
Computational Specification of Building Requirements in the
Early Stages of Design

Conference topic area: CAD systems for early design phases

Omer Akin, Zeyno Aygen, Michael Cumming, Magd Donia, Rana Sen, and Ye Zhang
School of Architecture, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Phone (412) 268-3594, Fax (412) 268-6129, E-mail: oa04@andrew.cmu.edu
and

James Garrett, Department of Civil and Environmental Engineering
Carnegie Mellon University, Pittsburgh, PA 15213, USA

Phone (412) 268-7813, E-mail: garrett@cmu.edu

ABSTRACT

We have been exploring computational techniques to help building designers to specify design
requirements during the early stages of design. In the past, little has been accomplished in this area
either in terms of innovative computational technologies or the improvement of design performance.
The prospect of improving design productivity and creating a seamless process between requirements
specification and formal design are our primary motivations. This research has been conducted as part
of a larger project entitled SEED (Software Environment to Support Early Phases in Building Design).
SEED features an open-ended modular architecture, where each module provides support for a design
activity that takes place in early design stages. Each module is supported by a database to store and
retrieve information, as well as a user interface to support the interaction with designers. The module
described in this paper, SEED-Pro (the architectural programming module of SEED), is a working
prototype for building design requirements specification. It can be used by other modules in SEED or
by design systems in other domains, such as mechanical engineering, civil engineering, industrial design
and electrical engineering. Our approach to SEED-Pro is divided into two phases: core, and support
functionalities. The core functionalities operate in an interactive mode relying on a case-based
approach to retrieve and adapt complex specification records to the problem at hand. The support
functionalities include the case-base, the data-base, and the standards processing environment for
building specification tasks. Our findings indicate that SEED-Pro: (1) is a tool that structures the
unstructured domain of design requirements; (2) enables the integration of design requirements with the
rest of the design process, (3) leads to the creation of complex case-bases and (4) enables the
observation of their performance in the context of real world design problems.

1 ISSUES FOR A DESIGN REQUIREMENTS SUPPORT ENVIRONMENT

Computers have entered our lives primarily with the expectation if not the promise
that they will make solving difficult problems easier. Whether it is text editing, data
processing or simulating complex functions we expect computers to make everyday
problems more manageable. This premise has lead to many important and profound
developments in almost every facet of our lives. Most of these developments are
aimed at producing computer systems that help solve well-defined problems
(optimization, etc.) or provide general purpose support for a variety of well-

understood tasks (spreadsheets, etc.). There are very few systems, however, which
assist users in structuring unstructured problems. This is a primary motivation for this
work.

In the area of CAD, there are a plethora of tools that can assist with various aspects of
the design process. The glaring deficiency in this space of tools is those that apply to
the early stages of design, during which some of the most critical decisions about
design are made within a context of incomplete and imprecise data. During this stage,
the design problem is usually ill-defined [Reitman, 19641 and designers' ability to
evaluate proposals is limited by the incompleteness of data. At the same time the
decisions made during this stage are far more important in terms of their lasting
impact on the performance characteristics of designs. To add to this difficulty, the
amount of time spent on the preliminary design is disproportionately small.

Most design fields, in particular building design, result from a collaboration between
multiple sub-areas of expertise. In building design, architects, mechanical engineers,
civil engineers, landscape designers, and planners work together undertaking a variety
of tasks: such as site design, building requirements specification, financial feasibility
analysis, and design requirement analysis. Each of these participants bring to the table
a specific skill and knowledge applicable to the building problem. Thus, any credible
approach to the problem needs to be cross-disciplinary, bringing together a variety of
knowledge domains and corresponding expertise.

We have been using some of the most advanced tools in software engineering to
formalize and automate significant portions of the difficult and ill-defined task of
specifying problem requirements in design. We have developed a computational
environment for specifying as completely and accurately as possible the premises,
parameters and dimensions of complex problems, thus enabling the computer based
generation of a set of problem requirements that can seamlessly lead to computer
based solution generation. In particular, strategies such as case-based design can be
used to generate successful solution examples from pre-stored cases.

Finally, this paper builds on work reported earlier. SEED is a system which has been
under development for the last four years at the School of Architecture and ICES
(Institute for Complex Engineered Systems) [Akin, et.al., 19951. Our purpose in this
paper is to report the design requirements specification aspects of early design,
particularly the portion that applies to SEED-Pro.

2. STATE-OF-THE-ART IN DESIGN SYSTEMS

The work described here represents the advancement of the state-of-the-art in
computer software development, and the design process. The most significant impact
is made in the following three categories: (1) generative support systems for early

stages of building design, (2) enhancement of productivity through computation, and
(3) case-based support for design decision making.

