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Abstract

Imagine being lost in a desert with a bunch of friends, all of a sudden.
Survival will be difficult. You will have mirages, distrust among friends and
no means to leave landmarks on the sand. Unable to locate yourself, you
will have no means to contact people with maps. The best you can do in
such a situation is to stay together in the vicinity of each other and look for
food and water. By staying together, you can see more and decrease faulty
data; thereby increasing your survival probability.

Robots when left to explore the moon encounter the same issues. They
do not have a Geo-Positioning System to locate them nor do they have a
map. They have faulty sensor readings and might find it difficult to contact
a human operator on earth all the time to solve issues on the moon. Since
everything looks the same, there are no landmarks to memorise. As they
walk around, their battery will also get exhausted. The more we equip
the robot outside earth, chances of faults do not decrease, they increase.
Therefore, there is a need to make primitive robots capable of autonomous
exploration. We prefer sending more than one robot, inspired by the success
of the collective strength of insects in harsh environments.

This thesis aims at engineering collective behaviour for a group of robots
in such resource-less environments like the moon. We expect this collect-
ive behaviour to perform searching in time-critical events like earthquake-
stricken areas. The thesis is designed to be implemented on legged robots
called Zebrosﬂ Using communication, they will collectively perform activit-
ies such that they appear as one body of tightly coupled autonomous units.
We design three distinct algorithm&ﬂ for such missions. Emergent behaviour
is expected from the robots running these algorithms. The swarm should
collectively choose the best among the possible options without disintegrat-
ing into subgroups.

?https://www.youtube.com/watch?v=Mrce6yaptic
Shttps://www.youtube.com/watch?v=Yf3ToRk7YHY&feature=youtu.be
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Chapter 1

Introduction

"Collective intelligence can outperform an individual’s ability.”

Given a room with food crumbles spread high and low, under something,
behind the curtains, ants can find it. How? They are very simple organisms.
Given enough time, they can find every dead insect and every single crumble
of food in the room. An ant has only 250,000 brain cells. However, 40,000
ants have the equivalent computational power to a human. Together, these
40,000 ants can do tasks which a single human being cannot. They can
search large areas in parallel. If humans could walk as fast as an ant, he could
compete in a horse race, which gives ants an advantage of speed. However,
speed cannot be the only reason for ants to survive through the cause that
extinguished dinosaurs from the earth. Along with their lightweight and
small structure, their collective behaviour played a role in their survival
through the Cretaceous period and since. The total weight of ants alive [45]
on earth today is equal to all alive human’s weight todayﬂ This further
implies that ants have llfﬂ times more computation power than human
computation on earth. Collectively, ants have better survival instincts than
dinosaurs and better search capabilities compared to humans.

One of the robots being developed at the Technical University of Delft
called Zebros. Zebros are aimed to achieve collective behaviour like that of
ants in search tasks. Zebros are lightweight, small and can traverse most
terrains. They walk while avoiding collision with moving and stationary
objects. However, unlike ants, until now, Zebros lack a social sense of com-
munity which this thesis aims to provide. This thesis aims at creating co-

!This fact was stated in the year 2014 and is liable to change.
2 This number is computed as follows:
Number of ants = 321,035,624,829,901,000 = x
Number of humans = 7,077,551,385 = y
Number of neurons in ants = 250,000 = a
Number of neurons in humans = 100,000,000,000 = b
Therefore,
Ratio of total neurons of all ants to neurons of all humans = (xa)/(yb) = 113



ordination between Zebros to perform search tasks collectively. These robots
are given behaviours to achieve a common goal. With multiple robots col-
laborating to do a task, there is an increase in adaptability and flexibility,
thereby increasing single robot’s effectiveness. The field of engineering that
deals with making robots coordinate with each other to achieve the collective
intelligence of animals is called Swarm Robotics.

Multiple primitive robots are believed to outperform a single sophisticated
robot [19][28][31]. The cost of building simple robots makes it feasible to
increase the functionality of the swarm at the cost of losing some robots.
The inspiration for ‘many is better than one’ comes from animals like ants
and termites, who can do tasks impossible to humans. These tiny creatures
do so many things in coordination, with little computational power that
leaves biologist and engineers in awe.

Amongst the various institutes that work on implementing swarm beha-
viour in robotics, some distinguished ones are Kilobots from Harvard Uni-
versity [53]; e-puck mobile robots designed by Ecole Polytechnique Federale
de Lausanne [23]; and Droplets of the University of Colorado Boulder [42].
However, these robot swarms are not intended to work everywhere. For in-
stance, Kilobots can only function on smooth surfaces to allow reflection of
light for communication; e-puck cannot walk in rough terrains and requires
human assistance in case of failure; and droplets can only function in dark
rooms. Most of the swarm robots require localisation techniques to swarm,
which limits the robot to function only in a controlled lab setting. However,
our robots are intended to collectively save victims in earthquake debris and
explore uncharted areas of the moon. Although there exists no absolute
localisation technique common to indoor, outdoor and extra-terrestrial en-
vironment setting, we aim at providing a generalised solution that works
everywhere.

Across the world, engineers have implemented swarm behaviour in engin-
eering applications like robotics, automobile and Internet of Things, inspired
by biological findings of animal swarms. However, engineering capabilities
do not go hand in hand with biological findings. Therefore, it is challenging
to pick the right biological strategies and to define our problem statement
in coherence with the present state of technology.

1.1 Problem statement

The problem statement for this thesis emerged from the need of swarming
Zebros everywhere [27]. The ambition of the Zebro team is to create the
swarming mechanism such that the Zebros utilise the benefits of collective
intelligence using communication. Consequently, as a part of fulfilling the
ambition, this thesis aims at providing collective decision-making support
for ground robots that functions independent of the topology and environ-



ment. In this thesis, we engineer a generic swarm behaviour that is not
dependent on the resources external to the swarm.

Space is the limit for swarming Zebros. An exciting problem statement is to
be able to swarm Zebros on the moon[l]. If they can swarm on moon, they
can swarm anywhere on earth, in fact in a more assisted way. Swarming
on moon imposes constraints on the design and functionality of the swarm.
Exploring an uncharted area on the moon eliminates the techniques that
involve artificial setup. Unavailability of maps and GPSH on the moon,
eliminates the use of these common localisation techniques. On the moon,
communication via sound is not possible as sound does not penetrate in
Vacuumlﬂ Communication using light requires the robots to be in line of
sight, which is not feasible on the rough terrain of the moon. Online assist-
ance from the earth is neither feasible and restrains the robots to practice
complete autonomity. In the absence of a service centre on the moon, we
need redundant hardware on the robots. Addition of each piece of hardware
drastically increases the overall cost of the robot. Therefore, we need to
keep the robots and the algorithms as primitive as possible. The mentioned
techniques are commonly used by swarm roboticists, but we can not use
them.

The surface of the moon is rough, so are the locomotion capabilities of
Zebros. Zebros can traverse uneven terrain and climb heights up to 8 cm.
Since they topple over themselves and slip repeatedly while traversing un-
even ground, their motion is not predictable. Therefore, we can not calibrate
their steps/ distance. This makes it cumbersome to localise using their walk-
ing distance, or make them move in a geometric formation.

In the absence of external help, we exploit local interactions between the
different robots. We need a method of interaction such that it works every-
where and is independent of an external help. We need to engineer the
behaviour of these individual robots such that they depend on each other
and not on external controllers or devices.

With no central source of information, it is a challenging proposition to
decide at a local level, about the global state of the whole swarm. A robot
needs to predict the state of the whole swarm, with any one having com-
plete information. Moreover, the swarm functioning should also be immune
to failing robots within the swarm. Since the robots can get lost or dysfunc-
tional during the mission, the algorithms should be run-time scalable.

Despite enormous literature on swarm robotics and swarm intelligence, there

3Global Positioning System
“moon’s atmosphere is nearly vacuum [2]



are more “emerging behaviour” experiments than swarm robot experiments.
However, this thesis provides another simulation displaying emergent beha-
vioulﬂ that is promising to be implemented in robots. After all, mimicking
the millions of years of the natural evolution of ants will take quite some
time. In this thesis, we propose three research questions listed as follows
and we will seek answers to them:

RQ1 How can a group of autonomous legged robots collectively traverse
unknown and unbounded areas?

RQ2 How can consensus be achieved by a group of autonomous robots
without having a global overview?

RQ3 How to quantify the emergent behaviour of autonomous robots?

1.2 Approach

Our main intent with RQ1 is to engineer the emergent behaviour that cap-
tures the requirements for Zebro missions. Unable to directly use any of the
previously engineered swarm robotics technique, we derive inspirations from
the swarm intelligence and multi-agent systems to formulate an implement-
able emergent behaviour.

The purpose of RQ2 is to aid RQ1 by proposing distributed algorithms.
In the absence of a global observer, consensus can only be achieved with
local interactions. The algorithms attempt to resolve disputes due to mul-
tiple opinions between the robots. This question has three different aspects
that need to be answered: method of information dissemination, achieving
consensus by decentralised local interactions and realisation by the robots
about the termination of the decision making process.

For the research focus intended by RQ3, we need to quantify the local
algorithms on the basis of expected global emergent behaviour. Emergent
behaviour needs to be quantified such that the changes in local algorithms
are captured through it.

1.3 Thesis outline and contributions

The remainder of the thesis is organised as follows. In Chapter 2, we intro-
duce the state-of-the-art in swarm robotics and highlight their limitations.

5Emergent behaviour is defined as the changes in the global organisation of a system
resulting from (un)defined code of conduct of its constituent subsystems.
Emergence refers to the patterns emerging at the global scale resulting due to changes
occurring at the fundamental element.



Stemming from the shortcomings, we describe our approach to provide a
solution for it. In Chapter 3, we propose three decision-making algorithms
as a solution to the desired requirements and mission goals for Zebros. In
Chapter 4, we compare the performance of the proposed algorithms in dif-
ferent experiments via simulations. Finally, in Chapter 5, we emphasise on
the contributions and the future prospects of the algorithms.

The contributions and innovation in the thesis are the following;:

1. We design a fundamental emergent behaviour for Zebro that has the
potential to be developed to achieve all proposed missions of the Zebro
team. We provide a swarming protocol for Zebro that equips them to
autonomously conduct exploration on the moon and searching victims
in disaster-stricken areas without absolute localisation. (Chapter 3)

2. We propose three decision-making distributed algorithms to equip the
Zebros to provide the expected emergent behaviour. The first al-
gorithm is a traditional swarming algorithm and is compared with two
new communication-based algorithms. The three algorithms comply
with the requirements of the Zebro missions. (Chapter 3)

3. We quantify the emergent behaviour of the three distributed algorithms
through three performance metrics in six experimental setups. We
analyse variation in the performance metrics on the agent’s algorithms
in different experimental settings. We also compare the algorithms
with each other to deduce the best algorithm for each performance
metric. We conclude with the most suitable algorithm to be sent on
the moon. (Chapter 4)






Chapter 2

Swarm design in mobile
robots

In this chapter, we elaborate on our problem statement. In Section [2.1] we
describe the general approach followed to design swarm robotics behaviour.
In Section we introduce Zebro, its capabilities and the mission require-
ments. In Section we present models for Zebros swarm inspired by the
state of art. In the section, we reason for not being able to use any pre-
existing design for the Zebro missions. In Section we introduce varies
disciplines of science that influenced our swarm design and how to incorpor-
ate findings from these domains into this thesis. In Section we describe
the algorithms/strategies that inspired our solution. In Section we end
the chapter with a final remark.

2.1 Swarm design approach

In this section, we describe the framework for designing a swarm. For the
context of the thesis, we refer swarm robots as any set of robots with co-
ordination capability. Depending on the robot’s hardware and application
requirements, the behaviour of the individuals is defined. These individual
behaviours should lead to the achievement of global goals. The study of
multiagentﬂ interactions called swarm intelligence provides a wide variety of
inspiration for swarm robotics from nature, psychology, mathematics etc.
In Figure the system overview explains the process of establishing
coordination in a given set of robotsﬂ Since we already have functioning
robots, we follow the bottom-up approach. The first requirement is to have
mobile robots that can gather sensor data and process it. The robot is
equipped with sensors required for the accomplishment of a mission. To de-
velop coordination between them, communication is initiated among peers.

!Multiagent systems and swarm robotics is used interchangeably throughout the thesis.
2The term agent and robot are used interchangeably throughout the thesis.



Global overview

Figure 2.1: Design approach for designing swarming behaviour in a group
of robots

The communication can occur as a multicast, broadcast or peer to peer
communication. It can also be indirect communication like leaving physical
traces, via a beacon or central source of information. Each robot becomes
aware of at least its neighbours via local interactions. This attained local in-
formation is translated into global information. This translation can occur
using extensive computation at each robot, or by a central source of in-
formation. The global information describes the emergent behaviour of the
swarm. A swarm roboticist has to take great consideration while translating
global goal to local behaviour. As local behaviour might not always be a
linear function of the desired global behaviour. Moreover, extensive simula-
tion/computation maybe required to understand the relation between local
and global behaviour.

2.2 Zebro

The name, Zebro [3] is derived from the Dutch word zesbenige robot trans-
lating to six-legged robot. These robots can walk on rough terrains attrib-
uting to its C-shaped legs that are inspired by Boston Dynamics’ RHex
robot [4]. The locomotive control is designed by Delft Center for Systems
and Control (DCSC) at the Technical University of Delft. Zebro can walk
on mud, climb stairs of certain heights and withstand up to 400 grams of
weight on it. To visualise the abilities of Zebro, we recommend watching
this [YouTube linkP|

Zebro comes in many ‘species’. Lunar Zebro [I] is the moon compatible

3QR code in Figure



https://www.youtube.com/watch?v=QUtweNvnov4

Figure 2.2: DeciZebro (Picture Credits: Lotte Hoes [5]) and QR code

version of Zebro, to be sent to the moon by 2022. Zebros are available in
different sizes as well: PCB Zebro of the size of a matchstick box; KiloZebro
has a length of one meter, and LightZebro made of lightweight material. We,
however, are concerned with the fourth kind: DeciZebro shown in Figure[2.2]
DeciZebro is of the size of an A4 size paper. The ideas and algorithms in
this thesis can be directly transferred to all kinds of Zebros, other ground
robots and mobile sensor systems.

2.2.1 Zebro capabilities

Zebro design provides the advantage of the robustness of movement on rough
terrain. Zebros are incapable of calculating distance odometry [40] that as-
sists majority of the state-of-the-art swarm robotics[2.3.6] Zebro is equipped
with ultrasound sensors in the front for obstacle detection. It has myopic
eyesight, i.e., it can sense obstacle at a distance comparable to its body
length. The robot has a slow response to change in steering. Though not
implemented yet, it can be programmed to take a sharp turn standing at
the same place, accelerate or decelerate or made to walk backwards with
the present hardware. Ultra-wide Band (UWB) radio communication is the
latest addition to the Zebro design that assists communication. Appendix
provides more details on the design elements and properties of the Zebro.

2.2.2 Mission goals

Zebro team plans to do a lot more with the swarm than to perform moon ex-
ploration or search operation in a post-disaster scenario. The sensor network
is proposed to find implementation in traffic and pollution observation, ship
and logistics tracking, space exploration and self-deploying sensor networks
[11].

In a nutshell, we cannot and do not want to hard code the robots for



a given task or location. We intend to create a simple generalised solu-
tion that works everywhere. Just like a group of ants are not bound to a
location but can freely perform search tasks anywhere. Therefore, we tar-
get autonomous exploration in unbounded, uncontrolled and unknown areas
without artificial environmental setting. Similar to ants, we aim to achieve
a fully distributed, independent and decentralised system.

One important requirement of this study is the ability to visualise and sim-
ulate the robot coordination mission concept in realistic settings and the
moon environment. That ability is key to evaluate the algorithm per-
formance, understand the impact of autonomy, explore different
coordination approaches, design options, mission settings, and en-
vironment configurations [5§].

2.3 State of the art

In this section, we investigate the complex systemsE] that are analogous to
our system. Therefore, while focusing on state of the art of swarm robotics,
we provide references to emergent behaviour observed in psychology, net-
worked embedded systems and biological swarms. We aim to adopt these
models in Zebro swarm. The models are also improvised to comply with the
requirements of the system. Until this thesis, the combination of our mission
with such legged robots is not addressed by the swarm robotics community.
Although the present state of the art in swarm robotics does not provide a
direct implementation in Zebros, but does influence our final swarm design.

2.3.1 Indirect communication

Indirect communication refers to passing information without direct con-
nection between transmitter and receiver. An intermediary is involved that
holds the information for transmission. One of the most cited examples from
nature used among swarm roboticist is replicating the indirect communica-
tion practice of ants using Stigmergy. Ants pass information by modifying
the environment by leaving pheromone{ﬂ trails. An ant retraces the path tra-
versed by another ant by sensing the variation in pheromone left by other
ants. The scent gets stronger as more ants traverse the same path. At any
moment, an ant chooses to follow the stronger scent, as it represents a higher
probability to find something of interest. Ants use cues extensively, so do
dogs and baboons. Even wolves follow the scent of other wolves’ urine to

4Complex systems are the distributed systems with no centralised control. The study
of complex systems possess a more multidisciplinary approach than distributed systems.

