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Abstract

Water flows through every aspect of life, yet the story of its delivery is only as reli-
able as the data that records it. In global benchmarking, such data is often uneven,
incomplete, and rarely subjected to systematic validation, allowing anomalies to shape
perceptions of performance before they are critically examined. This thesis addresses
that gap by developing and evaluating a multi‐stage, data‐driven anomaly detection
frameworkwithin theWorld Bank’sNew International BenchmarkingNetwork forWa-
ter and Sanitation Utilities (NewIBNET), situated at the intersection of data science,
water governance, and digital ethics.

The framework weaves together four complementary layers – structural validation,
rule‐based logical checks, peer comparison, and weighted prioritisation – transform-
ing anomaly detection from a surface‐level cleaning task into a structured process of
active quality assurance. Developed through an iterative, expert‐informed process, it is
reproducible and adaptable, balancing statistical rigour with the contextual realities of
the water sector so that each flag raised carries both analytical credibility and practical
relevance.

Applied to the 2022–2024 NewIBNET dataset, the framework is assessed through
robustness checks, a national case study of Indonesian utilities, and an expert survey.
Results show that it improves anomaly interpretability, limits the propagation of flawed
data into comparative analyses, and reduces review time from 75 hours to under 2
minutes – earning unanimous expert endorsement for operational deployment.

By translating the principles of automated, ethically grounded validation into a
scalable methodology, this work advances the state of practice in anomaly detection
for data‐scarce sectors. In shifting from red flags to real solutions, it demonstrates how
automated validation can turn detection into action, building trust where data meets
water, and enabling more transparent, equitable decisions in global water governance.
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1
Introduction

1.1 Motivation

Water weaves through every aspect of life – from the health of indi-
viduals and communities to the stability of economies and the re-
silience of ecosystems1 (World Bank, 2023; United Nations, 2025). 1United Nations (UN): ”Water is

essential not only to health, but also to
poverty reduction, food security, peace
and human rights, ecosystems and

education.” (United Nations, 2025)

As pressures from urbanisation, climate change, and demographic
shifts intensify, so too does the strain on water systems around
the world2 (World Health Organisation, 2023). Managing these

2World Health Organisation
(WHO): ”In 2021, over 2 billion

people live in water-stressed countries,
which is expected to be exacerbated in
some regions as result of climate change

and population growth.”(World
Health Organisation, 2023)

systems effectively demands more than engineering expertise or
infrastructure investment; it requires a deep and evolving under-
standing of how water is delivered, measured, and valued in di-
verse contexts.

Over the past two decades, this understanding has become cen-
tral to global development efforts. With initiatives like the Sustain-
able Development Goals (SDGs)3, particularly SDG 6 on clean wa- 3Sustainable Development Goals

(SDGs): A set of 17 global
objectives established by the United

Nations to promote peace,
prosperity, and sustainability by

2030. See more:
https://sdgs.un.org/goals

ter and sanitation, the international community has committed not
only to expanding access, but also to monitoring progress and en-
suring accountability. Yet beneath these ambitions lies a quieter,
more complex challenge: knowing whether the data we rely on ac-
tually reflects reality.

Inmany parts of theworld, data onwater services exists in frag-
ments. It is collected in different formats, under varying defini-
tions, and often with limited capacity for verification. These gaps
are not merely technical – they shape how decisions are made, how
resources are allocated, and which communities receive attention
(World Bank, 2011). In this landscape, data is not neutral. It car-
ries weight, influences trust, and increasingly serves as a proxy for
institutional performance (Tsai, 2025).

Emerging technologies offer new tools for addressing this chal-

2

https://sdgs.un.org/goals


1.1. Motivation 3

lenge. Data science can uncover hidden patterns, detect inconsis-
tencies, and support more efficient validation workflows. But the
value of these tools depends on how they are embedded into the
systems they aim to improve. If used without transparency or con-
text, automation risks reinforcing the very asymmetries it seeks to
resolve. If designed carefully with room for human insight, ethical
safeguards, and local nuance, it can strengthen accountability and
scale impact.

It is within this tension between responsibility and opportunity
that this research is situated. In response to a real-world assign-
ment from theWorldBank4, this thesis explores howmathematical 4The World Bank: Read more at

https://www.worldbank.org/ext/
en/home

models might support the transformation of a legacy benchmark-
ing system – the New International Benchmarking Network for
Water andSanitationUtilities (NewIBNET)5 – into amore robust, 5NewIBNET: Read more at

https://newibnet.org/semi-automated platform. The long-term objective of NewIBNET
is to establish itself as a universally accessible and intuitive bench-
marking tool that fosters transparency and drives continuous im-
provement in the global water sector6. Achieving this ambition re- 6”In the past two decades, IBNET has

been recognised for its achievements in:
Establishing standard performance

indicators that reflect utility
performance, promoting transparency
by publishing the indicators of utilities

that participated in the IBNET
network, and developing and using

benchmarking methodologies that allow
for comparing otherwise very different
utilities with each other.” Read more:
https://newibnet.org/about-us

quires not only broader participation but also greater confidence in
the quality and comparability of submitted data. As such, the task
at hand involves rethinking how data is validated before it enters
the system – especially in the absence of strong ground truth. The
question at the heart of this thesis is:

How can data-driven mathematical models enhance validation and
benchmarking of water utility indicators while ensuring reliability,
decision-making integrity, and ethical transparency?

Concretely, thiswork investigatesmethods for assessing the qual-
ity of submitted performance data before it is incorporated into a
central benchmarking repository. With limited ground truth data,
ensuring reliability becomes an inherently complex challenge that
demands a careful synthesis of technicalmodelling, contextual aware-
ness, and ethical scrutiny. The NewIBNET platform serves as the
principal case study throughwhich these broader questions are ex-
plored.

By engaging with this question, the thesis contributes to an on-
going conversation about howdigital systems can serve public good
– not just efficiently, but responsibly.

https://www.worldbank.org/ext/en/home
https://www.worldbank.org/ext/en/home
https://newibnet.org/
https://newibnet.org/about-us
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1.2 Contributions

This thesis emerges fromapractical challenge: to explore how legacy
validation workflows in global water utility benchmarking can be
reimagined through the lens of modern data science, without los-
ing sight of institutional trust, ethical transparency, and the com-
plexity of public infrastructure systems. Rather than treating au-
tomation as a purely technical upgrade, this work engages deeply
with what it means to validate data in contexts where accuracy,
accountability, and equity are all at stake.

The foundation of this research lies in a systematised literature
review (Chapter 3) that brings together perspectives from three
domains rarely examined in concert – data science, performance
benchmarking in water governance, and digital ethics. This syn-
thesis reveals not only the methodological gaps in current valida-
tion practices, but also the conceptual tensions that emerge when
data science enters high-stakes decision environments. These find-
ings inform the formulation of research questions that aim to be
both technically feasible and socially grounded.

From this basis, the thesis constructs a designmethodology (Chap-
ter 4) that aligns institutional needs with analytical depth. The cur-
rent NewIBNET system is also dissected to uncover its structural
limitations (Chapter 5). In doing so, the work redefines data in-
tegrity as not just statistical correctness, but as a property shaped
by consistency, traceability, and meaningful feedback loops.

A comparator‐based framework (Chapter 6) is investigated,mov-
ing beyonduniversal thresholds to account for heterogeneity through
meaningful peer group comparisons. This is coupled with scoring
and prioritisation logic (Chapter 7) that addresses a more subtle
problem: not just whether a data point deviates, but how much it
matters, and to whom. In designing this system, special attention
is paid to the interpretability of outputs – ensuring that the signals
it produces can be understood, interrogated, and, when necessary,
contested.

A technical evaluation (Chapter 8) assesses the system’s abil-
ity to enhance data review processes while supporting human in-
terpretability and institutional confidence. This is followed by a
broader reflection (Chapter 9) on the ethical, political, and sec-
toral dimensions of deploying automated decision-making tools in
global public infrastructure.

These contributions are intended not just as a response to a spe-
cific assignment, but as a step toward a broader research agenda
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where data meets water in ways that are responsive to the complex
world they aim to serve.

1.3 Structure

This thesis is organised into ten chapters. Chapter 1 introduces the
broader context, motivation, and central research question. Chap-
ter 2 lays the foundation by explaining key concepts related to wa-
ter governance, benchmarking, and data quality, and provides a
detailed overview of the current NewIBNET pipeline. Chapter 3
presents a systematised literature review, synthesising perspectives
from data science, infrastructure benchmarking, and digital ethics
to frame the problem space. Chapter 4 outlines the design, in-
cluding the refinement of key terms, research sub-questions, and
methodological approach. Chapter 5 examines the current system
through the lens of data integrity, highlighting structural and sta-
tistical challenges in preparing data for validation. Chapter 6 ex-
plores context-aware modelling approaches that use utility meta-
data to detect deviations in performance across diverse submis-
sions. Chapter 7 introduces a severity-based scoring framework
to translate statistical anomalies into prioritised benchmarking in-
sights. Chapter 8 provides a technical evaluation of the system’s
performance, robustness, and alignment with expert expectations.
Chapter 9 then reflects on the broader ethical, political, and sec-
toral implications of automating anomaly detection in global wa-
ter utility benchmarking. Finally, Chapter 10 concludes the thesis
by unifying key findings and outlining future directions at the in-
tersection of data-driven validation and responsible public-sector
automation.



2
Background & System

Architecture

This thesis focuses on the exploration of an automated key perfor-
mance indicator (KPI) data validation model to improve the efficiency
of reviewing benchmarking data submitted by water utilities, using the
World Bank’s NewIBNET system as a case study environment, in
a way that supports reliability, decision-making integrity, and ethical
transparency. To build the foundation for this work, Section 2.1
Background unpacks the key terms and concepts embedded in the
research question, providing essential definitions and contextual
framing that will support later system analysis. Section 2.2 System
Architecture then presents an overview of the current NewIBNET
data pipeline.

2.1 Background

This section focuses on the key terms and concepts referenced in
the main research question, providing the necessary institutional
and operational context for the chapters that follow. Section 2.1.1
defines water utilities, their role in ensuring reliable water supply,
and the importance of performance tracking. Section 2.1.2 intro-
duces the World Bank and the evolution of IBNET, highlighting
its role in global water utility benchmarking and the transition to
the NewIBNET system. Section 2.1.3 discusses the KPI benchmark-
ing process. Finally, Section 2.1.4 examines the need for automated
validation, addressing inefficiencies in the existing system and the
necessity of scalable, data-driven solutions.

6
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2.1.1 Water Utilities

A water utility is a governmental, municipal, or private en-
tity responsible for sourcing, treating, and distributing safe
and reliable drinking water to households, businesses, and
industries (North Carolina Water Service, 2024; Glickman,
2014).

Water is a fundamental element of life – essential for human
survival, economic development, and environmental sustainabil-
ity (World Bank, 2023). Yet, despite its necessity, millions7 world- 7United Nations (UN): ”The global

urban population facing water scarcity
is projected to double from 930 million
in 2016 to 1.7–2.4 billion people in
2050.” (United Nations, 2025)

wide still face water scarcity and inadequate sanitation. As pop-
ulation growth and changing agricultural land use intensify pres-
sures on global water resources, the efficient management of water
supply systems has become more crucial than ever. Water utilities
sit at the heart of this challenge, bridging the gap between natural
water sources and the communities that rely on them. Through
infrastructure development, technological innovation, and regu-
latory governance, they ensure a steady supply of potable water
while promoting the long-term sustainability of water utilities and
the broader water supply system. Their role extends beyond pro-
viding a basic service; they contribute to economic growth, public
health, and resilience against water-related crises.

However, defining the exact role and function of water utilities
is not always straightforward. Research papers and policy frame-
works (North Carolina Water Service, 2024; Glickman, 2014) of-
ten present varying definitions, reflecting differences in regional
needs, governance structures, and regulatory environments. To es-
tablish a common understanding and ensure accountability, utili-
ties themselves track key performance indicators (KPIs)8 – quan- 8Examples include population

service size, water quality metrics,
and operational efficiency.

titative measures used to assess their own progress over time and
identify improvements or areas needing attention.

Yet in practice, the reality behind these indicators is often un-
even. While utilities can reliably use KPIs to track their own perfor-
mance, definitions and measurement practices vary widely across
contexts, making international or cross-utility comparisons more
difficult. What is measured, how it is measured, and with what
degree of accuracy can differ substantially – shaped by contextual
constraints, institutional capacity, and evolving interpretations of
what good performance means. These discrepancies are not neces-
sarily flaws in intent, but reflections of the practical limitations util-
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ities face on the ground. While broader alignment across utilities
may be an important long-term goal, the more immediate question
– and the one this thesis takes up – is how regulators, governments,
supporting agencies, and utility leaders themselves might still ex-
tract meaningful signals from data that is inevitably imperfect.

Rather than assuming consistency or completeness, this work
begins with the data as it arrives: sometimes noisy, sometimes par-
tial, but still carrying traces of operational reality. The challenge is
to design a validation approach that recognises uncertainty with-
out defaulting to distrust, and that strengthens institutional bench-
marking without demanding perfection. In doing so, this thesis
aims to contribute not only a technical solution, but a perspective –
one that embraces imperfection as a starting point, not a dead end.

2.1.2 The World Bank & NewIBNET

TheWorld Bank is an international financial institution com-
mitted to reducing poverty and promoting sustainable de-
velopment by providing financial and technical assistance to
countries worldwide. It supports projects that aim to stim-
ulate economic growth, strengthen infrastructure, and ex-
pand access to essential services – including water and san-
itation, which remain core to its development agenda.

TheWorld Bank is a lending institutionwith a development-oriented
mission, offering loans and credits – often with interest – to ensure
the sustainability of its financial operations. This role underscores
the importance of designing data and benchmarking systems that
are not only technically robust and context-sensitive, but also insti-
tutionally aligned with long-term viability.

Recognising the unique challenges faced by the water and sani-
tation sector, theWorld Bank9 established the International Bench- 9World Bank: Read more:

https://www.worldbank.org/ext/
en/who-we-are

marking Network for Water and Sanitation Utilities (IBNET)10

10IBNET: Read more: https:
//www.ib-net.org/about-us/

in 1994. Unlike firms in competitive markets, which are continu-
ously driven to improve bymarket forces, water utilities often oper-
ate inmonopolistic and highly resource-constrained environments,
shielded from direct competition. As a result, while some utilities
proactively enhance their performance, others stagnate, falling be-
hind best practices. This disparity has far-reaching consequences –
onlywell-managed andfinancially stable utilities can effectively ex-
pand services, respond to urban growth, and ensure safe wastew-

https://www.worldbank.org/ext/en/who-we-are
https://www.worldbank.org/ext/en/who-we-are
https://www.ib-net.org/about-us/
https://www.ib-net.org/about-us/
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ater management.
IBNET emerged as a global benchmarking initiative, creating a

standardised framework for assessing utility performance. By col-
lecting and comparing data across utilities, the initiative aimed to
increase transparency and encourage best practices. It provided
key stakeholders – utility managers, regulators, and policymakers
– with the necessary insights to track and guide sector improve-
ments. Establishing KPIs became central to this effort, allowing
utilities to measure progress and governments to refine policies.

With over 3,000 participating utilities acrossmore than 150 coun-
tries, IBNET evolved into one of the world’s most extensive water
utility benchmarking databases. Yet, as its scale grew, so did the
challenges of ensuring data quality. The benchmarking process re-
lied heavily on manual data collection, which was slow, inconsis-
tent, and increasingly difficult to manage at scale. As technology
advanced, it became evident that a more efficient and automated
system was needed to maintain the reliability of data.

These challenges led to the development of theNewIBNET11 in 11NewIBNET: Read more: https:
//newibnet.org/about-ibnet2021, a modernised platform designed to improve data validation

and streamline benchmarking. While preserving the benchmark-
ing objectives of its predecessor, NewIBNET introduces real-time
consistency checks, customisable reports, and interactive dashboards,
allowing for more dynamic data analysis. The platform also pro-
motes a Community of Practice12, enabling utilities to connect with 12”Community of Practice lets you

connect with other utilities in on a
dedicated platform where you can learn
from their success and challenges.”

Read more:
https://newibnet.org/utilities

industry peers and share insights to adopt best practices tailored to
their operational context.

By transitioning to NewIBNET, the World Bank has strength-
ened its commitment to data-driven decision-making in the water
sector. The enhanced system ensures that benchmarking remains
both scalable and effective, reinforcing efforts to improve service
delivery, expand access, and build a more resilient global water
infrastructure.

2.1.3 Efficiency in Benchmarking Data Process

In its current form, the NewIBNET system follows a structured but
highly manual review process – one that must contend with varia-
tion, inconsistency, and missing information at scale. These imper-
fections place a considerable burden on the reviewing workflow
and raise the question of how limited institutional resources can be
used most effectively.

The NewIBNET data process is structured into three main com-

https://newibnet.org/about-ibnet
https://newibnet.org/about-ibnet
https://newibnet.org/utilities
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ponentswithin its process pipeline13: DataMobilisation,Data Re- 13NewIBNET Pipeline: An
in-depth overview is provided in

Section 2.2.
view, and Data Visualisation. DataMobilisation involves the on-
line collection of benchmarking data, where each participating util-
ity submits its KPI and Management Practices14 data from the pre- 14Management Practices: A

separate section of the NewIBNET
survey containing multiple-choice
questions on utility management
practices (non-numeric data).

vious fiscal year. Once submitted, the process moves to the Data
Review stage, where a single reviewer within the NewIBNET team
examines the raw data for over 250+ utilities, resulting in a total
of an estimated 75 hours15 of manual checking annually. Finally, 15An expert reviewer at

NewIBNET estimated that manual
review requires approximately

15–20 minutes per utility.

the validated data advances to theData Visualisation stage, where
insights are generated for analysis and benchmarking. A key take-
away from the Data Review stage is its highly manual nature, re-
quiring meticulous checks of each entry – a process that becomes
increasingly time-consuming as the dataset grows.

The efficiency of reviewing benchmarking data, as stated in the
thesis focus here, refers to the ability to streamline the manual val-
idation process by integrating automated checks that identify po-
tential inconsistencies. Rather than relying on exhaustive line-by-
line reviews, the system could prioritise entries for human atten-
tion based on algorithmic signals, enabling a more targeted, inter-
pretable, and ultimately scalable validation process.

The NewIBNET team plays a vital role in maintaining and im-
proving this benchmarking system. By continuously incorporating
feedback from water utilities, reviewers, and other stakeholders,
they aim to refine the platform, uphold high standards, and ensure
its usability across diverse contexts.

2.1.4 The Need for Automated Validation

A fundamental challenge highlighted in Section 2.1.3 is the reliance
on a single reviewer to manually assess and validate hundreds of
data entries submitted to NewIBNET each year. As the number of
participating water utilities grows, so does the volume of data, cre-
ating a scalability issue – not only in the size of the dataset but also
in the increasing workload placed on the reviewer. This manual-
intensive approach introduces the risk of fatigue, making it more
likely that inconsistencies, errors, or missing datamay slip through
the validation process, ultimately compromising the quality and re-
liability of benchmarking data.

To address this, the concept of automated validation offers a
more sustainable solution. Automation16 in this context refers to 16Harvard Business Review

(HBR): ”Automation reduces the
repetitive and monotonous tasks

humans have to do by relegating those
tasks to software.” (Perez, 2023)

reducing the need for tedious, repetitive human analysis by imple-
menting a code-based approach to flagging potential inconsisten-
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cies. Rather than requiring a reviewer to manually inspect every
raw entry, an automated system could optimise the current review
process. Validation17 refers to the systematic process of verifying 17Airbyte: ”Data validation is a

systematic process that verifies data
accuracy, completeness, and

consistency against predefined rules
and business logic before it enters

decision-making workflows.” (Kutz,
2025)

benchmarking data for accuracy, completeness, and consistency
against predefined rules, ensuring its reliability before it informs
decision-making.

Beyond improving efficiency, an automated approachmust also
ensure that reliability, decision-making integrity, and ethical trans-
parency are preserved. Reliability18 pertains to maintaining con- 18Monte Carlo Data: ”Data

reliability is the degree to which data
remains accurate, complete, and

consistent over time and across various
conditions.” (Moses, 2025)

sistency and accuracy throughout the validation process, ensuring
that flagged entries are genuinely indicative of anomalies rather
than the result of faulty detection mechanisms. Decision-making
integrity19 emphasises the importance of providing reviewerswith 19International Business

Machines (IBM): ”Data integrity is
crucial for organizations to trust the
data they use for decision-making, as
well as to comply with regulatory
requirements.” (Jones, 2023)

unbiased data to support well-informed and responsible decisions,
including determining which data points are valid and which re-
quire revision. Ethical transparency involves designing a system
that is clear, understandable, and fair, where the criteria and pro-
cesses used to flag data are openly communicated, promoting trust
and accountability among all stakeholders (Radanliev, 2024).

This is particularly crucial given that industry benchmarks in
water utility performance evaluation remain underexplored. Es-
tablishing automated validation mechanisms could not only en-
hance the accuracy of benchmarking but also contribute to filling a
critical research gap20 in the field. 20Expanded upon further in

Chapter 3 Literature Review.This thesis lays the groundwork for optimising data validation
while reinforcing trust and transparency in globalwater utility bench-
marking. By investigating a data‐driven, automated anomaly flag-
ging approach, this work examines how a validation model can
be designed to be both technically robust, and sensitive to the
socio‐political and ethical dynamics influencing stakeholders –
from reviewers to policymakers and, ultimately, end water con-
sumers.

2.2 System Architecture

Having established the foundational terms and institutional con-
text, this section examines the existing operational structure of the
NewIBNET system in greater depth.
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2.2.1 Understanding the Existing NewIBNET Pipeline

A fundamental starting point in designing any automated system is
understanding the current process it intends to support or replace.
Early meetings with the NewIBNET team focused on mapping the
existing architecture and identifying critical system requirements.
These initial discussions made clear that a nuanced understanding
of the end-to-end data flow was essential for pinpointing opportu-
nities for automation, standardisation, and improvement.

The NewIBNET pipeline operates through three main stages
shown in Figure 2.1: Data Mobilisation, Data Review, and Data
Visualisation, with a short pre-mobilisation step that initiates the
cycle.

Figure 2.1: This diagram illustrates the current system architecture of the
NewIBNET platform. The process begins with the entry of a registered utility
(red dot), which first passes through the pre-mobilisation stage (grey rectangle),
followed by data mobilisation (light green rectangle). It then enters the data re-
view stage (dark green rectangle), an internal step visible only to the NewIBNET
team, after which the data is entered into the central database (light blue rectan-
gle). A dotted line indicates the communication channel back to the utility. The
final stage involves data visualisation (dark blue rectangle).

This thesis primarily intervenes within the Data Review stage,
where the core technical design and implementationwill take place.
However, both theDataMobilisation andDataVisualisation stages
are examined briefly to understand how upstream data structures
influence validation needs, and how downstream benchmarking
relies on high-quality inputs. As such, the system is approached
holistically, even as the central contribution focuses on optimising
the review logic itself.

Pre-Mobilisation

Each utility receives a yearly notification to submit data via the on-
line NewIBNET portal. Access is secured via login credentials, and
submissions are one per utility per year. Contact details are col-
lected for follow-up if clarifications are needed, creating account-
ability and enabling direct validation if unusual patterns are de-
tected.
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Data Mobilisation

Utilities complete a structured online survey, with some basic in-
put constraints21. While not all data fields are mandatory, the form 21Examples include numeric

formats and logical dependencies
such as one value not exceeding

another.

includes precise definitions22 to guide respondents and promote

22The default language for all
survey questions and expected

entries is English.

consistency. However, deeper validation rules are still limited at
this stage.

Data Review

Submitted rawdata ismanually reviewed by a single expert using a
custom-built Excel23 tool. Management Practice data is not consid- 23Microsoft Excel is a spreadsheet

software widely used for data
entry, analysis, and visualisation in
benchmarking and reporting. View
at: https://www.microsoft.com/

en-us/microsoft-365/excel

ered within this stage. The reviewer downloads raw submissions
and applies rule-based checks using their own formulas and bench-
mark logic. If unusual results are flagged, the reviewer communi-
cates directly with the utility to request clarification or corrections,
ensuring a feedback loop before data is finalised. Approved data is
uploaded to secure internal servers at the World Bank, where con-
fidentiality is further protected. Raw data is not made publicly vis-
ible. However, there is currently no system in place to log flagged
entries or track which data required follow-up.

Data Visualisation

Aggregated results are published on the NewIBNET website dash-
board24. 24NewIBNET Dashboard: View

at: https://newibnet.org/
utility-dashboard

2.2.2 Survey Setup and Indicator Design

Building on the overview of the NewIBNET system, this section
examines the Data Mobilisation stage, where the survey25 instru- 25NewIBNET Survey Sheet: This

definition sheet – detailed in
Appendix A.6 – includes the name,

question, datatype, unit of
measurement, and relevant notes

for each field in the survey.

ment serves as the primary interface for annual performance data
submission by utilities. This stage shapes the upstream quality of
information from which KPIs are derived.

The survey captures a broad spectrum of operational and ser-
vice dimensions, including basic utility information, service pro-
files, drinkingwater coverage, customer interaction, workforce com-
position, and financial data. While most sections require full com-
pletion, those concerning sanitation and wastewater are only rele-
vant to a subset of utilities, introducing heterogeneity in data cov-
erage. Basic data typing rules are enforced, but complex cross-field
validations are absent, allowing structural gaps and inconsistencies
to arise.

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
https://newibnet.org/utility-dashboard
https://newibnet.org/utility-dashboard
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Following data submission, 15 core performance indicators are
calculated from the raw inputs as shown in Figure 2.2.

Figure 2.2: This illustrates the transformation pathway from raw numerical
inputs (left) – where raw data questions are abbreviated as Q# and grey rectan-
gles indicate optional data entries – through derived indicators (centre), abbrevi-
ated as I#, and into the comparator logic that determines final flagging outcomes
(right).

For analytical clarity, these indicators are organised into five se-
mantic categories, reflecting a logical grouping derived from the
dataset review:

1. Water Access & Quality Performance

• I1: Drinking Water Coverage (%)
• I4: Non Revenue Water (L/C/H)
• I5: Non Revenue Water (%)
• I10: Metered Connections (%)
• I12: Drinking Water Quality (%)

2. Customer Service Performance

• I2: Continuity of Supply (Hours per Day)
• I3: Customers with 24/7 Supply (%)
• I11: Service Complaints Resolved (%)

3. Workforce Metrics

• I14: No. of employees per 1000 connections
• I15: Female Employees (%)

4. Sanitation & Wastewater Performance

• I6: Sanitation Coverage (%)
• I7: Sewer Blockages (per 100km of n/w)
• I8: Wastewater Collected & Treated (%)
• I14: No. of employees per 1000 connections



2.2. System Architecture 15

5. Financial Performance

• I9: Revenue Collection Rate
• I13: Operation Cost Coverage (%)

These categories will facilitate a structured examination of how
performance data is interpreted and compared in the review pro-
cess.

2.2.3 Comparison Criteria

Once core indicators are derived from the submitted survey data,
they are assessed for plausibility. This decision is guided by a set of
static comparators defined as predefined peer groupings that help
reviewers determine whether a utility’s performance falls within
an acceptable range. These comparators26 serve as anchors during 26To avoid conceptual ambiguity,

this thesis distinguishes between
the terms benchmark, used to denote
public‐facing reference values, and
comparator, used to describe internal
comparisons within the dataset.

the Data Review stage, aiding in the identification of outliers or
inconsistencies.

Currently, three primary static comparator types are used across
the review process. These comparators are constructed from his-
torically submittedNewIBNETdata and remain unchanged through-
out the review period.

1. Global Average: A single average value is computed across
all utilities for each indicator. This serves as a general refer-
ence point, regardless of a utility’s features27. 27For example: a utility’s size,

region, or income level.2. Population Service Size: Utilities are grouped based on the
size of the population they serve. Indicators are then com-
pared within these predefined population categories, offer-
ing a more nuanced comparison.

3. Number of Water Service Connections: A similar stratifica-
tion exists based on the total number of water service connec-
tions, aiming to cluster utilities with comparable operational
scale.

A second category of comparators, referred to in this thesis as
dynamic comparators, is also defined. This is a conceptual distinc-
tion for the purposes of this work only, and is not implemented in
any formwithin the currentNewIBNETprocess. Unlike static com-
parators, dynamic comparators are envisioned as real-time or reg-
ularly updated reference groupings, potentially drawing on exter-
nal datasets beyond the NewIBNET repository. In principle, such
comparators could enable continuous recalibration of acceptable
ranges, improving contextual relevance and responsiveness, par-
ticularly in fast-evolving or data-rich utility environments.
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2.2.4 System Assessment

While the current NewIBNET pipeline provides a valuable struc-
ture from data collection to public dissemination, several key areas
within the Data Review stage present opportunities for strength-
ening. At present, the process lacks a codified validation protocol,
relies on inconsistent comparator logic, and depends on an undoc-
umented Excel-based tool – factors that pose challenges for scal-
ability, transparency, and long-term institutional resilience. Fur-
thermore, the reliance on global averages as a comparator, while
practical, may overlook important contextual differences between
utilities, potentially introducing unintended bias into performance
assessments.

This thesis seeks to address these limitations by proposing a
data-driven validation framework grounded in statistical profiling,
comparator-basedmodelling, and ethically informed prioritisation
logic. In doing so, it aims to support the evolution toward more
adaptive, transparent, and context-aware benchmarking systems
that uphold both technical rigour and institutional trust.

Summary: The currentNewIBNET systemoperates through
a structured yet manual pipeline, driven by survey-based
data mobilisation, individually applied review logic, and
static comparator benchmarks. Though effective in facil-
itating basic validation, the system lacks the standardi-
sation, scalability, and automation needed for consistent
cross-utility assessment. These structural limitations lay the
groundwork for the improvements proposed in subsequent
chapters.



3
Literature Review &

Thematic Foundations

This chapter presents a structured literature review aimed at estab-
lishing a comprehensive foundation for developing an automated
data validation model. The review is organised into four sections:
Setup and Protocol in Section 3.1, which outlines the methodology
used to gather and categorise relevant literature; Thematic Content
Analysis in Section 3.2, which synthesises findings across the Tech-
nical, Water, and Ethical dimensions; Key Insights from the Liter-
ature Review in Section 3.3, which contextualises the findings and
identifies research gaps; and Limitations of the Literature Review
in Section 3.4, which addresses potential shortcomings and areas
for improvement.

