Attenuating Vibrations with Negative Stiffness

Improving Active Vibration Isolation by Reducing Suspension Stiffness with a Negative Stiffness Mechanism

Jan Los

3ME Lecture Room C

Exam Comitee:

Final Thesis Presentation

Prof.ir. R.H. Munnig Schmidt Ir. J.W. Spronck Ir. N. Rijnveld Dr.ir. J.L. Herder

November 14, 2023

Improving Active Vibration Isolation by Reducing Suspension Stiffness with a Negative Stiffness Mechanism

suspension for vibration isolation

disturbing vibrations

Presentation Contents

- PART 1 Introduction to Vibration Isolation
- PART 2 The Kolibri Vibration Isolation System
- PART 3 Design of the Negative Stiffness Mechanism
- PART 4 Test Results
- PART 5 Conclusions and Recommendations

PART 1	Introduction to Vibration Isolation
PART 2	The Kolibri System Vibration Isolation System
PART 3	Design of the Negative Stiffness Mechanism
PART 4	Results
PART 5	Conclusions and Recommendations

Vibrations and Vibration Isolation

Sensitive Equipment and Instruments

PART 1 In	ntroduction to	Vibration Is	olation
-----------	----------------	--------------	---------

PART 2 The Kolibri System Vibration Isolation System

PART 3 Design of the Negative Stiffness Mechanism

PART 4 Test Results

PART 5 Conclusions and Recommendations

Vibration Isolation System

The Kolibri Table at TNO (2)

The Kolibri Table at TNO (4)

Vibration Isolation in 6 Degrees Of Freedom (DOFs):

The Research Problem

Kolibri Isolation Performance (at 1 Hz)

My Research Goal

- Find most limiting factor for the isolation performance. System Analysis
- Develop a solution for this limitation. Design

Total System Analysis - Results

3 main groups of limitations:

- Internal Resonances
- Cross Coupling between the 6 degrees of freedom
- Passive Suspension

Limitation 1

Internal Resonance modes

fifth resonance mode – 520 Hz (vibrations are exaggerated)

Conclusion:

Tabletop stiffness is too low and therefore limits control performance

Limitation 2

Cross-coupling behavior between the 6 DOFs

Conclusion:

Isolation Performance 6 DOF < 1 DOF

Limitation 3

The Passive Suspension

Natural frequency

- tabletop mass
- suspension stiffness

Limitations Analysis: Summary

Typical controller design problem
Separate research project started

3 Passive Suspension

- High performance improving potential

- Universal design solution

PART 1	Introduction to Vibration Isolation
PART 2	The Kolibri System Vibration Isolation System
PART 3	Design of the Negative Stiffness Mechanism
PART 4	Test Results
PART 5	Conclusions and Recommendations

Passive suspension design - Goal

Design a passive suspension with a Low natural frequency of 0.5 Hz in vertical degree of freedom.

10 Hz \rightarrow 0.5 Hz

Needed for Kolibri specifications

Most challenging direction

because: gravity compensation

Negative Stiffness Mechanism – Working Principle (1)

Negative Stiffness Mechanism – Working Principle (2)

Radial pretensioning members

• flexural hinges

Final radial flexure design

- 3 axi-symmetric members
- minimal vertical stiffness; maximal horizontal stiffness •

Completed Suspension

Introduction | Ko

Kolibri System

Negative Stiffness Mechanism

Results

Conclusions & Recommendations

November 14, 2023

Expected behavior (1)

Vertical Natural Frequency reduction in equilibrium position

UDelft

Expected behavior (2)

Stiffness **<u>around</u>** equilibrium position

Introduction

PART 1	Introduction	to Vibration	Isolation

PART 2 The Kolibri System Vibration Isolation System

PART 3 Design of the Negative Stiffness Mechanism

PART 4 Test Results

PART 5 Conclusions and Recommendations

Testing the NSM – Test set-up

Testing the NSM – Pretensioning behavior

Natural frequency in equilibrium position

Demo of Tabletop Motion

Frequency approx. 1 Hz

November 14, 2023

PART 1 Introduction to Vibration Isolation

PART 2 The Kolibri System Vibration Isolation System

PART 3 Design of the Negative Stiffness Mechanism

PART 4 Test Results

PART 5 Conclusions and Recommendations

Conclusions

• Vertical natural frequency is within the design specifications \rightarrow 0.31 Hz

If the passive suspension is the only limitation, this will result in a vibration isolation of 60 dB

• Pretension Force Accuracy is not sufficient and should be improved

Recommendations

• Use other gravity compensating spring

• Improve flexure design

Kolibri System

• Improve pretensioning force resolution

• Extend isolation for other degrees of freedom

Negative Stiffness Mechanism

UDelft

Introduction

Attenuating Vibrations with Negative Stiffness

Life after the presentation....

Koffie, Thee en Koek

Examen Uitslag

Borrel in *Confide**

14:45 - 16:00Coffee, thee and cake 16:00 - 16:15Announcement Grade

Borrel in Confide* 20:00 - ?

* Society Building of C.S.R., Oude Delft 9

Breadboard Honeycomb

Limitation 2 - Cross coupling Behavior

Parameter study for flexure hinges (1)

TUDelft

Parameter study for flexure hinges (2)

TUDelft

Recommendation 2

Reduce pretension locations from 3 to 1 Improve internal degrees of freedom

Vertical flexure hinges

extra thickness

0

original thickness

Pretensioning Force

0

Recommendation 3

Increase Pretensioning accuracy Eliminate play and friction

Recommendation 4: Extend the suspension with isolation in more DOFs

Breadboard thickness and natural frequency

TUDelft

Air mounts

Measurement:

2 equilibrium positions P > Pcr

