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Abstract

In this paper, we consider preconditioning for PDE-constrained optimization prob-
lems. The underlying problems yield a linear saddle-point system. We study a class of
preconditioners based on multilevel sequentially semiseparable (MSSS) matrix compu-
tations. The novel global preconditioner is to make use of the global structure of the
saddle-point system, while the block preconditioner makes use of the block structure
of the saddle-point system. For the novel global preconditioner, it is independent of
the regularization parameter, while for the block preconditioner, this property does not
hold. For this MSSS matrix computation approach, model order reduction algorithms
are essential to obtain a low computational complexity. We study two different model
order reduction approaches, one is the new approximate balanced truncation algorithm
with low-rank approximated Gramians and the other is the standard Hankel blocks
approximation algorithm. We test the global preconditioner and the block precondi-
tioner for the problem of optimal control of the Poisson equation and optimal control of
the convection-diffusion equation. Numerical experiments illustrate that both precon-
ditioners give linear computational complexity and the global preconditioner yields the
fewest number of iterations and computing time. Moreover, the approximate balanced
truncation algorithm consumes less floating-point operations (flops) than the Hankel
blocks approximation algorithm.

Keywords: PDE-constrained optimization, saddle-point problem, preconditioners,
multilevel sequentially semiseparable matrix, model order reduction, low-rank approx-
imation

1 Introduction

Optimal design, optimal control and parameter estimation of systems governed by partial
differential equations (PDEs) give rise to a class of problems known as PDE-constrained op-
timization. PDE-constrained optimization problems have a wide application such as optimal
flow control [1] [2], diffuse optical tomography [3], and linear (nonlinear) model predictive
control [4]. The solution of these problems is acquired by solving a large-scale linear system
of saddle-point type. Much effort has been dedicated to find efficient iterative solution meth-
ods for such systems. Some of the most popular techniques are the conjugate gradient (CQ)
[5], minimal residual (MINRES) [6], generalized minimal residual (GMRES) and induced
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dimension reduction (IDR) [7]. The performance of these methods highly depends on the
choice of preconditioners. In this paper, we study a class of preconditioners that exploits
the multilevel sequentially semiseparable (MSSS) structure of the blocks of the saddle-point
system.

Semiseparable matrices appear in several types of applications, e.g. the field of integral
equations [8], Gauss-Markov processes [9], boundary value problems [10] and rational in-
terpolation [11]. Semiseparable matrices are matrices of which all the sub-matrices taken
from the lower-triangular or the upper-triangular part are of rank at most 1 by [12]. Se-
quentially semiseparable (SSS) matrices of which the off-diagonal blocks are of low-rank,
not limited to 1, named by Dewilde et. al. in [13] generalize the semiseparable matrices.
Multi-level sequentially semiseparable generalize the sequentially semiseparable matrices to
the multi-dimensional cases. Systems that arise from the discretization of 1D partial differ-
ential equations typically have an SSS structure. Discretization of higher dimensional (2D
or 3D) partial differential equations give rise to matrices that have an MSSS structure [14]
[15]. Under the multilevel paradigm, generators that are used to represent a matrix of a
higher hierarchy are themselves multilevel sequentially semiseparable of a lower hierarchy.
The usual one-level sequentially semiseparable matrix is the one of the lowest hierarchy.
Operations like the matrix inversion and the matrix-matrix multiplication are still closed
under this structure. The LU factorization can also be performed in a structure preserving
way. This factorization results in a growth of the rank of the off-diagonal blocks of the Schur
complement. As a result, the LU factorization is not of linear computational complexity.
The model order reduction plays a key role in reducing the rank of the off-diagonal blocks.
Because of the model order reduction operation being performed, it is possible to compute
an inexact LU decomposition of an MSSS matrix that can be used as a preconditioner.

In [14], Gondzio et. al. first introduced the preconditioning of PDE-constrained opti-
mization problems by MSSS matrix computations. They exploited the MSSS matrix struc-
ture of the blocks of the saddle-point system and performed an LU factorization method
for MSSS matrices to approximate the Schur complement of the saddle-point system. With
the approximate Schur complement, conjugate gradient method was performed to solve the
preconditioned saddle-point system block-by-block. As aforementioned, the model order
reduction plays a vital role in obtaining a linear computational complexity of the LU factor-
ization. In [14], Gondzio et. al. used a standard model order reduction algorithm [16] [13] to
reduce the computational complexity. In this paper, our work extends [14] in the following
ways. 1) We propose a new model order reduction algorithm for SSS matrix computations
based on the correspondence between linear time-varying (LTV) systems and blocks of SSS
matrices. The new model order reduction algorithm is motivated by [17]. In [17], the ap-
proximate balanced truncation was addressed for the model order reduction of linear time
invariant (LTT) systems. In this paper, we extend that method to the linear time varying
(LTV) systems. Because of the correspondence between MSSS matrix and LTV systems,
it is suitable for model order reduction for MSSS matrix computations. Compared with
the conventional model order reduction algorithms in [13] [16], the approximate balanced
truncation needs less floating-point operations (flops). 2) With these model order reduction
algorithms, we can compute an inexact LU factorization of the MSSS matrix blocks of the
saddle-point system in linear computational complexity. This yields block preconditioners
for the saddle-point systems of the type that are described in [18] while only single precon-
ditioner for the last block of the saddle-point system is studied in [14]. 3) By permuting
the blocks of the saddle-point system, we can also compute an inexact LU factorization
of the global system, which gives a novel global preconditioner. 4) Besides the problem of
optimal control of the Poisson equation, we also study the problem of optimal control of the
convection-diffusion equation. 5) We also extend these preconditioning technique to the 3D
cases.

Note that the standard block preconditioners depend on the regularization parameter 3
for the PDE-constrained optimization problem [19]. By permuting the saddle-point system



with MSSS matrix blocks to a single MSSS matrix system, we can compute the inexact
LU factorization of the global system in linear computational complexity, which is called
the global preconditioner. Numerical experiments for the optimal control of the Poisson
equation and the convection-diffusion equation illustrate that the performance of the global
preconditioner is independent of the regularization parameter § and is also independent of
the mesh size.

The structure of this paper is as follows: we start with formulating a distributed op-
timal control problem constrained by PDEs. This problem yields a linear system of the
saddle point type. Demand for efficient preconditioners to solve this type of system with
iterative solution methods motivates this paper. In Section 3, we briefly give an overview
of some definitions and the widely used computations of MSSS matrices and then discuss
the MSSS preconditioning technique. The novel model order reduction algorithm is also de-
scribed. Based on the MSSS matrix computations, we propose three preconditioners for this
saddle-point problem, they are the novel global preconditioner, the standard block-diagonal
preconditioner and the standard block lower-triangular preconditioner. In Section 4, we use
the distributed optimal control of the Poisson equation and the convection-diffusion equa-
tion as numerical experiments to illustrate the performance of our method. In Section 5,
we extend this preconditioning technique to the optimal control of 3D problems. Section 6
draws the conclusion and describes future work.

2 Problem Formulation

2.1 PDE-Constrained Optimization Problem

Consider the PDE-constrained optimization problem described by
1 112 2
min = lu > + 5]

st. Lu= finQ (1)

u =up on FD,

where £ is an operator, u is the system state, f is the system input, @ is the desired state
of the system, [ is the weight of the system input in the cost function or regularization
parameter and S > 0. In this paper, we consider £ = —V? for optimal control of the
Poisson equation and £ = —eV? + W -V for optimal control of the convection-diffusion
equation. Here W is a vector in ), V is the gradient operator, and ¢ is a positive scalar.
If we want to solve such a problem numerically, it is clear that we need to discretize these
quantities involved at some point. There are two kinds of approaches, one is to derive
the optimality conditions first and then discretize from there (optimize-then-discretize), the
other is to discretize the cost function and the PDE first and then optimize that (discretize-
then-optimize). For the problem of optimal control of the Poisson equation, both approaches
lead to equivalent solutions while different answers are reached for the problem of optimal
control of the convection-diffusion equation [19]. Since our focus is on multilevel sequentially
semiseparable preconditioners, the discretize-then-optimize approach is chosen in this paper.

By introducing the weak formulation and discretizing (1) using the Galerkin method,
the discrete analogue of the minimization problem (1) is therefore,

1
min —u? Mu —ub+c+ BfTMf
u, f 2 (2)
st. Ku=MFf+d,
where K = [K; ;] € RV*Y is the stiffness matrix, M = [M; ;] € RV*N M;; = / Bih;dS
Q

is the mass matrix and is symmetric positive definite, b = [b;] € RN, b, = u;p;dSY, ¢ €
Q



N+ON
R, c:/ﬁQdQ, d=[d]eRY, di=- > uj/ Vo;-VdQ. The ¢; (i =1, 2, ... N)
Q el Q
and ¢; (j=1,2, ... N, N+1, ... N+ ON) form a basis of Vi and Vgh, respectively.
Consider the cost function in (2) and associate with the equality constrain, we introduce
the Lagrangian function

T(u, f,\) = %uTMufuTb+c+ﬂfTMf+>\T(Ku—Mf—d),

where )\ is the Lagrange multiplier. Then it is well-known that the optimal solution is given
by finding u, f and A such that

VoJ(u, f,A) = Mu—b+K"\=0,
ij(u,f,)\) = 2ﬁMf_M)‘:Oa
VaJ(u, f,A) = Ku—Mf—d=0.

This yields the linear system

28M 0 —M] [f 0
0 M KT||u|l=/]b]|. (3)
-M K 0 | |x d

The system (3) is of the saddle-point system type [18], i.e., the system matrix, which is
denoted as A, has the following structure

il o

28M 0
0 M
The system matrix of the saddle-point system (3) is large and sparse. Thus it is amenable

to solve such systems by preconditioned Krylov solvers, such as MINRES [6] and IDR(s) [7].

where A € R"*"™ B € R"*™. For system (3), we have A = ] and B = [—M K]

2.2  Preconditioning of Saddle-Point Systems

The performance of iterative solution methods highly depends on the quality of the
preconditioners [20]. For numerical methods to solve system (3) and construction of pre-
conditioners, we refer to [18] for an extensive survey of numerical methods for this type of
systems. In this paper, we study three types of preconditioners. The first two types ex-
ploit the MSSS structure of the blocks of the saddle-point system, whereas the second type
exploits the MSSS structure of the permuted saddle-point system.