3.1 Setup and Protocol

The literature reviewprocess for this thesis is deliberately conducted
through a manual, exploratory search strategy. This approach is
chosen to allow amore organic, reflectivemapping of relevant themes
and concepts, following a thought-driven process rather than rely-
ing solely on review software. By tracing literature through logic
and evolving connections, the review aims to ensure that key di-
mensions – particularly at the intersection of data science, infras-
tructure benchmarking, and ethics – are not prematurely filtered
out by algorithmic selection mechanisms. This decision also aligns
with the broadermethodological philosophy of this thesis: that hu-
man judgment plays a critical role in guiding complex decision sys-
tems.

The structure of the review is informed by the SALSA frame-

17



3.1. Setup and Protocol 18

work (Search, Appraisal, Synthesis, Analysis) (Grant et al., 2009),
which supports a transparent and staged engagement with aca-
demic literature. The first three stages are reflected in this section,
while the Analysis is carried forward into later chapters where the
model design is developed and critically applied. Inspiration is also
drawn from previous structured reviews conducted at Delft Uni-
versity of Technology, including a notable study on algorithmic
decision-making (Buszydlik, 2024), which blended active learn-
ing tools with citation tracking. Although this review adapts its
methodology to a more interpretive mode, it shares the same goal:
building a robust and contextually grounded foundation for the re-
search that follows.

3.1.1 Search

To ensure the literature review is grounded in the full scope of the
thesis objective, the search strategy is carefully shaped by its in-
terdisciplinary nature. Three dimensions – Technical, Water, and
Ethical – emerge as core thematic pillars through an iterative re-
flection on the main research question at hand, the practical de-
mands of the World Bank assignment, and early engagement with
relevant academic and policy literature. The search is therefore
structured to capture contributions across both computer science
andwater sector domains, with particular attention to frameworks,
challenges, and methodologies that operate at their intersection.

The search used Google Scholar28 due to its accessibility and 28Google Scholar:
https://scholar.google.com/broad coverage of academic literature, and specialised databases

such as ACMDigital Library29, IEEE Xplore30, and SCOPUS31. This 29ACM Digital Library:
https://dl.acm.org/

30IEEE Xplore:
https://ieeexplore.ieee.org/

Xplore/home.jsp

31SCOPUS:
https://www.scopus.com

broad scope aims to capture amore extensive range of publications.
The technical dimension of this literature review is guided by

a central sub-question: What technical approaches have been proposed
for automating data validation and anomaly detection, and how do they
account for uncertainty, scale, and limited ground truth? This question
emerges directly from the gaps identified in Chapter 232, where the 32”...the process moves to the Data

Review stage, where a single reviewer
within the NewIBNET team examines
the raw data for over 250+ utilities...”

in Chapter 2

current NewIBNET system is shown to rely on a single expert re-
viewer conducting manual checks across hundreds of submitted
entries each year. The process is not only time-consuming, but also
challenged by limited transparency, inconsistent comparator logic,
and the absence of strong ground truth data. These observations
form the initial hypothesis that anomaly detection methods could
support a more efficient and interpretable validation pipeline.

Accordingly, the literature search focuses on identifying exist-

https://scholar.google.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.scopus.com
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ingmethodologies for detecting inconsistencieswithin benchmark-
ing data. This includes statistical outlier detection33, machine learn- 33Statistical Outlier Detection:

The process of identifying data
points that significantly deviate
from the majority of a dataset,
potentially indicating errors or
novel insights (Austin, 2004).

ing techniques34, and consistency checks35, all of which serve as

34Machine Learning Techniques:
Computational methods that

enable systems to learn from data
and improve performance over
time without being explicitly
programmed (Mitchell, 1997).

35Consistency Checks: Procedures
used to ensure data integrity by

verifying that data entries conform
to predefined rules or constraints

(Batini et al., 2020).

potential foundations for building anomaly detection mechanisms
adapted to NewIBNET’s context.

The search also considered various decision algorithms36, par-

36Decision Algorithms:
Systematic procedures or formulas
designed to aid in making choices
by processing data and evaluating
possible outcomes (Russel et al.,

2006).

ticularly those designed to score and prioritise flagged entries, en-
abling a reviewer to focus attention where it is most needed. Since
the NewIBNET system lacks labelled data and consistent flagging
histories, special attention is paid to models that function in data-
sparse environments or that incorporate uncertainty into their as-
sessments.

The water dimension of this literature review is guided by the
following sub-question: How have benchmarking practices in the water
and infrastructure sectors evolved in response to challenges of participa-
tion, comparability, and data quality? The aim of this dimension is
to position the thesis within the broader context of water utility
benchmarking. The review examines research focused on IBNET-
based reporting, aswell as literature analysing other benchmarking
platforms operating at regional, national, and global levels. These
sources provide valuable insights into how data is collected and
used within benchmarking efforts, and what institutional or tech-
nical strategies have been employed tomanage diverse contexts. By
synthesising these strands, the thesis seeks to explore a validation
approach that is informed not only by data, but by a deeper under-
standing of the environment in which such data is produced and
submitted.

The ethical dimension of the literature review is guided by
the following sub-question: What ethical tensions arise in automat-
ing public-sector data review, particularly around framing, transparency,
and institutional trust? This inquiry reflects a central concern of
the thesis: how to form validation mechanisms that do not simply
perform well, but also uphold the values and expectations embed-
ded in public governance. The review focuses on literature that
explores the ethical stakes of algorithmic decision-making in in-
stitutional settings, with particular attention to questions of bias,
interpretability, and the role of human oversight.

Rather than treating fairness or accountability as add-ons to
a technical model, these works position them as foundational de-
sign principles – influencing everything from system architecture
to how outputs are communicated and used. This perspective is
critical for the thesis, which operates in a domainwhere data-driven
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insights may influence real-world policy, funding, and utility per-
formance narratives. As such, the ethical dimension not only in-
forms model constraints, but shapes how trust and legitimacy are
conceptualised within the validation process itself.

3.1.2 Appraisal

As outlined in the previous subsection, the literature review is con-
structed through amanual, SALSA-inspired search strategy, guided
by the thematic dimensions of the thesis. Over 100 academic sources
are selected through targeted keyword queries and citation track-
ing, with a focus onmaintaining conceptual relevance to the central
thesis objective.

Methodological rigour is evaluated based on the clarity and
transparency of each study’s research design, the presence of em-
pirical grounding or applied frameworks, andpeer-reviewed credi-
bility. Studies offering generic technical overviews without contex-
tual application to data, or those addressing peripheral topicswith-
out a clear link to benchmarking or decision-support systems, are
excluded. Likewise, sources that lack specificity in their handling
of data quality are filtered out, unless they contributed to concep-
tual discussions around reliability or comparability in public-sector
data environments.

The final body of literature represents a diverse set of domains,
contributing to amulti-layered understanding of the challenges this
thesis seeks to address. To support structure and coherence, the re-
viewed work is organised into seven thematic categories.

3.1.3 Synthesis

To synthesise the findings, a thematic content analysis37 is con- 37Origins of thematic content
analysis often traced to Boyatzis,

1998, who formalised it as a
systematic coding and

theme‐development method. The
themes used in this thesis are

specified in Section 3.2.

ducted. The process began with the three guiding sub-questions,
which served as the initial lens for organising the literature along
three dimensions: Technical, Water, and Ethical.

From an initial sweep of the literature, recurring themes were
identified within each dimension. These themes provided a struc-
tured pipeline for subsequent review: once identified, they guided
further targeted searches to ensure sufficient depth and coverage.
In this way, the synthesis balances breadth with focus, while re-
maining transparent about the analytical lens applied.

The final framework consisted of seven themes, grouped per
dimension:
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• Technical: (1) Contributions to Automated Data Validation
andBenchmarking; (2)Criteria forDataValidation andQual-
ityAssurance; (3)DecisionAlgorithms andWeightingMech-
anisms; (4) Handling Data without Historical Labels.

• Water: (5) Use of Benchmarking Data and Related Datasets.
• Ethical: (6)Integration of Human Feedback in Automated

Systems; (7) Ethical Considerations and Transparency.

Throughout the synthesis, attention is paid only to explicit claims
and methods as articulated by the authors, avoiding interpretative
overreach to maintain objectivity in thematic grouping.

Summary: This section outlines the literature review ap-
proach, which was conducted manually using the SALSA
framework to allow for a reflective, interdisciplinary map-
ping of relevant research. Guided by three core dimen-
sions – Technical, Water, and Ethical – the review delib-
erately balanced anomaly detection methods with domain-
specific benchmarking insights and ethical design principles.
Sources were appraised for relevance and methodological
rigour, and synthesised into seven thematic categories that
directly inform the thesis’ model architecture.

3.2 Thematic Content Analysis

Drawing on a diverse yet interrelated body of literature, ranging
frommachine learning, water systems engineering, ethics, and socio-
technical systems design, this analysis allows for the unfolding of
seven key thematic areas.

3.2.1 Contributions toAutomatedDataValidation andBench-
marking

Anomaly detection emerges as one of themost frequently addressed
topics in the reviewed literature, with 10 out of the surveyed sources
discussing methods to identify irregularities in water data or simi-
lar domains. Techniques range from traditional statistical and clus-
teringmethods38 (Chandola et al., 2009; Ahmed et al., 2016; Bhuyan 38Clustering Methods:

Unsupervised techniques that
group similar data points together
to detect patterns or anomalies

without predefined labels.

et al., 2013; Tukey, 1977) to machine learning and deep learning-
based models (Pang et al., 2021; Dogo et al., 2019; Kanyama et al.,
2024; Nofal et al., 2021; Candelieri, 2017), including time-series de-
composition39 anddomain-informed classification (Wuet al., 2021). 39Time-Series Decomposition:

Breaks down time-series data into
trend, seasonal, and residual

components to better understand
patterns over time (Kim et al., 2024;

Lim et al., 2023).
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These studies emphasise the importance of detecting inconsisten-
cies in both real-time and historical data environments, with sev-
eral highlighting scalability and adaptability as key advantages.
The collective insights from this body of work form a foundational
basis for exploring a data-driven, automated flagging system in
benchmarking frameworks like NewIBNET (Raciti et al., 2012).

In parallel, data validation has emerged as a critical pillar sup-
porting automated benchmarking, with a growing body of liter-
ature proposing innovative approaches for improving data relia-
bility. Several studies introduce systems that incorporate domain
knowledge, metadata, and structural constraints to detect errors
before model training or data integration (Bachinger et al., 2024;
Shankar et al., 2023). For instance, Bachinger et al., 2024 empha-
sises the use of shape constraints and expert knowledge to guide
validation, while Shankar et al., 2023 proposes GATE40, a system 40GATE: High-precision data

validation system that detects
corrupted data partitions by

monitoring aggregate statistics over
clustered feature groups (Shankar

et al., 2023).

that summarises partitions to uncover corruptions over time. Other
notable contributions include Y. Liu et al., 2025’s dual-layer meta-
data validation41, Peleska et al., 2021’s logical rule-based frame-

41Dual-layer Metadata Validation:
Uses both front-end and back-end
checks to ensure data quality by
using metadata at multiple points
in the data pipeline (Y. Liu et al.,

2025).

work for interlocking systems, and Song et al., 2021’sAuto-Validate,
which offers a rule-free, unsupervised approach42 tailored for large-

42Unsupervised Approach: Refers
to a machine learning method that
identifies patterns or anomalies in
data without requiring labelled

examples or prior training
outcomes.

scale data lakes43. Collectively, these works advance the field by

43Data Lakes: Centralised
repositories that store large

volumes of raw, unstructured,
semi-structured, or structured data

in its native format for later
processing and analysis.

showcasing scalable, interpretable validation frameworks that could
be adapted to sector-specific databases such as NewIBNET, where
both reliability and automation are essential.

The theme of benchmarking surfaces across various domains,
each contributing distinct perspectives on how performance mea-
surement frameworks can drive operational improvements. Sev-
eral studies explore benchmarking beyond water systems, includ-
ing website governance (Misra et al., 2024), processor energy ef-
ficiency (Drávai et al., 2025), and AI model performance (Chitty-
Vankata et al., 2025), offering transferable methodologies and as-
sessment structures. Of particular relevance are efforts focused on
utility-scale benchmarking for energy and water use in buildings
and retail sectors (Dudani et al., 2022; Senanayake et al., 2012), as
well as Mauro et al., 2023’s dataset-driven benchmark for water re-
sources monitoring using deep learning. While Surprise Bench-
marking (Benson et al., 2024) introduces a novel idea of stress-
testing systems with unpredictable workloads, its emphasis on re-
silience and adaptability offers useful parallels to how benchmark-
ing systems like NewIBNET might evolve to accommodate diverse
utility contexts and real-world uncertainty.

Performance evaluation is another recurring theme across the
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literature, particularlywithin thewater sector, where robust assess-
mentmodels are essential for identifying inefficiencies and guiding
strategic improvements. A number of studies propose structured
evaluation frameworks such as the Super-EfficiencyDEA(SE-DEA)44 44Super-Efficiency Data

Envelopment Analysis: An
extension of the traditional DEA
model that allows for ranking

efficient decision-making units by
measuring their performance

beyond the efficient frontier (Yang
et al., 2011).

model (Yang et al., 2011) and fuzzy comprehensive evaluation ap-
proaches (Meng et al., 2021), both of which accommodate com-
plex, multidimensional performance indicators. In addition to this,
multicriteria decision-making (MCDM)45 frameworks are used to

45Multicriteria Decision-Making
(MCDM): Set of analytical

methods used to evaluate and
prioritise multiple conflicting
criteria in decision-making

processes (Wibowo et al., 2018).

assess sustainability and operational effectiveness in urban water
supply systems (Wibowo et al., 2018; Wibowo et al., 2017), while
case studies on non-revenue water reduction strategies provide in-
sight into practical performancemetrics for utility optimisation (Silva
et al., 2023). These contributions not only highlight the importance
of rigorous performance tracking but also emphasise the value of
integrating quantitative analysis with contextual understanding.

Finally, classification-based approaches46 appear across multi- 46Classification-based
Approaches: Use machine learning
models to assign data points into
predefined categories or classes,

often applied in anomaly detection
to label data as ”normal” or

”anomalous”.

ple reviewed studies, offering tailored solutions to automated cat-
egorisation tasks that mirror the anomaly detection and validation
objectives in this thesis. Approaches range from binary classifica-
tion for water potability prediction using models like logistic re-
gression and support vector machines47 (Castillo et al., 2024), to 47Support Vector Machines

(SVMs): Supervised learning
models used for classification and
anomaly detection by finding the
optimal boundary that separates

different classes in a dataset.

semi-supervisedmulti-class classifiers for real-time streaming data
(C. Liu et al., 2025). Text and link classification models demon-
strate applications in knowledge organisation (N. Liu et al., 2007),
while supervised learning frameworks for crypto asset classifica-
tion highlighted the role of transparent and interpretable categori-
sation. These methodologies not only support technical precision
but also serve as inspiration for developing scalable and explain-
able flagging strategies within the context of NewIBNET’s perfor-
mance monitoring.

3.2.2 Criteria for Data Validation and Quality Assurance

A core pillar of data validation lies in the assurance of data qual-
ity – particularly in sparse heterogeneous systems like NewIBNET.
Literature on this theme consistently highlights the need for struc-
tured, intelligent frameworks capable ofmanaging complex datasets
(Taleb et al., 2018; Qi et al., 2024; Kang et al., 2017). The works of
Taleb et al., 2018 and Kang et al., 2017 offer valuable overviews of
quality assessment in unstructured and predictive contexts, while
Qi et al., 2024 emphasise the role of AI in building decision support
systems for water quality. Sector-specific contributions such as the
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work of Yu et al., 2023 demonstrate how weighted index methods
like WQI48 can provide quantifiable quality scores, useful for sys- 48Water Quality Index (WQI):

Composite metric that aggregates
multiple water quality parameters
into a single score to assess overall

water quality (Yu et al., 2023).

tematised flagging. Broader institutional efforts, like those from
theWorld Bank, 2022 and the European Data Quality Guidelines49,

49European Data Quality
Guidelines: Read more: https:

//op.europa.eu/webpub/op/
data-quality-guidelines/en/

introduce best practices for data governance, verification, and life-
cycle management, offering transferable strategies for NewIBNET.
These sources form a foundation for designing robust data quality
checks within an automated validation model, enabling both tech-
nical precision and stakeholder trust.

Complementing the broader discussions ondata quality, a smaller
yet significant strand of literature focuses on enhancing data con-
sistency, particularly when integrating or validating inputs from
disparate sources. Abián et al., 2019 introduce contemporary con-
straints as a dynamicmethod to flag temporal inconsistencieswithin
datasets, while Deng et al., 2022 propose a novel consistency index
to assess multi-measurement agreement. Huang et al., 2019 extend
thiswork to themulti-source domain throughmatching dependen-
cies, providing a structured approach to resolve contradictions in
integrated data systems.

A central challenge within benchmarking datasets – especially
thosewith voluntary reporting anduneven coverage, such asNewIB-
NET – is how to address missing data without introducing noise or
bias. The reviewed studies highlight several strategies for manag-
ing incomplete datasets in ways that vary significantly in robust-
ness and interpretability.

Bicego et al., 2024 introduce a Random Forest-based50 distance 50Random Forest: Ensemble
learning method that constructs

multiple decision trees to improve
classification accuracy and handle
missing data effectively (Bicego

et al., 2024).

metric that operates without imputation51, allowing for similarity

51Imputation Algorithms:
Methods used to estimate and
replace missing data within a

dataset to enable complete data
analysis.

assessment even when data entries are partially missing. This non-
parametric method shows promise in preserving structural rela-
tionships, making it potentially suitable for detecting outliers in
sparse or noisy datasets. In contrast, X. Wang et al., 2023 argue for
preserving the distribution of missingness when generating syn-
thetic data52 – a strategy more aligned with data augmentation

52Synthetic Data: Refers to
artificially generated data that

mimics real datasets, often used to
preserve privacy or augment

limited data.

than validation, and potentially less robust in flagging subtle in-
consistencies. Meanwhile, Clifton et al., 2022 propose a privacy-
preserving imputation approach using differentially private53 k-

53Differentially Private: A formal
privacy technique that ensures

individual data entries cannot be
re-identified, even from aggregated

results.

NN54 models. While valuable for protecting sensitive records, the

54k-Nearest Neighbours (k-NN):
A machine learning algorithm that
classifies or imputes data based on
the closest 𝑘 similar data points in

the dataset.

technique may introduce smoothing that risks masking meaning-
ful deviations – a trade-off to consider in small, skewed datasets.

An empirical benchmark by Miao et al., 2024 compares state-
of-the-art imputation methods across various scenarios, offering
practical insights into their performance under different data con-

https://op.europa.eu/webpub/op/data-quality-guidelines/en/
https://op.europa.eu/webpub/op/data-quality-guidelines/en/
https://op.europa.eu/webpub/op/data-quality-guidelines/en/
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ditions. Finally, domain-specific applications such as water quality
forecasting (Dong et al., 2024) and classification systems (Li et al.,
2023) demonstrate that imputation strategies can significantly af-
fect downstream accuracy, further highlighting the importance of
context-specific method selection.

Across these contributions, it becomes clear that no singlemethod
universally fits sparse benchmarking datasets; instead, trade-offs
between completeness, transparency, and anomaly preservationmust
be carefully weighed in the design of a validation system.

Although terms like data reliability or deviation analysis rarely ap-
pear explicitly in the reviewed literature, many of the underlying
concerns – such as robustness under uncertainty and the risk of
masking meaningful anomalies – are addressed through adjacent
concepts in data consistency, quality assurance, and missing data
handling.

3.2.3 Decision Algorithms and Weighting Mechanisms

In designing intelligent systems for complex socio-environmental
challenges, robust decision algorithms and weighting mechanisms
are essential – not only for accurate anomaly detection but also
for ensuring that automated processes remain adaptable, transpar-
ent, and context-aware. Across the literature, a clear convergence
emerges: decision support systemsmust balance algorithmic preci-
sion with flexibility to accommodate multi-dimensional, often un-
certain, data environments. From hybrid machine learning models
that blend decision tree logic with probabilistic inference to boost
performance under data variability (Hall, 2007; Jia, 2022), to AI-
augmented operational planning tools that integrate real-time feed-
back loops for water resource optimisation (Xian et al., 2024; Jalal
et al., 2020), the spectrum of innovation reveals a shared empha-
sis on contextualisation, weighting, and transparency. Several ap-
proaches foreground the importance of domain-specific heuristics,
such as similarity-based reasoning (Zeng et al., 2012) ormulti-criteria
evaluation strategies (Caylor et al., 2020), to guide complex choices
in resource-constrained and dynamic environments. These sys-
tems move beyond static rules to support iterative, learning-based
governance, where decisions on flagging inconsistencies must re-
flect both statistical outliers andnormative benchmarks. Underpin-
ning many of these models is a growing reliance on fuzzy or lin-
guistic decision-making paradigms (Herrera-Viedma et al., 2020),
which prove particularly effective in navigating ambiguity –whether
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stemming from incomplete data or competing stakeholder values.
These contributions show that a well-designed decision algorithm
is not simply an optimisation engine but a dynamic interface be-
tween data, governance, and judgment.

Scoring systems have emerged as mechanisms for translating
complex, multidimensional inputs into interpretable outputs that
inform action. Recent advancements – from fuzzy logic models in-
tegrating expert-derivedweights (Kahla et al., 2025), to transformer-
based architectures that isolate temporal deviations in real-time
data streams (Kimet al., 2024) – demonstrate the growingprecision
and adaptability of score-based approaches. Whether optimising
detection efficiency in large-scale infrastructures (Chang, 2024),
flagging inconsistencies in categorical datasets via recommender
logic (Belgacem et al., 2024), or distinguishing anomalies through
refined score distribution modelling (Lim et al., 2023; Jiang et al.,
2023), thesemethods collectively emphasise that scoring is no longer
a static threshold but a dynamic, contextual process. This evo-
lution aligns with the vision for a framework: a system that ac-
counts for subtle deviations, scalable processing, and meaningful
severity rankings – anchored not in rigid cutoffs, but in intelligent,
evidence-weighted interpretation.

An increasingly sophisticated challenge is not only identifying
whether an anomaly exists, but determining how severe it is – espe-
cially in contexts where nuanced gradations of concern can trigger
vastly different operational responses. The literature signals a ma-
turing shift toward integrating severity-oriented weighting mech-
anisms into algorithmic frameworks, thus refining the value and
interpretability of flagged anomalies. Emerging models such as
FuzzyWeighted Principal ComponentAnalysis (FWPCA)55 (S.Wang 55Fuzzy Weighted Principal

Component Analysis (FWPCA):
A dimensionality reduction

technique that integrates fuzzy
logic and weighted PCA to enhance
anomaly detection by effectively
handling data uncertainty and
emphasising significant features

(S. Wang et al., n.d.).

et al., n.d.) andBi-BayesianGaussianMixtureModels (Bi-BGMM)56

56Bi-Bayesian Gaussian Mixture
Models (Bi-BGMM): Dual-stage
anomaly detection method that
employs Bayesian Gaussian
Mixture Models to perform
bi-clustering, simultaneously

identifying anomalous patterns
across both data features and
instances (Bingöl et al., 2024).

(Bingöl et al., 2024) introduce layered sensitivity to contextual vari-
ables by assigning adaptive weights to both features and instances,
capturing subtle, high-dimensional deviations that would other-
wise be flattened in binary anomaly labelling. Complementarily,
Score Distribution Discrimination57 methods and severity-linked

57Score Distribution
Discrimination: Technique that

evaluates and differentiates
multiple anomaly score

distributions to enhance the
accuracy of anomaly detection

systems (Yi et al., 2024).

performance metrics (Hajirahimi et al., 2023; Yi et al., 2024) en-
hance evaluative accuracy by measuring alignment between pre-
dicted and actual severity levels, a crucial step when moving from
detection to actionable insights. Particularly relevant is the clas-
sification of anomaly severity tiers in multi-class frameworks, as
demonstrated in drone fault detection (Silalahi et al., 2024), which
resonates with the thesis objective of developing a system that pri-
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oritises and stratifies anomalies based on their urgency and sys-
temic impact.

Taken together, these methodologies advocate for moving be-
yond simple anomaly thresholds to developweighted, interpretable,
and severity-informed systems. While many of these models have
been developed and tested in high-volume, high-density data en-
vironments, their conceptual relevance remains significant for this
thesis. As data platforms such as NewIBNET continue to expand,
understanding how severity-based logic can be layered into valida-
tion systems offers a forward-looking perspective – one that antic-
ipates future scale while remaining grounded in the practical con-
straints of its current data regime.

Lastly, fuzzy logic has become known as a powerful decision-
making paradigm in contexts characterised by uncertainty, ambi-
guity, and the need for interpretability – features that are acutely
relevant to water utility data environments. Across multiple stud-
ies, fuzzy inference systems have demonstrated their ability to trans-
late imprecise numerical data into actionable and linguisticallymean-
ingful classifications, whether through real-timewater qualitymon-
itoring (Paul B. Bokingkito et al., 2018), evaluating filtration sys-
tems (Yumang et al., 2021), or enabling responsive water supply
management in uncertain conditions (Sharma et al., 2012). The
strength of fuzzy logic lies in its alignment with human reason-
ing – facilitating nuanced assessments such as classifying water as
“Good” or “Poor,” rather than relying on rigid thresholds. Recent
developments in hybrid models, such as fuzzy neural networks
(Lin et al., 2025; Zhu, 2009), extend this further by combining the
transparency of fuzzy rules with the learning capacity of neural
architectures – enabling robust classification even in noisy or non-
linear datasets. In addition to this, the application of fuzzy logic in
modelling human-machine interactions (Cui, 2024) and decision
factor weighting (Anifa et al., 2024) highlights its flexibility across
domains, particularly in interfacing human judgment with auto-
mated systems.

3.2.4 Handling Data Without Historical Labels

The challenge of performing historical consistency checks in the ab-
sence or limitation of past data has been addressed through a range
of innovative applications of established techniques. Dai et al., 2021
propose similarity-based forecastingmodels to predict sales for prod-
uctswithout historical records, demonstrating the viability of reference-
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based estimation strategies. Winona et al., 2020 apply Long Short-
TermMemory (LSTM)networks58 – a long-standing temporalmod- 58Long Short-Term Memory

(LSTM) Networks: A type of
recurrent neural network (RNN)
first introduced by Hochreiter &
Schmidhuber (1997), designed to
model temporal sequences and

capture long-range dependencies
(Hochreiter et al., 1997, Winona

et al., 2020).

elling method – to generate short-term sea level predictions using
minimal prior data. Similarly, Singhal et al., 2001 apply Principal
Component Analysis (PCA)59 in a novel framework to assess cur-

59Principal Component Analysis
(PCA): A statistical technique

introduced by Pearson (1901) for
reducing data dimensionality while

preserving variance. See more:
http://www.stats.org.uk/pca/

Pearson1901.pdf

rent values against latent historical structures, and Aubry, 2021 ex-
plores the broader capacity of deep learning to extract meaningful
signals from fragmented legacy datasets.

These contributions highlight how classical mathematical tech-
niques, when creatively applied to data-sparse scenarios, can offer
valuable alternatives to traditional historical consistency checks.

3.2.5 Integration of Human Feedback in Automated Sys-
tems

The integration of human feedback into automated systems is a
core theme across several reviewed studies, emphasising that sus-
tainable system performance hinges not only on technical sound-
ness but also on the active engagement of end users throughout
the system’s lifecycle. Socio-technical perspectives foregrounded
by Baxter et al., 2011 and extended by Sommerville et al., 2007 un-
derline the necessity of designing systems that account for layered
human realities – technical, organisational, and social. In the con-
text of international systems like NewIBNET, where users oper-
ate under diverse institutional and cultural settings, this perspec-
tive becomes not just relevant but essential. The principles from
Human-in-the-Loop Machine Learning (HITL-ML)60, as explored 60Human-in-the-Loop Machine

Learning (HITL-ML): Integrates
human expertise into the training

and refinement of machine learning
models, allowing for active human
involvement in data annotation,

model validation, and
decision-making processes to
enhance model accuracy and

reliability (Munro, 2021; Kumar
et al., 2024).

by Munro, 2021 and Kumar et al., 2024, offer tangible strategies –
such as iterative annotation, feedback-driven refinement, and do-
main expert integration. These insights are further supported by
Tong et al., 2009, whose framing of product innovation highlights
how iterative co-design, shaped by real-time market and user re-
sponse, drives long-term system trust and usability.

3.2.6 Ethical Considerations and Transparency

The ethical dimensions of algorithmic decision-making, particu-
larly in the context of automated flagging systems like those en-
visioned for NewIBNET, must be addressed not as an afterthought
but as an integral part of the design process. As emphasised by
Waller et al., 2025, bias mitigation in binary classification systems
cannot be reduced to technical fixes alone – it requires ethically
sound, legally compliant, and contextually aware approaches from

http://www.stats.org.uk/pca/Pearson1901.pdf
http://www.stats.org.uk/pca/Pearson1901.pdf
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the outset. Building on this, the ethical cycle framework of van de
Poel et al., 2011 highlights the necessity of embedding values and
stakeholder engagement throughout the lifecycle of technological
development, rather than retrofitting ethical considerations post-
implementation. Equally critical is the role of linguistic framing:
McNealy, 2021 highlights how the language used to communicate
ethics directly affects public trust and system legitimacy, reinforc-
ing the idea that transparency is not merely a design feature but a
narrative tool. Complementing this, Borghouts et al., 2024’s study
on COVID-19 vaccine messaging demonstrates how subtle varia-
tions in emotional tone and certainty can drastically alter user re-
ception, particularly across ideological lines – insights that are vi-
tal when considering how anomalies or inconsistencies in utility
data are flagged and presented to global reviewers. These sources
argue persuasively that transparency, fairness, and cultural sen-
sitivity must be interwoven into the core architecture of systems
like NewIBNET to promote trust, reduce algorithmic harm, and
support equitable utility governance across diverse socio-political
landscapes.

3.2.7 Use of Benchmarking Data and Related Datasets

The literature presents IBNET as a foundational data source for
evaluating utility performance on a global scale. In policy-driven
research, IBNET is valued for enabling comparative political econ-
omy analysis and facilitating evidence-based decision-making, as
demonstrated by Manghee et al., 2012. Other studies indicate IB-
NET’s role as both a benchmarking tool and a data repository, while
simultaneously identifying structural limitations. For instance, An-
dres et al., 2020 directly engage with IBNET’s high degree of miss-
ing data, proposing a nested panelmethodology to improve its ana-
lytical usability. Similarly, C. v. d. Berg et al., 2017 draw extensively
from IBNET to assess African utility performance, positioning it as
a transparency-enabling platform for governments and operators
alike. However, Bhatt, 2024 offers a necessary critique, highlight-
ing how IBNET’s efficiency-centric indicatorsmay obscure local eq-
uity concerns. Additional empirical studies employ IBNET to sup-
port investigations into tariff subsidies (Andrés et al., 2020), fraud
detection frameworks (Detroz et al., 2017), and financial-service
quality relationships (Tsagarakis, 2018), all of which signal its en-
during relevance in both operational and developmental contexts.
These applications reinforce a necessity for NewIBNET: to opti-
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mise current validation framework, ensuring that the system’s data
quality can meet the increasing demand for robust, contextualised
benchmarking.