The following section will first provide a brief survey of some software systems that
define state-of-the-art in each of these categories. The work we are reporting here has
a common motivation with some of these systems and attempts to build on the lessons
learned from them. Following the survey we provide a discussion of the way this
work is related to the current achievements in the field.

2.1 Support systems for early stages of building design

In the past, there have been many attempts to create design tools for the early stages of
design. Unfortunately, most of these tools have made little, if any, impact on the
generative aspects of design, even if this was part of the initial motivation for their
creation.IBDE (Integrated Building Design Environment) represents an early effort to
develop generative design modules representing several domains involved in building
design, namely architecture, structural engineering, construction planning and cost
estimation [Fenves et al., 1994]. Each design module is seen as an expert system.
IBDE provides a test bed for the exploration of generation and communication issues
in building design. Its usage is limited by the facts that it doesn't support the iterative
design process, negotiation or conflict resolution between different domain designers;
and it doesn't have a shared knowledge base which is necessary for having
downstream modules dealing successfully with the decision made by upstream
modules.

KNODES (Knowledge-based Design System) is a prototype building design
framework intended to teach students the "complex relationships between spatial
configuration and building performance," In particular it helps the exploration of the
relationship between factors like natural lighting, energy consumption, structure
analysis and the form and "fabric" of the building [Rutherford, 1994]. KNODES
comprehensively incorporates different performance aspects related to building
design, and, it tackles the complex relationships between a building geometry and its
expected performance. However, it does not provide a generative design capability
and it does not provide support for a more in-depth building design process beyond
that of designing a building envelope.

ICADS (Intelligent Computer-Aided Design System) is developed to study the
decision making process during the conceptual design stage [Pohl, et.al., 1994] "The
ICADS architecture consists of several knowledge-based agents that critique and
propose changes to the emerging design. An additional agent is provided to propose
resolution strategies for any conflicts that may occur between these agents. All agents
access and modify the design description stored in a central blackboard system."
[Fenves et al., 1994]. ICADS addresses complex problem solving and on-line access

to a large body of shared information; however, it does not support generative design,
iterative design, and dialog or negotiation with users.

2.2 Productivity enhancing design systems

Productivity enhancement through the use of computer aided tools has been difficult
to demonstrate in general, let alone in the area of building design. Here we review a
variety of systems that have yielded measurable performance improvements, with the
hope that lessons learned in these domains will transfer to our own.

The MULGA symbolic design system assists designers to layout VLSI chips [Boyer
et.al., 1989]. After a layout is manually generated, the system simulates the
performance of the design and verifies the design. It has helped designers to achieve
productivity by allowing a designer to design the whole chip without worrying about
process design rules, facilitating cell and module reuse, and, simplifying the programs
that implement functions such as compacting and extraction.

Ship Model, a computerized product model of a ship, is employed during the early
design stage [Von Haartman, et.al., 1994]. Besides being a tool that helps create and
modify a design, this model provides a well defined primary source of design
information, and a description of a ship that allows various analysis and calculations
to be performed. The tool has been shown to enhance functional design improve basic
design efficiency, and speed up detailed design.

The Design Associate (DA) is a tool used for designing racing yachts [Gelsey, 1992].
This system automatically carries out the iterative design process through the use of an
expert system. After simulating a design, the expert system reasons and then modifies
the design and automatically resubmits its modification for a new simulation. The
yacht designed by DA, called "Stars & Stripes", won the 1987 America's Cup.

2.3 Case-based design systems

Case based technologies have been receiving growing attention particularly directed to
the solution of routine design problems. There is a rapidly growing list of applications
that catalog designs, and provide matching algorithms to find appropriate cases. In this
picture, we also find, albeit with less frequency, systems that adapt cases to new
situations. Below we provide a small sample of such systems.

CASECAD is a domain-independent design assistance system which integrates case-
based reasoning and CAD techniques. The information held in cases has multiple
representations. These include attribute-value pairs used as important design
parameters, textual explanations used to provide clarification of certain design
problems, and drawings used to illustrate the physical appearance of the design. Each
of these features assist in the retrieval and adaptation of the case for a new problem.

Revision and reformulation of the design problem requirements can also be enabled in
order to make the overall design process more flexible [Maher, 1997]. Similarly, in
CADSYN each case is decomposed into subparts. By representing knowledge
hierarchically, only relevant parts are retrieved. However the emphasis here is not on
case retrieval but on case adaptation [Maher, 1997]

GENCAD is a case-based reasoning tool for structural design of tall buildings [Maher,
1997]. The unique contribution of GENCAD is that it uses a "general-purpose,
knowledge-lean method based on genetic algorithms" for the task of case adaptation
in order to avoid using a great deal of domain-specific knowledge and domain- and
task-specific heuristics normally needed for such knowledge-based case adaptation.