2.2.1 Block Preconditioners

Recall from (4), if A is nonsingular, then A admits the following LDU factorization given
by

28M 0 —M I 28M I 0 —551
0 M KT|=] 0 I M I M-KT| .
-M K 0 —%I KM~ T S I

where S = — (%M + KM‘IKT) is the Schur complement.

The most difficult part for this factorization is to compute the Schur complement S
because of computing the inverse of a large sparse matrix. Meanwhile, solving the system
Sx = b is also expensive since S is a large and full matrix. Note that all the matrix blocks



of (3) have a structure called multilevel sequentially semiseparable (MSSS), which will be
introduced later. Then the Schur complement S also has the MSSS structure. If we exploit
the MSSS structure of S, we can both compute S and solve the preconditioned system in
linear complexity.

In this paper, we first study two types of block preconditioners for the saddle-point
system. They are the block-diagonal preconditioner PP; and the block lower-triangular pre-
conditioner Py, where

28M 28M
P = M , Po= 0 M , (5)
-8 -M K S

where M is an approximation of the mass matrix and S is an approximation of the Schur com-
plement. For M and S without approximation, i.e., M =M and S = S, the preconditioned
system P ! A has three distinct eigenvalues and GMRES applied to the preconditioned sys-
tem delivers the solution in at most three steps, while the preconditioned system Pg |
has two distinct eigenvalues and GMRES applied to the preconditioned system delivers the
solution in at most two steps [18]. For the general properties of P; and Pa, we refer to [18]
for an extensive study.

As pointed out in [19], to approximate the Schur complement S = — (ﬁM + KM_lKT) )

S = —KM~'KT could be used for big to middle range of 3 while S = f%M could be
chosen for small 8. Thus the block-diagonal preconditioner is
28M
7Dl = M ) (6)
KM~ 'KT
for big or middle range of 3, and

P = o (7)
e

for small 3, where M and K are approximated by MSSS matrix computation. Note that
the sub-blocks of P; and P5 all have an MSSS matrix structure such that the linear system
P1y = r or Poy = r can be solved with linear computational complexity.

2.2.2 Global Preconditioners

Since the blocks of the saddle-point system (3) keep the MSSS matrix structure, it is
possible to permute the saddle-point system (3) with MSSS matrix blocks to a linear system
with global MSSS matrix structure, where the details will be introduced in the next section.
Thus we have the permuted saddle-point system described by

Az =g, (8)
where A, # and § are permutations of A, [fT ul )\T]T and [OT bT dT}T in (3) and
(4), respectively. Since the global matrix A of the permuted saddle-point system is an MSSS
matrix, we can do an inexact LU factorization of A in linear computational complexity with
MSSS matrix computations, i.e., o

A=~ LU, (9)
and use this inexact factorization as a preconditioner. We call this factorization in (9) the
global preconditioner. Since no information of 3 is lost during the permutation and factor-
ization, the global preconditioner is independent of S while for standard block preconditioner

Py and Pq in (5) this does not hold. This is a big advantage of the global preconditioner over
the standard block preconditioner. Numerical examples in Section 4 verify this statement.



3 Preconditioning Using Multi-level Sequentially Semisep-
arable Matrix Computations

Matrices in this paper will always be real and their dimensions are compatible for the
matrix-matrix operations and the matrix-vector operations when their sizes are not men-
tioned.

3.1 Multi-level Sequentially Semiseparable Matrices

The generators representation of sequentially semiseparable matrices are defined by Def-
inition 3.1 [21].

Definition 3.1. Let A be an N x N matriz with SSS matriz structure and let n positive
integers my, mo, -+ My with N = mq +mgo + -+ - +m,, such that A can be written in the
following block-partitioned form

Uin‘+1"'Wj—1VjT, if 1 <y;
Aij =< D, if i=7;
PiRze1"'Rj+1QjT, if 1>

where the superscript T denotes the transpose of the matriz.

Table 1: Generator size for the SSS matrix A in Definition 3.1

Generators U; W V; D; P, R; Q;
Sizes m; X kz ki,1 X kl m; X ki,1 m; X my m; X lz li,1 X lz m; X li+1

The sequences {Ui}?gll’ {Wi}?;;’ {‘/;}?:2’ {Di}?:lv {Pi}?:% {Ri}?;21v {Ql ?;11 are
matrices whose sizes are listed in Table 1 and they are called generators of the SSS matrix
A. With the generators representation, the SSS matrix A is denoted as

A = SSS(Péa RS) QS) Dsa US) Wsa ‘/;)

Take n = 5 for example, the SSS matrix A is shown by (10),

D UWVE UWaVE U\WaWsVE Uy WaWa WV
QT Ds UV UaWaVT  UsWaWi Ve
A=| PRQT QY Ds UV uswavE | (10)
PyR3R>QT PyR3Q¥ PQY Dy UsViE
PsRyRsRyQT  PsR4R3QY  PsR4QF PsQf Ds

Remark 3.1. The generators of a SSS matriz is not unique, there exists a series of non-
singular transformations between two different sets of gemerators of the same SSS matriz

A.

With the generators representation of SSS matrices, basic operations of the underlying
matrices such as addition, multiplication and inversion are closed under SSS matrix structure
and can be done in linear computational complexity. Moreover, decomposition /factorization
such as QR factorization [22] [23], LU/LDU decomposition [24] [14], and ULV decompo-
sition [25] can also be computed in a structure preserving way. Many operations on SSS
matrices can be performed with linear computational complexity. Examples are the matrix-
matrix multiplication [21], the matrix-vector multiplication [21], the matrix inversion [24],
the QR [22], LU [12], and ULV factorization [26]. To keep a clear structure of this pa-
per, Table 2 lists the most widely used operations for SSS matrices and the corresponding
references.



Table 2: Commonly used operations for SSS matrices

operations Az A+B AB AL LU Lz=1b

E3

references  [13] [24] [21] [13] [24] [21] [13] [24] [21] 23] 271 28] 24l 2] [21]

* L is a lower-triangular SSS matrix.

Similar to Definition 3.1 for SSS matrices, the generators representation for MSSS ma-
trices, specifically the k-level SSS matrices, are defined by Definition 3.2.

Definition 3.2. The matriz A is said to be a k-level SSS matriz if all its generators are (k—
1)-level SSS matrices. The 1-level SSS matriz is the SSS matriz that satisfies Definition 3.1.

Operations listed in Table 2 for the SSS matrices can be extended to the MSSS matrices,
which yields linear computational complexity for MSSS matrices. MSSS matrices have many
applications, one of them is the discretized partial differential equations (PDEs) [15] [14].

Example 3.1. For the Py finite-element discretization of the 2D Laplacian equation with
homogeneous Dirichlet boundary condition, the stiffness matriz K is given by

A B 4 -1
B A B -1 4 -1
K= B .. , where A = -1 . ,B=—1I,and I is
. B BRI |
B A -1 4

the identity matriz. The matriz A and B are both SSS matrices be denoted by

A = 885(1,0, -1, 4, 1, 0, —1),
B = &885(0, 0, 0, —1, 0, 0, 0).

The matriz K has the MSSS (2-level SSS) matrix structure and is denoted by
K =MS8S8S8(1, 0, BT, A, I, 0, BT).

Remark 3.2. Similar with SSS matrices, for MSSS matriz, its generators are not unique.
There exists a set of nonsingular transformations between two different sets of generators
for a specified MSSS matriz.

Remark 3.3. For SSS or MSSS matrices, it is not necessary for their diagonals, sub-
diagonal or super-diagonals to be constant like that in Example 3.1. Their sizes can even be
different as long as the block-partitioned representation in Definition 3.1 is satisfied.

Note that for a saddle-point system from the PDE-constrained optimization problem,
all its blocks are MSSS matrices, which enables us to compute the LU factorization of all
its blocks with MSSS matrix computations in linear computational complexity. However,
we fail to compute the LU factorization of the whole saddle-point system matrix because
the saddle-point system matrix is not an MSSS matrix but just has MSSS matrix blocks.
The following lemma tells us how to permute a matrix with SSS matrix blocks to a single
SSS matrix. We can easily extend this lemma to the MSSS matrix cases, which allows us to
permute a matrix with MSSS matrix blocks to a single MSSS matrix.

Lemma 3.1. [29] Let A, B, C and D be SSS matrices with the generators representations

A = SSS(PP,RY,QCDULWEVE),
B = SSS(P;)’R?’ gaDls)’Ué)’st’Vsb)a
¢ = SSS(PSC’R; gaDgaUsC’Wsc’Vsc)a
D = S8S8S(PY RYQY DY UL W V.



Then the relations o -
fl A Bjla fl _ ~la
[gCDb"mdgTb

are equivalent with row and column permutations of the matrix blocks. The vectors {ﬂ and

{Z] are permutations of [ﬂ and [Z] , respectively. The matriz T is an SSS matriz and has
the generators representation

T = 88S8(Pg, R, Q5 DS, UG, Wi, V),

R
Pe Pl 00 Rt Q0 Q0
wherePst{O o pe Pd],RZ Re ’QZ{O Qb 0 4|, DL =
S S S Rd S S
we
pe DY e U Ut o0 0] .| W s Ve 0 v o
Ds DIl Ts T 0 0 Us Ud|r s w¢ N IO T VR O N VA

Remark 3.4. Lemma 3.1 is for a 2 x 2 block matriz, but it can be extended to matrices
with different number of blocks as well.

Remark 3.5. Eztending Lemma 3.1 to the k-level SSS matriz case is also possible. If A,
B, C, and D are k-level SSS matrices, then their generators are (k — 1)-level SSS matrices.
For the permuted k-level SSS matrixz T, its (k —1)-level SSS matriz generators with (k—1)-
level SSS matriz blocks are derived from the permutations of rows and blocks to get a single
(k — 1)-level SSS matriz by Lemma 3.1.

For the saddle-point system (3) derived from the 2D PDE-constrained optimization prob-
lem, discretizing using P finite element method yields a saddle-point system that has MSSS
(2-level SSS) matrix blocks. The structure of the saddle-point system matrix for mesh size
h = 273 is shown in Figure 1(a). Permuting the saddle-point system using Lemma 3.1
gives system (8). The saddle-point system matrix structure before and after permutation
are shown in Figure 1.