A search for academic literature referencingNewIBNET yielded
no direct results, likely due to its recent launch and the time re-
quired for uptake in scholarly publications. However, given IB-
NET’s proven value in utility benchmarking, NewIBNETholds con-
siderable promise in continuing this legacy and in potentially ad-
dressing the data quality and structural shortcomings identified in
the earlier system.

Beyond the widespread use of IBNET in global utility bench-
marking, several regional and thematic platforms offer complemen-
tary approaches that can inform the evolution of NewIBNET. The
AWWAUtility Benchmarking Program61 inNorthAmerica empha- 61AWWA Utility Benchmarking

Program: Read more:
https://www.awwa.org/programs/

benchmarking

sises granular, high-frequency KPIs tailored to local regulatory and
operational contexts, contrastingNewIBNET’s broader, cross- coun-
try comparability. Similarly, the EuropeanBenchmarkingCo-operation
(EBC)62 focuses on service quality and knowledge sharing within 62European Benchmarking

Co-operation (EBC): Read more:
https:

//www.waterbenchmark.org/

Europe, providing region-specific depthwhile lackingNewIBNET’s
global inclusivity. The Utility Benchmarking Program (UBP)63 by

63Utility Benchmarking Program
(UBP): Read more: https://www.
iawd.at/eng/danube-toolbox/

d-leap/programs/
utility-benchmarking-program/

IAWD, centred on the Danube region, exemplifies a subregional
model where benchmarking is closely aligned with local environ-
mental and institutional conditions. These platforms highlight the
trade-offs between contextual specificity and global comparability.
A detailed comparative analysis of these benchmarking platforms
in relation to NewIBNET is provided in Appendix B.1.

Several academic contributions also propose tailored performance
indicator systems, such as Ganjidoost et al., 2018’s time-integrated
benchmarking for pipelines, which shows the need for localised
indicators that account for demographic and infrastructure vari-
ability. Others, like Burdescu et al., 2020’s Caribbean utility bench-
mark, align with NewIBNET’s goals but demonstrate how contex-
tual adaptation – through frameworks like the Water Utility Turn-
around model – can yield regionally actionable insights. These
tools could offer valuable lessons for refining NewIBNET’s struc-
ture, particularly regarding indicator standardisation, regional adapt-
ability, and the balance between breadth and depth in utility per-
formance comparison.

In addition to the structural comparisons above, the literature
found also offers insights into the practical incentives and contex-
tual constraints that influence utility participation in benchmark-
ing platforms like NewIBNET. S. Berg, 2010 emphasise the role of

https://www.awwa.org/programs/benchmarking
https://www.awwa.org/programs/benchmarking
https://www.waterbenchmark.org/
https://www.waterbenchmark.org/
https://www.iawd.at/eng/danube-toolbox/d-leap/programs/utility-benchmarking-program/
https://www.iawd.at/eng/danube-toolbox/d-leap/programs/utility-benchmarking-program/
https://www.iawd.at/eng/danube-toolbox/d-leap/programs/utility-benchmarking-program/
https://www.iawd.at/eng/danube-toolbox/d-leap/programs/utility-benchmarking-program/
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donor pressure, performance-based funding, and institutional rep-
utation as key motivators, particularly in low- and middle-income
countries. They highlight how utilities are more likely to engage in
benchmarking when results feed into national policy frameworks
or funding eligibility. At the same time, reporting challenges such
as limited technical capacity, differing interpretations of indicator
definitions, and political sensitivities surrounding transparency in-
troduce risks of partial or misreported data. These observations
highlight the importance of not only automating validation pro-
cesses, but designing them with a realistic understanding of the
operational, financial, and institutional environments inwhich util-
ities operate. While such domain-specific constraints may not al-
ways be visible in purely technical literature, they form a necessary
bridge between system design and real-world implementation – a
gap that this thesis seeks to navigate.

3.3 Key Insights from the Literature Review

This section integrates insights from all interdisciplinary sources
to reflect critically on the thematic landscape uncovered through
the literature review. By weaving together methodological innova-
tions, sectoral realities, and normative considerations, it positions
the literature review at the intersection of data science, governance,
and responsible system design.

3.3.1 Technical Dimension

What technical approaches have been proposed for automating data
validation and anomaly detection, and how do they account for
uncertainty, scale, and limited ground truth?

The development of automated validation systems in the con-
text of global water utility benchmarking requires integrating tech-
niques that are not only statistically rigorous but also context-aware,
scalable, and robust to uncertainty. Literature across domains such
as anomaly detection and decision theory highlights a progression
from traditional rule-based screening toward hybrid frameworks
that combine statistical inference, structural logic, and interpretabil-
ity.

While Section 3.2 reviewed individual approaches to anomaly
detection, the synthesis here highlights a broader insight: anoma-
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lies are not fixed entities but context-dependent deviations from an
evolving baseline of ”normal” behaviour (Chandola et al., 2009).
Detecting such deviations necessitates a foundational layer of sta-
tistical profiling, where descriptive metrics – such as means, me-
dians, and standard deviations – offer a first pass at distinguish-
ing expected values from outliers (Ahmed et al., 2016; Bhuyan et
al., 2013). Techniques like histogram visualisation further support
the identification of skewed or multimodal distributions, helping
to establish empirical baselines against which irregularities may be
judged (Chandola et al., 2009). More broadly, such practices align
with the principles of exploratory data analysis64, where the com- 64Exploratory Data Analysis

(EDA): The process of analysing
datasets to summarise their main
characteristics, often using visual

methods (Tukey, 1977).

bined use of descriptive statistics and visualisation serves as a gen-
eral analytic strategy for uncovering structure, detecting anoma-
lies, and suggesting underlying patterns in the data (Tukey, 1977).

However, statistical profiling alone cannot resolve structural in-
consistencies or embedded entry errors. Here, the literature points
to schema-based validation and rule-driven conditional logic as
essential complements (Peleska et al., 2021). While often under-
utilised in benchmarking contexts, such checks remain critical for
ensuring internal coherence, including plausibility thresholds and
logical dependencies across fields. This alignswith early-stage anomaly
detection practices in network security andfinancial auditing, where
metadata-driven assumptions – such as declared input types or
structural constraints – are used to screen for irregular submissions
before deeper modelling is applied.

Where data gaps persist, imputation strategies become central.
Although statisticalmethods such asmedian imputation arewidely
used in resource-constrained settings (Miao et al., 2024), literature
in privacy-preserving systems points to the potential of k-nearest
neighbour (K-NN) approaches (Clifton et al., 2022), particularly
in settings with partial correlation structures. Given the variability
in data availability across utilities, the thesis could test both ap-
proaches to evaluate their impact on downstream validation accu-
racy, while recognising the importance of maintaining traceability
and interpretability in imputed values.

Building on this foundation, the next layer of experimentation
engageswith comparator-based anomalymodelling, where the chal-
lenge shifts from detecting irregularities in isolation to doing so
relative to meaningful peer groups. The literature on benchmark-
ing systems, including critical assessments of IBNET, highlights
the importance of embedding utility metadata65 such as region, in- 65As highlighted in Chapter 2,

reliance on global averages alone
may overlook important contextual

differences between utilities.

come level, and population served into comparative frameworks
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(Manghee et al., 2012; Bhatt, 2024; Tsagarakis, 2018). These di-
mensions reflect not only service context but also institutional and
financial variation, making them key axes along which deviation
should be measured.

Traditional statistical methods like z-score calculation, already
usedmanually in NewIBNET, remain central to this task, standard-
ising deviations relative to comparator group distributions. How-
ever, the literature also suggests experimenting with composite z-
score profiling and weighted normalisation, where the influence
of each comparator group is adjusted based on statistical correla-
tion or policy relevance (Yu et al., 2023). This motivates a more
layered understanding of what constitutes a significant anomaly:
one that may stand out across multiple benchmarks, or one that
is extreme relative to a particularly relevant dimension (e.g., com-
parator group peers).

To transform these detection outputs into decision support tools,
the literature introducesmethods from anomaly scoring and sever-
ity prioritisation. Multi-criteria decision-making frameworks and
static/dynamicweightingmodels offer templates for building com-
posite severity scores (Kim et al., 2024; Hajirahimi et al., 2023).
This thesis could adapt those insights to the benchmarking context
by combining z-score deviation with fixed comparator weights – a
practical choice justified both by literature and the need for trans-
parency in public-sector settings. Complementing this, severity
tiers and thresholds, inspired by anomaly event classification in
time-series systems (Wu et al., 2021), allow for a more nuanced,
ranked interpretation of flagged outputs, making the system more
actionable for reviewers.

Final validation strategies are informed by research into socio-
technical systemdesign. Literature emphasising human-in-the-loop
models anddependable systemvalidation (Baxter et al., 2011; Som-
merville et al., 2007) stresses the importance of aligning automated
decisions with expert expectations. This justifies the inclusion of
expert surveys, manual benchmark comparisons, and similar case-
based evaluations in the experimental framework, allowing the pro-
posed system to be tested not only for statistical coherence, but also
for institutional credibility and relevance.

Much of the literature reviewed in these themes proposed ad-
vanced anomaly detection and machine learning techniques, often
tailored to contextswith abundant labelled data and strong compu-
tational resources. While such methods are powerful, they are ill-
suited to the sparse, heterogeneous, and politically sensitive envi-
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ronment of global water utility benchmarking, where transparency
and interpretability are paramount. Rather than selecting a single
model or method, the technical strand of this thesis assembles an
integrated pipeline – grounded in literature – that supports scal-
able, context-sensitive, and trustworthy anomaly detection within
the realities of global public infrastructure.

Summary: This section synthesises technical literature on
statistical profiling, rule-based validation, comparator-based
modelling, and severity scoring to inform the design of an
automated anomaly detection system forwater utility bench-
marking. It highlights the importance of balancing scalabil-
ity, and uncertainty in sparse, heterogeneous datasets like
NewIBNET. The selected focus methods can be integrated
into a layered pipeline that reflects both empirical evidence
and practical constraints of global public-sector platforms.

3.3.2 Water Dimension

How have benchmarking practices in the water and infrastructure
sectors evolved in response to challenges of participation, compa-
rability, and data quality?

A recurring insight from the literature engaging directly with
IBNET is the central role benchmarking plays in both diagnosing
sectoral inefficiencies and enabling informed policy interventions
across diverse governance contexts. Studies such as Manghee et
al., 2012 emphasise IBNET’s capacity to facilitate political economy
analysis, not just as a technical platform but as an evidence-based
tool for navigating reform. Others, like Andrés et al., 2020, high-
light IBNET’s ability to support financial transparency, particularly
in subsidy evaluation and tariff structuring, illustrating how robust
performance indicators can underpin equity-driven water gover-
nance. However, several sources also indicate systemic limitations
that carrymethodological relevance – for instance, high volumes of
missing data (Andres et al., 2020) and an overemphasis on quan-
tifiable efficiency that may unintentionally obscure deeper struc-
tural inequalities (Bhatt, 2024). These observations inform the the-
sis in two significant ways. First, they signal the need to construct
a flagging system that is not only technically rigorous, but also ca-
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pable of contextual prioritisation and adaptive equity-aware ad-
justments. Second, comparative platforms such as AWWA, UBP,
and EBC demonstrate the value of regional granularity and user-
centred indicator design. These systems show that benchmarks be-
come more actionable when they align with the operational, regu-
latory, and environmental conditions of specific regions. As such,
the methodology will consider how NewIBNET can strike a bal-
ance between global standardisation and local relevance, support-
ing both cross-country comparisons and context-specific flagging
mechanisms that respond to actual utility needs. In addition, the
upstream and downstream processes embedded in these platforms
offer valuable architectural andprocedural insights. These pipeline
components will inform the broader design logic of this thesis, en-
suring that the validation framework not only detects anomalies
but integrates meaningfully into the full lifecycle of benchmarking
and utility engagement.

Despite IBNET’s wide presence in literature, no current stud-
ies explicitlymention or evaluate the recently launchedNewIBNET
system, reflecting a noticeable absence in the academic landscape.
This gap highlights a need for research that not only investigates
NewIBNET’s potential improvements but also explores how its up-
dated benchmarking logic and usability can address longstanding
issues such as missing data, limited context sensitivity, and inade-
quate stakeholder alignment.

Summary: Benchmarking practices in the water and in-
frastructure sectors have evolved from purely performance-
oriented comparisons toward more participatory, context-
sensitive frameworks that account for equity, data quality,
and regional governance realities. This thesis builds on
that evolution by examining how systems can operationalise
these shifts, addressing gaps in comparability, participa-
tion, and data reliability through a redesigned, stakeholder-
informed validation approach.
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3.3.3 Ethical Dimension

What ethical tensions arise in automating public-sector data re-
view, particularly around framing, transparency, and institutional
trust?

Within the literature there is a clear recognition that automation
– especially in systems like NewIBNET – cannot exist in isolation
from the human contexts in which it operates. The socio-technical
lens articulated by Baxter et al., 2011 and further refined by Som-
merville et al., 2007 emphasises that data validation systems must
be co-designedwith the users they intend to serve. In the context of
global benchmarking, where regional disparities and political sen-
sitivities influence reporting behaviour, anomaly flagging must be
not only statistically accurate but also institutionally trustworthy
and context-aware. This is reinforced by Munro, 2021’s advocacy
for human-in-the-loop machine learning models, which prioritise
expert input in ambiguous cases through active learning, iterative
annotation, and domain-informed validation checkpoints – prac-
tices that can significantly improve the relevance and acceptance of
flags generated within NewIBNET. The integration of structured
reviewer feedback loops, as suggested by Kumar et al., 2024, is
particularly valuable in settings characterised by data uncertainty
and variation in expertise across utilities. Tong et al., 2009 extend
this idea into design management, proposing that anomaly detec-
tion systems be treated as iterative products – requiring continu-
ous engagement with stakeholders, alignment between technical
and functional teams, and the flexibility to adapt based on evolv-
ing user needs. These works show a critical shift in perspective:
that automated data validation is not a one-off implementation, but
a dynamic, dialogic process where algorithms and human experts
co-create meaningful, actionable outputs.

Despite extensive theoretical work on human-in-the-loop sys-
tems and socio-technical design, current research lacks application
to public-sector digital infrastructures, particularly in globally scaled
benchmarking contexts such asNewIBNET. This thesis could bridge
that gap by embedding feedback-driven anomaly validation mech-
anisms into a real-world, institutionalwater utility system, translat-
ing abstract design and ethical principles into concrete, governance-
relevant functionality.

A core thread emerging from the ethical literature is the impera-
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tive to embed transparency, fairness, and contextual sensitivity not
as post hoc concerns but as foundational design principles in any
automated decision-making system. In the context of an anomaly
detection system, the framing and communication of flagged anoma-
liesmust be carefully calibrated to ensure neutrality, especiallywhen
engaging with diverse utility operators across geopolitical and cul-
tural contexts (McNealy, 2021; Borghouts et al., 2024). Linguistic
choices can significantly influence the degree of reviewer trust and
engagement, aligningwith findings from studies on politically sen-
sitive messaging (Borghouts et al., 2024). Beyond language, legal
and procedural transparency must underpin the system’s struc-
ture, with bias mitigation approaches tailored not only for statis-
tical fairness but also to align with frameworks like GDPR66 and 66General Data Protection

Regulation (GDPR): A legal
framework that governs how
personal data is collected,

processed, and stored within the
European Union. Read more:

https://gdpr-info.eu/

sector-specific norms (Waller et al., 2025). The ethical cycle, as pro-
posed by van de Poel et al., 2011, offers amethodological anchor for
this process: iteratively involving stakeholders, reassessing value
trade-offs, and explicitly surfacing the societal implications of sys-
tem outputs.

These insights shape the thesis’s design priorities by embed-
ding human dignity and institutional accountability into the vali-
dation logic, positioning automation not as a replacement for ex-
pert judgement, but as a partner in enabling equitable, transparent
decision-making within global benchmarking systems like NewIB-
NET.

Summary: Ethical tensions in automating public-sector data
review arise from the need to balance algorithmic efficiency
with institutional trust, particularly in how anomalies are
framed and communicated to diverse stakeholders. Ensur-
ing transparency, linguistic neutrality, and human-in-the-
loop mechanisms is essential to prevent misinterpretation,
build reviewer confidence, and uphold fairness in politically
and culturally sensitive benchmarking contexts.

3.4 Limitations of the Literature Review

While the literature review provides a multidimensional under-
standing of automated benchmarking and anomaly detection in
the context of water utility data, it is not without limitations. First,
the inclusion criteria primarily focused on peer-reviewed academic

https://gdpr-info.eu/
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publications and institutional reports in English, which may have
excluded relevant grey literature, practitioner insights, or region-
specific case studies published in other languages. Additionally,
while the SALSA framework supported a structured synthesis across
technical, sectoral, and ethical dimensions, the review leanedmore
heavily towardmethodological depth in the technical domain. This
is partly due to the richer availability of literature on anomaly de-
tection techniques compared to governance-oriented or utility- spe-
cific studies, which may have constrained the granularity of in-
sights into institutional incentives and behavioural drivers behind
benchmarking participation. As the review and synthesis is con-
ducted by a single researcher, the analysis may also reflect indi-
vidual blind spots or biases despite efforts to apply the framework
systematically.

Moreover, although efforts are made to balance breadth and
specificity, some selected models are designed for large, high- fre-
quency datasets andmay have limited transferability to sparse, het-
erogeneous datasets like those in NewIBNET.While their inclusion
helped shape a forward-looking design space, the applicability of
suchmodels must be treatedwith caution and tested through prac-
tical adaptation. Finally, given the recency of NewIBNET’s launch,
no scholarly publications are found evaluating its architecture or
implementation, limiting direct literature-based assessment of the
system under study. This gap reinforces the importance of this the-
sis in contributing original research grounded in both conceptual
synthesis and practical system engagement.

No automated software tools are used to conduct the literature
review. While the exclusion of tools such as machine-assisted sys-
tematic review platforms is partly due to the thesis’s alignment
with human-in-the-loop principles, it is acknowledged that such
tools could have been adapted to fit this methodology without un-
dermining reviewer involvement. In addition to this, the manual
approach allowed for more deliberate ethical discernment, espe-
cially in avoiding over-reliance on citation frequency as a proxy for
influence – a practice that risks reinforcing structural biases in aca-
demic publishing, particularly when the subject matter intersects
with developing country contexts. While automation could have
enhanced coverage and consistency, its careful and ethically at-
tuned integration remains a promising avenue for future iterations
of similar research.



4
Methodology

This chapter outlines the thesis approach taken to explore auto-
mateddata-driven validation. It presents the guiding research ques-
tions in Section 4.1, a design andmethodological framework in Sec-
tion 4.2, and a risk analysis in Section 4.3 – together forming the
foundation for the system’s development, validation, and ethical
framing.

4.1 Research Questions

At the core of this research lies the following centralResearchQues-
tion (RQ):

How can data-driven mathematical models enhance validation and
benchmarking of water utility indicators while ensuring reliability,
decision-making integrity, and ethical transparency?

This question reflects the dual ambition of the thesis: to intro-
duce technical innovation in anomaly detection and indicator val-
idation, and to do so in a way that aligns with the ethical, insti-
tutional, and user-centred realities explored in Chapters 2 and 3.
The literature review established not only the technical opportuni-
ties but also the sector-specific constraints and ethical imperatives
involved in public benchmarking systems.

To operationalise this objective, the thesis is structured around
five core components. These components – drawn directly from the
gaps and priorities identified in the literature – serve as thematic
anchors, each accompanied by a guiding sub-question:

39
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4.1.1 Data Preparation & Structural Validation

RQ1 How can statistical profiling and rule-based logical checks be used
to detect data quality issues and prepare water utility indicator data
for reliable anomaly detection?

This phase focuses on preparing the raw utility data for down-
stream anomaly detection. As discussed in Chapters 3, the liter-
ature highlights that anomalies are not fixed entities but context-
dependent deviations, requiring a foundational layer of statistical
profiling to establish baselines. Building on this, descriptive met-
rics and histogram visualisation are applied to surface outliers and
distribution patterns (Chandola et al., 2009; Ahmed et al., 2016;
Bhuyan et al., 2013; Wu et al., 2021). These are complemented by
conditional logic and schema-driven rules derived from NewIB-
NET’s structure and metadata, reflecting the importance of rule-
based coherence checks (Raciti et al., 2012; Y. Liu et al., 2025). Where
data gaps are detected, the approachwill test both K-nearest neigh-
bour imputation (Clifton et al., 2022) and median imputation as a
simpler statistical method (Miao et al., 2024). These choices ensure
that design decisions are not ad hoc but grounded in the thematic
insights developed earlier, while being adapted to the specific con-
straints of the NewIBNET dataset.

4.1.2 Context-Aware Anomaly Modelling Frameworks

RQ2 How can utility metadata and comparator-based modelling support
the detection of deviations in performance indicators across diverse
water utilities?

Building on the cleaned dataset, the second phase introduces
comparator-based modelling to move beyond universal thresholds
and instead detect anomalies relative to meaningful peer groups.
This is inspired by benchmarking research advocating for contex-
tual validation frameworks andmore nuanced comparator segmen-
tation (Manghee et al., 2012; Bhatt, 2024; Tsagarakis, 2018). New
comparator groups based on region and income level are analysed
and extended. The chapter also looks into current z-score deviation
calculations based on the current comparators.

4.1.3 Severity Scoring & Decision Framework

RQ3 Which severity scoring methodologies can be investigated to best
translate statistical deviations into a prioritisation of anomalies?
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Once statistical deviations are identified, the next step is to de-
termine which anomalies should be prioritised for review. Build-
ing on decision science principles and insights from anomaly scor-
ing literature (Kim et al., 2024; Hajirahimi et al., 2023), this phase
investigates multiple severity scoring methodologies to translate
deviation measures into a prioritisation of anomalies. The analy-
sis compares fixed-weight schemes, variance-driven score calibra-
tion (Yu et al., 2023), and tiered severity classifications inspired by
established anomaly categorisation frameworks (Wu et al., 2021).

4.1.4 Technical Validation & Evaluation

RQ4 To what extent does the proposed anomaly flagging system perform
reliably, and align with expert validation and benchmarking expec-
tations?

To understand how the system aligns with institutional needs
and expert expectations, a final technical evaluation is crucial. This
includes an expert survey andperformance feedback loop, grounded
in socio-technical system literature that emphasises human-centred
AI and trustworthy automation (Baxter et al., 2011; Sommerville et
al., 2007). Performance is further assessed through a targeted case
study, and internal test scenarios, providing a multidimensional
understanding of system reliability and interpretability in practice.

4.1.5 Ethical, Political, and Sectoral Considerations

RQ5 What ethical and institutional implications arise from implement-
ing an automated anomaly detection framework in the context of
global water utility benchmarking?

Beyond performance, the thesis closes with a reflective analysis
of the ethical and institutional implications of automating decision
support in a public-sector benchmarking system. Drawing from
literature on bias mitigation, linguistic framing, and trust in au-
tomation (Waller et al., 2025; McNealy, 2021; Borghouts et al., 2024;
Munro, 2021), the framework is evaluated for its alignment with
fairness, transparency, and institutional legitimacy. These consid-
erations inform not only the survey design and system language,
but also broader reflections on the role of automated flagging in
global development contexts.

Together, these research areas provide a structured lens through
which the thesis explores the intersection of automation, bench-
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marking integrity, and ethical accountability, bridging technical in-
novation with real-world applicability and stakeholder trust.

Summary: 5 sub-questions were formulated under five pil-
lars – structural (How can statistical profiling and rule-based log-
ical checks be used to detect data quality issues and prepare water
utility indicator data for reliable anomaly detection?), modelling
(How can utility metadata and comparator-based modelling sup-
port the detection of deviations in performance indicators across
diverse water utilities?), prioritisation (Which severity scoring
methodologies can be investigated to best translate statistical de-
viations into a prioritisation of anomalies?), technical valida-
tion (To what extent does the proposed anomaly flagging sys-
tem perform reliably, and align with expert validation and bench-
marking expectations?) and ethical review (What ethical and
institutional implications arise from implementing an automated
anomaly detection framework in the context of global water utility
benchmarking?) – framing the development and evaluation
of the system across all core dimensions.

4.2 Design & Methodological Framework

Rooted in principles of design science research, the approach bal-
ances technical modelling with ethical, contextual, and usability
considerations.

Rather than adhering strictly to either agile67 orwaterfallmethod- 67Agile Project Management: An
iterative approach that emphasises

flexibility, stakeholder
collaboration, and continuous
improvement through short

development cycles.

ologies68, this thesis adopts a research-driven iterative prototyping

68Waterfall Project Management:
A linear project management

approach where each phase (e.g.,
planning, development, testing) is
completed in sequence before the

next begins.

cycle that bridges exploratory inquiry and technical implementa-
tion. This is rooted in the understanding that validation in global
benchmarking is not purely a computational challenge, but amulti-
dimensional problem shaped bydata complexity, institutional vari-
ation, and normative expectations – all surfaced during the analysis
in Chapters 2 and 3.

The following two subsections – Iterative Prototyping Cycle in
Section 4.2.1, and Development Timeline in Section 4.2.2 – outline
the backbone of this methodology.

4.2.1 Iterative Prototyping Cycle

To guide the structured yet adaptive development of the anomaly
detection system, this thesis introduces a tailored Iterative Proto-
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typing Cycle displayed in Figure 4.1 – a custom-built methodology
designed to balance technical rigour with human-centred respon-
siveness and ethical reflection.

Figure 4.1: The Iterative Prototyping Cycle used in this thesis, consisting of
four interconnected stages – Technical Implementation, Human-Centric Review,
Ethical Reflection, and Iteration & Documentation – guiding the continuous
development and refinement of the anomaly detection framework.

Unlike conventional engineering lifecycles, this approach is de-
liberately designed for the unique challenges of public-sector data
systems, where institutional fragmentation, data uncertainty, and
political sensitivity demand a more nuanced, reflexive design pro-
cess. The cycle is conceptually grounded in van de Poel et al., 2011’s
ethical cycle and design-for-values principles, which highlight the it-
erative alignment between technological systems and normative
goals; it also draws on Munro, 2021’s human-in-the-loop paradigm,
which emphasises the importance of continuous expert input in
machine learning processes, and Tong et al., 2009’s work on prod-
uct innovation design, which advocates for iterative product devel-
opment through stakeholder engagement and coordination across
technical and functional domains.

Each iteration consists of four sequential but interlinked phases,
repeated across core development sprints:

Step 1: Technical Implementation

This first phase centres on the systematic development of core sys-
tem components, encompassing data preprocessing, algorithm de-
sign, and model configuration. Drawing on the technical insights
reviewed in Chapter 3, each implementation decision reflects both
prior research and contextual adaptation to the realities of bench-
marking environments. Rather than building toward a static end-
product, this step prioritises exploratory experimentation and it-
erative refinement, allowing alternative modelling strategies to be
tested, compared, and revised.
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Step 2: Human-Centric Review

Once a technical implementation of the module is investigated, its
outputs undergo human-centred review. This includes personal
critical reflection on edge cases or unexpected results, as well as
external feedback from domain experts – such as the World Bank’s
NewIBNET team and academic supervisors from Delft University
of Technology. Their input provides essential contextual ground-
ing, helping to assess not justwhether themodelworks, butwhether
it aligns with institutional workflows.

Step 3: Ethical Reflection

Each cycle explicitly incorporates a reflective step focused on eth-
ical implications. This goes beyond technical functionality to as-
sess broader questions of fairness, transparency, and potential un-
intended consequences. The reflection considers both the current
module and its contribution to the overall findings, forming a holis-
tic ethical perspective that evolves alongside the technical design.

Step 4: Iteration and Documentation

Informedby insights from the previous stages, targeted refinements
are made to the model logic or underlying assumptions. These
changes are clearly documented, including the rationale behind
them, the expert and ethical feedback that informed them, and how
they position the system for the next development stage. Each cy-
cle concludes with the formulation of an objective for the next iter-
ation, ensuring focused, continuous progression.

Summary: The iterative prototyping cycle offers a struc-
tured yet flexible approach, enabling the systematic devel-
opment, testing, and refinement of anomaly detection strate-
gies through 4 alternating phases: Technical Implementa-
tion,Human-Centric Review, Ethical Reflection, and Itera-
tion &Documentation. Each iteration contributes to deeper
insight into the interaction between automation, domain-
specific constraints, and public-sector accountability.

4.2.2 Development Timeline

The development of this work followed a structured timeline span-
ning 7 months, from February 2025 to August 202569. The pro- 69Thesis Timeline: For an

in-depth overview of the timeline,
see Appendix D.1.
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cess was divided into three core phases: (1) Literature Study &
Gap Analysis, (2) Model Development & Validation, and (3)
Synthesis & Recommendations. Each phase builds incrementally
on the preceding one: theoretical insights from the literature in-
formed targeted system requirements; these, in turn, shape the de-
sign and evaluation of the automated framework; and finally, the
outcomes of implementation are translated into analytical reflec-
tions and domain-relevant recommendations.

4.3 Critical Assumptions & Risk Analysis

The focus of this thesis is formedby bothmethodological constraints
and institutional realities. While the work intends to introduce
structural improvements to indicator validation processes, it has
been designed to demonstrate feasibility within a limited timeline.
Several design trade-offs and assumptions aremade to balance rigour,
usability, and scope, all of which carry implications for system per-
formance and generalisability.

4.3.1 Critical Assumptions

The following assumptions underpin key design choices. Their in-
validation could compromise the relevance or functionality of the
system:

• SufficientDataQuality: Despite gaps, it is assumed that sub-
mitted utility data remains representative enough to support
anomaly modelling (Chandola et al., 2009).

• Stable Indicator Definitions: Indicator structures and units
are assumed to remain consistent throughout the develop-
ment period.

• Stakeholder Input: Timely feedback from the NewIBNET
team and academic supervisors is assumed for iterative vali-
dation and contextual calibration.

