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Abstra
t

In this paper, we 
onsider pre
onditioning for PDE-
onstrained optimization prob-

lems. The underlying problems yield a linear saddle-point system. We study a 
lass of

pre
onditioners based on multilevel sequentially semiseparable (MSSS) matrix 
ompu-

tations. The novel global pre
onditioner is to make use of the global stru
ture of the

saddle-point system, while the blo
k pre
onditioner makes use of the blo
k stru
ture

of the saddle-point system. For the novel global pre
onditioner, it is independent of

the regularization parameter, while for the blo
k pre
onditioner, this property does not

hold. For this MSSS matrix 
omputation approa
h, model order redu
tion algorithms

are essential to obtain a low 
omputational 
omplexity. We study two di�erent model

order redu
tion approa
hes, one is the new approximate balan
ed trun
ation algorithm

with low-rank approximated Gramians and the other is the standard Hankel blo
ks

approximation algorithm. We test the global pre
onditioner and the blo
k pre
ondi-

tioner for the problem of optimal 
ontrol of the Poisson equation and optimal 
ontrol of

the 
onve
tion-di�usion equation. Numeri
al experiments illustrate that both pre
on-

ditioners give linear 
omputational 
omplexity and the global pre
onditioner yields the

fewest number of iterations and 
omputing time. Moreover, the approximate balan
ed

trun
ation algorithm 
onsumes less �oating-point operations (�ops) than the Hankel

blo
ks approximation algorithm.

Keywords: PDE-
onstrained optimization, saddle-point problem, pre
onditioners,

multilevel sequentially semiseparable matrix, model order redu
tion, low-rank approx-

imation

1 Introdu
tion

Optimal design, optimal 
ontrol and parameter estimation of systems governed by partial

di�erential equations (PDEs) give rise to a 
lass of problems known as PDE-
onstrained op-

timization. PDE-
onstrained optimization problems have a wide appli
ation su
h as optimal

�ow 
ontrol [1℄ [2℄, di�use opti
al tomography [3℄, and linear (nonlinear) model predi
tive


ontrol [4℄. The solution of these problems is a
quired by solving a large-s
ale linear system

of saddle-point type. Mu
h e�ort has been dedi
ated to �nd e�
ient iterative solution meth-

ods for su
h systems. Some of the most popular te
hniques are the 
onjugate gradient (CG)

[5℄, minimal residual (MINRES) [6℄, generalized minimal residual (GMRES) and indu
ed
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dimension redu
tion (IDR) [7℄. The performan
e of these methods highly depends on the


hoi
e of pre
onditioners. In this paper, we study a 
lass of pre
onditioners that exploits

the multilevel sequentially semiseparable (MSSS) stru
ture of the blo
ks of the saddle-point

system.

Semiseparable matri
es appear in several types of appli
ations, e.g. the �eld of integral

equations [8℄, Gauss-Markov pro
esses [9℄, boundary value problems [10℄ and rational in-

terpolation [11℄. Semiseparable matri
es are matri
es of whi
h all the sub-matri
es taken

from the lower-triangular or the upper-triangular part are of rank at most 1 by [12℄. Se-

quentially semiseparable (SSS) matri
es of whi
h the o�-diagonal blo
ks are of low-rank,

not limited to 1, named by Dewilde et. al. in [13℄ generalize the semiseparable matri
es.

Multi-level sequentially semiseparable generalize the sequentially semiseparable matri
es to

the multi-dimensional 
ases. Systems that arise from the dis
retization of 1D partial di�er-

ential equations typi
ally have an SSS stru
ture. Dis
retization of higher dimensional (2D

or 3D) partial di�erential equations give rise to matri
es that have an MSSS stru
ture [14℄

[15℄. Under the multilevel paradigm, generators that are used to represent a matrix of a

higher hierar
hy are themselves multilevel sequentially semiseparable of a lower hierar
hy.

The usual one-level sequentially semiseparable matrix is the one of the lowest hierar
hy.

Operations like the matrix inversion and the matrix-matrix multipli
ation are still 
losed

under this stru
ture. The LU fa
torization 
an also be performed in a stru
ture preserving

way. This fa
torization results in a growth of the rank of the o�-diagonal blo
ks of the S
hur


omplement. As a result, the LU fa
torization is not of linear 
omputational 
omplexity.

The model order redu
tion plays a key role in redu
ing the rank of the o�-diagonal blo
ks.

Be
ause of the model order redu
tion operation being performed, it is possible to 
ompute

an inexa
t LU de
omposition of an MSSS matrix that 
an be used as a pre
onditioner.

In [14℄, Gondzio et. al. �rst introdu
ed the pre
onditioning of PDE-
onstrained opti-

mization problems by MSSS matrix 
omputations. They exploited the MSSS matrix stru
-

ture of the blo
ks of the saddle-point system and performed an LU fa
torization method

for MSSS matri
es to approximate the S
hur 
omplement of the saddle-point system. With

the approximate S
hur 
omplement, 
onjugate gradient method was performed to solve the

pre
onditioned saddle-point system blo
k-by-blo
k. As aforementioned, the model order

redu
tion plays a vital role in obtaining a linear 
omputational 
omplexity of the LU fa
tor-

ization. In [14℄, Gondzio et. al. used a standard model order redu
tion algorithm [16℄ [13℄ to

redu
e the 
omputational 
omplexity. In this paper, our work extends [14℄ in the following

ways. 1) We propose a new model order redu
tion algorithm for SSS matrix 
omputations

based on the 
orresponden
e between linear time-varying (LTV) systems and blo
ks of SSS

matri
es. The new model order redu
tion algorithm is motivated by [17℄. In [17℄, the ap-

proximate balan
ed trun
ation was addressed for the model order redu
tion of linear time

invariant (LTI) systems. In this paper, we extend that method to the linear time varying

(LTV) systems. Be
ause of the 
orresponden
e between MSSS matrix and LTV systems,

it is suitable for model order redu
tion for MSSS matrix 
omputations. Compared with

the 
onventional model order redu
tion algorithms in [13℄ [16℄, the approximate balan
ed

trun
ation needs less �oating-point operations (�ops). 2) With these model order redu
tion

algorithms, we 
an 
ompute an inexa
t LU fa
torization of the MSSS matrix blo
ks of the

saddle-point system in linear 
omputational 
omplexity. This yields blo
k pre
onditioners

for the saddle-point systems of the type that are des
ribed in [18℄ while only single pre
on-

ditioner for the last blo
k of the saddle-point system is studied in [14℄. 3) By permuting

the blo
ks of the saddle-point system, we 
an also 
ompute an inexa
t LU fa
torization

of the global system, whi
h gives a novel global pre
onditioner. 4) Besides the problem of

optimal 
ontrol of the Poisson equation, we also study the problem of optimal 
ontrol of the


onve
tion-di�usion equation. 5) We also extend these pre
onditioning te
hnique to the 3D


ases.

Note that the standard blo
k pre
onditioners depend on the regularization parameter β
for the PDE-
onstrained optimization problem [19℄. By permuting the saddle-point system
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with MSSS matrix blo
ks to a single MSSS matrix system, we 
an 
ompute the inexa
t

LU fa
torization of the global system in linear 
omputational 
omplexity, whi
h is 
alled

the global pre
onditioner. Numeri
al experiments for the optimal 
ontrol of the Poisson

equation and the 
onve
tion-di�usion equation illustrate that the performan
e of the global

pre
onditioner is independent of the regularization parameter β and is also independent of

the mesh size.

The stru
ture of this paper is as follows: we start with formulating a distributed op-

timal 
ontrol problem 
onstrained by PDEs. This problem yields a linear system of the

saddle point type. Demand for e�
ient pre
onditioners to solve this type of system with

iterative solution methods motivates this paper. In Se
tion 3, we brie�y give an overview

of some de�nitions and the widely used 
omputations of MSSS matri
es and then dis
uss

the MSSS pre
onditioning te
hnique. The novel model order redu
tion algorithm is also de-

s
ribed. Based on the MSSS matrix 
omputations, we propose three pre
onditioners for this

saddle-point problem, they are the novel global pre
onditioner, the standard blo
k-diagonal

pre
onditioner and the standard blo
k lower-triangular pre
onditioner. In Se
tion 4, we use

the distributed optimal 
ontrol of the Poisson equation and the 
onve
tion-di�usion equa-

tion as numeri
al experiments to illustrate the performan
e of our method. In Se
tion 5,

we extend this pre
onditioning te
hnique to the optimal 
ontrol of 3D problems. Se
tion 6

draws the 
on
lusion and des
ribes future work.

2 Problem Formulation

2.1 PDE-Constrained Optimization Problem

Consider the PDE-
onstrained optimization problem des
ribed by

min
u, f

1

2
‖u− û‖2 + β‖f‖2

s.t. Lu = f in Ω

u = uD on ΓD,

(1)

where L is an operator, u is the system state, f is the system input, û is the desired state

of the system, β is the weight of the system input in the 
ost fun
tion or regularization

parameter and β > 0. In this paper, we 
onsider L = −∇2
for optimal 
ontrol of the

Poisson equation and L = −ǫ∇2 + −→w · ∇ for optimal 
ontrol of the 
onve
tion-di�usion

equation. Here

−→w is a ve
tor in Ω, ∇ is the gradient operator, and ǫ is a positive s
alar.

If we want to solve su
h a problem numeri
ally, it is 
lear that we need to dis
retize these

quantities involved at some point. There are two kinds of approa
hes, one is to derive

the optimality 
onditions �rst and then dis
retize from there (optimize-then-dis
retize), the

other is to dis
retize the 
ost fun
tion and the PDE �rst and then optimize that (dis
retize-

then-optimize). For the problem of optimal 
ontrol of the Poisson equation, both approa
hes

lead to equivalent solutions while di�erent answers are rea
hed for the problem of optimal


ontrol of the 
onve
tion-di�usion equation [19℄. Sin
e our fo
us is on multilevel sequentially

semiseparable pre
onditioners, the dis
retize-then-optimize approa
h is 
hosen in this paper.

By introdu
ing the weak formulation and dis
retizing (1) using the Galerkin method,

the dis
rete analogue of the minimization problem (1) is therefore,

min
u, f

1

2
uTMu− uT b+ c+ βfTMf

s.t. Ku = Mf + d,

(2)

where K = [Ki,j] ∈ R
N×N

is the sti�ness matrix, M = [Mi,j ] ∈ R
N×N , Mij =

∫

Ω

φiφjdΩ

is the mass matrix and is symmetri
 positive de�nite, b = [bi] ∈ R
N , bi =

∫

Ω

ûiφidΩ, c ∈
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R, c =

∫

Ω

û2dΩ, d = [di] ∈ R
N , di = −

N+∂N
∑

j=N+1

uj

∫

Ω

∇φj · ∇φidΩ. The φi (i = 1, 2, . . . N)

and φj (j = 1, 2, . . . N, N + 1, . . . N + ∂N) form a basis of V h
0 and V h

g , respe
tively.

Consider the 
ost fun
tion in (2) and asso
iate with the equality 
onstrain, we introdu
e

the Lagrangian fun
tion

J (u, f, λ) = 1

2
uTMu− uT b+ c+ βfTMf + λT (Ku−Mf − d),

where λ is the Lagrange multiplier. Then it is well-known that the optimal solution is given

by �nding u, f and λ su
h that

∇uJ (u, f, λ) = Mu− b+KTλ = 0,

∇fJ (u, f, λ) = 2βMf −Mλ = 0,

∇λJ (u, f, λ) = Ku−Mf − d = 0.