2.4 Expected act of this work on the state-of-the-art

Our approach is intended make progress in all three categories of the literature
surveyed above. First, it will advance the state-of-the-art in generative design systems
by supporting (1) the iterative design process, (2) design negotiation and shared
knowledge, and (3) a greater range of user-specified functional requirements,
including, usage requirements, environmental requirements, and parametric design
requirements.

Second, our approach is directed at enhancing productivity in building design. We
expect that SEED-Pro will be instrumental in improving design productivity through
the seamless integration of the design specification step with the later steps of the
building design process. Automatic and interactive translation of specification data
into design proposals will make the design process more efficient and eliminate
upstream/downstream incompatibilities.

We also expect that case-based retrieval and adaptation of existing designs will also
play a role in enhancing design productivity. In routine design, a case based approach
is expected to improve efficiency of creating new designs. Through the reuse of data
stored in cases, designers will be able to start their work at a more advanced stage of
the design process and save valuable design time.

Finally, our approach expands the boundaries of collaborative computer system design
in the building design domain. This incorporates various disciplines, such as
information modeling, functional reasoning, optimization, process management, and
interface design.

3. SOFTWARE ENVIRONMENT TO SUPPORT EARLY PHASES IN BUILDING
DESIGN (SEED)

3.1 The Overall Environment

In 1993 researchers at the Engineering Research Design Center (EDRC) and the
School of Architecture at Carnegie Mellon University started the SEED project, which
provides a software environment to support the early phases of building design. The
overall goal of SEED is to provide support for the preliminary design of buildings in
all aspects that can gain from computational support. This includes using computers
for the "rapid generation of computable design representations describing conceptual
design alternatives and variants of such alternatives with a sufficient level of detail
that enables sophisticated evaluation tools to receive all of the needed input data from
the representation" [Flemming et.al., 1995b]. SEED encourages the exploratory mode
of designing by making it easy for designers to iterate through design versions and
pursue conceptual alternatives in parallel.

SEED features an open-ended modular architecture, where each module provides
support for a design activity that takes place in the early design stages. Each module
consists of five main components: input, specification, generation, evaluation and
output. These are supported by a database to store and retrieve information, as well as
a user interface to support the interaction with designers [Figure 1].

Figure 1: Generic Architecture of a SEED module [Flemming, et.al., 1995b].

3.2 Architectural Programming in SEED

To support design generation, a well-defined set of explicit requirements is needed.
The prototypical version of SEED-Pro, the building requirements specification
module of SEED, is designed with the intention to support the modeling and
generation of design requirements in a form that is usable by other modules of SEED.
It has the following objectives [Akin et.al, 1995]:

• Provide means of storing and handling all aspects of the requirements specification
information including site characteristics, codes, client preferences, and different
performance criteria and requirements.

• Ensure the use of criteria established during the building requirements specification
phase as a basis of design.

• Enable the integration of building requirements specification and architectural
design as a seamless process.

• Maintain a database of reasons employed in making requirement specification
decisions, and improving the computability of requirement specification
information by allowing non-numerical types of reasoning.

• Achieve a flexible way of interaction that does not tie the user to a specific
requirements specification model.

• Enable the use of past programs and the requirements specifications in future
projects.

Through the sharing of domain object classes, SEED-Pro aims to provide a seamless
interaction with all of the other modules of SEED and share data across these
modules. SEED-Pro positions itself as a good candidate for maintaining a robust
record of design requirements, criteria, and constraints to be used persistently in
SEED.

Currently, SEED-Pro is implemented in C++ using the ET++ application framework
[Weinand, etal., 1994] and includes the core functionalities of building requirements
specification. This prototype is primarily an interactive system relying on user input
of massive amounts of data.

4. CORE FUNCTIONALITIES OF SEED-PRO

SEED-Pro aims to provide a seamless interaction with all of the other modules of
SEED [Flemming, et.al., 1995a]. It shares data as well as methods of data
manipulation with other modules. By providing the outputs that the other SEED
modules require as input and through the shared domain object classes and libraries in
SEED, SEED-Pro complements the basic steps of early design: architectural problem
specification, two dimensional design and three dimensional configuration design.

Through the sharing of domain object classes which represent entities like functional
unit (FU), design unit (DU) and specification unit (SU) SEED-Pro enables
translations between organizational, functional and spatial concepts.

• A DU is a spatial or physical part of a building with an identifiable spatial
boundary (e.g. a living room). A DU can contain other DUs such as other rooms or
furniture.

• A FU represents a combination of functions to be satisfied by a single DU and also
serves as the repository of requirements for that DU. The requirements could be in
the form of constraints and criteria regarding the shape, size, etc. of the DU. A FU
can contain other FUs.