4.3.2 Risk Analysis

Several risks were identified during the design phase, each influ-
encing the experimental boundaries of this thesis:

• Over-sensitivity to Sparse Data: High rates of missing or
anomalous inputsmay distort flagging logic. Tomitigate this,
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the system could look into incorporating gap detection, im-
putation safeguards, and controlled outlier thresholds (Clifton
et al., 2022; Wu et al., 2021).

• Static Comparator Limitations: Fixed comparator groups of-
fer interpretability but risk obsolescence in changing socio-
political contexts. Dynamic benchmarking is excluded due
to infrastructure constraints but remains a key area for future
extension.

• Misalignment with Human Review Practices: Automated
flags may not always align with reviewer judgment or oper-
ational relevance. This risk is partially mitigated through ex-
pert feedback loops and design of interpretable scoring logic
(Baxter et al., 2011).

• Ethical and Institutional Constraints: Without downstream
integration into decision processes, there is a risk that flags
could reinforce existing inequities or bemisapplied. While in-
terpretive outputs remain out of scope, fairness principles are
embedded through stratified comparators and transparency
in scoring logic (Waller et al., 2025; McNealy, 2021).

• Dataset Scope Limitation: The experimental evaluation is
based on a single dataset from the NewIBNET system, which
may introduce contextual bias or limit the generalisability of
findings. Tomitigate this, supplementary testing is conducted
using data from another utility association to assess transfer-
ability and robustness of the proposed approach.

4.3.3 Out-of-Scope Areas & Deferred Innovations

Certain capabilities – such as dynamic comparator calibration, test
input separation protocols, and interactive reviewer tools – are de-
prioritised due to time and system complexity. Their exclusion
does not signal irrelevance but reflects the focus on back-end ro-
bustness and institutional feasibility. Supplementary guidancema-
terials70 were developed in lieu of interface-level enhancements. 70Examples include reviewer

documentation and a
walk-through.

Summary: Key assumptions included stable indicator defi-
nitions and stakeholder availability, while risks such as data
quality issues and comparator misalignment were identified
and addressed through mitigation strategies.



5
Data Preparation &

Structural Validation

RQ1: How can statistical profiling and rule-based logical checks
be used to detect data quality issues and prepare water utility in-
dicator data for reliable anomaly detection?

This chapter establishes the foundational integrity of theNewIB-
NET dataset through three sequential components: initial data ex-
ploration in Section 5.1, logical validation in Section 5.2, and miss-
ing data treatment in Section 5.3. It begins by assessing structural
completeness, statistical variability, and reporting behaviours across
raw inputs to determinewhether the dataset supports robust down-
stream analysis. Next, it applies indicator-level validation rules to
flag logically inconsistent entries. Finally, it addresses persistent
data gaps in optional wastewater indicators through a comparative
evaluation of imputation methods.

5.1 Initial Data Exploration & Characteristics

Before designing a scalable anomaly detection system, it is essen-
tial to first assess the structural integrity and statistical foundation
of the raw dataset. This section outlines the initial data ingestion
pipeline in Section 5.1.1 and evaluates the completeness, distribu-
tional properties, and reporting behaviour in Section 5.1.2. These
steps serve two critical purposes: first, to ensure that the dataset
provides a sufficiently robust statistical basis for downstreammod-
elling, and second, to surface early-stage issues – such as missing

47
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values or implausible entries – thatmay justify immediate flagging.
Such pipeline design and exploratory analysis establish the mini-
mum data requirements for reliable validation and lay the ground-
work for the rule-based checks and modelling logic that follow.

5.1.1 Pipeline Development

Given the absence of an existing technical stack, a local processing
environment is set up using Python71 – chosen for its flexibility, 71Python: A popular, high-level

programming language known for
its readability and versatility. See
more: https://www.python.org/

compatibility with tools like Power BI72, and its suitability for scal-

72Power BI: A Microsoft data
visualisation tool used to analyse
and share interactive business

insights – currently used in Data
Visualisation layer of NewIBNET.

See more:
https://www.microsoft.com/

en-us/power-platform/
products/power-bi

able data manipulation. Confidential Excel files containing the full
2022, 2023, and partial 2024 utility submissions, totalling 289 utili-
ties, are securely shared by the NewIBNET team.

As a first step, the raw inputs are imported into a code-friendly
environment73, where key preprocessing tasks can be performed:

73Visual Studio Code: A
lightweight, open-source code
editor developed by Microsoft,
popular for programming across
multiple languages. See more:

https://code.visualstudio.com/

variable renaming for clarity, file reformatting for readability, and
scripting basic data ingestion logic to transition away from opaque
spreadsheet review. Initial inspection also revealed unit discrep-
ancies – some fields used different measurement systems within
the same column. These inconsistencies are addressed through a
custom unit conversion mechanism74, enabling alignment across

74This is needed for standardising
water volumes and pipe length

inputs.

utility submissions. In Figure 5.1, it can be seen exactly which raw
data points required conversion.

Figure 5.1: This illustrates the transformation pathway from raw numerical in-
puts (left) through derived indicators (centre), and into the comparator logic that
determines final flagging outcomes (right). Raw data requiring unit conversion
is marked with a dark blue “convert” square adjacent to the corresponding value.

Each of the 289 utilities is expected to submit responses for ques-
tions Q1–Q25 (indicated in light green), with the exception of the
wastewater-related inputs (indicated in grey). This is expected to
result in a total of 6,936 data points – 24 per utility. These raw in-
puts are then used to compute 15 key indicators I1-I15 (indicated

https://www.python.org/
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://www.microsoft.com/en-us/power-platform/products/power-bi
https://code.visualstudio.com/
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in dark blue), yielding 4,335 derived indicator values across the
dataset. These indicator values form the basis for comparison against
relevant comparator groups, as will be discussed in the following
chapters, to ultimately determine whether a data point is anoma-
lous.

This preparatory phase sets the groundwork for deeper exploratory
data analysis, which is essential for understanding the statistical
behaviour and structural gaps within the dataset – going beyond
surface-level observations to informmodel design andflagging logic.

5.1.2 Exploratory Data Analysis

The second step involves conducting a statistical and structural as-
sessment of the raw dataset, as part of the broader data preparation
and validation pipeline. This phase aims to quantify the variability
and sparsity of utility submissions across all raw inputs within the
environment introduced in Section 5.1.1.

The rationale for this exploratory phase is well-supported in the
literature, which emphasises the importance of statistical profiling
as ameans of understandingwhat constitutes normal behaviour be-
fore attempting to flag deviations (Chandola et al., 2009; Ahmed et
al., 2016; Bhuyan et al., 2013)75. 75As Chandola et al., 2009 stated,

“...anomalies are patterns in data that
do not conform to a well-defined notion
of normal behavior.” – a concept that
requires baseline characterisation

of each input variable.

Descriptive Profiling of Raw Inputs

Each raw input field (Q1–Q25) is subjected to a standard statisti-
cal summary, including mean, median, minimum, maximum, and
standard deviation. These metrics are computed across all avail-
able utility entries to assess dispersion and identify potential anoma-
lies in scale or input range. For instance, in the case of population
service size (Q2), a wide spread with 1 as the minimum, ∼190k as
the median, and amaximum of 22 million, spanning several orders
of magnitude, is observed.

In addition to this, a type-check verifies that each raw input
matches the expected numerical format. Since some test data is re-
portedly submitted outside the standard survey system, the code
also attempts to convert string-formatted numbers, flagging any
entries failing to convert. No type errors are found among the 289
utilities.

Missing Data and Placeholder Analysis

Alongside descriptive metrics, a gap analysis is conducted to de-
termine the completeness of each raw variable. This involves cal-
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culating the total number of null entries per field and examining
patterns of missingness across utilities. A particularly salient issue
is the appearance of the placeholder value ’1.0’, which is identified
– both byNewIBNET reviewers and confirmed throughmanual in-
spection – as a non-informative default used by some utilities dur-
ing data entry. Since ’1.0’ is not a plausible value for any of the raw
inputs, it is reclassified as a missing value. To ensure consistency,
the descriptive metrics presented earlier are recalculated after this
adjustment so that distributions reflect only valid entries. Out of
6,936 expected entries, a total of 975 are missing, and 248 contain
a placeholder value of ’1.0’, resulting in approximately 17% of the
dataset being incomplete.

The results, presented fully in the Appendix A.2, further reveal
significant sparsity in wastewater-related indicators, with missing
values ranging from 131 to 139 for each raw input Q9, Q10, Q11,
Q12, Q13, Q14, and Q24 – all classified as optional wastewater-
related survey questions. However, inconsistencies are also found
in mandatory non-wastewater fields, such as total water connec-
tions (Q8) and full-time employees (Q23), suggesting data entry
issues beyond optional service non-provision.

Distribution Visualisation

Understanding the distribution of input data is a crucial first step
in anomaly detection, as it provides insight into the underlying
patterns, variability, and potential irregularities in the data. Ex-
amining whether values are normally distributed, skewed, or mul-
timodal helps to differentiate expected variation from deviations
that require further scrutiny. Histogram-based visualisation and
parametric statistical modelling are commonly employed for this
task (Chandola et al., 2009; Wu et al., 2021), and their implementa-
tion here form the empirical foundation for subsequent rule-based
checks and comparator-based modelling.

Univariate histograms are generated for key variables, starting
with population service size (Q2) and totalwater connections (Q8).
As shown in Figure 5.2, both distributions exhibit strong right skew-
ness, characterised by a high concentration of small-scale utilities
and a long tail of larger urban providers.
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Figure 5.2: All three histograms illustrate the distributions of population service
size (Q2), total water connections (Q8), and a combined overlay of both – where
Q2 is shown in blue andQ8 in orange. The x-axis represents the number of people
served (up to a magnitude 10 million) and the number of water connections (up
to magnitude 1 million), reflecting the wide variability and exponential scale of
utility sizes. The y-axis indicates the frequency of utilities within each population
or connection range.

This exponential pattern indicates the need for stratification, as
applying a single global threshold could risk obscuring legitimate
local variations and disproportionately penalising smaller utilities.

This insight is reinforced in Figure 5.3, which plots the pop-
ulation service size (Q2) across predefined World Bank popula-
tion categories. Within each segment, distributions appear more
uniform and better suited to z-score based profiling. These find-
ings support the segmentation approach proposed in the work of
Manghee et al., 2012 and Bhatt, 2024, and later operationalised in
the comparator logic described in Chapter 6.
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Figure 5.3: This figure presents five separate histograms, each showing the dis-
tribution of population service size within a specific World Bank-defined cat-
egory: Very Low (0–100,000), Low (100,001–500,000), Medium (500,001–
1,000,000), High (1,000,001–5,000,000), and Very High (5,000,001 and
above). By segmenting the data into these predefined ranges by the World Bank,
the figure allows for a clearer comparison of the internal variation within each cat-
egory and highlights how population sizes are distributed across different utility
scales.

Identification of Structural Artefacts

Finally, several implausible values are flagged during manual re-
view. The most extreme case involves a reported total population
size (Q1) exceeding 2 billion – an artefact likely stemming from in-
ternal spreadsheet testing. The existence of such entries confirms a
lack of internal filteringmechanisms and indicates the need for log-
ical rule-based validation, which is developed in the following sec-
tion. These findings echo earlier research on metadata validation
and structural constraints (Raciti et al., 2012; Y. Liu et al., 2025).

In total, this process identified 21 utilities with missing data in
fields where values are expected. These 21 utilities are now ex-
cluded from further analysis, as the incomplete records suggest ei-
ther test data or submissions not suitable for deeper validation.
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Summary: This phase established a foundational data
pipeline and conducted a structural and statistical assess-
ment of the raw dataset, revealing key issues such as unit
inconsistencies, missing values, and structural outliers.

5.2 Logical Validation Rules

Logical validation rules assess the internal coherence of the 15 de-
rived indicator values – computed metrics that form the founda-
tion of NewIBNET’s benchmarking process. While the initial data
exploration addresses surface-level issues such as missing values,
placeholder entries, and data type mismatches, this stage moves
deeper by embedding logical and mathematical checks into the in-
dicator calculations themselves. These checks are grounded inwhat
we know and expect fromwell-formedutility data – flagging implau-
sible ratios, invalid percentages, and undefined operations such as
division by zero.

In doing so, logical validation shifts the focus from basic data
hygiene toward verifying whether reported values adhere to the
fundamental principles behind each indicator.

5.2.1 Validation Logic & Design

Each of the 15 core indicators is computed using fixed combina-
tions76 of raw inputs, with validation rules applied during the com- 76Indicator Equations: Refer to

the overview provided in
Appendix A.1

putation process. Drawing from sector-specific norms and statisti-
cal literature (Wu et al., 2021; Abián et al., 2019), indicators are
evaluated for:

• Percentage bounds: Most percentage-based indicators are log-
ically constrained to a 0–100% range. Exceptions, such as
wastewater treatment coverage (I8) and operational cost cov-
erage (I13), are permitted to exceed this due to inflows or fi-
nancial surpluses, respectively.

• Division-by-zero protection: Any operation involving divi-
sion includes a pre-check to ensure denominator validity.

• Non-negativity constraints: Indicators relying on subtractive
logic77 are checked to ensure outputs remain within realistic 77Subtractive Logic: Non-revenue

water indicators I4 and I5 use
subtractive logic.

bounds.
• Input completeness: Indicators depending onmissing or flagged

raw values are withheld from final computation and routed
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for review.

5.2.2 Utility Dataset Results

Applying these validation rules to the dataset reveals a range of
indicator-level anomalies. In total, 36 instances among 29 utilities
fail to meet the validation criteria outlined in Section 5.2.1. A de-
tailed breakdown of the results is presented in Table 5.1.

Table 5.1: Overview of Detected Logical Validation Errors

Type of Error Number of Violations

Percentage bounds exceeded 27
Negative values in subtractive
indicators

6

Division-by-zero 3

Total 36

Notably, 27 of these violations, accounting for 75% of logical
issues, are due to percentage values exceeding 100% in indicators
that are logically capped. These flags point to fundamental errors
in data entry or indicator computation, which would not have been
identified through surface-level structural checks alone.

Unusual patterns also emerged in indicators that are technically
permitted to exceed 100%. For instance, values for operational cost
coverage (I13) typically range between 100–150%, but several ex-
treme outliers far exceed 1000%. While such figures may be plau-
sible in exceptional cases – such as utilities involving post-subsidy
revenues78 – they raise interpretive concerns when no correspond- 78Post-subsidy Revenues: Refers

to external financial inflows that
may be excluded in operating

revenues, leading to ratios above
100% (Foster et al., 2010).

ing explanation for the surplus is provided. Similarly, wastewater
collection ratios (I8) occasionally exceed 100%, which could reflect
inflow or infiltration79 effects, but inmost instanceswarrant further

79Inflow and Infiltration: Refers to
unintended stormwater (inflow) or
groundwater (infiltration) entering
the sewer system through faulty

pipes, manholes, or illegal
connections (EPA, 2014).

clarification to ensure data credibility.
Looking beyond violations detected through validation rules,

the indicator summary sheet80 highlights extreme outliers that de-

80Full indicator descriptive
statistics overview can be found in

Appendix A.4.

part sharply from sector norms81. Most indicators – such as drink-

81Sector norms here refer to the
IBNET-recorded standards from

2014 (World Bank, 2014).

ingwater coverage (I1), continuity of supply (I2), and non‐revenue
water in percentage terms (I5) – generally fall within expected per-
formance ranges for low‐ andmiddle‐income contexts (World Bank,
2014). However, several metrics contain values that far exceed op-
erational plausibility: non-revenue water (I4) exceeding 16 mil-
lion82, sewer blockages (I7) surpassing 480,000 per 100 km, col- 82Typical IBNET Range: 50–60

m³/km/day (World Bank, 2014).lection rates (I9) reported at over 600,000%83, and operational cost
83Typical IBNET Range: median of

85–105% (World Bank, 2014).

coverage (I13) above 58 billion%84. Suchmagnitudes aremore con-

84Typical IBNET Range: < 100%
(World Bank, 2014).
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sistent with unit misalignment, data entry errors, or unfiltered raw
values than with genuine performance variation. Even when me-
dians lie within credible bounds, these extreme cases indicate the
need for automated plausibility limits and targeted follow‐up to
safeguard the integrity of benchmarking outputs.

Additional anomalies include negative values in subtractive in-
dicators, accounting for 6 of the 36 total violations, as well as iso-
lated division-by-zero errors, which occurs in 3 cases. Both types
of issues are automatically flagged and excluded from further anal-
ysis.

A total of 29 utilities are flagged during this stage, in addition
to the 21 utilities previously identified in the exploratory data anal-
ysis. This indicates the layered design of the pipeline, where struc-
tural and logical validations operated in tandem to catch both surface-
level and embedded inconsistencies.

Summary: This introduced a suite of logical validation rules
designed to assess the mathematical coherence and concep-
tual plausibility of derived indicator values. By flagging vi-
olations such as percentage overflows, negative ratios, and
division-by-zero errors, this stage ensured that data integrity
extends beyond surface-level completeness to include in-
ternal consistency, reinforcing the reliability of subsequent
anomaly detection and benchmarking.

5.3 Missing Data Treatment: Imputation

Persistent data gaps, particularly in wastewater indicators, pose a
fundamental challenge to the integrity and completeness of anomaly
detection. Rather than excluding partially submitted entries, this
section explores whether statistical imputation can be used to re-
cover plausible values and preserve analytical coverage.

Drawing on prior literature, twomethods are evaluated: a para-
metric statistical approach using median imputation (Miao et al.,
2024), and a k-nearest neighbour (k-NN) approach adapted from
privacy-preserving data systems (Clifton et al., 2022). Eachmethod
is tested on a selection of utilities with wastewater reporting gaps
to assess their impact on downstream anomaly detection results.
Importantly, imputed values are treated as diagnostic intermedi-
aries only – used internally to support fairer flagging coverage, but
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not to retain or publish in the final Data Visualisation stage.

5.3.1 Eligibility Criteria for Imputation

Imputation in this study is applied only towastewater indicators as
this subset shows inconsistent gaps85, where some utilities report 85Inconsistent Wastewater Gaps:

Raw data inputs Q9, Q10, Q11, Q12,
Q13, Q14, and Q24 each had

around 131–139 missing values.
Further details are provided in

Appendix A.2.

certain wastewater data but not others, creating ambiguity. Rather
than assuming the absence of wastewater services, imputation can
be used here to give utilities the benefit of the doubt, acknowledg-
ing that a utility may provide wastewater services but lack data
for specific measures. The focus of this experiment is therefore to
testwhether retaining such utilities, with statistically grounded im-
putation applied for review purposes, strengthens validation. By
contrast, imputing non-wastewater indicators is more problematic
given their weaker interlinkages, and is therefore left out for now.

All utilities are classified based on the availability of raw data
required to compute four keywastewater indicators: sanitation cov-
erage (I6), sewer blockages (I7), wastewater collected and treated
(I8), and number of employees per 1000 connections (I14). Each
utility is assigned to one of four categories:

• Completely Missing: No data available for any of the four
wastewater indicators. These are assumed to represent non-
wastewater service utilities, and no imputation is applied.

• Completely Filled: All four indicators could be computed
from available data. These cases require no intervention and
are excluded from the imputation process.

• Sporadic: Only one of the four indicators is derivable, rais-
ing concerns about data quality or reporting inconsistencies.
These cases are flagged for reviewer inspection but not im-
puted.

• Eligible for Imputation: Two or three indicators could be de-
rived, indicating partial but coherent reporting. These sub-
missions are considered suitable for imputation.

Table 5.2 shows the distribution of utilities across imputation
classification groups within the 2022–2024 NewIBNET dataset.
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Table 5.2: Imputation Classification Groups for the 2022-2024 NewIBNET
Dataset

Category Number of
Utilities

Completely Missing 127
Completely Filled 108
Sporadic 9
Eligible for Imputation 24

Total 268

Only the fourth group of Eligible for Imputation, comprising
24 utilities and 32 instances, is selected for experimental compari-
son using bothmedian and k-NN approaches. The evaluation com-
pares indicator behaviour in the Eligible for Imputation group
against the Completely Filled baseline.

5.3.2 Median Approach

As a simple approach, median imputation provides a transparent,
low-complexity method for estimating missing values. This tech-
nique replaces missing entries with the median of the correspond-
ing indicator across comparator groups, offering a robust estimate
that resists distortion from outliers (Miao et al., 2024). The median
values for each wastewater indicator are presented in Table 5.3.

Table 5.3: Overview of Median Imputation Results for Wastewater Indicators
within the NewIBNET 2022-2024 Dataset

Indicator Number of Imputed
Values

Median Value

I6 1 54.000
I7 10 225.616
I8 17 100.000
I14 4 4.597

5.3.3 k-NN Approach

Inspired by the methodology proposed in Clifton et al., 2022, this
experiment applies a k-NN approach to impute missing wastew-
ater indicators by identifying utilities with similar profiles across
known variables. This method is particularly suited to NewIB-
NET’s structure, where utility characteristics vary substantially but
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appear to fit more evenly into predefined population clusterings.
This method results in different imputed values per instance, un-
like median imputation which produces a single value for all indi-
cators.

To first assess the appropriate number of neighbours (k) for
k-NN imputation, a comparative sensitivity analysis is conducted
across values k = 2 to 786. For each setting, the imputed distri- 86Small k values (≈2–10) are often

tested in k-NN imputation for
datasets with limited structure, e.g.

Troyanskaya et al., 2001 on
microarray data.

butions are overlaid with the distribution of utilities with complete
(non-imputed) indicator values to evaluate alignment in shape, cen-
tral tendency, and spread. The objective is to identify which value
of k best preserves the expected statistical behaviour derived from
neighbouring utilities, thereby yielding themost contextually faith-
ful imputations. The results can be seen in Figure 5.4.

Figure 5.4: This figure presents the sensitivity analysis for k-NN imputation,
evaluating values of k ranging from 2 to 7. It consists of four graphs, each cor-
responding to one of the wastewater indicators under examination: I6 (top left),
I7 (top right), I8 (bottom left), and I14 (bottom right).

Overall, no major divergence is observed in sewer blockages
(I7) and number of employees per 1000 connections (I14), with
distribution curves showing substantial overlap across all tested
values of k. This indicates relative insensitivity to parameter vari-
ation. In contrast, wastewater collected and treated (I8) demon-
strates clearer variation, with k = 2 and k = 4 exhibiting slightly
better alignment with the original distribution than the default k =
3. For sanitation coverage (I6), using k = 3 results in imputed val-
ues that aligned more closely with the second peak of the bimodal
distribution, indicating a stronger contextual fitwith high-coverage
utilities compared to higher k-values, which averaged acrossmodes



5.3. Missing Data Treatment: Imputation 59

and shifted the result into the low-density valley.
k = 3 is retained for consistency in subsequent analysis, given

the absence of strong performance differentials in most indicators.
Nevertheless, this experiment shows an important insight: the op-
timal value of k may be indicator-specific rather than global. Tai-
loring k per indicator, potentially informed by cross-validation or
structural similarity metrics, could further improve the contextual
accuracy of imputation within a given dataset and warrants future
exploration.

5.3.4 Performance and Robustness Comparison

This section compares the outputs of median and k-NN imputation
across the fourwastewater indicators. Each imputed distribution is
evaluated against the distribution of utilities with complete (non-
imputed) indicator values as shown in Figure 5.5.

Figure 5.5: Distribution of wastewater indicators comparing original baseline
distributions (based on complete entries, shown in blue), k-NN imputation re-
sults with k = 3 (shown in red and orange), and median imputation results
(shown in green).

Sanitation coverage (I6) presents a distinct bimodal distribu-
tion over a 0–140% range, with peaks around 30% and 90%, reflect-
ing the divide betweenutilitieswith limited versus extensive infras-
tructure. The k-NN-imputed value (∼70%) is positioned centrally
between these peaks – a region of low empirical density, suggesting
the method blends neighbours from both clusters. Median impu-
tation (∼55%) also falls into this dip, indicating the challenge both
methods face when reconciling multimodal patterns. While k‐NN
benefits from contextual grounding, its performance is difficult to
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assess for this indicator, as only a single value required imputa-
tion; neither approach fully captured the real‐world segmentation,
highlighting the need for reviewer oversight in heterogeneous dis-
tributions.

In contrast, wastewater treated (I8) follows a unimodal, right-
skewed distribution, concentrated between 70–100 units. Here, k-
NN closely replicated the original curve, peaking slightly earlier
(∼70) and tapering off conservatively before 180. Median imputa-
tion (at 100) coincides with the empirical peak, making it statisti-
cally optimal in centrality but less reflective of the natural spread.
k-NN provided a better match to shape and dispersion, reinforcing
its strength in continuous, moderately skewed settings.

Both sewer blockages (I7) and employee ratios (I14) exhibits
highly right-skewed distributions, with dense clustering at low val-
ues (0–40) and sparse long tails reaching up to 500,000 and 1,200,
respectively. In both cases, k-NN restricts imputed values to the
populated low-value region, avoiding tail extrapolation and pre-
serving distribution realism. Median imputation yields values near
the same peak, but without any variation. This highlights k-NN’s
strength in avoiding distortion while preserving nuance, even in
sparse or extreme-value contexts.

From the perspective of anomaly detection, the choice of impu-
tation method has direct implications for the reliability and inter-
pretability of downstream statistical analyses. Median imputation,
while robust against outliers, imposes a fixed central tendency that
can obscure genuine variability, which can be particularly problem-
atic when imputing data from utilities that may exhibit anomalous
but contextually valid behaviour. In contrast, k-NN imputation
adapts to local data structure, allowing imputed values to reflect
the variability and contextual signature of their nearest neighbours.
Although k-NN may reinforce erroneous patterns if neighbouring
data points are themselves flawed, it does so in a probabilistically
consistent manner, preserving the empirical relationships within
the data.

Therefore, in the context of flagging where outliers may rep-
resent either errors or legitimate edge cases, k-NN offers a more
nuanced foundation for anomaly flagging, especially when paired
with diagnostic visualisations and expert oversight.
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Summary: This section explored whether statistical impu-
tation can enhance coverage of partially reported wastew-
ater indicators without compromising anomaly detection,
comparing median-based and k-nearest neighbour (k-NN)
methods. While median imputation offered simplicity, k-
NN better preserved contextual variability and distribu-
tional nuance, making it a more suitable foundation for reli-
able, nuanced anomaly flagging in incomplete datasets.



6
Context-Aware

AnomalyModelling
Frameworks

RQ2: How can utility metadata and comparator-based modelling
support the detection of deviations in performance indicators across
diverse water utilities?

To meaningfully assess whether a utility’s indicator values re-
flect anomalous behaviour, they must be interpreted relative to a
suitable context. This chapter investigates how comparator groups
– predefined peer sets used to establish normative baselines – could
influence the fairness and sensitivity of anomaly detection outcomes.
Overview of Comparator Design in Section 6.1 outlines the logic
behind comparator design; Existing Static Comparators in Section
6.2 analyses the legacy static comparator groups currently embed-
ded in the NewIBNET framework; and New Static Comparators in
Section 6.3 introduces two newly proposed comparator configura-
tions, developed and examined in this thesis to improve contextual
validity.

6.1 Overview of Comparator Logic

In themanualNewIBNET reviewprocess, a comparator group refers
to the population over which a given comparator type is calculated,
forming the internal reference point against which utilities’ indi-
cator values are assessed for potential anomalies. While the term
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comparator group is used here as an analytic construct, it aligns with
the implicit logic already present in NewIBNET’s manual reviews.

Each of the 15 indicators calculated per utility is compared to
the values within its assigned comparator group. This is opera-
tionalised through z-score calculations:

𝑧 =
𝑥 − 𝜇

𝜎

where 𝑥 is the utility’s indicator value (I1-I15), 𝜇 is the com-
parator group mean, and 𝜎 is the group’s standard deviation. The
resulting z-score provides a consistent way to measure how far a
utility’s value deviated from the average of its comparator group.

Summary: This section outlined how static comparator
groupswere used in theNewIBNET review process to assess
utility indicators by calculating z-scores, enabling standard-
ised detection of deviations from group norms.

6.2 Existing Static Comparators

The existing manual NewIBNET validation framework relies on
three primary static comparator types: the global average, popu-
lation service size, and the number of water service connections.
Each of these offer a structured basis for assessing utility perfor-
mance relative to peers, serving as internal reference points during
the Data Review process.

6.2.1 Global Average Comparator

This comparator involves calculating a single mean and standard
deviation for each indicator across all utilities in the dataset. As
introduced in Chapter 2, this serves as the most generic reference
point and is likely selected for its simplicity and wide applicability.
However, while appealing in its universality, Chapter 5 quickly re-
veals limitations in heterogenous datasets like NewIBNET. Utilities
from vastly different operational contexts are treated as compara-
ble, potentially resulting in distorted or overly broad interpreta-
tions of deviation.
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6.2.2 Population Service Size Comparator

To improve contextual relevance, utilities are grouped according
to the population service size (Q2), following predefined thresh-
olds established by the World Bank. Specifically, each utility is
assigned to one of five population-based categories87: Very Low 87A visual representation of the

distribution of the
population-based categories is

provided in Chapter 5, Figure 5.3.

(0–100,000), Low (100,001–500,000), Medium (500,001–1,000,000),
High (1,000,001–5,000,000), and Very High (5,000,001 and above).
This stratification enables performance comparisons among utili-
ties with comparable demographic and operational scale, recog-
nising that factors such as infrastructure capacity, service coverage,
and resource constraints often vary systematically with population
size. The distribution of utilities across these categories, based on
the NewIBNET 2022–2024 submissions, is presented in Table 6.1.

Table 6.1: Overview of the Population Service Size Comparator Groups of the
NewIBNET 2022-2024 Dataset

Population Category Number of Utilities

Very Low 104
Low 115
Medium 25
High 29
Very High 16

Total 289

Within this distribution overview, it becomes evident that some
categories are more densely populated than others. For example,
the Very Low and Low categories contains the highest number of
utilities, with 104 and 115 respectively, while the remaining cate-
gories are significantly smaller, ranging between 16 to 29 utilities.
This aligns with the findings from Chapter 5 on statistical profil-
ing, which revealed a strong right-skewed distribution. Most util-
ities are smaller in size and therefore fall into the lower categories
of the defined range.

6.2.3 Water Service Connections Comparator

Aparallel stratification approach is applied based on the total num-
ber of water service connections (Q8) reported by each utility. As
with population size, utilities are assigned to one of five predefined
categories established by theWorld Bank: Very Low (0–10,000), Low
(10,001–50,000),Medium (50,001–100,000),High (100,001–200,000),
andVery High (200,001 and above). This dimension serves as an al-
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ternative proxy for size, reflecting the infrastructure footprint and
connection density of each utility. The distribution of utilities across
these service connection categories, based on theNewIBNET 2022–
2024 submissions, is shown in Table 6.2.

