering and encoding sub-domains of the media domain.

7.1.2 Workload characteristics

The workload components are selected based on the concept of Dwarfs discussed in chap-
ter 2. These Dwarfs are types of algorithms that are common in science and engineering.
All selected application will contain one or more of these Dwarfs and will exercise the
main hardware elements of the underlying hardware, the CPU, main memory and the

71

72 CHAPTER 7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

memory interconnect (NorthBridge). The 5 criteria for the workload are defined as
follows:

1. The workload should have full support for multi-core systems, meaning it should
take advantage of all of the available cores.

2. Full support for Mac OS X systems

3. The workload needs to complete and give results within a reasonable time of 12-24
hours, so you can start your test and get results the next day.

4. Reproducible test results on the same platform.

5. The workload needs to produce verified results that do not change when run on
other platforms

The workload developed in this thesis met al of these criteria.

Criterion 1 Full multi-core support is implemented by only using applications that
are capable of running in parallel and can scale to multiple cores.

Criterion 2 Full Mac OS X support has been met by developing and running the
workload on the Mac OS X platform.

Criterion 3 Workload completion time has been met due to the fact that the workload
will complete a full run in 14 hours on our test system using 8 cores.

Criterion 4 Reproducibility is assured by selecting applications that have consistent
output and runtimes and the minor variances in the runtime can be detected when
post-processing the results as described in section 2.3.4.

Criterion 5 Verification of results is implemented by every component in the workload
by either internal verification of the computed results or comparison of the output based
on a reference file. When either one of these verification steps fails, it will be reported.

For the workload we will use a constant dataset, so we can calculate the total time
an application requires to complete and we can use Amdahl’s law and the Karp-Flatt
metric to estimate the scalability of these applications beyond the actual available core
count. The reproducibility is another major issue we discussed in chapter 2, were we
discuss the methodology to cope with variance in the results and possible outliers. By
using this methodology we can be satisfied that the coefficient of variation will be below
2% for each application when the final results are processed.

7.1.3 Workload evaluation environment summary

The various parallelization methodologies we looked at were MPI, Pthreads and
OpenMP. We chose to use OpenMP extensively in our project since it has the capa-
bility of scaling the number of threads dynamically based on the underlying hardware

7.1. SUMMARY 73

and the benefit of a shared memory model. For the application profiling tools we looked
at two toolsets: Apple Shark and Intel Pin Tools. We decided to continue with Shark
since it has the capability of profiling both the hardware and the software. Intel Pin
Tools is only a software profiling tool with the additional problem that the 64-bit bina-
ries were not supported. Also several bugs in the software prevented us from reliably
profile double precision floating point applications. Another benefit of Shark over Pin
Tools is that Shark is capable of profiling low level hardware calls in real time whereas
Pin Tools is only capable of this in emulation mode that is significantly slower. We also
looked into the influence our analysis might have on the actual performance of the ap-
plication while profiling and came to the conclusion that using Shark with its hardware
assisted sampling methods the overhead is less than 1.5% for the most demanding profile
setup.

7.1.4 Scientific benchmarks summary

We selected several scientific benchmarks to be included in our workload. We selected
Linpack, the NASA Parallel Benchmark Suite (NPB) and Weather Research and Fore-
casting (WRF) applications.

Linpack was ran in both single precision and double precision with a 30.000x30.000
and 20.000x20.000 matrix respectively. Linpack scales exceptionally well using these
large matrices, reaching the computational and bandwidth limits of our test machine.

NASA Parallel Benchmark consists of 8 applications that mimic a class of compu-
tational fluid dynamics. For each of these applications a detailed study of their behaviour
has been done as well as a scaling study. The following scaling behaviour was noticed
on our test system:

• Scales exceptionally well: BT IS EP CG

• Scales well: FT LU

• Scales moderately: UA MG

• Scales poorly: SP

The applications SP, UA and MG have poor or moderate scalability because they
reach a bottleneck in the current system. For SP, UA and MG it reaches the maximum
available memory bus bandwidth at 4 active cores. All the applications have internal
verification steps to check the computed results.

Weather Research and Forecasting is a weather modeling application that in our
model computes the weather for the entire continental US. The scalability of WRF is
limited due to the cache coherency requirement when running OpenMP, when scaling to
8-cores the overhead and the resulting bandwidth pressure limits scaling. Since weather
modeling is not an exact science, the results are expected to vary between the runs, but
we will only accept results that are the same to within the 3rd correct decimal.