• A SU collects the design intentions and criteria to be satisfied by one or more FUs.
A SU can contain other SUs.

SEED-Pro converts the SUs or SU-hierarchies given to it by the user into FU-
hierarchies. These are sets of FUs organized hierarchically through constituent
relationships. There are also other relationships specified within FUs that indicate
design constraints, technologies and various inheritance relationships [Akin, et.al.,
1995]. The FU-hierarchy serves as the output of SEED-Pro and the input to the other
two modules of SEED. There are several different methods of FU-hierarchy
generation used in SEED-Pro: (1) building from scratch (2) adapting an AP from the
case library, and (3) automatically generating from specifications of clients.

The problem decomposition functionality is another tool that has been developed in
SEED. This is intended to make the coupling of the output of SEED-Pro and the
input of SEED-Layout more successful. The spatial system synthesis is not the only
potential application in this category. Other design issues, such as thermal, acoustical
and structural systems, also provide appropriate categories for problem
decomposition.

4.1 Specification of the architectural problem in SEED-Pro

Design specifications are defined in SEED-Pro as a collection of design intentions and
criteria to be maintained by the architectural design. This is the front end to SEED-
Pro and provides it with a rich record of specifications categories. To date, we have
implemented only the building specification category. This specification component
allows for multiple AP alternatives that satisfy the same set of specifications, as well
as facilitating case matching and retrieval. It also captures the rationale and the
intentions of the design criteria, thus providing a basis for functional reasoning by
being able to trace a design decision to the specifications that initially triggered it.
This feature is being developed further to enable the automatic translation between
SUs and FUs (Section 5.3).

A SU is the basic building block for representing specifications in SEED-Pro. It
embraces an object-oriented representation that consists of the SU and its component
objects. A SU object represents an organizational entity in the building which can
correspond either to a physical space, a room, or to an abstract organizational concept.
SUs can be recursively aggregated to form the organizational and functional
hierarchies of the building. A SU can be associated with a number of component
specifications, each of which describes desired performance requirements and design
criteria. The list of components is open ended and allows the system developer to add
additional component types as needed.

4.2 Generation of the solution in SEED-Pro

The purpose of the generation component of SEED-Pro is to develop the FU-hierarchy
corresponding to the SU-hierarchy and in conformance with related codes and
standards. Three different generation methods are considered: developing a FU-
hierarchy from scratch, case matching and retrieval, and automatic translation from a
SU-hierarchy to a FU-hierarchy.

Once the SU-hierarchy is built the designer can invoke the FU-Iibrary and start the
generation process. The designer browses the library and selects the FU
corresponding to the SUs. The connections between each SU and FU must be
explicitly made by the designer. The system assists the designer in building the FU-
hierarchy by providing sophisticated editing capabilities.

4.2.1 Case-based generation of an architectural program
The SU-hierarchy is the primary criteria for matching and retrieving cases from the
case library. A general description of the indexing, retrieval and adaptation of cases in
SEED modules is presented elsewhere [Flemming et. al., 1994]. Once a case has been
retrieved, the designer will be able to make modifications to the AP and adapt it to the
current problem. If, however, multiple cases are retrieved then the designer has to
make an appropriate selection first. In this mode, the AP is generated interactively

with the designer; the system plays a more active role in the process of retrieving
matched cases.

4.2.2 Generation of an architectural program by automatic translation
SEED-Pro has the capability to translate some values from the SU-hierarchy into one
or more FU-hierarchies according one of many mapping techniques being developed
for this purpose. The output of some mappings take forms other than just FU-
hierarchies that can be fed into other CAD systems or simulation tools attached to
SEED as external modules. Such direct mappings are nontrivial in nature and further
research is being conducted in this area. In the simplest instance, the mapping
technique retrieves relevant values from the SU space and computes values in
corresponding FU space(s).

4.3 Evaluation of the solution in SEED-Pro

SEED-Pro cycles through generation and evaluation steps until the designer is
satisfied with the output. Although a generated AP is intended to be an accurate
representation of the requirements derived from the SUs, there are several aspects of
the AP the accuracy of which cannot be guaranteed a priori. Consequently,
evaluation, such as checking for conformance to minimum requirements of codes and
standards, is needed after the generation cycle is completed. None of the evaluation
features are fully implemented. Currently work is being done in the following areas:

• Compliance checking After a FU is generated or the FU-hierarchy is built, the
designer will be able to request the Standards Support Environment (SSE) to check
the FU or the FU-hierarchy for conformance against all applicable standards and
codes.

• Compliant generation This functionality will help the designer to retrieve
applicable provisions or constraints or both and incorporate them into the FU. This
will be helpful when an AP for a new building type is being generated and the
designer is not familiar with the codes or standards.