Table 6.2: Overview of the Water Service Connections Comparator Groups of
the NewIBNET 2022-2024 Dataset

Connections Category Number of Utilities

Very Low 65
Low 132
Medium 39
High 11
Very High 28

Total 275

The same trends observed in the population comparator are ev-
ident here as well. The Very Low and Low categories comprised a
much larger group compared to theHigh and Very High categories,
once again reflecting the right-skewed nature of the current data.

Summary: This section described the three static compara-
tors used in the NewIBNET validation framework – global
average, population service size, and number of water con-
nections. The distribution of utilities across these categories
revealed a strong right skew, with most falling into the Very
Low and Low groups, highlighting the importance of using
stratified comparators for fairer anomaly detection.

6.3 New Static Comparators

While the existing static comparators provide a foundationalmech-
anism for contextual benchmarking, this thesis also exploreswhether
alternative groupings could enhance the fairness and sensitivity of
deviation analysis. In particular, the classification systems devel-
oped by the World Bank, 2024, including regional and income-
based groupings88, offer a natural extension. These taxonomies 88The World Bank Country and

Lending Groups classification is
updated annually on July 1 (World
Bank, 2024). This thesis applies the
2024–2025 fiscal year classification.

are widely recognised in global development discourse and are al-
ready integrated into NewIBNET’s institutional framework, mak-
ing them both relevant and operationally compatible. Their inclu-
sion also responds to insights from the literature in Section 3.2.7,
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where IBNET is frequently employed as a foundation for compar-
ative policy and performance research – from evidence-based po-
litical economy analysis (Manghee et al., 2012) and African utility
assessments (C. v. d. Berg et al., 2017) to tariff subsidy evaluation
(Andrés et al., 2020), fraud detection frameworks (Detroz et al.,
2017), and financial-service quality studies (Tsagarakis, 2018). At
the same time, critiques such as Bhatt, 2024’s work remind us that
efficiency-centric benchmarks risk obscuring local equity concerns,
highlighting the need for more nuanced comparator segmentation.

A visual map of participating utilities in Figure 6.1 illustrates
the broad geographic distribution – spanning multiple continents
– that underpins the need for differentiated analysis.

Figure 6.1: This map highlights the countries that participated in the 2022–
2024 data intake, with all blue-coloured countries actively contributing to the
database.

Figure 6.2 presents Utility X as an example, illustrating how a
single utility is assessed for comparative analysis on one indicator
(I1), and how five comparator results can be used to identify devi-
ations within their respective peer groups.
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Figure 6.2: This figure displays Utility X’s z-scores on Indicator I1 across differ-
ent comparator groups. The x-axis shows the existing and new static comparators
– global average, population service size, number of water connections, World
Bank Region group, and World Bank Income group – while the y-axis shows the
corresponding z-scores for Utility X, calculated relative to each comparator dis-
tribution. The utility’s name has been anonymised for privacy reasons and is
referred to here as Utility X.

6.3.1 World Bank Region Comparator

This comparator stratifies utilities according to the seven official
World Bank regions, based on the World Bank’s annual country
and lending group classifications (World Bank, 2024). Each utility
is mapped to a region according to the country inwhich it operates.
The predefined regional categories are:

1. East Asia and Pacific,
2. Europe and Central Asia,
3. Latin America and the Caribbean,
4. Middle East and North Africa,
5. North America,
6. South Asia, and
7. Sub-Saharan Africa.

In theory, this allows the system to flag anomalieswithin region-
specific expectations, rather than applying a one-size-fits-all stan-
dard globally.

However, initial findings from the 2022–2024 dataset highlight a
similar yet critical pattern: distributional imbalance. The exact dis-
tribution of utilities for this comparator, based on the NewIBNET
2022–2024 datasets, is shown in Table 6.3.
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Table 6.3: Overview of the World Bank Region Comparator Groups of the
NewIBNET 2022-2024 Dataset

Region Number of Utilities

East Asia and Pacific 25
Europe and Central Asia 40
Latin America and the Caribbean 14
Middle East and North Africa 7
North America 1
South Asia 37
Sub-Saharan Africa 161

Total 285

Nearly 57% of all utilities in this submission round comes from
Sub-Saharan Africa, followed by 14% from Europe and Central Asia.
In contrast, North America and the Middle East and North Africa are
significantly under-represented. These imbalances raise important
questions about the statistical robustness of regional comparators
and their applicability when sample sizes are low.

6.3.2 World Bank Income Comparator

This comparator classifies utilities into one of four income cate-
gories as defined by the World Bank:

1. Low Income,
2. Lower-Middle Income,
3. Upper-Middle Income, and
4. High Income.

Income groupings offers a complementary lens to regional com-
parators, capturing economic factors thatmay influence investment
capacity, tariff structures, labour markets, and service quality.

The exact distribution of utilities for this comparator, based on
the NewIBNET 2022–2024 datasets, is shown in Table 6.4.
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Table 6.4: Overview of the World Bank Income Comparator Groups of the
NewIBNET 2022-2024 Dataset

Income Level Number of Utilities

Low 88
Lower-Middle 137
Upper-Middle 40
High 21

Total 286

As with the regional comparator, utility distribution is uneven.
The majority of utilities in the 2022–2024 dataset fall into the Low
and Lower-Middle Income categories, with less than 10% coming
from High Income countries. While this highlights NewIBNET’s
mission to serve emerging and developing contexts, it also poses
statistical limitations when applying these comparators to under-
represented groups.

The introduction of additional comparator dimensions aims to
broaden the contextual basis for anomaly interpretation, offering a
way to explore whether structural and geopolitical variation – such
as region or income level – can supplement existing groupings by
population and connection size.

However, this expansion also raises new challenges. The un-
even distribution of utilities across comparator groups highlights
that more context does not necessarily yield more reliable insight.
Comparisons drawn from sparsely populated groups or those with
high internal diversitymay introduce asmuch noise as clarity. This
brings fourth a critical consideration: if comparator groups vary in
representativeness and reliability, should their diagnostic weight be
adjusted accordingly?

Summary: New Static Comparators explored the use of al-
ternative static comparators – based on World Bank regional
and income classifications – to improve the contextual rele-
vance of anomaly detection. While these dimensions offered
valuable insight into structural and geopolitical diversity,
their uneven group distributions highlighted limitations in
statistical robustness.



7
Severity Scoring &

Decision Framework

RQ3: Which severity scoring methodologies can be investigated to
best translate statistical deviations into a prioritisation of anoma-
lies?

Having established the structure and rationale behind compara-
tor groupings in Chapter 6, the next challenge is determining how
deviations from these groups should be interpreted and acted upon.
The preceding chapter closed with a critical question: if compara-
tor groups differ in statistical robustness and representativeness,
should their diagnostic influence be weighted accordingly?

Existing Threshold Logic in Section 7.1 first reviews the legacy
framework’s static z-score thresholds and flagging logic. Weight-
ing in Section 7.2 then introduces a revisedmodel that weighs com-
parator scores based on internal variance and group size. Finally,
Severity Flagging in Section 7.3 proposes an integrated decision
framework that combines comparator weights, score aggregation,
and severity tiers to better align flagging outcomes with statistical
and contextual credibility.

7.1 Existing Threshold Logic

Before proposing a refined scoring model, it is important to exam-
ine the threshold-based logic within the current NewIBNET sys-
tem. Once all 15 indicator values are calculated, each is compared
against three predefined static comparators: global average, pop-
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ulation service size, and number of water service connections. A
utility is flagged if the z-score for any indicator falls outside the
range [−4, 4]. This threshold intends to capture extreme deviations
without triggering flags for contextually acceptable variation.

While this approach provides a simple and transparent start-
ing point, it embeds a critical limitation: each comparator is treated
with equal diagnostic weight, irrespective of its statistical robust-
ness. Yet, as Chapter 6 highlighted, the distribution of utilities
across comparator groups is highly uneven, with some categories
containing far fewer utilities than others. These imbalances directly
signal the need to incorporate comparator reliability into the anomaly
detection process, rather than assuming uniform diagnostic value.

Summary: This section examined the current threshold-
based system, which flags indicator values as anomalies if
any z-score across three equally weighted static comparators
falls outside the range [4, 4], highlighting its simplicity but
also its limitation in overlooking differences in statistical re-
liability across comparator groups.

7.2 Weighting

Building on the limitations identified in the existing threshold logic,
this section explores how weighted scoring could enhance the fair-
ness and statistical rigour of anomaly detection. The central premise
is that not all comparator groups offer equal diagnostic reliability:
some exhibit tighter, more stable distributions, while others are
sparse or highly variable, thereby weakening confidence in their
reference statistics. To address this imbalance, the intention is to as-
sign weights to each comparator and multiply these with their cor-
responding z-scores, ensuring that individual deviations are scaled
in proportion to the statistical reliability of the group from which
they are derived. Drawing on principles from decision science and
anomaly scoring literature (Kim et al., 2024; Hajirahimi et al., 2023),
this phase experiments with multiple severity weighting schemes.

Two similar weighting approaches are developed and tested in
this thesis, incorporating the newly introducedWorld Bank Region
and Income comparators into the validation process. These mod-
els aim to reduce false positives, better reflect contextual reliabil-
ity, and offer a more principled basis for evaluating utility perfor-
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mance.

7.2.1 Simple Weights

As a first approximation, comparator weights are derived based
on the relative variance of z-scores across all indicators. For each
comparator 𝑖, a global weight is computed as:

Weight𝑖 = 1 − Var(𝑍𝑖)∑5
𝑗=1 Var(𝑍 𝑗)

Where Var(𝑍𝑖) denotes the variance of z-scores produced by
comparator 𝑖 across the full dataset. The denominator is the total
variance across all comparators.

This provides a coarsemeasure of comparator consistency, with
lower variance suggesting greater statistical reliability. Fiveweights
– one for each comparator – are calculated with the intention of
applying them uniformly across all 15 indicator z-scores for each
utility. The results can be seen in Table 7.1.

Table 7.1: Simple Weight Results for the NewIBNET 2022-2024 Dataset

Comparator Weight

Global 0.7894
Population 0.8026
Connections 0.7977
Region 0.8082
Income 0.8021

Under this model, the World Bank Region comparator emerges
as the most stable with 0.8032, while the Global Average exhibits
the highest variability with weight 0.7894.

However, this approach has key limitations. It assumes uni-
form performance across all indicators, neglecting that a compara-
tor may be stable for some metrics but erratic for others. It also
treats comparators as statistically independent, overlooking struc-
tural correlations – such as overlap between income groups and
regional classifications – which may have led to redundant weight-
ing. Additionally, the weights are not normalised and do not sum
to 1, thereby limiting their interpretability and preventing relative
comparison across utilities. These shortcomings motivate the de-
velopment of a more refined, indicator-specific weighting model
that incorporates both local consistency and inter-comparator rela-
tionships.
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7.2.2 Advanced Weights

Asecond approach is tested that computes indicator-specificweights
based on the joint variability of z-scores across comparators. The
rationale is that the stability of a comparator may differ substan-
tially between indicators – for example, income-based grouping
may be a strong benchmark for financial KPIs but poorly structured
for customer service KPIs.

This relies on the use of a covariance matrix, constructed from
the z-score distributions of the five comparators for each indicator.
The covariance matrix captures not only how dispersed each com-
parator’s values are, but also how their variations interrelated – a
critical insight when dealingwith overlapping or correlated bench-
marking structures. In essence, comparators whose z-scores vary
erratically or in tandem with unstable peers are weighted down,
while those demonstrating unique and consistent explanatory power
are weighted up.

Mathematically, the matrix
∑

𝑗 is computed separately for each
indicator 𝑗, where each element

∑
𝑖 ,𝑘 represents the covariance be-

tween comparators 𝑖 and 𝑘. To transform this matrix into inter-
pretable weights, each column is normalised such that the weights
assigned to the five comparators for a given indicator summed to
1:

Weight𝑖, 𝑗 = 1 −
∑5

𝑘=1 Cov(𝑍𝑘,𝑗 , 𝑍𝑖, 𝑗)∑5
𝑘=1 Cov(𝑍𝑘,𝑗 , 𝑍𝑘,𝑗)

and then normalised such that
5∑
𝑖=1

Weight𝑖, 𝑗 = 1

This yields a 15×5 matrix of weights89, where each row corre- 89The full results are presented in
Appendix A.5.sponds to a specific indicator and each column to a comparator.

The normalised format ensures that the final composite z-scores
remains comparable in scale across indicators, enabling more con-
sistent flag severity interpretation downstream.

In Figure 7.1, and in the aggregated overview in Table 7.2, the
covariance-sum weights for all 15 indicators are presented across
the 5 comparators. This provides a more nuanced perspective on
representativeness and comparator reliability than the original sim-
ple weighting approach.
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Figure 7.1: This figure presents the covariance‐sum weights for each indicator
across the five comparator groups, with indicator colours aligned to the categories
defined in Chapter 2.1, facilitating semantic interpretation.

Table 7.2: Average Advanced Weight Results across all 15 Indicators for the
NewIBNET 2022-2024 Dataset

Comparator Average Weight

Global 0.216
Population 0.208
Connections 0.193
Region 0.193
Income 0.189

Total 1.000

Global carries the highest average weight (≈0.216), highlight-
ing its relatively unique contribution across indicators. Population
follows at around 0.208, still important but closer to the pack. Both
Income (≈0.193) and Region (≈0.193) settle in themid-range, indi-
cating moderate overlap. Connections, however, remains the low-
est (≈0.189), underscoring its slight redundancy with the other
comparators.

Viewing the weights through the thematic categories defined
in Chapter 2.1 reveals patterns in how comparator relevance varies
across indicator types.

For Water Access & Quality Performance indicators, Popula-
tion emerges as the most influential comparator, indicating that
service size plays a central role in explaining variation in utility
performance. Customer Service Performance indicators display a
more balanced distribution of weights, with Population, Connec-
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tions, and Global comparators contributing almost equally. This
suggests that customer service dynamics are shaped by a combi-
nation of utility size, infrastructure reach, and broader systemic
trends.

WorkforceMetrics indicators aremost strongly associatedwith
Global andPopulation comparators, reflecting both structural norms
and the influence of utility scale on workforce composition. For
Sanitation&Wastewater Performance indicators, the Global com-
parator carries the most weight, pointing to a lack of strong re-
gional or demographic clustering and underscoring the infrastruc-
tural variability of wastewater services. Financial Performance in-
dicators are most influenced by Global and Income comparators,
highlighting the importance of broader economic context and income-
level effects in shaping financial performance outcomes.

These patterns show the value of the full-covariance weighting
approach: by tailoring weights to each indicator’s unique variabil-
ity structure, it avoids the oversimplifications of uniform schemes
and ensures that themost contextually appropriate comparator group
is emphasised for each thematic domain.

Summary: This section introduced a refined scoring ap-
proach to improve the fairness and statistical rigour of
anomaly detection by assigning weights to comparator
groups based on their reliability. Two weighting models
were tested: a simple global variance-based method and
a more advanced, indicator-specific approach using covari-
ance matrices, which revealed nuanced differences in com-
parator relevance. This highlighted the Global comparator
as the most statistically independent and contextually infor-
mative comparator.

7.3 Severity Flagging

With comparatorweights established, this section explores an alter-
native threshold mechanism based on a composite severity score –
a single weighted aggregation of z-score deviations across all com-
parators, calculated per indicator for each utility.

Unlike the current system, which evaluates each comparator-
indicator pair independently, resulting in 21,675 separate z-scores
in the case of 5 comparators, 15 indicators, and 289 utilities90, this 90These quantities are calculated

under the assumption of a complete
dataset for all 289 utilities, allowing

for an estimation of the upper
bound of expected results.
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approach condenses anomaly information into a single unifiedmet-
ric per indicator. This method is expected to then produce 4,335
final z-scores, as it eliminates the 5 comparator dimension, signif-
icantly reducing the information load for reviewers and enabling
more scalable diagnostics.

Two areas are explored: one defining a composite severity score
in Section 7.3.1, and another testing sensitivity thresholds to deter-
mine optimal cut-off points for flagging in Section 7.3.2.

7.3.1 Composite Z-Score Logic

To move beyond individual comparator flagging, this section pro-
poses a unified thresholdingmethod based on a composite severity
score. The goal is to condense multiple comparator-based devia-
tions into a single, interpretablemetric that reflects both themagni-
tude and reliability of the underlying evidence. One intuitive way
to achieve this is by using the previously computedweights to scale
each comparator’s z-score, thereby reflecting its relative diagnostic
value.

However, to ensure comparability across indicators and avoid
inflating scores due to weight distribution, the composite also has
to be normalised. This results in a standardised weighted z-score
– a continuous metric that can support thresholding, ranking, and
severity tiering.

Mathematically, it is defined as a weighted linear combination
of standardised z-scores:

𝑍weighted
𝑗 =

∑5
𝑖=1 Weight𝑖, 𝑗 · 𝑍𝑖, 𝑗√∑5

𝑖=1 𝑤
2
𝑖

Where:

• 𝑍𝑖, 𝑗 is the z-score of utility 𝑢 for indicator 𝑗 within comparator
𝑖,

• Weight𝑖 , 𝑗 is the pre-computed trust weight for that pair.

• The denominator
√∑5

𝑖=1 𝑤
2
𝑖 serves as a normalisation factor

that preserves the scale and interpretability of the resulting
weighted z-score. Although the covariance-basedweights for
each indicator are normalised to sum to 1, this does not en-
sure that the magnitude of the resulting composite score is
comparable to a standard z-score. Without this adjustment,
the resulting score could be artificially deflated or inflated de-
pending on how the weights are distributed91. The denomi- 91For example: one dominant

weight vs. five evenly spread.
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nator thus ensures that when weights are applied, the result-
ing severity scoremaintains the statistical properties of a stan-
dard deviation-based z-score.

To illustrate this process, Table 7.3 presents an example calcula-
tion for I1 using a sample utility. It displays the weights per com-
parator for I1, the utility’s z-scores for I1 relative to each of the five
comparator groups, and the intermediate weighted values prior to
normalisation, with the squaredweights shown in the final column.

Table 7.3: Example Indicator 1 Calculations of a Composite Score for a Utility
from the NewIBNET 2022-2024 Dataset

Comparator Weight Z-Score Weighted (w·Z) Weight2

Global 0.2147 −1.83 −0.3929 0.04610
Population 0.2188 −1.65 −0.3610 0.04787
Connections 0.1829 −1.67 −0.3054 0.03345
Region 0.1881 −1.83 −0.3442 0.03538
Income 0.1956 −2.00 −0.3912 0.03826

Totals 1.0000 −1.7948 0.20106

Based on this data, the final weighted z-score for Indicator 1 for
this utility is calculated as follows:

Numerator:
5∑
𝑖=1

𝑤𝑖, 𝑗𝑍𝑖 ,1 = −1.7948,

Denominator:

√√√ 5∑
𝑖=1

𝑤2
𝑖 = 0.4484,

Weighted Z-Score: 𝑍weighted
1 =

−1.7948
0.4484

≈ −4.00.

When the above logic is applied across all utility-indicator com-
binations, it produces 3061 results in the 2022-2024 dataset. The
next step is to interpret these values – for example, does a score of
-4.00 reflect abnormal behaviour that requires attention? The following
section explores appropriate threshold levels based on the current
mathematical construction.

7.3.2 Sensitivity Testing

With the composite z-score standardised in previous section, its
distribution could be reasonably approximated as normal – a prop-
erty supported by the Central Limit Theorem92. This assumption 92Central Limit Theorem: This

suggests that linear combinations
of (approximately) normal

variables tend toward normality
(Montgomery et al., 2014).

enables the application of the empirical rule:
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• ∼68% of values lie within ±1 standard deviation,
• ∼95% within ±2,
• ∼99.7% within ±3,
• Values beyond ±4 are exceedingly rare and typically signal

anomalies or structural inconsistencies.

Building on this, a tiered severitymodel is developed to classify
the likelihood and urgency of an anomaly based on the composite
z-score:

• Normal (|z| ≤ 2): Within expected statistical variation.
• Mild (2 < |z| ≤ 3): Potential anomaly – merits attention, but

not immediately concerning.
• Moderate (3 < |z| ≤ 4): Strong deviation – likely warrants

follow-up or verification.
• Severe (|z| > 4): Statistically extreme – high probability of

error or misreporting.

A visualisation of the normal distribution with the correspond-
ing z-score categories is shown in Figure 7.2.

Figure 7.2: This figure illustrates the standard normal distribution with the
defined z-score categories, alongside the example from Section 7.3.1, where a
composite score of approximately -4.00 is positioned within the Severe category,
demonstrating how such a deviation is interpreted in terms of its statistical rele-
vance.

Taking the example from Section 7.3.1, the calculated z-score
of -4.00 falls within the Severe category on the normalised distribu-
tion graph shown in Figure 7.2. This places it outside the range of
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normal statistical variation and classifies it as an exceedingly rare
deviation, warranting follow-up or verification.

Looking at the complete results, Table 7.4 presents the number
of utility-indicator combinations and their respective categories.

Table 7.4: Severity Results for the NewIBNET 2022–2024 Dataset

Tier Number of Instances Number of Utilities

Normal 2423 239
Mild 369 195
Moderate 132 102
Severe 137 87

Total 3061

In total, 3,061 composite z-scores are generated, of which 638
are classified as non-normal deviations. The majority of cases falls
into the Normal category, accounting for approximately 79% of all
instances, whileModerate deviations are the least commonwith less
than 5%.

However, a closer examination of the instances reveals that, when
combining allMild,Moderate, and Severe cases, 217 out of 23993 util- 93Of the 289 total utilities, 21 were

flagged for incomplete inputs and
29 for rule-based logic violations in
Chapter 5, leaving 239 utilities for

deviation analysis.

ities had at least one instance falling into one of these categories.
This indicates that while around 20% of all utility-indicator combi-
nations are flagged as potentially anomalous, the utility-level cov-
erage is remarkably high at 90%.

When compared to the existing threshold logic in Section 7.1 –
where only values beyond ±4 are flagged – it could be argued that
only the Severe category aligns with this standard. Of the 137 Se-
vere instances identified, 87 utilities are involved with at least one
such case, significantly narrowing the scope from the earlier 217
potentially anomalous utilities out of 239. Another criterion could
be assessing how many utilities had overlapping cases across all
three categories. In this case, 46 utilities have at least one instance
in each of the Mild, Moderate, and Severe categories. This raises
a critical question regarding the appropriate threshold for distin-
guishing between genuinely anomalous behaviour and potential
over-flagging.

The distribution of weighted z-scores in Table 7.5 shows a clear
skew, with values ranging from -8.48 to 24.46, a median of -2.13,
and an average slightly below zero.
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Table 7.5: Descriptive Metrics for Weighted Z-Score for the 2022-2024 NewIB-
NET Dataset

Metric Value

Minimum -8.484
Maximum 24.458
Median -2.134
Average -0.485

This indicates that most utilities fall below the expected bench-
mark, pulling the central tendency into the negative range, while
a smaller number of extreme positive outliers drive the maximum
far above the mean. Only a subset of cases deviate meaningfully
from the benchmark, with the majority clustered closer to the Mild
range. This suggests that while deviations exist, they are concen-
trated in a limited number of high-severity outliers rather than be-
ing widespread across the dataset.

In Figure 7.3, an analysis of the severity distribution across indi-
cators in the comparator-based validation stage also reveals mean-
ingful variation in howdifferentmetrics deviate fromexpected norms.

Figure 7.3: This figure presents the distribution of identified flags by indicator
and severity level for the 2022–2024 dataset, with mild, moderate, and severe
bars coloured according to the categories defined in Chapter 2.1, enabling visual
comparison of anomaly intensity across indicators.

Examining the 2022–2024 flag distribution reveals that indica-
tors drinking water coverage (I1), continuity of supply (I2), and
especially customers with 24/7 supply (I3) account for the high-
est overall number of deviations, with I3 alone generating 143 flags
– predominantly Mild in severity. When viewed through the the-
matic categories defined in Chapter 2.1, the greatest concentration
of anomalies occur in Customer Service Performance and Water
Access & Quality Performance indicators, suggesting that these
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domains are potentially prone to measurement challenges, report-
ing inconsistencies, or genuine operational issues.

In contrast, indicators such as metered connections (I10), ser-
vice complaints resolved (I11), and drinking water quality (I12)
display a high share of Severedeviations relative to their total counts,
signalling sharper outliers and potentially more critical data qual-
ity or performance concerns. Financial Performance indicators show
the lowest deviation rates overall, indicating a relatively stable re-
porting landscape in that dimension.

The severity breakdown shows the value of disaggregating anoma-
lies not only by indicator but also by thematic category. This ap-
proach enables targeted, context-aware validation logic that can
inform both refinement and follow-up investigations – whether to
address systemicmeasurement errors, outdated equipment, or per-
sistent inconsistencies in reporting practices.

To conclude, this method replaces ad hoc flagging rules with
a theoretically grounded framework that scales severity based on
statistical extremity. Crucially, the comparator weights introduced
earlier refine this signal: comparators with higher internal variance
contributed less to the final score, reducing noise from inconsistent
groupings. As a result, high composite z-scores reflect both the
magnitude of deviation and the robustness of supporting evidence.

Summary: This section introduced a composite severity
scoring method that condenses multiple comparator-based
z-scores into a single, weighted metric per indicator, stream-
lining the anomaly review process. By applying normalisa-
tion and probabilistic thresholds, the method enabled tiered
severity classification (Normal, Mild, Moderate, Severe), re-
vealing that although 20% of data points were flagged as
anomalies, 217 out of 239 utilities had at least one flagged in-
dicator, raising important questions about over-flagging ver-
sus genuine abnormality in the dataset.



8
Technical Validation &

Evaluation

RQ4: To what extent does the proposed anomaly flagging system
perform reliably, and align with expert validation and benchmark-
ing expectations?

This chapter brings together the analytical insights and experi-
mental findings from the preceding chapters to offer a system-level
perspective on the proposed validation framework. Moving be-
yond individual components, it aims to evaluate how these ele-
ments interact as part of a coherent pipeline. The chapter begins
with an architectural synthesis in Section 8.1, translating the devel-
oped anomaly detection stages into a structured, reviewer-facing
system designed for practical implementation within NewIBNET.
This is followed by internal system testing in Section 8.2, which
probes the pipeline’s robustness, limitations, andperformancewhen
applied to test datasets, providing a proxy for ‘ground truth’ eval-
uation. Finally, the chapter closes with expert feedback integration
in Section 8.3, recognising that a system’s effectiveness is not only
technical but also social: stakeholder trust and interpretability are
critical for successful real-world adoption.

8.1 Architectural Synthesis

The preceding chapters – Chapter 5: Data Preparation & Structural
Validation, Chapter 6: Context-Aware Anomaly Modelling Frame-
works, and Chapter 7: Severity Scoring & Decision Framework –

82
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collectively laid the foundations for a comprehensive data valida-
tion pipeline.

What began as discrete validation experiments evolves into a
structured, multi-stage pipeline. This evolution is not predefined,
but emerges logically fromempirical observations, literature-backed
design choices, and iterative refinement across data preparation,
contextual comparison, and severity modelling.

Section 8.1.1 offers a deeper dive into how the 2022–2024 utility
dataset is processed across each validation stage, quantifying the
impact and distribution of flags throughout the pipeline. Section
8.1.2 then consolidates the full methodology into a proposed end-
to-end validation system, complete with defined flag categories,
threshold logic, and architectural flow, offering a tangible, opera-
tional prototype for future applicationwithin theNewIBNET frame-
work.

8.1.1 Cumulative Flag Analysis

The architecture that emerges from a series of research experiments
is divided into three core stages:

• Stage 1 (StructuralValidation): The pipeline begins by screen-
ing for foundational data quality issues. Utilities are flagged
for missing values, placeholder entries, and type errors that
compromise the interpretability or validity of the dataset.

• Stage 2 (Indicator Logic): Automatic logical validation rules
are applied at the indicator level. This includes coherence
checks between raw and derived values, as well as internal
consistency validations across related indicators. Utilities that
fail these domain-informed checks are flagged for further re-
view.

• Stage 3 (Comparator Analysis and Severity Scoring): For
utilities passing the previous stages, final anomaly detection
is performed using comparator-based analysis. Five context-
aware comparator groupings are formed to generate z-scores
per utility-indicator pair. Recognising that these comparators
vary in statistical robustness, a weighted scoring model is ap-
plied to compute composite deviation scores. These scores
are then evaluated against probabilistic thresholds, enabling
tiered severity flagging for outlier detection based on statisti-
cal magnitude and comparator reliability.

The layered nature of the framework allows for granular track-
ing of where and why utilities are flagged throughout the valida-
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tion process. As shown in Figure 8.1, each stage introduced flag-
ging checks.

Figure 8.1: This figure shows the severity flags by stage for the 2022–2024
dataset. Since Stage 3 (Comparator Analysis and Severity Scoring) is the only
stage that distinguishes between different severity levels, three separate colours
are used.

Across the three validation stages, the automated pipeline flags
a substantial proportion of the dataset. In Stage 1 (Structural Val-
idation), 21 utilities are identified with structural issues. In Stage
2 (Indicator Logic), 29 additional utilities are flagged for violating
indicator-level logic. Stage 3 (Comparator Analysis and Severity
Scoring) flags 217 utilities with at least one indicator falling into
theMild,Moderate, or Severe categories. This segmentation in Stage
3 (Comparator Analysis and Severity Scoring) highlights an im-
portant interpretative tension: how should severity be operationalised
in the review process, and what constitutes a true anomaly in the absence
of ground truth?

As thismarks the first large-scale application of automated scor-
ingwithinNewIBNET, it remains plausible thatmany of these flags
reflect genuine issues previously undetected through manual re-
view. The results suggest that up to 267 out of 289 utilities (92%)
may require further attention if all flagged cases across the three
stages are considered. Even under a conservative lens, focusing
solely on Severe cases across all stages, 137 utilities still merit man-
ual review. While this figure may appear overwhelming, it is im-
portant to note that each flagged instance is now traceable to a spe-
cific rationale. This traceability provides structure to the review
process, potentially reducing time burden and increasing diagnos-
tic clarity for expert reviewers.
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Together, these stages represent a pipeline grounded in techni-
cal validity.

8.1.2 Flag Pipeline

It is established that anomalies in the NewIBNET dataset emerge
not from a single source, but through a layered interplay of issues.
These distinct sources of error can be formalised into a three-stage
validation process. Collectively, they inform the definition of what
this system considers a flagged entry.