This yields the linear system





2βM 0 −M
0 M KT

−M K 0









f
u
λ



 =





0
b
d



 . (3)

The system (3) is of the saddle-point system type [18℄, i.e., the system matrix, whi
h is

denoted as A, has the following stru
ture

A =

[

A BT

B 0

]

, (4)

where A ∈ R
n×n

, B ∈ R
n×m

. For system (3), we haveA =

[

2βM 0
0 M

]

and B =
[

−M K
]

.

The system matrix of the saddle-point system (3) is large and sparse. Thus it is amenable

to solve su
h systems by pre
onditioned Krylov solvers, su
h as MINRES [6℄ and IDR(s) [7℄.

2.2 Pre
onditioning of Saddle-Point Systems

The performan
e of iterative solution methods highly depends on the quality of the

pre
onditioners [20℄. For numeri
al methods to solve system (3) and 
onstru
tion of pre-


onditioners, we refer to [18℄ for an extensive survey of numeri
al methods for this type of

systems. In this paper, we study three types of pre
onditioners. The �rst two types ex-

ploit the MSSS stru
ture of the blo
ks of the saddle-point system, whereas the se
ond type

exploits the MSSS stru
ture of the permuted saddle-point system.

2.2.1 Blo
k Pre
onditioners

Re
all from (4), if A is nonsingular, then A admits the following LDU fa
torization given

by





2βM 0 −M
0 M KT

−M K 0



 =





I
0 I
− 1

2β I KM−1 I









2βM
M

S









I 0 − 1
2β I

I M−1KT

I



 ,

where S = −
(

1
2βM +KM−1KT

)

is the S
hur 
omplement.

The most di�
ult part for this fa
torization is to 
ompute the S
hur 
omplement S
be
ause of 
omputing the inverse of a large sparse matrix. Meanwhile, solving the system

Sx = b is also expensive sin
e S is a large and full matrix. Note that all the matrix blo
ks
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of (3) have a stru
ture 
alled multilevel sequentially semiseparable (MSSS), whi
h will be

introdu
ed later. Then the S
hur 
omplement S also has the MSSS stru
ture. If we exploit

the MSSS stru
ture of S, we 
an both 
ompute S and solve the pre
onditioned system in

linear 
omplexity.

In this paper, we �rst study two types of blo
k pre
onditioners for the saddle-point

system. They are the blo
k-diagonal pre
onditioner P1 and the blo
k lower-triangular pre-


onditioner P2, where

P1 =





2βM̂

M̂

−Ŝ



 , P2 =





2βM̂

0 M̂

−M K Ŝ



 , (5)

where M̂ is an approximation of the mass matrix and Ŝ is an approximation of the S
hur 
om-

plement. For M̂ and Ŝ without approximation, i.e., M̂ = M and Ŝ = S, the pre
onditioned
system P−1

1 A has three distin
t eigenvalues and GMRES applied to the pre
onditioned sys-

tem delivers the solution in at most three steps, while the pre
onditioned system P−1
2 A

has two distin
t eigenvalues and GMRES applied to the pre
onditioned system delivers the

solution in at most two steps [18℄. For the general properties of P1 and P2, we refer to [18℄

for an extensive study.

As pointed out in [19℄, to approximate the S
hur 
omplement S = −
(

1
2βM +KM−1KT

)

,

Ŝ = −KM−1KT

ould be used for big to middle range of β while Ŝ = − 1

2βM 
ould be


hosen for small β. Thus the blo
k-diagonal pre
onditioner is

P1 =





2βM̂

M̂

K̂M−1K̂T



 , (6)

for big or middle range of β, and

P1 =







2βM̂

M̂
1
2β M̂






, (7)

for small β, where M̂ and K̂ are approximated by MSSS matrix 
omputation. Note that

the sub-blo
ks of P1 and P2 all have an MSSS matrix stru
ture su
h that the linear system

P1y = r or P2y = r 
an be solved with linear 
omputational 
omplexity.

2.2.2 Global Pre
onditioners

Sin
e the blo
ks of the saddle-point system (3) keep the MSSS matrix stru
ture, it is

possible to permute the saddle-point system (3) with MSSS matrix blo
ks to a linear system

with global MSSS matrix stru
ture, where the details will be introdu
ed in the next se
tion.

Thus we have the permuted saddle-point system des
ribed by

Ãx̃ = g̃, (8)

where Ã, x̃ and g̃ are permutations of A,
[

fT uT λT
]T

and

[

0T bT dT
]T

in (3) and

(4), respe
tively. Sin
e the global matrix Ã of the permuted saddle-point system is an MSSS

matrix, we 
an do an inexa
t LU fa
torization of Ã in linear 
omputational 
omplexity with

MSSS matrix 
omputations, i.e.,

Ã ≈ L̃Ũ , (9)

and use this inexa
t fa
torization as a pre
onditioner. We 
all this fa
torization in (9) the

global pre
onditioner. Sin
e no information of β is lost during the permutation and fa
tor-

ization, the global pre
onditioner is independent of β while for standard blo
k pre
onditioner

P1 and P2 in (5) this does not hold. This is a big advantage of the global pre
onditioner over

the standard blo
k pre
onditioner. Numeri
al examples in Se
tion 4 verify this statement.

5



3 Pre
onditioning Using Multi-level Sequentially Semisep-

arable Matrix Computations

Matri
es in this paper will always be real and their dimensions are 
ompatible for the

matrix-matrix operations and the matrix-ve
tor operations when their sizes are not men-

tioned.

3.1 Multi-level Sequentially Semiseparable Matri
es

The generators representation of sequentially semiseparable matri
es are de�ned by Def-

inition 3.1 [21℄.

De�nition 3.1. Let A be an N × N matrix with SSS matrix stru
ture and let n positive

integers m1, m2, · · · mn with N = m1 +m2 + · · ·+mn su
h that A 
an be written in the

following blo
k-partitioned form

Aij =







UiWi+1 · · ·Wj−1V
T
j , if i < j;

Di, if i = j;
PiRi−1 · · ·Rj+1Q

T
j , if i > j.

where the supers
ript

′T ′
denotes the transpose of the matrix.

Table 1: Generator size for the SSS matrix A in De�nition 3.1

Generators Ui Wi Vi Di Pi Ri Qi

Sizes mi × ki ki−1 × ki mi × ki−1 mi ×mi mi × li li−1 × li mi × li+1

The sequen
es {Ui}n−1
i=1 , {Wi}n−1

i=2 , {Vi}ni=2, {Di}ni=1, {Pi}ni=2, {Ri}n−1
i=2 , {Qi}n−1

i=1 are

matri
es whose sizes are listed in Table 1 and they are 
alled generators of the SSS matrix

A. With the generators representation, the SSS matrix A is denoted as

A = SSS(Ps, Rs, Qs, Ds, Us,Ws, Vs).

Take n = 5 for example, the SSS matrix A is shown by (10),

A =













D1 U1V
T
2 U1W2V

T
3 U1W2W3V

T
4 U1W2W3W4V

T
5

P2Q
T
1 D2 U2V

T
3 U2W3V

T
4 U2W3W4V

T
5

P3R2Q
T
1 P3Q

T
2 D3 U3V

T
4 U3W4V

T
5

P4R3R2Q
T
1 P4R3Q

T
2 P4Q

T
3 D4 U4V

T
5

P5R4R3R2Q
T
1 P5R4R3Q

T
2 P5R4Q

T
3 P5Q

T
4 D5













. (10)

Remark 3.1. The generators of a SSS matrix is not unique, there exists a series of non-

singular transformations between two di�erent sets of generators of the same SSS matrix

A.

With the generators representation of SSS matri
es, basi
 operations of the underlying

matri
es su
h as addition, multipli
ation and inversion are 
losed under SSS matrix stru
ture

and 
an be done in linear 
omputational 
omplexity. Moreover, de
omposition/fa
torization

su
h as QR fa
torization [22℄ [23℄, LU/LDU de
omposition [24℄ [14℄, and ULV de
ompo-

sition [25℄ 
an also be 
omputed in a stru
ture preserving way. Many operations on SSS

matri
es 
an be performed with linear 
omputational 
omplexity. Examples are the matrix-

matrix multipli
ation [21℄, the matrix-ve
tor multipli
ation [21℄, the matrix inversion [24℄,

the QR [22℄, LU [12℄, and ULV fa
torization [26℄. To keep a 
lear stru
ture of this pa-

per, Table 2 lists the most widely used operations for SSS matri
es and the 
orresponding

referen
es.
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Table 2: Commonly used operations for SSS matri
es

operations Ax A±B AB A−1 LU Lx = b *

referen
es [13℄ [24℄ [21℄ [13℄ [24℄ [21℄ [13℄ [24℄ [21℄ [23℄ [27℄ [28℄ [24℄ [21℄ [21℄

* L is a lower-triangular SSS matrix.

Similar to De�nition 3.1 for SSS matri
es, the generators representation for MSSS ma-

tri
es, spe
i�
ally the k-level SSS matri
es, are de�ned by De�nition 3.2.

De�nition 3.2. The matrix A is said to be a k-level SSS matrix if all its generators are (k−
1)-level SSS matri
es. The 1-level SSS matrix is the SSS matrix that satis�es De�nition 3.1.

Operations listed in Table 2 for the SSS matri
es 
an be extended to the MSSS matri
es,

whi
h yields linear 
omputational 
omplexity for MSSS matri
es. MSSS matri
es have many

appli
ations, one of them is the dis
retized partial di�erential equations (PDEs) [15℄ [14℄.

Example 3.1. For the P1 �nite-element dis
retization of the 2D Lapla
ian equation with

homogeneous Diri
hlet boundary 
ondition, the sti�ness matrix K is given by

K =

















A B
B A B

B
.

.

.

.

.

.

.

.

.

.

.

. B
B A

















, where A =

















4 −1
−1 4 −1

−1 .

.

.

.

.

.

.

.

.

.

.

. −1
−1 4

















, B = −I, and I is

the identity matrix. The matrix A and B are both SSS matri
es be denoted by

A = SSS(1, 0, −1, 4, 1, 0, −1),
B = SSS(0, 0, 0, −1, 0, 0, 0).

The matrix K has the MSSS (2-level SSS) matrix stru
ture and is denoted by

K =MSSS(I, 0, BT , A, I, 0, BT ).

Remark 3.2. Similar with SSS matri
es, for MSSS matrix, its generators are not unique.

There exists a set of nonsingular transformations between two di�erent sets of generators

for a spe
i�ed MSSS matrix.

Remark 3.3. For SSS or MSSS matri
es, it is not ne
essary for their diagonals, sub-

diagonal or super-diagonals to be 
onstant like that in Example 3.1. Their sizes 
an even be

di�erent as long as the blo
k-partitioned representation in De�nition 3.1 is satis�ed.

Note that for a saddle-point system from the PDE-
onstrained optimization problem,

all its blo
ks are MSSS matri
es, whi
h enables us to 
ompute the LU fa
torization of all

its blo
ks with MSSS matrix 
omputations in linear 
omputational 
omplexity. However,

we fail to 
ompute the LU fa
torization of the whole saddle-point system matrix be
ause

the saddle-point system matrix is not an MSSS matrix but just has MSSS matrix blo
ks.

The following lemma tells us how to permute a matrix with SSS matrix blo
ks to a single

SSS matrix. We 
an easily extend this lemma to the MSSS matrix 
ases, whi
h allows us to

permute a matrix with MSSS matrix blo
ks to a single MSSS matrix.