0

0 50 100 150 0 50 100 150
nz = 2120 nz =2120

(a) Before permutation. (b) After permutation.

Figure 1: Structure of system matrix of (3) before and after permutation for h = 273,

3.2 Multi-level Sequentially Semiseparable Preconditioners

The ability to solve a linear system with MSSS matrix structure in linear computational
complexity is essential for the purpose of this paper. One way is to compute the LU fac-



torization of the system matrix with MSSS matrix computations. In the following part, we
first introduce the LU factorization of MSSS matrices and then give a novel model order
reduction algorithm for SSS matrices that is required in computing the LU factorization.
For comparison, the conventional model order reduction algorithm is also discussed.

3.2.1 LU Factorization of Multilevel Sequentially Semiseparable Matrices

The semiseparable order defined in Definition 3.3 plays an important rule in the MSSS
matrix computations. Note that Dewilde et. al. and Golberg et. al. studied this kind
of structured matrices separately, SSS matrices named in [21] are called quasiseparable
matrices in [24]. Here we use the MATLAB style of notation for matrices, i.e., for a matrix
A, A(i: j,s:t) selects rows of blocks from ¢ to j and columns of blocks from s to ¢ of A.

Definition 3.3. [16] Let

rank A(k+1:n,1:k)=1, k=1,2, -~ ,n—1.
The numbers l(k = 1,2, --- ,n — 1) are called the lower order numbers of the matriz A.
Let

rank A(1 : k,k+1:n)=wug, k=1,2, -+ ,n—1.
The numbers ui(k = 1,2, --- ,n— 1) are called the upper order numbers of the matriz A.

Set rt = max |y, and r* = maxuy, where v and r* are called the lower quasi-separable order
and the upper quasi-separable order of A, respectively.

Definition 3.4. [30] The SSS matriz A with lower and upper semiseparable order r' and
r is called block (r!, r) semiseparable.

The definitions in Definition 3.3 and 3.4 of SSS matrices can be directly extended to the
MSSS matrices, which leads to Definition 3.5 and 3.6.

Definition 3.5. Let the matriz A be an N x N block k-level SSS matrixz with its generators
be M x M block (k — 1)-level SSS matrices. Let

rank A(k+1: N, 1:k)=1, k=1,2, --- N —1.
The numbers l;,(k = 1,2, --- , N —1) are called the k-level lower order numbers of the matriz
A. Let

rank A(1 : k,k+1:N)=wug, k=1,2, --- /N — 1.
The numbers u(k = 1,2, --- N — 1) are called the k-level upper order numbers of the

matriz A. Set r' = maxl, and r* = maxuy, where r' and r* are called the k-level lower
semiseparable order and the k-level upper semiseparable order of the k-level SSS matriz A,
respectively.

Definition 3.6. The k-level SSS matrixz A with k-level lower and upper semiseparable order
rt and v is called k-level block (r', r) semiseparable.

With these definitions, we have the following algorithm to compute the LU factorization
of a k-level SSS matrix.

Lemma 3.2. [12][1/] Let A be a strongly regular N X N block k-level sequentially semisepara-
ble matriz of k-level block (r', r*) semiseparable and denoted by its generators representation
A = MSSS(Ps, Rs, Qs, D, Us, Wy, Vi). Let A = LU be its block LU factorization.
Then,

1. The factor L is a k-level sequentially semiseparable matriz of k-level block (r™, 0)
semiseparable and U is a k-level sequentially semiseparable matrixz of k-level block
(0, rY) semiseparable. Moreover, v =r! and rV = rt.



2. The factors L and U can be denoted by the generators representation

L - MSSS(PS, Rs; Qsa DsLa Oa Oa O)a
U = MSSS(0, 0, 0, DY, U,, W,, V).

where QS, DE, DY and Us are (k — 1)-level sequentially semiseparable matrices and
computed by the following algorithm:

Algorithm 1 LU factorization of a k-level SSS matrix A

Initialize: M; + 0 € R™*"" be a (k — 1)-level SSS matrix
Compute the LU factorization of the (k — 1)-level SSS matrix
D, = DlLDij, let Ul = (Df)_lUl and Ql = (DlL)_TQl
fori=2:N—-1do

M; = QF Uy + RiM;_ W,
Compute the LU factorization of the (k — 1)-level SSS matrix
(D; — PiM;V;) = DF DY,
Let, U; = (DF) ™' (U; — P,M; 1 Wi), Qi = (DY)~"(Q: — ViM[", RT).
end for
Compute the LU factorization of the (k — 1)-level SSS matrix
(Dn — PuM,—1V,) = DLDY
Output: DZ-L, DY, Qi, U,

Proof. For the proof of the lemma, we refer to [12] and [14]. O

Remark 3.6. In Algorithm 1, the LU factorization of a 0-level SSS matrix is just the LU
factorization of an ordinary matriz without SSS structure.

For MSSS matrices, matrix-matrix operations such as addition and multiplication will
lead to a growth of the semiseparable order, which can be verified from the matrix-matrix
operations introduced in [21] [24]. This results in the growth of the computational complex-
ity. Take the 1-level SSS matrix A for example, the flops needed for computing A? is 40n3N
where n is the semiseparable order [21] and N is the number of blocks of A. To be specific,
the following lemma is introduced.

Lemma 3.3. [24] Let Ay, As be SSS matrices of sizes N x N which are lower semiseparable
of orders my, ny respectively. Then the product A1 As is lower semiseparable of order at
most my+mny. Let Ay, As be SSS matrices of sizes N x N which are upper semiseparable of
orders ms, no respectively. Then the product Ay As is upper semiseparable of order at most
mo + Na.

Remark 3.7. For k-level SSS matrices, since semiseparable order varies at different levels,
result of Lemma 8.8 holds for the k-level semiseparable order. But we do not know the
(k — 1)-level semiseparable order of the (k — 1)-level SSS generators exactly, we just know
the (k — 1)-level semiseparable order also increases.

Lemma 3.3 gives rise to the question whether there exists a minimal semiseparable order
for a SSS matrix such that the SSS matrix with a bigger semiseparable order is equivalent
to an SSS matrix with minimal semiseparable order. Definition 3.7 and Lemma 3.4 give the
answer to the aforementioned question.

Definition 3.7. [16] We say that the lower generators P;(i =2,...,N), Q;(j =1,...,N —
1), Rp(k=2,...,N—1) of an SSS matriz A are minimal if all their orders ly(k =1,...,N—
1) are as small as possible among all lower generators of the same matriz A, i.e., for lower
generators of the matrix A with orders l;c(k: =1,...,N — 1), the inequalities
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I <l, k=1,...,N—-1

hold. We also say that the orders l;,(I = 1,...,N — 1) are the minimal orders of the lower
generators of A.

Lemma 3.4. [16] Let A = {Ay;}Y,_, be a block matriz with lower rank numbers ry,(k =
1,...,N —1). Then A has lower generators with orders equal to the corresponding rank
numbers. Moreover, for any matrices, the rank numbers are the minimal orders of the

generators.
Remark 3.8. Lemma 3.4 can be extended to the k-level SSS matrices directly.

Remark 3.9. Lemma 3.4 shows that there exists a minimal semiseparable order for an SSS
matriz. Thus, for an SSS matriz of semiseparable order bigger than the minimal separable
order, the semiseparable order can be reduced to make the reduced semiseparable order equal
to or smaller than the minimal semiseparable order such that the resulting SSS matrixz with
reduced semiseparable order is equal to or equivalent with the SSS matrices without order
reduction up to a small tolerance.

The aim of model order reduction of a k-level SSS matrix A with its generators represen-
tation A = MSSS(Ps, Rs, Qs, Ds, Uy, Wy, Vi) is to find (k—1)-level SSS matrices P;, Ry,
Qs, US, Ws, V. of smaller size compared with Ps, R, Qs, Us, Wy, Vi, respectively such that
A= MSSS(PS, Rs, Qs, Dy, Us, Ws, Vs) is of k-level semiseparable order smaller than or
equal to the minimal k-level semiseparable order of A. Meanwhile, A is an approximation
of A up to a small tolerance ¢, i.e., |A — A|| <e.

Remark 3.10. In Algorithm 1, for computing the LU factorization of a k-level SSS ma-
triz, matriz-matriz operations are performed on its generators which are (k — 1)-level SSS
matrices. Such operations lead to the growth of semiseparable order of the (k — 1)-level SSS
matrices, which induces growth of computational complexity. Model order reduction is nec-
essary to reduce the semiseparable order or keep the semiseparable order under a threshold
during the LU factorization, such as computation of the recurrence of M; in Algorithm 1.

Remark 3.11. Since the LU factorization of a k-level SSS matriz needs the model order
reduction for (k—1)-level SSS matrices, the LU factorization in Lemma 3.2 is an ezxact fac-
torization for SSS matrices because no model order reduction is needed for ordinary matrices
(0-level SSS matrices). It is an inexact factorization for the k-level (k > 2) SSS matrices.
Therefore, for discretized one-dimensional PDEs on a reqular grid, this factorization could
be performed as a direct solver and as an efficient preconditioner for the discretized two- or
higher- dimensional PDEs on a reqular grid.

Remark 3.12. The model order reduction algorithm for SSS matrices has been studied in
[13] [16], while for 2—level or even higher-level SSS matrices, it is still a big challenge since
model order reduction of k-level SSS matrices where k > 2 needs the reduced generators still
be (k — 1)-level SSS matrices. The model order reduction algorithms in [13] [16] applied
to the k-level SSS matrices will not return structure preserving (k — 1)-level SSS matriz
generators.