5Pheromone: A chemical substance produced and released into the environment by
some animals influencing the behaviour of other members of its species [6].
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track them.

Unlike ants, robots cannot leave chemical pheromones for practical reasons
[49]. However, a similar concept of ant stigmergy can be recreated, if robots
leave physical traces as they walk. For instance, Zebros can leave magnetic
pieces behind to be sensed by other robots using a magnetometer. Since
this is not the same as scent, the metal pieces will create trash and will not
disappear in the air. Moreover, magnetometer readings are highly influenced
by the presence of magnetic materials in the vicinity. Addition of this module
will also increase the cost and weight of each robot. At some point in the
mission, all metal pieces will be spent.

Inspired by the chemical markers used by the insects (especially ants)
for communication and coordination, the researchers exploited the notion
of a ”virtual pheromone”. They implemented virtual pheromone by using
simple beacons and directional sensors mounted on each robot [37]. Infact,
the Pheromone Robotics project [49] implemented virtual pheromones via
optically transmitted signals from each robot that may be propagated in a
relay-type fashion. However, this approach is not suitable for rough terrains
as robots might not always be in line of sight. Dr Khaliq [39] uses a floor
of RFID tags that act as the Stigmergy medium. The information is stored
by robots as it passes by and retrieved similarly. Pre-installation of RFID
tags can not be used in our application because we explore uncharted area
while avoiding previous artificial setup.

Even humans communicate by leaving milestones, as they explore new
pieces of land. A roboticist can replicate the process by laying down beaconsﬂ
Beacons can be referred to as positioning systems used for mapping or in-
formation sources. They can be laid before starting the swarming [63] or
during swarming as explained in Section [2.3.6] In Section [2.3.6] we present
some models for beacon and discuss the possibility to use them in our mis-
sion.

Some swarm model like Kilobots [53], Shinerbots [44], Epuck [23], Robocup
[41], TERMES [50] and LOCUST [I12] use overhead cameras to inform each
robot about its position with respect to the whole map. As we aim to explore
without an artificial setup, we avoid the use of an overhead camera. Fur-
ther, reliance on a central source of information like GPS or shared memory
subsides the expected autonomity of the robot.

5Beacons are the systems that stand at a location to mark landmarks or relay inform-
ation.
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2.3.2 Direct communication

Unlike indirect communication, direct communication does not need a me-
diator to pass information among robots. The transmitter can convey mes-
sages to the receiver(s) when communication is established. Direct com-
munication can further be categorised into two categories: targeted and
untargeted communication. An example of targeted communication is peer-
to-peer communication, i.e., message is targeted to a receiver. Untargeted
communication like a broadcast or multicast, i.e., any agent who sensed the
message, will receive it. A popular mechanism in swarm robotics is to make
an untargeted communication. There are various means to broadcast/mul-
ticast information in swarms.

The method of communication plays an important role in strategising the
swarm behaviour. It influences the choice of the swarming algorithm by
effecting the means of information propagation. Some of the popular mech-
anisms are presented below:

1. Firefly optimisation is a distributed algorithm inspired by the syn-
chronous blinking of fireflies. The fireflies appear to blink together
without someone commanding them to. Each firefly synchronises its
action with its neighbour(s). They synchronise their frequency of blink
based on their neighbours cumulative amplitude.

However, a firefly might have multiple neighbours pursuing different
states. Therefore it takes time for the swarm to attain a stable state.
Moreover, there is a delay in states, across the swarm.

Similar to this is the clapping mechanism in human beings. As
soon as someone hears a clap in an audience, she starts clapping and
an avalanche of clapping starts. In the same way, the claps also come
to a standstill.

2. Elephant trumpets: Asian Elephants communicate using a variety
of sounds produced with their mouth or trunk. They make varied
sounds when they greet, play, threaten, comfort, seduce or are excited.
Moreover, continuous reinforcement of through sounds, keeps the herd
together.

3. Kilobots [53] can organise around a thousand robots in a geometric
formation with distributed information transfer. This robots are fra-
gile and perform swarming on mirror-smooth surface. These ground
robots communicate by reflecting light from the surface they walk on.
They transmit visible light from their base, which reaches the other
robot’s base after being reflected from the surface.

12



4. Coordination of Mars Rovers [58]: A recently initiated mission of
NASA[ and JPI]is dedicated to exploring Mars caves using multiple
rovers. The rovers start from the position of the Landelﬂ These
Mars rovers spread out to procure scientific data while being with
communication ranges of the other robots and the Lander. If a rover is
lost, the fellow rovers are suggested to trace him based on its previous
relative direction and distance. After the mission, these robot trace
back their path to the Lander.

Approaches mentioned in points 1 and 2 use light and sound. These medium
of communication are not inclusively available in our target environments.
The absence of atmosphere disallows the use of sound on the moon. On the
other hand, light needs line of sight which will be difficult to achieve on rough
terrains. Kilobots mentioned in Approach 3, do not achieve anything more
than organising themselves into geometric formations. Rather Kilobot’s
method of transmission is very specific and irreplaceable for exploration
tasks on the moon. Not only do all surfaces reflect fine rays of light but also
the base of Zebro will not always be parallel to the surface. Moreover, on
rough surfaces, the achievement of the desired movement is always imprecise.
Kilobots are at advantage of having to know the exact distance needed to
traverse and being able to precisely travel that distance.

The project mentioned in approach 4 is very much similar to our mis-
sion. Robust swarming based on communication on the moon, with the
same degree of autonomy. However, their work is also undeveloped in the
simulation stage as ours. Though, they target to swarm only four robots,
their algorithm is strictly distributed. By 2018, their work is also limited to
the creation of the simulation infrastructure [58]. We look forward to their
work, although their algorithms and details are not public.

2.3.3 Localisation techniques (Spatial orientation)

Swarms of aerial robots [63][51][30][7][13] and some ground robots [50][23]
display collective behaviour in selective places only. These locations have
overhead cameras, GPS systems, beacons, etc. installed for localisation.
These devices provide global information. However, in for our mission state-
ment, we will not have access to the location before sending the swarm to the
sites. We will also not have a map of the moon or the earthquake-stricken
area.

As seen from Table no absolute localisation technique was encountered
during this study that worked equally well in indoor, outdoor and extra-
planetary locations. For instance, Global Positioning System (GPS) works

"National Aeronautics and Space Administration
8Jet Propulsion Laboratory
9Lander is the system that is fixed at the point of landing on the Mars.

13



Table 2.1: General localisation techniques

Indoor Outdoor | Moon
Global observer | GPS GPS No GPS available
Sound Yes Noise Doesn’t travel in
vacuum
Previous Possible Possible Not possible
setuplﬂ

Line of sight | Possible due flat | Not possible due to rough terrain
(light) surface

very well outdoor but is not deployed for indoor use [35]@ Also, to use
a GPS on the moon, we need to first install it. Light-based localisation
techniques require line of sight, which is unfeasible in rough terrains. Loc-
alisation on the moon can be done using maps. However, the available
lunar maps do not possess the required precision of the maps [8]. Therefore,
we sort to avoid absolute localisation and adhere our algorithm to relative
localisation.

Without a proper map and information of the destination, sailors would
navigate new locations using crude navigation tools like a compass. A com-
pass will be helpful to desert wanderer to some extent as well. Therefore,
we can use universality of the magnetic field as support to the swarm. The
magnetic field’s concept of attraction and repulsion is shared by the bird’s
swarming algorithm. The magnetic field can therefore directly use bird’s
flocking rules. However, magnetic material in vicinity, considerably affects
the reading on the compass, especially in earthquake rubble. Nevertheless,
moon has time-varying weak magnetic field. And unlike, earth’s dipolar
magnetic field, moon’s magnetic field has fluctuating regional polarity [9].
Hence, we need another reliable source for knowing spatial orientation for
navigation, thereby to localise robots.

2.3.4 Mapping

Maps of earthquake affected areas can not be relied on as the infrastruc-
ture changed due to the calamity. To make the robots swarm in post-
disaster scenarios they need to perform search and exploration without a
map. Searching tasks are difficult by default in the absence of a map as we
cannot plan the trajectory of navigation. But we study the methods that
use maps and attempt to replace the need for prior mapping with mapping
on the fly.

Hndoor localisation using GPS is not feasible due to multi-path effects from obstacles,
inferences due to other wired and wireless network, and environmental factors like the
mobility of people and atmospheric conditions.
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SLAM (Simultaneous Localisation and Mapping) This is one of
the most popular algorithms for search robots in unknown areas. This,
however, is very expensive computationally, requires sophisticated sensors
and accumulates errors. Though SLAM might have promising results, we do
not explore this option because we want to make minimal hardware changes.

Grid forming A coordinate system can be formed by robots as they walk
on unknown areas. This grid will assist these robots to find previous land-
marks. Similar to the work of Coppola et al [25], in our proposed scenario
shown in Figure [2.3(a)} all robots start from the same place that is marked
by origin(0,0). The charging station is at coordinate (4,4). To reach the
charging station, the robot traverse 4 units in the west and 4 units to the
north. However, due to the accumulation of odometry error with each step,
the robot misses the charging station. It will not be able to locate itself
with respect to the origin or the charging station. For following the grid,
individual robots need to estimate distance with considerable precision or
feedback to remove the errors[56].

©56)
(0,4) (4,4) . )
©03) — ‘ \K‘-‘ Z )
©02) b J — 7
(0] G0 @o B9 @ B9 60

(a) Grid forming (b) Divide and Conquer

Figure 2.3: Proposed methods for mapping for Zebros: (a) The location is
divided into grids. Robots are asked to reach a certain coordinate (say (4,4)).
But the robot misses the location due to distance odometry miscalculation.
(b) The robots spread in different directions, explore the locations and come
back. At the origin they share the acquired information with fellow-mates.

Divide and conquer As shown in Figure [2.3(b)| each of the robots starts
from the centre of the swarm and moves away from the swarm. They ex-
plore certain areas and then come back to the centre. They calculate the
radial parameters, devising the area coverage of the flock. Represented by
the radius and angle of exploration. They share this information with all the
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other robots. The other robots do not have to explore the explored areas.
Now they start their mapping again in different directions. Ultimately, we
will have a map of the entire place. Of course, they need to have feedback
error correction techniques to compensate for odometric errors.

Ants can swarm everywhere, indoor and outdoor. They do not have a map
or predefined directions for searching. They find paths by indirect commu-
nication technique as following trails of pheromones (scent) and by direct
communication between each other. It will be an ideal scenario if robots
swarm irrespective of location and terrain. Thus, we need to formulate
ways in which robots can search without a map.

2.3.5 Landmarks

Leaving landmarks for reference while navigating is a common strategy in
animals including humans. As mentioned in Section [2.3.1} Dr Zecca et al
[64] use on-site Radio-frequency identification (RFID) landmarks to share
information with swarming robots. They propose that primitive robots can
learn information and instructions from on-site RFID landmarks to place
themselves in geometric formation, synchronise with other robots in the
area, or carry out cooperative tasks. We are restricted to use such landmarks
because of the following reasons:

e The site under inspection is unknown and unexplored before.
e Leaving and using landmarks requires memory.
e No global map to locate the position with respect to the landmarks.

Inspired by landmark models in animal, we devised our land-marking model
called NEWS model, for exploration on the moon. In Figure the yellow
robot moves towards the North, marking a yellow spot on the land. He
conveys to the crowd the distance it traversed in the North. The second
robot, orange robot, moves towards the north. Orange robot walks twice
the distance to mark the landmark as "N’ (standing for North). The red ro-
bot then reaches the yellow landmark and walks as much distance possible
towards the left, with enough battery left to go back to the point where
he started (Spot ’S’). It marks the landmark as ‘E’ representing East. The
green robot walks towards the right of the yellow spot, marking a new spot
as ‘W’(West). Now the other robots know the relative positioning of these
marked landmarks. The robots walk around this area, searching for some-
thing of interest, say X. As soon as they find X, they inform the nearest
landmark about the distance of X to the landmark. In this way, more ro-
bots can be sent to the location of X, if needed.

However, the model fails to account for poor odometry calculation in the
legged robots as shown in Figure 2.5 Zebros have erroneous data of walked

16



Figure 2.4: NEWS model: Landmarks are represented by crosses and robots
by triangles. Three robots, coloured orange, green and red set out to set
landmarks in North, Fast and West directions respectively, marking the
landmark of their colour. These three robots, measure the distances from
their origin (Landmark South) to assist the robots to reach those landmarks.

¢

%

%
¥

2

Figure 2.5: Error accumulation: When the grey robots try to find these
landmarks, they are expected to get lost due to their erroneous distance
calculation. The figure shows the error generated due to a wrong estimation
of only one heading.

distance. The cumulative error will risk the loss of robots.

2.3.6 Distance odometry

The most common autonomous ground robots in swarm robotics are wheeled
robot [23][46][38][29] [47][34] [43] [20]. These robots use the distance odometry
calculation for identifying their location in a map and with respect to each
other. A legged robot like Zebro, can not measure distance like wheeled
robots. No feasible method to use the odometry of legged robots was en-
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countered during the study of the thesis. Another type of robots that are
milestones in the history of swarm robotics are Kilobots [53] and I-Swarm
robots [62]. They are stick-legged robots, that walk only on a very smooth
flat surface. This smooth surface acts as a reflector for light as the medium of
communication and odometry calculation. However, Zebros cannot also use
such a method as its body is not always parallel to the surface. Therefore,
it cannot deduce distances to other robots by the reflection of light from the
surface. Moreover, we aim at using these robots on rough surfaces. Tradi-
tional swarm robotics methods fail to device a swarm design that functions
equally well on different surfaces. Therefore, we need to device exploration
method that does not use distance as an input parameter, or we need to
find another method to calculate the distance between the robots.

2.3.7 Multi-robot formation

The multi-robot formation is a popular branch of swarm robotics. Robots
organise themselves and walk in a pre-designed orientation forming struc-
tures like a chain or a semicircle. We speculate that robots walking in a
formation will decrease the efficiency of the swarm in exploration tasks and
avoid obstacles. Maintaining a formation is presumed to be difficult, perhaps
challenging in the presence of obstacles.

Walking over stones, steps and hilly terrain is the biggest advantage of
our robots, we cannot make an algorithm that overshadows its use. Con-
sequently, we need a robust swarm design that allows the swarm to wander
on all kinds of surfaces. However, it will be difficult to keep track of forma-
tion when robots as struggling with basic walking. In rough terrains, keeping
the formation intact might be challenging. In case a robot is struck, it keeps
everyone waiting or is lost. Therefore, walking in formation is not an ideal
option for this thesis.

2.3.8 Conclusion

Similar to animals like birds, bees and ants, we want our swarm to be able
to perform swarming everywhere. Therefore, we take the robot out of the
laboratory setting and prohibit human supervision. We do not want to hard
code the swarm behaviour for a single location or particular situation. Fur-
ther, in the absence of a prior map, we cannot plan the paths or direction of
movement. Dependence on previous maps is impractical in post-earthquake
scenarios, as the infrastructure will be heavily damaged. No knowledge of
the arena dimensions and the number of resource areas restricts the possib-
ility of trajectory planning. Therefore, Zebro swarm should be capable of
mapping, navigating, exploring and locating on the fly.

Senses of animals are stronger and well trained for the environment com-
pared to mechanical robots. Our robots have different sensors and different
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capabilities. They cannot leave a scent like ants. They cannot see and pro-
cess data like animals. They cannot produce sound as a medium of passing
indirect/direct information, but it won’t work in the absence of atmosphere
or during the daytime. They can, however, use radio communication as an
electromagnetic field does not require an atmosphere and can work every-
where. They cannot measure the distance they walked from the previous
location to final location, so cannot leave landmarks as birds or humans.
They cannot have an elaborate discussion as we do before a democratic
election, bandwidth and faulty communication being the limiting factors.
Moreover, if we could send limited information via our communication me-
dium, we could reuse some preexisting algorithm in computer science or
swarm algorithms.

2.4 From swarm intelligence to swarm robotics

Leadership is often perceived as a practice by a single person called the
leader. A leader is supposed to single-handedly takes decisions for the en-
tire crowd. But it is evident from the study of Dr James Kennedy [17]
that management is possible without a leader in charge. World democracies
are an example of distributed leadership. Software applications like Split-
wise, Wikipedia and Sharelatex are examples of distributed management.
Such a trans-disciplinary study of decentralised multiagent systems to work
collaboratively to achieve a task is called swarm intelligence (SI).

Swarm robotics is an application domain of swarm intelligence (SI). It
involves implementing the theories and algorithm of SI into robots. Though,
primarily inspired by biology, swarm intelligence umbrella’s wide range of
disciplines like biology, chemistry, neuroscience, psychology and cognitive
science [I7]. SI's study of emergent behaviour in multiagent systems can
never be comprehensive. The wide range of inspirations and incongruency
of these fields with robotics makes it near unachievable to find the ‘best’
solution.

The field of robotics has its own set of constraints, which are disjoint to
biological findings. The unparallel success of the incongruent fields prohib-
its the direct translation of biological theories into algorithms for robots. In
this thesis, we use the tools of complexity science, distributed systems and
network science to bridge the gap between biological swarm and robotics. To
narrow down the search space, we answer the basic questions in related dis-
ciplines to develop correlations between requirements and existing solutions.