Lemma 3.1. [29℄ Let A, B, C and D be SSS matri
es with the generators representations

A = SSS(P a
s , R

a
s , Q

a
s , D

a
s , U

a
s ,W

a
s , V

a
s ),

B = SSS(P b
s , R

b
s, Q

b
s, D

b
s, U

b
s ,W

b
s , V

b
s ),

C = SSS(P c
s , R

c
s, Q

c
s, D

c
s, U

c
s ,W

c
s , V

c
s ),

D = SSS(P d
s , R

d
s , Q

d
s, D

d
s , U

d
s ,W

d
s , V

d
s ).
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Then the relations

[

f
g

]

=

[

A B
C D

] [

a
b

]

, and

[

f
g

]

= T
[

a
b

]

are equivalent with row and 
olumn permutations of the matrix blo
ks. The ve
tors

[

f
g

]

and

[

a
b

]

are permutations of

[

f
g

]

and

[

a
b

]

, respe
tively. The matrix T is an SSS matrix and has

the generators representation

T = SSS(P t
s , R

t
s, Q

t
s, D

t
s, U

t
s,W

t
s , V

t
s ),

where P t
s =

[

P a
s P b

s 0 0
0 0 P c

s P d
s

]

, Rt
s =









Ra
s

Rb
s

Rc
s

Rd
s









, Qt
s =

[

Qa
s 0 Qc

s 0
0 Qb

s 0 Qd
s

]

, Dt
s =

[

Da
s Db

s

Dc
s Dd

s

]

, U t
s =

[

Ua
s U b

s 0 0
0 0 U c

s Ud
s

]

, W t
s =









W a
s

W b
s

W c
s

W d
s









, V t
s =

[

V a
s 0 V c

s 0
0 V b

s 0 V d
s

]

.

Remark 3.4. Lemma 3.1 is for a 2 × 2 blo
k matrix, but it 
an be extended to matri
es

with di�erent number of blo
ks as well.

Remark 3.5. Extending Lemma 3.1 to the k-level SSS matrix 
ase is also possible. If A,
B, C, and D are k-level SSS matri
es, then their generators are (k− 1)-level SSS matri
es.

For the permuted k-level SSS matrix T , its (k− 1)-level SSS matrix generators with (k− 1)-
level SSS matrix blo
ks are derived from the permutations of rows and blo
ks to get a single

(k − 1)-level SSS matrix by Lemma 3.1.

For the saddle-point system (3) derived from the 2D PDE-
onstrained optimization prob-

lem, dis
retizing using P1 �nite element method yields a saddle-point system that has MSSS

(2-level SSS) matrix blo
ks. The stru
ture of the saddle-point system matrix for mesh size

h = 2−3
is shown in Figure 1(a). Permuting the saddle-point system using Lemma 3.1

gives system (8). The saddle-point system matrix stru
ture before and after permutation

are shown in Figure 1.

0 50 100 150

0

20

40

60

80

100

120

140

160

180

nz = 2120

(a) Before permutation.

0 50 100 150

0

20

40

60

80

100

120

140

160

180

nz = 2120

(b) After permutation.

Figure 1: Stru
ture of system matrix of (3) before and after permutation for h = 2−3
.

3.2 Multi-level Sequentially Semiseparable Pre
onditioners

The ability to solve a linear system with MSSS matrix stru
ture in linear 
omputational


omplexity is essential for the purpose of this paper. One way is to 
ompute the LU fa
-

8



torization of the system matrix with MSSS matrix 
omputations. In the following part, we

�rst introdu
e the LU fa
torization of MSSS matri
es and then give a novel model order

redu
tion algorithm for SSS matri
es that is required in 
omputing the LU fa
torization.

For 
omparison, the 
onventional model order redu
tion algorithm is also dis
ussed.

3.2.1 LU Fa
torization of Multilevel Sequentially Semiseparable Matri
es

The semiseparable order de�ned in De�nition 3.3 plays an important rule in the MSSS

matrix 
omputations. Note that Dewilde et. al. and Golberg et. al. studied this kind

of stru
tured matri
es separately, SSS matri
es named in [21℄ are 
alled quasiseparable

matri
es in [24℄. Here we use the MATLAB style of notation for matri
es, i.e., for a matrix

A, A(i : j, s : t) sele
ts rows of blo
ks from i to j and 
olumns of blo
ks from s to t of A.

De�nition 3.3. [16℄ Let

rank A(k + 1 : n, 1 : k) = lk, k = 1, 2, · · · , n− 1.

The numbers lk(k = 1, 2, · · · , n − 1) are 
alled the lower order numbers of the matrix A.
Let

rank A(1 : k, k + 1 : n) = uk, k = 1, 2, · · · , n− 1.

The numbers uk(k = 1, 2, · · · , n − 1) are 
alled the upper order numbers of the matrix A.
Set rl = max lk and ru = max uk, where rl and ru are 
alled the lower quasi-separable order

and the upper quasi-separable order of A, respe
tively.

De�nition 3.4. [30℄ The SSS matrix A with lower and upper semiseparable order rl and
ru is 
alled blo
k (rl, ru) semiseparable.

The de�nitions in De�nition 3.3 and 3.4 of SSS matri
es 
an be dire
tly extended to the

MSSS matri
es, whi
h leads to De�nition 3.5 and 3.6.

De�nition 3.5. Let the matrix A be an N ×N blo
k k-level SSS matrix with its generators

be M ×M blo
k (k − 1)-level SSS matri
es. Let

rank A(k + 1 : N, 1 : k) = lk, k = 1, 2, · · · , N − 1.

The numbers lk(k = 1, 2, · · · , N−1) are 
alled the k-level lower order numbers of the matrix

A. Let
rank A(1 : k, k + 1 : N) = uk, k = 1, 2, · · · , N − 1.

The numbers uk(k = 1, 2, · · · , N − 1) are 
alled the k-level upper order numbers of the

matrix A. Set rl = max lk and ru = maxuk, where rl and ru are 
alled the k-level lower
semiseparable order and the k-level upper semiseparable order of the k-level SSS matrix A,
respe
tively.

De�nition 3.6. The k-level SSS matrix A with k-level lower and upper semiseparable order

rl and ru is 
alled k-level blo
k (rl, ru) semiseparable.

With these de�nitions, we have the following algorithm to 
ompute the LU fa
torization

of a k-level SSS matrix.

Lemma 3.2. [12℄[14℄ Let A be a strongly regular N×N blo
k k-level sequentially semisepara-

ble matrix of k-level blo
k (rl, ru) semiseparable and denoted by its generators representation
A = MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs). Let A = LU be its blo
k LU fa
torization.

Then,

1. The fa
tor L is a k-level sequentially semiseparable matrix of k-level blo
k (rL, 0)
semiseparable and U is a k-level sequentially semiseparable matrix of k-level blo
k
(0, rU ) semiseparable. Moreover, rL = rl and rU = ru.

9



2. The fa
tors L and U 
an be denoted by the generators representation

L = MSSS(Ps, Rs, Q̂s, DL
s , 0, 0, 0),

U = MSSS(0, 0, 0, DU
s , Ûs, Ws, Vs).

where Q̂s, D
L
s , D

U
s and Ûs are (k − 1)-level sequentially semiseparable matri
es and


omputed by the following algorithm:

Algorithm 1 LU fa
torization of a k-level SSS matrix A

Initialize: M1 ← 0 ∈ R
rl×ru

be a (k − 1)-level SSS matrix

Compute the LU fa
torization of the (k − 1)-level SSS matrix

D1 = DL
1 D

U
1 , let Û1 = (DL

1 )
−1U1 and Q̂1 = (DL

1 )
−TQ1

for i = 2 : N − 1 do
Mi = Q̂T

i−1Ûi−1 +RiMi−1Wi,

Compute the LU fa
torization of the (k − 1)-level SSS matrix

(Di − PiMiVi) = DL
i D

U
i ,

Let, Ûi = (DL
i )

−1(Ui − PiMi−1Wi), Q̂i = (DU
i )

−T (Qi − ViM
T
i−1R

T
i ).

end for

Compute the LU fa
torization of the (k − 1)-level SSS matrix

(

Dn − PnMn−1V
T
n

)

= DL
nD

U
n

Output: DL
i , D

U
i , Q̂i, Ûi

Proof. For the proof of the lemma, we refer to [12℄ and [14℄.

Remark 3.6. In Algorithm 1, the LU fa
torization of a 0-level SSS matrix is just the LU
fa
torization of an ordinary matrix without SSS stru
ture.

For MSSS matri
es, matrix-matrix operations su
h as addition and multipli
ation will

lead to a growth of the semiseparable order, whi
h 
an be veri�ed from the matrix-matrix

operations introdu
ed in [21℄ [24℄. This results in the growth of the 
omputational 
omplex-

ity. Take the 1-level SSS matrix A for example, the �ops needed for 
omputing A2
is 40n3N

where n is the semiseparable order [21℄ and N is the number of blo
ks of A. To be spe
i�
,
the following lemma is introdu
ed.

Lemma 3.3. [24℄ Let A1, A2 be SSS matri
es of sizes N×N whi
h are lower semiseparable

of orders m1, n1 respe
tively. Then the produ
t A1A2 is lower semiseparable of order at

most m1+n1. Let A1, A2 be SSS matri
es of sizes N ×N whi
h are upper semiseparable of

orders m2, n2 respe
tively. Then the produ
t A1A2 is upper semiseparable of order at most

m2 + n2.

Remark 3.7. For k-level SSS matri
es, sin
e semiseparable order varies at di�erent levels,

result of Lemma 3.3 holds for the k-level semiseparable order. But we do not know the

(k − 1)-level semiseparable order of the (k − 1)-level SSS generators exa
tly, we just know

the (k − 1)-level semiseparable order also in
reases.

Lemma 3.3 gives rise to the question whether there exists a minimal semiseparable order

for a SSS matrix su
h that the SSS matrix with a bigger semiseparable order is equivalent

to an SSS matrix with minimal semiseparable order. De�nition 3.7 and Lemma 3.4 give the

answer to the aforementioned question.

De�nition 3.7. [16℄ We say that the lower generators Pi(i = 2, . . . , N), Qj(j = 1, . . . , N −
1), Rk(k = 2, . . . , N−1) of an SSS matrix A are minimal if all their orders lk(k = 1, . . . , N−
1) are as small as possible among all lower generators of the same matrix A, i.e., for lower
generators of the matrix A with orders l

′

k(k = 1, . . . , N − 1), the inequalities

10



lk ≤ l
′

k, k = 1, . . . , N − 1

hold. We also say that the orders lk(l = 1, . . . , N − 1) are the minimal orders of the lower

generators of A.

Lemma 3.4. [16℄ Let A = {Aij}Ni,j=1 be a blo
k matrix with lower rank numbers rk(k =
1, . . . , N − 1). Then A has lower generators with orders equal to the 
orresponding rank

numbers. Moreover, for any matri
es, the rank numbers are the minimal orders of the

generators.

Remark 3.8. Lemma 3.4 
an be extended to the k-level SSS matri
es dire
tly.

Remark 3.9. Lemma 3.4 shows that there exists a minimal semiseparable order for an SSS

matrix. Thus, for an SSS matrix of semiseparable order bigger than the minimal separable

order, the semiseparable order 
an be redu
ed to make the redu
ed semiseparable order equal

to or smaller than the minimal semiseparable order su
h that the resulting SSS matrix with

redu
ed semiseparable order is equal to or equivalent with the SSS matri
es without order

redu
tion up to a small toleran
e.

The aim of model order redu
tion of a k-level SSS matrix A with its generators represen-

tation A =MSSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) is to �nd (k−1)-level SSS matri
es P̂s, R̂s,

Q̂s, Ûs, Ŵs, V̂s of smaller size 
ompared with Ps, Rs, Qs, Us, Ws, Vs, respe
tively su
h that

Â =MSSS(P̂s, R̂s, Q̂s, Ds, Ûs, Ŵs, V̂s) is of k-level semiseparable order smaller than or

equal to the minimal k-level semiseparable order of A. Meanwhile, Â is an approximation

of A up to a small toleran
e ǫ, i.e., ‖Â−A‖ < ǫ.