74 CHAPTER 7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

7.1.5 Media benchmarks summary

We selected two media benchmarks one from each sub-domain, encoding and rendering.

Yaf(a)ray is a raytracer designed to render image blocks independently of its neigh-
boring blocks and has therefore close to linear scalability. There is a significant amount
of memory traffic on the memory bus but not enough to saturate the Front Side Bus.
We collect every render for each iteration we run and calculate the Peak Signal to Noise
Ratio (PSNR) on the difference between the output le and the reference render image.

x264 is a video encoder that is capable of encoding individual frames in parallel. It
uses over-subscription to sidestep the issues with fast vertical motion vectors that create
dependency chains in the encoding order. x264 scales exceptionally well, but has some
problems with load-balancing, something that can be expected when oversubscribing the
actual number of available cores. The x264 encoding has internal mechanisms to verify
the output quality after encoding. It uses the peak signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) to verify the encoded image against the source frame
after encoding, to see if the degradation is within acceptable limits.

7.2 Conclusions

The completed workload provides a good basis covering the Dwarfs mentioned in section
2.1. We successfully completed all the requirements specified at the start of this project.
The workload can and is used in the computer industry for testing multi-core systems.
As we have shown in the case study, the workload can be used to generate performance
data on several machines for comparison. Important information regarding the effects
of architectural changes can be derived by comparing the results of different machines,
such as:

• The effects of cache size, determines if a particular dataset can fit into the cache
so the computational elements can be fed with instructions without interruption.

• The effects of memory interconnect bandwidth, if the bandwidth is limited the
computational elements will be starved for data and overall performance will suffer.

• The effects of functional unit improvements, if the clock rate and the memory
interconnect bandwidth remains the same significant improvements in the compu-
tational elements can be spotted.

The workload in its current form, gives the user significant coverage of various
computational areas while giving additional information about architectural limita-
tions/improvements. At the same time the workload fulfills the requirements set at
the start of the thesis project, in the sense that it is scalable, reproducible and verifiable
workload running within a reasonable runtime on current generation hardware.

7.3. RECOMMENDATIONS 75

7.3 Recommendations

There are still several interesting improvements that can be made with continued devel-
opment of this workload.

• Addition of the three remaining Dwarfs: N-Body Methods, Combinational Logic
and Graphical Models. With the addition of these remaining Dwarfs we complete
the entire set of common algorithms used in science and engineering as defined by
Berkeley [6].

• Additional sub-domains such as Bio-Informatics or Intel Recognition, Mining and
Synthesis would be a good addition to the workload. With the addition of different
sub-domains we can create an even broader testing base for the workload and
potentially cover additional data access patterns generated by these other sub-
domains.

• Support for Linux and Microsoft Windows would make the workload cross-platform
and could give additional insights in the differences on an OS level.

• Increased robustness support so that the workload can continue running even after
restarts or machine panics on experimental hardware, to make it even more suitable
for automated testing environments used in the industry.

76 CHAPTER 7. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Bibliography

[1] Big buck bunny, http://www.bigbuckbunny.org/.

[2] Blender 3d modeling, http://www.blender.org/.

[3] Laurent Aimar, Loren Merritt, Eric Petit, Min Chen, Justin Clay, Måns Rullg̊ard,
Radek Czyz, Christian Heine, and Alex Izvorski Alex Wright, x264 h.264 encoder
library, http://www.videolan.org/developers/x264.html.

[4] G.M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, AFIPS Conference Proceedings 30 (1967), no. 8, 483–485.

[5] Apple, Computer hardware understanding developer tools (chud), http://
developer.apple.com/tools/performance/.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis,
Parry Husbands, Kurt Keutzer, David A. Patterson, William Lester Plishker, John
Shalf, Samuel Webb Williams, and Katherine A. Yelick, The landscape of paral-
lel computing research: A view from berkeley, Tech. Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, Dec 2006.

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,
V. Venkatakrishnan, and S. K. Weeratunga, The nas parallel benchmarks, The In-
ternational Journal of Supercomputer Applications 5 (1994), no. 3.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li, The par-
sec benchmark suite: Characterization and architectural implications, Tech. report,
Princeton University, 2008.