4.4 Output of SEED-Pro

The output of SEED-Pro includes an FU-hierarchy that forms the architectural
program along with other alternative hierarchies. The FU-hierarchy is the input to the
functional decomposition component (FDC). FDC generates alternative
decompositions of the FU-hierarchy as the input to SEED-Layout. Some of the other
outputs of SEED-Pro include:

• Output to case base From among the several APs that the designer develops, those
that are considered to be good prototypical examples of a given building type can
be saved for future reference and use towards generation of new APs.

• Output to data base APs developed for the generation of designs by the SEED-
Layout and SEED-Config modules are saved in the data base. Other versions of
AP expected to be used in interim client reviews and other project related work are
also saved in the data base as phases of work or as alternatives [Akin, et.al., 1995].

• Pre-formatted reports Printed reports describing the AP to accompany inventory of
spaces, feasibility studies and other facilities management related tasks.

4.5 Problem Decomposition

The FDC helps translate the output of SEED-Pro into the input for SEED-Layout.
More specifically, it generates alternative decompositions of the FU-hierarchy
developed by the generation component of SEED-Pro. This clusters FUs according to
different types of relationships like area, adjacency, thermal, daylight and acoustic
requirements.

FDC is designed to generate alternative groupings of FUs based on a variety of
relationships. Under the proximity relationship, a certain distance is required between
any two FUs. The FUs with closer proximity requirements are grouped together while
the FUs with remote proximity requirements are separated into different groupings. In
the thermal category rooms with similar heating/cooling requirements are kept
together. Acoustical criteria are applied to minimize noise/quiet requirements of
functions. FDC takes as a constraint a single requirement category at a time in order
to generate alternative decompositions. In section 5.4 this core functionality of
SEED-Pro is further elaborated.

5. ONGOING WORK

The work currently in progress constitutes the kernel of SEED-Pro's automated and
semi-automated processing of requirements data towards becoming a server for a
number of design applications, such as layout generation, cost estimation, feasibility
analysis, and so on. This work is based on the core functionalities of SEED-Pro
described above: specification, generation, evaluation, output and functional
decomposition. The categories included in this section are based on the elaboration of
these functionalities to achieve an enhanced level of functionality, such as modeling
specification primitives, design requirements, constraint generation, stacking and
zoning, and process management.

5.1 Specification Primitives

The complexity of modeling design requirements for buildings arises mainly from the
absence of a formal way to define such requirements. Firms specializing in building

requirements specification, have adopted or created formal models for defining design
requirements. In general, the ways in which these models define design requirements
are often grouped into two main styles [Kumlin, 1995]. The first is the prescriptive
style through which design requirements are specified in terms of properties of
materials and building systems based on solution standards or on the designer's
experience. The second is the performance style by which design requirements are
specified as performance criteria, such as required air temperature, illuminance,
activities to be performed. Adopting one style over the other is most likely to result in
an inadequate model to define design requirements. Different aspects of design
requirements are better specified in given styles, because it is often hard to determine
whether certain design requirements are prescriptive or performance based. For
example, defining the R-value of a wall can be considered as a performance criterion
or alternatively as a prescriptive material property.

5.2 Modeling Design Requirements

Modeling design requirements could be achieved using three different approaches.
The first approach is to model design requirements after an industry standard, such as
those supported by the American Institute of Architects (AIA) or building materials
suppliers' specifications (i.e., the Sweet's catalog). Such an approach is relatively easy
to accomplish and is likely to be used by people and firms that adopt the standard on
which the model is based. However, this results in a model that is restricted to a single
standard and inflexible, thus failing to accommodate the evolving nature of
information categories in the field.

The second approach is to provide a model that encompasses all possible industry
standards-a union of all the existing standards and classifications. In this case, the
model is not restricted to a single standard and would cater to a wider group of
practitioners; however, this approach would prove to be impractical due to
contradictions that exist between standards, and the very large number of conventions
used in the field.

A third approach is to provide a flexible framework to model design requirements
according to a given standard or classification. This framework is intended to be
adaptable in a way similar to application frameworks, such as ET++ [Weinand, et.al.,
1994]. It provides an overall organizing framework to model design requirements
using adaptable components to accommodate different ways of describing design
requirements. This approach is more flexible than the previous two approaches and
facilitates the addition of new specifications categories.

Our approach in SEED-Pro is represented by the third approach. This poses certain
computational problems that have to be addressed at the functionality and interface
levels. One of these problems is the creation of new specification categories at run-
time. It is well known that strictly linked languages, such as C++ do not allow the

introduction of new types or classes at run-time. Our solution to this problem consists
of the development of a modeling language that permits a very large set of
specification types generated through the compilation of primitive modeling elements.
In addition to these, the problem of translating specifications created according to a
certain set of categories to another need to be addressed. These issues include:

• An overall organizing concept, such as the functional specification (FS) hierarchy,
which is for structuring the design description according to certain criteria:
function, spatial composition, organizational hierarchy. This organizing concept
represents the notion of composition in an object-oriented model. In that sense, a
hospital design can be functionally structured as a composition of several floors,
each containing zones and rooms, while an organizational description may lead to
an alternative based on departments: pediatrics, cardiology, etc.