Mathematical and theoretical biology Swarm robotics and swarm in-
telligence are inherently branches of biomimetics{ﬂ The term swarm is

2Biomimetics is the branch of biology that employs theoretical analysis, mathematical
models and abstraction of living organisms to investigate the principles that govern the
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inspired by animal swarms. The successful collectiveness of the swarm of
animals contributed to a large number of algorithms in SI. Fishes, birds and
ants are extensively being studied by swarm roboticist. Biologist and roboti-
cists work together to formulate algorithms for swarm robotics. Theories of
Biologists like Dr Iain Couzin [26] and Dr Thomas Seeley [54] have provided
valuable counsel for this thesis. Geoecologist Hannah Héartwich contributed
to the thesis with her study titled “Swarming in Nature and Robotics”[36].

Complexity science One important element of swarming is devising local
rules that result in the achievement of the global goals. Complexity science
deals with interactions of individual agents that lead to complex emergent
behaviour.

Complexity science extends across engineering to nature via non-science
disciplines like philosophy. Study of complex systems assists the understand-
ing of the varied facets of the swarm dynamics as will be seen in Chapter
4. Tools and inspirations from complexity science assist the development of
the right local rules. Some basic questions of complexity science, that are
common to swarm intelligence that assists our understanding of the required
swarm design are:

I What are the local and global rules robots should follow?

IT What is the correlation between the local and global rules?

IIT What complexity parameters can be used to derive the efficiency of

the swarm?

IV Which studied complex system resembles our system?

Distributed systems Swarm robotics is often termed as distributed ro-
botics [14]. A distributed system is a collection of independent systems that
appear to the observer as a single coherent system. A potential perspective
to see a swarm of robots is as to visualise them as distributed systems. The
common characteristics of distributed systems that are found common in
a swarm of robots are scalability, asynchronous and dynamic behaviour to
achieve decentralised cooperation using communication.

Dr Francesco Bullo, a prominent swarm roboticist, classified swarm ro-
botic algorithms into three distributed algorithms [16]: flooding, leader elec-
tion and averagingiﬂ algorithm. To reuse any existing and implementable
distributed algorithms or devise one, we follow the classification by Bullo et
al [16].

Agent is defined as each individual member of the swarm.
Utility is defined as the sensor values from individual members.

structure, development and behaviour of the systems [10].
13 Also referred to as agreement /consensus algorithm
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2.5 Inspirations for proposed algorithms

Various algorithms have inspired the design of the proposed algorithms. In
this section, we describe the strategies that are consolidated together to
result in the proposed algorithm as shown in Chapter

2.5.1 Synchronising heading

Flocking algorithm [52] is used for synchronising heading of the flock with /without
communication. Agents either sense or communicate the relative distance

and relative heading with their neighbouring agents. Based on these two
parameters the robots abide by the following three rules to avoid collisions,
staying with the swarm and achieve synchronisation of heading.

e Cohesion: Agents steer towards other agents, if the distance between
them is more than the minimum distance of cohesion.

e Separation: Agents steer away from other agents, whose distance is
less than the maximum separation distance. This prevents the robots
to collide with each other and avoid crowding.

e Alignment: To maintain the average heading of the swarm, the agents
steer towards the average heading of neighbours.

Flocking simulations on Zebros were conducted and studied by previous
members of the Zebro team [27][22] [48][2I]. Therefore, this thesis did not
make a radical shift from using the flocking algorithm in Zebro swarming.

2.5.2 Information dissemination

Gossip algorithm [I5] is a distributed asynchronous algorithm for an arbit-
rarily connected network of nodes [32]. It is a communication protocol that
applies to a system with an unknown number of nodes. Therefore, the al-
gorithm is fault-tolerant to node failure and will adjust with the addition
of agents to the swarm. Dynamic decision making is possible as the al-
gorithm adapts to the changing weights on the nodes. Therefore, the gossip
algorithm seeks to answer: “How information can be proliferated through a
scalable and dynamic network?”

However, an issue with the gossip algorithm is announcing the end of the
algorithm. In this dynamically changing unknown distributed network, how
do agents realise the end of gossip via local interactions? The propaga-
tion is well addressed in the algorithm, but back-propagation is not defined.
Moreover, there will be multiple layers of acknowledgements and back ac-
knowledgements, how will the swarm manage multiple layers of acknow-
ledgements?
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2.5.3 Consensus

Bee’s hive searching methodology is not based on absolute localisation and
is decentralised with a democratic model of decision making. The homogen-
eous swarm is also run-time scalable, satisfying all the swarm characteristics
quoted in Section [3.1

Bees are very similar to Zebros, as they coordinate the same input para-
meters: relative heading and relative distance to their fellow neighbours.
This striking similarity with bees inspired us to base our algorithm on bee
democracy. In this section, we describe the consensus strategy of the bees
and an issue with directly implementing the bee strategy.

Bee democracy

The search tasks in a bee’s life involve finding nectar and a place to build
a hive [33]. The hive location is of crucial importance, as it directly relates
to the nectar-bearing flowers in the vicinity. Therefore, this long-term in-
vestment is given a considerable amount of time and is dispensed optimally
planned resources. The plot of hive location searching algorithm closely
resembles the distributed decision making strategy we want to achieve for
Zebro missions. In this section, we explain the hive selection mechanism
of the bees, followed by similarities of Zebro mission with bees. Further-
more, we inaugurate the different algorithms which are the prime focus of
the thesis.

Bees have two teams, say searchers and non-searchers. Around 2-6% are
searchers from a swarm of 4000 bees [54]. It is unclear how they choose the
teams. Searcher bees go in random directions, investigate and come back
while the non-searcher team waits at the starting point (say origin). The
searchers come back to the origin after finding a suitable potential hive loc-
ation. They record the direction and distance of the site to the origin. The
searchers then propagate their found location to the non-searchers. To do
so, they wiggle (shake/vibrate) while standing on the top of the non-searcher
bees. The characteristics of a wiggle represents the information needed to
locate the newly found location. These bees wiggle in the direction of the
potential location of the hive. The number of times it wiggles represent the
distance of the location from the origin. For instance, a wiggle of 3 times,
heading towards 45° to north represents 3 km in the direction of N°45. The
frequency of the wiggle is determinant of the importance of the site. The
non-searcher bees sit at the origin for a long time, and after some time (not
known how much time), not all but some of them go themselves to see the
site they consider to be the best. After investigating the locations, they will
also start publicising the most suitable location according to them. It will
take around 8-10 hours [54] before everyone decides to move to the 'best’
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location. A single bee can convince only a couple of bees at a time. It goes to
each bee and wiggles, those who sense the wiggle record the data. Therefore,
once a bee is convinced of a particular site, the bee starts propagating it as
its own personal best site. This is similar to the rumour routing protocol
and gossip algorithms.

Issue

Like bees, Zebros are also aimed to explore uncharted and undiscovered
locations without external help or a leader. However, unlike Zebros, bees
have near-perfect senses to compute distance and direction. Their calcu-
lation of distance odometry is very reliable with suitable error-correcting
mechanisms. We need to find compensation for this advantage of the bees.

2.6 Summary

Though a lot of amazing work has been done and well-received, none of them
is fit for the Zebro design and the vision of the Zebro team. None of the
existing algorithms seem to be exactly implementable on the Zebro swarm.
More so, no one has tried to achieve a location independent swarming ground
robots. This thesis exists to fill the knowledge gap that provides an imple-
mentable solution for Zebros. The proposed algorithms are an integration
of the various incentives gathered from this chapter, especially Section [2.5
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Chapter 3

Collective behaviour of
Z.ebros

In this chapter, we describe the three distributed decision-making algorithms
suitable for the robots: Zebros. In Section we catalogue the goal re-
quirements, constraints and assumptions in our presented swarm design. In
Section we stage the experimental setup for our proposed design. In
Section we describe the expected emergent behaviour from the swarm
that fulfils our mission goals. In Section [3.4] we present an overview of
the three proposed algorithms for Zebros. In Section we describe the
implementation of the three proposed algorithms in the form of imperative
pseudo codes.

3.1 Requirements

Based on the limitations of the current state of the art in swarm robotics
(Section [2.3)); mission goal (Section and hardware of Zebros (Section
, we present the requirements and assumptions for the swarm design
proposed in this thesis.

Following constraints uphold for the existing design of the Zebr(ﬂ
1. No distance odometry is possible. As stated in Section Zebros
are not equipped to calculate steps taken or distance traversed.
2. For an economic solution, we avoid using expensive and sophisticated
devices like cameras.
3. Zebros walk in the forward direction only.

The desired swarm characteristics are described below:
1. Decentralised: To avoid single point of failure, we avoid the use of a
central source of information.

'Refer Appendix [B| for more details on Zebro design.
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. Run time scalable: The swarm should functions independent of the

number of robots in the swarm. This is important to make the swarm
functionality immune to the discovery or loss of fellow robots.

. Autonomy: Autonomy is defined as self-governance and independence.

Human supervision from earth to the moon is impractical and unfeas-
ible. If humans could assist the robots on the moon, we wouldn’t need
to send robots on the moon in the first place.

. Equal distribution of responsibilities: Given a situation where a robot

is authorised to lead the swarm. If any damage occurs to this robot,
the mission will be handicapped. If this leader robot is lost, then the
mission will be aborted.

. Homogeneous swarm: All robots have the same hardware and software.

No robot enjoys the privilege of extra sensors or more computation
power.

Environmental constraints engineered by our application requirements
are described below:

1.

2.

No localisation is possible: Following the argument in Section [2.3.5
we prohibit the use of methods for absolute localisation.

Unknown Region: Unlike applications displayed in Section
[2.3.6] our swarm should be equipped to perform exploration in un-
known areas as well.

. Unbounded Area: To increase the robustness of the swarm in un-

equipped location, we should design the swarm to function in unboun-
ded areas.

. External resource requirements: The swarm should not dependent on

external equipment which we can not provide on the moon. Unlike
swarm robots mentioned in [2.3.1], 2.3.3} 2.3.5], we should avoid the use
of GPY] and overhead cameras in our design.

These requirements and constraints are furbished for Zebros such that they
can swarm everywhere, even on the moon.

The following assumptions are made to simplify our problem statement.

1.

2.
3.
4.

6.

The communication module and sensors readings are error free.
Robots have inexhaustible battery.

Objects in the environment do not move.

In swarm robotics, communication is assumed to be easier than compu-
tation. Based on this assumption, we extensively communicate smaller
but frequent messages. This reduces computation requirements and
also provides redundancy for lost messages.

. Communication delays are not considered in the model. However,

there is scope for incorporating it in the model.
There are no defaulters or impostor robots in the swarm.

2@Global Positioning System
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3.2 Experiment setup

In the thesis, we represent the Zebro and the swarm of Zebros as shown in
Figure Zebro is represented with an aeroplane icon as in Figure (a).
The heading of the aeroplane points towards Zebro’s direction of movement.
Though the sensing range is the same as the communication range, the field
of view is constricted. The sensor can sense angle in the heading direction, in
contrast to the omnidirectional communication field. The sensor as payload
is to be determined on the mission of the Zebro Therefore, the sensor range,
angle and the direction are arbitrarily chosen, and the solution presented
in the thesis is independent of these sensor specifications. To identify the
robots, they are assigned positive integers as ID.

Figure b) shows a group of robots with increased field of view and
communication range with respect to a robot. The movement of the robots
emerge as a unit moving in the heading as shown by the arrow.

Cumulative
communication
range

Communication -
radius -~~~
P

Overall
N / Heading
. . of swarm

(a) A Zebro (b) A Swarm of Zebros

Figure 3.1: Symbolic description of the Zebro and a swarm Zebros: (a) A
single robot with pointy vertex pointing towards the direction of it walks
(b) The swarm of robots with increased field of view.

As shown in Figure this distributed system can be modelled as an
adaptive network. Each robot is modelled as a node and the communication
connections are mapped as the links between these nodes. Weights on the
nodes represent sensor readings of the robots. As the robots sense newer
particle, the weights on the nodes change. The graph of the robot network
is shown in (b) and (d). The communication links are constantly
emerging and breaking. The Figure (c) and (d) shows the breaking of
links and emerging of new links as the robot with ID = 1 moving forward
with respect to (a) and (b) .

As per the requirements in Section @ we construct an experimental setup
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Figure 3.2: Representation of the swarm as an adaptive network. (a) shows
a swarm and (b) is the corresponding network representation of the swarm
shown in (a). (c) depicts a transformed swarm where robot with ID 1 moves
forward. (d) As the swarm transits from swarm state (a) to (c), certain
links are broken and some new links are formed. Figure (d) represents the
transition of the change observed in the network with respect to (b).

that replicates the environment that robots will witness on the moon: un-
bounded, unassisted, unknown to the swarm, no maps, no grids, no land-
marks and no beacons. Figure [3.3|shows the setup.

The coloured pegs in Figure [3.3] represent objects that the swarm aims to
search on their mission. The objects are sensed using some SensorEl whose
readings are fused, normalised over 100 and rounded to an integer. We
call this integer as the utility of the object. We refer these objects as food
particles throughout the following thesis. Hence, utility represents the value
of the food particle. When a robot wants to acquire the object, it is said to
have consumed the food particld?]

It explicitly follows from the assumption that wherever there is nothing
to be found, the utility is zero. Moreover, we reserve negative utility to
represent an obstacles. The robots tell each other their utility values. The
more positive the value is, the more desirable it is for the swarm. Also, no

3to be defined by the mission.
4The terminologies used in the thesis is inspired by biology.
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Figure 3.3: Scenario with food particles around the swarm of Zebros. The
square pegs represent the food particles. All food particles are of different
utility, represented by different colours. The network of robots is a connected
graph. Agent ID 1 sense food particles with utility 99 and Agent ID 6 senses
utility of 1. The emergent behaviour expects the swarm to consume 99.

two particles will have the same utility.

3.3 Emergence

In this section, we propose the cooperative and productive behaviour of the
swarm that will facilitate the group of Zebros to accomplish missions on
the moon. Thereby, we answer the first proposed research question in this
section:

RQ1 How can a group of autonomous legged robots collectively traverse un-
known and unbounded areas?

In Section [3.3.1) we define the behaviour of the swarm as seen by a global
observer i.e., the emergent behaviour of the swarm. The shortcomings of
the previously implemented swarm robotics led to the formulation of this
new swarm design. In this thesis, we describe a generic swarm design that
has the potential to accomplish the Zebro missions. Therefore, in Section
3.3.2] we describe the future prospects of the proposed swarm design that
will actually accomplish the Zebro missions. In the remaining chapter we
define the rules followed by individual agents, to result in the formulated
emergent behaviour.
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3.3.1 Emergent behaviour

With such a constrained problem statement as described in Chapter [I] and
elaborated in Chapter[2] we have limited options. As we can not use methods
of absolute localisation described in Section [2.3.3] robots rely on relative
localisation. With no malﬂ or previous knowledge of the environment, we
design the swarm behaviour such that all the robots stay together.

By staying together these robots minimise the possibility of getting lost
with respect to the swarm. On unbounded locations like the moon, if a
robot leaves the swarm, it might never be able to get back to the swarm,
ever again. Moreover, there is no provision for robots to get back to swarm
as they are not assisted with proper odometry calculations, maps, landmarks
etc, that could assist the robot to find its way back. Also, the network of the
swarm with more nodes, will strengthen the collective intelligence as each
node brings with it more information®}

The robots localise relative to each other by sharing their relative heading
and relative distance like birds as described in Section [2.5.1] They sense the
distance using on board communication sensor: Ultra-Wide Band [55].

Many sensors do not work in vacuum and some require line of sight, we
avoid those methods of communication. We use one of the most pervasive
spectrum of electromagnetic wave for communication: radio waves. Ultra
Wideband (UWB) communication module is feasible for the Zebro design
[56]. UWB also provides relative distances and directions between agents
[55]. More importantly, it will work outside the earth. It will yield more
accurate distance measurements on rough terrains than wheel odometry.

The incapability of Zebros to walk in a systematic manner is considered in
the swarm design by depending on heading consensus. If the Zebros were
to collectively walk 1 kilometer in a rough terrain, they will fail to achieve
the exact distance, owing to slipping and toppling over in the rough terrain.
However, if they were to walk in a direction, even if they topple, they can
calibrate the direction [55]. Therefore, we base our collective behaviour on
direction consensus.

As the swarm moves as a unit, they sense food particles that come in their
way. We want the swarm to collectively make a very simple decision: to
choose the food particle with the highest utility available to the whole swarm.
Accordingly in Figure the swarm should consume the blue food particle.

Therefore, we define the emergent behaviour of the Zebro swarm as their
abilities to stay together and make collective decisions. We expect them to

5Section

6in terms of sensor data
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decide in favour of the highest valued particle that they find.
“A family who eats together, stays together”

This thesis provides a general-purpose solution for the Zebro missions. The
application layer needs to designed to achievement of Zebro goals. Therefore,
in Section we describe how this devised emergent behaviour can pave
way towards the application.