[9] Shekhar Borkar, Pradeep, Dubey, Kevin Kahn, David Kuck abd Hans Mulder,
Steve Pawlowski, and Justin Rattner, Platform 2015: Intel processor and platform
evolution for the next decade, Tech. report, Intel, 2005.

[10] P. Colella, Defining software requirements for scientific computing, presentation,
2004.

[11] Jack Dongarra, Jim Bunch, Cleve Moler, and Pete Stewar, Linpack.

[12] Pradeep Dubey, A platform 2015 workload model recognition, mining and synthesis
moves computers to the era of tera, Tech. report, Intel, 2005.

[13] Huiyu Feng, Rob F. Van der Wijngaart, Rupak Biswas, and Catherine Mavriplis,
Unstructured adaptive (ua) nas parallel benchmark, version 1.0, Tech. report, NASA
Ames Research Center, 2004.

77

http://www.bigbuckbunny.org/
http://www.blender.org/
http://www.videolan.org/developers/x264.html
http://developer.apple.com/tools/performance/
http://developer.apple.com/tools/performance/

78 BIBLIOGRAPHY

[14] Huiyu Feng, Rob Van der Wijngaart, and Rupak Biswas, Design of unstructured
adaptive (ua) nas parallel benchmark, featuring irregular, dynamic memory accesses,
Tech. report, NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-
1000, 2001.

[15] R. Fovell, http://macwrf.blogspot.com/.

[16] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar, Introduction
to parallel computing, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

[17] W. Heisenberg, Über quantentheoretische umdeutung kinematischer und mechanis-
cher beziehungen, Annalen Der Physik 33 (1925), no. 1, 879–893.

[18] Jim Held, Jerry Bautista, and Sean Koenhl, Research at intel from a few cores to
many: A tera-scale computing research overview, Tech. report, Intel, 2006.

[19] H. Jin, M. Frumkin, and J. Yan, The openmp implementation of nas parallel bench-
marks and its performance, Tech. report, NAS Division, NASA Ames Research
Center, Moffett Field, CA 94035-1000, 1999.

[20] Alan H. Karp and Horace P. Flatt, Measuring parallel processor performance, Com-
mun. ACM 33 (1990), no. 5, 539–543.

[21] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood, Pin: building
customized program analysis tools with dynamic instrumentation, SIGPLAN Not.
40 (2005), no. 6, 190–200.

[22] Loren Merritt, x264: a high performance h.264/avc encoder.

[23] G.E. Moore, Cramming more components onto integrated circuits, Electronics 38
(1965), no. 8, 114–117.

[24] Kunle Olukotun and Lance Hammond, Chip multiprocessors: The future of micro-
processors, Queue 3 (2005), no. 7, 26–29.

[25] PASC, Standard for information technology - portable operating system interface
(posix). shell and utilities, IEEE Std 1003.1, 2004 Edition. The Open Group Tech-
nical Standard. Base Specifications, Issue 6. Includes IEEE Std 1003.1-2001, IEEE
Std 1003.1-2001/Cor 1-2002 and IEEE Std 1003.1-2001/Cor 2-2004. Shell and Util-
ities (2004), –.

[26] M. Rabbani and P.W. Jones, Digital Image Compression Techniques, Society of
Photo-Optical Instrumentation Engineers (SPIE) Bellingham, WA, USA, 1991.

[27] R. Ramananthan, Intel multi-core processors leading the next digital revolution,
Tech. report, Intel, 2005.

[28] , Architecting the era of tera, Tech. report, Intel, 2006.

http://macwrf.blogspot.com/

BIBLIOGRAPHY 79

[29] Steven M. Rubin and Turner Whitted, A 3-dimensional representation for fast ren-
dering of complex scenes, SIGGRAPH ’80: Proceedings of the 7th annual conference
on Computer graphics and interactive techniques (New York, NY, USA), ACM,
1980, pp. 110–116.

[30] William Saphir, Rob Van Der Wijngaart, Alex Woo, and Maurice Yarrow, New
implementations and results for the nas parallel benchmarks 2, Tech. report, NAS
Division, NASA Ames Research Center, Moffett Field, CA 94035-1000, 1997.