3.2.2 Approximate Balanced Truncation

In this paper, we design a novel model order reduction algorithm for SSS matrices.
With this algorithm, we can construct an efficient preconditioner for two-dimensional PDE-
constrained optimization problem, which will be studied in the next section. The corre-
spondence between SSS matrices and the linear time-varying (LTV) systems motivates us
to derive this new model order reduction algorithm.
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The SSS matrices have a realization of linear time-varying systems, which is studied by
Dewilde et. al. in [27]. Consider a mixed-causal system that is described by the following

state-space model
zig | _ | R xi Qi |
- ][RR

yi=| P Ui]{ig}JrDiui;

(11)
where ¢ denotes the causal system states, z® represents the anti-causal system states, u;
is the system input, and y; is the system output. With zero initial system states and stack
all the input and output as @ = (uf, ud, ... u%)T, g= (i, vi. ... yﬁ)T, the
matrix H that describes the input-output behavior of this mixed-causal system, i.e., ¥ = Hu,
induces an SSS matrix structure. Take, N = 4 for example, the matrix # is,

D; UVo  UWoVs UiWaWsVy
2 — Py D, UsV3 U W3V, (12)
P3Ra@ P3Qs D3 UsVy
PyR3R2Q1 PyR3Q2 PiQ3 Dy

Remark 3.13. To reduce the semiseparable order of the SSS matriz H in (12), the orders
of Ps, Rs, Qs, Us, Wy and Vy need to be reduced. This corresponds to reduce the order of the
mized-causal LTV system (11). Model reduction for LTV system (11) could be performed to
reduce the semiseparable order of H.

Model order reduction for LTV systems is studied in [31] [32]. In [32], a linear matrix
inequality (LMI) was introduced to solve the Lyapunov inequalities for the controllability and
observability Gramians. In [31], the low-rank Smith method was presented to approximate
the square-root of the controllability and observability Gramians.

Since the causal LTV system and the anti-causal LTV system have similar system struc-
ture that correspond to the strictly lower-triangular part and the strictly upper-triangular
part of the matrix H, respectively. Here we just consider the causal LTV system described
by the following state-space model,

{ Tip+1 = Rz + Qruy

13
Yk = Prag, (13)

over the time interval [k,, k] with zero initial states. The controllability Gramian G.(k) and
observability Gramian G, (k) are computed from the following Stein recurrence formulas:

Ge(k+1) = RiG.(k)RF + QrQF, (14)
Go(k) = R{Go(k+1)Rix+ PLPy, (15)

with initial conditions G.(k,) = 0 and G,(k; + 1) = 0.

Note that the controllability Gramian G.(k) and observability Gramian G, (k) are pos-
itive definite if the system is completely controllable and observable or semi-definite if the
system is partly controllable and observable, thus their eigenvalues are non-negative. Their
eigenvalues often have a large jump at an early stage as pointed out in [17] [33] [34] [35],
which suggests to approximate these two Gramians at each step by a low-rank approxima-
tion. Below we show how to obtain such approximations. Since the controllability Gramian
G.(k) and observability Gramian G,(k) have similar structure, we will only focus on the
controllability Gramian G.(k).

The key point of the low-rank approximation is to substitute the Cholesky factorization
of the controllability Gramian G.(k)

Ge(k) = Ly Ly, (16)
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where Ly, € RV*N in each step k by its approximate Cholesky factorization,

with Lr € RVNX" where ny is the numerical rank of G.(k) and N > ny at each step k.
Typically, ny is set to be constant, i.e., n, = n at each step. Since G.(k) is of low numerical
rank, it is reasonable to use the rank ny, factor Ly to approximate G.(k).

In [17], a recursive low-rank Gramian method was introduced to approximate the Grami-
ans of a linear time-invariant system. Here, we extend that method to the linear time-varying
systems, which is similar with the method in [36]. This method is shown in Algorithm 2.
From [17], we know that G.(i) = L.(i)Lc(i)" and G,(i) = Lo(i)Lo(i)T in Algorithm 2 are
the best rank n approximations to G.(i) and G,(%).

Algorithm 2 Low-rank approximation of the Gramians

Initialize: G.(1) « 0 € RM*" G (N +1) + 0 € RM*" N is the number of time steps, M
is the unreduced order, n is the numerical rank.
for i=2: N do
Compute the singular value decompositions
[ Qic1 | RicaGe(i — 1) | = UEVE, [ PT | RFGo(i+1) | = UB, VI,
Let

Ue=[Ua|Ue |, S = [ Yol o } with Uy € RM*" and S € R™™

U, = [ Uot | Up2 }a Yo = [ o1 v :| with U, € RM*n and Yo1 € R™X™,
02
Make }
Lc(l) = Uclzcla Lo(l) = Uy12o1.
end for

Output: L.(i) € RM*™ and L,(i) € RM*",

With the approximate controllability Gramian G.(i) and observability Gramian G, (4),
the balanced truncation could be performed to reduce the order of the LTV system. For
the approximate balanced truncation, the key is to use the low-rank approximation of the
factors of Gramians to provide an approximation to the balanced truncation.

For the LTV system (13), to do a balanced truncation, first the system states are trans-
formed by the nonsingular transformation xy = Ty T to get a "balanced" system,

{ Tryr = T RiThae + Tl Qrun (18)

yr = PTixy,

where the states z, = (JEZ :ﬁg)T The kept system states are T, = [In O} T where n is

the system order after reduction. The reduced LTV system of (13) is

:i'k+1 = Hl(k =+ 1)RkHT(k)J~Sk + Hl(k + I)Qkuk (19)
yr = PpIl(k)Zy,
where IIj(k + 1) = [I, 0] Tk_+11 and II,. (k) = T} Ig .

Next, we extend the balanced truncation algorithm to the linear time-varying case. This
method is described in Algorithm 3.

Remark 3.14. The second loop of Algorithm 3 ensures that I1;(i) and I1,.(i) are "balanced”.
This is vital since we approzimate the controllability and observability Gramians indepen-
dently.
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Remark 3.15. With Algorithm 2 and Algorithm 3, the LTV system (13) was reduced to
(19) by the low-rank approzimate balanced truncation.

Remark 3.16. For an SSS matric A = SSS(Ps, Rs, Qs, Ds, Us, Wy, Vi) with lower
semiseparable order M, Algorithm 2 and Algorithm 8 could be performed to the strictly lower-
triangular part of A to reduce the lower semiseparable order to n, yielding the approzimate
SSS matriz A = SSS(PS, Ry, Qs, D,, U, Wy, Vs). For the strictly upper-triangular
part of A, first transpose it to be strictly lower-triangular then perform Algorithm 2 and
Algorithm 8. After the reduction, transpose the reduced strictly lower-triangular part to be
strictly upper-triangular.

Algorithm 3 Approximate balanced truncation for LTV systems
Procedure: Set the numerical rank n.
Use the low-rank approximation Algorithm 2 to compute the rank n approximations to
the controllability Gramian G.(i) and observability Gramian G, (i), denoted by G.(i) and
Go (i), respectively.
loop
Compute the singular value decomposition
GI(i)Go(i) = Uin; Vi
end loop
loop
Let ~ .
I0,(i) = Go(1)ViX, 2, 1L (i) = G.(4)U; X, 2.
end loop
End Procedure
Output: II;(i) € R™M and I1,.(i) € RM*",

N

3.2.3 Hankel Blocks Approximation

The model order reduction algorithms for SSS matrices in [13] [21] [27] approximate the
Hankel blocks of the SSS matrices, where the Hankel blocks of an SSS matrix A are defined
by Definition 3.8.

Definition 3.8. [13] Hankel blocks denote the off-diagonal blocks that extend from the di-
agonal to the northeast corner (for the upper case) or to the southwest corner (for the lower
case).

Take a 4 x4 SSS matrix A for example, the Hankel blocks for the strictly upper triangular
part are shown in Figure 2 by Hy, Hy and Hs.

Figure 2: Hankel blocks of a SSS matrix A

The model order reduction algorithms in [13] [21] [27] are Hankel norm optimal order
reduction [29] algorithms. That is, given an SSS matrix A with a lower semiseparable order
rr, and an upper semiseparable order ry;, we can get an approximate SSS matrix A with a
lower semiseparable order 7;, and an upper semiseparable order 7y where rp, > 7, ry > Ty
achieves

inf [|4— Allx ,
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where || Al| g = max ||H;(A)||2 and H;(A) are the Hankel blocks of A defined in Definition 3.8.

For comparison, this model order reduction algorithm to the strictly upper-triangular
part of SSS matrices is listed in Algorithm 4 [13].

Algorithm 4 Hankel blocks approximation for SSS matrices

Initialize: H < 0 € RM*M G « 0 € RMXM M is the upper semiseparable order before
reduction, set the reduced upper semiseparable order m and the number of blocks N.
perform the forward recursion
fori=1: N—1do

Compute the singular value decomposition (SVD)

{H} = UXVT and partition U = { Ur ] = { Z" | () } with Ux € R™*0), U, €

U; Uk | ()
RM*M where n, is the number of rows of Uj.
Let,
Ui=Ug, Wi =Uq, Viz1 =SVTViyy and H = SVIW,,4.
end for

perform the backward recursion
fori=N:-1:2do
Compute the singular value decomposition (SVD)

[(‘;/T] = UXVT and partition U = [ g‘l 8 ] with U, € RwXM [, ¢ RMxM,
Ne

Y= 2a with ¥, € RM*M where n, is the number of rows of V;.
()
Let,
Vi=U,, U1 =U; 1 VEL W, = UbT, G=W, VL,
end for

do the truncation
fori=1:N do

Partition
U= Un | (-) ] with Uy € RO*™,
Wi = |: V(VS E; :| with Wil c Rmxm’
Vi= [ Vi | ) } with V;; € Rmx0),
Let, ) ~
Ui=Up, Wi = Wi, V; = Vi1,

end for

Output: U; € RO*™ T, € R™*™ and V; € R™*(),

Remark 3.17. With the Hankel blocks approximation, we can also construct an efficient
preconditioner for two-dimensional PDE-constrained optimization problem, which will be
studied in the next section.

Remark 3.18. For an SSS matriz A with lower and upper semiseparable order r; and r,
respectively. The bigger the semiseparable order 7; and 7, after model order reduction by
Algorithm 2-3 or 4 is, the closer the reduced SSS matrix Aisto A. Fora proper semiseparable
order set, the model order reduction is accurate enough. This makes the LU factorization
of the 2-level SSS matriz by Algorithm 1 accurate enough that can be performed as a direct
solver. Numerical experiments in the next section illustrate this.