3.3.2 Scope of the behaviour

The emergent behaviour as described in Section [3.3.1] with the decision
making and cohesive property of the swarm will be enable Zebros to achieve
the following applications as well:

1. Obstacle avoidance
The generic decision making algorithm can be used by the swarm to
avoid obstacle collectively as depicted in Figure Presently, Zebros
are capable of avoiding obstacles, individually. With the emergent
behaviour, they will be able to avoid obstacles collectively without
separating.

Figure 3.4: Obstacle avoidance scenario: As the robots detect an obstacle
in front of them, they follow the path with the least negative value. In this
case, they will tend to go in the direction where they sense a zero.

2. Density: robot per unit area
The swarm can vary the cohesion between them to accommodate
themselves with regards to the sparsity of the food/obstacle in a loca-
tion. This behaviour is similar to the expansion of liquid molecule in
response to exposure to high temperature.
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For instance, robots spread out in areas of fewer obstacles to enhance
their field of view. In crowded locations, they can coagulate into a
tightly coupled formation. This will equip the swarm to have lesser
tendency to separate in multiple groups. Such expansion and contrac-
tion will equip them to acquire multiple interests at the same time
while staying together with the swarm.

The generic decision making algorithm will provide a mechanism to
collectively decide the environment congestion and accordingly vary
cohesion.

3. Intelligent splitting/ chaining

As depicted in Figure[3.5] if the swarm could acquire multiple particles
instead of choosing one between them, the overall utility of the swarm
will increase. This is difficult to acquire without separation of the
swarm in subgroups. If the swarm could collectively decide from where
to split they could all stay together. This is possible only if the swarm
has the intelligence to collectively decide the dynamics of splitting/-
chaining, after deciding that it has to split.

Figure 3.5: Group of robots split to acquire maximum utility. If the swarm
senses comparable utilities, then they can benefit by acquiring both utilities,
especially if one of them is the maximum utility in the landscape.

4. Distribution of resources
The overall knowledge of the swarm will assist the distribution of re-
sources among the robots based on their position in the network, pre-
vious charge status etc. As shown in Figure [3.6] the agent who found
the particle can distribute the charge to the robots with critically less
charge.

5. Routing: Routing will make it possible for the swarm to save re-
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Figure 3.6: Distribution of charge based on charging status. The maximum
charge is 10, the fractions represents the charge available to the agent. The
highlighted agents have critically low charge.

sources on broadcasting information. The robots who found the food
particles/obstacle can decide for the swarm, via routing, without in-
volving the other agents in the process.

Therefore, the described emergent behaviour has the potential to perform
tasks of an individual agent with more robustness.

3.4 Three Zebro algorithms

Three Zebro algorithms are proposed in the thesis, as described in Figure
The algorithms are written for individual robots to result in the emer-
gent behaviour descried in Section [3.3] These robots constantly perform
survival activities like obstacle detection, charging battery and maintaining
the motion dynamics. These activities are already implemented in Zebros
[48][27][40][21]. This thesis does not concern these activities. The activ-
ities in white represent the tasks performed by robots regularly. Further,
we follow the flow chart top to bottom. The deviation from the tasks in
white occurs when a utility is found. Following the discovery of one or more
utility, the robots obey the shaded region as a flowchart from top to bottom
in Figure As soon as the utility is found information is proliferated
through the swarm, directly or indirectly. When one or more utilities are
sensed, then decision has to be made as to which utility to choose. On
basis of the method of making the decision, the chart is divided into the
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three algorithms: silent, immature and matureﬂ The three algorithms be-
have differently when they find utility. In all the algorithms, the robots
continuously perform Reynolds’ flocking and sense utility(if any).

Normal Task Regular updates:
Survival tasks: - AFIocIfi-ng
- Obstacle detection - Sensing utility

- Power charging

- Motion dynamics Silent Immature Mature

Talking to neighbours Knowing the neighbourhood

Utility Found

Event 1:

. . Propagating information across the crowd
Information propagation

Local inter&tions to

compute global
parameters, resulting in
global consensus

Decision on the
basis of own and
local information

Event 2:
Discussing

Figure 3.7: The basic flow of the three algorithms: the white regions repres-
ent the regular activities of the Zebro, whereas the shaded region is followed
when one or more utility is found. The table is to be read from top to
bottom, when utility is found.

The silent protocol involves no communication between robotsﬂ The pro-
tocol is an adaption of the flocking algorithm as described in Section
The introduction of communication leads to the other two algorithms: im-
mature and mature algorithms. The algorithms use communication to keep
them updated about their neighbours and the information they have. The
immature and mature robots communicate with neighbours using gossip
algorithm as described in Section In the immature algorithm, an in-
dividual robot takes a spontaneous decision based only on the immediate
knowledge acquired from its neighbours. However, mature robots wait un-
til a global consensus is achieved. The mature algorithm achieves global
consensus, inspired by the strategy of the bee’s democracy, as described in
Section

The varied behaviour of the algorithms in the presence of utility judges the

"Robots following silent protocol are referred to as silent robots. Similarly, immature
robot and mature robots are the robots programmed with the immature and mature
algorithm respectively.

8The silent algorithm is called ’protocol’ because the algorithm is more like a pact
between the agents, than an algorithm. As the robots do not interact with each other,
they follow the pact to adhere to flocking rule and not to collide.
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quality of emergent behaviour shown by the algorithms.

3.5 Algorithm implementation

This section describes the implementation of the algorithms in the form of
imperative pseudo codes.

In Section we introduce the silent protocol. The silent protocol syn-
chronises the actions of the swarm without communication. This is the
minimalist distributed algorithm characterising one of the most popular
swarming algorithms: the Reynolds’ flocking algorithmﬂ Though the si-
lent protocol maintains the degree of autonomy as expected of the thesiﬂ,
it fails to resolve conflict of opinions among the agents.

The silent protocol evolves into the immature algorithm by introducing
communication among the agents as will be described in Section [3.5.2]
Though immature robots attempt to keep the entire swarm informed about
their findings, the swarm still breaks apart due to the difference in local best
values and the global best [59].

Arising from the need of a global observer, the mature algorithm in Sec-
tion |3.5.3| introduces a procedure to achieve global consensus via local in-
teractions. Individuals are not allowed to move unless a global consensus
is sensed. This ensures that opinions of all the individuals are taken into
consideration to result in the global best.

We design a homogeneous swarm i.e., no agent possesses superior capabilit-
ies or authority over others. Therefore all the agents are programmed with
the same code. Each subsequent subsection introduces an algorithm which
is built on the preceding algorithm(s). Each section introduces its own new
message types in addition to the previously used message types. As the
section progresses, the algorithms’ complexity builds up with respect to the
preceding algorithm(s). Enumerated below are some facets common for all
the algorithms.

1. Each agent communicates only with its own neighbours. An agent’s
neighbours are defined as all the agents in the given communication
radiuﬂ If multiple robots exist in the same direction but different
distance to an agent, then they are also considered as the agent’s
neighbours.

See Section
108ee Section
1 Communication radius = Sensing radius
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2. Since the algorithm is presented for ground robots, no two robots can
exist on the same location.

3. Though the algorithms are written for asynchronous agents, the sim-
ulator{T_Z] uses global clock cycle to run the program.

4. As an agent’s broadcasted message can be heard only by the neigh-
bours, it is similar to multicasting within a swarm. Therefore when
we mention a broadcast, it is assumed to be with respect to an agent
and only its neighbours can receive the message.

5. If an agent senses more than one food particle at an instance, it reports
the utility as the sum of the utilities of the particles.

As introduced in Chapter [ this section answers the second research ques-
tion:

RQ2 How can consensus be achieved by a group of autonomous robots
without having a global overview?

3.5.1 Silent protocol

The silent protocol is the simplest of the three distributed decision-making
algorithms proposed in the thesis. By introducing affinity or aversion of
agents towards detected utilities, we extend the Reynolds’ flocking algorithm
into the silent protocol. As the name suggests the silent robots do not com-
municate.

Algorithm 1 Silent protocol

1: while true do
2: procedure FLOCKING(heading, distance)

3: procedure UTILITY FOUND

As stated in Section Reynolds proposed three simple rules which assist
a flock of birds to achieve consensus in their search and exploration tasks
without communicating. Every bird calibrates two parameters for each of
the neighbouring birds: the distance between them and their relative head-
ing, equivalent to list f for Zebros as described in Table The Zebros
are intended to use the flocking strategy of birds by storing their relative
direction and distance to all their neighbour in the queue F'

Based on their relative heading and relative distance, the birds change
their speed or direction or both to keep up with the swarm. There are many
variations of Reynolds’ algorithm depending on the parameter influencing
the movement of the agents: speed, direction or both. We propose change
in direction of robots to flock, as the present Zebro design can turn but not

2Netlogo
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accelerate. For the same reason, we have base our decision making strategy
on heading consensus.

Table 3.1: Sensor value

Name | Structure Purpose Queue

f relative_distance + | Flocking parameters F
absolute_heading

sensed | integer value Utility of sensed food particle

Algorithm [2] describes the implemented flocking algorithm. Whenever the
distance of a neighbour is greater than the maximum permissible distance
(say, mazimum — distance), then the agent moves towards that neighbour
to be nearer to that neighbour. This is termed as attraction/cohesion by
Reynolds. However, if the distance between any of its neighbour is less
than the minimum permissible distance (say, minimum — distance), then
the agent directs itself away from the neighbour. Agents do so to avoid
collisiorﬂ Reynolds calls this repulsion/ separation. In order to keep the
swarm moving in the same direction, Reynolds introduced a third action
called alignment i.e., each agent matches with its neighbour’s heading. It
does this by directing itself in the average direction of all its neighbours.
The predetermined parameters dictate changes in the behaviour of the flock
namely: minimum—distanceiE|7 maximum—distancelEL minimum and, max-
imum turning angleﬂ

The flocking algorithm is followed by the movement of agents toward-
s/away from any detected utility. When an agent detects a utility in the
vicinity, it starts following the Algorithm [3] while flocking. The algorithm
gives the agent the tendency to direct itself towards a positive utility i.e.,
a food particle. If the utility is negative i.e., the object is an obstacle, the
agent moves away from it, to avoid a collision.

The affinity towards the food particle often separates agents from the
swarm [24] [65][27]. Therefore, the agents perform the procedure ALIGN
once more after the detection of the food particle. This is intended to lessen
the probability of the swarm to split into subgroups.

13Ultrasound sensors on the Zebros with SEPARATION procedure double checks the
occurrence of collision avoidance.

' This radius is dependent on the size and swiftness of the Zebro

15This radius is dependent on the range of communication module

16The amount in degrees/radians with which an agent can turn in a given time period
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Algorithm 2 Flocking
Input: list of heading and relative distance to neighbours.
1: procedure ALIGN(F)

Z heading_-of neighbours
Number_of _neighbours

2: heading <+ > average direction of neighbours

3: procedure COHERE(F)

4 if distance > maximum — distance then

5 heading = heading_of_that — neighbour > Move towards
6: procedure SEPARATE(F)

7 if distance < minimum — distance then

8 heading = heading_of_that — neighbour + 90 > Move away

Algorithm 3 Utility found

1: if sensed > 0 then > Food-particle detected
2 head towards food-particle

3: if sensed < 0 then > Obstacle detected
4: head away from obstacle

5. procedure ALIGN(heading, distance)

3.5.2 Immature algorithm

The immature algorithm is a communication assisted version of the silent
protocol. When a utility is found, the swarm following the silent protocol
moves towards the utility. However, it is to be noted that more than one
agent could have found utilities at the same time. In such cases, the silent
robots tend to separate from the swarm. As described in Section we
do not expect such the swarm to split. Simulations [24][65][27] show that
robots flocking in open spaces experience separation from the swarm.
Immature algorithm is intended to preserve the cohesion of the swarm
by conducting a local election. the election is intended to choose the agent
in the neighbourhood who sensed better utility than it or other neighbours.
The result of the election is called my—leader. And the agent starts to follow
the direction guided by the my — leader. While the movement happens and
the swarm is flocking, the information of the local bests is spread across the
swarm. Information from across the swarm becomes accessible to the agent.
The new information allows the agents to choose an agent who sensed even
a better utility.
Immature algorithm is synchronised with messages passing. As shown in
Table four messages are introduced in the algorithm. As an agent de-
tects a utility it starts propagating message m1. Message m1 consists of its
ID and the value of utility it sensedm Agents store the incoming m1 data

"For the course of simplicity, we deal with positive utility i.e., food particles. Al-
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Algorithm 4 Immature algorithm

1:
2:

3:
4:

while true do
procedure FLOCKING(heading, distance)

procedure CHOOSING A LEADER ALGORITHM(m0, m1, m2, m3)
procedure REALIGN(f, my — leader)

Table 3.2: Message type

Name | Structure Purpose Queue

m0 STOP Stop the swarm

ml 1D To create a list of | M1
neighbours

m2 ID + wutility To compare util- | M2
ity values

m3 ID + max — utility + | To propagate the | M3

my — leader chosen leader

Algorithm 5 Choosing a leader algorithm

10:
11:
12:

13:
14:
15:
16:
17:

1
2
3
4
5:
6
7
8
9

procedure KNOWING THE NEIGHBOURHOOD
broadcast(m1)
: procedure RECEIVE M1(ml)
enlist all m1 into a matrix matl > list of connected agents
procedure SENSED A UTILITY b when an agent senses a food particle
broadcast ("STOP”) > stagnate the crowd
broadcast (m2)
: procedure RECEIVE STOP
STOP
procedure RECEIVE M2(I D, utility)
Enlist m2 into a matrix mat2 > record various findings
broadcast (m3) > broadcast personal best
procedure RECEIVE M3(ID, max — utility, my — leader)

Enlist m3 into a matrix mat3
Choose maximum of own max-utility with max-utility of neighbours.
if max — utilityo fneighbour > max — utility then

my-leader <— my-leader of that neighbour

in a queue called M1. The agents compare its and its neighbour’s utilities.
The neighbour or itself, with maximum utility, is declared as my — leader.

gorithm for negative utility can be replicated similarly. The negative utility is reserved
for obstacles.
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Once an agent selects my — leader, it starts sending message m3. Message
m3 consists of three bytes: own ID, the maximum utility encountered by
it and the ID of my-leader. When an agent chooses, my — leader, it starts
to realign@ itself in the direction of the my — leader, unless it encounters
a better maximum utility via m2 or m3. In the event when the robot has
the best utility among his neighbours, i.e., it is it’s own my — leader, then
it just walks towards the sensed particle. Neighbouring agents keep com-
paring their maximum-utility with message m2 and m3. While this process
of message passing is going on, the agents are flocking to keep close to each
other without colliding.

Algorithm 6 Realign
Input: Matrix mat2
1: procedure REALIGN(my — leader)
2: heading < heading_of_my — leader > move in direction of chosen
leader

As described in Section the gossip algorithm is used to proliferate
information throughout the swarm, which works without a predetermined
routing mechanism. Gossip algorithm functions independent of the number
of agents in the swarm. The asynchronous behaviour of the algorithm does
not necessitate the need for a synchronised clock.

With increased communication cycles, the agent’s local best comes closer to
the swarm’s global best. It is expected that immature robots are capable of
achieving expected emergent behaviour.

3.5.3 Mature algorithm

One of the convenience available to the other implemented swarm robots,
as mentioned in Chapter 2, is the presence of either a centralised control
or a central source of information. In the mature algorithm, we intend to
eliminate the requirement of a central source of information. We gather
information about the entire swarm through recursive local interactions.

In the mature algorithm, we provide a method to achieve global consensus
about the greatest utility available to the swarm. This consensus algorithm
provides similar decisions to that recommended by a centralised controller,
thereby eliminating the need for a centralised controller. Further, we gen-
erate an adjacency matrix that contains information about the connections
in the graph generating the network structure of the swarm.

18Refer Algorithm @
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The immature algorithm added intelligence to the swarm compared to the
silent protocol by providing local information through communication. How-
ever, the information propagation is limited to one hop (i.e., one neighbour)
and the algorithm doesn’t aim to achieve a global consensus. The individual
agents are still not well informed of all the utilities encountered by the swarm
at an instance.

The mature algorithm makes sure that all the agents are aware of all the
sensed utility before choosing their leader. Therefore, there is only one leader
(the —leader) instead of several personal leaders (my —leader). The mature
swarm doesn’t move until consensus on the best utility value is achieved.
Once consensus is reached, all agents follow the — leader. This algorithm is
called 'mature’ algorithm as it accounts for all the opinions of its members
before making the decision. This is advantageous compared to the immature
and silent protocol, as global information is made available to all the agents.

In comparison to the immature algorithm, the mature algorithm has bet-
ter provision to maintain the connectivity of the swarm. The splitting of
the swarm into subgroups reduces. Though estimated to be slower than the
silent protocol, the quality of decision in the mature algorithm should be
better.