In this context, a flag is defined as any data point that:

• is incomplete where completeness is expected,
• has an incorrect data type,
• contains a placeholder value (e.g., ’1.0’),
• violates indicator logic, or
• deviates substantially from established comparator

group norms

Drawing inspiration from dual-layer metadata validation sys-
tems (Y. Liu et al., 2025), the proposed architecture seen in Fig-
ure 8.2 incorporates two validation layers to identify flags in accor-
dance with the aforementioned definition: a front-end responsible
for structural and logical checks, and a back-end that handles con-
textual benchmarking and severity scoring.

Figure 8.2: This diagram illustrates the front-end and back-end components of
the newly proposed data review pipeline, highlighting the three key stages where
automated flagging mechanisms will be implemented. The light green segments
indicate core elements of the system while the orange segments indicate optional
or alternative methods.
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In summary, this dual-layer validation pipeline transforms ex-
perimental findings into a deployable, auditable framework94 for 94For more information on how

this framework is developed and
shared with NewIBNET for

practical use, see Appendix D.2.

data quality assurance.

Summary: This section presented the synthesis of previous
research chapters into a structured, three-stage validation
pipeline, covering structural checks, logical validation, and
comparator-based anomaly detection, which flagged a sig-
nificant portion of the 2022–2024NewIBNETdataset. The re-
sulting dual-layer architecture formalises these stages into a
practical, auditable system for data quality assurance, offer-
ing both transparency and scalability for future implemen-
tation.

8.2 Internal System Testing

Before deploying an automated anomaly flagging system in a live
benchmarking environment, it is essential to verify how it behaves
under controlled but realistic conditions. Since no quantitative base-
line fromother benchmarking systems95 is publicly available, direct 95Other benchmarking platforms

reviewed in Appendix B.1, such as
AWWA and EBC, reported no use
of automated flagging systems.

comparison is not possible; instead, this section introduces inter-
nal testing as a structured approach to assess robustness, reliabil-
ity, and efficiency. To the best of current public knowledge, this
represents the first systematic attempt to evaluate such a system,
addressing a notable gap in the benchmarking literature and prac-
tice.

Internal testing is divided into two main parts. First, Robust-
ness Checks in Section 8.2.1 explore how the system responds to
different scenarios. These checks aim to identify any blind spots,
inconsistencies, or unnecessary computational burdens that could
undermine system performance.

Second, the Case Study Application in Section 8.2.2 applies the
system to a set of real-world utility profiles from Indonesia, allow-
ing for a closer examination of how the flagging logic operates in a
different context.

8.2.1 Robustness Checks

This section evaluates the impact of imputation on flagging results,
the detection of test inputs within the 2022–2024 dataset, and pro-
vides a general overview of the current computational efficiency
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and performance of the pipeline.

Impact of Imputation

Building on the imputation approaches outlined in Chapter 5.3 –
where 9 sporadic96 wastewater indicators are first flagged and par- 96Chapter 5.3 provides a detailed

overview of the categorisation.tially complete entries imputed using k-NN ormedian substitution
– Figure 8.3 shows how these strategies affect severity outcomes
when applied through the full pipeline.

Figure 8.3: This figure presents the distribution of severity flags by stage for the
original NewIBNET 2022–2024 dataset, compared against versions processed
using median imputation and k-NN imputation.

The impact is relativelymodest, but consistent: both imputation
methods slightly reduce the total number of utilities and severity
instances, with the largest relative changes seen in theModerate and
Severe tiers. This suggests that imputingmissingwastewater values
helps smooth out anomalies that arise from incomplete records, re-
ducing noise without significantly altering the overall distribution
of flags.

The differences between k-NNandmedian imputation aremarginal,
with k-NN showing a slightly greater reduction in Moderate flags,
while Severe flags remain largely stable.

In practice, this indicates that robust handling of partialwastew-
ater data can modestly enhance statistical stability in comparator-
based flagging without introducing major shifts in severity classi-
fication.
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Detection of Test Inputs

Test inputs are defined as entries submitted either through the of-
ficial online survey form or via Excel by World Bank staff for the
purpose of testing the IT functionality of the system, rather than
evaluating indicator performance. These entries are not grounded
in real utility data and are typically arbitrary, often containing im-
plausible values. As noted in Chapter 5, the discovery of a “utility”
reporting a service population of 2 billion exemplifies the type of
unrealistic placeholder data that can appear in the dataset. If left
undetected, such entries risk being treated as genuine submissions,
particularly in Stage 3 (Comparator Analysis and Severity Scor-
ing), where they could introduce unnecessary variance and un-
dermine the robustness of comparator-based analysis. While the
current covariance-based weighting smooths much of this noise, it
cannot fully eliminate its impact, indicating the importance of test
input detection.

The results of test input detection for the 2022–2024 dataset are
shown in Figure 8.4.

Figure 8.4: This figure shows the severity flags by stage for the 2022–2024
dataset test inputs. Since Stage 3 is the only stage that distinguishes between
different severity levels, three separate colours are used.

8 such test entries are identified based on explicit naming97. 97Test inputs are identified by
utility names containing the

keyword “test”. Since names are
not used in flagging decisions, this

provides a reliable method for
detecting them.

4 are captured immediately in Stage 1 (Structural Validation), 2
in Stage 2 (Indicator Logic), and 2 persisted until Stage 3 (Com-
parator Analysis and Severity Scoring). While all 8 are ultimately
flagged, the fact that a quarter reached the final stage shows the im-
portance of systematically identifying and filtering test inputs early
to preserve dataset integrity.
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Computational Efficiency & Performance

Assessing the computational efficiency of the automated flagging
pipeline is essential to ensure that scalability is maintained as the
dataset grows, avoiding excessive runtimes or system instability.
Table 8.1 summarises the runtime and cyclomatic complexity98 for 98Cyclomatic Complexity: A

software metric that counts the
number of linearly independent

execution paths through the code.
Higher values indicate more

branching, which can challenge
maintainability and testing

(McCabe, 1976).

each processing stage in a single run of the complete system.

Table 8.1: Runtime and Cyclomatic Complexity per Processing Stage

File Runtime (s) Cyclomatic Complexity

Cleaning < 1.0 29
Stage 1 7.6 15
Stage 2 10.0 82
Stage 3 56.9 88

Runtime captures the relative processing cost of each stage in
seconds, while cyclomatic complexity reflects code maintainabil-
ity by measuring the number of distinct decision paths. Although
complexity is not a direct indicator of performance, high values sig-
nal substantial branching and conditional logic that can complicate
testing and increase the likelihood of edge-case errors.

Profiling results showStage 3 (ComparatorAnalysis andSever-
ity Scoring) as the dominant bottleneck (≈57 seconds), followed
by Stage 2 (Indicator Logic) (≈10 seconds), with Cleaning and
Stage 1 (Structural Validation) contributing negligibly. This dis-
tribution stems from the computational intensity of multi-group z-
score calculation, comparator aggregation, and weighting in Stage
3 (ComparatorAnalysis andSeverity Scoring), and the rule-based
indicator checks in Stage 2 (Indicator Logic).

The pipeline currently scales linearly with dataset size, but sub-
stantial efficiency gains99 are achievable without altering outputs. 99Detailed suggestions for

improving performance efficiency
are provided in Appendix B.2.

This offers an overview of the proposed pipeline’s complexity
and efficiency: reducing 75 hours of manual checks to under 2min-
utes. The key question, however, is whether it matches the effec-
tiveness and accuracy of manual review in determining flags.

8.2.2 Case Study Application in Indonesia

As part of the internal validation process, it is important to apply
the pipeline to a different dataset of utilities to explore whether
discernible trends, differences, or similarities can be related back
to the research findings or motivate potential modifications to the
pipeline. This exercise is particularly valuable given that the the-
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sis has thus far examined the system from only a single perspec-
tive. The external dataset, comprising 398 records from 2024, is
provided by PERPAMSI100, the Indonesian Water Supply Associa- 100PERPAMSI was founded in

1972 and serves as the national
network of regional drinking water
utilities (PDAMs) in Indonesia.

Read more:
https://www.perpamsi.or.id/

tion, and covers only utilities operating in Indonesia.
This yields different dynamics compared to the full NewIBNET

2022–2024 dataset, as illustrated in Figure 8.5. Only 14 of the origi-
nal 24 raw input columns could be mapped101, enabling the calcu- 101The full mapping and detailed

results for the PERPAMSI dataset
are provided in Appendix C.1.

lation of 8 out of 15 indicators. This reduction in indicator coverage
inherently narrows the scope of structural and logical checks.

Figure 8.5: This figure compares the distribution of severity flags across stages
for the PERPAMSI 2024 dataset and the NewIBNET 2022-2024 dataset.

Despite these constraints, the proportion of flagged utilities re-
mained substantial: 207 out of 357 utilities (≈58%) receive at least
one type of flag in Stage 3 (Comparator Analysis and Severity
Scoring), with a distribution skewed towardsmild anomalies. This
is broadly consistent with the relative scale of Stage 3 (Compara-
tor Analysis and Severity Scoring outputs in the full NewIBNET
dataset, though here the smaller indicator set and national scope
mean that anomalies are identified within a more homogenous op-
erational and contextual environment. Notably, Stage 2 (Indicator
Logic) flags are concentrated entirely on population service size
reporting, with 35 cases where the reported population served ex-
ceeds the total population – an implausible scenario suggesting a
single dominant reporting error rather than the diversified spread
across indicators seen in the NewIBNET dataset.

At the indicator level, the PERPAMSI dataset reveals a similar
profile compared to the NewIBNET sample. For instance, oper-
ational cost coverage (I13) remains largely within the 100–150%
median, but extreme outliers above 1,000% persist, suggesting the
presence of classification errors even in a more homogeneous na-
tional dataset.

https://www.perpamsi.or.id/
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The recalculated covariance-based weights, excluding region
and income comparators102, shift emphasis strongly towards the 102The PERPAMSI dataset covers

only Indonesian utilities, meaning
all belong to the same region and
income group, rendering these
comparators redundant in the

analysis.

Population comparator group, with weights frequently exceeding
0.45. This reflects reduced cross-comparator variability in the ab-
sence of regional and income dimensions, thereby amplifying the
influence of population-based benchmarking. The Population and
Connections category distributions also reveal a high concentra-
tion of Small utilities, potentially biasing comparator statistics and
severity thresholds towards the operational realities of lower-capacity
providers.

The similarity in overall flagging proportions to the full NewIB-
NET dataset, despite the reduced indicator set and national scope,
suggests two possibilities for Stage 3 (Comparator Analysis and
Severity Scoring). It may reflect a robust framework that main-
tains detection rates across contexts, or it may be a by-product of
heavy weighting towards the Population comparator and a skewed
utility size distribution, which tightens variance bounds and risks
over-flagging. Given that the system is inherently dependent on
the data it receives – without reference to external industry bench-
marks – any widespread deviation from sector standards will shift
internal baselines, meaning that “anomalies”may simply reflect di-
vergence from a non-representative norm. This reinforces the need
for sensitivity analysis103 to distinguish genuine performance is- 103Sensitivity Analysis: Tests how

robust flagging results are by
adjusting comparator weights and

thresholds to see if anomalies
persist or stem from statistical

artefacts.

sues from artefacts of comparator homogeneity.

Summary: This section evaluates the proposed flagging sys-
tem under controlled conditions through robustness checks
and a real-world case study with Indonesian utility data.
The results highlight how imputation, test input detection,
computational efficiency, and contextual dataset differences
influence flagging outcomes, offering insights into both the
system’s stability and areas for refinement before wider de-
ployment.

8.3 Expert Feedback

To ensure the practical relevance and usability of the proposed flag-
ging system, it is essential to gather input from those most familiar
with the operational realities of utility data validation. While the
preceding chapters developed and evaluated the system through



8.3. Expert Feedback 92

technical experimentation, the transition from a theoretical model
to an implementable tool demands validation by domain experts.
This section focuses on integrating that practitioner perspective.

An anonymous online survey is conducted with the NewIB-
NET team. Their insights offer critical reflections on the design
logic, perceived usefulness, and potential challenges of implement-
ing the proposed architecture in practice. The section is structured
as follows: Survey Design in Section 8.3.1 outlines the structure,
rationale, and content of the survey; Evaluation Insights in Section
8.3.2 synthesises the feedback received, presenting key findings, se-
lected quotations, and a thematic analysis of expert perspectives.
These inputs inform the final considerations of system adoption,
user trust, and institutional feasibility.

8.3.1 Survey Design

To evaluate the practical applicability and perceived value of the
proposed automated flagging system, an anonymous online sur-
vey104 is conducted among experts directly involvedwith theNewIB- 104This survey was approved

according to the Delft University of
Technology Human Research Ethics
guidelines. Refer to: https://www.

tudelft.nl/over-tu-delft/
strategie/integriteitsbeleid/

human-research-ethics

NET system. Unlike the small group of technical specialists con-
sulted during the preparatory phase, this survey targets a broader
set of practitioners within the NewIBNET team who possess direct
experience with the system’s architecture and workflows. The goal
is to collect both qualitative and quantitative feedback on the sys-
tem’s decision logic, usability, and potential integration into real-
world workflows.

The full survey is provided in Appendix C.2. For a general
overview, it comprises three main sections:

1. Case-Based Evaluation: Participants review two fictional but
realistic utility profiles containing commondata anomalies105. 105For example: missing values,

placeholders, and implausible
figures.

They are askedwhether theywould flag each utility andwhy.
Afterwards, the same cases are shownwith the system’s flag-
ging results, allowing participants to reflect on its logic and
accuracy. In short, Utility A (Singapore) tests expert reac-
tions to critical missing values and wastewater service data,
while Utility B (The Netherlands) presents a potential finan-
cial anomaly that bypasses Stage 2 (Indicator Logic) thresh-
olds yet may still warrant flagging.

2. Flag Interpretation & Trust: This section introduces the full
validation pipeline and asks experts to evaluate the system’s
transparency, interpretability, and the usefulness of its sever-
ity tiers in supporting manual review.

https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
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3. Future Directions & Use: Participants provide open feed-
back on potential system extensions, including use cases be-
yond anomaly detection.

The survey aims to assess not only technical performance but
also expert trust, interpretability, and institutional readiness.

8.3.2 Evaluation Insights

Overall, the feedback reveals a strong endorsement of the system’s
foundational logic, particularly in identifying clear anomalies such
as implausible placeholder values or structural inconsistencies – as
seen in the unanimous agreement among all five respondents to
flag Utility A (Singapore) in Figure 8.6. By contrast, views on Util-
ity B (The Netherlands) varied, with one respondent disagreeing
with the majority. While the sample size is limited, the fact that
even a small group produces divergent interpretations highlights
the importance of integrating deeper financial context or threshold-
based checks, particularly for high-income countrieswhere anoma-
lies may be less clear-cut.

Figure 8.6: This figure shows the number of experts in the 2025 survey who
would flag Utility A (Singapore) and Utility B (The Netherlands). Green rep-
resents the share of respondents who would flag the utility, while red represents
those who would not.

When shown the system’s internal imputation strategy formiss-
ingwastewater values, expert opinions are divided – 2 are in favour
and 3 opposed, as illustrated in Figure 8.7. While some experts see
it as a practical and necessary step to maintain analytical continu-
ity, others stress the risk of misinterpretation106, especially when 106As one expert noted: ”Many

utilities do not provide wastewater
services but only freshwater services.
To not provide them is completely

reasonable.”

a utility legitimately lacks a wastewater component. The concern
is less about the act of imputation itself and more about how it is
communicated. Several experts explicitly suggest improving the
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phrasing of imputed values and ensuring that the absence of ser-
vices is recognised as a valid, meaningful data point rather than a
gap to be filled. These reflections suggest that any form of algorith-
mic estimationmust be pairedwith transparent language and clear
visual cues.

Severity scoring, by contrast, is broadly well received, as shown
in Figure 8.7. Experts appreciate its potential to prioritise atten-
tion, triage issues efficiently, and even serve as a ‘data quality ther-
mometer’ – not necessarily for external users, but as an internal tool
for guiding review workflows. A recurring suggestion is to refine
the vocabulary of the severity labels, making them more intuitive
for less technical audiences without losing the underlying statisti-
cal rigour.

Figure 8.7: This figure presents the results of the 2025 expert survey on the
imputation and severity tier questions, with green indicating agreement and red
indicating disagreement.

Finally, the most forward-looking insight comes from how ex-
perts envision the system being used beyond flagging anomalies.
Suggestions – displayed in Figure 8.8 – range from benchmarking
dashboards to regional performance alerts and capacity-building
tools, indicating a strong appetite for integrating this system into
broader analytical and operational workflows. There is also enthu-
siasm for expanding its functionality to include historical consis-
tency checks and integration with external data sources, such as
annual utility reports, to enhance its diagnostic capabilities.
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Figure 8.8: This figure shows the distribution of responses from the 2025 survey
on possible routes beyond anomaly flagging, with each bar representing a differ-
ent option.

These responses not only validate the proposed system design
but also offer a user-informed roadmap for future improvements.
Experts emphasise the importance of communicative clarity, adap-
tive thresholds, andmodular flexibility – key components for a tool
intended to support meaningful action in real-world benchmark-
ing and utility engagement. Most notably, 100% of experts indicate
they would use the automated flagging system, indicating both its
practical relevance and perceived value.

Summary: Expert feedback strongly supports the system’s
core logic, particularly for detecting clear anomalies, while
highlighting areas for refinement such as contextual thresh-
olds, imputation communication, and user-friendly sever-
ity labels. Respondents also envision applications beyond
anomaly detection, with unanimous agreement on the sys-
tem’s usefulness and clear priorities for enhancing clarity,
adaptability, and integration into broader benchmarking
workflows.
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Ethical, Political, and

Sectoral Considerations

RQ5: What ethical and institutional implications arise from im-
plementing an automated anomaly detection framework in the con-
text of global water utility benchmarking?

This chapter critically examines the ethical and institutional im-
plications of implementing an automated anomaly detection frame-
work in the context of global water utility benchmarking. It is or-
ganised around three interrelated themes: design reflections in Sec-
tion 9.1, framing sensitivities in Section 9.2, and trust in automated
flagging in Section 9.3.

These discussions address the sub-question and analyse how
such a framework can be designed to remain transparent, inclu-
sive, and ethically responsible. In doing so, the analysis is mapped
against recognised standards such as the EU AI Act’s risk-based
categories107 and the IEEE Ethically Aligned Design principles108, 107The EU AI Act (2024) classifies

AI systems by risk level, with
critical water infrastructure

contexts falling under ‘high-risk’
obligations. Read more: https:

//artificialintelligenceact.
eu/high-level-summary/

108The IEEE Ethically Aligned
Design framework outlines

principles such as transparency,
accountability, and human

well-being in AI systems. Read
more: https://standards.ieee.

org/wp-content/uploads/import/
documents/other/ead_v2.pdf

signalling that safeguards are not ad hoc but grounded in estab-
lished ethical frameworks. Moreover, the discussion recognises
that IBNET data has historically informed policy reports and com-
parative analyses (Manghee et al., 2012; C. v. d. Berg et al., 2017;
Andrés et al., 2020; Detroz et al., 2017; Tsagarakis, 2018), giving
it tangible empirical impact. This creates an ethical responsibility
to ensure that outputs from NewIBNET remain representative and
trustworthy, as the advice and evidence derived from it may shape
real-world decisions.
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9.1 Design Reflections

This section reflects on three critical design considerations that emerged
during systemdevelopment: dependency onutility‐submitted data
in Section 9.1.1, imputation and inclusivity in Section 9.1.2, and the
challenge of accounting for heterogeneity and contextual realities
in benchmarking in Section 9.1.3. Together, these reflections high-
light the need for a benchmarking framework that is both techni-
cally robust and sensitive to the realities of the global water sector.

9.1.1 Dependency on Utility Data

A core limitation of the current framework is its reliance on sub-
mitted datasets as the sole reference point for anomaly detection,
without access to a definitive ground truth or universally accepted
industry benchmarks. This creates a self‐referential baseline: de-
viations in Stage 3 (Comparator Analysis and Severity Scoring)
aremeasured against other submissions, not against independently
verified sector standards. In contexts where performance figures
inform funding allocations, regulatory scrutiny, or international
comparison, there is a political dimension to whether numbers are
understated, overstated, or selectively reported. Blindly trusting
raw submissions risks embedding unrepresentative baselines into
the benchmarking system and may unintentionally reward strate-
gic self‐presentation over transparency.

As an exploratory exercise, Benford’s Law109 (Benford, 1938) – 109”Examples of Benford’s law being
applied to fraud detection abound, from
Greece manipulating macroeconomic
data in its application to join the

eurozone to vote rigging in Iran’s 2009
presidential election.” (Murtagh,

2023)

a statistical pattern describing the expected frequency of leading
digits in naturally occurring datasets – is applied to all raw inputs
of the 2022-2024 NewIBNET dataset as seen in Figure 9.1. The pro-
cess involves extracting the first significant digit of each raw input
value, calculating its frequency distribution, and comparing it to
the Benford distribution using a chi‐square test. A p‐value above
0.05 is interpreted as conformity.
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Figure 9.1: This figure shows the average first‐digit proportion distribution of
utilities in the 2022–2024 NewIBNET dataset (with more than 10 raw inputs),
overlaid with Benford’s curve.

The graph shows that utility data broadly followsBenford’s Law:
average proportion of leading digits 1–5 align closely with expec-
tations, while digits 6–9 display systematically lower prevalence.
Variability across utilities is evident, with especially wide spreads
for digits 1 and 2. Detailed results show that 75 utilities do not con-
form. The method correctly identifies 7 of 8 test cases containing
artificial values. While this does not prove manipulation – devia-
tions may stem from sector‐specific operational realities or report-
ing formats – it illustrates how statistical irregularity tests can com-
plement existing plausibility checks by highlighting entries war-
ranting closer review. A detailed overview of the Benford’s Law
application is provided in Appendix B.3.

From this perspective, anomaly detection is not only a statistical
challenge but also a governance one. Statistical safeguards such as
Benford’s Law can help identify implausible values, but they can-
not replace the need for sector expertise in interpreting anomalies.
Ultimately, a data‐driven system in a complex sector like water can
never be fully complete from a purely computational standpoint.
Its credibility depends on the continuous interplay between auto-
mated detection, expert oversight, and an evolving understanding
of what constitutes meaningful and fair comparison.

9.1.2 Imputation & Inclusivity

In global systems such as NewIBNET, participation is not only re-
liant on a utility’s willingness to submit data but also on its abil-
ity to provide complete and non‐deviating values. This creates an
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inherent tension: enforcing completeness safeguards database in-
tegrity, yet risks excluding utilities whose operational or resource
constraints limit their capacity to report certain indicators (World
Bank, 2011). Thewastewater dataset illustrates this dilemma. While
completeness could be mandated, an expert suggestion110 to link 110”The other option would be to link

this question with the question where it
is asked if the utility provides

wastewater services/sanitation and if
the question is no, then automatically
the question on sanitation will not
come up in the questionnaire.”

wastewater questions to a preliminary service‐provision question
– skipping them where the service is absent – would avoid partial
submissions but potentially narrow participation.

Imputation offers one possible compromise. Median and k‐NN
approaches (Clifton et al., 2022; Miao et al., 2024) were applied to
fill missing wastewater values, enabling the retention of partially
complete submissions. However, the effect was limited: only 32
valueswere imputed, while hundreds of entirelymissing cases per-
sisted. As demonstrated in Chapter 8.2.1, the impact on compara-
tor distributions wasminimal, raising questions about whether im-
putationmeaningfully enhances statistical robustness in its current
form.

Inclusivity and data integrity cannot be treated as mutually ex-
clusive; both require deliberate design choices that balance techni-
cal robustness with fairness in participation.

9.1.3 Heterogeneity and Contextual Realities

Representativeness plays a decisive role in how thresholds func-
tion within anomaly detection. Transitioning from a rigid binary
cut‐off111 to a tiered severity scale enhances interpretability, yet 111A utility is flagged if the z-score

for any indicator fell outside the
range [−4, 4].thresholds rooted in classical statistical theory still rest on distribu-

tional assumptions thatmay fail to capture the genuine heterogene-
ity of utility performance. In the 2022–2024NewIBNETdataset, 217
of 239 utilities are flagged – a result that may reflect systemic vari-
ation in performance, but could equally signal over‐sensitivity to
natural diversity. The 2024 PERPAMSI case study in Chapter 8.2.1
revealed a similar spread, suggesting that wide variation in plau-
sible values is intrinsic to the sector and that overly strict cut‐offs
risk over‐identification.

These design choices carry tangible consequences. In a sec-
tor where benchmarking influences funding, policy decisions, and
leadership stability, a flag is not a neutral signal (World Bank, 2011):
it can trigger political scrutiny and compel utilities to defend per-
formance that may, in fact, be due to structural constraints rather
than operational failings. Conversely, the absence of a flag may al-
lowpersistent underperformance to escape detection. From an eth-
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ical perspective, the decision framework functions as a gatekeeper,
shaping who is scrutinised, on what grounds, and with what po-
tential repercussions.

A further limitation lies in the framework’s reliance on prede-
fined static comparators – such as Population and World Bank In-
come Level – which, while enhancing interpretability and align-
ing with established reporting norms, can obscure meaningful in-
tra‐group variation. As demonstrated in comparative policy re-
search (Riley et al., 2021), such aggregation may mask critical dif-
ferences in infrastructure quality, regulatory capacity, climate risk,
andpost‐conflict recovery conditions, thereby constraining the con-
textual accuracy of cross‐group comparisons. Without incorporat-
ingmacro‐level or dynamic comparators112 the framework risks re- 112Macro-level or dynamic

comparators could incorporate
factors such as conflict exposure,

fiscal volatility, climate shocks, and
other relevant dimensions not yet
addressed in the current pipeline.

inforcing biases that penalise utilities operating in the most chal-
lenging environments.

Following findings from fairness-in-algorithms literature (Sarkar,
2022), distributional analyses are essential to ensure that anomaly
detection outcomes are not systematically influenced by compara-
tor definitions, underlying data imbalances, or contextual factors
that may disadvantage certain utility groups. The analysis in Fig-
ure 9.2 reveals the flagging patterns113 across comparator groups. 113A more detailed analysis of

flagging proportions by group and
comparator is provided in

Appendix C.3.

Figure 9.2: This figure shows the proportion of utilities flagged across all cate-
gories and comparators.

The results show that smaller groups, such as Medium-sized
utilities or certain regional categories, often display disproportion-
ately high flagging rates, likely due to sample size effects rather
than systematic data issues. Conversely, larger categories like Low
and Very Low populations account for the majority of flags in abso-
lute terms. Regional variation further indicates the role of group
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size in shaping outcomes, while the higher proportions observed
among Low-Income utilities point to possible capacity or reporting
constraints. Overall, these patterns highlight the need to interpret
flagging rates with caution, ensuring that observed differences are
not mistaken for inherent data quality disparities without consid-
ering distributional context.

Overall, no extreme systemic biases are immediately evident in
the current results. Larger comparator groups do not consistently
receive fewer flags, indicating that the severity scoring mechanism
is not inherently skewed towarddominant categories. Nonetheless,
the framework should be regarded as a transparent, adaptive first
iteration – one that will require continued refinement with sector
experts and responsiveness to the socio-political and environmen-
tal diversity of the global water sector.

Summary: The framework’s reliance on self‐reported data
without definitive benchmarks risks misclassification and
demands expert oversight to guard against bias or strategic
reporting. Limited gains from imputation highlight the need
for adaptive, context‐aware designs that balance integrity
with inclusivity. Threshold sensitivity and static compara-
tors can obscure real performance drivers, making continual
refinement essential for fair, sector‐responsive benchmark-
ing.

9.2 Framing Sensitivities

Framing choices in the communication of automated anomaly de-
tection results are not merely semantic – they shape interpretation,
stakeholder trust, and the ethical legitimacy of the system. In ex-
pert feedback, terminology such as “mild based on deviation” was
flagged as inaccessible to non‐technical audiences, with sugges-
tions for simpler, more intuitive phrasing. Similarly, explanations
of imputation processes were sometimes misunderstood, leading
to calls for clearer, plain‐language descriptions. The challenge ex-
tends to communication with utilities: returning questionnaires
with precise revision pointswas viewed as transparent but resource‐
intensive, whereas aggregated notifications risked obscuring ac-
tionable detail. This trade‐off between clarity and operational fea-
sibility shows the importance of linguistic precision. Literature on
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the framing and language of ethics (McNealy, 2021; Borghouts et
al., 2024) cautions thatwording can carry implicit value judgments,
potentially biasing perception before substantive review. This dy-
namic is evident early in the thesis processwhen the term “missing”
was debated for its perceived accusatory tone, despite its statistical
appropriateness; likewise, distinctions between “error” and “flag”
influence whether anomalies are interpreted as faults or as neutral
signals for review.

The iterative prototyping cycle described inChapter 4was there-
fore critical in embedding ethical reflection into the design process
from the outset, ensuring that transparent and context‐sensitive
framing evolved alongside the technical model rather than being
introduced as a last‐minute addition. A deliberate ethical choice
during this process was to anchor explanations and flagging crite-
ria inmathematically grounded, data‐oriented terminology, thereby
avoiding potentially biased or politically sensitive language. While
this helped maintain neutrality, it likely contributed to expert feed-
back noting the current complexity of the system’s framing.

In a global benchmarking context, where utilities operate un-
der vastly different capacities, cultural norms, and linguistic inter-
pretations, such framing sensitivities are central to ensuring that
the system remains transparent, culturally aware, and ethically re-
sponsible in both its internal and external communications.

Summary: The expert survey displays how anomaly detec-
tion results are framed shapes not just how they are read, but
the trust and ethical legitimacy they command. In global
benchmarking, where capacities, cultures, and interpreta-
tions vary widely, using clear, culturally aware language
while preserving actionable detail is key to keeping the sys-
tem both transparent and fair.

9.3 Trust in Automated Flagging

Trust in the automated flagging framework is not only a technical
requirement but a prerequisite for its sustained adoption. In this
case, expert survey feedback indicated exceptionally high institu-
tional confidence: 100%of experts reported that theywould use the
system in practice, even while offering constructive points for re-
finement. This is significant from an ethical standpoint, as automa-
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tion without stakeholder trust risks reversion to manual processes
regardless of technical merit.

From an operational perspective, the framework reduces the es-
timated time required for technical review from approximately 75
hours to under 2 minutes114 – a 99% efficiency gain. While this 114The 2-minute processing time

excludes communication with
utilities or additional manual

checks and reflects only the code
runtime.

represents a substantial productivity improvement, it also prompts
reflection on the ethical implications of replacing or reshaping hu-
man roles. Perfecting such a system could, in some contexts, risk
displacing tasks that previously formed a substantial part of an ex-
pert’s work portfolio.