Remark 3.10. In Algorithm 1, for 
omputing the LU fa
torization of a k-level SSS ma-

trix, matrix-matrix operations are performed on its generators whi
h are (k − 1)-level SSS
matri
es. Su
h operations lead to the growth of semiseparable order of the (k − 1)-level SSS
matri
es, whi
h indu
es growth of 
omputational 
omplexity. Model order redu
tion is ne
-

essary to redu
e the semiseparable order or keep the semiseparable order under a threshold

during the LU fa
torization, su
h as 
omputation of the re
urren
e of Mi in Algorithm 1.

Remark 3.11. Sin
e the LU fa
torization of a k-level SSS matrix needs the model order

redu
tion for (k− 1)-level SSS matri
es, the LU fa
torization in Lemma 3.2 is an exa
t fa
-

torization for SSS matri
es be
ause no model order redu
tion is needed for ordinary matri
es

(0-level SSS matri
es). It is an inexa
t fa
torization for the k-level (k ≥ 2) SSS matri
es.

Therefore, for dis
retized one-dimensional PDEs on a regular grid, this fa
torization 
ould

be performed as a dire
t solver and as an e�
ient pre
onditioner for the dis
retized two- or

higher- dimensional PDEs on a regular grid.

Remark 3.12. The model order redu
tion algorithm for SSS matri
es has been studied in

[13℄ [16℄, while for 2− level or even higher-level SSS matri
es, it is still a big 
hallenge sin
e

model order redu
tion of k-level SSS matri
es where k ≥ 2 needs the redu
ed generators still

be (k − 1)-level SSS matri
es. The model order redu
tion algorithms in [13℄ [16℄ applied

to the k-level SSS matri
es will not return stru
ture preserving (k − 1)-level SSS matrix

generators.

3.2.2 Approximate Balan
ed Trun
ation

In this paper, we design a novel model order redu
tion algorithm for SSS matri
es.

With this algorithm, we 
an 
onstru
t an e�
ient pre
onditioner for two-dimensional PDE-


onstrained optimization problem, whi
h will be studied in the next se
tion. The 
orre-

sponden
e between SSS matri
es and the linear time-varying (LTV) systems motivates us

to derive this new model order redu
tion algorithm.
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The SSS matri
es have a realization of linear time-varying systems, whi
h is studied by

Dewilde et. al. in [27℄. Consider a mixed-
ausal system that is des
ribed by the following

state-spa
e model

[

xc
i+1

xa
i−1

]

=

[

Ri

Wi

] [

xc
i

xa
i

]

+

[

Qi

Vi

]

ui

yi =
[

Pi Ui

]

[

xc
i

xa
i

]

+Diui,

(11)

where xc
denotes the 
ausal system states, xa

represents the anti-
ausal system states, ui

is the system input, and yi is the system output. With zero initial system states and sta
k

all the input and output as ū =
(

uT
1 , uT

2 , . . . uT
N

)T
, ȳ =

(

yT1 , yT2 , . . . yTN
)T
, the

matrixH that des
ribes the input-output behavior of this mixed-
ausal system, i.e., y = Hu,
indu
es an SSS matrix stru
ture. Take, N = 4 for example, the matrix H is,

H =









Di U1V2 U1W2V3 U1W2W3V4

P2Q1 D2 U2V3 U2W3V4

P3R2Q1 P3Q2 D3 U3V4

P4R3R2Q1 P4R3Q2 P4Q3 D4









. (12)

Remark 3.13. To redu
e the semiseparable order of the SSS matrix H in (12), the orders

of Ps, Rs, Qs, Us, Ws and Vs need to be redu
ed. This 
orresponds to redu
e the order of the

mixed-
ausal LTV system (11). Model redu
tion for LTV system (11) 
ould be performed to

redu
e the semiseparable order of H.

Model order redu
tion for LTV systems is studied in [31℄ [32℄. In [32℄, a linear matrix

inequality (LMI) was introdu
ed to solve the Lyapunov inequalities for the 
ontrollability and

observability Gramians. In [31℄, the low-rank Smith method was presented to approximate

the square-root of the 
ontrollability and observability Gramians.

Sin
e the 
ausal LTV system and the anti-
ausal LTV system have similar system stru
-

ture that 
orrespond to the stri
tly lower-triangular part and the stri
tly upper-triangular

part of the matrix H, respe
tively. Here we just 
onsider the 
ausal LTV system des
ribed

by the following state-spa
e model,

{

xk+1 = Rkxk +Qkuk

yk = Pkxk,
(13)

over the time interval [ko, kf ] with zero initial states. The 
ontrollability Gramian Gc(k) and
observability Gramian Go(k) are 
omputed from the following Stein re
urren
e formulas:

Gc(k + 1) = RkGc(k)RT
k +QkQ

T
k , (14)

Go(k) = RT
k Go(k + 1)Rk + PT

k Pk, (15)

with initial 
onditions Gc(ko) = 0 and Go(kf + 1) = 0.
Note that the 
ontrollability Gramian Gc(k) and observability Gramian Go(k) are pos-

itive de�nite if the system is 
ompletely 
ontrollable and observable or semi-de�nite if the

system is partly 
ontrollable and observable, thus their eigenvalues are non-negative. Their

eigenvalues often have a large jump at an early stage as pointed out in [17℄ [33℄ [34℄ [35℄,

whi
h suggests to approximate these two Gramians at ea
h step by a low-rank approxima-

tion. Below we show how to obtain su
h approximations. Sin
e the 
ontrollability Gramian

Gc(k) and observability Gramian Go(k) have similar stru
ture, we will only fo
us on the


ontrollability Gramian Gc(k).
The key point of the low-rank approximation is to substitute the Cholesky fa
torization

of the 
ontrollability Gramian Gc(k)

Gc(k) = LkL
T
k , (16)
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where Lk ∈ R
N×N

in ea
h step k by its approximate Cholesky fa
torization,

G̃c(k) = L̃kL̃
T
k , (17)

with L̃k ∈ R
N×nk

where nk is the numeri
al rank of Gc(k) and N > nk at ea
h step k.
Typi
ally, nk is set to be 
onstant, i.e., nk = n at ea
h step. Sin
e Gc(k) is of low numeri
al

rank, it is reasonable to use the rank nk fa
tor L̃k to approximate Gc(k).
In [17℄, a re
ursive low-rank Gramian method was introdu
ed to approximate the Grami-

ans of a linear time-invariant system. Here, we extend that method to the linear time-varying

systems, whi
h is similar with the method in [36℄. This method is shown in Algorithm 2.

From [17℄, we know that G̃c(i) = L̃c(i)L̃c(i)
T
and G̃o(i) = L̃o(i)L̃o(i)

T
in Algorithm 2 are

the best rank n approximations to Gc(i) and Go(i).

Algorithm 2 Low-rank approximation of the Gramians

Initialize: G̃c(1)← 0 ∈ R
M×n

, G̃o(N +1)← 0 ∈ R
M×n

, N is the number of time steps, M
is the unredu
ed order, n is the numeri
al rank.

for i=2: N do

Compute the singular value de
ompositions

[

Qi−1 Ri−1G̃c(i− 1)
]

= UcΣcV
T
c ,

[

PT
i RT

i G̃o(i+ 1)
]

= UoΣoV
T
o .

Let

Uc =
[

Uc1 Uc2

]

, Σc =

[

Σc1

Σc2

]

with Uc1 ∈ R
M×n

and Σc1 ∈ R
n×n

.

Uo =
[

Uo1 Uo2

]

, Σo =

[

Σo1

Σo2

]

with Uo1 ∈ R
M×n

and Σo1 ∈ R
n×n

.

Make

L̃c(i) = Uc1Σc1, L̃o(i) = Uo1Σo1.

end for

Output: L̃c(i) ∈ R
M×n

and L̃o(i) ∈ R
M×n

.

With the approximate 
ontrollability Gramian Gc(i) and observability Gramian Go(i),
the balan
ed trun
ation 
ould be performed to redu
e the order of the LTV system. For

the approximate balan
ed trun
ation, the key is to use the low-rank approximation of the

fa
tors of Gramians to provide an approximation to the balan
ed trun
ation.

For the LTV system (13), to do a balan
ed trun
ation, �rst the system states are trans-

formed by the nonsingular transformation xk = Tkx̄k to get a "balan
ed" system,

{

x̄k+1 = T−1
k+1RkTkxk + T−1

k+1Qkuk

yk = PkTkxk,
(18)

where the states x̄k =
(

x̃T
k x̂T

k

)T
. The kept system states are x̃k =

[

In 0
]

x̄k where n is

the system order after redu
tion. The redu
ed LTV system of (13) is

{

x̃k+1 = Πl(k + 1)RkΠr(k)x̃k +Πl(k + 1)Qkuk

yk = PkΠr(k)x̃k,
(19)

where Πl(k + 1) =
[

In 0
]

T−1
k+1 and Πr(k) = Tk

[

In
0

]

.

Next, we extend the balan
ed trun
ation algorithm to the linear time-varying 
ase. This

method is des
ribed in Algorithm 3.

Remark 3.14. The se
ond loop of Algorithm 3 ensures that Πl(i) and Πr(i) are "balan
ed".
This is vital sin
e we approximate the 
ontrollability and observability Gramians indepen-

dently.
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Remark 3.15. With Algorithm 2 and Algorithm 3, the LTV system (13) was redu
ed to

(19) by the low-rank approximate balan
ed trun
ation.

Remark 3.16. For an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Ws, Vs) with lower

semiseparable order M , Algorithm 2 and Algorithm 3 
ould be performed to the stri
tly lower-

triangular part of A to redu
e the lower semiseparable order to n, yielding the approximate

SSS matrix Ã = SSS(P̃s, R̃s, Q̃s, Ds, Us, Ws, Vs). For the stri
tly upper-triangular

part of A, �rst transpose it to be stri
tly lower-triangular then perform Algorithm 2 and

Algorithm 3. After the redu
tion, transpose the redu
ed stri
tly lower-triangular part to be

stri
tly upper-triangular.

Algorithm 3 Approximate balan
ed trun
ation for LTV systems

Pro
edure: Set the numeri
al rank n.
Use the low-rank approximation Algorithm 2 to 
ompute the rank n approximations to

the 
ontrollability Gramian Gc(i) and observability Gramian Go(i), denoted by G̃c(i) and
G̃o(i), respe
tively.
loop

Compute the singular value de
omposition

G̃Tc (i)G̃o(i) = UiΣiV
T
i .

end loop

loop

Let

Πl(i) = G̃o(i)ViΣ
−

1

2

i , Πr(i) = G̃c(i)UiΣ
−

1

2

i .

end loop

End Pro
edure

Output: Πl(i) ∈ R
n×M

and Πr(i) ∈ R
M×n

.

3.2.3 Hankel Blo
ks Approximation

The model order redu
tion algorithms for SSS matri
es in [13℄ [21℄ [27℄ approximate the

Hankel blo
ks of the SSS matri
es, where the Hankel blo
ks of an SSS matrix A are de�ned

by De�nition 3.8.

De�nition 3.8. [13℄ Hankel blo
ks denote the o�-diagonal blo
ks that extend from the di-

agonal to the northeast 
orner (for the upper 
ase) or to the southwest 
orner (for the lower


ase).

Take a 4×4 SSS matrix A for example, the Hankel blo
ks for the stri
tly upper triangular

part are shown in Figure 2 by H1, H2 and H3.