Algorithm overview

As described in Algorithm [7], as soon as a particle is sensed by the swarm,
the STOP message is spread throughout the swarm and everyone stops. The
STOP message also announces the start of an election. It is important for
the swarm to stop, to keep the sensor reading static while the election is
being held. The election is held via local interactions. The procedure of
election is explained in Algorithm 8] As a result of the election, the —leader
is elected. The—leader is the agent who detected the best particle sensed by
the swarm during that election. When the election is over, the chosen leader
(the — leader) guides the way to eat its detected particle. As the — leader
moves towards the particle, its neighbours sense the movement and flock
towards the —leader. Soon, the entire swarm appears to be moving towards
the particle. With the movement, the other contenders realise that they did
not win the election. The leader walks with thrice the speed of flocking to
prioritise consuming food over flocking. The — leader does not flock while
guiding the swarm. As the swarm approaches the particle, the — leader
consumes the particle and sends an ERASE message to the swarm. With
the ERASE message, the information related to the decision making process
is erased by the agents, the — leader gives up its title and starts flocking
again at normal speed.

Meanwhile, the individual agents start to contemplate the graph by re-
cording their neighbour’s links. All the agents are exchanging their link
information with their neighbours. Repeated communications of agent’s
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Algorithm 7 Mature Algorithm
1: Variables reinitialised to 0
2: if utility found then > Swarm STOPs
3: while EOE !=1 do

4: procedure ELECTION

5: if FOE =1 then > The election ended
6: procedure MOVEMENT > the — leader guides the swarm
T procedure ERASE > Reinitialise variables
8: EOFE + 0

9: procedure DEVELOPING A GRAPH
10: procedure FLOCKING

links, result in every agent knowing all the link pairs in the swarm. Agents
store these links in its adjacency list to create an adjacency matrix of the
swarm network. The adjacency matrix is verified to be complete when the
adjacency matrix is equal to the transpose of itself as shown in Algorithm

iui!

Election

The election is conducted when one or more particle is detected by the
swarm. The agents who sensed particles are called contenders. The purpose
of the election is to choose the best contender. The best contender is the
one who sensed the highest utility among all the utilities available to the
swarm at the time of election.

Algorithm [§] describes the election algorithm. The algorithm is divided
into two algorithms: Propagation (Algorithm [9)) and Back propagation (Al-
gorithm . The various message used in the election algorithm are de-
scribed in Table 3.3 and the assisting variable as described in Table

Algorithm 8 Election procedure

: procedure PROPAGATION

1
2: procedure BACK PROPAGATION
3: procedure END OF ELECTION
4 EOFE <1

After the start of the election, information of the sensed particle is spread
across the crowd as message n2. Agents store the received and the sensed
utility value in the queue N2. The maximum utility in the queue N2 is
regarded as max — utility. Max — utility is propagated by the agent, and
the lower utility values are discarded.
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Table 3.3: Some message type for the mature algorithm. Message type in
gray-coloured text have been defined in previous algorithms as well.

Name | Structure | Purpose Queue
STOP Stop the swarm

nl 1D To create a list of neighbours N1

n2 utility Conduct election based on utility N2
EOE Marks the end of election

ERASE Resets variables

Table 3.4: Variables for mature algorithm. Variables in gray-coloured text
have been defined in previous algorithms as well.

Name Structure Purpose

sensed integer value of utility

heard integer The value of sensed food
particles received from neigh-
bours

N2 list of integer contains all the sensed and
heard values

max — utility | integer Maximum of food list

As the information of the sensed particles propagates across the swarm,
the agents classify their flockmates as a parent, child and siblings. Table[3.5
briefly describes the types of agent. The method of classification of these
agents is explained in Algorithm [9]

During the election, apart from broadcasting their utility value the con-
tenders wait for acknowledgement of its sensed particle. If a contender
receives an acknowledgement of its food particle, then it knows that it is
the — leader. The — leader propagates the message "EOE = 1” which no-
tifies everyone that the election has ended. This acknowledgement marks
the back propagation of the result of the election. The back propagation
algorithm is described in Algorithm
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Propagation

The propagation algorithm performs two main aims: propagates the sensed
value and elects the best utility among them, and lays a foundation for
back-propagation described in Algorithm [0] In this section, we first dis-
cuss the method of choosing the best candidate followed by generation of
acknowledgements to initiate back propagation.

Algorithm 9 Propagation

1. if sensed utility then > The agent is a contender
broadcast n2

I know(X) <1

N2 + sensed

if n2 received then
heard <+ n2
N2 < heard
I know(X) + 1

10: max — utility <— max(N2)

11: if sensed < max — utility then

12: procedure WITHDRAW FROM ELECTION

13: sensed < —1

14: broadcast max — utility

15: > The one who sends n2 is the parent.
16: > The one who receives n2 is the child.
17: > Parent and child occur in pairs.
18:

19: if n2 = sensed then > The flockmates are cousins
20: if ID < ID of sender n2 then

21: procedure WITHDRAW FROM ELECTION

22: sensed < —1

23: > The flockmates classify each other as cousins
24

25: if (I_know(X) = 1) and (utility of n2 = X) then > The flockmates
are siblings
26: The flockmates are classifed as each others siblings

Electing When an agent receives n2 message, it adds the received utility
(say X) in queue N2 and sets I _know(X) as 1. It compares the values
in the food-list. The highest utility is classified as max — utility, which
it propagates further as n2. The other utility in the food-list loses their
significance. However, if a contender receives a n2 with a higher utility than
his sensed utility, then it withdraws its contest and starts propagating the
higher utility of received n2.
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Framework for reception of acknowledgement: Back propagation is
of vital importance for the mature robots, as it marks the end of the election
and signifies that the swarm has chosen its the — leader. The propagation
procedure lays the framework for the reception of acknowledgement thereby,
finalising the — leader. During information propagation the agents are clas-
sified into various types as described in Table We describe these agent
types below. These agent types are specific to a food particle (say 'X’).

Table 3.5: Mature robots categorise their flockmates into various agent
types. There can be more than one of each type except, the — leader.
The agent types are described below. Parent-child occurs in pairs, whereas
siblings and cousins occur in sets of atleast two. Agent set in gray colour
have been defined in previous algorithms.

Name Definition Purpose

Flockmate | All the neighbouring | Agents within commu-
agents nication range

Contender(s) | Agent(s) who found a food | They contest elections
particle

Parent(s) Agent informs child about | Expects ack from child
the particle

Children Agents who receive inform- | Sends ack to parent
ation of the particle via
parent

Siblings Already informed pair of | Exception to flockmates
flockmates being a pair of parent-child

Cousins Flockmates who sensed the | To reduce competition
same particle

the — leader | The chosen leader Leads the way

As the contenders send the value to the neighbours in the form of message
n2. The sender of the message is classified as parent with respect to receiver,
who is its child. Parents will eventually expect an acknowledgement from
child/children. The flockmates who know about a food particle without
anyone telling it, they are siblings. Siblings know about the particle, they
might or might not have the same paren

It is also to be noted that two or more agents can sense the same particle.
In such a case, they are called each other’s cousins. The one with the highest
ID contests on behalf of the particle. The rest 'younger’ cousins, the ones
with the lower ID number, withdraw themselves as contenders in the elec-
tion.

Yot important for the algorithm
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These agent types are defined per food particlﬂ As different contenders
exist for different food particles, the information generation of the food
particle occurs at different points in the network. Therefore, the final ac-
knowledgement is expected at the source of the information.

The messages n3 and nd are carriers for the variables /_know(X) and
ACK (X) respectively.

Table 3.6: Message type for propagation and back propagation

Name | Structure Purpose

n3 I—Eknow + utility | Knowledge of existence of
food particle "X’

n4 ack + utility Acknowledgement of food
particle "X’

Table 3.7: Variables for propagation and back propagation

Name Structure | Purpose

I _know(X) | Binary Knowledge of existence of food
particle with corresponding
utility value "X’

ACK(X) Binary Acknowledgement of corres-
ponding utility

Back propagation

Children send acknowledgements to their parent for all the food particles
they have received. An acknowledgement for a particle X, is sent if the fol-
lowing condition is fulfilled.

rx =ax +bx +cx

where,

zx = Count of flockmates

ax = Count of parent(s)

bx = Ack received from child/children
cx = Count of sibling(s)

2Owith utility 'X’
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The acknowledgement is initiated by the leaf nodes. As the leaf node has
no one further to propagate the message to, it starts the back propagation.
For a leaf node, a = 0, therefore when z = b+c, it sends ACK to his parents.

The —leader is the agent in the election who senses that end of the election.
If a contender receives acknowledgement for its sensed food particle from
all his flockmates, then it realises that it is the — leader. All his flockmates
are his children, as it tells them about the particle it found@ Therefore,
the — leader is the parent of all his neighbours, it will not have any parent
hence, b=0,c=0 = z =a.

The algorithm is designed such that there can be only one the — leader.
The contenders who did not sense the particle with the highest utility, will
always have xx # ax + bx + cx. For a non-winning contender b = 0, ¢ = 0,
and x # a. The condition, £ = a can not be true for anyone other than the
contender who has the best utility.

Algorithm 10 Back propagation
1. if (rx = ax + bx + cx) and (I_know(X) = 1) then

2: if bx > 0 then

3: Send ACK(X) to parents

4: if (bx =0) and (sensed = X) then > = the — leader
5: Broadcast EOE

6: Set FOE + 1

Developing the graph

To eliminate the requirement of the central source of information, local
interactions are used to generate the graph of the network. The message M
lists is introduced in Table M comprises of all links connected to that
node (agent). This message is spread throughout the network. As shown in
Algorithm this list is iterated with other link attachments of neighbours.
All the links are subsequently stored with each agent to create an adjacency
matrix.

Agents detect broken and new link by the change observed in the neigh-
bour list N1. When the agents form new links, they add the new link in M,
before broadcasting M. The agents update a broken link in M by conjugat-
ing a negation bit with the link. When the other agents receive a link with
the negation bit, they delete the link from the adjacency matrix, else add
it. Therefore, the adjacency matrix is updated with addition and deletion

21 Any other agent who sensed the same particle is classified as a cousin, one of the two
cousins withdraws his contestant, resulting in one contender per particle, as described in
Algorithm E}
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of links. The update delay will depend on the size of the swarm and the
communication speed.

Table 3.8: Message type for Algorithm

Message type | Structure Purpose
M list all links To develop global graph

Algorithm 11 Developing the graph

: procedure ENLIST OWN-LINKS > Develop a list of own neighbours
M <« list of own-links
SEND LIST OF LINKS(M)

1

2

3

4: procedure SEND LIST OF LINKS(M) > Send own links to neighbour
5: broadcast (M)

6: procedure RECEIVE LIST OF LINKS(M) > Store the links
7 Adjacency_list < M

8 Delete duplicates

9 M <+ Adjacency_list

10: SEND LIST OF LINKS(M)

11: procedure UPDATING M (M) > Addition and removal of links
12: own-links < (-1)broken-links

13: own-links <— new-links

14: M <« list of own-links

15: SEND LIST OF LINKS(M)

16: procedure CONVENE ADJACENCY MATRIX

17: Adjacency_Matrix < Adjacency _list

18: if Transpose(Adjacency_Matrix) = Adjacency_Matrix then
19: *Graph theories can be applied now.*

While the agents are choosing their leader, we develop the graph of the
network. This will benefit the swarm in many ways. First, the completion
of the adjacency matrix will confirm the proliferation of the information
throughout the swarm at a local level. It will ensure that every agent had
been reached in the message passing process. Secondly, the graph of the
network so formed, can use various networking concepts to increase the
efficiency of the system. Thirdly, we want individuals to be able to locate
their position in the flock, with respect to their leader. If they could find
the shortest path to the — leader, we can route the instruction to follow
the — leader in an efficient manner. It will even be advantageous to know
the most traversed nodes, to make a quicker decision based on what the
swarm is collectively 'thinking’
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Chapter 4

Evaluation of Zebro
algorithms

Speed, quality, price. Pick any two.

— James M. Wallace

In this chapter, we infer the characteristics of the algorithms from simulation
data. The problem statement of the thesis derived from the need for a
collective decision making using communication in a group of autonomous
robots in unknown, unassisted and unbounded site. Hence, the main goal
of this chapter is to determine the decision making capability of the three
algorithms in such scenarios. The communication module is not yet ready
to be usedF_-], so we analyse the algorithm using simulation results.

In Section we describe the simulator. In Section we describe the
experimental setup and performance metrics. In Section we present the
simulation results with inferences. In Section we end the chapter by
passing a judgement on the overall performance of the algorithms.

4.1 Simulation environment: Netlogo

To demonstrate proof of concept, we needed the simulator to support concur-
rent processes. We wanted a multi-agent simulator that models networks
on a mobile distributed system. The simulator should be easy to use by
different disciplinaries working in Zebro teams, including those who never
programmed before. NetLogdﬂ provides the required modelling environment
[61].

! Appendix
2The specifications of simulator setup are listed in Appendix
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The simulator provides independent control over agents, food particles and
communication links. At the same time, global values can be computed for
analysis purpose. The simulator provides run time changes in parameters.
The simulator has an entire library dedicated to calculating network para-
meters. The random generator creates a variety of experimental scenarios
and robot positioning to validate the algorithms.

The NetLogo engine is single-threaded, so the agents must move one at a
time in some order; they can’t move simultaneously. The screen is updated
after all the agents have had a turn; this visually preserves the illusion of
simultaneity. The NetLogo application is one process and, the NetLogo
engine is one thread within that process. The process scheduler is a cooper-
atively multi-tasked operating system [57]. Therefore the assumption that
the system is concurrent is ambivalent. Also, the system is not absolutely
asynchronous, the global clock synchronises the event cycles of the agents.
Although the algorithms are intended to not need synchronisation.

The random and serial activation of the agents is in favour of the imple-
mentation in the real world. Any agent sends and receives the messages at
any time, and does not synchronise its receiving with the sender. In the
real world situation, there exists no synchronisation between transmitting
and receiving will occur similarly. The robots will not be able to coordinate
the sending and receiving events. This property influenced us to create al-
gorithms that refrained from using event synchronisation.

Besides, the NetLogo code cannot be directly implemented on the robots.
Moreover, Netlogo has programming limitations for developers looking for
low-level programming. It is a strongly typed language compared to general-
purpose programming languages like C and C+4++. There is no provision
of message passing in the software. The data structures like array and
matrix are not easy to use. The functionality of pointers is unavailable in
NetLogo. Therefore, the initial pseudo-code had to be modified to fit in the
Netlogo simulation environment. Moreover, such modification simplified the
solution. With the lesser provision of storing the message data, the software
implementation eliminated the non-essential aspects of the algorithms.

4.2 Methodology and metrics

In this section, we provide our solution to the third research question (RQ3),
as described in Chapter

RQ3 How to quantify the emergent behaviour of autonomous robots?

The agenda of the thesis is to provide algorithms for robots to perform
autonomous exploration in the absence of external help, central source of in-
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formation and/or central coordinator. Consecutively three Zebro algorithms
namely: silent protocol, immature algorithm and mature algorithms are pro-
posed in Section

In this chapter, we study the swarm behaviour resulting from these three
algorithms. We design six experiment setups by varying the swarm config-
uration and properties of the environment as described in Section The
environment is unbounded and unknown to the swarm. In Section [£.2.2] we
provide measures to quantify the performance of the algorithms. The be-
haviour of the algorithms is classified based on codependency on other
robots for information, tendency to stay together and scalability.

4.2.1 Experimental setup

In this section, we describe the experimental setup to understand the vari-
ation in swarm behaviour resulting from the three Zebro algorithms in dif-
ferent circumstances. We suggest six experiments as shown in Table In
these six experiments, we vary the number of robots, the number of food
particles and the communication range of the robots.

These initial setups have varying parameters of the environment and the
properties of the robots to observe the behaviour in the context of scalability,
introduction conflicts and varying the factor concerning the cohesiveness.
We run the three algorithms for all the six experiments.

Table 4.1: The six initial experimental setup

Experiment Number of | Number of | Communication
robots (n) particles (p) | range (c)
E1l 5 1 Short
E2 ) 1 Long
E3 5 2 Short
E4 ) 2 Long
E5 20 2 Short
E6 20 2 Long

These six experimental setups are represented as E-k, with k € [1,6]. Fur-
thermore, the experiment running for each of the algorithms: silent protocol,
immature algorithm, and mature algorithm, are termed as Ek-S, Ek-I and
Ek-M respectively.

The experiments in Table are developed by varying these three experi-
ment parameters:

1. Number of robots (n): Experiments 1-4 consist of 5 robots in com-
parison with 20 robots in Experiments 5-6. By varying the number of
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robots, we want to evaluate the scope of scalability of the algorithms.
Keeping other variables constant, to understand the change due to
varying number of robots we compare E3 with E5 and E4 with EG6.

2. Number of food particles (p): At the advent of the experiment,
one food particle lies within the field of sensing of the swarm of robots
in Experiments 1-2. We increase the number of food particles to two in
Experiments 3-6. With two particles, we introduce a conflict of interest
among the robots. Such a conflict is intended to test the quality of
collective decision making of the swarm. With more particles, there
will be more opinions creating more differences, further disintegrating
the crowd. The analysis of the conflict provides a means to measure
the integrity of the swarm: reliance of a robot with other robots for
information and the loss of robots from the swarm due to conflict.

We compare E1 with E3 and E2 with E4 to observe the response of
the algorithms to conflict.