[31] SPEC, Spec background, http://www.spec.org/spec/#background.

[32] , Spec cpu 2006, http://www.spec.org/cpu2006/.

[33] , Spec retired benchmarks, http://www.spec.org/retired.html.

[34] Sun, Ultrasparc t2 processor, Tech. report, Sun microsystems, 2007.

[35] J. Verwiebe, Yaf(a)ray source file, http://www.jensverwiebe.de.

[36] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli, Image quality assess-
ment: from error visibility to structural similarity, Image Processing, IEEE Trans-
actions on 13 (2004), no. 4, 600–612.

http://www.spec.org/spec/#background
http://www.spec.org/cpu2006/
http://www.spec.org/retired.html
http://www.jensverwiebe.de

80 BIBLIOGRAPHY

Torque detailed study A
A more detailed study of the behaviour of Torque was done to explain the variability and
the second peak in the Torque histogram shown in Figure 2.2. Since the initial test was
run without cache-affinity, the 8 processes were run with 2 different memory access types
(4 Load processes and 4 Bzero processes) were allocated at random on the 8 available
cores. The resulting throughput numbers, because of the large number of runs, display
all possible combinations of cache localization. While the majority of the throughput
numbers form one large group around the mean, there are other, smaller groups further
away from the mean, but still within the standard deviation range. Cache affinity, a
process where the schedular forces a process to stay with a specific cache, was used to
bind the processes to a specific shared cache, with two cores sharing the same Level 2
Cache. This resulted in 4 possible cache configurations when two processes of the same
type (Load Load (L) or Bzero Bzero (Z) pairs)were always bound to the same shared
cache, with options of LLZZ, ZZLL, LZLZ and ZLZL. For example LLZZ where the first
4 cores (with their 2 shared caches) are occupied with Load processes and the last 4 cores
(with their 2 shared caches) are occupied with Bzero processes. For these configurations,
an exhaustive test of 100,000 iterations per configuration was performed.

The resulting performance numbers were plotted along with the completely random
test results. The resulting graph, shown in Figure A.1, shows us that the mixed con-
figurations LZLZ and ZLZL both cluster on the mean, where the total Load and Bzero
number is added to get around 5750MB/Second), and are not the configurations that
cause the higher performance. The configurations that have 4 processes of the same class
(LLZZ and ZZLL) paired together on the same physical package/socket were observed
to be in the higher performing groups. It is interesting to note that the placement of
the group on the first package defines the difference in performance benefiting either the
Load or Bzero group. Since the processors are identical from the core level all the way
up to the package level, it is our theory that the differences in performance must be
caused by the memory controller in the North-Bridge. Package 0 gets priority in some
cases, resulting in a minor speed gain. The most likely cause for this priority is that the
default state for the memory controller is package 0 / FSB 0. The remaining scattering
of performance numbers are caused by the influences of the operating system’s scheduler
and the interference caused by different processes fighting over the same cache ranges.

81

82 APPENDIX A. TORQUE DETAILED STUDY

Figure A.1: Torque bandwidth usage

Leviathan test harness B
All the applications in this workload are open-source applications. Each application
is designed to operate independently of the other applications so that each application
folder can be taken out of the workload and executed independently of the main test
harness. Each application is built as plugin structure in the main test harness.

To add another workload component, you just need to perform three steps:

1. Find the leviathan shell script and add the name of your application to the sup-
ported applications list at the top.

2. Make a new folder with the name you added to the supported applications list,
and put a copy of your application there, along with any necessary datafiles.

3. Create a new function with the application’s name in the run script that invokes
your application.

The default way to run a application is to call the run script from within the application
folder. Running the leviathan shell script can be done with various arguments:

-a Runs all the available workload components and output a report.

-h Display the help information.

-l LABEL Add a label to the output folder. This argument needs to be placed before
the -a and -m arguments.

-m APP NAME Only runs the selected application, not producing a report. Can be
used several times to specify multiple applications.

-r Generates a report when running applications selected using -m.

-R TSTAMP Generates a report for a selected timestamp. This should not be used
with other arguments.

-t Runs the workload with a testset. This must be the first argument.

Examples of how to use the leviathan shell script:

./leviathan.sh -a Run the entire workload and generate a report.

./leviathan.sh -t -l runtest -a Run the entire workload with only the testset and add
the label “runtest” to the output names.