• Relationships that can be expressed between components of the organizing concept
that are independent of the way the components are structured: examples of such
relations are adjacency, minimum distance, and accessibility requirements for
building designs.

• A set of specification primitives, composed mainly of attribute types, used to define
specification categories: these are grouped to create sets of specifications, such as
for building design specifications or circuit board designs.

• One or more generation mechanisms that 'know' how to extract information from
the model that uses such a set in order to create reports and outputs for other
design systems can be available: some of these generation mechanisms create a
spatial description of the building that feeds into a two-dimensional layout design
system such as SEED-Layout [Flemming et.al., 1995b]. Other mechanisms can
create input for mechanical or structural design or energy simulation systems, while
others can generate reports.

There are issues to be addressed in order for such a framework to be fully
implemented. Among these issues are the form of the overall organizational concept,
the ways relationships are modeled, and creating the set of specifications primitives
needed to model the different categories of specifications, in addition to user interface
issues.

5.3 Constraint generation

The current version of SEED-Pro has two main schema: functional specifications
(FSs) and requirements specifications (RSs) both of which can be represented as
individual objects or as hierarchic structures. FSs structure the preliminary design
description according to certain criteria, such as operational, functional or

organizational structures relevant to a facility. Other relationships could also be
expressed in such a structure, such as adjacencies. The next step is the representation
of spatial relationships between building components based on the FS-hierarchy.

The RSs encode such spatial constraints as maximum and minimum areas and
dimensions besides other building performance requirements, such as thermal,
acoustic, and lighting. The focus of our research has been specifically on the
generation of spatial RSs from representations of FSs.

Design descriptions include: functional specification primitives which have spatial
attributes and user activity models. We are building a functional reasoning engine
which will take as input a particular activity model and develop spatially based
relationships such as adjacency or distances at different levels of abstraction. The
knowledge base for different building types represented in these activity models will
grow as a consequence of using SEED-Pro. This knowledge base then will be used to
derive more sophisticated heuristics to supplement the reasoning engine.

The other generation mechanism that is being developed is more straightforward: it
retrieves the spatial constraints stored in FSs, like equipment and furniture dimensions
or adjacency relationships and derives the corresponding spatial constraints. The
process thus involves the development of a representation for different kinds of
generation mechanisms called "technologies" [Fenves et al, 1995] and the generation
techniques themselves.

The output is in the form of RS-hierarchies, each representing a particular spatial
solution. The constraints have their own domain model and communicate with other
modules, like SEED-Layout, through a shared representation [Snyder, et.al., 1995].

5.4 Stacking and zoning

The processes of stacking and zoning are important decision-making steps in the early
stages of building design. Using these processes, designers group spaces by their
functional requirements and fit them into a predefined building structure, e.g., floors.
This task is both time-consuming and complex.

The stacking and zoning module in SEED-Pro (called the FDC) automates these
processes. It takes as input the functional requirements specified and generated in
SEED-Pro and outputs groupings of spaces by floor and zone. It works by partitioning
the spaces within a building into different floors and zones according to the strength
of their relations with each other.

State-of-the-art stacking and blocking programs have some conimon deficiencies
which are resolved in FDC. These include:

• Limited user interaction. FDC allows for user interactivity and for users to
evaluate solutions generated by the system and to modify those solutions. Users
are also able to modify the initial problem statement, and pre-assign spaces to
floors, or zones.

• Lack of automatic, support. Those that do provide an inadequate solution and have
a time-consuming algorithm. FDC uses an adapted state-of-the-art graph-
partitioning algorithm to provide a solution in linear time.

• Lack of input for different types of functional requirements. FDC supports affinity,
thermal, and acoustical requirements and is set up to handle additional functional
requirements in the future.

• Weak user interfaces. In FDC the interface uses direct manipulation, multiple
representations, and transparent-to-user system operations.

6. FUTURE WORK

While work on the current design features are nearing completion we are starting
work on several other important functionalities of SEED-Pro. These include process
management tools, automated case base support and standards processing.

6.1 Process management tool

This is a tool to document, design and analyze process information during the
requirements specification phase of design. Process is defined as any time or other
resource consuming activity which follows some sequence of definable steps. The
motivation for such a tool is the fact that design specifications often ignore the
processes involved. These processes should comprise a major portion of design
specifications since in practice they can be seen to have a major effect on the final
form and use of a product.