Given an SSS matrix A = SSS(Ps, Rs, Qs, Ds, Us, Wy, Vi), to compare the flops of
the approximate balanced truncation in Algorithm 2-3 and the Hankel blocks approximation
Algorithm 4, we assume that the generators sizes in Table 3.1 are m; =n and k; =1, = M
where N is the number of SSS blocks and N > M > n. This is easy to verify from the
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matrix-matrix operations in [13] [24] such as the multiplication and addition. The reduced
SSS matrix A = SS§S(Ps, Rs, Qs, Ds, Us, Wy, Vi), where k; = I; = m, m is the reduced
semiseparable order and m < M. For Algorithm 2-3, the flops count Fy are

Fn =0 ((3m* +4mn+n*)MN + (m+n)M°N), (20)
while the flops count F¢ for Algorithm 4 is
Fo =0 (MPN + (2m+n)M?N + 2mnMN) . (21)
Since N > M > m, n, we describe that
Fn =0 (M?N), (22)
and
Fo =0 (M°N). (23)

Remark 3.19. From (22) and (23), it is obvious that both model order reduction algorithm
for SSS matrices have linear computational complexity O(N), while the approxzimate balanced
truncation (flops count denoted by Fn) is computationally cheaper than the Hankel blocks
approzimation (flops count denoted by Fc ) for large enough M. This will also be illustrated
by numerical experiments in the next section.

Remark 3.20. As stated in [32], the balanced truncation yields an optimal induced Lay-norm
approzimation. Thus for the approrimate balanced truncation, the reduced control system is
close to the optimal Lo-norm approximation. The Algorithm 4 returns the optimal Hankel-
norm approzimation. Thus, both algorithms for model order reduction of SSS matrices will
yield an accurate approzimation. Since the inequality | Z||g < | Z|l2 < V'N||Z|u for all
Z € R™ " holds [29], the Hankel blocks approzimation Algorithm j yields a more accurate
approximation than the approximate balanced truncation Algorithm 2-3 in theory. But the
accuracy of Algorithm 4 and Algorithm 2-3 are comparable, which will be shown by numerical
experiments in the next section.

4 Numerical Experiments

We study two test examples for optimal control of 2D PDEs in this section, i.e., opti-
mal control of the convection-diffusion equation in Example 4.1 and optimal control of the
Poisson equation in Example A.1 in the appendix. We apply the block-diagonal precon-
ditioner P; in (5) for the MINRES method and the lower-triangular preconditioner P in
(5) for the IDR(s) method to both examples. The global preconditioner A in (9) is also
performed for the two test examples to show its superior performance over the standard
block preconditioners for saddle-point system.

Example 4.1. [19] Let Q = {(z,y)|0 <z < 1,0 <y < 1} and consider the problem

B2
Z17

st. —eViu+ W.Vu = finQ

u=up on'p,

in = |u— 4] +
1371;12 u u

where I'p = Q) and

" { (22 -1)%2y—1)% if 0<z <3, and 0<y< 3,
=

0 otherwise.

¢ is a positive scalar, & is the unit directional vector that & = (cos(0), sin(0))” and the
prescribed state 4 = 0.
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The numerical experiments are performed on a laptop of Intel Core 2 Duo P8700 CPU
of 2.53 GHz and 4Gb memory with Matlab R2010b. The stop tolerance of the 2-norm of
the relative residual is set to be 107% for all the numerical experiments. The problem sizes
3.07e+03, 1.23e+04, 4.92e+04 and 1.97e+05 correspond to the mesh sizes h = 275 276,
277 and 278, respectively. The maximum semiseparable order is in the brackets following
the problem size. The time to compute the preconditioners and iterative solution methods
time is measured in seconds.

4.1 Comparison of Two Model Order Reduction Algorithms

In this part, we test the performance of the two model order reduction algorithms. Con-
sider the preconditioning of optimal control of the convection-diffusion equation described
in Example 4.1. With the block-diagonal preconditioner P; by approximate balanced trun-
cation and the Hankel blocks approximation methods, the results for different values of ¢
and (§ are shown in Table 3 - 10, while 6 was set to be Z. The preconditioning column

5
represents the time to compute the preconditioners.

Table 3: By approximate balanced truncation for f = 1071, e = 10!

problem size iterations preconditioning MINRES total

3.07e+03 (4) 10 0.43 0.88 1.31
1.23e+04 (6) 10 1.79 2.07 3.86
4.92¢+04 (6) 10 4.11 595  10.06
1.97e+05 (7) 10 17.05 22.09  39.14

Table 4: By Hankel blocks approximation for 3 = 107!, e = 107!

problem size iterations preconditioning MINRES total

3.07e+03 (4) 10 0.69 1.32 2.01
1.23e+04 (6) 10 2.59 2.38 4.97
4.92e+04 (6) 10 6.14 594 12.08
1.97e+05 (7) 10 26.11 21.59  47.70

Table 5: By approximate balanced truncation for f = 1071, e = 1072

problem size iterations preconditioning MINRES total

3.07e+03 (3) 16 0.29 1.46 1.75
1.23e+04 (4) 14 0.96 3.01 3.97
4.92e+04 (4) 14 2.49 817  10.66
1.97e+05 (5) 14 9.43 29.57  39.00

Table 6: By Hankel blocks approximation for 3 = 1071, e = 1072

problem size iterations preconditioning MINRES total

3.07e+03 (3) 16 0.46 1.48 1.94
1.23e+04 (4) 14 1.40 2.98 4.38
4.92e-+04 (4) 14 4.85 799  12.84
1.97e+05 (5) 14 20.48 28.24  48.72
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Table 7: By approximate balanced truncation for 3 = 1072, e = 107!

problem size iterations preconditioning MINRES total

3.07e103 (3) 13 0.28 1.59 1.87
1.23¢404 (3) 18 0.85 402 487
4.92e+04 (3) 18 2.26 10.79  13.05
1.97e405 (5) 18 9.67 3532 44.99

Table 8: By Hankel blocks approximation for 3 = 1072, ¢ = 107!

problem size iterations preconditioning MINRES total

3.07e+03 (3) 18 0.47 1.65 2.12
1.23e+04 (3) 18 1.28 3.95 5.23
4.92e-+04 (3) 18 4.41 1038 14.79
1.97e+05 (5) 18 21.14 3512 56.26

Table 9: By approximate balanced truncation for 8 = 1072, e = 102

problem size iterations preconditioning MINRES total

3.07e+03 (3) 30 0.32 2.54 2.86
1.23e+04 (3) 30 0.81 6.04 6.85
4.92e-+04 (3) 30 2.28 17.79  20.07
1.97e+05 (5) 30 9.42 58.01  67.43

Table 10: By Hankel blocks approximation for 3 = 1072, ¢ = 1072

problem size iterations preconditioning MINRES total

3.07e+03 (3) 30 0.49 2.62 311
1.23e+04 (3) 30 1.42 6.08 7.50
4.92e+04 (3) 30 4.46 1743 21.89
1.97e+05 (5) 30 20.39 57.32  77.71

The optimal solution of the system states and input for = 1072, ¢ = 10~" and h = 275
are shown in Figure 3(a) and 3(b).

system state u

system state f

m
L0,

(a) Optimal system states w. (b) Optimal system input f.

Figure 3: Solution of the system states and input for = 1072, e = 107! and h = 27°.

Remark 4.1. As shown by (22) and (23), the approximate balanced truncation is com-
putationally cheaper than the Hankel blocks approzimation and both algorithms have linear
computational complexity. This is illustrated by the time to compute the preconditioner for
the same values of 5 and € in Table 8 - 10.
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For the results of the block-diagonal preconditioners with two model reduction algorithms
for optimal control of the Poisson equation, please refer to appendix A.1. For the comparison
results of the two model order reduction algorithms for the block lower-triangular precon-
ditioner, please refer to appendix A.2. These results coincide with the conclusions for the
performance of the two model order reduction algorithms in Table 3 - 10.

4.2 Comparison of Preconditioners

In this part, we compare the performance of the block-diagonal preconditioner and the
global preconditioner. From Table 3 - 10, we see that with the decrease of 3, the number of
iterations increases slightly for the same problem size and e. This is due to the QLM term
plays an increasing important rule with the decrease of 8. This term is neglected in the
preconditioner P; in (6) for big and middle value of § [19]. If we continue decreasing 3 for
the optimal control of the convection-diffusion equation, we have the computational results
in Table 11-12. In this part, the model order reduction algorithm is chosen as the Hankel
blocks approximation method. For the results of approximate balanced truncation, please
refer to appendix B.

Table 11: By the block-diagonal preconditioner in (6) for 3 = 1073, e = 107!

problem size iterations preconditioning MINRES total

3.07¢+03 (3) 34 0.43 2.91 3.34
1.23e+04 (3) 34 1.31 7.61 8.92
4.92e-+04 (3) 34 4.26 19.83  24.09
1.97e+05 (5) 34 17.39 61.82  79.21

Table 12: By the block-diagonal preconditioner in (6) for f = 107%, ¢ = 107!

problem size iterations preconditioning MINRES  total

3.07e+03 (3) 82 0.45 191 5.36

1.23e+04 (3) 82 1.31 1191 13.22
4.92e-+04 (3) 80 4.34 34.83  39.17
1.97e+05 (5) 80 17.89 133.28  141.17

As shown in Table 11-12, with the decrease of 5 from 1072 to 10~%, the number of itera-
tions increase from 34 to 82. It is not difficult to imagine that when 5 continues decreasing,
the performance of the block-diagonal preconditioner P in (6) cannot give satisfied perfor-
mance. Next we test the performance of the preconditioner Py in (7) for f = 10~*. The
computational results are shown in Table 13. The maximum number of iterations is set to
100.

Table 13: By the block-diagonal preconditioner in (7) for f = 107%, ¢ = 107!

problem size iterations preconditioning MINRES convergence

3.07e+03 (5) 100 0.35 6.73 no convergence
1.23e404 (5) 100 1.17 17.97 no convergence
4.92e+04 (5) 100 4.19 44.93 no convergence
1.97e+05 (5) 100 15.72 156.89  no convergence

As shown by Table 12-13, the block-diagonal preconditioner does not work well for small
B. Since the global preconditioner does not neglect any information of 5, we test the
performance of the global preconditioner in the following part.