83

84 APPENDIX B. LEVIATHAN TEST HARNESS

./leviathan.sh -m linpack -m x264 -r Run only “linpack” and “x264” and produce
an report based on those two applications.

The -a/-r/-R arguments all generate reports in a comma separated value list called
report timestamp.csv. This report can be imported into Excel or other programs for
post processing. All the data collected during the run is put in the “results” directory
under the same timestamp or label.

Before the leviathan workload can be used, all the components need to be unpacked
and built. By running the unpack all script in the main directory, the first step of
unpacking the workload is done. Afterwards, for each component the just build script
must be invoked in each sub-directory.

B.1 Linpack

B.1.1 Where to get

http://www.netlib.org/benchmark/

B.1.2 How to build

This application has a build- and run-script called apglinpack. To build your own binaries
Intel ifort and icc is required, as well as the Intel MKL libraries that supply optimized
math functions used by Linpack. Changes need to be made to the apglinpack script if
you use a version of the Intel compilers older than version 9 or newer than 11. To build all
the executables, run the just build all scripts. Based on the amount of memory installed
in your system, the larger matrices will cause disk paging if you run out of memory. To
calculate the maximum memory size your system can handle, use the following equations:√

total memory available−OS X memory usage

32 bits
= SP Matrix Size√

total memory available−OS X memory usage

64 bits
= DP Matrix Size

(B.1)

B.1.3 How to run

Linpack can be executed in several ways, depending on what you would like to do. Run-
ning linpack using the leviathan shell script can be done simply by calling the leviathan
script with the “-m linpack” argument. To run linpack without the test harness, you
can call the run linpack script directly with the appropriate arguments. The arguments
are:

-T Gives linpack a special label for its output.

-m MATRIX SIZE Runs linpack with the selected matrix size. Supported sizes are
small, medium, large, insane.

http://www.netlib.org/benchmark/

B.2. NPB 85

Examples of how to call the run linpack script:

./run linpack.sh -m large Runs linpack with the large size selected and outputs to a
folder named using the current time.

./run linpack.sh -T runtest -m small Runs linpack with the testset with the label
“runtest.”

For all runs with either script, an output file called “batch results.csv” will be pro-
duced in the linpack folder, where all the aggregated test results are combined into a
comma separated value list for easy Excel importing, for post processing.

B.2 NPB

B.2.1 Where to get

The NASA Parallel Benchmarks are available on the NASA NPB website: http://www.
nas.nasa.gov/Resources/Software/npb.html. You will need to register to download
the software.

B.2.2 How to build

The default configuration file from NPB’s config directory, that contains the compiler
settings, was modified to use the Intel compiler suite and compile static binaries. When
using this configuration file, and assuming that you have the required Intel compilers in-
stalled, running the just build shell script will build the entire NPB suite. After building,
all of the benchmarks will be placed in the bin directory.

B.2.3 How to run

NPB can be run as a separate application suite using the run npb shell script inside the
application directory, or using the leviathan test harness. The run npb script will accept
a label argument that will add a label to the output files. Additionally, NPB supports
two datasets: the normal dataset or the testset, which is executed when the environment
variable TESTSET=1 is set. The output will be placed in the npb results folder in the
application directory.

Example of how to call the run npb script:

./run npb.sh LABEL Will run npb with the label added to the output.

B.3 x264

B.3.1 Where to get

http://www.videolan.org/developers/x264.html

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.videolan.org/developers/x264.html

86 APPENDIX B. LEVIATHAN TEST HARNESS

B.3.2 How to build

To build the x264 codec you will need to build the support software and the main
application. Run the just build script to unpack and build the support software and
the x264 encoder. To build the x264 encoder and use the optimized assembly routines,
Yasm is required. Additional changes to the source code have been made to increase
the efficiency of the code by replacing malloc() with alloca() in the encoder/me.c file.
This will allow x264 to use the stack for quick allocations of small chunks of temporary
memory.

List of support software in the support directory:

Yasm http://www.tortall.net/projects/yasm/

B.3.3 How to run

The input files are stored in the input directory in a compressed format. They will be
unpacked automatically the first time you run the application via the run x264 shell
script. The x264 encoder settings we used to encode the HD 1080 sample movie are the
following:

–keyint 250 Maximum interval between keyframes.