1,2
A

1,3
A

1,4
A

2,3
A

2,4
A

3,4
A

1
H

2
H

3
H

Figure 2: Hankel blo
ks of a SSS matrix A

The model order redu
tion algorithms in [13℄ [21℄ [27℄ are Hankel norm optimal order

redu
tion [29℄ algorithms. That is, given an SSS matrix A with a lower semiseparable order

rL and an upper semiseparable order rU , we 
an get an approximate SSS matrix Â with a

lower semiseparable order r̃L and an upper semiseparable order r̃U where rL > r̃L, rU > r̃U
a
hieves

inf ‖A− Â‖H ,
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where ‖A‖H = max
i
‖Hi(A)‖2 andHi(A) are the Hankel blo
ks of A de�ned in De�nition 3.8.

For 
omparison, this model order redu
tion algorithm to the stri
tly upper-triangular

part of SSS matri
es is listed in Algorithm 4 [13℄.

Algorithm 4 Hankel blo
ks approximation for SSS matri
es

Initialize: H ← 0 ∈ R
M×M

, G ← 0 ∈ R
M×M

, M is the upper semiseparable order before

redu
tion, set the redu
ed upper semiseparable order m and the number of blo
ks N .

perform the forward re
ursion

for i = 1 : N − 1 do
Compute the singular value de
omposition (SVD)

[

H
Ui

]

= UΣV T
and partition U =

[

UT

UK

]

=

[

Ua (·)
(·) (·)

]

with UK ∈ R
nu×(·)

, Ua ∈

R
M×M

, where nu is the number of rows of Ui.

Let,

Ui = UK , Wi = Ua, Vi+1 = ΣV TVi+1 and H = ΣV TWi+1.

end for

perform the ba
kward re
ursion

for i = N : −1 : 2 do
Compute the singular value de
omposition (SVD)

[

Vi

GT

]

= UΣV T
and partition U =

[

Ua (·)
Ub (·)

]

with Ua ∈ R
nv×M

, Ub ∈ R
M×M

,

Σ =

[

Σa

(·)

]

with Σa ∈ R
M×M

, where nv is the number of rows of Vi.

Let,

Vi = Ua, Ui−1 = Ui−1V ΣT
a , Wi = UT

b , G = Wi−1V ΣT
a .

end for

do the trun
ation

for i = 1 : N do

Partition

Ui =
[

Ui1 (·)
]

with Ui1 ∈ R
(·)×m

,

Wi =

[

Wi1 (·)
(·) (·)

]

with Wi1 ∈ R
m×m

,

Vi =
[

Vi1 (·)
]

with Vi1 ∈ R
m×(·)

.

Let,

Ũi = Ui1, W̃i = Wi1, Ṽi = Vi1.

end for

Output: Ũi ∈ R
(·)×m

, W̃i ∈ R
m×m

and Ṽi ∈ R
m×(·)

.

Remark 3.17. With the Hankel blo
ks approximation, we 
an also 
onstru
t an e�
ient

pre
onditioner for two-dimensional PDE-
onstrained optimization problem, whi
h will be

studied in the next se
tion.

Remark 3.18. For an SSS matrix A with lower and upper semiseparable order rl and ru,
respe
tively. The bigger the semiseparable order r̂l and r̂u after model order redu
tion by

Algorithm 2-3 or 4 is, the 
loser the redu
ed SSS matrix Â is to A. For a proper semiseparable

order set, the model order redu
tion is a

urate enough. This makes the LU fa
torization

of the 2-level SSS matrix by Algorithm 1 a

urate enough that 
an be performed as a dire
t

solver. Numeri
al experiments in the next se
tion illustrate this.

Given an SSS matrix A = SSS(PS , Rs, Qs, Ds, Us, Ws, Vs), to 
ompare the �ops of

the approximate balan
ed trun
ation in Algorithm 2-3 and the Hankel blo
ks approximation

Algorithm 4, we assume that the generators sizes in Table 3.1 are mi = n and ki = li = M
where N is the number of SSS blo
ks and N ≫ M ≫ n. This is easy to verify from the
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matrix-matrix operations in [13℄ [24℄ su
h as the multipli
ation and addition. The redu
ed

SSS matrix Ã = SSS(P̃S , R̃s, Q̃s, Ds, Ũs, W̃s, Ṽs), where k̃i = l̃i = m, m is the redu
ed

semiseparable order and m≪M . For Algorithm 2-3, the �ops 
ount FN are

FN = O
(

(3m2 + 4mn+ n2)MN + (m+ n)M2N
)

, (20)

while the �ops 
ount FC for Algorithm 4 is

FC = O
(

M3N + (2m+ n)M2N + 2mnMN
)

. (21)

Sin
e N ≫M ≫ m, n, we des
ribe that

FN = O
(

M2N
)

, (22)

and

FC = O
(

M3N
)

. (23)

Remark 3.19. From (22) and (23), it is obvious that both model order redu
tion algorithm

for SSS matri
es have linear 
omputational 
omplexity O(N), while the approximate balan
ed

trun
ation (�ops 
ount denoted by FN) is 
omputationally 
heaper than the Hankel blo
ks

approximation (�ops 
ount denoted by FC) for large enough M . This will also be illustrated

by numeri
al experiments in the next se
tion.

Remark 3.20. As stated in [32℄, the balan
ed trun
ation yields an optimal indu
ed L2-norm

approximation. Thus for the approximate balan
ed trun
ation, the redu
ed 
ontrol system is


lose to the optimal L2-norm approximation. The Algorithm 4 returns the optimal Hankel-
norm approximation. Thus, both algorithms for model order redu
tion of SSS matri
es will

yield an a

urate approximation. Sin
e the inequality ‖Z‖H 6 ‖Z‖2 6
√
N‖Z‖H for all

Z ∈ R
n×n

holds [29℄, the Hankel blo
ks approximation Algorithm 4 yields a more a

urate

approximation than the approximate balan
ed trun
ation Algorithm 2-3 in theory. But the

a

ura
y of Algorithm 4 and Algorithm 2-3 are 
omparable, whi
h will be shown by numeri
al

experiments in the next se
tion.

4 Numeri
al Experiments

We study two test examples for optimal 
ontrol of 2D PDEs in this se
tion, i.e., opti-

mal 
ontrol of the 
onve
tion-di�usion equation in Example 4.1 and optimal 
ontrol of the

Poisson equation in Example A.1 in the appendix. We apply the blo
k-diagonal pre
on-

ditioner P1 in (5) for the MINRES method and the lower-triangular pre
onditioner P2 in

(5) for the IDR(s) method to both examples. The global pre
onditioner Â in (9) is also

performed for the two test examples to show its superior performan
e over the standard

blo
k pre
onditioners for saddle-point system.

Example 4.1. [19℄ Let Ω = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1} and 
onsider the problem

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t. − ǫ∇2u+−→ω .∇u = f in Ω

u = uD on ΓD,

where ΓD = ∂Ω and

uD =

{

(2x− 1)2(2y − 1)2 if 0 ≤ x ≤ 1
2 , and 0 ≤ y ≤ 1

2 ,
0 otherwise.

ǫ is a positive s
alar,

−→ω is the unit dire
tional ve
tor that

−→ω = (cos(θ), sin(θ))T and the

pres
ribed state û = 0.
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The numeri
al experiments are performed on a laptop of Intel Core 2 Duo P8700 CPU

of 2.53 GHz and 4Gb memory with Matlab R2010b. The stop toleran
e of the 2-norm of

the relative residual is set to be 10−6
for all the numeri
al experiments. The problem sizes

3.07e+03, 1.23e+04, 4.92e+04 and 1.97e+05 
orrespond to the mesh sizes h = 2−5
, 2−6

,

2−7
, and 2−8

, respe
tively. The maximum semiseparable order is in the bra
kets following

the problem size. The time to 
ompute the pre
onditioners and iterative solution methods

time is measured in se
onds.

4.1 Comparison of Two Model Order Redu
tion Algorithms

In this part, we test the performan
e of the two model order redu
tion algorithms. Con-

sider the pre
onditioning of optimal 
ontrol of the 
onve
tion-di�usion equation des
ribed

in Example 4.1. With the blo
k-diagonal pre
onditioner P1 by approximate balan
ed trun-


ation and the Hankel blo
ks approximation methods, the results for di�erent values of ǫ
and β are shown in Table 3 - 10, while θ was set to be

π
5 . The pre
onditioning 
olumn

represents the time to 
ompute the pre
onditioners.

Table 3: By approximate balan
ed trun
ation for β = 10−1
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (4) 10 0.43 0.88 1.31

1.23e+04 (6) 10 1.79 2.07 3.86

4.92e+04 (6) 10 4.11 5.95 10.06

1.97e+05 (7) 10 17.05 22.09 39.14

Table 4: By Hankel blo
ks approximation for β = 10−1
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (4) 10 0.69 1.32 2.01

1.23e+04 (6) 10 2.59 2.38 4.97

4.92e+04 (6) 10 6.14 5.94 12.08

1.97e+05 (7) 10 26.11 21.59 47.70

Table 5: By approximate balan
ed trun
ation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 16 0.29 1.46 1.75

1.23e+04 (4) 14 0.96 3.01 3.97

4.92e+04 (4) 14 2.49 8.17 10.66

1.97e+05 (5) 14 9.43 29.57 39.00

Table 6: By Hankel blo
ks approximation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 16 0.46 1.48 1.94

1.23e+04 (4) 14 1.40 2.98 4.38

4.92e+04 (4) 14 4.85 7.99 12.84

1.97e+05 (5) 14 20.48 28.24 48.72
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Table 7: By approximate balan
ed trun
ation for β = 10−2
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 18 0.28 1.59 1.87

1.23e+04 (3) 18 0.85 4.02 4.87

4.92e+04 (3) 18 2.26 10.79 13.05

1.97e+05 (5) 18 9.67 35.32 44.99

Table 8: By Hankel blo
ks approximation for β = 10−2
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 18 0.47 1.65 2.12

1.23e+04 (3) 18 1.28 3.95 5.23

4.92e+04 (3) 18 4.41 10.38 14.79

1.97e+05 (5) 18 21.14 35.12 56.26

Table 9: By approximate balan
ed trun
ation for β = 10−2
, ǫ = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 30 0.32 2.54 2.86

1.23e+04 (3) 30 0.81 6.04 6.85

4.92e+04 (3) 30 2.28 17.79 20.07

1.97e+05 (5) 30 9.42 58.01 67.43

Table 10: By Hankel blo
ks approximation for β = 10−2
, ǫ = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 30 0.49 2.62 3.11

1.23e+04 (3) 30 1.42 6.08 7.50

4.92e+04 (3) 30 4.46 17.43 21.89

1.97e+05 (5) 30 20.39 57.32 77.71

The optimal solution of the system states and input for β = 10−2
, ǫ = 10−1

and h = 2−5

are shown in Figure 3(a) and 3(b).
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(a) Optimal system states u.
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(b) Optimal system input f .

Figure 3: Solution of the system states and input for β = 10−2
, ǫ = 10−1

and h = 2−5
.

Remark 4.1. As shown by (22) and (23), the approximate balan
ed trun
ation is 
om-

putationally 
heaper than the Hankel blo
ks approximation and both algorithms have linear


omputational 
omplexity. This is illustrated by the time to 
ompute the pre
onditioner for

the same values of β and ǫ in Table 3 - 10.
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For the results of the blo
k-diagonal pre
onditioners with two model redu
tion algorithms

for optimal 
ontrol of the Poisson equation, please refer to appendix A.1. For the 
omparison

results of the two model order redu
tion algorithms for the blo
k lower-triangular pre
on-

ditioner, please refer to appendix A.2. These results 
oin
ide with the 
on
lusions for the

performan
e of the two model order redu
tion algorithms in Table 3 - 10.