Recall that in Section 2, we can permute the saddle-point system with MSSS matrix
blocks to a single MSSS matrix system. Since the saddle-point system is indefinite, the
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global preconditioner is also indefinite. Thus the MINRES method is not suitable for the
preconditioned system with the global preconditioner. Here we use the IDR(s) method to
solve the saddle-point system. Table 14-15 show the computational results of 3 = 1073
and 10~* for comparison with the results of the block-diagonal preconditioner in Table
11-13. Results of different values of § for the optimal control of the convection-diffusion
equation and the Poisson equation with the global preconditioner and the blocks-diagonal
preconditioner can be found in appendix B.2.

Table 14: By the global preconditioner for 8 = 1073 and € = 107!

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 2 0.38 013  0.51
1.23e+04 (6) 2 1.16 0.24  1.40
4.92¢+04 (8) 2 4.46 0.66  5.12
1.97e+05 (10) 2 18.29 2.21  20.50

Table 15: By the global preconditioner for 3 = 10~* and ¢ = 107!

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 2 0.38 013 051
1.23e+04 (6) 2 1.15 024 139
4.92e-+04 (7) 2 4.23 0.64  4.87
1.97e+05 (9) 2 17.87 221  20.08

Remark 4.2. Compare the computational results of the global preconditioner in Table 14-
15 with the results of the block-diagonal preconditioner in Table 11-13, it can be seen that
the number of iterations is reduced significantly and independent of B for the global precon-
ditioner. Fwven the global preconditioner consumes more time in preconditioning than the
block-diagonal preconditioner, it needs less time in IDR(4) time and the total time is much
less than that of the block-diagonal preconditioner. Numerical experiments results in the
appendiz for the optimal control of the Poisson equation also support that advantage of the
the global preconditioner over the block-diagonal preconditioner.

5 Preconditioning for Optimal Control of 3D Problems

As analyzed in Section 3.1, to do an LU factorization of a k-level SSS matrix, the model
order reduction of (k — 1)-level SSS matrix is needed. Since the model order reduction for
2-level and higher level SSS matrices is a big challenge, there exist no method that works
well to the best knowledge of the authors, some first-step work for optimal control of 3D
Poisson equation in Example 5.1 are discussed in this section.

Example 5.1. Consider the problem of optimal control of the Poisson equation

1
min 3 — il + 51171

st.—V2u=finQ
u=up on S,

where Q = {(x,y,2)[0 <2 <1,0<y <1,0< 2z <1} and

sin(2my), if 1=0,0<y<1,2=0;
up =4 —sin(2ny), if t=1,0<y<1,2=0;
0, elsewhere.
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The discretized analog of problem (24) is

: 1 ~ 112 2
min 5 lu =l + B

(25)
sit. Ku=Mf+d,
where
D —L
-L D —L
K= -L D , (26)
. . I
—-L D

and the matrices D and L in K are 2-level SSS matrices. To get the optimal solution of
Example 5.1, the type of saddle-point system (3) needs to be solved. Here we also have two
types of preconditioners, one is the block-diagonal preconditioner and the other is the global
preconditioner.

5.1 Block-Diagonal Preconditioners

In this subsection, we test the block-diagonal preconditioners for big and middle size of
B, then the block-diagonal preconditioner P; is chosen as in (6) where K is approximated
by MSSS matrix computations.

To compute the LDU factorization of the matrix K with MSSS matrix computations,
the Schur complement at the k — th step is

So =D,
4 (27)
Sk41 =D — LS 'L.

Since D and L are 2-level SSS matrices, S is also a 2-level SSS matrix. During the recurrence
of computing the Schur complement S, both the 2-level and 1-level semiseparable orders
increase. Model order reduction for 2-level and 1-level SSS matrices are necessary, of which
the 2-level model order reduction is still an open problem. Here we use another method to
approximate the Schur complement with lower 2-level semiseparable order.

As pointed out in [37], for a symmetric positive definite matrix from discretization of
PDEs with constant coefficients, all subsequent Schur complements are also symmetric pos-
itive definite and will converge to a fixed point matrix S with a fast convergence rate. In
[15], Dewilde et. al. used the hierarchical partition of the matrix K and computed the Schur
complement at the first ks (ks < 3) iteration steps. Then replace the Schur complements Sy,
(k > ks) with Si_ to approximate the Schur complements afterwards for the preconditioning
of the Poisson equation on an 8 x 8 x 8 regular grid. Due to limited (only k) steps for com-
putation of the Schur complements, the 2-level semiseparable order is bounded by a small
number. Note that in [15], there are no numerical experiments to test the performance of
the preconditioners for the Krylov subspace method.

In this paper, we extend the methods in [15] for hierarchical partition of the matrix to
the 3-level SSS matrix partition case to compute the block-diagonal preconditioner. Here we
just compute the Schur complements of the first four steps and use Sy to approximate the
Schur complements afterwards, which corresponds to the third order approximation in [15].
With the block-diagonal preconditioner P; in (6) and solve the preconditioned system by the
MINRES method, the computational results are shown in Table 16-17. The problem sizes
1.54e+403, 1.23e+04, 9.83e+04, and 7.86e-+05 correspond to the mesh size 273, 274, 277,
and 276, respectively. The maximum semiseparable order is in the brackets that follow the
problem size. Here for the block-diagonal preconditioner, we test two model order reduction
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algorithms and the MOR columns of Table 16-17 list the time spent in model order reduction
of corresponding algorithms.

Table 16: By approximate balanced truncation for 3 = 107!

problem size iterations Preconditioning MOR MINRES total

1.54e+03 (4) 4 4.83 1.83 3.15 8.03
1.23e+04 (4) 8 12.28 5.71 23.93 36.21
9.83e+04 (8) 20 38.13 22.24 263.93 302.06
7.86e+05 (8) 34 178.41 116.04  2351.70  2530.11

Table 17: By Hankel blocks approximation for 3 = 107!
problem size iterations Preconditioning MOR  MINRES total

1.54e+03 (4) 4 16.27 13.52 3.01 19.28
1.23e+04 (4) 8 39.76 33.50 23.85 63.61
9.83e+04 (8) 16 122.98 106.03 213.31 336.29
7.86e+05 (8) 34 551.25 490.16  2277.50  2828.75

Since we just compute the Schur complements of the first ks steps with MSSS matrix
computations, the computational complexity is less than linear. The growth rate of the
time to compute the preconditioner in Table 16-17 is smaller than 8, which illustrate this
property. The computational results in Table 16-17 also verify that the approximate bal-
anced truncation is computationally cheaper than the Hankel blocks approximation and the
preconditioners computed by these two model order reduction algorithms give almost the
same number of iterations. This covers the results in Section 4.1.

5.2 Global Preconditioners

In the previous part, we extend the methods in [15] for symmetric positive definite by hi-
erarchical partition to the 3-level SSS partitioned symmetric positive definite matrix. In this
part, we extend this method to the 3-level SSS partitioned symmetric but indefinite matrix.
For the global preconditioner, we also compute the first 4 steps of the Schur complements
in the LDU factorization of the global 3-level SSS matrix. The computational results are
shown in Table 18. Due to the indefiniteness of the global preconditioner, IDR(16) was
chosen as the iterative solver. Compare results of the global preconditioner by the Hankel
blocks approximation in Section 4.2 with that by the approximate balanced truncation in
appendix A.3, the Hankel blocks approximation perform better. Thus, in this section the
model order reduction algorithm for the global preconditioner is chosen as the Hankel blocks
approximation.

Table 18: By the global preconditioner for 8 = 107!

problem size iterations preconditioning IDR(16)  total

1.54¢103 (6) 15 6.89 381  10.70
1.23¢+04 (6) 25 18.21 40.68  58.89
9.83¢+04 (6) 45 119.23 863.73  982.96

Due to limited steps for computing the Schur complements, the time to compute the
global preconditioner is also less than linear, which is illustrated by Table 18. Due to
the indefiniteness of the sallde-point system matrix, the Schur complements in the LDU
factorization is also indefinite. As pointed out in [15], the Schur complements for symmetric
positive definite matrices from discretized PDEs of constant coefficients are also symmetric
positive definite and have a fast rate of convergence, while the convergence of the Schur
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complements for the indefinite matrix is not guaranteed. This is illustrated by the number
of iterations for the global preconditioner in Table 18 is bigger than that of the block-diagonal
preconditioner in Table 16-17.

Comparing the results of the block-diagonal preconditioner in Table 16-17 with the re-
sults of the global preconditioner in Table 18, we will conclude that for the optimal control
of 3D problems with MSSS matrix computations, the block-diagonal preconditioner is rec-
ommended. If the model order reduction algorithm for 2- or higher- level SSS matrices are
well-established, we believe that the global preconditioner will perform better than the block
preconditioner for 3D problems.

6 Conclusions

In this paper, we have studied the global preconditioner and the block preconditioners
for the saddle-point systems from the PDE-constrained optimization problems. By exploit-
ing the multilevel sequentially semiseparable (MSSS) structure of the blocks of the saddle-
point systems, we have constructed preconditioners and solved the preconditioned system in
linear computational complexity. To compute the preconditioners with MSSS matrix com-
putations, the approximate balanced truncation model order reduction algorithm for MSSS
matrix computations has been proposed. The standard model order reduction algorithm,
i.e., the Hankel blocks approximation is also studied. Numerical experiments illustrate that
for the optimal control of 2D PDEs, the global preconditioner reduced the number of itera-
tions significantly compared with the block preconditioners, while both preconditioners yield
results independent of the mesh size. Moreover, the global preconditioner is independent
of the regularization parameter while the block preconditioners are not. Thus, for optimal
control of 2D PDEs, the global preconditioner by the Hankel blocks approximation is recom-
mended. Since well-established model order reduction algorithm for 2- or higher- level SSS
matrices is still an open problem, block preconditioners by approximate balanced truncation
are preferred for the optimal control of 3D problems.

The next step of this research is to apply this preconditioning technique to the optimal
control of the flow in a domain, such as optimal control of the Stokes equation and optimal
control of the Navier-Stokes equation. This has a wide range of applications such as control
of the wind farms to optimize the output power.
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Appendix
A Comparison of Two Model Order Reduction Algorithms

A.1 Block-Diagonal Preconditioner

Consider the problem of optimal control of the Poisson equation in Example A.1,

Example A.1. [1/] Let Q = [0, 1]? and consider the problem

p
I

st. —Viu=finQ
u=up onl'p

ou r
= —UunNy onlnyn
on ’

in 2 {lu— af) +
%{1}12 u u

where Ty = {& = 0,0 <
0 =

<1} and T'p = 0O\I'y, T is the normal vector on the bounds
that point outwards, ]

Y
0 is the prescribed system state, uny = sin(2my) and

w — { —sin(2my) if x=1,0<y <1,
P70 otherwise.