The processes which will be addressed in the context of SEED-Pro are: activities
involved in the design process itself including layout and 3D configuration design; the
construction activities required to construct an building design, and the activities of
end-users housed within a completed design.

The task of completing such a process modeling tool includes: (1) a thorough
literature search of available computable models of process involving both the design
and manufacturing communities; (2) a survey of available applications which are
currently used in the design of design processes, including project, construction and
facilities management software; (3) a set of requirements which no available
applications properly address in the context of design requirements specification; and
(4) an adaptation of this process model to the design processes.

This design process model will be informed by current design process research which
may or may not target computable forms of design. The chosen representation will be
aligned to available standards such as the NIST (National Institute of Standards and
Testing) Unified Specification Language proposal [Schlenoff, et.al., 1996]. The
display and manipulation of design processes should be allowable in several views,
one being graphical. It will be possible to store this process information in SEED data
representations, with particular emphasis on its use in SEED-Pro. It will be integrated
with product and functional requirements already stored in the SEED-Pro data model.

6.2 Case-base support

Case-base capabilities aim at aiding the system user by providing access to a large
memory of past design specifications. In this way, the user is provided with an initial
design specification that is immediately available for modifications. The suggested
case-base engine will provide systematic support for: the storage and indexing of past
design specifications generated by the system, their retrieval at a similar problem
context, and their reuse through adaptation to generate new functional specifications.

The indexing of specification cases will employ a stand-alone classification engine
which will allow the user to attach multiple classifications to cases. The flexibility in
classification is assured by allowing the users to create and modify their own
classification vocabulary without having to alter the data model used for case
representation. The AJPI for case-base and classification knowledge-base transactions
is part of a software system currently available to us -- namely SPROUT, an Object
Modeling Language based schema representation system (Snyder, et.al., 1995).

6.3 Standards processor

When the building requirement specifications is being developed, the code provisions
that apply to this building, such as provisions from the local building code, plumbing
code or electrical code, must be determined and incorporated into the requirements
specification. This problem is compounded by the fact that there is a multiplicity of
model codes that exist and that each jurisdiction may adopts and modifies these model
codes as their local codes. Dealing with codes is thus an important and difficult
aspect of building requirements specification.

As part of the previously described SEED project, [Kiliççöte et.al., 1995] developed a
.formal language for modeling, in computer-usable form, the content of building
codes, and a processor for applying this formal description of the code to the
description of a building. This language is able to capture the complex, higher-order
logic that is often found in these codes, such as provisions that define exceptions to
other provisions or the applicability of other provisions. The code processor is able to
identify, for a given building description, the applicable provisions, identify if enough

infon-nation is available to evaluate these provisions, develop a plan to evaluate them,
evaluate them, and report on the conformance of the building to these code provisions.
To date, this processor has been used by the SEED system as a post processor, where
the building description is checked for conformance to an identified code.

We intend to expand the standard processor in functionality so as to assist SEED-Pro
in identifying the applicable portions of a building code and incorporating those code
provisions into the requirements specification. The existing standards processor first
identifies the applicable provisions and then proceeds to evaluate the provisions, if
possible. Early in the design process, the provisions will not be able to be evaluated
because design has not yet occurred. However, if the standards processor is able to
identify provisions that apply, these provisions can be transformed into code-based
constraints that can be included in the requirements specification. Transforming these
applicable provisions from their modeled form into a constraint that is usable by
SEED-Pro will require that a code application knowledge-base be added to the
standards processor. We will have to make this approach practical for the current
code context, where each jurisdiction has its own set of local building codes that must
be incorporated into a requirements specification. Hence, the code application
knowledge-base will have to be applicable for all codes modeled using the code
modeling language-

7. CONCLUSIONS

SEED-Pro is, to the best of our knowledge, the first generative tool to assist in
architectural programming and link it seamlessly to tools that help in early design
generation, like building layout design or standards compliance checking. This in it
self is significant. We fully expect it to become both a seminal piece of software
leading to even more substantial activity in software development and a benchmark
for other approaches aimed at the same problem.

Currently, we have not tested SEED-Pro in the field. This phase of our work is
schedule for the 1998-9 academic year. It is our expectation that it will improve user
productivity and program quality for architectural programmers. The case based
approach we have adopted and the standards processing features extensions of SEED-
Pro warrant recognition and further attention, in an area of computer aided design that
has been neglected by researchers for a long time.

8. REFERENCES

[Akin, et.al., 1995]
Akin, Ö., R. Sen, M. Donia, & Y. Zhang. (1995). SEED-Pro: Computer Assisted
Architectural Programming in SEED. Journal of Architectural Engineering, Vol I
No, 4, December 1995.