3. Communication range (c) We increase the communication range
in Experiment 2, 4, and 6 in comparison to Experiments 1, 3 and 5.
Increasing the communication range results in an increased number of
neighbours. More neighbours imply faster information proliferation.
Faster and more information propagation implies faster and better
decisions.

Higher value of communication radius also implies more con-
nections per agent, resulting in a more connected network. A more
connected graph implies lesser splitting of the swarm, implying more
integrity of the swarm. The algorithms that perform well with smal-
ler communication range will have higher network robustness. Higher
network robustness allows the swarm to stay together in rough terrains
and crowded areas.

We classify Experiment 1, 3 and 5 as short range communication ex-
periments (SRC) and Experiment 2, 4, and 6 as long range commu-
nication (LRC) [65]. In Category SRC, the neighbours of an agent
are its physically neighbouring agents only. For Category LRC, every
agent is a neighbour of every other agent. In Category LRC, an agent’s
message is equivalent to a broadcast to the swarm. To understand the
change due to varying number of robots we compare E1 with E2 and
E3 with E4 and E5 with EG.

In the experiments, the initial setup of the robots is arranged on a connected
random graph. Randomness in their positions and food particles is used to
provide validity of the results in unanticipated circumstances.
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The robots can sense food particles in the shape of a cone projecting in the
forward direction of movement of the robot. The angle of this cone is 60
degree and the length of the cone is 3 units distance, whereas the length of
the robot is 1 unit distance.

In the cases with two food particles, the relative position of the particles
is oriented such that it tests the cohesiveness of the swarm. The particles
are placed in a different direction of acquisition for the robots. Such that the
swarm breaks if it attempts to eat both the particles. All the food particles
are kept in such a way that they are sensed at the launch of the experiment.

Random numbers are chosen for the number of agents. It is kept in mind
that one number is a one-digit number and the second is a two-digit number.
The value of the food particles is also randomly picked. The communication
range is kept such that it encapsulates two cases of network connectivity.
First, where the network is barely connected. Any communication range
shorter than this case will disconnect the graph. Second, where the network
is a complete graph. Any communication range larger than this will be a
waste of resources.

4.2.2 Performance metrics

After we have simulated the execution of all the algorithm in all the ex-
perimental setting, we analyse the results on the basis of the performance
metrics mentioned in this section. We establish the following performance
metrics on the basis of the properties we seek to judge in our algorithms:

1. Quality of decisions: BestDecision? is a boolean metric represent-
ing the quality of decision taken by the swarm. The best decision for a
swarm at an instance is to consume the food particle with the highest
value available to the swarm. Any other decision is categorised as a
wrong decision. BestDecision? is true if the swarm choose the highest
valued particle available to it at any given instance. BestDecision?
can not be calculated for single particle experiments: E1 and E2.

The rate of best decision (Rpp) is described as the ratio of the
total number of runs in which the swarm chooses the best particle with
the total number of runs, normalised over 100. Rgp describes the per-
centage of runs when the best decision was taken, i.e., BestDecision?
is true. The best quality of decision is expected to be with the swarm
with the highest value of Rpp.

Rpp can also be identified as a measure of predictability of the
decision of the algorithms. It also provides a standard to measure the
utilisation of collective intelligence.
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2. Unity of the swarm: Split? is a boolean metric. It describes the
integrity of the swarm. If the swarm splits into subgroups, then the
Split? is true, else false.

Split? rate (Rg) is described as the normalised value of the ratio
of the number of times the swarm splits to the total number of runs.
The resulting percentage is a measure of the number of times the
swarm splits in a given experimental setup. The rate is an inverse
measure of the unity of the swarm. It also provides an aggregate to
measure the connectivity of the swarm network.

3. Decision making time is the time taken by a swarm between sensing
a particle and executing the decision. The event of decision making
is marked by different instances for different algorithms. We base our
definition on the common trait within the algorithms by capturing the
time between sensing and consuming the particleﬂ

We use three parameters to measure the decision making event:

(a) ticks: Ticks is the simulated time. It is Netlogo’s representation
for the software’s internal timer. Each agent in the model under-
goes a singular random behaviour each tick [I8]. Ticks are the
number of event cycles taken by agents to make a decision. One
tick represents an event cycle when all the robots run their codes
once.

(b) time: Time is the simulation time. It represents the system clock.
Therefore time is the computer time the software took to make
the decision.

(c) timepertick: Timepertick represents the time taken per execu-
tion of a tick.

Ticks, time and timepertick are calculated as the averages of ticks
and time over multiple runs. Since the simulator is processing these
concurrent events in a single thread, the actual time in the implement-
ation will be different than time.

4.3 Observations

In this section, we develop an understanding of the order of the emergent
behaviour in the distributed algorithm for the experiment variables and

3 In the silent protocol, an agent moves after it decides. In the immature algorithm,
agents decide between best particle while it moves. Agents following the mature algorithm
move after everyone has decided on a common value.
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performance metrics. Therefore, this subsection is divided into perform-
ance metrics. In each of these sections, we analyse the behavioural changes
in the form of performance metric of every algorithm in general and also
with varying experimental parameter. Further, the best algorithm for the
performance parameter is also evaluated.

In the process, we develop an understanding of the experimental para-
meter’s influence on the algorithm. We can declare the expertise of each
of the algorithms. The process enables us to choose the best of the three
algorithms based on optimum results for a single performance metrics and
also the comprehensive best algorithm.

We gather performance metrics data from 20 runs of the three algorithms
in all the six experiment setups as shown in Table Table and Table
[4.7We highlight the outliers in the tables, to foresee the best algorithm
for the particular performance metric and the overall performance later in
Section (4.4

We identify outliers by measuring the central tendency of the data. the
central tendency is measured by either mean or median. We focus our
attention towards the half of the central tendency of the data where the
performance is in favour of our problem statement. In the cells are shaded
for one side of the median. The favourable property is the unshaded cells.
We use mean when the distribution is near normal. The mean has one main
disadvantage: it is particularly susceptible to the influence of outliers. The
median is less affected by outliers and skewed data. We use the median
where the variation between the highest and the lowest value is very large,
for the mean to be affected by it.

4.3.1 Quality of decision

In this section, we present the observations and their interpretation to ana-
lyse the quality of decisions. As described in Section [£.2.2] we quantify the
quality of decision making based on the rate of best decision (Rgp). Table
[4:2 represents the values of Rpp for runs for all the six experiments for the
three algorithms. Table @ represents cumulative Rgp for the runs in all
setups for each algorithm.

At instances, the silent protocol and the immature algorithm do not reach
any sensed food particle. Even though the food particle is sensed the food
particle is not eaten. Ignorance of food particles is a major benefactor to
bring down the Rpp. Therefore, we compute the ignored cases as the rate
(in %) of the occurrence of such event in Table We call it the ignorance
rate (Rr). Ry is used as a helper performance metrics to reason for one of
the prime reasons for wrong decisions.

The ignorance cases are beneficial and undesirable at the same time. In the
ignorant cases, the quality of decision is reduced and improvement in the
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Table 4.2: Rate of BestDecision? (Rpp): The percentage of occurrence
of the event when BestDecision? is true. The table displays data for all
the three algorithms in the all the experimental setups. The shaded cells
highlight the situation with Rpp lower than the mean (68.5%).

’ H Silent | Immature ‘ Mature ‘

E1 - _ -
E2 - ; -
E3 55 50 100
E4 70 60 90
E5 25 50 90
E6 40 95 100

Table 4.3: Ignorance rate (R;): The percentage of occurrence of the event
when no sensed particle was consumed. The table displays data for all
the three algorithms in the all the experimental setups. The shaded cells
highlight the situation with rate of ignorance greater than 0%.

] H Silent ‘ Immature | Mature ‘

E1l 20 20 0
E2 50 5 0
E3 0 0 0
E4 0 25 0
E5 10 0 0
E6 15 0 0

unity of the swarm is observed, as will be seen in this and the succeeding
section. The cases with ignorance of food particle, agents tend to stay
together with the swarm. But in those cases, the swarm is not consuming
any particle.

Silent protocol

The decisions taken by the silent robots is based on little to no information
limited information of the other agents. The only indication of the presence
of detected particle received by a member of the swarm is by the change
in the average heading of its neighbours. The change in heading does not
exclusively reflect the presence of a particle. The fluctuation in the heading
direction might also be influenced due to new robots joining the swarm or
old robots leaving the swarm. The heading of an agent is the average of all
neighbour’s heading. Therefore, a fluctuation in heading is averaged over
the number of neighbours, attenuating the cue. More so, the value of the
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utility found is not reflected through the amount of change in direction.

Hence, the silent robots do not know if any other particle(s) is sensed, the
utility of the particle(s) or the agent(s) who found it. Silent robots lack the
basic information needed to make an informed decision. If the silent robots
do not know the presence or the value of the particle sensed, then they can
not choose between the best, rather they would always think they are the
best. Deducing from their unsocial behaviour, self-centred nature and lack
of knowledge, the silent robots are bound to make wrong decisions.

Increasing the number of robots, cutbacks the quality of decision. We
observe a constant 30% decline in best decision cases for E3 and E4 to
E5 and EG6, respectively. This implies that an increase in decision makers,
jeopardizes the quality of decisions. Scalability aspect of the silent protocol
is therefore compromised.

The decrease in Rpp can partially be attributed to an increase of Rj.
More robots imply more influenced average heading of each robot. As men-
tioned in Section the robots are given more affinity to stay together
than to consume the particle for individual benefit.

A large number of robots are the strength of the swarm robotics as they
cover more area and increase the field of sensors. The blessing of a large
number of robots in swarm robotics is unprofitable for silent robots.

Increasing the communication range, prompts an improvement in the
quality of decisions. There is a constant increase of 15% in Rgp for both
experiment pairs under observation : E4 =—- E3 and E6 — E5.

With increasing communication radius, all the robots are each other’s
neighbours. Therefore, a robot’s heading is now instantaneously influenced
by the robot on the farthest end of the swarm as well. Therefore, the heading
of the robots is influenced by both particles.

It is noted that the ignorance rate also increases with an increase in com-
munication range. The increase in the ignorance rate results in a decrease
in the Rpp of experiment pair E5-E6 with respect to E3-EA4.

Therefore, for the silent protocol, the best decision is affected by the number
of particles (30%) more than the increase in communication range (15%)
Together decreased communication range and a large number of particles
following the silent protocol will yield poor decisions. Therefore, a large
number of silent robots are poor decision makers when loosely connected.

Immature algorithm

With the introduction of communication in the immature algorithm, robots
are more informed than the silent protocol. They know the relative position
of the agent who sensed a food particle and the amount of food particle
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sensed. This equips immature robots to make an informed decision based
on their own sensed utility as well as other agent’s utility. A robot’s neigh-
bours make the information about their neighbours available to the robot.
After a certain number of propagations, the information is spread across the
crowd. The robots make decisions at every event cycle based on the inform-
ation acquired in this and the previous event cycle. The agents hence, take
actions before acquiring the complete knowledge of the swarm. Incomplete
information may lead to instances of poor decision making especially when
contenders are not neighbours.

Increasing the number of robots, the quality of decision improves or
remains the same. This result is better than that of silent protocol, where
the quality of decisions decreases with an increase in the number of robots.
Increased information due to an increased number of neighbours is account-
able for the positive outcome.

Increasing the communication range, increases the quality of decisions
without an exception. Infact for E2 and E6, the immature algorithm
provides a similar quality of decision as to the mature algorithm. If it was
not for the ignored case in E4, the LRC results for the immature algorithm
will be the same mature algorithm. The high quality of decision in LRC,
indicate the behaviour of the mature algorithm in the immature algorithm.
Whereas the ignored cases reflect the traits of the silent protocol.

Well informed agents take the best decisions. LRC assists the robots to
increase information. With LRC, every robot is each other’s neighbours.
Therefore, a sent message is broadcasted. The agents do not have to wait
for multiple hops for the information to reach across the swarm. This in-
creases the knowledge base of the swarm, quickens the process of decision
making and improves the quality of decision.

Unlike the silent protocol, the ignorance rate does not have a pattern
based on varying parameters.

Immature algorithm is a transition algorithm from silent to mature. It is
expected to show variegated properties relating to both algorithms. The
quality of decision improved as compared to the silent protocol, but it still
makes poorer decisions in comparison to mature algorithm. With an in-
creasing number of robots and increasing communication range, the quality
of decision has improved but is not the best.

Immature robots profit from more number of robots in the swarm. It is
therefore justified to use the immature algorithm for swarming applications.
However, the quality of decision is low in SRC, which questions the use of
the immature algorithm in rough terrains. Rough terrains tend to break the
swarm, in such cases, an algorithm with robust network connectivity will go
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a long way in maintaining the number of robots in the swarm and utilising
collective intelligence.

Mature algorithm

Unanimously the mature algorithm provides the highest Rpp among the
other algorithms, for all experimental settings. Mature algorithm’s quality
of decision is independent of variation in experimental parameters. The ma-
ture algorithm never ignores the presence of a particle as seen from Table[4.3]

However, the quality of decision shows peculiarity in E4 and E5. We ex-
perience lower Rpp in E4 and E5 as compared to the cent percent Rpp in
the other four experiments. These 4 out of 120 runs are regarded as wrong
decisions. These anomalies are due to reason independent of the experi-
mental factors. It is due to a simulator setup property and an algorithmic
snag. There are two reasons for such behaviour are portrayed in Figure
Encountering such cases reveals that the mature robots are also prone to
make wrong decisions.

Yo
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Figure 4.1: Two situations from E4 and E5 that led mature robots to make
wrong decision. The utility of the blue particle is 95 and of red particle is
15. (a) The red and blue particles are in the same direction heading. The
red particle is more likeable to eat faster because of its closer vicinity to
the robot who sensed it. (b) More than one robot sensed the same particle,
leading to conflict for the same particle.

The first reason for the anomaly is depicted in Figure the smaller
particle happened to be in the same direction as the bigger particle. Addi-
tionally, the smaller particle is closer to swarm than the bigger particle. The
pixel size of the square-shaped food particle is in integer and the position
of the robots is in float value. The not so equidistant nature of the food
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particle and varied precision of position results makes it difficult to position
the particles at equal distances to the robots. Such situations also occur in
the silent and immature algorithm.

The second reason is related to the situation when two agents find the

same particle as shown in Figure The swarm follows the direction
of the agent with the highest ID towards the particle. Silent and immature
algorithm handle such cases differently. When multiple silent (or immature)
robots sense the same particle, they move radially towards the particle,
rather than following the direction proposed by one of them.
We obtain near-perfect result because the robots make an informed decision
after knowing about all the findings in the swarm. The robots do not move
without being informed of the status of the rest of the swarm. R; = 0, also
attributes to not be a delimiting factor to the Rpp and thereby keeping the
quality of the decision high.

Inter-algorithm analysis

It is evident from Table [£.2] that the mature algorithm undisputedly makes
better decisions than the immature algorithm and the silent protocol in all
experimental scenarios. It is evident from Table [£.4] that mature algorithm
makes 3 times better decisions than the silent protocol and immature makes
2 times better decisions than the silent protocol. Silent protocol’s behaviour
is unpredictable. With such non-deterministic and fickle nature, it is diffi-
cult to make them useful for a mission. The predictability of the mature
algorithm makes itself the incontestable choice for deterministic decisions.

Table 4.4: Overall quality of decision among the three algorithms averaged
over all the experimental runs.

Algorithm ‘ Rpp ‘ Performance

Mature 95 Best
Immature 64
Silent 33 Worst

Additionally, the ignorance rate is a result of the average heading of the
swarm to be different than heading of the food. It is a desired outcome
that the swarm prioritizes flocking over their greed of consuming a food
particle(s). The ignorance factor would not have occurred if the simulator
was perfectly synchronous. Similar asynchronicity will appear in the im-
plementation as well. Moreover, the agent will not miss a food particle if
it rotates in the direction where it is sensed again. Such rotation avoids
the food particle to go out of the sensing region of the robot. From Table
[4:3] shows that silent protocol ignores more particles than immature, while
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mature algorithm never misses a particle. Though the behaviour is com-
prehensible, but not consuming even one particle of the two is not justified.
Mature algorithm tackles this issue as well.

4.3.2 Unity of swarm

Unity of swarm is a key characteristic to check the possibility of the swarm-
ing of Zebros on the moon. If the swarm splits into half each time a decision
is taken, then the swarm might diminish eventually. The collectiveness of
the swarm will suffer due to splitting, the intelligence will reduce corres-
pondingly. It is to be noted that we are dealing with an unbounded area,
robots separated from the swarm might never be able to find the swarm
again.

Swarm splits due to lack of coordination, lack of information and hasty
decisions. Zumaya et al in their paper [65] provided evidence of repetitive
splitting of a flock of robots in open spaces. Zebro simulations [27] of flocking
by Jurriaan de Groot also exemplifies the splitting behaviour.

Table 4.5: Split rate: Rg at which swarm splits into subgroups for the three
algorithms in various experimental setup. The shaded background highlights
the situation with split rate greater than 0%.