At the same time, the current proposed pipeline for NewIBNET
is a first‐generation prototype and still depends on expert input for
contextual interpretation, integration of sector knowledge, and re-
finement of thresholds and comparators. In this sense, the aim is
not to replace expert judgment but to augment it, aligning with
human‐in‐the‐loop design principles that ensure critical oversight
remains embedded in the process (Munro, 2021). Trust is therefore
both a present asset and a future challenge: as technology evolves,
new categories115 emerge, and sectoral conditions shift, maintain- 115The World Bank Country and

Lending Groups classification is
updated annually on July 1 (World
Bank, 2024); this thesis uses the
2024–2025 version, which must

likewise be updated in the system
each year.

ing system reliability will require periodic recalibration. In this
way, trust is not static but contingent on the framework’s ability
to remain accurate, relevant, and transparent in an evolving global
water benchmarking landscape.

Summary: Expert feedback showed unanimous willingness
to use the automatedflagging framework. This indicates that
trust is both a technical and ethical prerequisite for its adop-
tion. While the system delivers a 99% efficiency gain and
augments rather than replaces expert judgment, sustaining
that trust will require ongoing recalibration to keep it accu-
rate, relevant, and transparent in a changing sector.
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Conclusion

This chapter synthesises the thesis findings, drawing together tech-
nical, institutional, and ethical insights. It begins by addressing
each sub‐question in Section 10.1. This is followed by a critical ap-
praisal of the study’s boundaries and constraints in Section 10.2,
before outlining concrete avenues for methodological, contextual,
and operational enhancement in Section 10.3. The chapter con-
cludes with final reflections in Section 10.4 that place the frame-
work’s core contributions in a global context and directly address
the central research question.

10.1 Answers to Research Questions

The following section addresses each research question in turn,
presenting key findings and their implications for the design, per-
formance, and ethical positioning of the proposed anomaly detec-
tion framework.

RQ1 How can statistical profiling and rule-based logical checks be used
to detect data quality issues and prepare water utility indicator data
for reliable anomaly detection?

Chapter 5 demonstrates that statistical profiling and rule-based
logical checks form the essential foundation for reliable anomaly
detection, not merely as preliminary cleaning steps but as an ac-
tive layer of quality assurance that forms every subsequent stage
of analysis. Through systematic structural assessment, descrip-
tive profiling, and visualisation, the statistical pipeline establishes
a baseline understanding of what constitutes plausible behaviour
within the NewIBNET dataset. Complementing this, the integra-
tion of domain-informed logical rules operationalises sector knowl-

104
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edge into reproducible checks, enabling the detection of deeply
embedded inconsistencies such as implausible ratios, percentage
overflows, and unit misalignments that would otherwise bypass
surface-level validation. The exploration of targeted imputation
strategies further indicates that completeness cannot be pursued
at the expense of contextual realism, with k-NN methods prov-
ing particularly valuable in preserving variability and structural
integrity in incomplete wastewater data. In practice, this layered
approach strengthens the foundation for downstream anomaly de-
tection by reducing the risk of missing, inconsistent, or implausible
values entering comparative analyses.

RQ2 How can utility metadata and comparator-based modelling support
the detection of deviations in performance indicators across diverse
water utilities?

Incorporating utilitymetadata into comparator-basedmodelling
proves informative in opening potential avenues for improving fair-
ness in assessment. Peer groupings defined by operational scale
and structural context allows performance to be assessed against
norms that more accurately reflect a utility’s real-world constraints
and opportunities. Applying z-score profiling within these com-
parators standardises deviationmeasurement across diverse groups,
while also revealing the method’s sensitivity to imbalanced or in-
ternally heterogeneous distributions. The addition of regional and
income-based comparators surfaces deviations that global averages
may obscure, yet also highlights the dangers of drawing strong con-
clusions from sparsely populated categories. Such sparsity and im-
balance can introduce significant noise and weaken statistical ro-
bustness. Comparator design emerges not as a static design choice
but as a dynamic calibration exercise – one that must balance con-
textual richness with statistical robustness to ensure that flagged
deviations remain both meaningful and actionable in diverse wa-
ter utility environments.

RQ3 Which severity scoring methodologies can be investigated to best
translate statistical deviations into a prioritisation of anomalies?

The investigation into severity scoring methodologies demon-
strates that translating statistical deviations into actionable prior-
ities requires more than fixed thresholds; it benefits from weight-
ing schemes that reflect the reliability of the underlying compara-
tors. Testing both simple variance-based and advanced indicator-
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specific covariance weightings shows that tailoring comparator in-
fluence to statistical stability and contextual relevance can reduce
noise and sharpen focus on the most credible anomalies. Integrat-
ing advancedweights into a composite z-score framework condenses
multiple comparator results into a single, interpretable severitymet-
ric, enabling a tiered classification from Mild to Severe. This not
only streamlines reviewer workload but also preserves nuance in
the assessment of anomalies, ensuring that high-severity flags rep-
resent both substantial deviation and robust supporting evidence.
In practice, such a framework offers a scalable, transparent, and
statistically defensible means of prioritising anomalies in diverse
utility datasets, while maintaining flexibility to adjust thresholds
in line with institutional risk tolerance and data quality objectives.

RQ4 To what extent does the proposed anomaly flagging system perform
reliably, and align with expert validation and benchmarking expec-
tations?

Evaluation of the proposed anomaly flagging system indicates
that it performs reliably in detecting structural errors and logical in-
consistencies, while offering the transparency and traceability needed
for expert review. Internal testing shows that themulti-stage pipeline
maintains consistent detection patterns across different datasets and
contexts, with sensitivity to both missing and implausible values.
Expert validation further confirms the system’smethodological sound-
ness and practical relevance, with unanimous agreement on its use-
fulness for real-world application. Feedback also highlights op-
portunities for refinement – particularly in clarifying the treatment
of wastewater indicators, enhancing the intuitiveness of severity
labels, and exploring extensions beyond anomaly detection into
benchmarking and performance monitoring. Together, these find-
ings suggest that the system aligns closely with technical, insti-
tutional, and user expectations, while retaining the adaptability
needed to evolve alongside sectoral and organisational priorities.

RQ5 What ethical and institutional implications arise from implement-
ing an automated anomaly detection framework in the context of
global water utility benchmarking?

The ethical and institutional analysis indicates that implement-
ing an automated framework in global water utility benchmarking
is as much a governance challenge as a technical one. Reliance on
self-reported data without definitive benchmarks introduces risks
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of misclassification, strategic reporting, and the embedding of un-
representative baselines, making expert oversight indispensable.
Design choices around imputation, comparator definitions, and sever-
ity thresholds directly shape which utilities are scrutinised, with
implications for inclusivity, fairness, andpolitical sensitivity. Fram-
ing emerges as a critical determinant of stakeholder trust, requiring
language that is transparent and culturally aware while avoiding
terminology that could bias interpretation. Expert feedback reveals
unanimous willingness to use the system, recognising its poten-
tial to deliver substantial efficiency gains while preserving the role
of human judgment in contextual interpretation. How this point
is received will also depend on the audience: for managers, the
main value lies in efficiency gains and resource optimisation, while
for technical specialists it may raise concerns about losing human
oversight, over-reliance on algorithms, or the risk of overlooking
aspects that only experts can provide.

Sustaining this trust therefore requires striking a balance: high-
lighting the efficiency benefits while ensuring the framework re-
mains adaptable by recalibrating thresholds, refining comparators,
and evolving communication strategies in step with sectoral reali-
ties. In this way, anomaly detection can serve as a tool for equitable
benchmarking rather than a source of unintended bias or exclusion.

10.2 Limitations of Current Work

Several factors constrain the scope and generalisability of the find-
ings. These can be broadly grouped into three areas: data-specific
constraints, evaluation scope, and methodological boundaries.

The anomaly detection pipeline relies exclusively on self-reported
utility data, without independently verified ground truth or uni-
versally accepted benchmarks for many indicators. This creates a
degree of circularity, as comparator distributions and thresholds
are shaped by the quality of the submitted data – a dependency
that proved stronger than initially expected. In addition, incom-
plete wastewater reporting prompted the use of k-NN and median
imputation, which preserves partially filled submissions but leaves
127116 utilities with fully missing values untouched. While impu- 116Chapter 5.3 provides a detailed

overview of the categorisation.tation appeared promising, its overall impact on reducing partici-
pation bias is modest, showing the limits of this approach.

In the absence of a quantitative baseline, testing could not be
compared against established results but instead represents a first
attempt at systematic discovery. Empirical testing is limited to the
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2022–2024 NewIBNET dataset and a 2024 national dataset from
PERPAMSI. While both provide valuable insights, they offer only
partial evidence of the framework’s adaptability to other geogra-
phies, time periods, or reporting conditions. Expert validation fur-
ther confirms the framework’s interpretability and practical rele-
vance, but the respondent pool is small and domain-specialised.
Broader perspectives fromutilities, policymakers, and actors in data-
scarce environments remain underexplored.

The process is necessarily bounded by the scope and resources
of a Master’s thesis. Iterative refinements are made, but some de-
sign choices are validated through small expert loops rather than
sector-wide trials. Likewise, while the literature review engages di-
rectlywith benchmarking research, a broader comparative analysis
across analogous domains could have provided additional concep-
tual and technical insights.

10.3 Future Work

This section outlines avenues for advancing the framework to en-
hance both technical robustness and ethical grounding.

Several technical refinements117 could strengthen the framework’s 117A detailed overview of potential
framework extensions is presented

in Appendix B.4.
internal logic and adaptability. Placeholder detectionwarrants deeper
investigation: reliance on dataset‐specific proxies, such as ’1.0’ for
unknown values, risks misclassifying legitimate entries and may
be unsuitable in other benchmarking contexts. Aligning detection
with international survey standards – for example, the European
Social Survey’s coded non‐response conventions118 – could make 118The European Social Survey

(ESS) is a cross-national academic
survey conducted biennially across
Europe, which sets widely used
standards for handling missing

data. It codes specific values such
as ’99’ or ’999’ to indicate

non-response or missingness,
offering a consistent framework
that could guide placeholder

detection. Read more:
https://stessrelpubprodwe.
blob.core.windows.net/data/
round10/survey/ESS10_data_

protocol_e01_7.pdf

this process more universally applicable. Tailoring k in k‐NN im-
putation per indicator could improve accuracy in handlingmissing
values, while expanding beyond the z‐score to alternative devia-
tion metrics, such as Chi‐square tests or non‐parametric measures
(Bhuyan et al., 2013), may increase robustness in sparse or skewed
datasets. Comparator logic could also be made dynamic by in-
corporating macro‐level indicators, thereby reducing biases from
static grouping structures. Further, merging datasets – for exam-
ple, integrating the PERPAMSI dataset with NewIBNET – would
enable comparative testing across different reporting contexts. More
granular bias diagnostics could identify whether specific compara-
tor groups, regions, or income levels are disproportionately flagged,
prompting targeted adjustments.

Empirical testing could be extended to a wider range of water
utility datasets to evaluate the framework’s adaptability and re-

https://stessrelpubprodwe.blob.core.windows.net/data/round10/survey/ESS10_data_protocol_e01_7.pdf
https://stessrelpubprodwe.blob.core.windows.net/data/round10/survey/ESS10_data_protocol_e01_7.pdf
https://stessrelpubprodwe.blob.core.windows.net/data/round10/survey/ESS10_data_protocol_e01_7.pdf
https://stessrelpubprodwe.blob.core.windows.net/data/round10/survey/ESS10_data_protocol_e01_7.pdf
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silience in varied operational contexts. Such cross‐utility bench-
marking within the water sector would not only validate techni-
cal performance but also generate comparative insights into gover-
nance structures, framing sensitivities, and stakeholder trust. Em-
bedding these tests in a participatory design process – engaging
utility staff, policymakers, and data‐scarce regions – would help
ensure the framework evolves as both a technically robust and eth-
ically grounded tool.

Beyond the validation framework itself, improvements could
be made upstream119 in the data collection process. Introducing 119Out-of-Scope Extensions:

Appendix B.5 provides an
overview of other extensions and
observations identified during the
process that lay beyond the scope
of this thesis but could be explored

in future iterations.

survey‐level constraints or thresholds at the point of submission
could reduce the volume of implausible values reaching the flag-
ging stage.

Ultimately, combining upstream data safeguards with targeted
pipeline refinements and broader empirical validation will be es-
sential to ensure the suggested framework remains accurate, equi-
table, and trusted across the diverse realities of the global water
sector.

10.4 Final Remarks

How can data-driven mathematical models enhance validation and
benchmarking of water utility indicators while ensuring reliability,
decision-making integrity, and ethical transparency?

This thesis has demonstrated that data‐drivenmathematicalmod-
els can meaningfully enhance the validation and benchmarking of
water utility indicators by combining statistical rigour with insti-
tutional awareness and ethical safeguards. The multi‐stage frame-
work developed here advances beyond conventional anomaly de-
tection by layering structural validation (RQ1)with rule‐based log-
ical checks to ensure internal coherence before data reaches com-
parative analysis. Comparator‐based modelling (RQ2) then situ-
ates utilities within relevant peer groups, grounding detection in
contextual fairness, while severity scoring (RQ3) translates statis-
tical deviations into prioritised, interpretable signals. Expert evalu-
ation (RQ4) confirmed that these design choices fostered trust and
usability, reinforcing the framework’s alignment with principles of
decision‐making integrity and ethical transparency (RQ5).

Beyond its technical contributions, thiswork reveals amore am-
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bitious vision for anomaly detection in the water industry. By now
strengthening the reliability of upstream data, the framework en-
ables more credible performance comparisons, fairer allocation of
resources, and earlier identification of systemic risks. It offers not
just a mechanism for flagging anomalies but a foundation for tar-
geted capacity building, policy reform, and strategic investment –
turning detection into opportunity. In contexts where access to
safe water is both a human right and a driver of sustainable de-
velopment, the ability to discern genuine performance gaps from
data artefacts is essential. The framework’s principles and meth-
ods extend beyond water utilities, offering a transferable approach
for other infrastructure sectors where data quality, trust, and eq-
uity are intertwined. In this sense, the work contributes not only to
refining the mechanics of benchmarking, but to shaping it as a cat-
alyst for informed, just, and forward‐looking action – moving the
conversation from red flags to real solutions.
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A
Data Foundations

A.1 Input, Indicator, and Results Tables

This section provides core reference tables. It contains the indicator
equations used for logic validation, a missing-data review for the
2022–2024 dataset, a descriptive statistical summary of the calcu-
lated indicators, covariance-sum normalised weights per indicator
and comparator, and finally a list of all raw input questions
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Table A.1: Overview of Indicators and Equations where𝑄𝑥 aligns with the raw
input names

I Name Equation

1 Percentage of
Drinking Water
Coverage

𝑄2
𝑄1 ∗ 100

2 Continuity of
Supply (Hours
per Day)

𝑄3

3 Percentage of
Customers with
24/7 Supply

𝑄4
𝑄2 ∗ 100

4 Non Revenue
Water

(𝑄6−𝑄7)∗1000
𝑄8∗24

5 Percentage of
Non Revenue
Water

𝑄6−𝑄7
𝑄6 ∗ 100

6 Percentage of
Sanitation
Coverage

𝑄10
𝑄9 ∗ 100

7 Sewer Blockages 𝑄11
𝑄12 ∗ 100

8 Percentage of
Wastewater
Collected and
Treated

𝑄14
𝑄13 ∗ 100

9 Percentage of
Collection Rate

𝑄15
𝑄16 ∗ 100

10 Percentage of
Metered
Connections

𝑄17
𝑄8 ∗ 100

11 Percentage of
Service
Complaints
Resolved

𝑄19
𝑄18 ∗ 100

12 Percentage of
Drinking Water
Quality

𝑄21
𝑄20 ∗ 100

13 Percentage of
Operation Cost
Coverage

𝑄22
𝑄16 ∗ 100

14 Number of
employees per
1000 connections

𝑄23
𝑄8+𝑄24 ∗ 1000

15 Percentage of
Female
Employees

𝑄25
𝑄23 ∗ 100
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Table A.2: Missing Data Overview in Raw Data Values NewIBNET 2022–
2024 (Q1–Q20)

Name Number of
Missing
Values

Number of Placeholder
Values

Q1 Total Population 0 1
Q2 Total Population

Service Size
0 4

Q3 Average Daily
Supply

0 8

Q4 Total Customers
with 24/7 Supply

0 26

Q6 Total Water
Volume

1 1

Q7 Total Billed Water
Volume

0 2

Q8 Total Water
Connections

14 4

Q9 Total Population
for Wastewater
Services

132 5

Q10 Total Service
Population for
Wastewater
Services

131 14

Q11 Number of Sewer
Blockages

138 16

Q12 Sewer Pipe
Length

139 7

Q13 Total Wastewater
Volume

138 12

Q14 Total Treated
Wastewater
Volume

136 25

Q15 Total Revenue
Billed

0 6

Q16 Total Revenue
Collected

0 8

Q17 Total Metered
Connections

0 25

Q18 Total Complaints
Received

0 10

Q19 Total Complaints
Resolved

0 10

Q20 Number of Water
Samples

0 9
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Table A.3: Missing Data Overview in Raw Data Values NewIBNET 2022–
2024 (Q21–Q25)

Name Number of
Missing
Values

Number of Placeholder
Values

Q21 Water Samples
Meeting
Requirements

0 9

Q22 Operating
Expenses

0 9

Q23 Number of
Fulltime
Employees

8 6

Q24 Total Wastewater
Connections

138 13

Q25 Number of
Female
Employees

0 18

Table A.4: Indicator Descriptive Statistics (Min, Max, Mean, Median)

Indicator Min Max Mean Median

I1 0.00 100.00 69.48 78.00
I2 1.00 24.00 17.57 20.00
I3 0.00 100.00 43.89 25.50
I4 0.00 16038805.97 129782.76 3026.85
I5 0.00 99.98 38.33 35.90
I6 0.00 100.00 55.58 54.00
I7 0.26 480769.23 6946.43 225.62
I8 0.00 275.89 85.55 100.00
I9 0.00 666666.67 2583.61 95.65
I10 0.00 100.00 77.39 99.77
I11 0.00 100.00 87.21 96.91
I12 0.00 100.00 88.18 97.86
I13 0.00 58000819200.00 216572271.97 93.37
I14 0.00 1102.04 19.53 4.60
I15 0.25 100.00 24.28 21.55
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Table A.5: Covariance-SumNormalisedWeights per Indicator and Comparator

I Global Population Connections Region Income

I1 0.2147 0.2188 0.1829 0.1881 0.1956
I2 0.2144 0.2154 0.1911 0.1912 0.1880
I3 0.2022 0.2059 0.2119 0.1945 0.1856
I4 0.1904 0.2105 0.2042 0.1978 0.1971
I5 0.2009 0.2069 0.1988 0.1956 0.1978
I6 0.2533 0.2440 0.1782 0.1667 0.1577
I7 0.0716 0.1230 0.2406 0.2757 0.2891
I8 0.2832 0.2616 0.1510 0.1582 0.1459
I9 0.2653 0.2255 0.1167 0.2148 0.1778
I10 0.2104 0.2079 0.2009 0.1893 0.1915
I11 0.2219 0.2203 0.1887 0.1850 0.1840
I12 0.2311 0.2245 0.1928 0.1801 0.1715
I13 0.1982 0.1993 0.1905 0.1906 0.2215
I14 0.2805 0.1465 0.1757 0.1876 0.2096
I15 0.2069 0.2129 0.2124 0.1801 0.1877
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Table A.6: Part 1: Overview of the list of questions asked within the NewIBNET survey (KPI)

Name Used in Indicator Full Question Datatype

Name - The name of the utility. String
Country - The country the utility is based in. String
Region - The region the utility is based in. String
Build Date - When was this utility built? Date
Survey Completion - When was this survey completed? Date
Structure of Utility - Based on a set of options, what is the structure of the utility? Choice
Nature of Service Area - What is the nature of the utility’s service area? Choice
Network of Pipes - Does the utility supply water to a customer tap through a network of pipes? Choice
Treating Water - Does the utility treat its drinking water before supply? Choice
Wastewater Treatment Services - Does this utility provide wastewater treatment services? Choice
Wastewater Collection - Does the utility collect wastewater? Choice
Collect before Discharge - Does the utility treat collected wastewater before discharge? Choice
Location of discharge - Where is the effluent discharged? Choice
Q1 Drinking Water Coverage: Total
Population in Service Area

✓ What is the total population in your water service area? Numerical

Q2 Drinking Water Coverage Population
with Water Services

✓ What is the population in the service area with water services from the utility? Numerical

Q8 Drinking Water Coverage: Total
Water Service Connections

✓ What is the total number of water service connections? Numerical

Drinking Water Coverage: Direct
Household Connections

- What is the total number of direct household water connections? Numerical

Drinking Water Coverage: Public Tap
Water Connections

- What is the total number of public tap/standpoint water connections? Numerical

Drinking Water Coverage: Commerical+ - What is the total number of commerical, institutional, industrial, and other water
connections?

Numerical

Q3 Continuity of Supply: Average Daily
Supply

✓ What is the average daily supply in hours per day units? Numerical

Q4 Percentage with Supply: Number of
Customers

✓ What is the total number of customers that are supplied with service 24 hours
per day, seven days per week?

Numerical

Q6 Non-Revenue Water: Produced Water
Volume

✓ What is the total produced water volume? Numerical

Q7 Non-Revenue Water: Total Billed
Water Volume

✓ What is the total water volume billed? Numerical

Non-Revenue Water: Volume Residential
Private

- What is the volume of water sold to residential customers through direct connec-
tions?

Numerical

Non-Revenue Water: Volume Residential
Public

- What is the volume of water sold to residential customers through public tap/s-
tandpoint water connections?

Numerical

Non-Revenue Water: Volume
Commerical+

- What is the volume of water sold to commercial, institutional, industrial, and
other water connections?

Numerical

Non-Revenue Water: Total Length
Network

- What is the total length of the water distribution network? Numerical

Non-Revenue Water: Pipe Breaks - What is the total number of pipe breaks recorded for the water network? Numerical
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Table A.7: Part 2: Overview of the list of questions asked within the NewIBNET survey (KPI)

Name Used in Indicator Full Question Datatype

Q9 Sanitation Coverage: Total
Population in Wastewater Service Area

✓ What is the total population in your wastewater service area? Numerical

Q10 Sanitation Coverage: Total Utility
Population in Wastewater Service Area

✓ What is the population in the service area with wastewater services from the
utility?

Numerical

Q24 Sanitation Coverage: Total
Wastewater Service Connections

✓ What is the total number of wastewater service connections? Numerical

Sanitation Coverage: Total Direct
Wastewater Connections

- What is the total number of direct household wastewater connections? Numerical

Sanitation Coverage: Total Other
Wastewater Connections

- What is the total number of commercial, institutional, industrial, and other
wastewater connections?

Numerical

Q11 Sewer Blockages: Total Blockages ✓ What was the the total number of blockages? Numerical
Q12 Sewer Blockages: Total Length
Sewer Network

✓ What is the total length of pipe in the sewer network? Numerical

Q13 Wastewater Collected & Treated:
Wastewater through Tanks and Sewers

✓ What is the volume of collected wastewater through piped sewerage system or
tankers?

Numerical

Q14 Wastewater Collected & Treated:
Volume Wastewater

✓ What is the volume of collected wastewater that is treated? Numerical

Q16 Revenue Collection Rate: Total
Revenue Collected

✓ What was the total revenue collected? Numerical

Q15 Revenue Collection Rate: Total
Revenue Billed

✓ What is the total revenue billed? Numerical

Q17 Percentage of Metered Connections ✓ What are the total number of metered connections? Numerical
Q18 Service Complaints Resolved: Total
Customer Complaints

✓ What was the total number of customer complaints received? Numerical

Q19 Service Complaints Resolved: Total ✓ What was the total number of customer complaints resolved? Numerical
Q20 Drinking Water Quality: Water
Samples

✓ How many water samples were taken? Numerical

Q21 Drinking Water Quality: Samples
Meeting Guidelines

✓ How many water samples met all required guidelines? Numerical

Q22 Operation Cost Coverage: Total
Operating Expenses

✓ What were the total operating expenses? Numerical

Operation Cost Coverage: Labor
Expenses

- What were total labor expenses? Numerical

Operation Cost Coverage: Energy
Expenses

- What were total energy expenses? Numerical

Operation Cost Coverage: Other
Expenses

- What were total other expenses (production, chemicals, maintenance, adminis-
trative, etc.)?

Numerical

Q23 Number of Employees: Total
Full-time Employees

✓ What was the total number of full time employees? Numerical

Number of Employees: Total Full-time
Equivalent Employees

- What was the total number of full-time equivalent employees? Numerical

Number of Employees: Full-time
Managers

- What was the total number of full-time managers? Numerical
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Table A.8: Part 3: Overview of the list of questions asked within the NewIBNET survey (KPI)

Name Used in Indicator Full Question Datatype

Q25 Percentage of Female Employees:
Total Full-time Women

✓ What was the total number of full-time employees that are women? Numerical

Percentage of Female Employees: Total
Full-time Equivalent Women

- What was the total number of full-time equivalent employees that are women? Numerical

Percentage of Female Employees: Total
Full-time Female Managers

- What was the total number of full-time managers that are women? Numerical



B
Methodological

Additions

This appendix chapter presents additional methodological work
that, while outside the main scope of the thesis, is carried out to
enrich the study. It includes a comparative analysis with other
benchmarking platforms, further detail on computational proce-
dures and potential technical improvements, an extended explo-
ration of Benford’s Law, and several extra and out-of-scope exten-
sions. These additions provide complementary insights that may
be of interest for future research and system development.

B.1 Comparative Analysis with Benchmarking
Platforms

To contextualise the architectural and strategic decisions underpin-
ning this prototype, a comparative review is conducted with two
prominent benchmarking systems: the AmericanWater Works As-
sociation (AWWA) Utility Benchmarking Program and the Euro-
pean Benchmarking Co-operation (EBC). These platforms are se-
lected due to their maturity, thematic relevance, and availability
of documentation – complemented by direct communication with
AWWA. While all three initiatives – NewIBNET, AWWA, and EBC
– share a common goal of enabling performance benchmarking for
water and wastewater services, they diverge in structure, depth,
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and strategic orientation.
At a foundational level, all three frameworks rely on core oper-

ational KPIs and pursue comparative performance analysis. How-
ever, their design choices reflect distinct institutional priorities. An
overview of this comparison between the three benchmarking sys-
tems is shown in Figure B.1.

Figure B.1: The Venn diagram illustrates the unique and shared attributes of the
three benchmarking platforms: NewIBNET, EBC, and AWWA. The overlapping
sections represent common features across platforms, while the non-overlapping
areas highlight attributes unique to each.

AWWAadopts an operational andperformance-centric approach,
geared toward technical optimisation andfinancial robustnesswithin
U.S.-based utilities. Its focus on metric normalisation, health and
safety indicators, and optional advanced modules positions it as a
tool for fine-tuned internal improvement.

EBC, by contrast, is more policy- and collaboration-driven –
promoting peer-group learning, long-term trend tracking, and in-
tegrationwith SustainableDevelopmentGoals (SDGs). Its strength
lies in systemic benchmarking and strategic sector reform, particu-
larly across European utilities.

In contrast, NewIBNET has historically embraced an inclusion-
firstmodel – prioritising accessibility, open data, and cross-country
comparability across a highly heterogeneous set of utilities. While
this approach supports data democratisation, it also constrains tech-
nical depth and comparative precision, particularly in its reliance
on global averages and its limited treatment of throughput or context-
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sensitive indicators.
This analysis reveals concrete design innovations that NewIB-

NET could consider in future iterations of surveydeployment. From
EBC, features such as time-series analytics120, purchasing power 120Time-Series Analytics:

Involves analysing data points
collected or recorded at successive
time intervals to identify trends,
patterns, and seasonal effects.

Discussed briefly within Chapter 3
with reference to Wu et al., 2021’s

work.

parity (PPP) adjustments121, SDG-aligned indicators, and anony-

121Purchasing Power Parity (PPP)
Adjustments: Account for

differences in price levels between
countries, allowing for more

accurate cross-country economic
comparisons.

mouspeer-groupdashboards offer scalableways to integrate strate-
gic benchmarking without compromising usability. From AWWA,
upstream survey design could be enhanced through tiered opera-
tional metrics, resilience and sustainability indicators, and clearer
missing data protocols. Notably, AWWA reported that utilities are
not required to complete all questions122, and that outliers are flagged

122AWWA Median Completion
Rate: Reported to be 91% (2025)

both automatically and manually – a hybrid approach that may in-
spire future human-in-the-loop enhancements. Furthermore, AWWA
is developing an incentive mechanism for utilities surpassing 90%
completion, highlighting the role of behavioural nudges in improv-
ing data coverage, a topic underexplored in NewIBNET’s current
model.

Ultimately, while NewIBNET operates within a more resource-
constrained and globally distributed ecosystem, this comparative
lens highlights not only the limitations but also the unique posi-
tioning of its benchmarking strategy. Its simplicity and open access
model remain powerful, but future evolutions may benefit from se-
lective borrowing – adopting modular enhancements that remain
aligned with its core mission of equitable and transparent global
benchmarking.

B.2 Computational Analysis

Linking back to Chapter 8, which discusses the computational ef-
ficiency and performance of the proposed pipeline, certain stages
exhibit relatively high cyclomatic complexity. Although the sys-
tem currently runs in under two minutes, it is important to con-
sider technical improvements for future iterations, particularly as
NewIBNET has the potential to scale to more utilities and larger
datasets.

The most impactful optimisations for achieving a more efficient
performance include:

• Pre-loading all indicator and questionnaire datasets once, avoid-
ing repeated disk I/O.

• Vectorising Stage 2 (Indicator Logic) to replace per-utility
loops with column-wise operations.
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• Pre-computing comparator statistics (means, standard devi-
ations) once for Stage 3 (Comparator Analysis and Severity
Scoring).

• Placing z-score outputs into a single structured table to re-
duce file overhead.

Thesemeasures can reduce runtime by factors of 3–10 and lower
complexity, improving maintainability and reducing implementa-
tion risks. In effect, runtime profiling identifies where to optimise
(Stage 3), while complexity analysis clarifieswhat to refactor (Stages
2–3), ensuring the pipeline remains performant and sustainable as
operations scale.