4.2 Comparison of Pre
onditioners

In this part, we 
ompare the performan
e of the blo
k-diagonal pre
onditioner and the

global pre
onditioner. From Table 3 - 10, we see that with the de
rease of β, the number of
iterations in
reases slightly for the same problem size and ǫ. This is due to the

1
2βM term

plays an in
reasing important rule with the de
rease of β. This term is negle
ted in the

pre
onditioner P1 in (6) for big and middle value of β [19℄. If we 
ontinue de
reasing β for

the optimal 
ontrol of the 
onve
tion-di�usion equation, we have the 
omputational results

in Table 11-12. In this part, the model order redu
tion algorithm is 
hosen as the Hankel

blo
ks approximation method. For the results of approximate balan
ed trun
ation, please

refer to appendix B.

Table 11: By the blo
k-diagonal pre
onditioner in (6) for β = 10−3
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 34 0.43 2.91 3.34

1.23e+04 (3) 34 1.31 7.61 8.92

4.92e+04 (3) 34 4.26 19.83 24.09

1.97e+05 (5) 34 17.39 61.82 79.21

Table 12: By the blo
k-diagonal pre
onditioner in (6) for β = 10−4
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 82 0.45 4.91 5.36

1.23e+04 (3) 82 1.31 11.91 13.22

4.92e+04 (3) 80 4.34 34.83 39.17

1.97e+05 (5) 80 17.89 133.28 141.17

As shown in Table 11-12, with the de
rease of β from 10−3
to 10−4

, the number of itera-

tions in
rease from 34 to 82. It is not di�
ult to imagine that when β 
ontinues de
reasing,

the performan
e of the blo
k-diagonal pre
onditioner P1 in (6) 
annot give satis�ed perfor-

man
e. Next we test the performan
e of the pre
onditioner P1 in (7) for β = 10−4
. The


omputational results are shown in Table 13. The maximum number of iterations is set to

100.

Table 13: By the blo
k-diagonal pre
onditioner in (7) for β = 10−4
, ǫ = 10−1

problem size iterations pre
onditioning MINRES 
onvergen
e

3.07e+03 (5) 100 0.35 6.73 no 
onvergen
e

1.23e+04 (5) 100 1.17 17.97 no 
onvergen
e

4.92e+04 (5) 100 4.19 44.93 no 
onvergen
e

1.97e+05 (5) 100 15.72 156.89 no 
onvergen
e

As shown by Table 12-13, the blo
k-diagonal pre
onditioner does not work well for small

β. Sin
e the global pre
onditioner does not negle
t any information of β, we test the

performan
e of the global pre
onditioner in the following part.

Re
all that in Se
tion 2, we 
an permute the saddle-point system with MSSS matrix

blo
ks to a single MSSS matrix system. Sin
e the saddle-point system is inde�nite, the
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global pre
onditioner is also inde�nite. Thus the MINRES method is not suitable for the

pre
onditioned system with the global pre
onditioner. Here we use the IDR(s) method to

solve the saddle-point system. Table 14-15 show the 
omputational results of β = 10−3

and 10−4
for 
omparison with the results of the blo
k-diagonal pre
onditioner in Table

11-13. Results of di�erent values of β for the optimal 
ontrol of the 
onve
tion-di�usion

equation and the Poisson equation with the global pre
onditioner and the blo
ks-diagonal

pre
onditioner 
an be found in appendix B.2.

Table 14: By the global pre
onditioner for β = 10−3
and ǫ = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (6) 2 1.16 0.24 1.40

4.92e+04 (8) 2 4.46 0.66 5.12

1.97e+05 (10) 2 18.29 2.21 20.50

Table 15: By the global pre
onditioner for β = 10−4
and ǫ = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (6) 2 1.15 0.24 1.39

4.92e+04 (7) 2 4.23 0.64 4.87

1.97e+05 (9) 2 17.87 2.21 20.08

Remark 4.2. Compare the 
omputational results of the global pre
onditioner in Table 14-

15 with the results of the blo
k-diagonal pre
onditioner in Table 11-13, it 
an be seen that

the number of iterations is redu
ed signi�
antly and independent of β for the global pre
on-

ditioner. Even the global pre
onditioner 
onsumes more time in pre
onditioning than the

blo
k-diagonal pre
onditioner, it needs less time in IDR(4) time and the total time is mu
h

less than that of the blo
k-diagonal pre
onditioner. Numeri
al experiments results in the

appendix for the optimal 
ontrol of the Poisson equation also support that advantage of the

the global pre
onditioner over the blo
k-diagonal pre
onditioner.

5 Pre
onditioning for Optimal Control of 3D Problems

As analyzed in Se
tion 3.1, to do an LU fa
torization of a k-level SSS matrix, the model

order redu
tion of (k − 1)-level SSS matrix is needed. Sin
e the model order redu
tion for

2-level and higher level SSS matri
es is a big 
hallenge, there exist no method that works

well to the best knowledge of the authors, some �rst-step work for optimal 
ontrol of 3D

Poisson equation in Example 5.1 are dis
ussed in this se
tion.

Example 5.1. Consider the problem of optimal 
ontrol of the Poisson equation

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t.−∇2u = f in Ω

u = uD on ∂Ω,

(24)

where Ω = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and

uD =







sin(2πy), if x = 0, 0 ≤ y ≤ 1, z = 0;
− sin(2πy), if x = 1, 0 ≤ y ≤ 1, z = 0;
0, elsewhere.
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The dis
retized analog of problem (24) is

min
u, f

1

2
‖u− û‖2 + β‖f‖2

s.t. Ku = Mf + d,

(25)

where

K =

















D −L
−L D −L

−L D
.

.

.

.

.

.

.

.

. −L
−L D

















, (26)

and the matri
es D and L in K are 2-level SSS matri
es. To get the optimal solution of

Example 5.1, the type of saddle-point system (3) needs to be solved. Here we also have two

types of pre
onditioners, one is the blo
k-diagonal pre
onditioner and the other is the global

pre
onditioner.

5.1 Blo
k-Diagonal Pre
onditioners

In this subse
tion, we test the blo
k-diagonal pre
onditioners for big and middle size of

β, then the blo
k-diagonal pre
onditioner P1 is 
hosen as in (6) where K̂ is approximated

by MSSS matrix 
omputations.

To 
ompute the LDU fa
torization of the matrix K with MSSS matrix 
omputations,

the S
hur 
omplement at the k − th step is

{

S0 = D,

Sk+1 = D − LS−1
k L.

(27)

Sin
eD and L are 2-level SSS matri
es, Sk is also a 2-level SSS matrix. During the re
urren
e
of 
omputing the S
hur 
omplement Sk, both the 2-level and 1-level semiseparable orders

in
rease. Model order redu
tion for 2-level and 1-level SSS matri
es are ne
essary, of whi
h

the 2-level model order redu
tion is still an open problem. Here we use another method to

approximate the S
hur 
omplement with lower 2-level semiseparable order.
As pointed out in [37℄, for a symmetri
 positive de�nite matrix from dis
retization of

PDEs with 
onstant 
oe�
ients, all subsequent S
hur 
omplements are also symmetri
 pos-

itive de�nite and will 
onverge to a �xed point matrix S∞ with a fast 
onvergen
e rate. In

[15℄, Dewilde et. al. used the hierar
hi
al partition of the matrix K and 
omputed the S
hur


omplement at the �rst ks(ks ≤ 3) iteration steps. Then repla
e the S
hur 
omplements Sk

(k > ks) with Sks
to approximate the S
hur 
omplements afterwards for the pre
onditioning

of the Poisson equation on an 8× 8× 8 regular grid. Due to limited (only ks) steps for 
om-
putation of the S
hur 
omplements, the 2-level semiseparable order is bounded by a small

number. Note that in [15℄, there are no numeri
al experiments to test the performan
e of

the pre
onditioners for the Krylov subspa
e method.

In this paper, we extend the methods in [15℄ for hierar
hi
al partition of the matrix to

the 3-level SSS matrix partition 
ase to 
ompute the blo
k-diagonal pre
onditioner. Here we

just 
ompute the S
hur 
omplements of the �rst four steps and use S4 to approximate the

S
hur 
omplements afterwards, whi
h 
orresponds to the third order approximation in [15℄.

With the blo
k-diagonal pre
onditioner P1 in (6) and solve the pre
onditioned system by the

MINRES method, the 
omputational results are shown in Table 16-17. The problem sizes

1.54e+03, 1.23e+04, 9.83e+04, and 7.86e+05 
orrespond to the mesh size 2−3
, 2−4

, 2−5
,

and 2−6
, respe
tively. The maximum semiseparable order is in the bra
kets that follow the

problem size. Here for the blo
k-diagonal pre
onditioner, we test two model order redu
tion
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algorithms and the MOR 
olumns of Table 16-17 list the time spent in model order redu
tion

of 
orresponding algorithms.

Table 16: By approximate balan
ed trun
ation for β = 10−1

problem size iterations Pre
onditioning MOR MINRES total

1.54e+03 (4) 4 4.83 1.83 3.15 8.03

1.23e+04 (4) 8 12.28 5.71 23.93 36.21

9.83e+04 (8) 20 38.13 22.24 263.93 302.06

7.86e+05 (8) 34 178.41 116.04 2351.70 2530.11

Table 17: By Hankel blo
ks approximation for β = 10−1

problem size iterations Pre
onditioning MOR MINRES total

1.54e+03 (4) 4 16.27 13.52 3.01 19.28

1.23e+04 (4) 8 39.76 33.50 23.85 63.61

9.83e+04 (8) 16 122.98 106.03 213.31 336.29

7.86e+05 (8) 34 551.25 490.16 2277.50 2828.75

Sin
e we just 
ompute the S
hur 
omplements of the �rst ks steps with MSSS matrix


omputations, the 
omputational 
omplexity is less than linear. The growth rate of the

time to 
ompute the pre
onditioner in Table 16-17 is smaller than 8, whi
h illustrate this

property. The 
omputational results in Table 16-17 also verify that the approximate bal-

an
ed trun
ation is 
omputationally 
heaper than the Hankel blo
ks approximation and the

pre
onditioners 
omputed by these two model order redu
tion algorithms give almost the

same number of iterations. This 
overs the results in Se
tion 4.1.

5.2 Global Pre
onditioners

In the previous part, we extend the methods in [15℄ for symmetri
 positive de�nite by hi-

erar
hi
al partition to the 3-level SSS partitioned symmetri
 positive de�nite matrix. In this

part, we extend this method to the 3-level SSS partitioned symmetri
 but inde�nite matrix.

For the global pre
onditioner, we also 
ompute the �rst 4 steps of the S
hur 
omplements

in the LDU fa
torization of the global 3-level SSS matrix. The 
omputational results are

shown in Table 18. Due to the inde�niteness of the global pre
onditioner, IDR(16) was


hosen as the iterative solver. Compare results of the global pre
onditioner by the Hankel

blo
ks approximation in Se
tion 4.2 with that by the approximate balan
ed trun
ation in

appendix A.3, the Hankel blo
ks approximation perform better. Thus, in this se
tion the

model order redu
tion algorithm for the global pre
onditioner is 
hosen as the Hankel blo
ks

approximation.