–bframes 16 Maximum number of concurrent B-frames.

–ref 16 Maximum number of previous frames that each P-frame can use as a reference.

–b-pyramid Allows x264 to use B-frames as reference for other B-frames.

–crf 19 Constant ratefactor determines the output quality of the movie.

–partitions all Allows x264 to use all available macroblock sizes.

–direct auto Allows x264 to choose between spatial and temporal direct motion vec-
tors.

–weightb Allows x264 to weight B-frames how they affect other frames.

–me tesa Sets x264 to use transformed exhaustive motion estimation.

–subme 7 Sets x264 to use subpixel motion estimation with Rate Distortion Optimal-
ization (RDO).

–b-rdo Allows RDO for B-frames.

–mixed-refs Allows references to be selected by 8x8 partition ratio.

–bime Enables bi-directional motion estimation for B-frames.

–8x8dct Enables 8x8 discrete cosine transforms.

–trellis 2 Sets x264 to use higher Trellis quantization to increase efficiency.

http://www.tortall.net/projects/yasm/

B.4. YAF(A)RAY 87

–no-fast-pskip Disables skip detection on P-frames to improve quality.

–progress Displays the progress indicator while encoding.

–threads auto Lets x264 decide how many threads to use, defaults to 1.5x number of
available cores. For better performance set to 2x.

-o OUTPUTFILE Name of the output file.

INPUTFILE The input file to be encoded, must be the last argument.

B.4 Yaf(a)ray

B.4.1 Where to get

The main page where to get Yaf(a)ray is http://www.yafray.org/index.php. The
howto wiki to build Yaf(a)ray is http://wiki.yafray.org/bin/view.pl/UserDoc/
YafaRay.

B.4.2 How to build

To build yaf(a)ray use the supplied just build script. This will unpack and build all the
required support packages and the yaf(a)ray main package. The support packages will
be built from the yafaray support directory and will be installed in the yafaray install
directory. Here is a list of items in the support directory:

Freetype http://freetype.sourceforge.net/

Ilmbase http://www.openexr.com/downloads.html

ImageMagick http://www.imagemagick.org

Libjpeg http://www.ijg.org/

Libpng http://www.libpng.org/pub/png/libpng.html

Libxml2 http://xmlsoft.org/

OpenEXR http://www.openexr.com/downloads.html

Scons http://www.scons.org/

Zlib http://www.zlib.net/

http://www.yafray.org/index.php
http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay
http://wiki.yafray.org/bin/view.pl/UserDoc/YafaRay
http://freetype.sourceforge.net/
http://www.openexr.com/downloads.html
http://www.imagemagick.org
http://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
http://xmlsoft.org/
http://www.openexr.com/downloads.html
http://www.scons.org/
http://www.zlib.net/

88 APPENDIX B. LEVIATHAN TEST HARNESS

B.4.3 How to run

Yaf(a)ray accepts XML formatted description files made by the open source 3D modeling
application Blender [2]. The input models are located in the yafaray bottle directory.
This directory also contains the run yafaray script and the support scripts. The current
version of yaf(a)ray does not support dynamic switching of the number of threads used to
render a scene, since the thread count is hardcoded into the XML description format. The
yafaray threads selector script will modify the XML file based on the number of available
cores on the system the application is running on. This will produce a yafaray thread set
XML formatted input file for actual rendering. Like all the applications in the workload,
Yaf(a)ray has two input sets to be rendered, one is a testset that will render significantly
faster than the full render set. Here is an example of how to call the run yafaray script:

./run yafaray.sh LABEL Runs Yaf(a)ray and outputs the result with the passed ar-
gument as its label.