The computational results for optimal control of the Poisson equation by MINRES
method with the preconditioner P; by the approximate balanced truncation Algorithm 2-3
and the Hankel blocks approximation Algorithm 4 for different values of 5 are shown in
Table 19 - 24.

Table 19: By approximate balanced truncation for § = 1071

problem size iterations preconditioning MINRES total

3.07e+03 (3) 6 0.20 0.61 0.84
1.23e+04 (3) 8 0.57 1.76 2.33
4.92e+04 (5) 8 2.09 5.06 7.15
1.97e+05 (6) 8 8.92 18.90  27.82

Table 20: By Hankel blocks approximation for 3 = 107!

problem size iterations preconditioning MINRES total

3.07¢103 (3) 6 0.46 0.59 1.03
1.23e+04 (3) 8 0.69 1.79 2.48
4.92e+04 (5) 6 2.83 4.20 7.03
1.97e+05 (6) 8 10.81 1879  29.60

Table 21: By approximate balanced truncation for 3 = 1072

problem size iterations preconditioning MINRES total

3.07e+03 (4) 8 0.21 0.78 0.99
1.23e+04 (4) 8 0.72 2.00 2.72
4.92e+04 (5) 8 2.53 6.28 8.81
1.97e+05 (6) 10 9.53 2512  34.65
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The optimal solution of the system states and input for 3 = 1072 and h = 2% are shown

Table 22: By Hankel blocks approximation for 3 = 1072

problem size iterations preconditioning MINRES total

3.07e+03 (4) 8 0.31 0.83 1.14
1.23e+04 (4) 8 0.98 2.07 3.05
4.92e+04 (5) 6 3.49 4.67 8.16
1.97e+05 (6) 8 14.67 20.31  34.98

Table 23: By approximate balanced truncation for 3 = 1073

problem size iterations preconditioning MINRES total

3.07e103 (4) 12 0.23 1.14 1.37
1.23e+04 (4) 12 0.67 2.92 3.59
4.92¢+04 (6) 12 2.75 789  10.64
1.97e+05 (7) 12 11.50 28.92  40.42

Table 24: By Hankel blocks approximation for 3 = 1073

problem size iterations Preconditioning MINRES total

3.07e+03 (4) 12 0.34 1.23 1.57
1.23e+04 (4) 12 0.76 2.97 3.73
4.92¢+04 (6) 12 3.68 859  12.27
1.97e+05 (7) 12 14.43 28.94  43.37

in Figure 4(a) and 4(b).

system states u

Figure 4: Solution of the system states and input when 8 = 10~2 and h = 276,

Remark A.1. Table 19 - 24 show that the number of iterations for the block-diagonal pre-
conditioner with approximate balanced truncation and the Hankel blocks approximation are
virtually independent of the mesh size. For the same semiseparable order setup, computa-
tion of the preconditioner with approximate balanced truncation is computationally cheaper
than preconditioning with the Hankel blocks approzimation, while both algorithms have linear
computational complexity with respect to the problem size. The time of the MINRES method
is also linear with respect to the problem size for both model order reduction algorithms.

Remark A.2. As shown in remark 3.20, the Hankel blocks approzimation Algorithm 4 yields
a more accurate approrimation than the approximate balanced truncation Algorithm 2-8 while

(a) Optimal system states u.

system input f

(b) Optimal system input f.
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both methods return an approzimate of satisfied accuracy. This is illustrated in Table 19-2/.
For the same problem size, the number of iterations is very limited while the average number
of iterations of the Hankel blocks approximation is equal to or a little smaller than that of
the approximate balanced truncation.

A.2 Block Lower-Triangular Preconditioner

This part gives the performance of the block lower-triangular preconditioner for optimal
control of the convection-diffusion equation in Example 4.1. Take the block lower-triangular
preconditioner Po in (5) by the approximate balanced truncation Algorithm 2-3 and the
Hankel blocks approximation Algorithm 4, solve the unsymmetric preconditioned system
with IDR(s) method. The computational results are shown in Table 25 - 34.

Table 25: By approximate balanced truncation for 3 = 107!, e = 107!

problem size  iterations preconditioning IDR(16) total

3.07e+03 (3) 12 0.34 1.09 143
1.23e+04 (6) 12 0.99 261  3.60
4.92¢+04 (6) 11 4.07 7.02 1109
1.97e+05 (10) 12 18.05 24.09  42.14

Table 26: By Hankel blocks approximation for 3 = 107!, ¢ = 107!

problem size iterations preconditioning IDR(16) total

3.07¢+03 (3) 13 0.56 129 185
1.23e+04 (6) 9 1.77 201  3.78
4.92¢+04 (6) 16 9.02 989  18.91
1.97e+05 (10) 10 28.28 19.76  48.04

Table 27: By approximate balanced truncation for f = 1071, e = 1072

problem size iterations preconditioning IDR(32) total

3.07e+03 (3) 15 0.26 120 146
1.23¢+04 (3) 13 0.70 274 3.14
4.92e+04 (4) 13 2.43 776 10.19
1.97e+05 (10) 13 25.06 30.67  55.73

Table 28: By Hankel blocks approximation for 3 = 107!, ¢ = 1072

problem size iterations preconditioning IDR(32) total

3.07¢+03 (3) 15 0.45 123 1.68
1.23¢+04 (3) 17 1.29 339 468
4.92e+04 (4) 17 4.77 997  14.74
1.97e+05 (10) 14 48.20 32.40  80.60

Table 29: By approximate balanced truncation for f = 107!, e = 1072

problem size iterations preconditioning IDR(16) total

3.07¢+03 (3) 18 0.37 151 143
1.23¢+04 (3) 16 0.68 317  3.85
4.92e+04 (4) 15 2.38 795  10.33
1.97e+05 (8) 18 13.61 35.46  49.07
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Table 30: By Hankel blocks approximation for 3 = 107!, ¢ = 1072

problem size iterations preconditioning IDR(16) total
3.07¢+03 (4) 20 0.51 162 213
1.23e+04 (3) 27 1.24 544  6.68
4.92e+04 (4) 16 477 8.19  12.96
1.97e+05 (8) 19 24.70 36.75  59.45

Table 31: By approximate balanced truncation for 3 = 1072, e = 10~!

problem size  iterations preconditioning IDR(32) total
3.07e+03 (6) 16 0.42 141 183
1.23e+04 (6) 17 1.17 3.65  4.82
4.92e+04 (7) 19 4.41 11.80 16.21
1.97e405 (10) 18 25.33 41.86  67.19

Table 32: By Hankel blocks approximation for 3 = 1072, ¢ = 107!

problem size  iterations preconditioning IDR(32) total
3.07¢+03 (6) 17 0.66 149 215
1.23e+04 (6) 19 2.22 4.03 6.25
4.92e+04 (7) 21 9.81 12.81 22.62
1.97e+05 (10) 16 49.78 36.75 86.53

Table 33: By approximate balanced truncation for f = 1072, e = 1072

problem size iterations preconditioning IDR(32) total
3.07e+03 (6) 30 0.39 2.65 3.04
1.23e+04 (6) 32 1.12 6.85  7.97
4.926+04 (7) 32 4.32 20.65  24.97
1.97e+05 (10) 31 25.08 71.03 96.11

Table 34: By Hankel blocks approximation for 3 = 1072, ¢ = 1072

problem size  iterations preconditioning IDR(32) total
3.07e+03 (6) 30 0.68 2.59 3.27
1.23e+04 (6) 36 2.37 775 10.12
4.92e+04 (7) 31 9.55 19.55 39.10
1.97e4-05 (10) 32 48.78 72.58  121.36

Remark A.3. From Table 25-3/, we can see that for the fixed values of B and e, the
number of iterations is very limited, almost constant and independent of the mesh size.
Meanwhile, both preconditioners have linear computational complexity, which is illustrated
by the preconditioning time columns. The preconditioned system can also be solved in linear
complezity, which is verified by the IDR(s) time columns.

Remark A.4. From the preconditioning columns of Table 25-34 for the same experiment
settings, we can see that the approrimate balanced truncation method for SSS matrices is
computationally cheaper than the Hankel blocks approrimation method.

Remark A.5. Compare the computational results of the block-diagonal preconditioner Py
and MINRES in Table 3-10 with that of the block lower-triangular preconditioner Ps and
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IDR(s) in Table 25-34, we can see that both preconditioners are comparable. For the same
settings of § and e, the semiseparable order needs to be set bigger for the IDR(s) method
with Py than the MINRES method with Py. This makes the preconditioning time and the
iterative solution time of Py bigger than that of P;.

A.3 Global Preconditioner

For the global preconditioner by the approximate balanced truncation, the computational
results for the optimal control of the Poisson equation is shown in Table 35-36.

Table 35: By approximate balanced truncation for 3 = 1071

problem size  iterations preconditioning IDR(4) total

3.07¢+03 (10) 1 0.48 019  0.67
1.23¢+04 (13) 4 1.69 043 212
4.92¢+04 (16) 4 6.39 134 7.73
1.97e+05 (20) 6 29.34 10.28  39.62

Table 36: By approximate balanced truncation for 3 = 1072

problem size iterations preconditioning IDR(4) total

3.07e+03 (11) 3 0.50 0.16  0.66
1.23¢+04 (14) 4 1.75 043 218
4.92¢+04 (16) 3 5.96 152 7.48
1.97e+05 (22) 4 31.84 8.08  39.92

Due to the ill-condition of the saddle-point system, it is difficult to compute a good
approximation of the indefinite saddle-point system. To get a good approximation of the
saddle-point system with MSSS matrix computations, bigger semiseparable order is needed.
Based on remark 3.20, the approximate balanced truncation yields a reduced SSS matrix less
accurate than the Hankel blocks approximation, bigger semiseparable order is needed for the
approximate balanced truncation than the Hankel blocks approximation. This is illustrated
by the results in Table 45-46 for the Hankel blocks approximation with the results in Table
35-36 for the approximate balanced truncation. The increase of the semiseparable order
leads to the increase of computational complexity. This makes the global preconditioner by
the approximate balanced truncation more computationally expensive than the global pre-
conditioner by the Hankel blocks approximation. Here we do not compare the performance
of the two different model order reduction algorithms for other experiment setup.