Table 18: By the global pre
onditioner for β = 10−1

problem size iterations pre
onditioning IDR(16) total

1.54e+03 (6) 15 6.89 3.81 10.70

1.23e+04 (6) 25 18.21 40.68 58.89

9.83e+04 (6) 45 119.23 863.73 982.96

Due to limited steps for 
omputing the S
hur 
omplements, the time to 
ompute the

global pre
onditioner is also less than linear, whi
h is illustrated by Table 18. Due to

the inde�niteness of the sallde-point system matrix, the S
hur 
omplements in the LDU
fa
torization is also inde�nite. As pointed out in [15℄, the S
hur 
omplements for symmetri


positive de�nite matri
es from dis
retized PDEs of 
onstant 
oe�
ients are also symmetri


positive de�nite and have a fast rate of 
onvergen
e, while the 
onvergen
e of the S
hur
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omplements for the inde�nite matrix is not guaranteed. This is illustrated by the number

of iterations for the global pre
onditioner in Table 18 is bigger than that of the blo
k-diagonal

pre
onditioner in Table 16-17.

Comparing the results of the blo
k-diagonal pre
onditioner in Table 16-17 with the re-

sults of the global pre
onditioner in Table 18, we will 
on
lude that for the optimal 
ontrol

of 3D problems with MSSS matrix 
omputations, the blo
k-diagonal pre
onditioner is re
-

ommended. If the model order redu
tion algorithm for 2- or higher- level SSS matri
es are

well-established, we believe that the global pre
onditioner will perform better than the blo
k

pre
onditioner for 3D problems.

6 Con
lusions

In this paper, we have studied the global pre
onditioner and the blo
k pre
onditioners

for the saddle-point systems from the PDE-
onstrained optimization problems. By exploit-

ing the multilevel sequentially semiseparable (MSSS) stru
ture of the blo
ks of the saddle-

point systems, we have 
onstru
ted pre
onditioners and solved the pre
onditioned system in

linear 
omputational 
omplexity. To 
ompute the pre
onditioners with MSSS matrix 
om-

putations, the approximate balan
ed trun
ation model order redu
tion algorithm for MSSS

matrix 
omputations has been proposed. The standard model order redu
tion algorithm,

i.e., the Hankel blo
ks approximation is also studied. Numeri
al experiments illustrate that

for the optimal 
ontrol of 2D PDEs, the global pre
onditioner redu
ed the number of itera-

tions signi�
antly 
ompared with the blo
k pre
onditioners, while both pre
onditioners yield

results independent of the mesh size. Moreover, the global pre
onditioner is independent

of the regularization parameter while the blo
k pre
onditioners are not. Thus, for optimal


ontrol of 2D PDEs, the global pre
onditioner by the Hankel blo
ks approximation is re
om-

mended. Sin
e well-established model order redu
tion algorithm for 2- or higher- level SSS

matri
es is still an open problem, blo
k pre
onditioners by approximate balan
ed trun
ation

are preferred for the optimal 
ontrol of 3D problems.

The next step of this resear
h is to apply this pre
onditioning te
hnique to the optimal


ontrol of the �ow in a domain, su
h as optimal 
ontrol of the Stokes equation and optimal


ontrol of the Navier-Stokes equation. This has a wide range of appli
ations su
h as 
ontrol

of the wind farms to optimize the output power.
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Appendix

A Comparison of Two Model Order Redu
tion Algorithms

A.1 Blo
k-Diagonal Pre
onditioner

Consider the problem of optimal 
ontrol of the Poisson equation in Example A.1,

Example A.1. [14℄ Let Ω = [0, 1]2 and 
onsider the problem

min
u,f

1

2
‖u− û‖+ β

2
‖f‖2

s.t. −∇2u = f in Ω

u = uD on ΓD

∂u

∂−→n = uN on ΓN ,

where ΓN = {x = 0, 0 ≤ y ≤ 1} and ΓD = ∂Ω\ΓN ,
−→n is the normal ve
tor on the bounds

that point outwards, û = 0 is the pres
ribed system state, uN = sin(2πy) and

uD =

{

− sin(2πy) if x = 1, 0 ≤ y ≤ 1,
0 otherwise.

The 
omputational results for optimal 
ontrol of the Poisson equation by MINRES

method with the pre
onditioner P1 by the approximate balan
ed trun
ation Algorithm 2-3

and the Hankel blo
ks approximation Algorithm 4 for di�erent values of β are shown in

Table 19 - 24.

Table 19: By approximate balan
ed trun
ation for β = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 6 0.20 0.61 0.84

1.23e+04 (3) 8 0.57 1.76 2.33

4.92e+04 (5) 8 2.09 5.06 7.15

1.97e+05 (6) 8 8.92 18.90 27.82

Table 20: By Hankel blo
ks approximation for β = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 6 0.46 0.59 1.03

1.23e+04 (3) 8 0.69 1.79 2.48

4.92e+04 (5) 6 2.83 4.20 7.03

1.97e+05 (6) 8 10.81 18.79 29.60

Table 21: By approximate balan
ed trun
ation for β = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (4) 8 0.21 0.78 0.99

1.23e+04 (4) 8 0.72 2.00 2.72

4.92e+04 (5) 8 2.53 6.28 8.81

1.97e+05 (6) 10 9.53 25.12 34.65
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Table 22: By Hankel blo
ks approximation for β = 10−2

problem size iterations pre
onditioning MINRES total

3.07e+03 (4) 8 0.31 0.83 1.14

1.23e+04 (4) 8 0.98 2.07 3.05

4.92e+04 (5) 6 3.49 4.67 8.16

1.97e+05 (6) 8 14.67 20.31 34.98

Table 23: By approximate balan
ed trun
ation for β = 10−3

problem size iterations pre
onditioning MINRES total

3.07e+03 (4) 12 0.23 1.14 1.37

1.23e+04 (4) 12 0.67 2.92 3.59

4.92e+04 (6) 12 2.75 7.89 10.64

1.97e+05 (7) 12 11.50 28.92 40.42

Table 24: By Hankel blo
ks approximation for β = 10−3

problem size iterations Pre
onditioning MINRES total

3.07e+03 (4) 12 0.34 1.23 1.57

1.23e+04 (4) 12 0.76 2.97 3.73

4.92e+04 (6) 12 3.68 8.59 12.27

1.97e+05 (7) 12 14.43 28.94 43.37

The optimal solution of the system states and input for β = 10−2
and h = 2−6

are shown

in Figure 4(a) and 4(b).
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Figure 4: Solution of the system states and input when β = 10−2
and h = 2−6

.

Remark A.1. Table 19 - 24 show that the number of iterations for the blo
k-diagonal pre-


onditioner with approximate balan
ed trun
ation and the Hankel blo
ks approximation are

virtually independent of the mesh size. For the same semiseparable order setup, 
omputa-

tion of the pre
onditioner with approximate balan
ed trun
ation is 
omputationally 
heaper

than pre
onditioning with the Hankel blo
ks approximation, while both algorithms have linear


omputational 
omplexity with respe
t to the problem size. The time of the MINRES method

is also linear with respe
t to the problem size for both model order redu
tion algorithms.

Remark A.2. As shown in remark 3.20, the Hankel blo
ks approximation Algorithm 4 yields

a more a

urate approximation than the approximate balan
ed trun
ation Algorithm 2-3 while
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both methods return an approximate of satis�ed a

ura
y. This is illustrated in Table 19-24.

For the same problem size, the number of iterations is very limited while the average number

of iterations of the Hankel blo
ks approximation is equal to or a little smaller than that of

the approximate balan
ed trun
ation.

A.2 Blo
k Lower-Triangular Pre
onditioner

This part gives the performan
e of the blo
k lower-triangular pre
onditioner for optimal


ontrol of the 
onve
tion-di�usion equation in Example 4.1. Take the blo
k lower-triangular

pre
onditioner P2 in (5) by the approximate balan
ed trun
ation Algorithm 2-3 and the

Hankel blo
ks approximation Algorithm 4, solve the unsymmetri
 pre
onditioned system

with IDR(s) method. The 
omputational results are shown in Table 25 - 34.

Table 25: By approximate balan
ed trun
ation for β = 10−1
, ǫ = 10−1

problem size iterations pre
onditioning IDR(16) total

3.07e+03 (3) 12 0.34 1.09 1.43

1.23e+04 (6) 12 0.99 2.61 3.60

4.92e+04 (6) 11 4.07 7.02 11.09

1.97e+05 (10) 12 18.05 24.09 42.14

Table 26: By Hankel blo
ks approximation for β = 10−1
, ǫ = 10−1

problem size iterations pre
onditioning IDR(16) total

3.07e+03 (3) 13 0.56 1.29 1.85

1.23e+04 (6) 9 1.77 2.01 3.78

4.92e+04 (6) 16 9.02 9.89 18.91

1.97e+05 (10) 10 28.28 19.76 48.04

Table 27: By approximate balan
ed trun
ation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (3) 15 0.26 1.20 1.46

1.23e+04 (3) 13 0.70 2.74 3.14

4.92e+04 (4) 13 2.43 7.76 10.19

1.97e+05 (10) 13 25.06 30.67 55.73

Table 28: By Hankel blo
ks approximation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (3) 15 0.45 1.23 1.68

1.23e+04 (3) 17 1.29 3.39 4.68

4.92e+04 (4) 17 4.77 9.97 14.74

1.97e+05 (10) 14 48.20 32.40 80.60

Table 29: By approximate balan
ed trun
ation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning IDR(16) total

3.07e+03 (3) 18 0.37 1.51 1.43

1.23e+04 (3) 16 0.68 3.17 3.85

4.92e+04 (4) 15 2.38 7.95 10.33

1.97e+05 (8) 18 13.61 35.46 49.07
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Table 30: By Hankel blo
ks approximation for β = 10−1
, ǫ = 10−2

problem size iterations pre
onditioning IDR(16) total

3.07e+03 (4) 20 0.51 1.62 2.13

1.23e+04 (3) 27 1.24 5.44 6.68

4.92e+04 (4) 16 4.77 8.19 12.96

1.97e+05 (8) 19 24.70 36.75 59.45

Table 31: By approximate balan
ed trun
ation for β = 10−2
, ǫ = 10−1

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (6) 16 0.42 1.41 1.83

1.23e+04 (6) 17 1.17 3.65 4.82

4.92e+04 (7) 19 4.41 11.80 16.21

1.97e+05 (10) 18 25.33 41.86 67.19

Table 32: By Hankel blo
ks approximation for β = 10−2
, ǫ = 10−1

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (6) 17 0.66 1.49 2.15

1.23e+04 (6) 19 2.22 4.03 6.25

4.92e+04 (7) 21 9.81 12.81 22.62

1.97e+05 (10) 16 49.78 36.75 86.53

Table 33: By approximate balan
ed trun
ation for β = 10−2
, ǫ = 10−2

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (6) 30 0.39 2.65 3.04

1.23e+04 (6) 32 1.12 6.85 7.97

4.92e+04 (7) 32 4.32 20.65 24.97

1.97e+05 (10) 31 25.08 71.03 96.11

Table 34: By Hankel blo
ks approximation for β = 10−2
, ǫ = 10−2

problem size iterations pre
onditioning IDR(32) total

3.07e+03 (6) 30 0.68 2.59 3.27

1.23e+04 (6) 36 2.37 7.75 10.12

4.92e+04 (7) 31 9.55 19.55 39.10

1.97e+05 (10) 32 48.78 72.58 121.36

Remark A.3. From Table 25-34, we 
an see that for the �xed values of β and ǫ, the

number of iterations is very limited, almost 
onstant and independent of the mesh size.

Meanwhile, both pre
onditioners have linear 
omputational 
omplexity, whi
h is illustrated

by the pre
onditioning time 
olumns. The pre
onditioned system 
an also be solved in linear


omplexity, whi
h is veri�ed by the IDR(s) time 
olumns.

Remark A.4. From the pre
onditioning 
olumns of Table 25-34 for the same experiment

settings, we 
an see that the approximate balan
ed trun
ation method for SSS matri
es is


omputationally 
heaper than the Hankel blo
ks approximation method.