B.5 WRF

B.5.1 Where to get

http://www.mmm.ucar.edu/wrf/users/downloads.html

B.5.2 How to build

There are some special requirements that need to be met for WRFV221. The first
requirement is that WRF requires a Case-Sensitive file system. If your hard drive is
not already formatted this way, you can simulate it by running a Case-Sensitive disk
image mounted at /Volumes/wrf. The second requirement is that the support software
and the wrf applications must be compiled by the same compiler and compiler version.
A modified configure.defaults was made to allow WRF to work with the Intel fortran
compiler, although some of the modifications will not be necessary in future versions of
the Intel Fortran compiler. The FCOPTIM option -mP2OPT vec xform level is one of
the modified options. When running WRF needs to know where the NETCDF shared
library is. Therefore, in the run wrf script, we export the NETCDF environment variable
to point to the correct library path. We default to the 64-bit version. Using OpenMP
as our threading model also required us to set some special OpenMP stack flags to
allow WRF to run with large datasets. The OpenMP KMP STACKSIZE was set to
500MB of virtual memory to allow the stack to grow large enough to prevent application
crashes, since the default 8MB was not sufficient to run our selected dataset. Up-to-
date information can be obtained from the website of Prof. R. Fovell http://macwrf.
blogspot.com/

B.5.3 How to run

We use the run wrf shell script to execute the application. This script can be called
either by the leviathan test harness or directly from the WRF folder. When we do not
use the leviathan test harness, we need to manually mount and unmount the disk image

http://www.mmm.ucar.edu/wrf/users/downloads.html
http://macwrf.blogspot.com/
http://macwrf.blogspot.com/

B.5. WRF 89

to provide access to the WRF executables. The leviathan test harness will mount and
unmount the disk image when necessary, and will perform additional cleanup to reclaim
wasted disk space within the disk image. If the environment variable TESTSET is set to
1, WRF will execute with a testset that can run significantly faster. The run wrf script
will also accept an argument to change the label of the output. Examples of how to call
the run wrf script:

./run wrf.sh LABEL Will run WRFV221 and will output the result with the passed
argument as its label.

90 APPENDIX B. LEVIATHAN TEST HARNESS

Curriculum Vitae

Erick Martijn van Rijk was born in Utrecht,
The Netherlands on March 5th, 1980. He ob-
tained his VWO degree in 1999 at Instituut
Vrijbergen in Leiden. In Januari 2005 he received
his Bachelor of Engineering from HTS Haarlem
by completing the Electrical Engineering Pro-
gramme with a minor in Computer Engineering.
He joined the Computer Engineering department
of Delft University of Technology in February
2005. He will graduate in April 2009 by complet-
ing his MSc. thesis Development of a workload
set for multi-core architectures

	List of Figures
	List of Tables
	Acknowledgements
	Workload set development
	Problem description
	The project and the objectives
	Component selection procedure
	Document overview

	Workload characteristics
	Workload classification: the 13 Dwarfs
	Targeted Hardware Parts
	Criteria of the workload
	Scalability
	Reproducibility
	Torque: example workload application
	Reproducibility Analysis

	Workload evaluation environment
	Baseline system setup
	Parallelization methodologies
	Message Passing Interface (MPI)
	POSIX Threads (Pthreads)
	OpenMP

	Application profiling tools
	Apple Shark
	Intel Pin Tools
	Summary

	Influence of analysis on results
	L2 cache miss profile
	Time Profile
	Time Profile (All Thread States)
	Processor Bandwidth
	System Trace

	Scientific Benchmarks
	Linpack
	Scalability
	Validation
	Criteria overview

	NASA Parallel Benchmark
	Simulated Computational Fluid Dynamic applications: BT, SP and LU
	FT: Fourier Transform
	IS: Integer Sort
	MG: MultiGrid
	CG: Conjugate Gradient
	EP: Embarrassingly Parallel
	UA: Unstructured Adaptive
	Dwarf overview for NPB

	WRF
	Scalability
	Validation

	Media Benchmarks
	Yaf(a)Ray Raytracer
	Scalability
	Validation
	Types of dwarfs used

	x264 encoder
	x264 encoder
	Scalability
	Validation
	Types of dwarfs used

	Selection and characterization of workload

	Case study
	Performing the workload runs
	Analyzing the results
	Case study results

	Summary, Conclusions and Recommendations
	Summary
	Workload set development summary
	Workload characteristics
	Workload evaluation environment summary
	Scientific benchmarks summary
	Media benchmarks summary

	Conclusions
	Recommendations

	Bibliography
	Torque detailed study
	Leviathan test harness
	Linpack
	Where to get
	How to build
	How to run

	NPB
	Where to get
	How to build
	How to run

	x264
	Where to get
	How to build
	How to run

	Yaf(a)ray
	Where to get
	How to build
	How to run

	WRF
	Where to get
	How to build
	How to run