B Comparison of Preconditioners

B.1 Block-Diagonal Preconditioner

In this part, the performance of the block-diagonal preconditioner for small size of § for
the optimal control of the Poisson equation and the convection-diffusion equation is studied.
Table 37-40 show the results of the block-diagonal preconditioner P; in (6) for the optimal
control of the Poisson equation.
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Table 37: With P; in (6) by approximate balanced truncation for 8 = 10~°

problem size iterations preconditioning MINRES total

3.07e¢+03 (5) 12 0.28 251 2.79
1.23e+04 (5) 42 0.76 6.52 7.28
4.92e+04 (5) 42 2.48 21.23  23.71
1.97e+05 (5) 42 11.13 83.34  94.47

Table 38: With P; in (6) by Hankel blocks approximation for 8 = 10~°

problem size iterations preconditioning MINRES total

3.07e+03 (5) ) 0.28 2.45 2.73
1.23e+04 (5) 42 0.81 6.57 7.38
4.92e+04 (5) 42 3.48 21.28  24.76
1.97e+05 (5) 42 12.43 84.75  97.18

Table 39: With P; in (6) by approximate balanced truncation for 8 = 10~°

problem size iterations preconditioning MINRES  total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.87 1471 1558
4.92e+04 (5) 95 2.87 49.32 5219
1.97e+05 (5) 90 11.27 195.47  206.74

Table 40: With P; in (6) by Hankel blocks approximation for 8 = 10~°

problem size iterations preconditioning MINRES  total

3.07e+03 (5) 100 0.27 5.31 5.58

1.23e+04 (5) 96 0.96 14.60 15.56
4.92e+-04 (5) 95 3.60 49.68 53.28
1.97e+05 (5) 90 12.33 195.35 207.68

From Table 37-40, we can see that with the decrease of 3, the number of iterations is
constant with the mesh size but increases dramatically. As introduced in [19], for "smaller"
B (B < 107°), the block-diagonal conditioner could be chosen as P; in (7). With this
preconditioner, the computational results are shown in Table 41-42. The maximum number
of iterations is set to 100.

Table 41: With P; in (7) by Hankel blocks approximation for 8 = 10~°

problem size iterations preconditioning MINRES convergence

3.07e+03 (5) 100 0.33 6.62 no convergence
1.23e+04 (5) 100 1.08 14.66 no convergence
4.92e+04 (5) 100 3.93 38.04 no convergence
1.97e+05 (5) 100 15.65 118.32  no convergence
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Table 42: With P; in (7) by Hankel blocks approximation for 3 = 1076

problem size iterations preconditioning MINRES convergence

3.07e+03 (5) 100 0.33 6.52 no convergence
1.23e+04 (5) 100 1.07 14.57 no convergence
4.92e+04 (5) 100 3.93 39.25 no convergence
1.97e+05 (5) 100 15.14 118.92  no convergence

Remark B.1. As shown in Table 41-42, the block diagonal preconditioner Py in (7) does
not work well for the smaller 5. This preconditioner cannot yield the satisfied solution of
the saddle-point system within the maximum number of iterations.

For small size of 3 of the optimal control of the convection-diffusion equation, the compu-
tational results of the block-diagonal preconditioner P; in (6) by the approximate balanced
truncation are shown in Table 43-44.

Table 43: With P in (6) by approximate balanced truncation for 8 = 1073, ¢ = 10~!

problem size iterations preconditioning ) MINRES total

3.07e+03 (3) 34 0.34 2.93 3.27
1.23e+04 (3) 34 0.94 7.31 8.25
4.92e+04 (3) 34 2.34 1938 21.72
1.97e+05 (5) 34 10.39 61.12 7151

Table 44: With P; in (6) by approximate balanced truncation for 8 = 1074, ¢ = 107!

problem size iterations preconditioning MINRES  total

3.07e+03 (3) 82 0.35 5.02 5.37

1.23e+04 (3) 82 0.91 1178 12.69
4.92e+04 (3) 80 2.67 33.98  36.65
1.97e+05 (5) 80 10.81 132,98  143.79

B.2 Global Preconditioners

For optimal control of the Poisson equation, the computational results of the global
preconditioner by Hankel blocks approximation are shown in Table 45-49.

Table 45: Global Preconditioner for 8 = 107!

problem size iterations preconditioning IDR(4) total

3.07e103 (4) 2 0.39 013 0.52
1.23¢404 (4) 3 1.13 034 147
4.92e+04 (6) 3 3.98 096  4.94
1.97e-+05 (6) 3 14.39 311 17.50

Table 46: Global Preconditioner for 8 = 1072

problem size iterations preconditioning IDR(4) total

3.07e103 (4) 3 0.38 015  0.52
1.23e404 (4) 3 1.08 031  1.39
4.92¢+04 (6) 3 3.87 089  4.76
1.97¢405 (6) 3 14.58 313 17.71
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Table 47: Global Preconditioner for f = 1073

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 3 0.38 015 0.52
1.23e+04 (5) 3 1.12 031  1.43
4.92e+04 (7) 2 4.19 0.64  4.76
1.97e+05 (7) 4 15.95 411 20.06

Table 48: Global Preconditioner for 8 = 10~°

problem size iterations preconditioning IDR(4) total

3.07e103 () 2 0.39 012 051
1.23e+04 (7) 3 1.20 031 151
4.92e+04 (7) 3 4.12 089  5.01
1.97e-+05 (9) 4 15.86 444 20.30

Table 49: Global Preconditioner for f = 1076

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 3 0.37 015  0.52
1.23e+04 (6) 2 1.12 033 145
4.92e+04 (8) 3 4.20 1.64  5.84
1.97¢405 (10) 3 17.94 6.63  24.57

Remark B.2. Table 45-49 show that the global preconditioner has linear computational
complezity that makes time to compute the preconditioner and IDR(4) time scale linearly
with the problem size. Furthermore, the performance of the global preconditioner is mesh
size independent.

Remark B.3. As shown in Table 45-49, the global preconditioner is independent of the
reqularization parameter 5. For different 3, the number of iterations is independent of 3.
Compared with the results for the block-diagonal preconditioner, the global preconditioner is
computationally cheaper than the block-diagonal preconditioner.

Remark B.4. As the condition number of the saddle-point system is proportional to %,
with the decrease of (B, for the same problem size, the saddle-point system becomes more
ill-conditioned. This makes it much more difficult to compute an accurate approzimate LU
factorization of the global saddle-point system. This is illustrated by the slightly increase
of the mazimum semiseparable order in this factorization for the same problem size with
decrease of B in Table 45-49. Due to this slightly increase of the semiseparable order, the
time to compute the preconditioner and iterative solution method also increase slightly, but
they are still linear with the problem size.

With the global preconditioner, the computational results for optimal control of the
convection-diffusion equation for big 8 are shown in Table 50-53.

Table 50: Global Preconditioner for 8 = 10~! and e = 10!

problem size iterations preconditioning IDR(4) total

3.07e103 (4) 2 0.38 015 053
1.23e+04 (4) 2 1.11 023  1.34
4.92¢+04 (6) 3 3.92 091  4.83
1.97e+05 (6) 3 14.84 315  17.99
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Table 51: Global Preconditioner for 8 = 1072 and ¢ = 107!

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 2 0.38 013 051
1.23e+04 (4) 3 1.11 032 143
4.92¢+04 (6) 2 3.92 0.63  4.55
1.97e+05 (6) 3 15.11 312 1823

Table 52: Global Preconditioner for 8 = 10! and e = 1072

problem size iterations preconditioning IDR(4) total

3.07e103 (4) 1 0.38 0.09 047
1.23e+04 (4) 1 1.11 015  1.26
4.92¢+04 (6) 1 3.89 036  4.25
1.97e-+05 (6) 2 14.77 2.14  16.91

Table 53: Global Preconditioner for 8 = 1072 and ¢ = 1072

problem size iterations preconditioning IDR(4) total

3.07e+03 (4) 1 0.38 0.09 047
1.23e+04 (4) 1 1.11 015  1.26
4.92e+04 (6) 1 3.95 036  4.31
1.97e+05 (6) 2 14.92 214  17.06

Remark B.5. In Table 52 and 53, with a small maximum semiseparable setup for the
problems in the first three rows, the global preconditioner is already accurate enough that can
be performed as a direct solver.

Remark B.6. Due to the condition number of the saddle-point system is proportional to
L the saddle-point system becomes ill-conditioned with the decrease of 3. This makes it
difficult to compute an accurate approzimation close to the saddle-point system. Thus the
mazimum semiseparable should be increased slightly. The slightly increase of the maximum

semiseparable order does not change the linear computational complexity. This is illustrated
in Table 50-53.

Remark B.7. According to Table 50-53, the number of iterations for the global precondi-
tioner is independent of the regularization parameter (3, while for the block-diagonal precon-
ditioner, this property does not hold.

34



	Introduction
	Problem Formulation
	PDE-Constrained Optimization Problem
	 Preconditioning of Saddle-Point Systems
	Block Preconditioners
	Global Preconditioners


	Preconditioning Using Multi-level Sequentially Semiseparable Matrix Computations
	Multi-level Sequentially Semiseparable Matrices
	Multi-level Sequentially Semiseparable Preconditioners
	LU Factorization of Multilevel Sequentially Semiseparable Matrices
	Approximate Balanced Truncation 
	Hankel Blocks Approximation


	Numerical Experiments
	Comparison of Two Model Order Reduction Algorithms
	Comparison of Preconditioners

	Preconditioning for Optimal Control of 3D Problems
	Block-Diagonal Preconditioners
	Global Preconditioners

	Conclusions
	Comparison of Two Model Order Reduction Algorithms
	Block-Diagonal Preconditioner
	Block Lower-Triangular Preconditioner
	Global Preconditioner

	Comparison of Preconditioners
	Block-Diagonal Preconditioner
	Global Preconditioners