’ H Silent | Immature ‘ Mature

El 25 0 0
E2 0 0 0
E3 15 0 0
E4 5 0 0
E5 60 80 0
E6 0 0 0

We calibrate the unity of the swarm i.e., the ability of the swarm to stay
together. As described in we calculate the rate of split (Rg) as the
number of time the swarm splits in all the runs. Table represents the
Rg. Unity of the swarm is inversely proportional to Rg.

Silent protocol

The silent protocol is expected to have a high Rg as it is essentially the
flocking algorithm. Figure displays the splitting of the swarm. In the
figure, multiple particles are sensed in a decision cycle. However, the con-
flict due to these different particles is not the reason for the splitting of
the swarm. Infact it is due to weak connectivity of the network that the
swarm splits. The heading of an agent is influenced by only its neighbours,
and uninfluenced by the other. The bridge formed by the red robots is the

61



weak connection of the swarm that results in the separation. The subgroups
are unable to influence each other’s heading, due to less connectivity. The
swarm breaks because the two red robots are not enough to share heading
directions with the subgroups on either side. Despite the split, the swarm
did not even consume the best particleﬁ
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Figure 4.2: Sequential screen-shots depicting splitting of the swarm in silent
protocol in E5 setting, t1 < to < t3 < t4 < t5 < tg. The value of the red
particle is 15, whereas the value of the blue particle is 95.

Increasing number of robot, the swarm splits into more groups of the
swarm in SRC. It occurs because the only parameter that provides the swarm
with the information about the presence of a particle is the change in the

4blue particle
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average heading of the neighbours. This change in heading is diluted as
the robots are farther away from the contender. With an increased number
of robots, the information abates and the robots on the other side of the
swarm are unaware of the discovery of another particle, leading to a separ-
ation. In LRC, separation is less frequent as every robot can communicate
with each other in one event cycle. For the same reason, increasing the
communication range, decreases the Rg. The increased R; with increas-
ing communication range benefits the swarm by upholding the unity of the
swarm as seen from Table Introducing conflict does not seem to
influence the Rg.

In the simulation of Groot [27] the agents always break off from the swarm
if they encounter multiple food particles in different directions. In the silent
protocol, R; > 0 indicates that the swarm has a greater affinity to stay with
swarm than to consume a food particle. Therefore the swarm splits lesser in
the silent protocol in comparison to the previous Zebro flocking simulations.

Immature algorithm

The immature algorithm never splits except for E5, where is splits drastic-
ally. E5 represents the swarm with the largest number of robots who en-
counter a conflict. This sudden increase in Rg is similar to E5 for the silent
protocol, indicating that a high number of robots might result in immature
algorithm behaving similar to the silent protocol. Further experiments with
more robots will be more conclusive.

Howsoever, a swarm with the same number of robots with a dispute to
resolve, do not split with a long communication range. Implying that imma-
ture algorithm behaves like the mature algorithm in LRC. Additionally, the
quality of decision in E6 for immature is similar to the mature algorithm.
This reflects the hybrid behaviour of the immature algorithm.

Mature algorithm

Without an exception, the robots following the mature algorithm never split
into subgroups. The mature algorithm maintains unity even in case of a
weakly connected graph (as seen in the Figure and [4.3(e)). Mature
robots maintain network robustness. They do not make hasty decisions like
silent and immature algorithms. Instead they wait until the best decision is
chosen and then move altogether.

Inter-algorithm analysis

With varying parameters, the mature algorithm never splits. This fact ad-
vocates the use of the mature algorithm in unbounded areas, where the ro-
bots might get lost due to multiple decisions to be made simultaneously. On
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the other hand, the immature algorithm performs very well, until it breaks
the trend in E5, with more robots and shorter communication range. Res-
ulting in its ranking below mature algorithm but still above silent protocol.
Split protocol splits in almost all experiments without any preference to a
single experiment parameter.

Long Range communication, saves silent and immature to split. Unity of
the swarm can be trusted with LRC, in all the three algorithms [65]. Even
for LRC scenarios, the weakly connected network should be sourced to ma-
ture robots. The LRC might turn into SRC with a lot of particles of interest
or obstacles that might convince the swarm to split.

To conclude Table [4.6] represents the percentage of split in all the exper-
imental setup. The mature algorithm performs the best while the overall
performance of the silent is worst. The Rg of immature is high due to one
experiment and silent robot split consistently through all the experiments.

Table 4.6: Overall performance for unity of the swarm among the three
algorithms averaged over all the experimental runs.

Algorithm ‘ Unity % ‘ Performance

Mature 100 Best
Immature 87
Silent 83 Worst

4.3.3 Decision making time

Decision making time is recorded from the instance an agent(s) senses a
particle(s). The time is measured until the swarm consumes a particle. The
consumed particle can be the particle that marked the beginning of the de-
cision making time or any consecutively sensed particle. As described in
Section we record the simulation time (ticks) and system time (time)
in Table

Simulation time (¢ime) is not a suitable parameter for measuring the dur-
ation of the decision making event. There are four reasons for holding this
opinion. Firstly, time has high variances for the experiments as seen from
Appendix [C] The confidence interval is also very wide for the majority of
the experiments. Secondly, the simulation time recorded is calibrated in
microseconds which is comparable to the system’s background activities.
Therefore, simulation time is affected by factors outside the simulation en-
vironment as well. Thirdly, the high variance can be caused due to differ-
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Table 4.7: Decision making ticks and time (time in milliseconds). The
shaded cells have value higher than the mean for ticks and higher than
median for time. mean(ticks)= 28.9, median(time)= 25.55.

Silent Immature Mature
Ticks ‘ Time | Ticks ‘ Time | Ticks ‘ Time
E1l 89.5 | 554 | 295 | 124 | 89 20.3
E2 54.8 | 24.0 | 258 | 114 | 6.1 14.7
E3 674 | 38.7| 316 | 169 | 8.5 10.1
E4 37.7 | 27.1 44.5 | 21.0| 6.1 13.5
E5 170 | 38.6 | 255 | 326 | 9.5 | 375.8
E6 24.6 | 45.1 28.8 | 46.8 | 5.0 185.7

ences in distance of the food particles to the swarnﬂ Fourthly, it emphasizes
on the fact that a wide variety of initial swarm formations were tested in
the experiments.

Moreover, the actuation of the mature algorithm towards the chosen food
particle is three times faster than the other two algorithmsﬂ Therefore, time
is not a reliable parameter to compare the algorithms. Hence, we emphasis
our attention towards analyzing ticks.

Additionally, we expected the time and ticks to be related. But no uni-
form correlation was manifested across the table. Therefore, we investigate
timepertick displayed in Table

Table 4.8: Time taken per ticks (timeperticks). The shaded cells represent
the cells with value of ticks greater than median (1.23).

’ H Silent ‘ Immature ‘ Mature ‘

El 0.62 0.42 2.30
E2 0.44 0.44 2.41
E3 0.57 0.54 1.19
E4 0.72 0.47 2.21
E5 2.30 1.27 39.56
E6 1.80 1.66 37.14

Timepertick is a measure of the execution time of the code as described in
Section Timepertick assists in reasoning for trends in time. Studying
the timepertick revealed the difference in factors influencing the trend in

Sthe square food size is in integers and the position of the agents is in float with a
precision of two decimal point

5Tt is to prioritize the movement of the leader over flocking. By moving three times
faster, we equip the leader with a faster pace than walking speed due to the flock of robots.
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time. We classify and explain the different factors below:

1. Algorithm functionality: Analyzing the time per event cycle with
varying experimental factors provides a better understanding of the
algorithm. Timepertick assists in estimating the time allocated to
communication and computation or both. For instance, an increase
in communication time is reflected in the duration of an event cycleﬂ
by varying communication range. With the introduction of conflict,
communication as well as computation time increases.

2. Simulator property or experimental parameter?: A tick represents an
event cycle for a run of the code of all robots. Increase in the number
of robots implies that the more agents need to scheduled per tick.
Therefore, at instances increase in the time, maybe caused due to
simulator rationale. Keeping the number of robots constant, any trend
in time caused thereafter might stem from variation in experimental
parameters.

Silent protocol

Silent protocol is expected to be faster than the other protocol as it does not
spend time communicating or waiting for the consensus. However, the data
depicts that the protocol has a higher time per decision than the immature
algorithm. Infact, the average of the time taken by silent is ~ 40% higher
than the mean of the immature algorithm.

We are unable to find consistent patterns of increase/decrease that can
be justified based on the protocol. We are unable to find trade-off between
ticks, time and timepertick. We interpret two reasons to justify the data:

1. The spontaneity of the silent robots might be resulting in no patterns.

2. The large confidence interval as seen in Appendix [C] hints either a
high variance or smaller sample size. We might need to perform more
experiments to understand the behaviour of the silent protocol.

Immature algorithm

Increasing the number of robots, the ticks decreases and increase the
time and timepertick. The number of ticks decrease due to quick access
to more information resulting from more neighbours. More neighbours in-
crease the connectivity between the robots as well, implying a lesser number
of events (ticks) required to spread information. The increase in the time
and timepertick is attributed to the single thread functioning of the simu-
lator.

"timepertick
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Introduction of conflict, results in increase in ticks, time and timepertick.
Compared to SRC, a conflict in LRC witnesses a drastic change in the num-
ber of ticks.

With LRC, the number of events to reach decision increase because more
information is available to the members of the swarm. The increased in-
formation is contributed by the presence of an extra particle and informa-
tion acquired from the increased number of neighbours. The heading of a
robot is influenced by new information acquired at the end of each tick. A
final direction of the swarm is not instantaneously decided, rather it is not
finalized until the swarm consumes the particle. The robots wiggles due to
varied instruction coming from the flocking algorithm and particle inform-
ation from a different contender. The robot’s movement appears as if it is
confused about the direction to head. In SRC, with less communication, it
is easy for the swarm to avoid information. Therefore the number of ticks
in SRC do not change as extremely with the introduction of conflict.

Without conflict, the immature algorithm behaves as a faster version of
the silent protocol. Introduction of conflict initializes the communication
functions of the algorithm, increasing the time and timepertick. Recep-
tion of ml messagef_;] launches the sending of m2, computation from m?2
message initializes the sending of m3 message and so on. This increases
the time taken by individual robots to run the code per simulation cycle
(tick). Therefore, timepertick increases. With the increase in ticks and
timepertick, the time taken by swarm to come to a decision also increases.

Increasing the communication range, vary differently with and without
conflict. In the case of conflict, the time and the ticks decrease with in-
creasing communication range. Without conflict ticks and time decrease.
Timepertick minutely increases with communication.

The observation of ticks and time is since without conflict the immature
behaves like silent protocol. And with conflict, the algorithm ’tries’ behaves
like a mature algorithm.

Timepertick increases with increased communication range because more
communication is done by robots to send the information to the neigh-
bours. As the number of neighbours in increase with communication range.
Timepertick also increases as sending and receiving information per robot
increases.

Time and timepertick is effected mostly by the increase in the number
of robots. Ticks is influenced by communication range. It is noted that
immature robots behaviour is not unique. It is a fusion of silent and mature
algorithm.

8refer to Section [4] for the purpose and content of the message type
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Mature algorithm

Decision making in the mature algorithm is based on achieving a global con-
sensus. Without a central coordinator, this global consensus is achieved by
communication between the robot. Robots communicate with one another
directly or via neighbours. This communication procedure is intensive with
respect to the time needed to make the decision. The mature algorithm
is, therefore, able to replace a central coordinator at the cost of increased
communication time.

Increasing the number of robots, ticks increase by 1 tick. This in-
crease is very small compared to the variation of ticks observed for the
other algorithms. However, the timepertick increases phenomenally. The
time shots up with the increase in the number of robots.

The increase in the tick represents the increase in the diameter of the
swarm. Ticks for mature algorithm represents the number of events it took
for the information of the sensed particle to be generated from the con-
tenders, propagated across the crowd and returned as back propagation to
the chosen leader. The small increase shows that the increase in robots from
5 to 20, did not phenomenally increase the diameter of the swarm.

Time increased because all the robots have to talk to all the other robots.
In each event cycle (tick) every robot communicates atleast once. Therefore,
the increase in the timepertick reflects the time taken to execute the com-
munication by all the robots. The increase in timepertick is accountable for
the increase in time.

Introduction of conflict, does not affect the number of ticks. However
time and timepertick are reduced. This behaviour is counter-intuitive. We
expected the ticks and time to increase the due to increased communication
requirement of the swarm to conclude to a decision. Perhaps the introduc-
tion of the conflict does not unfavourably affect the time taken to resolve a
conflict.

Increasing the communication range, ticks decrease as expected. In-
fact, all SRC experiments have the same number of ticks, so do all the LRC
experiment setups. Moreover, the decrease in the number of ticks from SRC
to LRC is roughly 33%, which is consistent for all the pairsﬂ However, the
time and timepertick don’t show a consistent pattern of change.

The consistent number of ticks in SRC experiments and LRC experiments
separately depicts that other experimental factorﬂ do not influence the
number of ticks in the mature algorithm.

E1-E2, E3-E4, E5-E6
Onumber of robots, the number of particles
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The number of ticks decreases in LRC because it changes the communic-
ation type of the robot from multicasting in SRC into broadcasting to the
swarm. In LRC, the information can be spread across the swarm in min-
imum one tickE Therefore, lesser rounds of communication will be needed
to come to a consensus, requiring lesser ticks.

Ticks are influenced only by variation in the communication range. As
the amount of data transfer for the swarm is dependent on the number of
robots. The number of robots affects the time and timepertick drastically.
Introduction of conflict does not affect the time-dependent performance of
the algorithm.

Inter-algorithm analysis

As we proceed from silent protocol through the immature algorithm to ma-
ture algorithm, we find increasing consistency in the number of ticks. Ticks
are fairly consistent in the immature and mature algorithm. It is also de-
duced that the number of ticks decreases from silent to immature to mature
algorithm.

Time for the silent protocol is decently constant to the changing exper-
imental factors. Time taken by immature for decision making is less com-
pared to silent protocol. The immature algorithm’s time increases with an
increase in the number of robots and particles. This behaviour of the im-
mature algorithm corresponds to the time change pattern in the mature
algorithm. We do not compare the time of mature algorithm with the other
algorithms due to the varied speed of the robot in the mature algorithm.

Time per event cycle (timepertick) is fairly comparable between the silent
and immature algorithm. However, the mature algorithm’s timepertick is
off the charts.

The time, ticks, and timepertick, seem to create a concoction of observa-
tions, still unable to completely justify the recorded behaviours. But some
conclusions thoroughly validate the observations:

1. Silent protocol’s decision making time is fairly constant. It reflects
that the protocol functions independent of time.

2. In the observations, we witness that immature algorithm shows traits
relating to both the silent and mature algorithm. This affirms the fact
that it is a hybrid/ transit algorithm of the two.

1 One tick can be taken to spread the information if the robot who sends the message
is initiated by the simulator before the other robots receive it.
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3. Ticks of the mature algorithms are only influenced by the communic-
ation range.

4. Mature algorithm’s time is affected by the number of robots in the
swarm as it waits for global consensus.

5. Since, the simulator is processing these concurrent events in a single
thread, the time dependent performance metrics are misleading for the
actual implementation. However, ticks is a very suitable parameter
for analysis.

The significance tests of the Table is provided in the Appendix [C] For
each experimental setting, we observe the overlap between the confidence
intervals of different algorithms. Except for E4 and E6, we observe that
no confidence intervals overlap. In E4 and EG6, the intervals of the silent
and immature algorithm overlap. These are the experiments with 20 robots
possessing SRC. It provides evidence to our observation that silent and im-
mature algorithm behave similarly in SRC for a large number of robots.

4.4 Summary

In the thesis, we defined intelligence for the swarm as the collective ability
to resolve disputes. In this chapter, we analysed the trade-offs encountered
in the algorithm based on maintaining the unity of the swarm, quality of
decisions and decision making time. The importance of the information
propagation was addressed by varying the experiment variable: communic-
ation radius. The scalability of the algorithms was analysed by varying the
number of robots. The conflict resolution capability of the algorithms was
put to test through varying the number of particles.

Obtaining the performance metrics in Tables (Table Table and
Table , we shaded cells with the undesired characteristics. The number
of shaded cells decreases as we move from silent to mature algorithm via
the immature algorithm. Implying that the mature algorithm indeed does
make the best decisions while maintaining the unity of the swarm, thereby
endorsing the motivation of the thesis. The mature algorithm achieves the
desired intelligence. However, the shaded cells in Table [4.§] invalidate the
viewpoint that the mature algorithm is the fastest among the algorithms.
Moreover, the comparison of time metric of the mature algorithm with other
algorithms is unfair owing to its variable movement speedE

From the results of the performance metrics we also conclude that immature
algorithm shows transiting behaviour between silent and mature algorithm.

1235 mentioned in Section
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Being a hybrid of the two algorithms, it sometimes behaves as either silent or
mature or completely different than the two. For instance, without conflict,
the immature algorithm behaves as a faster version of the silent protocol.
With LRC, immature algorithm acts as the mature algorithm.

We present Table as a conclusive verdict of the performance of the al-
gorithms. Mature algorithm optimises the quality of decision and integrity
of the swarm but the speed is not its forte{r_gl For an algorithm with aver-
age performance metrics, the immature algorithm is the choice. The silent
protocol does not excel in any performance metric.