Remark A.5. Compare the 
omputational results of the blo
k-diagonal pre
onditioner P1

and MINRES in Table 3-10 with that of the blo
k lower-triangular pre
onditioner P2 and

29



IDR(s) in Table 25-34, we 
an see that both pre
onditioners are 
omparable. For the same

settings of β and ǫ, the semiseparable order needs to be set bigger for the IDR(s) method

with P2 than the MINRES method with P1. This makes the pre
onditioning time and the

iterative solution time of P2 bigger than that of P1.

A.3 Global Pre
onditioner

For the global pre
onditioner by the approximate balan
ed trun
ation, the 
omputational

results for the optimal 
ontrol of the Poisson equation is shown in Table 35-36.

Table 35: By approximate balan
ed trun
ation for β = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (10) 4 0.48 0.19 0.67

1.23e+04 (13) 4 1.69 0.43 2.12

4.92e+04 (16) 4 6.39 1.34 7.73

1.97e+05 (20) 6 29.34 10.28 39.62

Table 36: By approximate balan
ed trun
ation for β = 10−2

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (11) 3 0.50 0.16 0.66

1.23e+04 (14) 4 1.75 0.43 2.18

4.92e+04 (16) 3 5.96 1.52 7.48

1.97e+05 (22) 4 31.84 8.08 39.92

Due to the ill-
ondition of the saddle-point system, it is di�
ult to 
ompute a good

approximation of the inde�nite saddle-point system. To get a good approximation of the

saddle-point system with MSSS matrix 
omputations, bigger semiseparable order is needed.

Based on remark 3.20, the approximate balan
ed trun
ation yields a redu
ed SSS matrix less

a

urate than the Hankel blo
ks approximation, bigger semiseparable order is needed for the

approximate balan
ed trun
ation than the Hankel blo
ks approximation. This is illustrated

by the results in Table 45-46 for the Hankel blo
ks approximation with the results in Table

35-36 for the approximate balan
ed trun
ation. The in
rease of the semiseparable order

leads to the in
rease of 
omputational 
omplexity. This makes the global pre
onditioner by

the approximate balan
ed trun
ation more 
omputationally expensive than the global pre-


onditioner by the Hankel blo
ks approximation. Here we do not 
ompare the performan
e

of the two di�erent model order redu
tion algorithms for other experiment setup.

B Comparison of Pre
onditioners

B.1 Blo
k-Diagonal Pre
onditioner

In this part, the performan
e of the blo
k-diagonal pre
onditioner for small size of β for

the optimal 
ontrol of the Poisson equation and the 
onve
tion-di�usion equation is studied.

Table 37-40 show the results of the blo
k-diagonal pre
onditioner P1 in (6) for the optimal


ontrol of the Poisson equation.
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Table 37: With P1 in (6) by approximate balan
ed trun
ation for β = 10−5

problem size iterations pre
onditioning MINRES total

3.07e+03 (5) 42 0.28 2.51 2.79

1.23e+04 (5) 42 0.76 6.52 7.28

4.92e+04 (5) 42 2.48 21.23 23.71

1.97e+05 (5) 42 11.13 83.34 94.47

Table 38: With P1 in (6) by Hankel blo
ks approximation for β = 10−5

problem size iterations pre
onditioning MINRES total

3.07e+03 (5) 42 0.28 2.45 2.73

1.23e+04 (5) 42 0.81 6.57 7.38

4.92e+04 (5) 42 3.48 21.28 24.76

1.97e+05 (5) 42 12.43 84.75 97.18

Table 39: With P1 in (6) by approximate balan
ed trun
ation for β = 10−6

problem size iterations pre
onditioning MINRES total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.87 14.71 15.58

4.92e+04 (5) 95 2.87 49.32 52.19

1.97e+05 (5) 90 11.27 195.47 206.74

Table 40: With P1 in (6) by Hankel blo
ks approximation for β = 10−6

problem size iterations pre
onditioning MINRES total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.96 14.60 15.56

4.92e+04 (5) 95 3.60 49.68 53.28

1.97e+05 (5) 90 12.33 195.35 207.68

From Table 37-40, we 
an see that with the de
rease of β, the number of iterations is

onstant with the mesh size but in
reases dramati
ally. As introdu
ed in [19℄, for "smaller"

β (β ≤ 10−5
), the blo
k-diagonal 
onditioner 
ould be 
hosen as P1 in (7). With this

pre
onditioner, the 
omputational results are shown in Table 41-42. The maximum number

of iterations is set to 100.

Table 41: With P1 in (7) by Hankel blo
ks approximation for β = 10−5

problem size iterations pre
onditioning MINRES 
onvergen
e

3.07e+03 (5) 100 0.33 6.62 no 
onvergen
e

1.23e+04 (5) 100 1.08 14.66 no 
onvergen
e

4.92e+04 (5) 100 3.93 38.04 no 
onvergen
e

1.97e+05 (5) 100 15.65 118.32 no 
onvergen
e
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Table 42: With P1 in (7) by Hankel blo
ks approximation for β = 10−6

problem size iterations pre
onditioning MINRES 
onvergen
e

3.07e+03 (5) 100 0.33 6.52 no 
onvergen
e

1.23e+04 (5) 100 1.07 14.57 no 
onvergen
e

4.92e+04 (5) 100 3.93 39.25 no 
onvergen
e

1.97e+05 (5) 100 15.14 118.92 no 
onvergen
e

Remark B.1. As shown in Table 41-42, the blo
k diagonal pre
onditioner P1 in (7) does

not work well for the smaller β. This pre
onditioner 
annot yield the satis�ed solution of

the saddle-point system within the maximum number of iterations.

For small size of β of the optimal 
ontrol of the 
onve
tion-di�usion equation, the 
ompu-

tational results of the blo
k-diagonal pre
onditioner P1 in (6) by the approximate balan
ed

trun
ation are shown in Table 43-44.

Table 43: With P1 in (6) by approximate balan
ed trun
ation for β = 10−3
, ǫ = 10−1

problem size iterations pre
onditioning ) MINRES total

3.07e+03 (3) 34 0.34 2.93 3.27

1.23e+04 (3) 34 0.94 7.31 8.25

4.92e+04 (3) 34 2.34 19.38 21.72

1.97e+05 (5) 34 10.39 61.12 71.51

Table 44: With P1 in (6) by approximate balan
ed trun
ation for β = 10−4
, ǫ = 10−1

problem size iterations pre
onditioning MINRES total

3.07e+03 (3) 82 0.35 5.02 5.37

1.23e+04 (3) 82 0.91 11.78 12.69

4.92e+04 (3) 80 2.67 33.98 36.65

1.97e+05 (5) 80 10.81 132.98 143.79

B.2 Global Pre
onditioners

For optimal 
ontrol of the Poisson equation, the 
omputational results of the global

pre
onditioner by Hankel blo
ks approximation are shown in Table 45-49.

Table 45: Global Pre
onditioner for β = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 2 0.39 0.13 0.52

1.23e+04 (4) 3 1.13 0.34 1.47

4.92e+04 (6) 3 3.98 0.96 4.94

1.97e+05 (6) 3 14.39 3.11 17.50

Table 46: Global Pre
onditioner for β = 10−2

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 3 0.38 0.15 0.52

1.23e+04 (4) 3 1.08 0.31 1.39

4.92e+04 (6) 3 3.87 0.89 4.76

1.97e+05 (6) 3 14.58 3.13 17.71
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Table 47: Global Pre
onditioner for β = 10−3

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 3 0.38 0.15 0.52

1.23e+04 (5) 3 1.12 0.31 1.43

4.92e+04 (7) 2 4.19 0.64 4.76

1.97e+05 (7) 4 15.95 4.11 20.06

Table 48: Global Pre
onditioner for β = 10−5

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (5) 2 0.39 0.12 0.51

1.23e+04 (7) 3 1.20 0.31 1.51

4.92e+04 (7) 3 4.12 0.89 5.01

1.97e+05 (9) 4 15.86 4.44 20.30

Table 49: Global Pre
onditioner for β = 10−6

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 3 0.37 0.15 0.52

1.23e+04 (6) 2 1.12 0.33 1.45

4.92e+04 (8) 3 4.20 1.64 5.84

1.97e+05 (10) 3 17.94 6.63 24.57

Remark B.2. Table 45-49 show that the global pre
onditioner has linear 
omputational


omplexity that makes time to 
ompute the pre
onditioner and IDR(4) time s
ale linearly

with the problem size. Furthermore, the performan
e of the global pre
onditioner is mesh

size independent.

Remark B.3. As shown in Table 45-49, the global pre
onditioner is independent of the

regularization parameter β. For di�erent β, the number of iterations is independent of β.
Compared with the results for the blo
k-diagonal pre
onditioner, the global pre
onditioner is


omputationally 
heaper than the blo
k-diagonal pre
onditioner.

Remark B.4. As the 
ondition number of the saddle-point system is proportional to

1
β
,

with the de
rease of β, for the same problem size, the saddle-point system be
omes more

ill-
onditioned. This makes it mu
h more di�
ult to 
ompute an a

urate approximate LU
fa
torization of the global saddle-point system. This is illustrated by the slightly in
rease

of the maximum semiseparable order in this fa
torization for the same problem size with

de
rease of β in Table 45-49. Due to this slightly in
rease of the semiseparable order, the

time to 
ompute the pre
onditioner and iterative solution method also in
rease slightly, but

they are still linear with the problem size.

With the global pre
onditioner, the 
omputational results for optimal 
ontrol of the


onve
tion-di�usion equation for big β are shown in Table 50-53.

Table 50: Global Pre
onditioner for β = 10−1
and ǫ = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.15 0.53

1.23e+04 (4) 2 1.11 0.23 1.34

4.92e+04 (6) 3 3.92 0.91 4.83

1.97e+05 (6) 3 14.84 3.15 17.99
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Table 51: Global Pre
onditioner for β = 10−2
and ǫ = 10−1

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 2 0.38 0.13 0.51

1.23e+04 (4) 3 1.11 0.32 1.43

4.92e+04 (6) 2 3.92 0.63 4.55

1.97e+05 (6) 3 15.11 3.12 18.23

Table 52: Global Pre
onditioner for β = 10−1
and ǫ = 10−2

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 1 0.38 0.09 0.47

1.23e+04 (4) 1 1.11 0.15 1.26

4.92e+04 (6) 1 3.89 0.36 4.25

1.97e+05 (6) 2 14.77 2.14 16.91

Table 53: Global Pre
onditioner for β = 10−2
and ǫ = 10−2

problem size iterations pre
onditioning IDR(4) total

3.07e+03 (4) 1 0.38 0.09 0.47

1.23e+04 (4) 1 1.11 0.15 1.26

4.92e+04 (6) 1 3.95 0.36 4.31

1.97e+05 (6) 2 14.92 2.14 17.06

Remark B.5. In Table 52 and 53, with a small maximum semiseparable setup for the

problems in the �rst three rows, the global pre
onditioner is already a

urate enough that 
an

be performed as a dire
t solver.

Remark B.6. Due to the 
ondition number of the saddle-point system is proportional to

1
β
, the saddle-point system be
omes ill-
onditioned with the de
rease of β. This makes it

di�
ult to 
ompute an a

urate approximation 
lose to the saddle-point system. Thus the

maximum semiseparable should be in
reased slightly. The slightly in
rease of the maximum

semiseparable order does not 
hange the linear 
omputational 
omplexity. This is illustrated

in Table 50-53.

Remark B.7. A

ording to Table 50-53, the number of iterations for the global pre
ondi-

tioner is independent of the regularization parameter β, while for the blo
k-diagonal pre
on-
ditioner, this property does not hold.
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