B.3 Benford’s Law

Benford’s Law, which describes the expected frequency distribu-
tion of leading digits in naturally occurring numerical datasets, is
applied as an exploratory integrity check on the 2022–2024 NewIB-
NET dataset in Chapter 9. The rationale for including this analysis
is that systematic deviations from Benford’s distribution may indi-
cate unusual reporting patterns, which can serve as an additional
diagnostic lens alongside the core anomaly detection framework.

The procedure implemented in Python involved extracting the
first significant digit of each raw input value across all utilities,
computing its empirical frequency distribution, and comparing it
to the theoretical Benford distribution using a chi-square goodness-
of-fit test. A minimum threshold of ten values per utility is set to
ensure robustness, and utilities with insufficient data are excluded
from the statistical test. The script further aggregated digit dis-
tributions across utilities, plotted the average against the Benford
curve, and highlighted the spread between the 10th and 90th per-
centiles to capture variability.

The results suggest that, while the dataset broadly follows Ben-
ford’s expectations, deviations are present for digits 6–9, and a sub-
set of utilities did not conform at the 5% significance level.

These outcomes do not necessarily imply manipulation; devi-
ations may reflect sector-specific practices, data entry formats, or
genuine operational differences. However, the exercise demon-
strates that Benford’s Law can complement existing plausibility checks
by highlighting cases that warrant closer expert review. In this way,
such statistical irregularity tests may provide a low-cost, easily au-
tomated addition to broader validation and benchmarking efforts.
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Beyond anomaly flagging, observed deviations may also signal
underlying issues in measurement or operational management at
the utility level. For example, inconsistencies in metering, billing,
or water volume tracking. Identifying such patterns could there-
fore assist utilities not only in improving data quality but also in
diagnosing potential inefficiencies or systemic faults in their oper-
ations.

B.4 Framework Extensions

Following the completion of this work, numerous possible exten-
sions are identified, reflecting the broad opportunities for further
development across all dimensions of the project. These can be
grouped into five categories: (1) Data Preparation & Validation,
(2) Context-Aware Anomaly Modelling Frameworks, (3) Severity
Scoring & Decision Framework, (4) Technical Validation & Evalu-
ation, and (5) Ethical, Political, and Sectoral Considerations. Ad-
ditional out-of-scope extensions that do not directly align with the
core research are discussed in Appendix B.5.

B.4.1 Data Preparation & Validation

1. Standardised Placeholder Detection: Current handling of
placeholders relies on dataset-specific proxies123. While ef- 123For example, ’1.0’ for unknown

valuesfective for NewIBNET, this approach risks misclassifying le-
gitimate entries and is unlikely to generalise across contexts.
Aligning detectionwith other established survey conventions
could create a more robust and transferable framework for
identifying placeholder artifacts.

2. Indicator-Specific k Selection in k-NN Imputation: The sen-
sitivity analysis shows that the optimal number of neighbours
(k) may differ by indicator. Future iterations could adapt k
on an indicator-by-indicator basis.

3. Integration of Industry Thresholds and Expert Knowledge:
Logical validation rules currently enforce generalmathemati-
cal bounds124. Extending these with industry-specific thresh- 124For example: non-negativity

and 0–100%olds or expert-defined plausibility ranges could strengthen
detection of unrealistic values before reaching the next stage.

4. Comparative Evaluation of Alternative Imputation Meth-
ods: Chapter 5 compared median and k-NN imputation. Ex-
tending this to other approaches could reveal trade-offs be-
tween computational complexity, interpretability, and accu-
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racy, especially for indicatorswithmultimodal or highly skewed
distributions.

B.4.2 Context-Aware Anomaly Modelling Frameworks

1. Clustering forComparatorDiscovery: Instead of relying solely
on predefined static categories, unsupervised clustering tech-
niques could be applied to discover “natural” peer groups
based on multidimensional characteristics. This may surface
latent comparator structures that better capture operational
realities than externally imposed thresholds.

2. Dynamic Comparator Logic Using Macro-Level Indicators:
Comparator assignments could bemade adaptive by incorpo-
rating macro-level variables such as GDP per capita, urban-
isation rates, or climate stress factors. By embedding exter-
nal metadata, comparator logic could become more context-
sensitive.

3. Temporal Comparators Across Reporting Cycles: Compara-
tor baselines could be extended longitudinally by incorpo-
rating prior submissions of the same utility or region. This
would create comparators that evolve over time, flagging not
only cross-sectional anomalies but also implausible temporal
shifts.

B.4.3 Severity Scoring & Decision Framework

1. Alternative Deviation Metrics Beyond Z-Scores: While z-
scores offer a simple, interpretable basis for severity scoring,
they assume approximate normality andmay perform poorly
in sparse, skewed, or multimodal datasets. Extending the
framework to include alternativemetrics – such asChi-square
tests for categorical indicators or robust non-parametric mea-
sures – could improve reliability in heterogeneous contexts.

2. ExploringAlternativeWeighting Schemes: The current frame-
work applies a variance-basedweighting approach to balance
comparator influence. Futurework could trial alternative schemes
– such as entropy-based, equal, or expert-informed weights –
to evaluate whether different methods yield more stable, in-
terpretable, or context-appropriate results across indicators.

3. Adaptive Threshold Calibration: The current severity tiers
are anchored in fixed statistical cut-offs. Future work could
explore adaptive thresholding, where cut-offs are adjusted
dynamically based on indicator-specific distributions, sample
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sizes, or historical performance variability. This could miti-
gate risks of over-flagging in indicators with naturally high
dispersion or under-flagging in thosewith tightly constrained
ranges.

4. Utility-Level Composite Scoring: The present framework op-
erates at the indicator level. Developing an aggregated sever-
ity index per utility – combining across indicatorswithweights
reflecting thematic or operational priorities – could support
higher-level decision-making, helping reviewers prioritisewhich
utilities require the most urgent follow-up.

5. Risk-BasedSeverity Prioritisation: Not all anomalies are equally
consequential. Future extensions could incorporate impact-
based weighting, where severity is scaled not just by statisti-
cal extremity but also by the potential operational, financial,
or public health risks associated with each indicator. For ex-
ample, deviations in water quality may warrant greater ur-
gency than anomalies in employee ratios, even if statistically
similar.

6. Communication and Interpretability of Severity Flags: Be-
yond algorithmic improvements, extensions could focus on
how severity scores are communicated to end-users. Visual
dashboards, plain-language summaries, or confidence inter-
vals could help reviewers and utilities better understand the
rationale behind each flag, increasing trust and uptake of the
system.

B.4.4 Technical Validation & Evaluation

1. Cross-Dataset Integration andComparison: Merging the In-
donesian PERPAMSI datasetwith theNewIBNETdataset could
allow testing how the system performs on a combined sam-
ple. This would assess the robustness of comparators and
weighting logic when applied across heterogeneous but par-
tially overlapping contexts.

2. ComparatorRemoval Experiments: RunningNewIBNET anal-
yses without regional or income comparators – mirroring the
PERPAMSI structure – could clarify how much these dimen-
sions contribute to or distort severity scoring. Comparing
outcomes across reduced and full models would shed light
on the marginal value of different comparator layers.

3. Broader Utility Datasets Beyond NewIBNET: Future work
could extend validation to additional utility datasets beyond
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NewIBNET and PERPAMSI. This would test transferability
and highlight whether anomaly detection logic generalises
across institutional and geographic settings.

4. Stress-Testing Under Synthetic Data Scenarios: Simulated
datasets with controlled anomalies could be used to bench-
mark how consistently the system detects known issues.

B.4.5 Ethical, Political, and Sectoral Considerations

1. Counterfactual Bias Testing: Conduct “what if” tests by re-
assigning utilities into different comparator groups to see if
anomalies persist. This helps determine whether anomaly
flags are a product of real performance differences or arte-
facts of classification choices.

2. Framing & Language Sensitivity: Testing alternative fram-
ings with the team and utility participants could reveal how
linguistic framing affects utility engagement and willingness
to improve.

3. RegulatoryDataCross-Checking: Cross-checking regulatory
online data can provide external validation or supplementary
evidence for reported utility data, reducing dependency on
self-reported submissions.

B.5 Out-of-Scope Extensions

The proposed framework developed in this thesis represents an ini-
tial step toward automation, but several targeted enhancements fell
outside its immediate scope due to time constraints, institutional
boundaries, or infrastructural limitations. These are technical fea-
tures or potential upstreamadjustments that directly emerged from
system analysis.

First, the current survey form lacks hardcoded input constraints,
allowing implausible values125. Introducing guardrails co-designed 125For example, a population

service size of 2 billion, seen in
Chapter 5

with sector experts would help preserve input realism and reduce
downstream anomalies.

Second, flagging history is not systematically tracked, limiting
the ability to assess alignment between automated and manual re-
views. Building this into future data cycles would provide the la-
belled data necessary for more advanced methods, including su-
pervised machine learning.

Third, inconsistencies in utility naming and year-to-year sub-
missions complicate longitudinal analysis. A unified utility reg-
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istrywith standardised identifiers could strengthen data coherence
and comparability.

Finally, technical integration remains limited: survey data is
still handled manually through Excel, rather than via a centralised
database. Direct integration would streamline workflows and al-
low the flagging system to adapt dynamically to real-time feedback.

Together, these extensions represent natural growth areas for
NewIBNET, pointing toward a more scalable and cohesive valida-
tion ecosystem.



C
Validation &
Evaluation

This appendix chapter provides extended material on the valida-
tion and evaluation of the proposed system, complementing the
discussions in Chapters 8 and 9. It includes a detailed presenta-
tion of the PERPAMSI dataset results, the full set of expert survey
questions, and additional analysis of flagging patterns across util-
ity groups.

C.1 PERPAMSI Dataset Results

This section presents the application of the proposedflagging frame-
work to the PERPAMSI dataset, comprising 398 utility records. For
privacy reasons, utility names and identifying details are not dis-
closed.

C.1.1 Mapping Process

The original dataset is structured in Bahasa Indonesia. To align it
with NewIBNET’s raw input titles, the columns are translated into
English using Google Translate126 and mapped accordingly. The 126Google Translate is a free

online tool by Google that
automatically translates text,
speech, and websites between
multiple languages. See more:

https://translate.google.com/

mapping below specifies the column number, English translation,
and original Bahasa Indonesia wording.

An important factor to consider here is that not all raw inputs
and indicators could be mapped from PERPAMSI to NewIBNET.
A fairer comparison could involve consultation with a PERPAMSI
expert to determine whether a more accurate mapping could be
established, enabling a fully functioning framework.

• #3 Company Name “Nama Perusahaan”
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• #137 Population in Administrative Area (persons) “Jumlah
Penduduk di Wilayah Administrasi (Jiwa)”

• #138 Population in ServiceArea (persons) “JumlahPenduduk
di Wilayah Pelayanan (Jiwa)”

• #38 Average Daily Supply (hours/year) “Waktu distributor
air ke pelanggan dalam 1 tahun (Jam)”

• #33 Actual Production Volume (m³) “Volume produksi Riil
(m3)”

• #35 Distribution Loss (NRW) “Kehilangan Distribusi (NRW
Distribusi)”

• #25ActiveCustomers This Year “Jumlah PelangganAktif Tahun
ini (SL)”

• #133 Total Revenue (Rp) “Total Pendapatan (Rp)”
• #19 TotalWater Bill Receipts (Rp) “JumlahPenerimaanReken-

ing Air (Rp)”
• #28 Total Complaints “Jumlah Pengaduan”
• #27 Complaints Resolved “Jumlah Pengaduan Selesai Ditan-

gani”
• #30 Total Required Tests “Jumlah yang di wajib di uji”
• #29Quality TestsMeeting Standards “Jumlah uji kualitas yang

memenuhi syarat”
• #15 Operating Expenses (Rp) “Beban Operasi (Rp)”
• #44 Total Employees (persons) “Jumlah Pegawai (orang)”

C.1.2 Flagging Results

The results in Figure C.1 are presented following the same three-
stage structure as the framework.

Figure C.1: Severity Flags by Stage for the PERPAMSI 2024 Dataset
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Stage 1: Structural Validation

2 utilities are flagged for mandatory missing values. The missing
values occur in the Annual Water Sales Volume field and the Qual-
ity Tests Meeting Standards field.

Stage 2: Indicator Logic

All 35 utilities flagged exhibited the same error: service population
size exceeded the total population.

Stage 3: Comparator Analysis and Severity Scoring

There are 136 utilities with Mild instances, 73 with Moderate in-
stances, and 47with Severe instances (13 utilities overlapping). Fur-
ther investigation into the causes of the severe cases may be war-
ranted. It is important to note that some instances are repeated;
therefore, the number of unique utilities flagged is 207 out of the
398 reported.

Range Comparison

The distribution of weighted z-scores in PERPAMSI and NewIB-
NET shows broadly similar patterns, with both datasets having
negative medians (≈–2.1) and averages close to zero, indicating
that most deviations cluster around expected values. PERPAMSI
exhibits a wider negative range, while NewIBNET has a slightly
higher positive extreme. This suggests thatwhile both systems cap-
ture comparable anomaly dynamics, PERPAMSI contains deeper
negative outliers, whereas NewIBNET shows a marginally greater
spread on the positive side.

A full overview of the descriptive metrics for the weighted z-
scores is presented in Table C.1.

Table C.1: Comparison of Descriptive Metrics for Weighted Z-Scores between
NewIBNET and PERPAMSI

Metric NewIBNET PERPAMSI

Minimum -8.484 -14.383
Maximum 24.458 21.775
Median -2.134 -2.12
Average -0.485 -0.372
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C.1.3 Indicator Weights

Similar to the NewIBNET dataset, a separate analysis is conducted
to examine indicator weights for the PERPAMSI dataset, though
the results in Table C.2 show notable differences.

Table C.2: Covariance-Sum Normalised Weights per Indicator-Comparator for
PERPAMSI

Indicator Global Population Connections

I1 0.2664 0.4645 0.2691
I2 0.2586 0.4576 0.2839
I4 0.2665 0.4616 0.2719
I5 0.2480 0.5026 0.2494
I9 0.2636 0.4574 0.2790
I11 0.2289 0.4874 0.2837
I12 0.2545 0.4118 0.3337
I13 0.2406 0.3902 0.3692

Across all indicators, the Population comparator consistently
carries the highestweight (≈0.39–0.50), making it themost influen-
tial reference group in the covariance-based framework, while the
Global and Connections comparators play relatively smaller and
more balanced roles.

In contrast to NewIBNET, the PERPAMSI dataset exhibits a sin-
gle dominant comparator – Population – since Region and Income
are no longer relevant when all utilities belong to the same region
and income group. A more balanced benchmark might therefore
emerge by re-estimating127 theNewIBNETweightswithout Region 127See more possible extensions in

Appendix B.4and Income comparators, enabling a fairer comparison between the
two datasets.

C.1.4 Group Distributions

A group analysis is conducted for PERPAMSI shown in Table C.3.
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Table C.3: Utility Distribution by Category for PERPAMSI

Category Population Connections

Very Low 55 123
Low 213 203
Medium 75 37
High 51 25
Very High 1 6

Similar to NewIBNET, the group sizes are unbalanced, with
most utilities concentrated in the Very Low and Low categories and
only a handful in the Very High group. This skew highlights the
importance of weighting and variance adjustment in the final devi-
ation analysis.

C.2 Expert Survey 2025

The survey, distributed at the end of July 2025 to NewIBNET ex-
perts, comprised several sections detailed below. In line with Delft
University of TechnologyHumanResearch Ethics guidelines128, the 128Human Research Ethics: Refer

to: https://www.tudelft.nl/
over-tu-delft/strategie/

integriteitsbeleid/
human-research-ethics

survey is approved by the university and administered viaMicrosoft
Forms129.

129Microsoft Forms: An online
tool for creating and distributing
surveys and collecting responses.

See more:
https://forms.office.com/

C.2.1 Introduction Page

The survey begins with the statement: ”It will take approximately 10
minutes to complete. All responses will be kept fully anonymous. No iden-
tities will be revealed. There is an option to share anonymous quotes.”.
And then proceeds to ask the question:

May answers submitted in this survey be used anonymous
results/quotes in the final report?

C.2.2 Case Reflection: Part 1

This section first allows the expert to manually review two utility
cases without automation guidance, providing an overview of the
utilities as presented below.

https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics
https://forms.office.com/
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Case 1: Would you flag Utility A? Please provide your rea-
soning.

Utility A:
Country: Singapore
Total Population Service Size: N/A
Average Daily Supply: 1 hour
Total Population in Wastewater Service Area: 14000
Total Service Population in Wastewater Service Area: 7000
Total Wastewater Service Connections: N/A
Total Direct Wastewater Connections: N/A

Case 2: Would you flag Utility B? Please provide your rea-
soning.

Utility B:
Country: The Netherlands
Total Population Service Size: 80000
Total Operating Expenses: 1 million (in euros)
Total Revenue Collected: 300k (in euros)

C.2.3 Case Reflection: Part 2

After themanual review responses, the automation results are pre-
sented to the expert, accompanied by the statement: ”Based on the
previous cases - shown again here - the current automated flagging system
flagged the first utility but did not flag the second utility. The reasons for
flagging are indicated with (FLAGGED - reasoning) below: ”. Experts
are subsequently presented with:

Do you agree with the decision to flag Utility A? If not,
please explain why. If you do agree, but for a different rea-
son than the system’s logic, feel free to clarify as well.
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Utility A:
Country: Singapore
Total Population Service Size: N/A
(FLAGGED - ”missing value detected”)
Average Daily Supply: 1 hour
(FLAGGED - ”placeholder value of 1.0”)
Total Population in Wastewater Service Area: 14000
Total Service Population in Wastewater Service Area: 7000
Total Wastewater Service Connections: N/A
(IMPUTATION - ”value not flagged but filled in using an
algorithm”)
Total Direct Wastewater Connections: N/A
(IMPUTATION - ”value not flagged but filled in using an
algorithm”)

How would you communicate this back to the utility?

Wastewater and sanitation data is optional during survey in-
put, but its absence creates major gaps in later analysis and
reduces the reliability of checks. To address this, an algo-
rithmwas used to estimatemissingwastewater values for se-
lect utilities (purely for internal flagging purposes). This has
been done for Utility A as seen by: (IMPUTATION - ”value
not flagged but filled in using an algorithm”). Do you agree
with this approach? If so, please explain why. If not, feel
free to share any questions or concerns.

Do you agree with the decision to not flag Utility B? If not,
please explainwhy. If you do agree, but for a different reason
than the system’s logic, feel free to clarify as well.
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Utility B:
Country: The Netherlands
Total Population Service Size: 80000
Total Operating Expenses: 1 million (in euros)
Total Revenue Collected: 300k (in euros)
(No flags detected)

C.2.4 Flag Interpretation & Trust

The next section explores broader flag interpretation, beginning
with the prompt:

Overview of the Automated System Prototype:
The flagging system, inspired by the current reviewer pro-
cess, reducesmanual review time fromhours to under 2min-
utes. It follows three steps:

• Identifying missing or placeholder data (e.g., missing
service population),

• Validating indicator logic and ranges (e.g., % female
employees ≤ 100%),

• Comparing values against other utilities using
weighted deviations (e.g., global averages weighted
less if highly variable) within 5 comparator groups
(Global Average, Population Service Size, Number of
Connections, World Bank Region, and World Bank
Income).

The system outputs three types of flags - one per step - with
the final stage assigning severity levels: mild, moderate, or
severe deviation.

It opens with the questions:

After reviewing the cases and reading a brief summary of the
method, would you use this automated flagging system?
Please explain your answer.
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Do you think having different severity levels (e.g., mild/-
moderate/severe based on deviations in step 3) is helpful?
Yes/No.

Could you briefly explain why you selected Yes or No in the
question above?

C.2.5 Future Direction & Use

This section concludes by focusing on future steps and feedback on
the current system.

Should historical consistency (e.g., comparing this year’s
submission to previous years for the same utility) be part
of future checks?

Do you see this system being used beyond anomaly flag-
ging? If yes, for which purposes?

• Country/Region-specific reporting
• Benchmarking dashboards
• Trend analysis
• Performance alerts
• Capacity building support
• None of the above
• Other

Are there any other features you would like to see added?
Or concerns you’d like to raise?

Extra Comments.
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C.3 Flagging Patterns

A more detailed analysis of the patterns and potential groupings
observed during Stage 3 Comparator Analysis and Severity Scor-
ing is provided here.

The first comparator examined in greater detail is Population,
as shown in Table C.4.

Table C.4: Utilities per Population Category and Stage 3 Flagging

Population
Category

Total
Utilities

Flagged
in Stage 3

Proportion
(%)

Very Low 104 71 68.27
Low 115 88 76.52
Medium 25 23 92.00
High 29 22 75.86
Very High 16 13 81.25

It can be seen that proportionally, theMedium category receives
the highest share of flags, with 92% of utilities having at least one
type of flag (Mild, Moderate, Severe). This is followed by Very High,
then Low and High. The relatively small size of the Medium group
with 25 utilities may amplify the effect of individual anomalies,
driving up the proportion of flagged cases. Similarly, the high pro-
portion in the Very High group may partly reflect the limited num-
ber of utilities as well, where even a few deviations significantly
shift percentages. By contrast, the larger Low and Very Low cate-
gories display lower proportions, though in absolute terms they
still account for the majority of flagged utilities. These patterns
illustrate the importance of considering group size and variance
when interpreting flagging outcomes, as smaller categories may
appear disproportionately problematic despite limited underlying
evidence.

The second comparator examined in greater detail is Connec-
tions, as shown in Table C.5.
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Table C.5: Utilities per Connections Category and Stage 3 Flagging

Connections
Category

Total
Utilities

Flagged
in Stage 3

Proportion
(%)

Very Low 65 45 69.23
Low 132 102 77.27
Medium 39 36 92.31
High 11 10 90.91
Very High 28 23 82.14

Asimilar trend appears in theConnections categories, withMedium
and High again showing the highest proportional flagging.

The third comparator examined in greater detail is Region, as
shown in Table C.6.

Table C.6: Utilities per Region and Stage 3 Flagging

Region Total
Utilities

Flagged
in Stage

3

Proportion
(%)

East Asia and Pacific 25 22 88.00
Europe and Central Asia 40 31 77.50
Latin America and the
Caribbean

14 7 50.00

Middle East and North
Africa

7 5 71.43

North America 1 0 0.00
South Asia 37 22 59.46
Sub-Saharan Africa 161 129 80.12

For Region, the highest proportional flagging occurs inEast Asia
and Pacific, followed by Sub-Saharan Africa. Europe and Central Asia
also shows a relatively high rate, while South Asia and Latin America
displaymoremoderate levels. These results highlight how regional
proportions can be strongly influenced by group size: smaller cat-
egories like East Asia and Pacific orMiddle East and North Africa may
show high percentages from only a few anomalies, whereas larger
groups such as Sub-Saharan Africa provide a more stable reflection
of underlying data patterns.

The final comparator examined in greater detail is Region, as
shown in Table C.7.
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Table C.7: Utilities per Income Level and Stage 3 Flagging

Income Level Total
Utilities

Flagged
in Stage

3

Proportion
(%)

High Income 21 14 66.67
Upper-Middle Income 40 31 77.50
Lower-Middle Income 137 99 72.26
Low Income 88 72 81.82

Across income levels, the highest proportional flagging is found
among Low incomeutilities, followed byUpper-Middle income. Lower-
Middle andHigh income groups show somewhat lower rates, though
still above two-thirds. These results suggest that while data qual-
ity challenges occur across all income levels, lower-income utilities
may face particular difficulties in consistent reporting, potentially
reflecting both capacity constraints and systemic challenges.



D
Process Details

This chapter provides a detailed overview of the thesis develop-
ment timeline, including the process layout and a meeting and cal-
endar summary of the seven-month trajectory. It also includes a
section on practical considerations submitted to the World Bank to
support the continuation and integration of their flagging system
into practice.

D.1 Development Timeline

The thesis process is structured into three main phases, as shown
in Figure D.1.

Figure D.1: Timeline of the thesis development, outlining Phase 1: Literature
Review & Gap Analysis, Phase 2: Model Development & Validation, and Phase
3: Synthesis & Recommendations.

152
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A visual overview of the meetings, deadlines, and phases is
shown in Figure D.2. In addition, a separate file is maintained doc-
umentingmeeting details, including attendance, discussion points,
and agreed next steps.

Figure D.2: This figure presents a calendar overview of the seven-month trajec-
tory, highlighting key meetings, deadlines, and phases.

D.2 World Bank Manual

This thesis originated from the real-life assignment of developing
an optimised flagging system within the NewIBNET framework.
In addition to this report, a condensed manual is prepared for re-
viewers who wish to apply the framework in practice.

No user interface was developed, as this fell outside the thesis
scope and timeline. Instead, the NewIBNET team will receive the
Python files, accompanied by a manual explaining the required di-
rectory structure and basic steps. Reviewers only need to upload
the dataset and run the designated files, after which the system au-
tomatically generates outputs for flagging and review.

As noted in Appendix B.5, a logical next step would be to work
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with the World Bank’s IT team to integrate the tool directly into
the online NewIBNET platform, enabling reviewers to access the
system seamlessly and in real time.

All code files and raw input utility data remain private and
will not be made publicly available, in line with the confidential-
ity agreement established with the NewIBNET team.

D.3 Large Language Model Acknowledgement

Reference: OpenAI. (2025). ChatGPT (Feb-Aug 2025 version) [Large
LanguageModel]. https://chat.openai.com/chat. Prompt: ”Rephrase:
... [insert sentence]”.

https://chat.openai.com/chat



	Abstract
	Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1. Motivation
	1.2. Contributions
	1.3. Structure

	2. Background & System Architecture
	2.1. Background
	2.1.1. Water Utilities
	2.1.2. The World Bank & NewIBNET
	2.1.3. Efficiency in Benchmarking Data Process
	2.1.4. The Need for Automated Validation

	2.2. System Architecture
	2.2.1. Understanding the Existing NewIBNET Pipeline
	2.2.2. Survey Setup and Indicator Design
	2.2.3. Comparison Criteria
	2.2.4. System Assessment


	3. Literature Review & Thematic Foundations
	3.1. Setup and Protocol
	3.1.1. Search
	3.1.2. Appraisal
	3.1.3. Synthesis

	3.2. Thematic Content Analysis
	3.2.1. Contributions to Automated Data Validation and Benchmarking
	3.2.2. Criteria for Data Validation and Quality Assurance
	3.2.3. Decision Algorithms and Weighting Mechanisms
	3.2.4. Handling Data Without Historical Labels
	3.2.5. Integration of Human Feedback in Automated Systems
	3.2.6. Ethical Considerations and Transparency
	3.2.7. Use of Benchmarking Data and Related Datasets

	3.3. Key Insights from the Literature Review
	3.3.1. Technical Dimension
	3.3.2. Water Dimension
	3.3.3. Ethical Dimension

	3.4. Limitations of the Literature Review

	4. Methodology
	4.1. Research Questions
	4.1.1. Data Preparation & Structural Validation
	4.1.2. Context-Aware Anomaly Modelling Frameworks
	4.1.3. Severity Scoring & Decision Framework
	4.1.4. Technical Validation & Evaluation
	4.1.5. Ethical, Political, and Sectoral Considerations

	4.2. Design & Methodological Framework
	4.2.1. Iterative Prototyping Cycle
	4.2.2. Development Timeline

	4.3. Critical Assumptions & Risk Analysis
	4.3.1. Critical Assumptions
	4.3.2. Risk Analysis
	4.3.3. Out-of-Scope Areas & Deferred Innovations


	5. Data Preparation & Structural Validation
	5.1. Initial Data Exploration & Characteristics
	5.1.1. Pipeline Development
	5.1.2. Exploratory Data Analysis

	5.2. Logical Validation Rules
	5.2.1. Validation Logic & Design
	5.2.2. Utility Dataset Results

	5.3. Missing Data Treatment: Imputation
	5.3.1. Eligibility Criteria for Imputation
	5.3.2. Median Approach
	5.3.3. k-NN Approach
	5.3.4. Performance and Robustness Comparison


	6. Context-Aware Anomaly Modelling Frameworks
	6.1. Overview of Comparator Logic
	6.2. Existing Static Comparators
	6.2.1. Global Average Comparator
	6.2.2. Population Service Size Comparator
	6.2.3. Water Service Connections Comparator

	6.3. New Static Comparators
	6.3.1. World Bank Region Comparator
	6.3.2. World Bank Income Comparator


	7. Severity Scoring & Decision Framework
	7.1. Existing Threshold Logic
	7.2. Weighting
	7.2.1. Simple Weights
	7.2.2. Advanced Weights

	7.3. Severity Flagging
	7.3.1. Composite Z-Score Logic
	7.3.2. Sensitivity Testing


	8. Technical Validation & Evaluation
	8.1. Architectural Synthesis
	8.1.1. Cumulative Flag Analysis
	8.1.2. Flag Pipeline

	8.2. Internal System Testing
	8.2.1. Robustness Checks
	8.2.2. Case Study Application in Indonesia

	8.3. Expert Feedback
	8.3.1. Survey Design
	8.3.2. Evaluation Insights


	9. Ethical, Political, and Sectoral Considerations
	9.1. Design Reflections
	9.1.1. Dependency on Utility Data
	9.1.2. Imputation & Inclusivity
	9.1.3. Heterogeneity and Contextual Realities

	9.2. Framing Sensitivities
	9.3. Trust in Automated Flagging

	10. Conclusion
	10.1. Answers to Research Questions
	10.2. Limitations of Current Work
	10.3. Future Work
	10.4. Final Remarks

	References
	A. Data Foundations
	A.1. Input, Indicator, and Results Tables

	B. Methodological Additions
	B.1. Comparative Analysis with Benchmarking Platforms
	B.2. Computational Analysis
	B.3. Benford's Law
	B.4. Framework Extensions
	B.4.1. Data Preparation & Validation
	B.4.2. Context-Aware Anomaly Modelling Frameworks
	B.4.3. Severity Scoring & Decision Framework
	B.4.4. Technical Validation & Evaluation
	B.4.5. Ethical, Political, and Sectoral Considerations

	B.5. Out-of-Scope Extensions

	C. Validation & Evaluation
	C.1. PERPAMSI Dataset Results
	C.1.1. Mapping Process
	C.1.2. Flagging Results
	C.1.3. Indicator Weights
	C.1.4. Group Distributions

	C.2. Expert Survey 2025
	C.2.1. Introduction Page
	C.2.2. Case Reflection: Part 1
	C.2.3. Case Reflection: Part 2
	C.2.4. Flag Interpretation & Trust
	C.2.5. Future Direction & Use

	C.3. Flagging Patterns

	D. Process Details
	D.1. Development Timeline
	D.2. World Bank Manual
	D.3. Large Language Model Acknowledgement