[Boyer, et.al., 1989]
Boyer, David G., and Robert R. Cordell (1989). Symbolic Layout for Rapid Full-
Custom Prototyping of High-Speed Telecommunications Chips, Proceedings of the
Twenty-Second Annual Hawaii International Conference on Systems Sciences:
Architecture Track, Vol 1, p92-101.

[Fenves, et.al., 1994]
Fenves, Steven, Ulrich Flemming, Chris Hendrickson, Mary Lou Maher, Richard
Quadrel, Michael Terk, and Rob Woodbury (1994). Concurrent Computer-
Integrated building Design., PTR Prentice Hall, Englewood Cliffs. NJ.

[Fenves, et.al., 1995]
Fenves, S. J., Rivard, H., Gomez, N., and Chiou, S. C. (1995). "Conceptual
Structural Design in SEED." Journal of Architectural Engineering, Vol. 1, No. 4,
December 1995. American Society of Civil Engineers.

[Flemming, 1994]
Flemming, U. (1994). "Case-Based Design in the SEED System." in Knowledge-
Based Computer-Aided Architectural Design, Carrara, G., and Kalay, Y. E., eds.
Dordrecht, the Netherlands: Elsevier Science B.V.

[Flemming, et.al., 1995a]
Flemming, U., and Chien, S. F. (1995) "Schematic Layout Design in the SEED
Environment." Journal of architectural Engineering, Vol. 1, No. 4, December
1995, American Society of Civil Engineers.

[Flemming, et.al., 1995b]
Flemming, U. and Woodbury, R. (1995). "Software Environment to Support the
Early Phases of Building Design (SEED): Overview" Journal of Architectural
Engineering, 1(4), New York: American Society of Civil Engineers. pp. 162-169.

[Gelsey, 1992]
Gelsey, Andrew (1992). "Modeling and Simulation for Automated Yacht Design,"
Rutgers University Technical Report, CAP-TR- 16.

[Kiliççöte, et.al., 1995]
Kiliççöte, H., B. Choi and J. H. Garrett, Jr. (1995) "Providing formal support for
standards usage in SEED," ASCE Journal of architectural Engineering, Special
Edition on the Carnegie Mellon University SEED Project, Vol. 1, No. 4, pp. 187-
194.

[Kumlin, 1995]
Kumlin, R., (1995). Architectural Programming: Creative Techniques for Design
Professionals. McGraw Hill.

[Maher, et.al., 1997]
Maher, Mary Lou, Andres Gomez de Silva Garza, Dongmei Zhang, Bala
Balachandran, and Kate Bridge (1997). "Case-Based Reasoning in Design,"
retrieved November 15, 1997 from the World Wide Web:
http://www.arch.su.edu.au/-andes/cbd.html.

[Pohl, et.al., 1994]
Pohl, Jens, and Leonard Myers (1994). A Distributed Cooperative Model for
Architectural Design, in Gianfranco Carrara and Yehuda E. Kalay (ed.), Knowledge
based Computer-Aided Architectural Design, Elsevier Science B.V., Amsterdam,
The Netherlands, p205-242.

[Reitman, 1964]
Reitman, W. R. (1964) "Heuristic decision procedures, open constraints and
structure of ill-defined problems," in Human Judgements and Optimality, eds. M.
W. Shelly and G.L. Bryan, John Wiley, New York, pp. 282-315.

[Rutherford, et.al., 1994]
Rutherford, James H., and Thomas W. Maver (1994). Knowledge-based Design
Support, in Gianfranco Carrara and Yehuda E. Kalay (ed.), Knowledge-based
Computer-Aided Architectural Design, Elsevier Science B.V., Amsterdam, The
Netherlands, p243-267.

[Schlenoff etal., 1996]
Schlenoff, C.,. Knutilla, A., Ray, S. 1996. Unified Process Specification
Language: Requirements for Modeling Process. NISTIR 59 10. Washington DC:
National Institute of Standards and Technology.

[Snyder et.al., 1995]
Snyder, J., Aygen, Z., Flemming, U., and Tsai, J. 1995. SPROUT: "A Modeling
Language for SEED." In Journal of Architectural Engineering, Vol. 1, No. 4,
December 1995. American Society of Civil Engineers.

[Von Haartman, et.al., 1994]
Von Haartman, J., I. Kuutti, and C. Schaumen (1994). Improved Design
Productivity with a Product Model for Initial Ship Design, Proceedings of the
Eighth International Conference on Computer in Automation of Shipyard
Operations and Ship Design, vol 2, 5-9 Sept., Bremen, Germany.

[Weinand, et.al., 1994]
Weinand, A. and E. Gamma, (1994). "ET++ - a Portable, Homogenous Class
Library and Application Framework", in Proceedings of the UBILAB '94
Conference, Zurich.