Table 4.9: Overall performance of the three algorithms for all the perform-
ance metrics

Algorithm | Quality of | Unity | Time

decision
Mature Best Best Worst
Immature Best
Silent Worst Worst

The silent protocol can make compatible decisions without communication
and therefore should be preferred when communication is unavailable or is
an expensive resource. The silent protocol is not a good choice when it
comes to unbounded areas, as the split rate is high, and the loss of robots
might not be recoverable. The silent robots do not even realise the presence
of conflict encountered by the swarm. The decisions made by the silent pro-
tocol are not predictable and therefore the choice of the best decision is not
reliable.

35ee Table
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(a) Experiment 1 [E1]

(b) Experiment 2 [E2]
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Figure 4.3: Experiment setup: Airplanes depicting Zebros, green circles
representing communication radius, red and blue squares representing the
food particles with utility as 15 and 95 respectively.




Chapter 5

Conclusions

In Section we summarise the problem that we solved. In Section
we mention the uniqueness of our algorithms that contributes to the swarm
robotics community. In Section we propose future research that can be
conducted on Zebro algorithms. We conclude the thesis with Section

5.1 Summary

We avoid dependencies on external devices or human assistance during run-
time, we circumvent the need for absolute localisation by creating global
information by local interactions and with relative localisation. The robots
rely on each other for decision making. In order to make the most of the
collective behaviour, the robots need to stay together and trust each other’s
input. Therefore, we defined emergent behaviour as the decision making
strategy of the swarm: the ability of the swarm to choose the best utility
while being with the swarm.

We modified the traditional flocking algorithm into the silent protocol to
provide a benchmark algorithm for the two new algorithms: immature and
mature algorithm. We quantify the performance of the algorithms based on
their capability to stay together and make an informed decision. We figured
out that if any robots were to be sent on the moon, the mature algorithm
should be the first choice as they show the expected emergent behaviour.
The mature robotsE] make the best decisions while maintaining the unity of
the swarm. This behaviour is useful to all the proposed Zebro missions on
the earth and on the moon. Additionally, in order to implement the Zebro
algorithms, no hardware changes are needed.

'Robots following mature algorithm are called mature robots.
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5.2 Contributions

The proposed algorithms are lightweight in terms of implementation, com-
munication, computation and memory storage. In contrast to our algorithms,
swarming methods like Simultaneous Localisation and Mapping (SLAM)
and adaptive predictive control (APC) do not conserve resources and are
tedious to implement. SLAM requires a camera to be installed which com-
municates an array of images. These images are a bulk to store, commu-
nicate and compute. Due to the installation of cameras on each robot, the
overall cost of the project increases by the size of the swarm times the cost
of the camera. On the other hand, adaptive predictive control is computa-
tionally very heavy and only works for an already known number of robots.

The algorithms proposed in this thesis base their decisions on Boolean
messages and normalised sensor readings ranging within 4+/— 256. The cost
function is a simple comparative operation consisting of <, > and =. The
storage is minimal as the robots refresh their memory after every event of
decision making. The mature algorithm stores an array (N*N) of Boolean
values of the size of the swarm (N). Moreover, this array does not contribute
to the decision making process and still, the memory required for the mature
algorithm is less compared to SLAM and APC.

The election methodology of the Zebro algorithms is unbiased and with
equal rights to all the robots. Even the leader does not practice any special
privileges. A leader is merely an agent who detected better particle(s) from
his view. The leader loses its title after consuming the particle(s). This
property of the algorithm makes the swarm fault-tolerant to the loss of
the robots. Moreover, addition of robots during run time is also possible.
Therefore, the algorithms are as scalable and fair as a democracy.

The mastermind behind the success of swarm intelligence is collective intel-
ligence. Collective intelligence profits from the collaboration and communic-
ation of the distributed agents, such that there is no need for a central
controller. Moreover, avoiding the use of a central controller makes the
swarm more robust and economises the mission. As no robot is a central
controller or possesses any special privileges, the mission will not be stran-
ded by loss of any robot. Without the need for a global information source,
we save the cost spent on installing a Global Positioning System, overhead
cameras or shared memory. Unlike other swarming algorithms in robotics,
our algorithms are completely distributed and not dependent on any central
controller.

Our robot’s coordination is not dependent on the environment. The al-

gorithm is location independent and does not require any previous know-
ledge of the region. Therefore, the swarm can traverse any uncharted and
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undiscovered areas. Practically they can swarm anywhere in the universe.

Coming up with swarm mechanism for legged robot had been challenging
and rewarding. The robots topple over oneself, they slip in repeated attempt
to climb rough heights. They can neither count the number of steps they
walk, nor calculate the distance travelled from a location. The proposed al-
gorithm works for robots with such unsystematic and unpredictable method
of walking, that makes our algorithm athletic. Therefore, the algorithm
can work with any kind of robots especially for the like of Zebro who are
poor in calibrating the distance odometry: humanoids and army tanks.

Glitches and mismatch of sending and receiving event may cause asyn-
chronicity. Such asynchronicity occurred in the previous communication
module of Zebros. Therefore we use event-based information proliferation
mechanism: gossip algorithm.

Using the event-based synchronisation technique, robots do not need a
global clock or an onboard clock to synchronise actions. Therefore, we save
the bandwidth in the communication header by not using bytes for synchron-
ising time. Moreover, if a robot reboots, it does not need to synchronise its
time.

There exists no generic swarming algorithm that can be implemented on
all kinds of robots. The swarming algorithm of other roboticist is closely
related to their sensors, movement properties of the robots or environmental
benefits: like a dark room, smooth flooring or a previous environmental
setup. Unlike other robot swarming algorithms, our algorithm is modular
in design. It can be implemented on all kinds of ground robots, walking on
any surface, with any amount of sensors and any time of the day. The only
requirement is a wireless communication module to provide collaboration
among the robots.

The robots do not need to communicate more data than mentioned in
the thesis. Any additional sensor payload on the robot will not influence
the communication load. Additional sensors will increase the computational
power to fuse the readings, normalise the value over 25dz| and send it over a
byte. Thereby not increasing the communication data. This property will
keep the communication resources insulated from changes in environment,
robots or applications domain.

Often, the bottleneck to the collective behaviour of the distributed systems
stems from communication restrictions [60]. It is also evident from the
previous communication module of Zebro that the swarm size affects the
amount of data transmitted by a robot. As we increase the number of ro-

21f colours can be represented in 256 divisions, so can any sensor reading.
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bots, the time slot available for transmission per robots becomes smaller,
questioning the system’s scalability. However, the short range communica-
tion analysis in Chapter 4, shows that this issue is taken care of. Mature
algorithm proves equal efficiency in the short range communicationlﬂ as in
long range communicatiorﬁ The mature algorithm does not need the ro-
bots to communicate with all the other members of the swarm. Infact any
number of robots connected in a line topologyﬁ will also compute the best
decision without splitting in the mature algorithm.

Additionally, the proposed algorithms can be used as a communication pro-
tocol for controlling the dynamics of distributed multiagent embedded sys-
tems in varied engineering applications. Therefore, these algorithms will
find direct application in ad hoc networks like Mobile ad hoc network
(MANETS), Vehicle ad hoc network (VANETSs) and Internet of things (IoT).
Dynamically changing networks of complex systems like adaptive net-
works can also find a use of these algorithms.

5.3 Future work

The proposed algorithm is a general-purpose decision making layer to all the
proposed Zebro missions. Albeit the success of the simulations, the imple-
mentation of the algorithms on the Zebro is equally important. Unexpected
issues with communication module might counter the success of the Zebro
mission.

Computing the global picture of the swarm via local interactions unfolds
multifarious possibilities from the implementation-oriented rich field of net-
work science. The global knowledge will make the scope of the emergent
design described in Section [3.3.2] possible.

Using networking parameters like betweenness, the swarm can predict the
possibility of occurrence of splits before it happens. The swarm can spread
out intelligently to optimise the utility function. The position of an agent can
help the robots to distribute resources like charging based on their previous
charging status. The immature algorithm provides an advantage of time over
mature algorithm. Networking parameters can help the immature algorithm
to enhance its other performance metrics: decision making capability and
maintaining the integrity of the swarm.

The compilation of the adjacency matrix via local interactions unfolds sev-
eral possibilities of this adaptive network to implement strategies of static

3The degree of the robots is minimalist to maintain the connected graph.

“Every robot is in connection with every other robot.

5 Agents are connected to two adjacent neighbours, except the ones at the end who are
connected to only one agent.
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network. Time can be optimised by routing information via shortest paths
between contenders to contest auction. Instead of the entire swarm con-
ducting elections, the contenders can conduct an auction to decide between
the best values. The swarm can also coagulate or expand its formation if an
agent can see what the entire swarm can see.

The thesis is a convergence of biology, distributed systems, network science,

and robotics/embedded systems. The direction that the proposed swarming
algorithms lead will add value to all the four research domains.

5.4 Conclusion

Mature Zebros can be sent on the moon.

7
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Epilogue

From decades, biologist and roboticists have been putting efforts in ana-
lysing swarm behaviours and patterns, to devise local rules governing their
global behaviours, showcasing cooperation. However, traditional approach
of roboticists in replicating the swarm behaviour is flawed as they include
centralised assistance. Whereas, the strength and the robustness of swarm
robotics lie in the decentralised coordination of agents. The author be-
lieves that swarm roboticists try to superficially imitate the swarm beha-
viour rather than reconstructing it. At the moment, the needed quality and
quantity of local rules on swarms are simply unattainable by biologists. Co-
incidentally or naturally, the study of ad hoc networks, together with the
study of social networks of humans can help find solutions.

With the similarities between ad-hoc networks and swarm network, re-
searchers will be able to understand information propagation, dynamics of
change in network and ways to deal with it. Social networks, on the other
hand, are studied extensively. Social science researchers are now able to
collect behaviour data and to evaluate their theories at a scale that never
be reached by traditional offline methods. It is much easier to replicate so-
cial network theory than biological rules, rules which are not even devised
now. Something similar has been done in this thesis. For example, in this
thesis, we have, from a computer scientist’s point of view, explored network
science and distributed theories to stay close to an implementable solution,
rather than mootly copying animal behaviour. We have demonstrated the
robustness of the system without a leader using reliable and implementable
sciences like network science and distributed systems.

Maintaining primitive behaviour and expecting the results of animals is
also overrated. Animals have a wealthy set of well trained sensors. Robot
prototype lack such precision and training. Animals also record faulty data
but the quick processing and better sensor fusion techniques, overcome the
flaws in the sensory data. The team should invest in introducing tilt sensor
for balance, Inertial Measurement Unit (IMU) and magnetometer for Spatial
orientation. If the aim is to reach the ninja anatomy that ants already
possess to climb, build and repair structures, ninja sensors are needed.
Also, it necessary to believe that there will be times when the collective
cannot outperform an expert.
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Appendix A

Simulation Environment

In this appendix, we give the specifications of the hardware and software
setup used to obtain data in Chapter [4

A.1 Software specifications

As described in Chapter [4, we use Netlogo [61] to simulate our algorithms.
Given below are the specifications of the Netlogo version used:

Version: 6.0.4 (June 4, 2018)

Extension API version: 6.0

Java HotSpot (TM) 64-Bit Server VM 1.8.0_172-b11 (Oracle Corpor-
ation)

Scala version 2.12.4

Java heap: used = 23 MB, free = 188 MB, max = 910 MB

JOGL: (3D View not initialised)

OpenGL Graphics: (3D View not initialised)

A.2 Hardware specifications

The hardware configuration of the computer on which the simulations were
run are quoted below:

7 core processor

Installed RAM of 8GB

Operating system: Windows 10.0 (AMD64 processor)
Frequency: 2.5GHz to 2.6GHz
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Appendix B

Configuration of Zebro

This appendix is to elaborate on the properties of Zebros as mentioned in
Section The specifications in the section are documented when the
problem statement of the thesis was conceived, as of January 2018. The
newer additions to the Zebro design are quoted in grey coloured text. These
additions are not considered in the thesis.

B.1 Technology Readiness Level

The technology readiness level (TRL) is used to measure the stage of de-
velopment of the product/technology. TRL is a helpful knowledge-based
standard and a shorthand for evaluating the maturity of technology or in-
vention. TRL is an integer between 0-10 [48].

e TRL of communication module: 0
At the beginning of the thesis, the communication module was being
implemented. That module failed to give the desired results. The
Zebro team is looking for an alternative communication module.

e TRL of locomotion module: 4.
Zebro can walk, so the critical function of moving through rough ter-
rains using C-shaped legs has reached the proof of concept. Still, many
improvements need to be made. Design considerations must be applied
at a fundamental level like revisiting decisions on motor type and leg
detection methods [48].

e TRL of localisation and swarming: 1
No localisation technique is available. Simulations of Zebros swarming
using some flocking algorithms have been performed [27][22]. However,
these algorithms have not yet been implemented on the Zebros.
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B.2 Communication module

The DW1000 ultra-wideband transceiver has been used for communica-
tion and ranging measurements, and a communication layer called Anarchic
TDMA (AN-TDMA) has been implemented to support Tangolation. The
DWM1001-DEV development board from Decawave is used, which combines
a nRF52832 ARM Cortex-M processor, a DW1000 transceiver for ultra-
wideband communication, and a 6.5GHz UWB channel 5 antennae. Below
are some specifications of the communication module:

1. Local timer: A 16MHz hardware timer local to the nRF52832 mi-
Croprocessor.

2. DW1000 system timer: The 125 MHz system timer of the DW1000
transceiver. The transceiver can be programmed to transmit a message
at a specific time-stamp.

3. Local timer synchronisation: The hardware timers of the nRF52832
microprocessor are used to predict the system time of the DW1000.

4. Amount of transmittable information: The amount of transfer-
able data per second depends on the size and densityﬂ of the swarm.
For instance, for a swarm of 16 robots, 32 transmissions per robot per
second are possible. However, with 32 robots only 16 transmissions
per robot per second are possible.

5. Data rate: 20 kb/s to 250 kb/s
6. Update rate: 1 Hertz
7. Maximum swarm distance: 60 meter

8. Minimum swarm distance: 1 meter

The concept of TDMA (Time Division Multiple Access) is used where agents
waits for their turn. When the swarm is small or the density is low, Zebros
can send much more often than when there are many Zebros close by [56].

Presently, the module is not working, due to magnetic inferences
caused by the motor of the Zebro, and other magnetic objects in
vicinity. Alternative solutions like removing such errors or repla-
cing the communication module altogether are being considered.

lyobots per unit area

90



Zebro Parts List

1. Top/Bottom Perspex Plates
2. Main Body (8 3D printed parts)

3. Ultrasonic Sensor (Object detection)

4. Main PCB

5. Battery

6. (Servo) Motors (6 total)

7. Hall Sensor (Leg position detection, 6 total)
8. Magnet (For Hall sensor detection)

9.3D printed legs (6 total)

Figure B.1: Zebro Design [4§]

B.3 Movement parameters

The following are some specification of the movement properties of the
swarm [40] [21].

1. Speed: 1-2km/hr

2. Acceleration: zero

3. Walking time: 3 hr

4. Movement direction: Forward
There are six DC motors each with running at 170 RPM, 22.04kgf/cm, rated
for 12V with 3.8A stall current.

B.4 Physical structure

Zebro has a modular design. The internal structure of the Zebro is shown
in Figure The physical measurements and the cost of the DeciZebro is
given below [48]:
1. Dimensions: 268 * 210 * 160 (in mm)
Radius of legs: 50 (in mm)
Maximum climb height: 120 (in mm)
Weight bearing capacity of Zebro: 400 grams
Total weight: 1800 grams
Price per Zebro, series 1: € 402,-

ARl
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7. Price per Zebro, series 100: €230,-
8. Estimated per Zebro, 1000+: €150-200,-

B.5 Processor

The specifications of the computation unit in the Zebro are given below:
1. Board: Raspberry Pi Zero Wireless (v 1.3) with a broadcom processor
Processor: ARMv6 CPU (BCM2835)
External memory: MicroSD card with a capacity of at least 8 GB.
Power requirement: 5-5.25V
Operating frequency: 1GHz
Processing memory: 512MB RAM
CPU: Single-core

otk W

B.6 On board sensor

The two sensors on the Zebro are [21]:
1. Ultrasound sensor
2. Accelerometer
3. Camera

B.7 Power requirement

The power requirements for the system are described below.
1. Locomotive system: >12V, 10 A
2. Zebro controllers: 5V, 3A
3. On board battery: 14.4V, 4000 mAh
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Appendix C

Significance tests

The significance tests of Table as shown here. The data is presented in
the same organisation as of Table [.7]
The category numbers on the X axis represent the following:

e 1 — Ticks for silent
e 2 —> Time for silent (in ms)
e 3 = Ticks for immature
e 4 —> Time for immature (in ms)
e 5 = Ticks for mature
e 6 = Time for mature (in ms)
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Figure C.1: Significance test for Experiment 1
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Figure C.2: Significance test for Experiment 2
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Figure C.3: Significance test for Experiment 3
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Figure C.4: Significance test for Experiment 4
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Figure C.5: Significance test for Experiment 5
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